
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The original IEEE publication can be found here: http://ieeexplore.ieee.org/document/8104307/ ; DOI: 10.1109/CBMS.2017.151

Security in a Distributed Key Management Approach

Gunther Schiefer, Murat Citak,

Andreas Schoknecht

Institute of Applied Informatics and

Formal Description Methods (AIFB)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

e-mail: name.surname@kit.edu

Matthias Gabel, Jeremias Mechler

Institute of Theoretical Informatics (ITI)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

e-mail: name.surname@kit.edu

Abstract—Cloud computing offers many advantages as flexibil-

ity or resource efficiency and can significantly reduce costs.

However, when sensitive data is outsourced to a cloud provid-

er, classified records can leak. To protect data owners and

application providers from a privacy breach data must be en-

crypted before it is uploaded. In this work, we present a dis-

tributed key management scheme that handles user-specific

keys in a single-tenant scenario. The underlying database is

encrypted and the secret key is split into parts and only recon-

structed temporarily in memory. Our scheme distributes

shares of the key to the different entities. We address boot-

strapping, key recovery, the adversary model and the resulting

security guarantees.

Keywords-key management; key distribution; cloud security

I. INTRODUCTION

When personal data (e.g. medical records) is processed it
is often imperative from a legal standpoint to guarantee con-
fidentiality (e.g Data Protection Directive 95/46/EC, General
Data Protection Regulation (EU) 2016/679 etc.). For many
small and medium-sized enterprises cloud computing is an
attractive alternative compared to operating an own data cen-
ter. However, if sensitive data is handled by an untrusted
third party like a cloud provider it is not trivial to ensure pri-
vacy of sensitive information.

The main adversary is an insider, e.g. a cloud administra-
tor that has high privileges. To prevent a leak of personal
identifiable data we use a database proxy This proxy acts as
an adapter between the application and untrusted storage
providers and encrypts all outgoing data transparently to the
application side. We focus on using symmetric encryption
(e.g. AES [3]) because speed is required for practicability.
Independent of which outsourcing scheme is used, the en-
cryption and decryption algorithm needs a secret key. This
paper addresses the major issues of key handling and storage
in a distributed system.

We assume that data in the cloud is persisted (stored) on-
ly in encrypted form but need to be processed unencrypted.
Furthermore, we assume that all connections are secured on
transport level with transport-layer security (TLS) [4]. The
main focus of this paper is on handling the key used to en-
crypt the outsourced database as well as on authorization of
the legitimate user.

To minimize the attack potential, the encryption key is
broken into fragments and not persistently stored as a whole.

The fragments are distributed between the application, the
users and the proxy. The cloud storage provider is used only
as a storage back-end and is not required to participate in the
key management. Our key management scheme protects the
database’s confidentiality even if the key shares of an arbi-
trary number of users and the application are compromised
and does not rely on heavy tools like a global PKI for user
keys. This allows for a very lightweight deployment.

A. Related Work

One alternative to our approach is to store the secret key
in the cloud itself. In this case the cloud provider is responsi-
ble for key storage and handling of encryption end decryp-
tion. The obvious upside is simplicity and transparency to the
application. Amazon Web Services (AWS) [7] works like
this; the user is not even able to obtain the secret key. In our
model this approach is not applicable because we assume the
application cloud provider cannot be trusted to handle
plaintext data and the key. More along the lines of our work
is the use of a key server which provides a trusted party like
the database proxy with the encryption key when needed.
However, this introduces the necessity of operating another
component whose security must be ensured at all times [8]
[9].

A completely different approach is called “Sealed
Cloud”, where encryption keys are stored at the cloud pro-
vider’s premises, albeit in volatile memory only. By tech-
nical and organizational measures it is ensured that data and
keys are erased as soon as (legitimate) administrative access
to the server, possibly allowing to recover the key, is needed
[10].

We build on top of an existing outsourcing scheme that
relies on a single tenant key (TK). It was first introduced in
the MimoSecco [1] and Cumulus4j [2] projects and further
developed in PaaSword [5]. The key can be stored in secure
hardware (MimoSecco [1]), on a dedicated key server (Cu-
mulus4j [2]) or integrated (PaaSword [6]).

B. Contribution and Paper Structure

Our contribution is a simple, yet powerful distributed key
management scheme that enables for transparent encryption
of sensitive data. This scheme was introduced in a previous
publication [6]. Here we detail the functionality of the com-
ponents and define the needed interfaces. Additionally, we
reconsider the establishment of trust during the bootstrapping

http://ieeexplore.ieee.org/document/8104307/

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The original IEEE publication can be found here: http://ieeexplore.ieee.org/document/8104307/ ; DOI: 10.1109/CBMS.2017.151

phase and argue about the security of the scheme relative to
an adversarial model we provide.

This work is structured as follows. Chapter II explains
the underlying model for key management and introduces the
entities that contribute to the scheme. The basic idea of key
splitting and distribution is described. Chapter III explains in
more detail how certain mechanisms, especially bootstrap-
ping, key usage and recovery work. Chapter IV provides an
attacker model and a security analysis. Chapter V concludes.

II. KEY MANAGEMENT MODEL

The PaaSword approach is based on an architecture that
separates the Application (A) where the data is processed
from the DB Proxy (P) whose task is to store and access the
data in a cloud database on behalf of A when authorized by a
User (Ui) (see Figure 2).

The key management for data access shall avoid specific
secure hardware. For security reasons, TK to access the da-
tabase shall not be stored at P, where it would be beyond the
tenant’s control. On the other hand, the approach shall avoid
the necessity of running a key server at the tenant side. Fur-
thermore, TK shall not be available at A, so the application
or its administrator cannot access the data at all times. In
addition, no individual user should have TK, due to the high
risk of losing the key or theft, especially if mobile devices
(smartphone, tablet, laptop) are used. If a user had TK,
he/she would be able to access the database directly; bypass-
ing the access control mechanism of A if he/she got direct
access to the cloud database. In addition, we need one key
per tenant, to share access to the data to all users authorized
by the tenant.

To fulfil all the requirements mentioned above, the ap-
proach of PaaSword is to split up the key in three parts and
give one part to each Ui, one part to A and one part to P.
Therefore, TK is split up in three parts TKu, TKa and TKp
such that

TK = TKu  TKa  TKp

where ⊕ is the bit-wise XOR function. The user gets
TKu, the application TKa and the DB Proxy TKp. Only if
they work together they can reconstruct TK to access the
database.

To have the ability to withdraw the access possibility for
an individual user or to change the user part (TKu) of TK
(e.g. it is lost or stolen) without affecting any other user it is
necessary to have user individual triple sets of TK. There-
fore, TK is split up for every individual Ui in a way that:

TK = TKu1  TKa1  TKp1

 = TKu2  TKa2  TKp2

 = TKu3  TKa3  TKp3

 = …

To create those user individual key triples, the tenant key
TK is handled as a bit-string, the length of TK is l. For each

user Ui, initially two uniformly random bit-strings, e.g., TKai

and TKpi , of length l are chosen. Then the third key, e.g.,

TKui is computed as

TKui = TK ⊕ TKai ⊕ TKpi .

It is irrelevant which two keys are random and which is
computed from the other two and TK.

A. Key Management Setup

To set up this scenario, the process shown in Figure 1 is
used during bootstrapping time. P creates the encrypted da-
tabase (with key TK), hands TK to the Tenant Admin and
deletes TK from its memory. The Tenant Admin splits up
TK for every user as described above. He keeps TK and all
TKui in a safe place in case a recovery is necessary. After-
wards the Tenant Admin distributes the individual TKui to
every Ui, all the TKai to A and all the TKpi to P. The distri-
bution to A and P is secured with transport encryption and
two-sided authorization, the TKpi are additionally encrypted
and signed to prevent access or changes by A. When the set-
up is finished, the Tenant Admin should go offline to protect
him from online attacks. He is only needed again in case of
recovery or to add / change user.

Encrypted
with TK

Cloud DB

2. TK  Tenant

3. Split TK  TKui  TKai  TKpi

1. Create encDB

with Key TK

4. Distribute all

TKui, TKai, TKpi

User (ui)

Application (A) DB-Proxy (P)

Access
Control

Tenant-

Admin

TK

Access

Figure 1. Setup of the Key Management Mechanism [6]

B. Key Management During Runtime

Figure 2 shows the key management mechanism during
runtime. Ui encrypts his individual part of the key (TKui)
together with a timestamp using the public key of P (referred
to as EncP(TKuiǁtime)) and adds it to his/her request to the
application for processing data. A controls the permission of
the user to process the data and if it is granted A can use
EncP(TKuiǁtime) and its own user specific part of the applica-
tion key (TKai) to request the necessary database operations
from P. P decrypts EncP(TKuiǁtime) and controls the
timestamp. If the timestamp is within the validity period, it

reconstructs TK = TKui  TKai  TKpi, checks the validity
of TK and does the requested database operation. Afterwards
P wipes TK out of its memory.

TKui

Encrypted
with TK

Cloud DB

Access
Control

…
TKa1

TKa2

TKa3

.

…
TKp1

TKp2

TKp3

TKai

User (ui)

Application (A) DB-Proxy (P)

Access

TKui

+ Time

P
TKui

+ Time

P

TK =
TKui 

TKai 

TKpi

Tenant-

Admin Return

Figure 2. Key Management Mechanism during Runtime [6], modified

http://ieeexplore.ieee.org/document/8104307/

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The original IEEE publication can be found here: http://ieeexplore.ieee.org/document/8104307/ ; DOI: 10.1109/CBMS.2017.151

III. COMPONENTS AND TASKS OF THE KEY

MANAGEMENT MECHANISM

The UML Component Diagram of Figure 3 depicts the
main components that comprise the key management mech-
anism. These components are further elaborated below.

We assume that there is a (private or public) PKI for P
and A. This also requires the possibility to perform a key
rollover and revocation. Every instance (Ui, Tenant Admin,
A, P) knows the public keys of P and A. Every connection
between instances is encrypted and authenticated at the
transport layer. For tenant isolation every tenant gets its own
(virtual) DB Proxy (there is a 1:1 relation between tenants
and DB Proxies)

A. Bootstrapping

We assume that the provider of A is also the service pro-
vider in contact with the customer (the tenant). Therefore, the
provider of A initiates the process to bootstrap the Key Man-
agement. He creates a one-time password for authentication
and orders a new P instance. The one-time password is added
to the order.

The provider of the newly-created P creates a key pair for
the new proxy instance and gets a certificate from the PKI
and deploys it to P. Afterwards P creates a secret TK for the
database and creates the encrypted database with TK. Using
TK, P creates a ciphertext of the message "0" and stores it in
the database for validation of the temporarily reconstructed
TK during runtime. Furthermore, an additional signature key
pair for the Tenant App is created by the Tenant Certificate
Management.

Once P has been deployed, the provider of A notifies the
Tenant Admin and passes him the one-time password (out of
band!).

The Tenant App, authenticating itself with the one-time
password, obtains the private signature key and the symmet-
ric TK from P and stores them. Afterwards, TK is destroyed
on P. The two interfaces between Tenant App and P are only
needed once for bootstrapping and should be switched off
afterwards.

B. User creation

We assume that every Ui has some code installed to add
TKui to any request to A (called User App). This could be
integrated in an application specific client or a local web
proxy if a web browser is used as client application. The
Tenant Admin uses the Tenant App to create a User-
Id (UIdi), user individual keys TKui, TKai, TKpi for every Ui
and stores TK and all UIdi, TKui as described above. The
user IDs UIdi and user keys TKui are distributed to every
individual User App and all UIdi, TKai, TKpi are handed to
A (TKpi timestamped, encrypted and signed). Therefore, the
User Key Management within A offers an Interface for the
Tenant App to add, change or withdraw a user and its keys.
(Obviously the tenant admin has to authenticate with user
credentials):

 AddUser (UIdi, TKai, SigT(Encp(TKpiǁtime)))

 ChangeKey (UIdi, TKai, SigT(Encp(TKpiǁtime)))

 WithdrawUser (UIdi)

The encrypted keys TKpi for P have added a timestamp
and are signed by the Tenant App to avoid manipulation by
the A administrator. UIdi, TKai are stored at A. UIdi,
SigT(Encp(TKpiǁtime))) are forwarded to the User Key
Management of P where the signature is validated,
Encp(TKpiǁtime) is decrypted and the timestamp is validated
before UIdi and TKpi are stored.

Figure 3. Key Management Component Diagram [6], modified

http://ieeexplore.ieee.org/document/8104307/

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The original IEEE publication can be found here: http://ieeexplore.ieee.org/document/8104307/ ; DOI: 10.1109/CBMS.2017.151

C. Key Usage During Runtime

During runtime, every request to process data from a Us-
er App X to A has added UIdx, EncP(TKuxǁTime). To per-
form one User App request it can be necessary to perform
more than one database request. This makes it necessary that
the validation of a User App request is valid for a short
timeframe. A adds UIdx, EncP(TKuxǁTime) and its part of the
key (TKax) to each database request which is needed to per-
form the user request. P decrypts EncP(TKuxǁTime) and
checks the timestamp. If the timestamp is within the validity

period, it reconstructs TK = TKux  TKax  TKpx, validates
it against the stored (or cached) ciphertext of the message "0"
and performs the requested database operation. Afterwards it
wipes TK out of its memory.

D. Key Recovery and Renewal

In a distributed architecture several entities can lose keys
or be corrupted. Our scheme can cope with such data losses
and attacks as long as the tenant admin is not affected. The
most likely case is that a user Ui loses his key part TKui.
Since the tenant admin is physically near the user, recovery
is very simple. After proper identification, the tenant admin
gives the user a copy of TKui that he has stored.

If a user key TKui is compromised it is also very simple
for the tenant admin to create a new set of key parts for user
Ui replacing the old ones. Creation of new key triples is the
same process as for the initial user creation, except that an
existing UIdi is chosen and a different interface to A is used
to indicate an update instead.

The only non-trivial case is when A or P gets compro-
mised and recovered or loses user keys. The goal is to allow
the users to keep their keys and only change the keys for the
application and the proxy while TK remains the same. If it is
necessary to have only new key parts for A and P the Tenant
Admin is able to create new TKai and TKpi with the Tenant
App without the need to change the user keys TKui. They
can be calculated by the knowledge of TK and TKui which
are stored. The process is nearly the same as for the User
creation, except that an existing UIdi is chosen, no new user
keys TKui are created and distributed and the calculation
process differs slightly.

IV. ADVERSARY MODEL AND SECURITY ANALYSIS

In the context of distributed database outsourcing with
confidentiality and integrity (in the sense that an adversary
should not be able to make changes to the outsourced data-
base) as goals, security has to be considered at different plac-
es and layers.

A. Protecting the Tenant Key

The overall goal of our database outsourcing scheme is to
protect the confidentiality of the outsourced data, which is
achieved by only storing data encrypted with TK at the hon-
est-but-curious cloud provider.

As P holds TK during operation which could, if an adver-
sary had access to the encrypted database, completely break
the database’s confidentiality, several measures have to be
taken in order to reduce the attack surface at P. As TK can be
read from P’s memory during operation, P should be de-
ployed at a trustworthy location. If this is not possible, dif-

Application (A) DB-Proxy (P)

User Un

User U1

Application-

Admin

Access

Control

Cloud DB

Encrypted
with TK

Tenant App
Tenant-Admin

2. Generate 1-
time-pw

1. Start
Bootstapping

4. Generate TK

3. Initialize DB-Proxy &
send 1-time-pw

8. Acknowledgment

13. Store TK and private
signature key

12. Delete TK, close
port for Ten. App

6. Encrypt “0“ and
store it
(DB, memory)

7. Create signature
key pair, store
public key

5. Create
encrypted DB

9. Notify tenant
and send 1-time-
pw (out of band)

10. Establish secure
connection
using 1-time-pw

11. Obtain TK and private signature key
using secure connection

Figure 4. Key Management Bootstrapping

http://ieeexplore.ieee.org/document/8104307/

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The original IEEE publication can be found here: http://ieeexplore.ieee.org/document/8104307/ ; DOI: 10.1109/CBMS.2017.151

ferent providers for the Cloud DB and P should be chosen as
a honest-but-curious cloud provider hosting both entities
could easily extract the key from P and use it to decrypt the
outsourced database.

To minimize the possibility of key extractions, TK is on-
ly stored at P in volatile memory but never persisted. Fur-
thermore, the key gets deleted after requests have been pro-
cessed, protecting it during idle times. Consequently, the key
is only vulnerable if P is compromised during query execu-
tion. Otherwise, TK is only persistently stored at the tenant.

In order to reduce the attack surface of the Tenant App
and P, their only communication after the setup phase is
through A. The Tenant App’s commands are again protected
with encryption, timestamps and signatures to prevent modi-
fications and replay attacks. After the initial deployment, the
Tenant App is not operational and therefore offline, except
when changes to Ui, A or P keys have to be made. Even then,
we only allow unidirectional communication originating
from the Tenant App.

Due to the way TK is shared, even the simultaneous
compromise of an arbitrary numbers of Ui and A does not
leak TK as the user and application shares are information-
theoretically independent from TK without the appropriate
shares of P.

B. Bootstrapping Trust

Apart from considering attacks during operation, we also
have to consider the bootstrapping process when the trust is
first established. In particular, we have to consider adver-
saries at the network level, i.e. adversaries which try to re-
play or modify packets or imitate other protocol parties.
While the Tenant App can verify P’s identity by its certifi-

cate (assuming that the Tenant App knows the expected
identity) for TLS, P has no way to verify the Tenant Admin’s
identity. We solve this by having A pass a one-time pass-
word out-of-band to the Tenant Admin, which can then be
used for authentication during the bootstrapping phase.

During the bootstrapping phase, the Tenant App is pro-
vided with a signature key that can be used to authenticate its
subsequent requests. Furthermore, the Tenant App is also
given TK. This initial transfer is protected at the transport
layer.

C. Protecting Information in Transit

During transit, sensitive non-key-related information
such as user input, database queries and query results is
transferred between the different entities. In order to protect
such sensitive information during transit, we make use TLS
throughout the protocol. When correctly used, TLS provides
both confidentiality and integrity. Furthermore, it can be
used to provide authentication of the communicating parties.
In order to keep the deployment simple, we do not employ
client certificates for TLS and thus only have authentication
of the server (e.g. Ui or Tenant App can authenticate A at the
transport level). Client authentication (e.g. authenticating Ui
or the Tenant App from A’s perspective) is handled by
standard access control mechanisms such as passwords. In
order to protect user-key-related information from A, com-
munication is encrypted using the public key of P.

D. Protecting Against Malicious Protocol Parties

P can authenticate requests by checking if the accompa-
nying key shares can be re-combined to a valid TK, implicit-
ly authenticating the requesting Ui and A.

Application (A) DB-Proxy (P)

User Un

User U1

Application-

Admin

Access

Control

Cloud DB

Encrypted
with TK

Tenant App
Tenant-Admin

9. Store User data:
UserID, TKAi

8. Distribute
UserID, TKAi,
SigT(EncP(TKPi+time))

11. Check SigT

12. Decrypt
EncP(TKPiǁtime)

13. Check time
14. Store User data:

UserID, TKPi

10. Transfer UserID,
SigT(EncP(TKPi+time))

15. Acknowledgment

1. Create UserID
2. Generate random TKAi

3. Generate random TKPi

4. Calculate User key TKUi

5. Store User data
6. Encrypt and sign TKPi:

SigT(EncP(TKPiǁtime))

7. Distribute
TKUi to user

16. Acknowledgment

Figure 5. Key Management: User creation

http://ieeexplore.ieee.org/document/8104307/

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The original IEEE publication can be found here: http://ieeexplore.ieee.org/document/8104307/ ; DOI: 10.1109/CBMS.2017.151

In the following, we assume that integrity and confidenti-
ality are always provided at the transport layer and now con-
sider compromised protocol parties, namely Ui and A.

In the context of A, confidentiality and integrity can be
interpreted as enforcing appropriate user permissions within
the application that ensure that Ui is only able to access rec-
ords that he is supposed to and making only changes con-
sistent with his permissions. Generally, this is done by stand-
ard access control mechanisms as well as user authentication,
e.g. by username and password. If desired, accountability
could be achieved by logging the user’s actions. As a conse-
quence, login credentials have to be protected both at the
client and server level and during transit. By assumption, the
latter is done at the transport level.

In order to provide stronger security guarantees (namely
confidentiality of the database in the presence of a compro-
mised Ui or A), relying on access control alone is insufficient
as the party authorizing the user would have to be in
knowledge of the whole secret. By distributing the secret
between Ui, A and P, confidentiality of the database is en-
sured as long as at most any two instances are compromised,
as the key cannot be recovered from two shares only. Unfor-
tunately, splitting the user key does not protect the integrity
if both Ui’s login credential as well as his TKui are compro-
mised as A cannot distinguish between an honest user and an
adversary which is in possession of the correct credentials.

Due to the fact that the actual database query is created at
A, Ui has no way to cryptographically protect his intended
action. Thus, a compromised A is always able to take a TKui
(even if it’s encrypted) and use it to execute arbitrary SQL
statements. This could in part be solved by moving part of
the business logic to Ui, allowing him to verify the SQL
statement created by A and sign it with a key known by P.
However, this would break the overall application architec-
ture and require the additional distribution of a signature key
pair to the user resp. the certification of user-created keys,
increasing the deployment effort, which contradicts the de-
sign goal of an easy setup procedure at the tenant’s realm.
Thus, this solution is out of scope.

As A only controls all TKai, an adversary compromising
A has to either obtain a TKui or use the user’s key-related
input in an appropriate way to facilitate his actions. P’s pub-
lic key is distributed to Ui along with TKui, Ui is able to en-
crypt his share during transmission, protecting it from a pos-
sibly malicious A. In order to prevent replay attacks where A
could try to use a ciphertext containing TKui multiple times,
means such as counters or timestamps have to be taken. As
we want to maintain as little state as possible at P, our ap-
proach makes use of timestamps whose validity can be easily
checked. However, this requires synchronized clocks be-
tween Ui and P. Furthermore, there is an inherent delay be-
tween the creation of the ciphertext containing TKui and
timestamp and the verification at P as the user’s action has to
be processed at A, possibly requiring numerous complex
SQL statements. Thus, the timestamp has to be valid for a
certain period of time after its creation, which opens an at-
tack window for a malicious A.

V. CONCLUSION AND FUTURE WORK

We presented a distributed key management scheme that
does not rely on secure hardware and provides additional
security compared to existing systems (e.g. AWS). There is
no need to maintain a dedicated key server since all partici-
pating entities already exist in our generic scenario.

Future work will address extensions to our scheme that
increase security. More fine-grained access by using table-
specific keys will result in better privacy because an attacker
can only see a fragment of the data if he obtains a secret key.
The exploitation of secure hardware or trusted computing
environments (e.g. Intel SGX) can further increase security.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 644814, the
PaaSword project (www.paasword.eu) within the ICT Pro-
gramme ICT- 07-2014: Advanced Cloud Infrastructures and
Services.

REFERENCES

[1] D. Achenbach, M. Gabel and M. Huber, "MimoSecco: A Middleware
for Secure Cloud Storage," in ISPE CE, 2011.

[2] M. Huber, M. Gabel, M. Schulze and A. Bieber, "Cumulus4j: A
Provably Secure Database Abstraction Layer," in Security
Engineering and Intelligence Informatics: CD-ARES 2013
Workshops: MoCrySEn and SeCIHD, September 2-6, 2013.
Proceedings, Regensburg, Germany, 2013.

[3] V. Rijmen and J. Daemen, "Advanced encryption standard," in
Proceedings of Federal Information Processing Standards
Publications, National Institute of Standards and Technology, 2001.

[4] T. Jager, J. Schwenk and J. Somorovsky, "On the Security of TLS 1.3
and QUIC Against Weaknesses in PKCS#1 V1.5 Encryption," in
Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, Colorado, USA, 2015.

[5] R. Dowsley, M. Gabel, K. Yurchenko and V. Zipf, "A Database
Adapter for Secure Outsourcing", in 2016 IEEE International
Conference on Cloud Computing Technology and Science,
CloudCom, Luxembourg, 2016.

[6] R. Dowsley, M. Gabel, G. Hübsch, G. Schiefer and
A. Schwichtenberg, "A Distributed Key Management Approach," in
2016 IEEE International Conference on Cloud Computing
Technology and Science, CloudCom, Luxembourg, 2016.

[7] "AWS Key Management Service (KMS)", Available online at:
https://aws.amazon.com/en/kms/. Last Accessed 23-08-2016.

[8] Fraunhofer Institute for Secure Information Technology,
"OmniCloud" Available online at:
http://www.omnicloud.sit.fraunhofer.de/index_en.php, 2016. Last
Accessed 19-06-2016.

[9] NightLabs Consulting GmbH. "Cumulus4j - Securing your data in the
cloud - Deployment scenarios". Available at: www.cumulus4j.org/
lateststable/documentation/deployment-scenarios.html. Last Accessed
23-08-2016.

[10] H. A. Jäger, A. Monitzer, R. O. Rieken and E. Ernst. "A Novel Set of
Measures against Insider Attacks - Sealed Cloud". In
D. Hühnlein(ed.), H. Roßnagel (ed.), Lecture Notes in Informatics -
Open Identity Summit 2013, pp. 187–197, Gesellschaft für
Informatik, Bonn, 2013.

http://ieeexplore.ieee.org/document/8104307/

