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Abstract
Investigation of the local sample elasticity is of high importance in many scientific domains. In 2014, Herruzo et al. published a

new method based on frequency-modulation atomic force microscopy to locally determine the elasticity of samples (Nat. Commun.

2014, 5, 3126). This method gives evidence for the linearity of the relation between the frequency shift of the cantilever first flex-

ural mode Δf1 and the square of the frequency shift of the second flexural mode Δf2
2. In the present work, we showed that a similar

linear relation exists when measuring in contact mode with a certain load FN and propose a new method for determining the elastic

modulus of samples from this relation. The measurements were performed in non-dry air at ambient temperature on three different

polymers (polystyrene, polypropylene and linear low-density polyethylene) and a self-assembled monolayer of 1H,1H,2H,2H-

perfluorodecyltrichlorosilane (FDTS) on a silicon oxide substrate perforated with circular holes prepared by polymer blend lithog-

raphy. For all samples the relation was evidenced by recording Δf1, Δf2 and FN as a function of the Z-displacement curves of the

piezoelectric scanner. The occurence of a plastic deformation followed by an elastic deformation is shown and explained. The

necessary load FN for measuring in the elastic domain was assessed for each sample, used for mapping the frequency shifts Δf1 and

Δf2 and for determining the elastic modulus from Δf2
2/Δf1. The method was used to give an estimate of the Young’s modulus of the

FDTS thin film.

1

Introduction
Knowledge of the local elasticity of samples is of high interest

in many scientific domains, as many processes and physical

quantities are correlated with the elastic modulus. In biology,

for instance, studies showed that the elasticity of cells depends

on their age, the stage of the cell cycle and the degree of differ-

entiation [1]. In physics, the band gap size of nanocrystals and
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the presence of planar defects on nanotubes are a function of the

Young’s modulus [2,3]. Probing local elasticity requires an

instrumentation capable of operating with high resolution and

under different conditions, such as variable temperature, pres-

sure or humidity. Since its invention, the atomic force micro-

scope (AFM) [4] has confirmed its value for locally deter-

mining nanomechanical properties, such as the Young’s modu-

lus, of the sample surface. Initially, the measures were done

qualitatively, with the cantilever operated in intermittent-con-

tact mode by showing the phase-shift contrast between regions

of different elasticities [5]. This was followed by quantitative

measurements using various static and dynamic methods [6,7].

Although the results obtained with these methods are in good

agreement with theoretical data and data obtained from macro-

scopical experiments, difficulties in the precise determination of

the elastic modulus based on the theoretical model, or during

the use of the method may be encountered when using dynamic-

mode AFM. This is the case with the methods devised by

Hurley and Turner [6] and Herruzo and co-workers [7]. In

Hurley and Turner’s [6] method, the stated equations for the

computation of the normal sample stiffness by numerical

methods (analytical expression for normal sample stiffness

formulated by Bubendorf [8] and given in Supporting Informa-

tion File 1) used to determine sample elasticity are based on the

equations established by Rabe [9] and Rabe et al. [10] for

atomic force acoustic microscopy (AFAM) [11-14]. They

describe the dynamics of a clamped cantilever elastically

coupled with the sample surface at its tip end. These equations

have the disadvantage of strongly depending on the dimensions

of an ideal beam-shaped cantilever. However, most cantilevers

used for measurements are not ideal. Thus, to achieve consis-

tent results, the values of length and tip height have to be

corrected. When measurements using the multifrequency AFM

[15,16] method of Herruzo et al., which is based on the

excitation of two cantilever eigenmodes [17-21], are performed

in non-dry air, the instability of the tip–sample distance feed-

back loop, due to the use of the frequency shift as control pa-

rameter, makes the application of the method difficult if not

impossible. However, despite these disadvantages, both

methods are particularly interesting because of the complemen-

tarity of their advantages. The method of Hurley and Turner [6],

which is based on tracking the first flexural and torsional con-

tact resonances, has the advantage of staying stable even if the

measurements are performed in non-dry air. In contrast, the

method of Herruzo et al. [7] uses a simple theoretical model that

depends only weakly on the dimensions of the cantilever. We

present a new dynamic method for measuring the sample elas-

ticity [8] that combines the simplicity of the theoretical model

of Herruzo et al. [7] with the robustness of the measuring

method based on contact resonances. Since the range of elas-

ticity values of polymers is covered by the domain of validity of

the theoretical model, those values were used for testing the

new method.

Principle of the Method
Theoretical model
The method is based on the theoretical model developed by

Herruzo et al. [7] for the computation of the effective elastic

modulus of samples Eeff ranging from 1 MPa to 3 GPa from the

measured frequency shifts of the two flexural modes of a canti-

lever operated in intermittent-contact mode:

(1)

where R is the effective tip radius and ki, Ai, f0,i and Δfi(dm) are,

respectively, the force constant, the oscillation amplitude, the

resonance frequency and the frequency shift of the i-th flexural

mode in free space as a function of dm, the closest distance be-

tween tip and sample in an oscillation cycle.

The validity of the relation and the stability of the microscope

during its operation is ensured by the use of an amplitude A2

small enough compared to A1 (ideally, A1 is at least one order of

magnitude larger than A2). The applied normal force on the

sample is controlled by controlling Δf1, so that Δf2 changes as a

function of sample elasticity. In our method based on tracking

the contact resonances, the applied normal force FN is directly

controlled by controlling the vertical deflection of the cantile-

ver. We can hence rewrite the previous equation as

(2)

where α is a parameter that depends on amplitude A1, deter-

mined from a sample of known elastic modulus. Δf1 and Δf2 are

the frequency shifts that depend on the applied normal force,

FN. They are determined from the measured contact resonances

through the relation Δfi = fi − f0,i, where fi is the contact reso-

nance of the i-th flexural mode.

Herruzo et al. [7] showed that if the Young’s modulus of the tip

Etip is at least two orders of magnitude larger than that of the

sample Esample then

(3)

Feedback controls
As introduced by Herruzo et al. [7], five different feedback

loops are used as feedback controls, as shown in Figure 1: two
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feedback loops for keeping the amplitudes A1 and A2 constant,

two feedback loops for keeping the phase shifts 1 and 2 con-

stant in order to track the contact resonances f1 and f2, and the

last feedback loop as main feedback for controlling the applied

normal force FN.

Figure 1: Feedback loops necessary to track the flexural contact reso-
nances of the cantilever. The main feedback loop ensures that the
measurements are performed with a constant normal force. The other
feedback loops are used to maintain constant values of phase 1 and
amplitude A1 of the first flexural mode, and of phase 2 and amplitude
A2 of the second flexural mode.

Experimental
Microscope and data acquisition
The measurements were performed with a flex AFM head from

Nanosurf and the Nanonis scanning probe microscope control-

ler. The system integrates the phase-locked loops (PLLs) neces-

sary for tracking the contact resonances and all the controlling

and signal generation modules for measuring and mapping the

physical quantities. Square areas of 2.5 μm × 2.5 μm were

scanned at a resolution of 256 × 256 pixels and a scan speed of

2 μm·s−1.

Cantilevers
The measurements were performed with a PPP-CONT

cantilever from NanosensorsTM (Si tip of Young’s modulus

E t ip  ≈  169 GPa) characterized by f0,1  = 16.35 kHz,

k1 = 0.324 N·m−1, Q1 = 68, f0,2 = 102.98 kHz, k2 = 13.1 N·m−1,

Q2 = 208, where Qi is the Q factor of the i-th flexural mode in

free space. The force constants were computed for k1 from the

theoretical formula k1 = (Ewt3)/(4l3) [22], where E, t, w and l

are, respectively, Young’s modulus, thickness, width and length

of the cantilever beam, and for k2 by using the relation

k2 = 40.4k1 established by Rast and co-workers [23]. The thick-

ness t = 2.35 μm was determined from f0,1 and the formula

t ≈ 6.1911 (ρ/E)(1/2)f0,1l2 [22]. Width w = 52 μm and length

l = 445 μm of the cantilever were determined by optical micros-

copy. The values E = 169 GPa and ρ = 2,330 kg·m−3 were

taken for the Young’s modulus of the silicon beam and its mass

density. The measured normal force FN,meas, which corre-

sponds to the vertical deflection of the cantilever and gives the

value of the applied normal force FN on the sample surface was

calibrated with a factor obtained by dividing the cantilever

spring constant by the cantilever optical sensitivity Sz. The

optical sensitivity of value 229 nm·V−1 was determined by

measuring a vertical deflection–distance curve on an n-type

silicon(111) sample of electrical resistivity = 10 Ω·m and by

taking the inverse of the slope. The two first flexural modes of

the cantilever in contact were excited with the amplitudes

A1 = 22 mV and A2 = 5 mV for all samples.

Samples and measurement conditions
Three different polymers (polystyrene (PS), polypropylene (PP)

and linear low-density polyethylene (LLDPE)) and a self-

assembled monolayer (SAM) of 1H,1H,2H,2H-perfluorodecyl-

trichlorosilane (FDTS) on a silicon oxide (SiOx) substrate were

investigated. The SAM was prepared with circular holes ob-

tained by polymer blend lithography (PBL) [24]. A reference

sample consisting of polytetrafluoroethylene (PTFE), common-

ly called Teflon, with a nominal Young’s modulus of 500 MPa

was used to determine parameter α(A1). The measurements

were performed in non-dry air with a relative humidity of 36%

at an ambient temperature of 27 °C.

Results and Discussion
Force–distance and frequency shift–distance
curves
Before starting the investigation of the sample elasticity, a

force–distance curve and a frequency shift–distance curve

(Figure 2 and Figure 3, left) for both flexural modes were re-

corded for each sample to determine for which values of FN the

relation between Δf1 and  is linear and to compute the pa-

rameter α(A1). The measured applied normal force FN,meas and

frequency shifts Δf1, Δf2 were recorded for a displacement of

the piezoelectric scanner in the normal Z-direction from 0 to

350 nm. To measure the curves, the cantilever tip first indented

the sample to a depth corresponding to a displacement of the

Z-scanner of 350 nm and both PLLs were then switched on. The

curves were recorded during retraction of the tip in order to

avoid unlocking the PLLs. This would happen if the tip

indented the sample from a starting position out of contact, as

contact resonances are quite far from those in free space.
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Figure 2: Left: Force–distance and frequency shift–distance curves of LLDPE, PP, PS and FDTS for the determination of the minimal normal force FN
used as setpoint for the elasticity measurements. The curves for Δf1 and Δf2 as functions of the Z-displacement evidence the existence of a plastic
deformation phase followed by an elastic deformation phase. Right: The fitting of the Z(FN,meas) curves gave a value close to the cantilever spring
constant showing the excessive compliance of the cantilever. The  curves show quasi-invariance of the ratio  in the elastic
deformation phase and in the highest region of the plastic deformation phase.

In the frequency shift–displacement curves, we observe first a

nonlinear relation between the measured frequency shifts, Δf1

and Δf2, and the displacement of the scanner, followed by a

linear relation. This suggests a plastic deformation phase of the

sample surface during the first step of the indentation, followed

by an elastic deformation phase. Analysis of the force–displace-

ment curve evidences the same relations with, however, a linear

relation in the nonlinear domain of the frequency shift–displace-
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Figure 3: Left: Force–distance and frequency shift–distance curves of PTFE. The curves of Δf1 and Δf2 as a function of the Z-displacement evidence
the existence of a plastic deformation phase followed by an elastic deformation phase. Right: The fitting of the Z(FN,meas) curve gave a value close to
the cantilever spring constant showing the excessive compliance of the cantilever. The  curves show quasi-invariance of the ratio

 in the elastic deformation phase and in the highest region of the plastic deformation phase. The parameter α(A1) determined by dividing the
nominal value of the elasticity of the reference sample by the mean value of the ratio in the elastic deformation phase gave a value of 7,355 Pa·Hz−1.

Figure 4: (a) Cantilever in contact with the sample surface modeled by two springs in series, k1 and ksample,norm, representing the cantilever spring
constant and the normal sample stiffness, respectively. The arrow FN represents the applied normal force. (b) Effective spring constant keff and values
of the ratio between measured applied normal force FN,meas and Z-displacement Δz as a function of the sample stiffness.

ment curves. This is explained by the low spring constant of the

cantilever in comparison to the normal sample stiffness, begin-

ning at a certain Z-displacement value.

A good model of the cantilever in contact with the sample sur-

face is two springs in series, k1 and ksample,norm, representing

the spring constant of the cantilever and the normal sample

stiffness (of constant value in the elastic phase), respectively

(Figure 4a). As shown in Figure 4b, the applied normal force

generated by the Z-displacement Δz, is FN = keffΔz, where keff is

the effective spring of value k1ksample,norm/(k1 + ksample,norm).

As the normal stiffness of sample increases during indentation,
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Figure 5: Three phases characterizing the evolution of stress σ during indentation. This evolution is responsible for the plastic and elastic deforma-
tion of the sample. In phase 1, in the presence of a sufficiently weak applied normal force FN or a sufficiently large cross section A, the generated
stress is small enough to deform the surface elastically. This initial elastic phase can only be observed, if the steps used for the Z-scanner are small
enough. If the steps are too big, the evolution of σ is directly initiated with phase 2. In phase 2, the large value of FN and its fast increase compared to
A generate a stress large enough to deform the surface plastically. In phase 3, the geometry of the tip results in a fast increase of the contact area,
and hence of A, compared to the moderate increase in FN, which decreases the stress. When the stress decreases below a threshold value σ0, the
deformation becomes elastic. The red area of the tip apex describes the contact area of the tip. The striped area shows the region of the sample plas-
tically deformed during indentation. The arrow at the tip apex represents the applied normal force FN; the arrows on the right of σ, FN and A charac-
terize the increase speed (bold for fast) and magnitude (length).

the value of keff approaches k1, so that beyond a certain value of

ksample,norm, the variation of ksample,norm cannot be observed

anymore in the FN,meas(Z) curve. This effect is evidenced in

Figure 2 and Figure 3 (right) with the FN,meas(Z) curve (black

dots), where the inverse of the slope of the linear fit (red line)

shows a value close to the cantilever spring constant as given in

Table 1.

Table 1: Value of the inverse of the fitting curve slope of Z(FN,meas) for
the measured samples in Figure 2 and Figure 3 (right). The values are
close to the cantilever spring constant.

sample inverse of slope (N·m−1)

LLDPE 0.315
PP 0.308
PS 0.313
FDTS 0.324
PTFE 0.320

Sample surface deformations and evolution
of stress during indentation
The existence of a plastic and an elastic deformation phase is

explained by the evolution of stress σ (ratio between the applied

normal force FN and the cross section A of the cantilever tip)

during indentation (Figure 5). At the beginning of the indenta-

tion, after setting the tip on the sample surface, stress is in-

creased from a normal force with an initial value 0 nN. The

evolution of stress can be split into three phases. In the first

phase, if the applied normal force increases gently or if the con-

tact surface between the tip apex and the surface is large

enough, the generated stress increases gently enough to deform

the sample surface elastically. This elastic phase does not occur

if the steps of the Z-scanner, which are responsible for increas-

ing the applied normal force, are too big. In this case, the gener-

ated stress is strong enough to deform the surface plastically,

and phase 2 is initiated. In the second phase, due to the assumed

pyramidal geometry of the tip, the contact area is small enough

and the applied normal force is strong enough to create a stress

that deforms the sample surface plastically. In the third phase,

the tip geometry and the increase of the indentation depth result

in a larger increase in the contact area than that produced by the

applied normal force, thus decreasing the stress on the sample

surface. When the stress decreases below a threshold value, σ0,

the sample starts deforming elastically.

Linear relation between Δf1 and Δf22 and
determination of α(A1)
The linearity relation between Δf1 and  is shown in Figure 2

and Figure 3 (curves on the right) where the quasi-invariance of

the ratio  in the elastic deformation phase and in the
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Figure 6: Mapping of (a) topography and (b) elastic modulus of 2.5 μm × 2.5 μm areas of the LLDPE, PP and PS samples. The measurements were
performed in contact by applying a constant normal force FN of 44.4 nN for LLDPE and 29.6 nN for PP and PS, and by exciting the two first flexural
modes of the cantilever with an amplitude of A1 = 22 mV and A2 = 5 mV, respectively, for the first and second mode. The histograms in panel (c)
show the distribution of elastic modulus Eeff,meas in the maps in panel (b).

Table 2: Mean value of  and corresponding maximum devia-
tion (in percent) in the elastic deformation phase and the upper region
of the plastic deformation phase.

sample mean
Δf22/Δf1 (Hz)

max. dev. elastic
phase (%)

max. dev. plastic
phase (%)

LLDPE 48,720 0.89 3
PP 239,738 1.77 5
PS 417,224 1.38 6.7
FDTS 61,614 0.1 0.8
PTFE 67,981 0.52 1

upper part of the plastic deformation phase can be observed.

The mean value of the linear coefficient for each sample and the

corresponding maximum deviation in percent are reported in

Table 2. The weak deviation in the upper part of the plastic de-

formation phase suggests that setpoints for FN in that region can

be used to investigate the sample elasticity. The parameter

α(A1) was determined by dividing the nominal value of the

Young’s modulus of PTFE by the mean value of  of

PTFE. The computation yielded a value of 7,355 Pa·Hz−1.

Investigation of sample elastic modulus
The elastic modulus of the sample was then investigated with

setpoints of the main feedback in the highest region of the

plastic phase of 44.4 nN for LLDPE, 29.6 nN for PP, 29.6 nN

for PS and 37 nN for FDTS. The results of the scannings are

shown in Figure 6 and Figure 7 for topography (panel a) and

elastic modulus (panel b). The histograms in Figure 6c and

Figure 7c correspond to the distribution of the elastic modulus

for each map in Figure 6b and Figure 7b. Because polymers are

viscoelastic materials, the elastic modulus Eeff,meas measured on
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Figure 7: Mapping of (a) topography and (b) elastic modulus of a 2.5 μm × 2.5 μm area of the FDTS + SiOx SAM sample. The measurements were
performed in contact by applying a constant normal force FN of 37 nN, and by exciting the two first flexural modes of the cantilever with an amplitude
of A1 = 22 mV and A2 = 5 mV respectively for the first and second mode. The histogram in panel (c) shows the distribution of elastic modulus Eeff,meas
in panel (b).

Table 3: Measured storage moduli Eeff,meas and literature Young’s modulus values of bulk materials Esample,lit of LLDPE, PP, PS and FDTS. The
values of Eeff,meas are in the range of the Young’s moduli of the bulk materials. No literature value is available for FDTS.

sample Eeff,meas (GPa) Esample,lit (GPa)

LLDPE 0.362 ± 0.004, 0.38 ± 0.004, 0.393 ± 0.005 0.3–0.7 [25]
PP 1.468 ± 0.009, 1.565 ± 0.015 0.896–1.55 [26]
PS 3.21 ± 0.02 2.28–3.34 [26]
FDTS 0.4785 ± 0.0005

Figure 8: Line profile of the SiOx holes in the topographical mapping of the SAM showing their relative height and width due to the functionalization of
the cantilever tip with FDTS material. On the right, a schematic of the tip–sample interaction is depicted. Loosely bound FDTS molecules are able to
migrate to the AFM tip and can therefore functionalize by forming a thin layer on the tip apex.

the investigated samples in dynamic mode corresponds to the

storage modulus. As the measured contact resonances are quite

large compared to the inverse of typical material relaxation

time, we can assume that the measured storage modulus is inde-

pendent on the frequency. The measurements yielded values in

the range of the Young’s moduli of bulk LLDPE, PP and PS as

seen in Table 3. The investigation also evidenced regions of dif-

ferent elastic moduli, as seen in the histograms of LLDPE, PP

and the SAM: LLDPE shows three different peaks centered at

362, 380 and 393 MPa, PP shows two peaks centered at 1.468

GPa and 1.565 GPa and the SAM shows two peaks centered at

472 and 478.5 MPa. Finally, the value of the storage modulus of

FDTS gives an estimate of the Young’s modulus of the FDTS

monolayer.

Effect of tip functionalization on the SiOx
elasticity peak of the SAM sample
The proximity of the peaks of FDTS and SiOx holes can be ex-

plained by the fact that during scanning, some material of FDTS

has gathered around the tip, so that the relatively soft FDTS-

coating of the tip is sensed (see also Figure 8). The effect of

collecting Teflon-like molecules with AFM tips has been

known for a long time. It has been successfully used for the

topographic imaging of the Si(111) surface with atomic resolu-



Beilstein J. Nanotechnol. 2018, 9, 1–10.

9

tion. Howald et al. [27] studied the Si(111) 7 × 7 reconstruction

in UHV by contact force microscopy. They observed adhesive

forces of up to 103 nN between the Si tip and the Si(111) sur-

face. By coating the tip with PTFE (Teflon), they could reduce

the sticking forces to 10 nN. A short scan on a PTFE sample led

to a reliable coating of the tip for the subsequent AFM scan on

silicon. Since our sample consists of a perforated Teflon-like

monolayer, the cantilever tip is most likely constantly functio-

nalized with a thin layer of FDTS. This leads to the observed

soft elasticity in- and outside the holes. The stability of this

functionalization during the scan can be verified with topo-

graphic images. The holes show a depth slightly below 1.2 nm,

which is the height of the FDTS monolayer, as seen in Figure 8.

If the tip coating was worn-off during the scan, larger or at least

partially deeper holes would appear.

Conclusion
We present a robust method for the quantitative determination

of local elastic modulus of sample under ambient conditions

(humidity and temperature). It combines the simplicity of the

theoretical model developed by Herruzo et al. [7] for the deter-

mination of sample elasticity from 1 MPa to 3 GPa with a

robust measuring method based on contact resonances. The

measurements consist of tracking the first and second flexural

contact resonances of the cantilever to determine the frequency

shifts Δf1 and Δf2 relative to the corresponding resonances in

free space in order to compute the elastic modulus.

The linear relation between Δf1 and  established in [7] can

be determined from the measurement of Δf1 and Δf2 as func-

tions of the Z-displacement of the piezoelectric scanner. These

curves were measured on four polymers, i.e., LLDPE, PP, PS,

PTFE, and a Teflon-like fluorinated SAM.

Analysis of these curves evidenced the existence of plastic and

elastic deformation phases. The two subsequent phases are ex-

plained by the evolution of stress σ during indentation by the

cantilever tip. Plastic deformation begins when sufficient stress

is applied to the surface. The slow increase in tip cross section

A compared to the applied normal force FN results in an

increase in σ and leads to the plastic deformation of the sample

surface. The geometrical shape of the tip, assumed to be pyra-

midal, results in a fast increase in tip cross section compared to

the increase in applied normal force FN when the tip goes

deeper into the surface. This, in turn, decreases the stress. When

the σ is below a threshold value, the surface begins to deform

elastically.

The elastic phase is characterized by a linear relation between

the frequency shifts Δf1 and Δf2 and the Z-displacement of the

piezoelectric scanner. A linear relation between the measured

normal force FN,meas and the displacement in both phases can

also be observed if the spring constant of the cantilever is small

compared to the normal sample stiffness. This linearity does not

reflect the variation in normal sample stiffness but the exces-

sive compliance of the cantilever. The use of cantilevers with

higher spring constants is actually limited for technical reasons.

Indeed, for cantilevers with a too high spring constant, the

second flexural contact resonance is out of the bandpass of the

vertical deflection channel in most of the microscope heads.

The analysis of the  curve showed that

setpoints for the applied normal force in the highest region of

the plastic deformation phase could be used without causing a

large deviation in the elasticity compared with the results we

would obtain in the elastic deformation phase. The elasticity of

LLDPE, PP, PS, and the SAM was then investigated. As poly-

mers are viscoelastic materials, the elastic modulus Eeff,meas

measured in dynamic mode corresponds to the storage modulus.

We assumed a frequency independence of the measured storage

modulus as the measured contact resonances are quite large

compared to the inverse of typical material relaxation times.

The measurements showed values for the storage modulus in

the range of the Young’s moduli for bulk materials for LLDPE,

PP and PS.

The method can also distinguish variations in the elasticity of

surface such as LLDPE, PP and the FDTS SAM. The investi-

gated SAM consists of a monolayer of FDTS patterned with cir-

cular 1.2 nm deep holes. Due to the functionalization of the can-

tilever tip by SAM molecules, a similar stiffness is measured

inside and outside the holes. Finally, the measured value of the

storage modulus of 478.5 ± 0.5 MPa, which is close to the value

for bulk PTFE (500 MPa), can be used as an estimation of the

Young’s modulus of the FDTS monolayer.

Supporting Information
Supporting Information File 1
Supporting information features the analytical expression

for normal sample stiffness based on Hurley and Turner’s

equations.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-9-1-S1.pdf]
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