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Abstract: The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting

benchmark model for a Higgs sector consisting of two complex doublet and one real sin-

glet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light

Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the

model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM,

however, the model is not subject to supersymmetric relations restraining its allowed pa-

rameter space and its phenomenology. For the correct determination of the allowed param-

eter space, the correct interpretation of the LHC Higgs data and the possible distinction

of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson

observables are crucial. This requires not only their computation but also the development

of a suitable renormalization scheme. In this paper we have worked out the renormalization

of the complete N2HDM and provide a scheme for the gauge-independent renormalization

of the mixing angles. We discuss the renormalization of the Z2 soft breaking parameter

m2
12 and the singlet vacuum expectation value vS . Both enter the Higgs self-couplings rel-

evant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample

processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our

results show that the corrections may be sizable and have to be taken into account for

reliable predictions.
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1 Introduction

Even after the discovery of the Higgs boson by the LHC experiments ATLAS [1] and

CMS [2] there remain many open questions that cannot be solved within the Standard

Model (SM). This calls for New Physics (NP) extensions, which feature predominantly

extended Higgs sectors. The precise investigation of the Higgs sector has become an im-

portant tool in the search for NP, in particular since its direct manifestation through the

discovery of new non-SM particles remains elusive. Among the beyond-the-SM (BSM)

Higgs sectors those with singlet and doublet extensions are particularly attractive as they

are at the same time rather simple and compatible with custodial symmetry. The 2-Higgs-

doublet model (2HDM) [3–5] is interesting due to its relation to supersymmetry and has

been extensively studied and considered as a possible benchmark model in experimental

analyses. It features 5 physical Higgs bosons, 2 CP-even and 1 CP-odd neutral states and

a charged Higgs pair. The next-to-minimal 2HDM (N2HDM) is obtained upon extension

of the 2HDM by a real singlet field with a Z2 parity symmetry. It contains in its sym-

metric phase a viable Dark Matter (DM) candidate. The N2HDM has been the subject

of numerous investigations, both in its symmetric [6–20] and in its broken phase [21–23].

The Higgs sector of the latter consists after electroweak symmetry breaking (EWSB) of 3

neutral CP-even scalars, 1 pseudoscalar and a charged Higgs pair. With the Higgs mass

eigenstates being superpositions of the singlet and doublet fields the N2HDM entails an

interesting phenomenology, namely the possibility of a light Higgs boson, which is not in

conflict with the experimental Higgs data in case of a sufficiently large singlet admixture

so that its couplings to SM particles are suppressed. The enlarged Higgs sector together

with the possibility of light Higgs states allows for cascade Higgs-to-Higgs decays that pro-

vide alternative production channels for the heavier Higgs bosons and also give access to

the trilinear Higgs self-couplings. Their measurement provides important insights in the

understanding of the Higgs mechanism [24–26].

Obviously, any NP extension has to comply with the relevant theoretical and experi-

mental constraints. Thus, also the N2HDM has to provide at least one Higgs boson with

a mass of 125 GeV compatible with the LHC data on the discovered Higgs resonance [27].

The additional Higgs bosons must not violate the LHC exclusion limits. The compatibility

with the electroweak (EW) precision data has to be guaranteed as well as the compatibility

with B-physics and low-energy constraints. As mentioned, a Z2-symmetric realization of

the N2HDM is in addition attractive as it provides a potential DM candidate. In that case,

compliance with DM observables provides additional constraints on the parameter space

of the model. From the theoretical point of view, the N2HDM Higgs potential has to be

bounded from below, its vacuum has to be the global minimum and perturbative unitarity

has to be respected. In [22], part of our group investigated the N2HDM in great detail

with respect to these constraints. The allowed parameter space was determined and the

phenomenological implications were investigated. In the course of this work the model was

implemented in HDECAY [28, 29]. The generated code, N2HDECAY,1 computes the N2HDM

Higgs decay widths and branching ratios including the state-of-the-art higher order QCD

1N2HDECAY can be obtained from https://www.itp.kit.edu/∼maggie/N2HDECAY/.
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corrections and off-shell decays. The model was furthermore included in ScannerS [30, 31]

along with the theoretical conditions and the available experimental constraints, which

then allowed to perform extensive parameter scans for the model. In [23], the work was

extended and we compared the N2HDM to other NP extensions with the aim to work out

observables that can be used to distinguish between various well-motivated BSM Higgs

sectors by using collider data.

Since the discovered Higgs bosons behaves very SM-like [32–35], the search for NP in

the Higgs sector requires on the theoretical side precise predictions for parameters and ob-

servables including higher-order (HO) corrections. In the framework of the 2HDM, some of

the authors of this work provided an important basis for the computation of HO corrections

in the 2HDM by working out a manifestly gauge-independent renormalization of the two

2HDM mixing angles α and β, which is also numerically stable and process independent [36].

These angles, which diagonalise the neutral CP-even and the neutral CP-odd or charged

Higgs sectors, respectively, enter all Higgs couplings so that they are relevant for Higgs bo-

son phenomenology. We completed the renormalization of the 2HDM Higgs sector in [37]

by investigating Higgs-to-Higgs decays at EW next-to-leading order (NLO). Subsequent

works [38–40] on the 2HDM renormalization applied different approaches and renormaliza-

tion conditions, confirming our findings where they overlapped.2 The renormalization of the

N2HDM is more involved due to the additional mixing angles and the additional vacuum

expectation value related to the singlet field in the broken phase. One of our authors worked

on the renormalization of the SM extended by a real singlet field, cf. [42]. In this paper, we

combine our expertise gained in the renormalization of the 2HDM and the singlet-extended

SM and provide the complete renormalization of the N2HDM. The renormalization of the

mixing angles αi (i = 1, 2, 3) of the neutral sector and the angle β of the CP-odd/charged

sector is manifestly gauge independent as well as process independent. Where not paramet-

rically enhanced, it is furthermore numerically stable with respect to missing higher order

corrections. We will demonstrate this in the numerical analysis where we explicitly com-

pute the NLO EW corrections to sample Higgs decays. We also use the occasion and clarify

in this paper the notion of the alternative tadpole approach with regard to the renormaliza-

tion framework applied to achieve a manifestly gauge-independent renormalization of the

mixing angles. With this paper we provide another important step in the program of precise

predictions for BSM Higgs sector parameters and observables including higher order correc-

tions, an indispensable requisite for the correct interpretation of the experimental results.

The paper is organised as follows: in section 2 we introduce our model, set our notation

and provide the relevant couplings. Starting with section 3, we describe the renormalization

of the model. In section 4 we explain the way we treat the tadpoles in our renormalization

procedure, before we give in section 5 the renormalization conditions. Section 6 is dedicated

to the computation of the one-loop EW sample decay widths. In section 7 we present

our numerical analysis before we conclude in section 8. A detailed description of the

phenomenological benchmarks used in our analysis is presented in appendix A. The paper

is accompanied by the extensive appendix B presenting the details of the computation of

the pinched self-energies in the N2HDM.

2For the renormalization of non-minimal Higgs sectors, see also [41].
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2 Model setup

The N2HDM is obtained from the CP-conserving (or real) 2HDM with a softly broken Z2

symmetry upon extension by a real singlet field ΦS with a discrete symmetry, under which

ΦS → −ΦS . The kinetic term of the two SU(2)L Higgs doublets Φ1 and Φ2 and the singlet

field ΦS is given by

Lkin = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2) +
1

2
(∂µΦS)2 , (2.1)

in terms of the covariant derivative

Dµ = ∂µ +
i

2
g

3∑
a=1

τaW a
µ +

i

2
g′Bµ , (2.2)

where τa denote the Pauli matrices, W a
µ and Bµ the SU(2)L and U(1)Y gauge bosons,

respectively, and g and g′ the corresponding gauge couplings. The scalar potential built

from the two SU(2)L Higgs doublets and the scalar singlet can be written as

V = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ†1Φ2 + h.c.) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
λ5

2
[(Φ†1Φ2)2 + h.c.]

+
1

2
m2
SΦ2

S +
λ6

8
Φ4
S +

λ7

2
(Φ†1Φ1)Φ2

S +
λ8

2
(Φ†2Φ2)Φ2

S . (2.3)

The first two lines correspond to the 2HDM part of the N2HDM, and the last line contains

the contribution of the singlet field ΦS . The potential is based on two Z2 symmetries, where

the first one is the trivial generalization of the usual 2HDM Z2 symmetry to the N2HDM,

Φ1 → Φ1 , Φ2 → −Φ2 , ΦS → ΦS . (2.4)

It is softly broken by the term involving m2
12. Its extension to the Yukawa sector en-

sures the absence of tree-level Flavour Changing Neutral Currents (FCNC). The second

Z2 symmetry on the other hand, under which

Φ1 → Φ1 , Φ2 → Φ2 , ΦS → −ΦS , (2.5)

is not explicitly broken. After EWSB the neutral components of the Higgs fields develop

vacuum expectation values (VEVs), which are real in the CP-conserving case. Expanding

the elementary field excitations around the doublet VEVs v1 and v2 and the singlet VEV

vS , we may write

Φ1 =

(
φ+

1
1√
2
(v1 + ρ1 + iη1)

)
, Φ2 =

(
φ+

2
1√
2
(v2 + ρ2 + iη2)

)
, ΦS = vS + ρS , (2.6)

where the field content of the model is parametrized in terms of the charged complex fields

φ+
i (i = 1, 2), the real neutral CP-even fields ρ1, ρ2, ρ3 ≡ ρS and the CP-odd fields ηi. The

minimisation conditions of the Higgs potential,〈
∂V

∂Φ1

〉
=

〈
∂V

∂Φ2

〉
=

〈
∂V

∂ΦS

〉
= 0 , (2.7)
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where the brackets denote the vacuum state, require the terms linear in the Higgs fields, the

tree-level Higgs tadpole parameters Ti (i = 1, 2, 3), to vanish in the vacuum. Equation (2.7)

leads to the three minimum conditions

1

v1

〈
∂V

∂Φ1

〉
≡ T1

v1
= −v2

v1
m2

12 +m2
11 +

1

2
(v2

1λ1 + v2
2λ345 + v2

Sλ7) = 0 (2.8)

1

v2

〈
∂V

∂Φ2

〉
≡ T2

v2
= −v1

v2
m2

12 +m2
22 +

1

2
(v2

1λ345 + v2
2λ2 + v2

Sλ8) = 0 (2.9)

1

vS

〈
∂V

∂ΦS

〉
≡ T3

vS
= m2

S +
1

2
(v2

1λ7 + v2
2λ8 + v2

Sλ6) = 0 , (2.10)

with

λ345 ≡ λ3 + λ4 + λ5 . (2.11)

At lowest order, the three tadpole conditions can be used to trade the mass terms m2
11, m

2
22

and m2
S in favor of the other parameters of the potential. However, non-vanishing tadpole

contributions are relevant at higher orders and must be included in the renormalization

procedure, this being the reason why we shall retain them in our notation. The mass ma-

trices of the Higgs fields in the gauge basis are obtained from the second derivatives with

respect to these fields after replacing the doublet and singlet fields in the Higgs potential

by the parametrisations (2.6). Due to charge and CP conservation the 7 × 7 mass matrix

decomposes into three blocks. These are given by 2 × 2 matrices for the charged and the

CP-odd fields, respectively, and a 3× 3 matrix for the CP-even states. The former two are

identical to the 2HDM case and read

M2
η =

(
m2

12

v1v2
− λ5

)(
v2

2 −v1v2

−v1v2 v2
1

)
+

(
T1
v1

0

0 T2
v2

)
(2.12)

M2
φ± =

(
m2

12

v1v2
− λ4 + λ5

2

)(
v2

2 −v1v2

−v1v2 v2
1

)
+

(
T1
v1

0

0 T2
v2

)
, (2.13)

where we have kept explicitly the dependence on the tadpole parameters. They can be

diagonalised as

D2
η = R(β)M2

ηR
T (β) (2.14)

D2
φ± = R(β)M2

φ±R
T (β) , (2.15)

with the rotation matrix

R(β) =

(
cβ sβ
−sβ cβ

)
, (2.16)

where we have introduced the abbreviations sin x ≡ sx and cosx ≡ cx. This yields the

neutral CP-odd mass eigenstates, G0 and A, and the charged mass eigenstates, G± and

H±, respectively. The would-be Goldstone bosons G0 and G± are massless. Due to the ad-

ditional real singlet field, the CP-even neutral sector differs from the 2HDM, now featuring

– 4 –
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a 3× 3 mass matrix. In the basis (ρ1, ρ2, ρ3) it can be cast into the form

M2
ρ =

 λ1c
2
βv

2 + tβm
2
12 λ345cβsβv

2 −m2
12 λ7cβvvS

λ345cβsβv
2 −m2

12 λ2s
2
βv

2 +m2
12/tβ λ8sβvvS

λ7cβvvS λ8sβvvS λ6v
2
S

+


T1
v1

0 0

0 T2
v2

0

0 0 T3
vS

 , (2.17)

where tβ stands for the ratio

tβ =
v2

v1
(2.18)

and v is defined as

v2 = v2
1 + v2

2 , (2.19)

with v ≈ 246 GeV denoting the SM VEV. We have furthermore used eqs. (2.8)–(2.10) to

trade the mass parameters m2
11, m2

22 and m2
S for v, tβ and vS . The neutral mass ma-

trix (2.17) is diagonalised by the rotation matrix R(αi), which can be parametrized in

terms of three mixing angles α1 to α3 as

R(αi) =

 cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 −(cα1sα3 + sα1sα2cα3) cα2cα3

 . (2.20)

Without loss of generality the angles can be chosen in the range

−π
2
≤ α1,2,3 <

π

2
. (2.21)

The mass eigenstates H1, H2 and H3 are obtained from the gauge basis (ρ1, ρ2, ρ3) asH1

H2

H3

 = R

 ρ1

ρ2

ρ3

 , (2.22)

and the diagonal mass matrix D2
ρ is given by

D2
ρ = R(αi)M

2
ρR

T (αi) ≡ diag(m2
H1
,m2

H2
,m2

H3
) . (2.23)

We use the convention where the mass eigenstates are ordered by ascending mass as

mH1 < mH2 < mH3 . (2.24)

The full set of the N2HDM parameters is given by the parameters of the N2HDM potential

eq. (2.3), the VEVs and the free parameters of the SM:

λ1, . . . , λ8 , m2
11 , m2

22 , m2
S , m2

12 , v1 , v2 , vS , g , g′ , yΨ , (2.25)

where yΨ denotes the Yukawa couplings. The dimension-two mass terms m2
11,m

2
22,m

2
S are

fixed by the minimum conditions of the potential (2.8)–(2.10), while the remaining quan-

tities correspond to the free input parameters in the gauge basis of the N2HDM. For the

– 5 –
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κHiV V

H1 cα2cβ−α1

H2 −cβ−α1sα2sα3 + cα3sβ−α1

H3 −cα3cβ−α1sα2 − sα3sβ−α1

Table 1. Neutral CP-even Higgs Hi couplings to the massive gauge bosons V = W,Z.

renormalization of the model it is convenient to relate as many parameters as possible to

physical parameters, like for example masses and the electric charge. This allows then to

apply physical conditions in the renormalization of the respective parameters. Furthermore,

the minimum conditions can be used to trade m2
11, m2

22 and m2
S for the tadpole parameters

T1,2,3. Denoting by mΨ the fermion masses, by mW and mZ the W and Z boson masses, re-

spectively, and by e the electric charge, the ‘physical’ set of N2HDM parameters is given by

mH1,2,3 , mA, mH± , α1 , α2 , α3 , T1, T2, T3, m
2
12, vS , tβ , e, mW , mZ , mΨ. (2.26)

We will specify in the following sections how these parameters get renormalized in our

way of treating the tadpoles. Note also that later in our renormalization procedure we

will express vS through a physical quantity that depends on it, given by a Higgs-to-Higgs

decay width.

For the computation of the electroweak corrections to the Higgs decays we need the

Higgs couplings, which we briefly summarize here. Since the singlet field ρ3 does not couple

directly to the SM particles, any change in the tree-level Higgs couplings with respect to

the 2HDM is due to the mixing of the three neutral fields ρi (i = 1, 2, 3). This means that

any coupling not involving the CP-even neutral Higgs bosons remains unchanged compared

to the 2HDM and can be found e.g. in [5]. Introducing the Feynman rules for the coupling

of the Higgs fields Hi to the massive gauge bosons V ≡W,Z via

i gµν κHiV V gHSMV V Hi V
µ V ν , (2.27)

where gHSMV V denotes the SM Higgs coupling factor, we obtain the effective couplings

κHiV V = cβRi1 + sβRi2 . (2.28)

The SM coupling in terms of the gauge boson masses mW and mZ , the SU(2)L gauge

coupling g and the Weinberg angle θW , is given by

gSM
HV V =

{
gmW for V = W

gmZ/ cos θW for V = Z
. (2.29)

In table 1 we list the effective couplings after replacing the Rij by their parametrisation in

terms of the mixing angles.

– 6 –
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u-type d-type leptons

type I Φ2 Φ2 Φ2

type II Φ2 Φ1 Φ1

lepton-specific Φ2 Φ2 Φ1

flipped Φ2 Φ1 Φ2

Table 2. The four Yukawa types of the Z2-symmetric 2HDM defined by the Higgs doublet that

couples to each kind of fermion.

u-type d-type leptons

type I Ri2
sβ

Ri2
sβ

Ri2
sβ

type II Ri2
sβ

Ri1
cβ

Ri1
cβ

lepton-specific Ri2
sβ

Ri2
sβ

Ri1
cβ

flipped Ri2
sβ

Ri1
cβ

Ri2
sβ

Table 3. Coupling coefficients κHiff of the Yukawa couplings of the N2HDM Higgs bosons Hi as

defined in eq. (2.30).

In the Yukawa sector there exist four types of coupling structures after extending the

Z2 symmetry (2.4) to the Yukawa sector to avoid tree-level FCNCs. They are the same

as in the 2HDM and summarized in table 2. The CP-even Hi Yukawa couplings can be

derived from the N2HDM Yukawa Lagrangian

LY = −
3∑
i=1

mf

v
κHiff ψ̄fψfHi . (2.30)

The effective coupling factors κHiff in terms of the mixing matrix elements Rij and the

mixing angle β are provided in table 3. Replacing the Rij by their parametrisation in terms

of the αi results in the effective coupling expressions given for type I and II in table 4.

For the Hi couplings to the Z boson and the pseudoscalar A or the Goldstone G0 the

Feynman rules read

λµ(HiZA) =

√
g2 + g′2

2
(pHi − pA)µκ̃HiV H , (2.31)

λµ(HiZG
0) =

√
g2 + g′2

2
(pHi − pG0)µκHiV V , (2.32)

where pA, pG0 and pHi are the incoming four-momenta of the pseudoscalar, the Goldstone

boson and the Hi, respectively. The tilde over the coupling factor for the pseudoscalar

indicates that it is not an effective coupling in the sense introduced above, as it is not nor-

malized to a corresponding SM coupling, since there is no SM counterpart. The Feynman

rules for the Hi couplings to the charged pairs W∓ and H± or G± read

λµ(HiW
∓H±) = ± ig

2
(pHi − pH±)µκ̃HiV H , (2.33)

λµ(HiW
∓G±) = ± ig

2
(pHi − pG±)µκHiV V , (2.34)

– 7 –
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Type I

κHiff u d l

H1 (cα2sα1)/sβ (cα2sα1)/sβ (cα2sα1)/sβ

H2 (cα1cα3 − sα1sα2sα3)/sβ (cα1cα3 − sα1sα2sα3)/sβ (cα1cα3 − sα1sα2sα3)/sβ

H3 −(cα1sα3 + cα3sα1sα2)/sβ −(cα1sα3 + cα3sα1sα2)/sβ −(cα1sα3 + cα3sα1sα2)/sβ

Type II

κHiff u d l

H1 (cα2sα1)/sβ (cα1cα2)/cβ (cα1cα2)/cβ

H2 (cα1cα3 − sα1sα2sα3)/sβ −(cα3sα1 + cα1sα2sα3)/cβ −(cα3sα1 + cα1sα2sα3)/cβ

H3 −(cα1sα3 + cα3sα1sα2)/sβ (sα1sα3 − cα1cα3sα2)/cβ (sα1sα3 − cα1cα3sα2)/cβ

Table 4. The effective Yukawa couplings κHiff of the N2HDM Higgs bosons Hi, as defined in

eq. (2.30), in type I and type II.

κ̃HiV H

H1 −cα2sβ−α1

H2 sβ−α1sα2sα3 + cα3cβ−α1

H3 cα3sβ−α1sα2 − sα3cβ−α1

Table 5. The coupling factors κ̃HiV H as defined in the Feynman rules eqs. (2.31) and (2.33) for

the Hi couplings to a pair of Higgs and gauge bosons.

where pH± and pG± denote the four-momenta of H± and G± and again all momenta are

taken as incoming. The coupling factors κ̃HiV H are listed in table 5.

The trilinear Higgs self-couplings needed for the Higgs decays into a pair of lighter

Higgs bosons are quite lengthy. For their explicit form, we refer the reader to the appendix

of ref. [22].

Note finally, that by letting α1 → α + π/2 and α2,3 → 0, we obtain the limit of a

2HDM with an additional decoupled singlet. By the shift π/2 the usual 2HDM convention

is matched, and α diagonalises the 2× 2 mass matrix in the CP-even Higgs sector yielding

the two CP-even mass eigenstates h and H, respectively, with mh ≤ mH by convention.

Hence,

N2HDM → 2HDM ⇐⇒


α1 → α+ π

2

α2 → 0

α3 → 0

. (2.35)

3 Renormalization

The computation of the EW corrections to the Higgs decays involves ultraviolet (UV)

divergences. Decays with external charged particles additionally induce infrared (IR) di-

vergences. The UV divergences are canceled by the renormalization of the parameters and
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wave functions involved in the process. In the following we will present the renormalization

of the N2HDM Higgs sector. For the purpose of this work we must deal with the renor-

malization of the electroweak and the Higgs sectors. With the main focus being on the

renormalization of the N2HDM Higgs sector, in the sample decays presented in the numer-

ical analysis we do not include processes that require the treatment of IR divergences or

the renormalization of the fermion sector. Note also that we do not need to renormalize the

gauge-fixing Lagrangian since we choose to write it already in terms of renormalized fields

and parameters [43–45]. In the renormalization of the N2HDM Higgs sector we closely

follow the procedure applied in the 2HDM renormalization of refs. [36, 37]. There, for the

first time, a gauge-independent renormalization has been worked out for the 2HDM mixing

angles by applying the treatment of the tadpoles of ref. [46], which we call the alternative

tadpole scheme, in combination with the pinch technique. The pinch technique allows to

unambiguously extract the gauge-parameter independent parts of the decay amplitude and

in particular of the angular counterterms. The N2HDM encounters four mixing angles in-

stead of only two in the 2HDM. This leads to more complicated renormalization conditions

compared to the 2HDM, as will be shown below. Additionally, the pinched self-energies

needed in this renormalization program have to be worked out explicitly for the N2HDM.

This has been done here for the first time. Since the formulae are quite lengthy, we de-

fer them to appendix B.2, which is part of appendix B that is dedicated to the detailed

presentation of the pinch technique in the N2HDM. We hope our results to be useful for

further works on this subject in the future.

For the renormalization we replace the bare parameters p0, that are involved in the

process and participate in the EW interactions, by the renormalized ones, p, and the

corresponding counterterms δp,

p0 = p+ δp . (3.1)

Denoting generically scalar and vector fields by Ψ, the fields are renormalized through their

field renormalization constants ZΨ as

Ψ0 =
√
ZΨΨ . (3.2)

Note that in case the different field components mix ZΨ is a matrix.

Gauge sector. The counterterms to be introduced in the gauge sector are independent of

the Higgs sector under investigation. For convenience of the reader and to set our notation,

we still repeat the necessary replacements here. The massive gauge boson masses and the

electric charge are replaced by3

m2
W → m2

W + δm2
W (3.3)

m2
Z → m2

Z + δm2
Z (3.4)

e→ (1 + δZe) e . (3.5)

3The quantities on the left-hand side are the bare ones, where for convenience we dropped the index ‘0’.

The ones on the right-hand side are the renormalized ones plus the corresponding counterterms.
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The gauge boson fields are renormalized by their field renormalization constants δZ,

W± →
(

1 +
1

2
δZWW

)
W± (3.6)(

Z

γ

)
→

(
1 + 1

2δZZZ
1
2δZZγ

1
2δZγZ 1 + 1

2δZγγ

)(
Z

γ

)
. (3.7)

Fermion sector. Although not needed in the computation of our sample decay widths in

the numerical analysis, for completeness we also include the renormalization of the fermion

sector. The counterterms of the fermion masses mf are defined through

mf → mf + δmf . (3.8)

And the bare left- and right-handed fermion fields

fL/R ≡ PL/Rf , with PL/R = (1∓ γ5)/2 , (3.9)

are replaced by their corresponding renormalized fields according to

fL/R →
(

1 +
1

2
δZ

L/R
f

)
fL/R . (3.10)

Higgs sector. The renormalization is performed in the mass basis and the mass coun-

terterms are defined through

m2
Φ → m2

Φ + δm2
Φ . (3.11)

The field Φ stands generically for the N2HDM Higgs mass eigenstates, Φ≡H1, H2, H3, A,H
±.

The replacement of the fields by the renormalized ones and their counterterms differs from

the 2HDM case only by the fact that the wave function counterterm matrix in the CP-even

neutral Higgs sector is now a 3× 3 instead of a 2× 2 matrix. Hence,H1

H2

H3

→
 1 + 1

2δZH1H1
1
2δZH1H2

1
2δZH1H3

1
2δZH2H1 1 + 1

2δZH2H2
1
2δZH2H3

1
2 δZH3H1

1
2 δZH3H2 1 + 1

2 δZH3H3


H1

H2

H3

 (3.12)

(
G0

A

)
→

(
1 + 1

2δZG0G0
1
2δZG0A

1
2δZAG0 1 + 1

2δZAA

)(
G0

A

)
(3.13)

(
G±

H±

)
→

(
1 + 1

2δZG±G±
1
2δZG±H±

1
2δZH±G± 1 + 1

2δZH±H±

)(
G±

H±

)
. (3.14)

And for the mixing angles we make the replacements

αi → αi + δαi , i = 1, 2, 3 (3.15)

β → β + δβ . (3.16)
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For the soft Z2-breaking mass parameter m2
12, finally, we replace

m2
12 → m2

12 + δm2
12 . (3.17)

The tadpoles vanish at leading order, but the terms linear in the Higgs fields get loop

contributions at higher orders. It must therefore be ensured that the correct vacuum is

reproduced also at higher orders. As outlined in the following, there are two different ap-

proaches, depending on whether one chooses the tadpoles or the VEVs to be renormalized.

The tadpole parameters Ti (i = 1, 2, 3) and the VEVs v1,2,S are correspondingly replaced by

Ti → Ti + δTi , (3.18)

or alternatively by

v1,2,S → v1,2,S + δv1,2,S . (3.19)

4 Treatment of the tadpoles

The renormalization conditions fix the finite parts of the counterterms. Throughout this

paper we will fix the renormalization constants for the masses and fields through on-shell

(OS) conditions. Using an OS scheme provides an unambiguous interpretation of the bare

parameters in the classical Lagrangian in terms of physically measurable quantities. In

ref. [36] it has been shown that the renormalization of the 2HDM mixing angles requires

special care. Schemes used in the literature before, which are based on the definition of the

counterterms through off-diagonal wave function renormalization constants and a naive

treatment of the tadpoles, were shown to lead to gauge-dependent quantities. In order

to cure this problem, in [36] for the first time a renormalization scheme has been worked

out in which the angular counterterms are explicitly gauge independent. This guarantees

the gauge independence of the decay amplitudes also in case the angular counterterms are

not defined via a physical scheme as given e.g. by the renormalization through a physical

process. The renormalization scheme developed in [36] is based on the combination of the

alternative tadpole scheme with the pinch technique. The pinch technique allows for the

extraction of the truly gauge-independent parts of the angular counterterms and requires

the use of the alternative tadpole scheme.

As alluded to above, we treat the tadpoles in the alternative tadpole scheme in order

to be able to define the angular (and also mass) counterterm in a gauge-independent way.

While this procedure has been introduced in [36], we take here the occasion to explicitly pin

down the differences between the standard and the alternative tadpole scheme. This, in par-

ticular, also reveals how these differences reflect in the renormalization of the singlet VEV.

The basic difference between the two schemes is the fact that in the alternative scheme

as introduced by Fleischer and Jegerlehner in [46], also referred to by ‘FJ’ in the following,

the VEV is taken as primary input parameter. Accordingly, one introduces an explicit

VEV counterterm, along with a renormalization condition for the VEV. Instead, in the

standard scheme the tadpole is assumed to be a primary input quantity. Accordingly, one

introduces a tadpole counterterm, to be fixed through a renormalization condition applied
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〈H〉
proper

=

T tree = 0

=

T ren = 0

−

T loop

+

m
2

H
δv

= 0

Figure 1. Renormalization condition in the alternative tadpole scheme: with the neutral com-

ponent Φ0 of the Higgs doublet Φ defined as Φ0 = (v + H)/
√

2, the requirement for the VEV to

represent the true minimum of the Higgs potential translates into 〈H〉proper = 0 or, equivalently, the

renormalized tadpole graph (white blob) to vanish. The proper VEV coincides with the tree-level

VEV (fixed by the condition T tree = 0). Together with the condition T ren = T tree = 0, this relates

the tadpole loop diagram (grey blob) at a given loop order to the VEV counterterm.

to the tadpole terms. We call the proper VEV the all-order Higgs vacuum expectation

value 〈Φ〉 = v/
√

2. It represents the true ground state of the theory and is connected

to the particle masses and electroweak couplings. At tree level the proper VEV and the

bare VEV coincide while at arbitrary loop orders the proper VEV corresponds to the

renormalized VEV. In the alternative tadpole scheme the proper VEV coincides with the

tree-level VEV and hence is gauge-parameter independent. In this scheme one renormalizes

the VEV explicitly and its counterterm δv is fixed by ensuring the proper VEV to be

v/
√

2 = vtree/
√

2 to all orders. This renormalization condition yields δv = T loop/m2
H ,

where T loop denotes the tadpole parameter at loop level. Notice that this is equivalent to

i) identifying the tree-level tadpole with the renormalized tadpole T tree = T ren; ii) and then

setting T ren = T tree = 0, as required by the minimum conditions on the Higgs potential

— cf. figure 1 for a schematic representation. The condition generalises to multi-Higgs

sectors, and we will show below in the example of the N2HDM, how the renormalization

condition for the VEV counterterm is obtained. In practice, this scheme is equivalent to

inserting tadpole graphs explicitly in the calculations. Since at loop level the proper VEV

is given by the renormalized one, and in the FJ scheme coincides with the tree-level VEV,

we have

vren|FJ = vtree =
2mW

g

∣∣∣∣tree

. (4.1)

When a given v-dependent Lagrangian is used at higher orders these tree-level parameters

{g,mW }tree still have to be renormalized, and they are then replaced by their corresponding

renormalized parameters as

2mW

g

∣∣∣∣tree

→ 2mW

g

∣∣∣∣ren

FJ

+
2mW

g

(
δm2

W

2m2
W

− δg

g

)∣∣∣∣
FJ︸ ︷︷ ︸

≡∆v

. (4.2)

It is important to note that ∆v is a mere label and not a VEV counterterm as such. This

makes obvious that δv and ∆v are completely unrelated. In particular, they feature a

totally different divergence structure. Figure 1 depicts the renormalization condition for
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〈H〉
proper

=

T ren = 0

=

T tree = 0

+

T loop

−

δT

= 0

Figure 2. Renormalization condition in the standard tadpole scheme: the requirement of the

renormalized tadpole graph (white blob) to vanish together with the tree-level tadpole being zero

fixes the tadpole counterterm.

the alternative tadpole scheme. In the standard scheme, on the other hand, the proper

VEV is obtained from the minimisation of the gauge-dependent loop-corrected potential

and hence is in principle gauge dependent.

An equivalent condition to the one that fixes the VEV counterterm in the FJ scheme

is now necessary to determine the tadpole counterterm in the standard scheme. This is

achieved by requiring the renormalized tadpole to vanish. Together with the requirement

of the tree-level tadpole to be zero, this fixes the tadpole counterterm δT . As repeatedly

emphasized, the tadpole counterterm features here explicitly, since the tadpole is an input

parameter in the standard scheme, cf. figure 2.

For the singlet VEV vS a similar distinction, i.e. δvS versus ∆vS has to be made. When

vS is related to measurable parameters the NLO VEV shift ∆vs denotes the corresponding

combination of parameter counterterms, similarly to eq. (4.2). In ref. [47] it was shown

that, in an Rξ gauge, a divergent part for ∆vS in the standard scheme is precluded at one

loop if the scalar field obeys a rigid invariance. This is the case for typical singlet-extended

Higgs sectors, e.g. the real singlet model [42], and thereby the N2HDM singlet scalar. In

all these cases the singlet field is disconnected from the gauge sector and hence invariant

under global gauge transformations. The conclusion of ref. [47] relies on the use of the

standard scheme, where the renormalized VEV coincides with the loop-corrected one as

the renormalized tadpoles are set to zero.4 However, this no longer applies if the VEVs

are renormalized in the alternative tadpole scheme. In this case ∆vFJ
S becomes indeed a

UV-divergent quantity. We can prove it to cancel part of the UV poles that genuinely

appear if one-loop amplitudes are computed in the FJ-scheme, when the corresponding

tree-level amplitudes are directly sensitive to the singlet VEV vS . Salient examples are the

Higgs-to-Higgs decays, which we discuss in detail in section 6.

4Let us also notice that ref. [47] distinguishes two (equivalent) parametrisations for the renormalization

transformation of a generic scalar field VEV, 〈Φ〉 = v√
2
:

v → v + δv =
√
ZΦ(v + δv) , (4.3)

where
√
ZΦ is the field renormalization constant of the respective scalar field, whereas δv quantifies how

the VEV itself is shifted differently by higher-order contributions with respect to the field. In our current

conventions, δv → ∆v and δv → ∆v. The results of ref. [47], together with [42], show that for a gauge-singlet

scalar the quantity ∆vs in the standard scheme is UV finite at one loop order.
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4.1 Alternative tadpole scheme for the N2HDM

In the following, we elaborate in detail the implications of the alternative tadpole scheme.

We derive the necessary relations for the N2HDM, highlighting the differences with re-

spect to the 2HDM case, derived in [36]. At tree level the minimum conditions of the

N2HDM potential lead to the three relations eqs. (2.8)–(2.10) for the tadpole parameters,

or alternatively

T tree
1 = 0 , T tree

2 = 0 and T tree
3 = 0 . (4.4)

These can be used to replace the parameters m2
11, m2

22 and m2
S by the VEVs v1, v2 and

vS . Note, however, that at arbitrary loop order, this may only be done after the proper

VEVs are taken into account in the Higgs potential. More precisely, at NLO the VEVs are

modified in order to take into account the NLO effects, as

vbare
i = vren

i + δvi
FJ
= vtree

i + δvi , i = 1, 2, S . (4.5)

In the alternative tadpole scheme, δv1, δv2 and δvS correspond to the proper doublet and

singlet VEV counterterms in the gauge basis. In turn, vren
i are the proper VEVs, i.e. in the

FJ scheme the renormalized VEVs (coinciding with the tree-level VEVs), and hence the

VEVs that generate the necessary mass relations for the gauge bosons, fermions and the

scalars. The VEVs are called the proper VEVs if the gauge-invariant relations presented in

figure 1 (for the SM case) are fulfilled at all orders, which means that the VEVs represent

the true vacuum state of the theory at all orders in perturbation theory. At NLO, we insert

the relations eq. (4.5) into the tadpole relations eqs. (2.8)–(2.10). At NLO, the left-hand

side of the equations is given by

T bare
i = T tree

i︸︷︷︸
=0

+T loop
i = T loop

i , i ≡ 1, 2, 3 . (4.6)

We then get the NLO expressions for eqs. (2.8)–(2.10),

T loop
1 =T tree

1 +

(
m2

12

vtree
2

vtree
1

+λ1(vtree
1 )2

)
δv1+

(
−m2

12+λ345v
tree
1 vtree

2

)
δv2+λ7v

tree
1 vtree

S δvS

(4.7)

T loop
2 =T tree

2 +

(
−m2

12+λ345v
tree
1 vtree

2

)
δv1+

(
m2

12

vtree
1

vtree
2

+λ2(vtree
2 )2

)
δv2+λ8v

tree
2 vtree

S δvS

(4.8)

T loop
3 =T tree

3 +λ6(vtree
S )2δvS+λ7v

tree
1 vtree

S δv1+λ8v
tree
2 vtree

S δv2 . (4.9)

Since the NLO effects for the VEVs have been taken into account in form of the countert-

erms in eq. (4.5), the FJ-renormalized VEVs vtree
i = vren

i now represent the true ground

states of the theory, namely those for which 〈ρi〉 = 0. The tree-level relations in eq. (4.4)

can therefore be applied, and, in so doing, the VEV counterterms δv1, δv2 and δvS are

given in terms of the tadpole loops T loop
1 , T loop

2 and T loop
3 . By comparing with the squared
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mass matrix M2
ρ of eq. (2.17) we find analytically T loop

1

T loop
2

T loop
3

=

 m2
12tβ+λ1 (vtree)2 c2

β −m2
12+λ345 (vtree)2 sβcβ λ7cβ v

tree vtree
S

−m2
12+λ345 (vtree)2 sβcβ m2

12/tβ+λ2 (vtree)2 s2
β λ8sβ v

tree vtree
S

λ7cβ v
tree vtree

S λ8sβ v
tree vtree

S λ6 (vtree
S )2


 δv1

δv2

δvS


=M2

ρ

∣∣∣
Ti=0

 δv1

δv2

δvS

 . (4.10)

Rotation to the mass basis yields

 δvH1

δvH2

δvH3

 =


T loop
H1

m2
H1

T loop
H2

m2
H2

T loop
H3

m2
H3

 , (4.11)

where T loop
Hi

= R(αi)T
loop
i , and hence

 δv1

δv2

δvS

 = R(αi)
T


T loop
H1

m2
H1

T loop
H2

m2
H2

T loop
H3

m2
H3

 . (4.12)

The latter identity is helpful in practice, as the calculation of the tadpole diagrams is usually

performed in the mass basis, but the VEV shifts are introduced most conveniently in the

gauge basis. Rewriting eq. (4.11), the quantities δvHi can be interpreted as connected

tadpole diagrams, containing the Higgs tadpole and its propagator at zero momentum

transfer,

δvHi =
−i
m2
Hi

iT loop
Hi

=
−i
m2
Hi


Hi

 =

 Hi

 . (4.13)

We want to emphasize again that in the alternative tadpole scheme eq. (4.13) defines the

counterterms of the vacuum expectation values. In contrast to the standard scheme, no

tadpole counterterms are introduced. Tadpole graphs appear through the gauge-invariant

condition in figure 1.

Once the leading-order VEVs are promoted to higher orders, namely by inserting

eq. (4.5) into a generic VEV-dependent Lagrangian L(v1, v2, vS), the contribution of the

VEV counterterms δv1, δv2 and δvS , as given by eq. (4.12), is equivalent to introducing

explicit tadpole graphs in all loop amplitudes. Moreover, all tree-level relations between

the VEVs and the weak sector parameters (masses, coupling constants) hold again. In

particular, for the doublet VEVs this means with (v2
1 + v2

2 = v2)

vren|FJ = vtree =
2mW

g

∣∣∣tree
(4.14)
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then

vren
1 |FJ = vtree

1 =
2mW cβ

g

∣∣∣tree
and vren

2 |FJ = vtree
2 =

2mW sβ
g

∣∣∣tree
. (4.15)

By applying the renormalization conditions for the VEVs, the tree-level VEVs ensure

the true ground state of the potential. Since they are not directly related to a physical

observable, we express the FJ-renormalized doublet VEVs in terms of physical tree-level

parameters, here mW , g and the mixing angle β. In higher order calculations, these param-

eters are then renormalized by choosing physical renormalization conditions.5 To better

illustrate the implications of the alternative tadpole scheme, we consider the scalar-vector-

vector vertex between the physical H1 and a W boson pair. We first define the Feynman

rules, needed in the following, by

H1W
µW ν : igH1WW gµν (4.16)

H1HjW
µW ν : igH1HjWW gµν , j = 1, 2, 3 . (4.17)

The coupling constants for the triple vertex in terms of the mixing angles and the VEVs

v1 and v2 are

gH1WW ≡ gSM
HWW κH1WW

= gmW cα2cβ−α1 =
g2vcα2cβ−α1

2
=
g2cα2

2
(cα1v1 + sα1v2) , (4.18)

and for the quartic vertices

gH1H1WW ≡ κH1H1ZZ g
SM
HWW =

g2 c2
α2

2

gH1H2WW ≡ κH1H2ZZ g
SM
HWW = −g

2 cα2sα2sα3

2

gH1H3WW ≡ κH1H3ZZ g
SM
HWW = −g

2 cα2sα2cα3

2
. (4.19)

When expressing the couplings in terms of the VEVs, care has to be taken to differentiate

between the angle β in the sense of a mixing angle and β in the sense of the ratio of the

VEVs. Only the latter is to be replaced by the VEVs that are to be renormalized. The

same distinction must be applied for the αi. Note that in all couplings but the trilinear

and quartic Higgs self-couplings the angles αi have the roles of mixing angles. Only in the

Higgs self-couplings, the αi partly appear in the sense of the ratio of N2HDM potential

parameters. Bearing these considerations in mind, we see that the quartic couplings do

not receive any δvi, whereas gH1WW contains β as ratio of the VEVs. Instead, the angles

5We call the mixing angles physical in the sense that they appear in the Higgs couplings and hence enter

physical observables.
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α1 and α2 are mixing angles here. At NLO, we therefore have to make the replacement

igH1WW =
ig2cα2

2
(cα1v

tree
1 +sα1v

tree
2 )+

ig2cα2

2
(cα1δv1+sα1δv2)

(4.12)
= igH1WW +

ig2cα2

2

[
cα2

T loop
H1

m2
H1

−sα2sα3

T loop
H2

m2
H2

−sα2cα3

T loop
H3

m2
H3

]
= igH1WW

+igH1H1WW

(
−i
m2
H1

)
iT loop
H1

+igH1H2WW

(
−i
m2
H2

)
iT loop
H2

+igH1H3WW

(
−i
m2
H3

)
iT loop
H3

= igH1WW +

H1

W

W

H1

+ H1

W

W

H2

+ H1

W

W

H3


trunc

≡ igtad
H1WW . (4.20)

The subscript ‘trunc’ means that all Lorentz structure of the vector bosons as well as the

Lorentz structure of the coupling has been suppressed here for simplicity. The second term

in the second line generates, through the VEV counterterms δvi, the tadpole diagrams

contributing to the scalar-vector-vector vertex. On the other hand, as the VEVs in this

expression have already been expanded to NLO through vi → vtree
i +δvi, we use all tree-level

relations, in particular eq. (4.15), to fix the (FJ-renormalized) VEVs vtree
i in terms of the

tree-level weak sector parameters and the angle β.6 At loop level the EW parameters and

mixing angles that enter the coupling, here g, mW , β, α1 and α2 have to be renormalized,

i.e. we replace them by their renormalized values plus the corresponding counterterms,

cf. eq. (3.1). We then get for the vertex of eq. (4.20)

igtad
H1WW + igmW cα2cβ−α1

[
δg

g
+
δm2

W

2m2
W

− tα2δα2 − tβ−α1(δβ − δα1)

]
. (4.21)

The exact form of these counterterms7 depends on the renormalization conditions, which

will be given in the next section.

Our derivation also shows the difference with respect to the 2HDM, namely the last

two terms in eq. (4.20) do not arise in the 2HDM. They are due to the additional singlet-

doublet mixing and have no counterpart in a pure 2HDM structure (cf. eq. (A.61) of [36]).

As a final remark, let us summarize the key differences with respect to the stan-

dard tadpole scheme. In the latter case, VEV counterterms of the form of eq. (4.13) are

strictly speaking not introduced. Instead, one introduces renormalized tadpoles and tad-

pole counterterms, fulfilling the same condition as in figure 1 — that is, T ren
i = 0 with

T ren
i = T loop

i − δTi. In doing so, the VEVs correspond to the ground state of the loop-

corrected scalar potential, and the corresponding VEV relations to weak sector parameters

6Note, that since we use the tree-level relations, the angle β in the sense of the ratio of the VEVs and

in the sense of the mixing angle coincide.
7Since the SU(2)L coupling is not chosen to be an independent input parameter, it will be given in terms

of the counterterms for mW , mZ and e.
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iΣtad(p2) := + +

Figure 3. Modified self-energy iΣtad(p2) in the alternative tadpole scheme, consisting of all 1

particle-irreducible (PI) self-energy diagrams together with the one-loop tadpole diagrams, indicated

by a gray blob.

hold order-by-order. Due to the fact that in the standard tadpole scheme one considers

the VEVs from the one-loop corrected potential (in contrast to the alternative scheme,

where one considers the tree-level VEVs), VEV diagrams in the self-energies and vertices

explicitly vanish and thus need not be taken into account, at the expense of defining mass

counterterms which become manifestly gauge dependent.

In practice, the rigorous introduction of the VEV counterterms in the alternative

tadpole scheme yields the following rules for its application in the renormalization of a

generic process within the N2HDM:

1. Include explicit tadpole contributions in all self-energies used to define the (off-

diagonal) wave function renormalization constants8 and wherever the self-energies

appear in the counterterms, such that now Σtad(p2) contains the additional tadpole

contributions, cf. figure 3.

2. Include explicit tadpole contributions in the virtual vertex corrections, if the tadpole

insertions are connected to an existing coupling. This is applicable e.g. to all triple

Higgs self-interactions as well as to the Higgs couplings to gauge bosons.

In the alternative tadpole scheme not only the angular counterterms but also the mass

counterterms become gauge independent. This has been shown for the electroweak sector

in [48]. All counterterms of the electroweak sector have exactly the same structure as in

the standard scheme. Only the self-energies Σ have to be replaced by the self-energies Σtad

containing the tadpole contributions. Note however, that there are no tadpole contributions

to the transverse photon-Z self-energy ΣT
γZ nor to the transverse photon self-energy ΣT

γγ

so that

Σtad,T
γZ/γγ = ΣT

γZ/γγ . (4.22)

Having introduced the tadpole scheme, we now list explicitly the counterterms needed in the

computation of the electroweak corrections. In particular, we illustrate the renormalization

of the N2HDM Higgs sector.

5 Renormalization conditions

With the previous section we are now able to specify the counterterms needed in the

renormalization of the N2HDM. Those of the EW and Yukawa sector correspond to the

8Diagonal wave function corrections, instead, are constructed from derivatives of the corresponding

self-energies with respect to p2, hence the tadpole-dependent contributions vanish.
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ones of the SM, while differences obviously arise in the Higgs sector itself. For completeness,

all counterterms of the model will be listed, although not all of them will be necessary to

study the sample processes discussed in section 7.

5.1 Counterterms of the gauge sector

The gauge bosons are renormalized through OS conditions implying the mass counterterms

δm2
W = ReΣtad,T

WW (m2
W ) and δm2

Z = ReΣtad,T
ZZ (m2

Z) , (5.1)

where T denotes the transverse part of the self-energy including the tadpole contributions.

The wave function renormalization constants that guarantee the correct OS properties are

given by

δZWW = −Re
∂ΣT

WW (p2)

∂p2

∣∣∣∣
p2=m2

W

(5.2)

(
δZZZ δZZγ
δZγZ δZγγ

)
=

−Re
∂ΣTZZ(p2)

∂p2

∣∣∣
p2=m2

Z

2
ΣTZγ(0)

m2
Z

−2Re
ΣTZγ(m2

Z)

m2
Z

− ∂ΣTγγ(p2)

∂p2

∣∣∣
p2=0

 . (5.3)

Note that in eqs. (5.2) and (5.3) they are the same in the standard and in the alternative

tadpole scheme introduced above. The reason is that the tadpoles are independent of the

external momentum so that the derivatives of the self-energies do not change. Furthermore,

ΣT
γZ is identical in both schemes, as alluded to above. For better readability we therefore

drop the superscript ’tad’ here and wherever possible. For the same reasons the counterterm

for the electric charge is invariant with respect to the choice of the tadpole scheme. The

electric charge is renormalized to be the full electron-positron photon coupling for OS

external particles in the Thomson limit. This implies that all corrections to this vertex

vanish OS and for zero momentum transfer. The counterterm for the electric charge in

terms of the transverse photon-photon and photon-Z self-energies reads [49]

δZα(0)
e =

1

2

∂ΣT
γγ(k2)

∂k2

∣∣∣∣∣
k2=0

+
sW
cW

ΣT
γZ(0)

m2
Z

. (5.4)

The sign in the second term of eq. (5.4) differs from the one in [49] because we have adopted

different sign conventions in the covariant derivative of eq. (2.2). In our computation we

will use the fine structure constant at the Z boson mass α(m2
Z) as input. This way the

results are independent of large logarithms due to light fermions f 6= t. The counterterm

δZe is therefore modified as [49]

δZ
α(m2

Z)
e = δZα(0)

e − 1

2
∆α(m2

Z) (5.5)

∆α(m2
Z) =

∂ΣT
γγ(k2)

∂k2

∣∣∣∣∣
k2=0

−
ΣT
γγ(m2

Z)

m2
Z

, (5.6)

where the transverse part of the photon self-energy ΣT
γγ in eq. (5.6) includes only the light

fermion contributions. The calculation of the EW one-loop corrected Higgs decay widths
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also requires the renormalization of the weak coupling g, which can be related to e and the

gauge boson masses as

g =
emZ√

m2
Z −m2

W

. (5.7)

Its counterterm can therefore be expressed in terms of the electric charge and gauge boson

mass counterterms through

δg

g
= δZe −

1

2(1−m2
Z/m

2
W )

(
δm2

W

m2
W

−
δm2

Z

m2
Z

)
. (5.8)

5.2 Counterterms of the fermion sector

Defining the following structure for the fermion self-energies

Σf (p2) = /pΣL
f (p2)PL + /pΣR

f (p2)PR +mfΣLs
f (p2)PL +mfΣRs

f (p2)PR (5.9)

the fermion mass counterterms applying OS conditions are given by

δmf

mf
=

1

2
Re
[
Σtad,L
f (m2

f ) + Σtad,R
f (m2

f ) + Σtad,Ls
f (m2

f ) + Σtad,Rs
f (m2

f )
]
. (5.10)

The fermion wave function renormalization constants are determined from

δZ
L/R
f = −ReΣ

tad,L/R
f (m2

f ) (5.11)

−m2
f

∂

∂p2
Re
(

Σ
L/R
f (p2) + Σ

R/L
f (p2) + Σ

L/Rs
f (p2) + Σ

R/Ls
f (p2)

)∣∣∣
p2=m2

f

.

5.3 Higgs field and mass counterterms

The OS conditions for the physical Higgs bosons yield the mass counterterms (i = 1, 2, 3)

δm2
Hi = Re[Σtad

HiHi(m
2
Hi)] (5.12)

δm2
A = Re[Σtad

AA(m2
A)] (5.13)

δm2
H± = Re[Σtad

H±H±(m2
H±)] . (5.14)

Having absorbed the tadpoles into the self-energies, no tadpole counterterms appear ex-

plicitly in the mass counterterms any more, in contrast to the corresponding expressions in

the standard tadpole scheme. The OS conditions for the Higgs bosons yield the following

wave function renormalization counterterm 3× 3 matrix for the CP-even neutral N2HDM

scalars,

δZHiHj =



−Re
∂ΣH1H1

(k2)

∂k2

∣∣∣
k2=m2

H1

2
Re

[
Σtad
H1H2

(m2
H2

)
]

m2
H1
−m2

H2

2
Re

[
Σtad
H1H3

(m2
H3

)
]

m2
H1
−m2

H3

2
Re

[
Σtad
H2H1

(m2
H1

)
]

m2
H2
−m2

H1

−Re
∂ΣH2H2

(k2)

∂k2

∣∣∣
k2=m2

H2

2
Re

[
Σtad
H2H3

(m2
H3

)
]

m2
H2
−m2

H3

2
Re

[
Σtad
H3H1

(m2
H1

)
]

m2
H3
−m2

H1

2
Re

[
Σtad
H3H2

(m2
H2

)
]

m2
H3
−m2

H2

−Re
∂ΣH3H3

(k2)

∂k2

∣∣∣
k2=m2

H3


.

(5.15)
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The diagonal entries are obtained as customary by enforcing the poles of the renormalized

Higgs two-point Green’s functions to have residue 1. The non-diagonal constants follow

from demanding that no Hi → Hj transitions occur between different on-shell fields. For

further details we refer the reader to the appendix A.1 of [36].

In the CP-odd and charged sector we have the 2 × 2 matrices

(
δZG0G0 δZG0A

δZAG0 δZAA

)
=


−Re

∂ΣG0G0 (k2)

∂k2

∣∣∣
k2=0

−2
Re

[
Σtad
G0A

(m2
A)

]
m2
A

2
Re

[
Σtad
G0A

(0)
]

m2
A

−Re ∂ΣAA(k2)
∂k2

∣∣∣
k2=m2

A

 (5.16)

(
δZG±G± δZG±H±

δZH±G± δZH±H±

)
=


−Re

∂ΣG±G± (k2)

∂k2

∣∣∣
k2=0

−2
Re

[
Σtad
G±H±

(m2
H±

)
]

m2
H±

2
Re

[
Σtad
G±H±

(0)
]

m2
H±

−Re
∂ΣH±H± (k2)

∂k2

∣∣∣
k2=m2

H±

 . (5.17)

5.4 Angular counterterms

As in the 2HDM, we renormalize the mixing angles based on the definition of the coun-

terterms through off-diagonal wave function renormalization constants and combine this

with the alternative tadpole approach together with the application of the pinch tech-

nique in order to arrive at an unambiguous gauge-independent definition of the mixing

angle counterterms. Let us note that a process-dependent renormalization of the mixing

angles would also lead to a gauge-independent renormalization, as shown in [36] for the

2HDM case. In the N2HDM the situation becomes more involved as four different pro-

cesses need to be identified to fix all mixing angle counterterms δαi and δβ. Moreover,

the construction of such a process-dependent scheme is complicated by the fact that the

different Higgs decay modes typically rely on more than one mixing angle, implying that

the different angular counterterms appear as linear combinations in each individual vertex

counterterm. It is therefore imperative to choose a set of processes where the angular

counterterm dependences enter as a linearly independent combination, such that they can

be fixed unambiguously through linear combinations of the different decay widths. More-

over, all these processes have to be phenomenologically accessible. The process-dependent

renormalization of the N2HDM mixing angles is hence rather unpractical from a physical

point of view, and we will therefore not consider it any further.

While the expression for the counterterm in the charged and CP-odd sector, δβ, in

terms of the off-diagonal wave function renormalization constants does not change with

respect to the 2HDM, this is not the case for the mixing angle counterterms δαi in the CP-

even sector. We therefore present their derivation here. It is based on the idea of making

the counterterms δαi (and also δβ) appear in the inverse propagator matrix and thereby in

the wave function renormalization constants in a way that is consistent with the internal

relations of the N2HDM.9 This can be achieved by performing the renormalization in the

9The renormalization of the mixing matrix in the scalar sector of a theory with an arbitrary number of

scalars was first discussed in [50].
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physical basis (H1, H2, H3), but temporarily switching to the gauge basis (ρ1, ρ2, ρ3), and

back again. For the CP-even sector of the N2HDM this means,H1

H2

H3


bare

= R(αi)

∣∣∣∣∣
bare

 ρ1

ρ2

ρ3


bare

→ R(αi + δ αi)
√
Zρi

 ρ1

ρ2

ρ3


= R(δαi)R(αi)

√
Zρi R(αi)

T︸ ︷︷ ︸√
ZHi

R(αi)

 ρ1

ρ2

ρ3

 =
√
ZHi

H1

H2

H3

 . (5.18)

The field renormalization matrix in the mass basis can be parametrized as

√
ZHi =R(δαi)

 1+
δZH1H1

2 δC12 δC13

δC21 1+
δZH2H2

2 δC23

δC31 δC32 1+
δZH3H3

2

= (5.19)

 1+
δZH1H1

2 cα2cα3δα1+sα3δα2+δC12 cα3δα2−sα3cα2δα1+δC13

−cα2cα3δα1−sα3δα2+δC21 1+
δZH2H2

2 δα3+sα2δα1+δC23

−cα3δα2+sα3cα2δα1+δC31 −δα3−sα2δα1+δC32 1+
δZH3H3

2

,
where δCij = δCji in agreement with the fact that

√
Zρi is a symmetric matrix. By identify-

ing the off-diagonal elements with the off-diagonal wave function renormalization constants

δZHiHj/2 (i 6= j), the three neutral CP-even angular counterterms are obtained as

δα1 =
cα3

4 cα2

(δZH1H2 − δZH2H1)− sα3

4 cα2

(δZH1H3 − δZH3H1)

δα2 =
cα3

4
(δZH1H3 − δZH3H1) +

sα3

4
(δZH1H2 − δZH2H1) (5.20)

δα3 =
1

4
(δZH2H3 − δZH3H2) +

sα2

4cα2

[sα3 (δZH1H3 − δZH3H1)− cα3 (δZH1H2 − δZH2H1)] ,

while the auxiliary counterterms δCij do not play a role in the remainder of the discussion.

The definition of the counterterm δβ can be taken over from the 2HDM. It is derived

analogously to the δαi, but from the charged and CP-odd Higgs sectors. In this case, there

are altogether four off-diagonal wave function constants, while only three free parameters

to be fixed. For details, we refer to ref. [36]. There we proposed two different possible

counterterm choices for β, one based on the charged and the other on the CP-odd sector.

Also here we will apply these two possible choices, given by

δβ(1) =
1

4
(δZG±H± − δZH±G±) (5.21)

and

δβ(2) =
1

4
(δZG0A − δZAG0) . (5.22)

All wave function renormalization constants appearing in the counterterms eqs. (5.20),

(5.21) and (5.22) are renormalized in the OS scheme and given by the corresponding entries
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in the wave function counterterm matrices eqs. (5.15), (5.16) and (5.17). While the use

of the alternative tadpole scheme ensures that the angular counterterms can be expressed

in a gauge-independent way, at this stage they still contain a dependence on the gauge-

fixing parameter. We therefore combine the virtues of the alternative tadpole scheme with

the pinch technique [51–58]. The pinch technique allows us to extract the truly gauge-

independent parts of the angular counterterms.

5.4.1 Gauge-independent pinch technique-based angular counterterm schemes

By the application of the pinch technique it is possible to define pinched self-energies Σ

which are truly gauge independent. They are built up by the tadpole self-energies evaluated

in the Feynman gauge and extra pinched components Σadd, i.e.

Σ(p2) = Σtad(p2)
∣∣∣
ξV =1

+ Σadd(p2) , (5.23)

where ξV stands for the gauge fixing parameters ξZ , ξW and ξγ of the Rξ gauge. By Σadd

we dub the additional (explicitly ξV -independent) self-energy contributions obtained via

the pinch technique. It is important to notice that, in order to apply the pinch tech-

nique, it is necessary to explicitly include all tadpole topologies, i.e. to use the alternative

tadpole scheme. In appendix B we present the basic idea of the pinch technique (see

also refs. [51–58] for a detailed exposition). We exemplarily show, for the CP-even sector,

how to proceed in the derivation of the pinched self-energy. Additionally, we give useful

formulae on the gauge dependences of the scalar self-energies and for the application of the

pinch technique in the N2HDM.

On-shell tadpole-pinched scheme. The self-energy Σadd in eq. (5.23) is explicitly inde-

pendent of the gauge fixing parameter ξV . By replacing the wave function renormalization

constants in the counterterms eqs. (5.20), (5.21) and (5.22) with their OS renormalization

definitions given by the corresponding entries in the wave function counterterm matrices

eqs. (5.15), (5.16) and (5.17) we arrive, upon expressing these in terms of the pinched

self-energies, at the following expressions for the angular counterterms δαi,

δα1 =
cα3

2cα2

Re
([

Σtad
H1H2

(m2
H2

)+Σtad
H2H1

(m2
H1

)
]
ξV =1

+Σadd
H1H2

(m2
H2

)+Σadd
H2H1

(m2
H1

)
)

m2
H1
−m2

H2

− sα3

2cα2

Re
([

Σtad
H1H3

(m2
H3

)+Σtad
H3H1

(m2
H1

)
]
ξV =1

+Σadd
H1H3

(m2
H3

)+Σadd
H3H1

(m2
H1

)
)

m2
H1
−m2

H3

δα2 =
cα3

2

Re
([

Σtad
H1H3

(m2
H3

)+Σtad
H3H1

(m2
H1

)
]
ξV =1

+Σadd
H1H3

(m2
H3

)+Σadd
H3H1

(m2
H1

)
)

m2
H1
−m2

H3

+
sα3

2

Re
([

Σtad
H1H2

(m2
H2

)+Σtad
H2H1

(m2
H1

)
]
ξV =1

+Σadd
H1H2

(m2
H2

)+Σadd
H2H1

(m2
H1

)
)

m2
H1
−m2

H2

δα3 =
1

2

Re
[
Σtad
H2H3

(m2
H3

)+Σtad
H3H2

(m2
H2

)
]
ξV =1

+Σadd
H2H3

(m2
H3

)+Σadd
H3H2

(m2
H2

)

m2
H2
−m2

H3

+
sα2

2cα2

{
sα3 Re

([
Σtad
H1H3

(m2
H3

)+Σtad
H3H1

(m2
H1

)
]
ξV =1

+Σadd
H1H3

(m2
H3

)+Σadd
H3H1

(m2
H1

)
)

m2
H1
−m2

H3

−
cα3 Re

([
Σtad
H1H2

(m2
H2

)+Σtad
H2H1

(m2
H1

)
]
ξV =1

+Σadd
H1H2

(m2
H2

)+Σadd
H2H1

(m2
H1

)
)

m2
H1
−m2

H2

}
. (5.24)
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And for the two chosen renormalization prescriptions of δβ we get

δβ(1) =−
Re
([

Σtad
G±H±(0)+Σtad

G±H±(m2
H±)

]
ξV =1

+Σadd
G±H±(0)+Σadd

G±H±(m2
H±)

)
2m2

H±
(5.25)

δβ(2) =−
Re
([

Σtad
G0A(0)+Σtad

G0A(m2
A)
]
ξV =1

+Σadd
G0A(0)+Σadd

G0A(m2
A)
)

2m2
A

. (5.26)

With this procedure we have now obtained angular counterterms that are explicitly gauge

independent.

The additional contribution Σadd
Hh has been given for the MSSM in [59], and the ones

for the 2HDM in [36, 40, 60]. We have derived the contributions necessary in the N2HDM,

given here for the first time (i, j = 1, 2, 3),

Σadd
HiHj (p

2) =− g2

32π2c2
W

(
p2−

m2
Hi

+m2
Hj

2

){
O(1)
HiHj

B0(p2;m2
Z ,m

2
A)+O(2)

HiHj
B0(p2;m2

Z ,m
2
Z)

+2c2
W

[
O(1)
HiHj

B0(p2;m2
W ,m

2
H±)+O(2)

HiHj
B0(p2;m2

W ,m
2
W )
]}

(5.27)

Σadd
G0A(p2) =

−g2

32π2c2
W

(
p2−

m2
A

2

) 3∑
i=1

O(3)
HiHi

B0(p2;m2
Z ,m

2
Hi) (5.28)

Σadd
G±H±(p2) =

−g2

16π2

(
p2−

m2
H±

2

) 3∑
i=1

O(3)
HiHi

B0(p2;m2
W ,m

2
Hi) , (5.29)

where B0 is the scalar two-point function [61, 62], while the shorthand notation O(x)
HiHj

(x = 1, . . . , 4) stands for different coupling combinations in the Higgs-gauge sector,

O(1)
HiHj

= κ̃HiV H × κ̃HjV H

O(2)
HiHj

= κHiV V × κHjV V

O(3)
HiHj

= κHiV V × κ̃HjV H

O(4)
HiHj

= Ri1Rj1 +Ri2Rj2 . (5.30)

We note that in the N2HDM the following sum rules hold,

O(1)
HiHj

+O(2)
HiHj

= O(4)
HiHj

,
3∑
i=1

O(1)
HiHi

=
3∑
i=1

O(2)
HiHi

= 1 ,

3∑
i=1

O(3)
HiHi

= 0 ,

3∑
i=1

κHiV V κHiff = 1 . (5.31)

Due to the third sum rule, the additional pinched contributions in eqs. (5.28), (5.29) are

UV-finite in the N2HDM. In the 2HDM limit (α2,3 = 0), the combination O(4)
HiHj

becomes

the Kronecker delta δHiHj and hence, for i 6= j, the additional pinched contributions in

eq. (5.27) become UV-finite by themselves as well.

In the general N2HDM case instead, Σadd
H1H2

, Σadd
H2H1

, Σadd
H1H3

, Σadd
H3H1

, Σadd
H2H3

, Σadd
H3H2

contain UV-divergent poles, which nevertheless cancel as they enter the mixing angle coun-

terterms eq. (5.24) via the additive structure Σadd
HiHj

(m2
i ) + Σadd

HjHi
(m2

j ), which is UV-finite.
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p? tadpole-pinched scheme. Along the same lines followed for the 2HDM in ref. [36],

we now generalise the p? tadpole-pinched scheme to the N2HDM Higgs sector. Again, we

replace the scalar self-energies within the mixing angle counterterms with the corresponding

pinched self-energies, Σ, (5.23), which we evaluate this time at the average of the particle

momenta squared [63],

p2
?,ij =

m2
Φi

+m2
Φj

2
, (5.32)

where (Φi,Φj) = (Hi, Hj), (G±, H±) and (G0, A), respectively. In this way the additional

self-energies Σadd vanish, and the pinched self-energies are given by the tadpole self-energies

Σtad computed in the Feynman gauge, i.e.

Σ(p2
?) = Σtad(p2

?)
∣∣∣
ξV =1

. (5.33)

The angular counterterms δαi in eq. (5.20) then read

δα1 =
cα3 Σtad

H1H2
(p2
?,12)

cα2(m2
H1
−m2

H2
)
−
sα3 Σtad

H1H3
(p2
?,13)

cα2(m2
H1
−m2

H3
)

δα2 =
cα3Re Σtad

H1H3
(p2
?,13)

m2
H1
−m2

H3

+
sα3Re Σtad

H1H2
(p2
?,12)

m2
H1
−m2

H2

δα3 =
Re Σtad

H2H3
(p2
?,23)

m2
H3
−m2

H2

+
sα2

cα2

{
sα3 Re Σtad

H1H3
(p2
?,13)

m2
H1
−m2

H3

−
cα3 Re Σtad

H1H2
(p2
?,12)

m2
H1
−m2

H2

}
, (5.34)

with the different p? scales being

p2
?,12 =

m2
H1

+m2
H2

2
, p2

?,13 =
m2
H1

+m2
H3

2
, p2

?,23 =
m2
H2

+m2
H3

2
. (5.35)

For the counterterm δβ we get

δβ(1) = −
Re

[
ΣG±H±

(
m2
H±
2

)]
m2
H±

(5.36)

or alternatively

δβ(2) = −
Re
[
ΣG0A

(
m2
A

2

)]
m2
A

. (5.37)

5.5 Renormalization of m2
12

The soft Z2 breaking parameter m2
12 enters the Higgs self-couplings. For the computation

of higher-order corrections to Higgs-to-Higgs decays it therefore has to be renormalized as

well. We may consider two different renormalization schemes.
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Modified minimal substraction scheme. One possibility is to use a modified MS

scheme, cf. [37], where the counterterm δm2
12 is chosen such that it cancels all residual

terms of the amplitude that are proportional to

∆ =
1

ε
− γE + ln(4π) , (5.38)

where γE denotes the Euler-Mascheroni constant. These terms obviously contain the re-

maining UV divergences given as poles in ε together with additional finite constants that

appear universally in all loop integrals. The renormalization of δm2
12 in this scheme is

thereby given by

δm2
12 = δm2

12(∆)|MS . (5.39)

The right-hand side of the equation symbolically denotes all terms proportional to ∆ that

are necessary to cancel the ∆ dependence of the remainder of the amplitude.

Process-dependent renormalization. Alternatively, one could resort to a process-

dependent scheme, in which case the divergent parts of δm2
12, along with additional finite

remainders, are related to a physical on-shell Higgs-to-Higgs decay. While this method

provides a physical definition for the counterterm, it relies on having at least one kinemat-

ically accessible on-shell Higgs-to-Higgs decay. For a generic Higgs-to-Higgs decay process

Hi → HjHk, where the final state pair HjHk can also be a pair of pseudoscalars, if kinemat-

ically allowed, the counterterm δm2
12 is then fixed by imposing as renormalization condition

ΓLO(Hi → HjHk)
!

= ΓNLO(Hi → HjHk) . (5.40)

Note that δm2
12 is gauge independent in either of the proposed schemes, and also in-

dependently on how the tadpole topologies are treated. The key reason is that m2
12 is

indeed a genuine parameter of the original N2HDM Higgs potential before EWSB, and

hence unlinked to the VEV, this being the source for the potential gauge-parameter de-

pendences that arise at higher orders in certain schemes. In this paper we will apply the

MS renormalization scheme.

6 One-loop EW corrected decay widths

Having elaborated in detail the renormalization scheme for the N2HDM, we compute the

NLO EW corrections to a selected set of decay widths, in order to illustrate their impact.

The chosen decays widths are

H2/3 → ZZ (6.1)

H2/3 → AA (6.2)

H3 → H2H2 and H2 → H1H1 . (6.3)

All processes require the renormalization of the mixing angles. The Higgs-to-Higgs decays

demand in addition the renormalization of m2
12. And the Higgs decays into CP-even pairs,

eq. (6.3), additionally involve the renormalization of vS . The chosen processes are struc-

turally different and involve the various mixing angles in different more or less complicated
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Z

Z
(b)
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Z

Z
(c)

Hi
Hk

Z

Z
(d)

Hi

Z

A/G0

Z

(e)

Hi

A/G0

Z

Z
(f)

Hi

Z

Z

Z
(g)

Hi
Z

Z

Z

Figure 4. Generic diagrams contributing to the virtual corrections of the decay Hi → ZZ: vertex

corrections (a) and corrections to the external legs (c)-(g), where k = 1, 2, 3. Diagram (b) displays

the vertex counterterm.

combinations, allowing us to study the impact of our renormalization scheme in different sit-

uations, and enabling us to study the renormalization of the Higgs potential parameter m2
12

as well as of the singlet VEV vS . Note finally that all these decays only involve electrically

neutral particles, so that we do not encounter any IR divergences in the EW corrections.

6.1 The NLO EW corrected decay Hi → ZZ

The LO decay width for the decay of a CP-even Higgs boson Hi into a pair of Z bosons,

Hi → ZZ , (6.4)

is given by

ΓLO(Hi → ZZ) =
ακ2

HiV V

32s2
Wm

2
WmHi

(m4
Hi − 4m2

Him
2
Z + 12m4

Z)

√
1−

4m2
Z

m2
Hi

(6.5)

and depends on the mixing angles through the coupling factors

κH1V V = R11 cβ +R12 sβ = cα2cβ−α1

κH2V V = R21 cβ +R22 sβ = −cβ−α1sα2sα3 + cα3sβ−α1

κH3V V = R31 cβ +R32 sβ = −cα3 cβ−α1 sα2 − sα3 sβ−α1 . (6.6)

The generic diagrams describing the virtual corrections contributing to the NLO decay

width together with the counterterm diagram introduced to cancel the UV divergences

are displayed in figure 4. With the decay width involving only neutral particles there are

neither IR divergences nor real corrections. The corrections to the external legs in figure 4

(c), (f) and (g) vanish due to the OS renormalization of Hi and Z, respectively, and the

mixing contributions (d) and (e) are zero because of the Ward identity satisfied by the OS

Z boson. The one-particle irreducible (1PI) diagrams contributing to the vertex corrections

originate from the triangle diagrams with scalars, fermions, massive gauge bosons and ghost

particles in the loops, depicted in the first three rows of figure 5, and from the diagrams

involving four-particle vertices, as given by the last four diagrams of figure 5.
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0, H±, G±}
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Z
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S
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S, V = {Hk, G
±}, {Z,W±}

Hi

Z

Z

S

V

Figure 5. Generic diagrams contributing to the vertex corrections in Hi → ZZ with fermions F ,

scalar bosons S, gauge bosons V and ghost particles U in the loops.

To work out the vertex counterterms, the relations

sϕ → sϕ + cϕ δϕ and cϕ → cϕ − sϕ δϕ (6.7)

are helpful for the derivation of the entries in the rotation matrix counterterm δR obtained

from eq. (2.20),

δR11 = −cα1 sα2δα2 − sα1cα2δα1

δR12 = −sα1sα2δα2 + cα2cα1δα1

δR13 = cα2δα2

δR21 = −cα1cα3δα1 + sα1sα3δα3 − cα1(sα2cα3δα3 + sα3cα2δα2) + sα2sα3sα1δα1

δR22 = −cα1sα3δα3 − sα1cα3δα1 − sα1(sα2cα3δα3 + sα3cα2δα2)− cα1sα2sα3δα1

δR23 = −sα2sα3δα2 + cα2cα3δα3

δR31 = sα1cα3δα3 + cα1sα3δα1 − cα1(cα2cα3δα2 − sα2sα3δα3) + sα1sα2cα3δα1

δR32 = sα1sα3δα1 − cα1cα3δα3 + sα1sα2sα3δα3 − cα3(sα1cα2δα2 + cα1sα2δα1)

δR33 = −sα2cα3δα2 − cα2sα3δα3 . (6.8)
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Hk
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Figure 6. Tadpole contributions to the vertex diagrams to be included in the decay Hi → ZZ in

the alternative tadpole scheme.

The HiZZ vertex counterterm in terms of the different parameter counterterms and wave

function renormalization constants is obtained from the corresponding counterterm La-

grangian

Lct
HiZZ =

gm2
Z κHiff
mW

δm2
Z

m2
Z

−
(
δm2

W

2m2
W

− δg
g

)
+δZZZ+

1

2
δZHiHi+

1

2

∑
j 6=i

κHjV V

κHiV V
δZHjHi


+
gm2

Z

mW
[δRi1 cβ+δRi2 sβ−(Ri1 sβ−Ri2 cβ)δβ]

gµνHiZµZν , (6.9)

with the various counterterms given in section 3 and the δRij defined in eq. (6.8). Since we

apply the alternative tadpole scheme, tadpole contributions to the HiZZ vertex have to

be taken into account explicitly in the computation of the decay width. They are shown in

figure 6. The formulae for the vertex corrections and counterterms in terms of the scalar

one-, two- and three-point functions are quite lengthy so that we do not display them

explicitly here.

6.2 The decay Hi → AA at NLO EW

The LO decay width of the CP-even Hi decay into a pair of CP-odd scalars,

Hi → AA , (6.10)

reads

ΓLO(Hi → AA) =
α |λHiAA|

2

8s2
W mHi

√
1−

4m2
A

m2
Hi

. (6.11)

It is governed by the trilinear coupling

gHiAA = −i · λHiAA = g
1

2mW

{
−M2

[
Ri1
cβ

+
Ri2
sβ

]
+m2

Hi

[
Ri1s

2
β

cβ
+
Ri2 c

2
β

sβ

]

+ 2m2
A [Ri1cβ +Ri2sβ ]

}
, (6.12)

where M2 ≡ m2
12/(sβcβ).
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Figure 7. Generic diagrams contributing to the virtual corrections of the decay Hi → AA: vertex

corrections (a) and corrections to the external legs (c)-(g). Diagram (b) displays the corresponding

vertex counterterm.
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Figure 8. Generic diagrams contributing to the vertex corrections in Hi → AA.

The EW one-loop corrections consist of the virtual corrections and the counterterm

contributions ensuring the UV-finiteness of the decay amplitude. Again we do not have

to deal with IR divergences nor real corrections. The virtual corrections, consisting of the

corrections to the external legs and the pure vertex corrections, are shown in figure 7. The

corrections to the external legs in figure 7 (c), (d) and (e) are zero because of the OS

renormalization of the external fields, while diagrams (f) and (g) vanish due to a Slavnov-

Taylor identity [64]. The 1PI diagrams of the vertex corrections are depicted in figure 8.
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They are given by the triangle diagrams with fermions, scalars and gauge bosons in the

loops and by the diagrams containing four-particle vertices. The counterterm contributions

consist of the genuine vertex counterterm δgvertex
HiAA

and the counterterm insertions on the

external legs δgfield
HiAA

,

δgHiAA = δ gfield
HiAA + δ gvertex

HiAA , (6.13)

with

δ gfield
HiAA = gHiAA

δZAA +
1

2
δZHiHi +

1

2

∑
i 6=j

gHjAA

gHiAA
δZHjHi +

gHiAG
gHiAA

δZG0A

 (6.14)

and

δ gvertex
HiAA =−gHiAA

(
δm2

W

2m2
W

− δg
g

)
+

g

2mW

{(
Ri1

s2
β

cβ
+Ri2

c2
β

sβ

)
δm2

Hi−
(
Ri1
cβ

+
Ri2
sβ

)
δM2

+2[Ri1cβ+Ri2sβ ] δm2
A−M2

(
δRi1
cβ

+
δRi2
sβ

)
+m2

Hi

(
s2
β

cβ
δRi1+

c2
β

sβ
δRi2

)

+2m2
A [cβδRi1+sβδRi2]+M2

(
Ri1

δcβ
c2
β

+Ri2
δsβ
s2
β

)
+2m2

A [Ri1δcβ+Ri2 δsβ ]

+m2
Hi

[
Ri1

s2
β

cβ

(
2
δsβ
sβ
−
δcβ
cβ

)
+Ri2

c2
β

sβ

(
2
δcβ
cβ
−
δsβ
sβ

)]}
, (6.15)

with the δRij given in eq. (6.8). Working in the alternative tadpole scheme, we additionally

have to take into account the vertices dressed with the tadpoles, displayed in figure 9.

The one-loop correction to the decay is obtained from the interference of the loop-

corrected decay amplitude M1loop
HiAA

with the LO amplitude MLO
HiAA

. The one-loop ampli-

tude combines the virtual viz. vertex corrections Mvirt
HiAA

and the counterterm amplitude

Mct
HiAA

= δgHiAA +Mtad
HiAA

, with Mtad
HiAA

denoting the vertices with the tadpoles,

M1loop
HiAA

=Mvirt
HiAA +Mct

HiAA . (6.16)

The NLO corrections factorize from the LO amplitude so that the loop-corrected partial

width can be cast into the form

ΓNLO = ΓLO +
mHi

32π

√
1−

4m2
A

m2
Hi

2 Re
[
(MLO

HiAA)∗M1loop
HiAA

]
= ΓLO [1 + ∆virt

HiAA + ∆ct
HiAA] , (6.17)

with

∆
virt/ct
HiAA

≡
2Mvirt/ct

HiAA

gHiAA
=

2Mvirt/ct
HiAA

−i · λHiAA
. (6.18)

Again we refrain from giving the explicit expressions for the various contributions to ΓNLO

as they are quite lengthy.
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Figure 9. Tadpole contributions to the vertex diagrams to be included in the decay Hi → AA in

the alternative tadpole scheme.

6.3 Electroweak one-loop corrections to Hj → HiHi

The LO decay width for the decay of a neutral CP-even Higgs boson into two identical

CP-even scalars is given by (i, j = 1, 2, 3)

ΓLO(Hj → HiHi) =
α
∣∣λHiHiHj ∣∣2
8 s2

W mHj

√√√√1−
4m2

Hi

m2
Hj

, (6.19)

with the trilinear Higgs coupling

gHiHiHj = −i · λHiHiHj =
g

2mW

{
− 1

2
M2

[(
Ri2
sβ
− Ri1

cβ

)(
6Ri2Rj2 c

2
β − 6Ri1Rj1 s

2
β

+
∑
k

εijk Rk3 s2β

)]
+

2m2
Hi

+m2
Hj

vS

[
R2
i3Rj3 v +R2

i2Rj2
vS
sβ

+R2
i1Rj1

vS
cβ

]}
,

(6.20)

where εijk denotes the totally antisymmetric tensor in three dimensions with ε123 = 1. At

variance with the processes discussed so far, Higgs-to-Higgs decays in the CP-even sector

are directly sensitive to the singlet VEV vS at tree level. As discussed in section 4.1, this

explicit dependence must be handled with care when the NLO calculations are performed

in the alternative tadpole scheme. Here, a non-vanishing UV-divergent singlet VEV shift

∆vS cancels a subset of the UV poles in the NLO Higgs-to-Higgs decay amplitude which

genuinely arise in this scheme. To fix ∆vS we proceed along the same lines as for the doublet

VEV. First, we identify the singlet VEV input value in this scheme with the (would-be)

experimental input, to be extracted eventually through the measurement of an observable

Higgs-to-Higgs decay width ΓHi→HjHj . When promoted to higher orders, the tree-level

relation vtree
S = f(Γtree

Hi→HjHj ) becomes

vren
S |FJ = vtree

S = f(Γtree
Hi→HjHj ) = f(Γren

Hi→HjHj + Γct
Hi→HjHj )

= f̃(Γren
Hi→HjHj )︸ ︷︷ ︸
vexp.
S

+ δf̃(Γct
Hi→HjHj )︸ ︷︷ ︸
∆vS

, (6.21)

in such a way that the (would-be) experimental value vexp
S is properly written in terms of the

renormalized (physical) width from which it would be extracted. Notice that the quantity
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∆vS is simply a shorthand for the combination of counterterm contributions contained in

Γct
Hi→HjHj — the same role that ∆v plays in eq. (4.2) for the doublet VEV case. For our

sample processes H3 → H2H2 and H2 → H1H1 discussed in the numerical analysis we

assume the vS input values to be extracted from the decay H3 → H1H1.10 The choice

of this process is of course not unique. Therefore, given that the finite parts included in

∆vS are to some degree arbitrary, we could formally resort to MS-like conditions to fix

∆vS by retaining only the UV-divergent parts contained in Γct
Hi→HjHj . In this case the

vS input values could not be extracted directly from the experimental data. The relation

to the to be measured vexp
S would be given by a scheme-dependent finite shift. In the

process-dependent framework ∆vS can be fixed through the requirement

ΓNLO
H3→H1H1

!
= ΓLO

H3→H1H1
. (6.22)

Factorising the NLO decay width as

ΓNLO
H3→H1H1

= ΓLO
H3→H1H1

[
1 + ∆virt + ∆ct(∆vS = 0) + ∆ct(∆vS)

]
!

= ΓLO
H3→H1H1

(6.23)

and isolating the vS-dependent part of the corresponding self-interaction Lagrangian,

LH1H1H3 ⊃
1

vS
(2m2

H1
+m2

H3
)R2

13R33 , whereby

δLH1H1H3 ⊃ −
1

vS
(2m2

H1
+m2

H3
)R2

13R33
∆ vS
vS

, (6.24)

the condition eq. (6.23) leads to

∆vS
vS

=
gHiHiHj vS

2

[
(2m2

H1
+m2

H3
)R2

13R33

]−1 [
∆virt + ∆CT(∆vS = 0)

]
. (6.25)

The diagrams contributing to the virtual corrections of our process Hj → HiHi are

shown in figure 10. The 1PI diagrams contributing to the vertex corrections are depicted in

figure 11 and the tadpole diagrams are shown in figure 12. They have to be included in the

alternative tadpole scheme. The counterterm is given by the genuine vertex counterterm

and the counterterm insertions on the external legs,

δgHiHjHk = δ gfield
HiHjHk

+ δ gvertex
HiHjHk

, (6.26)

with

δ gfield
HiHjHk

= gHiHjHk

[
1

2

3∑
l=1

gHlHjHk
gHiHjHk

δZHlHi +
1

2

3∑
l=1

gHlHiHk
gHiHjHk

δZHlHj

+
1

2

3∑
l=1

gHlHiHj
gHiHjHk

δZHlHk

]
, (6.27)

10The choice of the process relies on the experimental feasibility of measuring it and on its dependence

on vS itself. For some scenarios the parameter configurations can be such that the decay is not measurable

or the dependence on ∆vS is almost vanishing, cf. also the discussion in [65] on the renormalization of the

NMSSM where similar issues arise.
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(d)

Hj
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Hl
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(e)

Hj
Hl

Hi

Hi

Figure 10. Generic diagrams contributing to the virtual corrections of the decay Hj → HiHi:

vertex corrections (a) and corrections to the external legs (c)-(e). Diagram (b) displays the corre-

sponding vertex counterterm.

and

δgvertex
HiHjHk

=−gHiHiHj
(
δm2

W

2m2
W

− δg
g

)
+

1

v

{
− 1

2
δM2

[(
Ri2
sβ
−Ri1
cβ

)
×

×

(
6Ri2Rj2 c

2
β−6Ri1Rj1 s

2
β+
∑
k

εijkRk3 s2β

)]

− 1

2
M2

[(
δRi2
sβ
− δRi1

cβ

)(
6Ri2Rj2 c

2
β−6Ri1Rj1 s

2
β+
∑
k

εijkRk3 s2β

)]

− 1

2
M2

[(
Ri1 δcβ
c2
β

−
Ri2 δsβ
s2
β

)(
6Ri2Rj2 c

2
β−6Ri1Rj1 s

2
β+
∑
k

εijkRk3 s2β

)]

− 1

2
M2

(
Ri2
sβ
−Ri1
cβ

) [
6Rj2c

2
βδRi2+6Ri2c

2
βδRj2+12Ri2Rj2cβδcβ−6Ri1s

2
βδRj1

−6Ri1s
2
βδRj1−12Ri1Rj1sβδsβ+

∑
k

εijk (sβ δRk3+2Rk3 (cβδsβ+sβδcβ)

]

+
2δm2

Hi
+δm2

Hj

vS

[
R2
i3Rj3 v+R2

i2Rj2
vS
sβ

+R2
i1Rj1

vS
cβ

]
− v

vS
(2m2

Hi+m
2
Hj )R

2
i3Rj3

∆vS
vS

+
2m2

Hi
+m2

Hj

vS

[
2Ri3Rj3 v δRi3+R2

i3 v δRj3

+R2
i3Rj3 δv+2Ri2Rj2

vS
sβ
δRi2+R2

i2

vS
sβ
δRj2−R2

i2Rj2
vS
s2
β

δsβ+2Ri1Rj1
vS
cβ
δRi1

+R2
i1

vS
cβ
δRj1−R2

i1Rj1
vS
c2
β

δcβ

]}
. (6.28)
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Figure 11. Generic diagrams contributing to the vertex corrections in Hj → HiHi.

The NLO corrections factorize so that the loop-corrected decay width can be cast into

the form

ΓNLO = ΓLO [1 + ∆virt
HiHjHk

+ ∆ct
HiHjHk

] , (6.29)

with

∆
virt/ct
HiHjHk

≡
2Mvirt/ct

HiHjHk

gHiHjHk
=

2Mvirt/ct
HiHjHk

−i · λHiHjHk
(6.30)

in terms of the virtual corrections and counterterm amplitude Mvirt
HiHjHk

and Mct
HiHjHk

,

respectively, where we have included the vertices with the tadpoles in Mct
HiHjHk

. Due to

rather lengthy expressions we refrain from giving the explicit expressions of the various

contributions to ΓNLO.
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Figure 12. Tadpole contributions to the vertex diagrams to be included in the decay Hj → HiHi

in the alternative tadpole scheme.

7 Numerical analysis

For the computation of the NLO EW corrections to the Higgs decays presented in

the following the tree-level and one-loop decay amplitudes have been generated with

FeynArts [66, 67]. The necessary N2HDM Feynman rules have been obtained as UFO [68]

and FeynArts [67] model files using FeynRules [69], while all renormalization counterterms

have been derived analytically and implemented by hand. The amplitudes have been ana-

lytically processed via FormCalc [70]. The dimensionally regularized loop form factors have

been evaluated in the ’t Hooft-Veltman scheme [71, 72] and written in terms of standard

loop integrals. These have been further reduced through Passarino-Veltman decomposition

and evaluated with the help of LoopTools [70].

In the following we give the input parameters for the numerical evaluation. As ex-

plained in section 5 we use the fine structure constant α at the Z boson mass scale, given

by [73]

α(m2
Z) =

1

128.962
. (7.1)

The massive gauge bosons are renormalized OS, and their input masses are chosen as [73, 74]

mW = 80.385 GeV and mZ = 91.1876 GeV . (7.2)

For the lepton masses we take [73, 74]

me = 0.510998928 MeV , mµ = 105.6583715 MeV , mτ = 1.77682 GeV . (7.3)

These and the light quark masses, which we set [75]

mu = 100 MeV , md = 100 MeV , ms = 100 MeV , (7.4)

have only a small impact on our results. Following the recommendation of the LHC Higgs

Cross Section Working Group (HXSWG) [74, 76], we use the following OS value for the

top quark mass

mt = 172.5 GeV , (7.5)

which is consistent with the ATLAS and CMS analyses. The charm and bottom quark OS

masses are set to

mc = 1.51 GeV and mb = 4.92 GeV , (7.6)
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as recommended by [74]. We consider the CKM matrix to be unity. This approximation

has negligible impact on our results. The SM-like Higgs mass value, denoted by mh, has

been set to [27]

mh = 125.09 GeV . (7.7)

Note that, depending on the parameter set, in the N2HDM any of the three neutral CP-even

Higgs bosons can be the SM-like Higgs boson.

In the subsequently presented analysis we only used N2HDM parameter sets compatible

experimental and theoretical constraints. These data sets have been generated with the

tool ScannerS [30, 31].11 The applied theoretical constraints require that the vacuum state

found by ScannerS is the global minimum, that the N2HDM potential is bounded from

below and that tree-level unitarity holds. On the experimental side, compatibility with the

EW precision constraints is guaranteed by requiring the oblique parameters S, T and U to

be compatible with the SM fit [77] at 2σ, including the full correlations. The constraints

from B physics observables [78–82] and the measurement of Rb [79, 83] have been taken

into account, as well as the most recent bound of mH± >∼ 580 GeV for the type II and

flipped (N)2HDM [82]. For the compatibility with the LHC Higgs data we require one of

the scalar states, denoted by h125, to have a mass of 125.09 GeV and to match the observed

LHC signal rates. Furthermore, the remaining Higgs bosons have to be consistent with the

exclusion bounds from the collider searches at Tevatron, LEP and LHC. For further details

on these checks and the scan procedure, we refer to [22, 23].

Note that in all scenarios presented in the following we stick to the N2HDM type I,

with the type II scenarios leading to the same overall results. The only difference between

the models comes from the fermion loops. The Yukawa couplings are, in all Yukawa types,

well-behaved functions of the αi and β because extreme values of β are already disallowed

by all the constraints imposed on the model. Therefore, this is sufficient for our analysis

to illustrate the effects of the EW corrections, without aiming at a full phenomenological

analysis of N2HDM Higgs decays.

7.1 Results for H2/3 → ZZ

In this section we investigate the relative size of the NLO EW corrections as well as the im-

pact of the different renormalization schemes for the mixing angles on the decay Hi → ZZ.

We base our numerical analysis upon a set of representative N2HDM scenarios of phe-

nomenological interest. To this aim we select among the generated parameter points com-

patible with the theoretical and experimental constraints scenarios that either have a large

or a small LO branching fraction (BR) into ZZ. Discarding the SM-like decay of the

H1 fixed to be the 125 GeV Higgs boson, we select hence four scenarios, two for H2 and

H3, respectively, which we denote by ’BRH2/3high’ and ‘BRH2/3low’ for high and low

branching ratio scenarios. The corresponding input parameters are listed in table 6. Note

that, if not stated otherwise, the mixing angles are understood to be the angles defined in

11We thank Marco Sampaio, one of the authors of ScannerS, and Jonas Wittbrodt who kindly provided

us with the necessary data sets.
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BRH2ZZhigh BRH3ZZhigh BRH2ZZlow BRH3ZZlow

mH1 125.09 125.09 125.09 125.09

mH2 673.70 600.76 657.07 283.53

mH3 692.22 713.74 658.28 751.72

mA 669.07 743.00 543.62 763.09

mH± 679.76 695.73 528.76 733.05

tβ (pOSc) 6.12 8.39 4.79 3.53

α1 (pOS) -1.513 -1.526 -1.489 1.318

α2 (pOS) 0.098 -0.308 0.225 0.0362

α3 (pOS) -0.495 -1.421 -1.001 1.504

m2
12 74518.4 60125.0 87240.8 143579.0

vs 305.48 854.50 834.33 219.29

ΓH 2.946 2.241 2.990 2.746

BR 0.327 0.329 0.010 0.010

Table 6. Input parameters for the N2HDM benchmark scenarios used in the numerical analysis

of the decay processes H2/3 → ZZ. In round brackets we specify the scheme in which α and β

are defined. All masses and vS are given in GeV. The LO total width (also given in GeV) and

individual branching fractions in the last two rows correspond to the Higgs state and decay each

benchmark is named after, and have been generated with N2HDECAY.

the OS tadpole pinched scheme (pOS) with δβ defined via the charged sector, denoted by

the superscript ‘c’.12 The branching fractions given in this table have been obtained with

the Fortran code N2HDECAY.1 We insured to consider purely OS decays into massive gauge

bosons in N2HDECAY, as we do not include any gauge boson off-shell effects in the NLO

computation. For completeness, a thorough account of the relevant Higgs coupling values

for each benchmark is included in appendix A.

High BR scenarios are characterized by i) large Higgs masses; ii) strongly suppressed

Yukawas, which explain the dominance of the ZZ decay channel; and iii) a subset of

strongly enhanced trilinear couplings. In contrast, the suppressed branching fractions in

the BRlow scenarios follow from the small tree-level coupling to ZZ of the decaying Higgs

boson. The latter scenarios also involve heavy Higgs spectra, typically with larger relative

mass splittings as compared to the BRhigh benchmarks (cf. e.g. the mH3−mH2 separation

in the BRH3ZZlow case).

In table 7 we present for all four benchmark scenarios the results for the LO and

the NLO width as well as the relative corrections ∆Γ. They are given for four different

renormalization schemes. These consist of the p? and the pOS tadpole pinched schemes,

each of them involving two different momentum scales, and for these additionally the two

possibilities to renormalize β, either via the charged sector (denoted by ‘c’) or the CP-odd

sector (denoted by ‘o’). The relative corrections are defined as

∆Γ ≡ ∆ΓNLO

ΓLO
=

ΓNLO − ΓLO

ΓLO
. (7.8)

12While the scheme choice is not relevant for the LO width alone, it becomes important when the NLO

EW corrections are included. The renormalization of the parameters then fixes the scheme of the input

parameters at LO.
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pOSc pOSo pc? po?

BRH2ZZhigh

ΓLO(H2 → ZZ) 0.989 0.989 1.008 1.008

ΓNLO(H2 → ZZ) 1.120 1.122 1.142 1.148

∆ΓH2ZZ [%] 13.2 13.4 13.3 14.0

BRH3ZZhigh

ΓLO(H3 → ZZ) 0.755 0.755 0.782 0.782

ΓNLO(H3 → ZZ) 0.872 0.867 0.890 0.889

∆ΓH3ZZ [%] 15.6 14.9 13.9 13.7

BRH2ZZlow

ΓLO(H2 → ZZ) 3.130×10−2 3.130×10−2 2.529×10−2 2.533×10−2

ΓNLO(H2 → ZZ) 3.042×10−2 3.040×10−2 2.840×10−2 2.745×10−2

∆ΓH2ZZ [%] -2.8 -2.9 12.3 8.4

BRH3ZZlow

ΓLO(H3 → ZZ) 2.870×10−2 2.869×10−2 3.430×10−2 3.418×10−2

ΓNLO(H3 → ZZ) 2.990×10−2 3.011×10−2 3.593×10−2 3.738×10−2

∆ΓH3ZZ [%] 4.2 5.0 4.8 9.3

Table 7. Higgs decay widths (in GeV) at LO and NLO EW accuracy as well as the relative correc-

tions for the N2HDM benchmarks presented in table 6 and four different renormalization schemes.

When computing the NLO EW corrected decay width ΓNLO in a different renormal-

ization scheme b than the one of the input parameters p, scheme a, these parameters first

have to be converted to the scheme that is applied. We perform this conversion for the

mixing angles α and β through (p = α, β)

pb = pa + δpa − δpb , (7.9)

where δp denotes the counterterm in either scheme a or scheme b. With the thus obtained

input parameters in scheme b we compute the quantity ∆ΓNLO and the LO width ΓLO, to

which we normalize the relative correction.13

The relative corrections for the scenarios with relatively large branching ratios turn out

to be of moderate size with values between 13.2 and 15.6%, and show a mild renormalization

scheme dependence of 2% at most, mainly between p∗ and pOS-type schemes, which we can

interpret as an indication of a relatively small theoretical error due to missing higher order

corrections. Nonetheless, we observe that including the one-loop electroweak effects does

not visibly reduce the scheme dependence viz. the theoretical uncertainty associated to

the NLO predictions with respect to the LO results. We can attribute this behavior to the

presence of large Higgs self-couplings, which tend to enhance the loop contributions at NLO

and beyond, and thereby to slow down the convergence of the perturbative loop expansion.

13Note that the LO widths given in table 7 for the pOSc scheme slightly differ from the values as

obtained from the corresponding BRs and total widths given in table 6, since, in consistency with our

NLO computation, we use as input parameters mW , mZ and α, while in N2HDECAY all decay widths are

expressed in terms of the Fermi constant GF as input value. Including in our LO results the SM correction

∆rSM [84–86], which relates mW to GF , would bring the derived Fermi constant numerically very close to

the PDG value GF = 1.166 · 10−5 GeV−1 used in N2HDECAY.
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Moderate EW corrections are also obtained in the low BR scenarios. For BRH2ZZlow,

the relative corrections at NLO span the range ∆Γ ∼ (−2.9, 12.3)%. For BRH3ZZlow,

we find relative corrections lying in the ballpark ∆Γ ∼ (4.2, 9.3)%. In both cases we ob-

serve a larger scheme dependence with respect to the BRZZhigh benchmarks, again arising

dominantly between p∗ and pOS-type renormalization setups. The respective tree-level cou-

plings, strongly suppressed in this case, vary by O(10)% depending on the scheme choice,

and give rise to a O(20)% variation in the predicted LO decay rates when going from the

p∗ to the pOS scheme. At NLO, the scheme dependence persists for BRH3ZZlow — while

it shrinks down to O(10%) for BRH2ZZlow. The fact that the observed pOS versus p∗-type

scheme dependence is comparably larger with respect to the BRH2ZZhigh scenarios reflects

the more significant Higgs mass splittings of the BRHZZlow setups. The reason is that

each class of schemes implies different momentum scale choices at which the self-energies

in the angle counterterms are evaluated. As these mass splittings increase, the NLO effects

(within both the scheme conversion relations for the mixing angles, and the vertex coun-

terterm themselves) become more responsive to the specific scheme choice. When changing

from the charged to the CP-odd based renormalization of β, the change in the relative cor-

rections is rather mild for most of the scenarios. This is because the two different scales,

mH± or mA, involved in these two renormalization schemes of β are close in our scenarios.

7.2 Results for H2/3 → AA

Here we study the decay into a pair of pseudoscalars and again concentrate on the decays

of the heavier Higgs bosons H2 and H3 and choose scenarios where H1 is the 125 GeV

Higgs boson14 and with low and high branching ratios for H2/3 → AA, respectively. The

corresponding benchmark scenarios are called ‘BRH2/3AAhigh’ and ‘BRH2/3AAlow’, with

the input values summarized in table 8 together with the LO total widths and branching

ratios computed with N2HDECAY. The input mixing angles are given in the pOS scheme

and the β renormalization is based on the charged sector. The parameter m2
12 is assumed

to be given at the scale µR = 2mA.15 The corresponding Higgs coupling values are listed

in appendix A. High BR scenarios are characterized by i) relatively light Higgs masses,

with larger mass splittings for BRH2AAhigh; ii) a considerable mass separation between

the charged Higgs and the CP-odd scalar; iii) in general, small to moderate Higgs self-

couplings. Low BR scenarios, in turn, are also characterized by sizable mass splittings. In

particular, BRH2AAlow entails largely separated charged Higgs and CP-odd scalar masses

(mH± ∼ 3mA), with a very light CP-odd state mA ' 70 GeV, while for BRH3AAlow

the largest separation involves the CP-even neutral states mH3 ∼ 4mH2 . In the BRhigh

scenarios, the H2/3 → AA decays are maximized because (i) the H2/3AA trilinear couplings

are enhanced, (ii) the couplings to fermions are suppressed and (iii) the decays into massive

weak bosons are kinematically closed. The suppressed decay widths in the BRlow scenarios

are due to a small trilinear coupling λH2/3AA.

14We do not consider H1 decays into AA. They would require mA to be below about 65 GeV and care

would have to be taken to keep the decay H1 → AA small enough to still be compatible with the LHC

Higgs data.
15This choice was shown to yield the most stable results for the 2HDM [37].
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BRH2AAhigh BRH3AAhigh BRH2AAlow BRH3AAlow

mH1 125.09 125.09 125.09 125.09

mH2 130.48 137.15 294.92 243.70

mH3 347.65 146.22 503.44 903.07

mA 58.14 70.27 74.28 429.82

mH± 146.93 166.83 278.19 426.18

tβ (pOSc) 5.89 5.55 6.12 4.01

α1 (pOS) -1.535 1.338 -1.457 1.409

α2 (pOS) 0.369 0.095 -0.117 -0.195

α3 (pOS) 0.029 -1.28 -0.118 -0.078

m2
12 (µR = 2mA) 864.2 982.9 13036.9 8300.6

vs 538.37 638.95 1352.51 991.00

ΓH 2.694 2.005 4.986 ·10−2 26.140 ·10−2

BR 0.999 0.999 0.010 0.010

Table 8. Input parameters for the N2HDM benchmarks used in the numerical analysis of the decay

process H2/3 → AA. All masses and vS are given in GeV. The LO total width (also given in GeV)

and individual branching fractions in the last two rows correspond to the Higgs state and decay

each benchmark is named after, and have been generated with N2HDECAY.

pOSc pOSo pc? po?

BRH2AAhigh

ΓLO(H2 → AA) 2.761 2.759 2.761 2.760

ΓNLO(H2 → AA) 2.454 2.500 2.459 2.500

∆ΓH2AA [%] -11.1 -9.4 -10.9 -9.4

BRH3AAhigh

ΓLO(H3 → AA) 2.054 2.053 2.042 2.041

ΓNLO(H3 → AA) 1.840 1.885 1.848 1.886

∆ΓH3AA [%] -10.4 -8.1 -9.5 -7.6

BRH2AAlow

ΓLO(H2 → AA) 5.097×10−2 5.266×10−2 5.075×10−2 5.208×10−2

ΓNLO(H2 → AA) 5.408×10−2 -1.013×10−2 4.071×10−2 -9.986×10−3

∆ΓH2AA [%] 6.1 -119.2 -19.8 -119.2

BRH3AAlow

ΓLO(H3 → AA) 0.266 0.266 0.286 0.286

ΓNLO(H3 → AA) 0.277 0.272 0.270 0.277

∆ΓH3AA [%] 4.4 2.1 -5.5 -3.0

Table 9. Higgs decay widths (in GeV) at LO and NLO EW accuracy as well as the relative

corrections for the N2HDM benchmarks presented in table 8 and four different renormalization

schemes. The renormalization scale of m2
12 is set to µR = 2mA.

In table 9 we display for all four benchmark scenarios the LO and NLO widths as

well as the relative corrections ∆Γ. They are given for the four different renormalization

schemes, p
c/o
? , pOSc/o. As can be inferred from the table, for the BRhigh scenarios we

obtain moderate corrections of O(10)%, i.e. of the same order as for H2/3 → ZZ. The
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predicted decay rates exhibit a rather tempered renormalization scheme variation of at

most 2.8%. The associated theoretical uncertainties are therefore mild. Unlike for the

H → ZZ decays described above, we here observe similar differences between pOS/p∗-

based and (c)/(o)-type schemes. The reason is that we now have more significant splittings

not only among the neutral scalar masses, but also between mA and mH± . The latter

explain the more apparent deviations depending on whether the renormalization of the

angle β is carried out via the charged Higgs or the CP-odd scalar sectors.

In BRH3AAlow, we find a more remarkable scheme dependence in the LO results,

amounting to a ∼ 7.5% variation, mainly between the pOS and p∗-type renormalization

setups. Instead, the LO predictions remain unresponsive when switching from (c) to (o)-

type conditions, in agreement with the fact that mA ∼ mH± , while both fields have at

the same time very similar coupling patterns. This explains why the contributions from

the charged (CP-odd) Higgs self-energies relevant in the (c)-type ((o)-type) scheme are

numerically very similar. Conversely, the sizable mass splittings in the CP-even sector

(e.g. mH2 −mH3) amplify the influence of the different momentum scales involved in the

pOS versus p∗-based renormalization setups. At the same time, these mass hierarchies

give rise to large logarithmic contributions of the form ∼ log
(
m2
Hi
/m2

Hj

)
, which delay the

convergence of the loop expansion — precluding the NLO-corrected width to substantially

shrink the theoretical uncertainty with respect to the LO prediction.

The BRH2AAlow scenario exhibits rather peculiar attributes, which deserve a dedi-

cated analysis. First of all, we encounter a remarkably large (o) versus (c)-type scheme

dependence, which is already quite apparent in the LO rates. This can be traced back

mainly to the top-mediated corrections in the A−G0 resp. H± −G± self-energies. These

generate logarithmic contributions of the type ∼ log(m2
t /m

2
A) resp. ∼ log(m2

t /m
2
H±), the

former being enhanced by the very light CP-odd scalar. Similar mA-dependent contri-

butions to δβ(o) appear through the bosonic loops, giving rise to enlarged logarithmic

structures, for instance of the form ∼ log(m2
H2
/m2

A). These are numerically important as

well in the BRH2AAlow scenario due to the mass hierarchy between the H2 state and the

rather light CP-odd scalar. A change from one scheme to the other thus implies large-log

differences of the sort ∼ log(m2
H±/m

2
A). Another salient observation is the huge scheme

dependence of the one-loop results, which eventually pulls the NLO predictions down to

(obviously unphysical) negative values. In first place, this is again due to the above men-

tioned mA-enhanced logarithms. The latter contribute differently to the total NLO rates,

depending on the chosen renormalization scheme. While the logarithms from the pure

vertex corrections Mvirt
H2AA

are present regardless of the scheme in use, those linked to the

scalar two-point functions within MCT
H2AA

are only present directly when the mixing angle

β is renormalized using (o)-type conditions. At the same time, additional large logarithms

∼ log(m2
H2
/µ2

R) arise as well due to the low renormalization scale µR = 2mA involved in the

MS soft-breaking mass term m2
12 renormalization. Overall, these large logarithms lead to a

poorer convergence of the corresponding loop expansion — a nice reflect of the connection

between the scheme dependence and the theory uncertainties. Another relevant ingredient

to understand the sizable scheme dependence of the NLO results is the particularly deli-

cate counterbalance between bosonic and fermionic loops. These two subsets of graphs are
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separately renormalizable, gauge invariant, and UV-finite, and in the current scenario con-

tribute with different overall signs and quite similar (individually large) sizes. The partial

compensation between fermionic and bosonic loops relies on highly non-linear combinations

of all mixing angles {β, αi} — and hence is very sensitive to the scheme-dependent mixing

angle values. It is also illustrative to trace back the origin of the huge negative correc-

tions in the (o)-type schemes. By breaking down the full-fledged contribution to the NLO

H2 → AA decay width, we single out up to three sources for the mA-enhanced logarithmic

structures alluded to above: i) as already mentioned, the pure virtual vertex corrections

Mvirt
H2AA

; ii) the terms in MCT
H2AA

stemming from the δm2
H2

piece within the vertex coun-

terterm of eq. (6.15); iii) only for the (o)-type schemes, additional ∼ log(m2
t /m

2
A) and

∼ log(m2
H2
/m2

A) terms in MCT
H2AA

, predominantly through the (scheme-dependent) δM2

piece in eq. (6.15). The latter does in fact depend on the renormalization scheme chosen

for β through

δM2 =
δm2

12

sβ cβ
−m2

12

c2β

s2
β c

2
β

δ β
!

= −m2
12

c2β

s2
β c

2
β

δ β with δm2
12|MS= 0 . (7.10)

At the same time, the large m2
12 and tanβ values in the BRH2AAlow benchmark imply as

well a sizable prefactor.

The key observation is that these mA-dependent terms within Mvirt
H2AA

and MCT
H2AA

turn out to mutually cancel each other in the (c)-type schemes, and thus give rise to

the rather moderate EW corrections reported in table 9. At variance, the additional

mA-dependent logarithms from δM2 in the (o)-type schemes are unmatched to yet-to-

be-cancelled counterparts within Mvirt
H2AA

or the remainder of MCT
H2AA

. This leads to an

incomplete cancellation of (scheme-dependent) mA-enhanced finite parts, responsible for

the strong negative drift of the total NLO yields.

7.3 Results for H3 → H2 H2 and H2 → H1H1

Finally, we consider the decay of a heavy neutral CP-even Higgs boson into a pair of

lighter CP-even Higgs bosons. We evaluate the NLO EW corrections for a number of

illustrative scenarios, given in table 10. The scenarios have been chosen such that their

Higgs mass spectra allow simultaneously for the OS H3 → H2H2 and H2 → H1H1 decays.

Furthermore, the chosen large m2
12 parameter insures these heavy Higgs mass scenarios to

be in agreement with the unitarity and vacuum stability constraints. All scenarios feature

Higgs-to-Higgs decay branching ratios that are of moderate size. Only HHHIV features a

H2 branching ratio into H1H1 that is dominating. All input mixing angles are assumed to

be given in the pOS scheme, with charged sector-based renormalization for the angle β, and

m2
12 is assumed to be defined at the renormalization scale given by the total final state mass,

µR = 2mHi . The LO total widths and branching ratios in this table have been obtained

from N2HDECAY. The Higgs coupling values are reported in table 14 of appendix A. Overall,

these scenarios are characterized by i) relatively heavy Higgs spectra; ii) comparably smaller

mass splittings with respect to the BRH2AA and BRH3AA benchmarks; iii) a subset of

strongly reduced Higgs couplings to fermions, and weak bosons.
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HHHI HHHII HHHIII HHHIV

mH1 125.09 125.09 125.09 125.09

mH2 304.18 425.61 351.65 298.42

mH3 630.94 857.27 717.32 743.18

mA 325.07 547.48 487.07 362.40

mH± 265.81 383.85 386.42 306.19

tβ (pOSc) 6.30 5.17 4.08 6.26

α1 (pOS) -1.559 1.495 1.453 1.315

α2 (pOS) -0.330 0.082 0.353 -0.148

α3 (pOS) -0.077 -0.101 0.340 -0.098

m2
12 (µR = 2mHfinal

) 14312.1 32824.5 35765.3 12707.3

vs 1327.57 1098.81 630.19 1425.0

ΓH3 24.160 25.190 43.590 18.750

BR(H3 → H1H1) 0.13 0.03 0.08 0.08

BR(H3 → H2H2) 0.05 0.10 0.15 0.15

ΓH2 0.393 0.723 1.558 0.234

BR(H2 → H1H1) 0.17 0.47 0.43 0.76

Table 10. Input parameters for the N2HDM benchmarks used in the numerical analysis of the

decay processes Hj → HiHi. All masses and vS are given in GeV. In the last five rows the total

H2 and H3 widths are given in GeV as well as the branching fractions (generated with N2HDECAY)

of the Higgs-to-Higgs decays H3 → H1H1, H2H2 and H2 → H1H1.

In table 11 we summarize the relative NLO corrections for the various decays. Note,

that the decay process H3 → H1H1 appears only at LO because we use it for the renor-

malization of vS , as explained in detail in section 6.

For most of the decays, the relative NLO corrections are moderate, none of them lying

above 21%. The predicted decay rates display a very mild scheme dependence in HHHI

already at LO, which is further reduced at NLO. The absence of large logarithms or large

self-couplings explains why the inclusion of the NLO corrections in this case is capable

to efficiently shrink the theoretical uncertainty. A larger, though yet moderate pOS/p∗
scheme dependence is present for HHHII, with LO predictions varying between 0.6% up to

5.8% depending on the chosen scheme. This can be attributed to the comparably larger

mass splittings with respect to HHHI, in particular between the CP-even states H1 and H3.

For HHHIII, we observe a mild scheme dependence (up to 3%) in the LO results, mostly

between the pOS and p∗ setups. This dependence is tempered even further at NLO for

H2 → H1H1, while it remains at the 3% level for H3 → H2H2. In fact, we can identify the

renormalization constant δα3 to be the most responsive one to a change between schemes.

Finally, a very similar picture is encountered for HHHIV — in this case being H2 → H1H1

the process which leads to a more pronounced scheme dependence.
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pOSc pOSo pc? po?

HHHI

Γ(H3 → H1H1) 3.206 3.206 3.197 3.197

ΓLO(H3 → H2H2) 1.229 1.229 1.242 1.242

ΓNLO(H3 → H2H2) 1.344 1.343 1.344 1.341

∆ΓH3→H2H2 [%] 9.4 9.3 8.2 8.0

ΓLO(H2 → H1H1) 6.699× 10−2 6.699× 10−2 6.667× 10−2 6.667× 10−2

ΓNLO(H2 → H1H1) 7.433× 10−2 7.429× 10−2 7.429× 10−2 7.409× 10−2

∆ΓH2→H1H1 [%] 11.0 10.9 11.4 11.1

HHHII

Γ(H3 → H1H1) 0.719 0.719 0.753 0.753

ΓLO(H3 → H2H2) 2.580 2.580 2.730 2.730

ΓNLO(H3 → H2H2) 2.453 2.454 2.493 2.492

∆ΓH3→H2H2 [%] -4.9 -4.9 -8.7 -8.7

ΓLO(H2 → H1H1) 0.345 0.345 0.343 0.343

ΓNLO(H2 → H1H1) 0.398 0.398 0.397 0.397

∆ΓH2→H1H1 [%] 15.2 15.2 15.9 15.9

HHHIII

Γ(H3 → H1H1) 3.561 3.561 3.565 3.564

ΓLO(H3 → H2H2) 6.662 6.661 6.469 6.466

ΓNLO(H3 → H2H2) 6.071 6.094 6.208 6.264

∆ΓH3→H2H2 [%] -8.9 -8.5 -4.0 -3.1

ΓLO(H2 → H1H1) 0.687 0.687 0.684 0.683

ΓNLO(H2 → H1H1) 0.678 0.679 0.675 0.676

∆ΓH2→H1H1 [%] -1.3 -1.2 -1.3 -1.1

HHHIV

Γ(H3 → H1H1) 1.446 1.446 1.422 1.422

ΓLO(H3 → H2H2) 2.873 2.874 2.860 2.859

ΓNLO(H3 → H2H2) 2.793 2.780 2.799 2.820

∆ΓH3→H2H2 [%] -2.8 -3.3 -2.1 -1.4

ΓLO(H2 → H1H1) 0.183 0.183 0.185 0.185

ΓNLO(H2 → H1H1) 0.151 0.144 0.147 0.158

∆ΓH2→H1H1 [%] -17.4 -21.3 -20.6 -14.3

Table 11. Higgs decay width predictions (in GeV) at LO and NLO EW accuracy as well as the

relative corrections for the N2HDM benchmarks presented in table 10 and four different renormal-

ization schemes.

8 Conclusions

In this paper we worked out the renormalization of the N2HDM, which is an interesting

benchmark model for studying extended Higgs sectors involving Higgs-to-Higgs decays.

For the mixing angles, we provided a renormalization scheme that is manifestly gauge
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independent by applying the alternative tadpole scheme combined with the pinch tech-

nique. We explained in great detail the notion of the alternative tadpole scheme in our

renormalization framework, and for the first time provided the formulae for the pinched

self-energies in the N2HDM. Apart from the additional mixing angles as compared to the

2HDM, in the N2HDM we encounter a singlet VEV that needs to be renormalized as well.

We elaborated in detail the implications of the alternative tadpole scheme for the renor-

malization of the singlet VEV that we renormalize through a physical quantity, given by

a Higgs-to-Higgs decay width. The soft Z2 breaking parameter m2
12, which, like vS , enters

the Higgs self-couplings and hence features in Higgs-to-Higgs decays, is renormalized in

the MS scheme. We studied the impact of our renormalization scheme by computing the

EW one-loop corrections to various Higgs decay widths, including the Higgs decays into a

massive Z-boson pair and into lighter Higgs pairs.

The computation of the EW corrections to our different sample decay widths has

shown that the corrections can be sizable and have to be taken into account in order to

make reliable predictions for the Higgs observables. It has also illustrated the importance

of comparing different renormalization schemes. For a broad range of phenomenologically

representative scenarios we find a rather weak renormalization scheme dependence, indica-

tive of a rather small theoretical error due to missing higher order corrections. In several

instances, we observe that the inclusion of the one-loop EW corrections does not visibly re-

duce the scheme dependence of the NLO prediction with respect to the LO result. This may

be attributed to certain dynamical features (e.g. large scalar self-couplings, sizable mass

hierarchies) which tend to enhance the higher-order radiative corrections and, thereby, to

slow down the convergence of the perturbative loop expansion.

With this paper, we have provided an important contribution to the renormalization

of extended Higgs sectors involving singlet fields. This is crucial input for the computation

of the EW corrections to the Higgs bosons of such models and therefore indispensable for

the correct prediction and interpretation of Higgs observables at the LHC.
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A N2HDM benchmarks

In this appendix we provide a thorough characterization of the Higgs coupling patterns in

the different N2HDM benchmark scenarios used in our analysis. In tables 12, 13 and 14

we list the values of all N2HDM Higgs couplings to fermions and gauge bosons, as well

as a representative subset of trilinear Higgs self-couplings. The values of the underlying

parameters of the scalar potential, i.e. the mass terms and quartic self-couplings in eq. (2.3),

are displayed in the lowest rows of each table. All coupling values in each benchmark are
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BRH2ZZhigh BRH3ZZhigh BRH2ZZlow BRH3ZZlow

κH1V V -0.9713 -0.9403 -0.9348 0.9991

κH2V V 0.1465 0.3198 -0.0271 -0.0377

κH3V V 0.1872 0.1166 0.3542 0.0209

κ̃H1V H -0.2168 -0.1555 -0.2765 0.0234

κ̃H2V H -0.8691 -0.0984 -0.5703 0.0655

κ̃H3V H -0.4446 -0.9829 -0.7735 -0.9976

κAff -0.1635 -0.1192 -0.2087 -0.2831

κH±ff 0.1635 0.1192 0.2087 0.2831

κH1ff -1.0068 -0.9588 -0.9925 1.0057

κH2ff 0.0044 0.3081 -0.1462 -0.0191

κH3ff 0.1145 -0.0005 0.1928 -0.2614

ĝH1H1H1 -0.0754 -0.4064 0.3528 0.9621

ĝH2H2H2 -2.8501 -4.8025 -4.9322 5.6839

ĝH3H3H3 18.1437 2.5606 7.8003 4.3542

ĝH1H1H2 0.0815 1.9609 -1.3620 -0.1459

ĝH1H1H3 1.2430 -0.0047 1.5036 0.7230

ĝH1H2H2 -9.8646 -2.9288 -3.0089 0.0840

ĝH1H3H3 -1.9330 -13.7739 -8.8389 1.8755

ĝH2H2H3 6.4419 1.0246 3.3931 0.8193

ĝH2H3H3 -6.5823 -0.1195 0.4235 1.9800

ĝH1H2H3 -6.1122 -2.0460 -5.5180 0.5181

ĝH1AA -11.9181 -15.5153 -6.0623 2.6592

ĝH2AA -0.2621 0.3922 -0.3366 1.9990

ĝH3AA 2.3815 1.0683 0.9277 1.4698

ĝH1H+H− -12.5149 -12.7907 -5.4275 0.7464

ĝH2H+H− -0.1721 -0.5344 -0.3182 2.0712

ĝH3H+H− 2.4965 0.7303 0.6872 1.4297

m2
11 -1.8480×105 1.8141×105 -1.8480×105 4.2831×105

m2
22 1.5853×105 -1.6297×105 1.5853×105 3.9148×104

m2
S -1.5249×105 -2.1843×105 -1.5249×105 -4.0292×104

λ1 1.4496 1.4759 4.9322 4.7876

λ2 0.1631 0.6997 0.3677 0.1789

λ3 10.5046 9.7457 4.8262 0.3034

λ4 -0.1445 1.6185 2.9189 0.9382

λ5 0.3433 -0.6821 2.3798 -0.5819

λ6 5.0271 0.4550 0.5911 1.7143

λ7 0.6629 1.0337 -0.1617 2.0958

λ8 0.6137 -0.4826 0.4547 -0.2017

Table 12. Higgs couplings to gauge bosons, fermions, and an illustrative subset of trilinear

self-interactions, for the different benchmark scenarios used in the analysis of the decay modes

H2,3 → ZZ in section 7. The lowest rows display the values of the mass terms squared (in GeV2)

and quartic couplings in the Higgs potential eq. (2.3). The corresponding input parameters are

given in table 6.

– 47 –



J
H
E
P
1
2
(
2
0
1
7
)
0
7
7

BRH2AAhigh BRH3AAhigh BRH2AAlow BRH3AAlow

κH1V V -0.9134 0.9940 -0.9555 0.9778

κH2V V 0.2131 0.1068 0.2840 -0.0972

κH3V V 0.3469 0.0240 -0.0797 0.1859

κ̃H1V H -0.1892 -0.05372 -0.2708 0.0808

κ̃H2V H -0.9766 0.2853 -0.9517 0.9923

κ̃H3V H 0.1019 0.9569 -0.1447 0.0938

κAff -0.1698 -0.1802 -0.1635 -0.2493

κH±ff 0.1697 0.1802 0.1635 0.2493

κH1ff -0.9455 0.9843 -0.9998 0.9979

κH2ff 0.0047 0.1582 0.1285 0.1502

κH3ff 0.3642 0.1964 -0.1033 0.2093

ĝH1H1H1 0.7913 0.9895 -0.8501 0.9258

ĝH2H2H2 4.5527 -0.4737 3.3928 -6.3034

ĝH3H3H3 3.1861 -4.6479 2.9196 12.3941

ĝH1H1H2 0.0576 0.0810 -0.0180 -0.1064

ĝH1H1H3 1.1984 -0.0737 -0.5819 3.5969

ĝH1H2H2 0.0413 0.1379 -2.4521 1.1302

ĝH1H3H3 0.1111 1.1497 -0.2966 -0.1129

ĝH2H2H3 -0.7074 -0.1878 3.0177 -3.0344

ĝH2H3H3 0.1475 -1.2555 0.4978 -0.7138

ĝH1H2H3 -0.0636 0.3085 0.1271 1.0972

ĝH1AA 0.0078 0.3635 0.5150 6.6765

ĝH2AA 1.4634 -0.3903 0.2167 -2.6515

ĝH3AA -0.5695 -1.7132 2.9769 -1.4536

ĝH1H+H− -0.7008 1.333 -2.4108 6.5464

ĝH2H+H− 1.6287 -0.2862 1.0864 -2.6385

ĝH3H+H− -0.3004 -1.6899 2.7330 -1.4782

m2
11 2.8243× 104 3.9147×103 -3.6627×105 3.0674×105

m2
22 -5.3878×104 -7.4886×103 6.2391×104 -3.5363 ×105

m2
S -6.1241×104 -9.4445×103 -1.2208×105 -4.0844×105

λ1 7.3165 8.3056 5.9259 7.6888

λ2 0.5058 0.2752 0.2976 0.8532

λ3 0.4843 0.7331 1.8445 4.5533

λ4 -0.5845 -0.7627 -1.1396 -2.4210

λ5 0.0314 0.0117 1.2916 -2.5266

λ6 0.3695 0.0465 0.1355 0.7954

λ7 -0.1879 -0.0278 0.4198 -0.5616

λ8 0.2729 -0.0010 -0.0769 0.6774

Table 13. Higgs couplings to gauge bosons, fermions, and an illustrative subset of trilinear

self-interactions, for the different benchmark scenarios used in the analysis of the decay modes

H2,3 → AA in section 7. The lowest rows display the values of the mass terms squared (in GeV2)

and quartic couplings in the Higgs potential eq. (2.3). The corresponding input parameters are

given in table 8.
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HHHI HHHII HHHIII HHHIV

κH1V V -0.9372 0.9900 0.9311 0.9845

κH2V V 0.1925 -0.1060 -0.2414 0.0821

κH3V V -0.3050 -0.0927 -0.2735 0.1552

κ̃H1V H -0.1593 0.1145 0.1152 -0.0958

κ̃H2V H -0.9786 0.9892 0.9059 0.9919

κ̃H3V H -0.1304 0.0911 -0.4075 0.0831

κAff -0.1586 -0.1936 -0.2452 -0.1599

κH±ff 0.1586 0.1936 0.2452 0.1599

κH1ff -0.9580 1.0122 0.9593 0.9691

κH2ff 0.0373 0.0855 -0.0193 0.2407

κH3ff -0.3257 -0.0751 -0.3734 0.1685

ĝH1H1H1 -0.7307 0.7941 0.6681 0.8639

ĝH2H2H2 1.1414 -2.8917 4.8702 -2.3250

ĝH3H3H3 3.1216 9.8683 10.1021 5.8741

ĝH1H1H2 0.3116 -0.6998 -0.9627 0.5195

ĝH1H1H3 -2.4379 -1.3180 -2.7114 1.7543

ĝH1H2H2 -1.9620 2.3943 1.2415 0.0282

ĝH1H3H3 -2.6046 0.8897 5.7246 0.1491

ĝH2H2H3 2.8081 -7.0922 8.0938 -3.1091

ĝH2H3H3 0.3277 -2.2661 -3.4942 -0.6264

ĝH1H2H3 0.1311 0.6743 -0.5699 1.3242

ĝH1AA -2.4375 7.4960 4.8950 1.5980

ĝH2AA 0.4906 -1.5151 0.8029 -0.6405

ĝH3AA 2.4602 -7.3335 8.0143 -2.9253

ĝH1H+H− -1.0462 1.0679 0.8686 0.0218

ĝH2H+H− 0.2034 -0.8267 1.8469 -0.7720

ĝH3H+H− 2.9153 -6.7314 9.1970 -3.1739

m2
11 -3.4641×105 8.0817×105 -4.0889×105 5.4249×105

m2
22 2.9654×105 1.2101×105 1.8651×105 -2.6940×105

m2
S -1.6803×105 -3.5510×105 -1.7904×105 -2.7513×105

λ1 2.9570 7.9450 5.7400 4.4204

λ2 0.9200 0.2521 1.3008 0.5659

λ3 0.0444 1.2754 -2.2594 -0.5947

λ4 0.9616 3.0610 2.0359 0.4287

λ5 -0.2227 -2.0941 -1.3976 -0.8426

λ6 0.2022 0.6000 1.0260 0.2641

λ7 0.4674 -1.1777 2.9728 -0.4306

λ8 -0.3647 -0.2058 -1.0641 0.2520

Table 14. Higgs couplings to gauge bosons, fermions, and an illustrative subset of trilinear

self-interactions, for the different benchmark scenarios used in the analysis of the decay modes

H3 → H2H2 and H2 → H1H1 in section 7. The lowest rows display the values of the mass terms

squared (in GeV2) and quartic couplings in the Higgs potential eq. (2.3). The corresponding input

parameters are given in table 10.
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obtained from the input parameters which define each of these benchmarks, as given in

tables 6, 8 and 10, and evaluated via tree-level relations. As indicated in these tables,

we assume the input mixing angles to be defined in the pOS scheme, and β in the pOSc

scheme. These couplings are fully consistent with the ScannerS framework from which our

benchmarks are derived — ensuring their compatibility with all constraints on the model.

For the Higgs couplings to the fermions and gauge bosons we give the values of the

rescaling factors κHiV V , κ̃HiV H and κHiff respectively, as defined in tables 1, 5 and 3.

We normalize the trilinear Higgs self-couplings to the strength of the trilinear Higgs self-

coupling in the SM, i.e. ĝHiHjHk ≡ gHiHjHk/gSM
HHH , where gSM

HHH =−3
m2
H
v = −190.823 GeV.

B The pinch technique in the N2HDM

In this section, we present the explicit gauge dependences appearing in the scalar-scalar

and scalar-vector self-energies in the N2HDM. Additionally, we present the application

of the pinch technique in the N2HDM for the first time, as well as the cancellation of all

gauge dependences by the generation of pinched self-energies.

B.1 Gauge dependence of the self-energies

We begin by setting the notation used in the explicit expressions of the gauge dependences.

Following the notation of ref. [59], we define the functions

fΦiΦj (p
2) = p2 −

m2
Φi

+m2
Φj

2
(B.1)

gΦiΦj (p
2,m2) = 2

(
p2 −m2

)(
p2 −

m2
Φi

+m2
Φj

2

)
−
(
p2 −m2

Φi

) (
p2 −m2

Φj

)
, (B.2)

where Φ stands for an arbitrary neutral or charged scalar particle and mΦi,j = 0 in case

Φi,j is a Goldstone boson. We introduce the one-loop integrals

αV =
1

(1− ξV )m2
V

[
A0

(
m2
V

)
−A0

(
ξVm

2
V

)]
= B0

(
0;m2

V , ξVm
2
V

)
(B.3)

βV Φi(p
2) =

1

(1− ξV )m2
V

[
B0

(
p2;m2

V ,m
2
Φi

)
−B0

(
p2; ξVm

2
V ,m

2
Φi

)]
(B.4)

= C0

(
0, p2, p2;m2

V , ξVm
2
V ,m

2
Φi

)
βV ξV (p2) =

1

(1− ξV )m2
V

[
B0

(
p2;m2

V , ξVm
2
V

)
−B0

(
p2; ξVm

2
V , ξVm

2
V

)]
(B.5)

= C0

(
0, p2, p2; ξVm

2
V , ξVm

2
V ,m

2
Φi

)
CV Φi

2 (p2) = C2

(
0, p2, p2;m2

V , ξVm
2
V ,m

2
Φi

)
, (B.6)

where A0, B0 and C0 denote the usual scalar one-, two- and three-point integrals and C2 de-

notes the coefficient integral of the tensor integral Cµ, which can be expressed solely through

A0 and B0 integrals, cf. refs. [49, 61]. The index V denotes a vector boson V ∈ {W±, Z, γ}.
In what follows, we extract the gauge dependences of all self-energies via the definition

iΣtad(p2) = iΣtad(p2)
∣∣∣
ξV =1

+ iΣ(p2)
∣∣
g.d.

, (B.7)
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Figure 13. All Feynman diagrams contributing to the gauge dependence of the CP-even self-

energies Σtad
HiHj

(p2). For the tadpole diagram, a sum over intermediate Higgs states Hk (k = 1, 2, 3)

is assumed. Note that the ghost and vector boson contributions in the tadpole diagrams precisely

cancel against each other, so that these are not shown.

where iΣtad(p2) is the fully gauge-dependent modified self-energy with tadpole contribu-

tions included, cf. figure 3, iΣ(p2)
∣∣
g.d.

represents the truly gauge-dependent part of the

self-energy and iΣ(p2)
∣∣
ξV =1

denotes the evaluation of the self-energy in the ’t-Hooft Feyn-

man gauge. The inclusion of tadpole contributions for the analysis of the self-energies with

respect to gauge dependence is necessary for a consistent application of the pinch tech-

nique [52]. While the extraction of the gauge dependence via eq. (B.7) is not unique, we

show in the following by applying the pinch technique that iΣ(p2)
∣∣
g.d.

is considered to be

the truly gauge-dependent part of the self-energies, since it is precisely these terms which

are cancelled by the pinch contributions.

B.1.1 Gauge dependence of the CP-even scalar self-energies

First, we consider the gauge dependence of the CP-even scalar self-energies, i.e. the self-

energies of all possible combinations of Hi and Hj (i, j = 1, 2, 3). All Feynman diagrams

contributing gauge-dependent terms are shown in figure 13. The evaluation of eq. (B.7)

for the CP-even scalars of the N2HDM sector yields

iΣtad
HiHj (p

2) = iΣtad
HiHj (p

2)
∣∣∣
ξV =1

+
ig2 (1− ξZ)

64π2 cos ΘW

[
gHiHj (p

2,m2
A)O(1)

HiHj
βZA(p2)− fHiHj (p2)O(4)

HiHj
αZ

+
1

2
gHiHj (p

2, 0)O(2)
HiHj

(
βZZ(p2) + βZξZ(p2)

) ]
+
ig2 (1−ξW )

32π2

[
gHiHj (p

2,m2
H±)O(1)

HiHj
βWH±(p2)−fHiHj (p2)O(4)

HiHj
αW

+
1

2
gHiHj (p

2, 0)O(2)
HiHj

(
βWW (p2) + βWξW (p2)

) ]
,

(B.8)
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Figure 14. All Feynman diagrams contributing to the gauge-dependence of the charged self-

energies Σtad
φ±
i φ

±
j

(p2) where φ±i,j ∈ {W,G±, H±}. A sum over intermediate Higgs states Hk is assumed

wherever they appear. Overlapping dashed and twiggled lines denote a scalar or a gauge boson,

respectively, depending on the chosen particles. Note that we only consider contributions to the

extended scalar sector of the N2HDM. Depending on the particles φ±i,j chosen, some of the diagrams

shown may not exist in the N2HDM.

where the combinations O(1)
HiHj

, O(2)
HiHj

and O(4)
HiHj

have been defined in eq. (5.30). We note

that when evaluating these combinations in the 2HDM limit, i.e. by applying eq. (2.35),

where O(4)
HiHj

reduces to the Kronecker delta δHiHj , the result in eq. (B.8) coincides with

the results presented in refs. [40, 60] for the 2HDM as well as with the result presented in

ref. [59] for the MSSM, since the structure of the gauge-dependence of the CP-even scalar

self-energies does not differ between the MSSM and the 2HDM.

B.1.2 Gauge dependence of the charged scalar and vector self-energies

Next, we consider the charged sector. Due to the mixing of the charged particles of the

N2HDM, we have to consider not only all possible self-energy combinations of the scalar

particles H± and G±, but additionally their mixing with the charged vector bosons W±. In

the SM, where only one Higgs boson exists, it was shown that the Higgs contributions to the

gauge dependence of the charged sector form a gauge-dependent subset which is cancelled

by a corresponding subset of pinch contributions [56]. In the N2HDM we follow the same

approach, i.e. we focus only on gauge-dependent contributions stemming from the enriched

scalar sector of the N2HDM, which form a subset with respect to gauge dependence as well.

We first consider the gauge dependence of the self-energies of all combinations of W±

and G±. The relevant contributions from the Higgs sector are given by the Feynman

diagrams in figure 14 for all possible self-energies. Note that since we consider only the

subset where the scalars of the N2HDM appear in the loops, only terms containing the
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gauge-fixing parameter ξW contribute to these self-energies. They explicitly read16

iΣtad
WW,µν(p2) = iΣtad

WW,µν(p2)
∣∣∣
ξV =1

(B.9)

−(1−ξW )
ig2m2

W

64π2
pµpν

∑
Hi

O(2)
HiHi

{
βWHi(p

2)+4CWHi
2 (p2)

}
iΣtad

WG±,µ(p2) = iΣtad
WG±,µ(p2)

∣∣∣
ξV =1

(B.10)

+(1−ξW )
ig2mW

64π2
pµ

{
αW +

∑
Hi

O(2)
HiHi

[
m2
HiβWHi(p

2)+2p2CWHi
2 (p2)

]}
iΣtad

G±G±(p2) = iΣtad
G±G±(p2)

∣∣∣
ξV =1

(B.11)

+(1−ξW )
ig2

64π2

{
−2fG±G±(p2)αW +

∑
Hi

O(2)
HiHi

gG±G±(p2,m2
Hi)βWHi(p

2)

}
.

Next, the gauge dependence of the self-energies of all combinations of H± and G± or

W± is given by the relevant contributions from the Higgs sector as given by the Feynman

diagrams in figure 14 as well. In the case of the self-energy for two H± particles, additional

dependences on ξZ and ξγ appear even when focusing on the extended scalar sector of the

N2HDM only, while for the other self-energies only the dependence on ξW is relevant. The

self-energies explicitly read

iΣtad
H±H±(p2) = iΣtad

H±H±(p2)
∣∣∣
ξV =1

(B.12)

+ (1− ξW )
ig2

64π2

{
− 2fH±H±(p2)αW + gH±H±(p2,m2

A)βWA

+
∑
Hi

O(2)
HiHi

gH±H±(p2,m2
Hi)βWHi

}

+ (1− ξZ)
ig2(cos2 ΘW − sin2 ΘW )2

64π2 cos2 ΘW

×
{
gH±H±(p2,m2

H+)βZH±(p2)− fH±H±(p2)αZ
}

+ (1− ξγ)
ie2

16π2

{
−fH±H±(p2)αγ + gH±H±(p2,m2

H+)βγH±(p2)
}

iΣtad
H±G±(p2) = iΣtad

H±G±(p2)
∣∣∣
ξV =1

(B.13)

+ (1− ξW )
ig2

64π2

∑
Hi

O(3)
HiHi

gH±G±(p2,m2
Hi)βWHi(p

2)

iΣtad
WH±,µ(p2) = iΣtad

WH±,µ(p2)
∣∣∣
ξV =1

− (1− ξW )
ig2mW

64π2
pµ (B.14)

×
∑
Hi

O(3)
HiHi

{
fH±H±(m2

Hi)βWHi(p
2) + 2fH±H±(p2)CWHi

2 (p2)
}

16Note that in the case of the self-energy Σtad
G±G± we subtracted an additional term of fG±G±(p2)αW

with respect to the diagrams shown in figure 14. This term stems from other gauge-dependent subsets of

the gauge-dependence of the self-energy, which we do not present explicitly here. This is in line with [56],

where these additional terms are simply dropped since they cancel elsewhere.
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Figure 15. All Feynman diagrams contributing to the gauge-dependence of the CP-odd self-

energies Σtad
φ0
iφ

0
j
(p2) where φ0i,j ∈ {A,G0}. A sum over intermediate Higgs states Hk is assumed

wherever they appear. Note that we only consider contributions to the extended scalar sector of

the N2HDM. Depending on the particles φ0i,j chosen, some of the diagrams shown may not exist in

the N2HDM.

Note that when the former two equations are evaluated in the 2HDM-limit, cf. eq. (2.35),

these reproduce the formulae given in ref. [40] for the 2HDM.

B.1.3 Gauge dependence of the CP-odd scalar and vector self-energies

In the neutral CP-odd sector the calculation of the gauge dependences and of the pinch

contributions is even more involved than in the charged sector, since one has to take into

account not only the mixing of the Z boson with G0 and A, but additionally the mixing of

the photon γ with all other possible contributions. It is only the coherent sum of all these

mixing contributions which gives the correct gauge dependences and pinch results. Due

to these additional complications, we restrict the presentation to the self-energies of two

A and the mixing between A and G0. As in the charged sector, we focus on the N2HDM

Higgs contributions to the self-energies and pinch terms only, since they form a gauge-

independent subset on their own. The relevant contributions are given by the Feynman

diagrams in figure 15. In total, the self-energies of this subset read

iΣtad
AA(p2) = iΣtad

AA(p2)
∣∣∣
ξV =1

(B.15)

+ (1− ξZ)
ig2

64π2 cos2 ΘW

−fAA(p2)αZ +
∑
Hi

O(1)
HiHi

gAA(p2,m2
Hi)βZHi(p

2)


+ (1− ξW )

ig2

32π2

{
−fH±H±(p2)αW + gAA(p2,m2

H±)βWH±(p2)
}

iΣtad
AG0(p2) = iΣtad

AG0(p2)
∣∣∣
ξV =1

(B.16)

+ (1− ξZ)
ig2

64π2 cos2 ΘW

∑
Hi

O(3)
HiHi

gAG0(p2,m2
Hi)βZHi(p

2) .
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As in the charged sector, these results, evaluated in the 2HDM limit, reproduce the ones

presented in ref. [40] for the 2HDM.

B.2 Pinch contributions for the N2HDM

The intricate gauge dependence of the scalar self-energies of the N2HDM makes a gauge-

independent definition of the counterterms of the scalar mixing angles complicated. If one

considers instead an S-matrix element, e.g. a scattering process of a pair of fermions, where

these self-energies may appear as intermediate states, the whole S-matrix element is gauge

independent by construction. Consequently, the gauge dependences cancel in an intricate

way between the self-energies and other contributions from vertex and box corrections

within the S-matrix element.

The main idea of the pinch technique (cf. refs. [51–58] for a detailed exposition) is to

isolate the gauge dependences of an arbitrary toy scattering process, which features the

to-be pinched self-energies in a unique way. This is achieved by applying the elementary

Ward identities

/k PL/R = S−1
1 (p+ k)PL/R − PR/LS−1

2 (p) +m1PL/R −m2PR/L

PL/R /k = PL/RS
−1
1 (p+ k)− S−1

2 (p)PR/L +m1PL/R −m2PR/L , (B.17)

where k denotes the loop momentum, m1 and m2 the masses of the external fermions of

the considered toy process and S(p) the fermion propagator

iSk(p) =
i(/p+mk)

p2 −m2
k

=
i

/p−mk
. (B.18)

It turns out that the gauge dependences are all similar in structure, i.e. they are always

self-energy-like, independently of their origin within the scattering process. The isolation of

all pinch contributions from the toy scattering process then allows for a manifestly gauge-

independent definition of pinched self-energies. Since these self-energies are considered to

be independent from the toy process chosen, cf. [52], the pinched self-energies are unique.

B.2.1 Pinch contributions for the CP-even sector

The full derivation of all pinch contributions for the N2HDM is beyond the scope of this

paper. We nevertheless present the derivation of the pinch contributions for a few selected

diagrams since we hope it is instructive to the reader and since it demonstrates how the

pinch technique is applied. As the toy process for extracting the gauge dependences for the

CP-even sector we choose the process µ+µ− → b̄b. All Feynman diagrams yielding contri-

butions for the CP-even pinched self-energies are depicted in figure 16. It can be shown

that all pinch contributions stemming from these diagrams can be brought into the form

ΓHibb
i

p2 −m2
Hi

iΣPT
HiHj (p

2)
i

p2 −m2
Hj

ΓHjµµ , (B.19)

where iΣPT
HiHj

(p2) is a relevant self-energy-like pinch contribution for the CP-even Higgs

bosons Hi and Hj . Additionally, we define the contracted vertices of a CP-even Higgs
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Figure 16. All generic Feynman diagrams contributing to the CP-even pinched self-energies.

boson with a pair of external bottom quarks or a pair of external muons as

ΓHibb = ū(r1)
−igmbκHibb

2mW
v(r2) and ΓHiµµ = v̄(p2)

−igmµκHiµµ
2mW

u(p1) , (B.20)

where u(p1) and v(r2) and ū(r1) and v̄(p2) are the (adjoint) spinors of the external on-shell

fermions with their respective momenta.

In order to derive the pinch contributions, we apply the elementary Ward identities, cf.

eq. (B.17), and insert additional CP-even Higgs boson propagators into the amplitude via

1 = − i

p2 −m2
Hi

i(p2 −m2
Hi) . (B.21)

Additionally, we make use of the sum rules of the N2HDM as given in eq. (5.31) as well as

of the coupling relation

κHiff = κHiV V − κ̃HiV HκAff . (B.22)
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The application of these formulae to fermion-fermion-Higgs couplings enables the projec-

tion of the pinch contributions onto the desired CP-even Higgs couplings to the fermions,

κ̃κAll =
∑
Hj

κ̃κHjV V κAllκHj ll = −
∑
Hj

O(1)
HiHj

κHj ll + . . . (B.23)

where “. . . ” contains pinch contributions for other than the CP-even Higgs self-energies.

Consequently, we can neglect them for the CP-even self-energies.

We consider the two contributions depicted in the Feynman diagrams in figure 17. The

momenta are as defined in the diagrams. With the definitions given above, the sum of both

diagrams reads17

∑
Hi

ΓHibb
i

p2−m2
Hi

g2

32π2

∫
d4k

iπ2

1[
k2−m2

W

][
(k+p)2−m2

H±

]
·
{
v̄(p2)

[
PLSµν (k+p1)(/k+2/p)PL+PR(−/k−2/p)Sµν (−k−p2)PR

] igmµ

2mW
κAllκ̃HiV Hu(p1)

−(1−ξW )v̄(p2) [PLSµν (k+p2)/kPL+PR(−/k)Sµν (−k−p2)PR]
igmµ

2mW
κAllκ̃HiV Hu(p1)

}
(B.17)

=
∑
Hi

ΓHibb
i

p2−m2
Hi

g2

32π2
v̄(p2)

igmµ

2mW
κAllκ̃HiV Hu(p1)

{
B0(p2;m2

W ,m
2
H±)

−(1−ξW )
[
αW−fH±H±(p2)βWH±

]}
+. . .

(B.23)
=

∑
Hi,Hj

ΓHibb
i

p2−m2
Hi

−g2

32π2
O(1)
HiHj

{
B0(p2;m2

W ,m
2
H±)

−(1−ξW )
[
αW−fH±H±(p2)βWH±

]}
ΓHjµµ+. . .

(B.21)
=

∑
Hi,Hj

ΓHibb
i

p2−m2
Hi

−ig2

16π2

(
p2

2
−
m2
Hj

2

)
O(1)
HiHj

{
B0(p2;m2

W ,m
2
H±)

−(1−ξW )
[
αW−fH±H±(p2)βWH±

]} i

p2−m2
Hj

ΓHjµµ+. . .

=
∑
Hi,Hj

ΓHibb
i

p2−m2
Hi

iΣPT
HiHj (p

2)
i

p2−m2
Hj

ΓHjµµ+. . . (B.24)

The first term of the right-hand side of the Ward identities in eq. (B.17) removes the

internal fermion propagators from the loops, i.e. the fermions are pinched out, while the

second term of the Ward identities vanishes due to the Dirac equation. The third and

fourth terms produce pinch contributions to pinched vertices, but not to pinched self-

energies. Consequently, these terms are collected in “. . . ”, since they are of no interest

for the generation of a pinched self-energy. The application of the sum rule in eq. (B.23)

produces additional pinch contributions to other self-energies than the CP-even ones due

to different fermion-Higgs couplings. Consequently, these other terms are collected in “. . . ”

as well.
17Note that the shift from four to D dimensions as well as the +iε terms in the propagators are not

explicitly stated here, but implicitly assumed to be set.
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Figure 17. Two Feynman diagrams for the toy process µ+µ− → b̄b involving scalar-scalar-vector

vertices which give rise to gauge-dependent as well as additional gauge-independent pinch contribu-

tions for the CP-even self-energies. The momenta p1 and p2 are taken as incoming and the momenta

r1 and r2 as outgoing, and p = p1 + p2.

As mentioned before, the pinch contributions take the form of a self-energy and here

they explicitly read

iΣPT
HiHj (p

2) =
−ig2

16π2

(
p2

2
−
m2
Hj

2

)
O(1)
HiHj

{
B0(p2;m2

W ,m
2
H±)

−(1−ξW )
[
αW +(m2

H±−p
2)βWH±

]}
.

(B.25)

The terms proportional to (1− ξW ) are gauge-dependent pinch contributions which cancel

against parts of the gauge dependence of the CP-even self-energies. The other term which

remains for ξW = 1 is an additional gauge-independent pinch contribution which is specific

to scalar-scalar-vector vertices in the vertex corrections [52, 59]. Repeating the calculation

for the vertex corrections of the bottom quarks containing H± and W± bosons in the loop

yields the same result as in eq. (B.25), but with m2
Hj

replaced by m2
Hi

. The combination

of these results yields the first term in the second line of eq. (5.27).

All Feynman diagrams contributing to the pinch terms for the CP-even sector are

depicted in figure 16. Repeating the calculation as demonstrated above and combining all

results leads to the pinch contributions to the CP-even sector,

iΣPT
HiHj (p

2) = iΣadd
HiHj (p

2)

− ig2 (1−ξZ)

64π2 cosΘW

[
gHiHj (p

2,m2
A)O(1)

HiHj
βZA(p2)−fHiHj (p2)O(4)

HiHj
αZ

+
1

2
gHiHj (p

2,0)O(2)
HiHj

(
βZZ(p2)+βZξZ(p2)

)]
− ig

2 (1−ξW )

32π2

[
gHiHj (p

2,m2
H±)O(1)

HiHj
βZH±(p2)−fHiHj (p2)O(4)

HiHj
αW

+
1

2
gHiHj (p

2,0)O(2)
HiHj

(
βWW (p2)+βWξW (p2)

)]
.

(B.26)

By comparing this result with eq. (B.8), we realize that in the sum of the pinch contributions

with the CP-even self-energies all gauge-dependent terms proportional to (1 − ξW ) and

(1− ξZ) precisely cancel, leading to

ΣHiHj (p
2) = Σtad

HiHj (p
2) + ΣPT

HiHj (p
2) = Σtad

HiHj (p
2)
∣∣∣
ξV =1

+ Σadd
HiHj (p

2) . (B.27)
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Due to the cancellation of all gauge-dependent terms, the pinched self-energy ΣHiHj (p
2)

is gauge independent by construction and equivalent to the self-energy evaluated in the

Feynman gauge, together with the sum of all additional terms stemming from diagrams

with internal scalar-scalar-vector vertices, as given in eq. (5.27).

B.2.2 Pinch contributions for the charged sector

For the derivation of the pinch contributions of the charged sector we use the toy process

νee
+ → νee

+. The calculation is analogous to the CP-even sector, i.e. we apply the

elementary Ward identities from eq. (B.17) and use the N2HDM sum rules to identify

the correct couplings between the external fermions and the scalar or vector particles of

interest. In the case of the self-energies involving the H± particles, we again insert the

corresponding propagator by

1 = − i

p2 −m2
H±

i(p2 −m2
H±) . (B.28)

For the self-energies involving G± or W±, the corresponding propagators

∆µν(p) ≡ −i
p2 −m2

W

[
gµν − (1− ξW )

pµpν
p2 − ξWm2

W

]
and D(p) ≡ i

p2 − ξWm2
W

(B.29)

are included into the pinch contributions by applying the identities [56]

gνα = i
{

∆νµ(p)
[
(p2 −m2

W )gµα − pµpα
]
− pνpαD(p)

}
(B.30)

ipµ = p2D(p2)pµ +m2
W p

ν∆νµ . (B.31)

Due to these identities, the pinch contributions of the charged sector have to be correctly

assigned to all possible self-energy combinations of H±, G± and W±. Consequently, the

analysis of the charged sector is significantly more involved than the one of the CP-even sec-

tor. Taking into account all Feynman diagrams contributing to the pinched self-energies of

the charged sector,18 the collocation of all pinch contributions for the various combinations

of W± and G± yields

iΣPT
WW,µν(p2) = (1−ξW )

ig2m2
W

64π2
pµpν

∑
Hi

O(2)
HiHi

{
βWHi(p

2)+4CWHi
2 (p2)

}
(B.32)

iΣPT
WG±,µ(p2) =−(1−ξW )

ig2mW

64π2
pµ

αW +
∑
Hi

O(2)
HiHi

[
m2
HiβWHi(p

2)+2p2CWHi
2 (p2)

]
(B.33)

iΣPT
G±G±(p2) = iΣadd

G±G±(p2) (B.34)

−(1−ξW )
ig2

64π2

−2fG±G±(p2)αW +
∑
Hi

O(2)
HiHi

gG±G±(p2,m2
Hi)βWHi(p

2)


18These diagrams are obtained analogously to the CP-even case. Since they are numerous, we show

exemplary only those for the CP-even sector.
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and for the combinations of H± and G± or W± results in

iΣPT
H±H±(p2) = iΣadd

H±H±(p2) (B.35)

− (1− ξW )
ig2

64π2

{
− 2fH±H±(p2)αW + gH±H±(p2,m2

A)βWA

+
∑
Hi

O(2)
HiHi

gH±H±(p2,m2
Hi)βWHi

}

− (1− ξZ)
ig2(cos2 ΘW − sin2 ΘW )2

64π2 cos2 ΘW

×
{
−fH±H±(p2)αZ + gH±H±(p2,m2

H+)βZH±(p2)
}

− (1− ξγ)
ie2

16π2

{
−fH±H±(p2)αγ + gH±H±(p2,m2

H+)βγH±(p2)
}

iΣPT
H±G±(p2) = iΣadd

H±G±(p2) (B.36)

− (1− ξW )
ig2

64π2

∑
Hi

O(3)
HiHi

gH±G±(p2,m2
Hi)βWHi(p

2)

iΣPT
H±W±,µ(p2) = (1− ξW )

ig2mW

64π2
pµ
∑
Hi

O(3)
HiHi

{
fH±H±(m2

Hi)βWHi(p
2)

+2fH±H±(p2)CWHi
2 (p2)

}
. (B.37)

By adding the pinch contributions to the gauge-dependent charged self-energies, the

pinched self-energies of the charged sector read

ΣWW,µν(p2) = Σtad
WW,µν(p2)

∣∣∣
ξV =1

(B.38)

ΣWG±,µ(p2) = Σtad
WG±,µ(p2)

∣∣∣
ξV =1

(B.39)

ΣG±G±(p2) = Σtad
G±G±(p2)

∣∣∣
ξV =1

+ Σadd
G±G±(p2) (B.40)

ΣH±H±(p2) = Σtad
H±H±(p2)

∣∣∣
ξV =1

+ Σadd
H±H±(p2) (B.41)

ΣH±G±(p2) = Σtad
H±G±(p2)

∣∣∣
ξV =1

+ Σadd
H±G±(p2) (B.42)

ΣWH±,µ(p2) = Σtad
WH±,µ(p2)

∣∣∣
ξV =1

. (B.43)

The additional gauge-independent pinch contributions for Σtad
H±G±(p2) are stated19 in

eq. (5.29). The remaining additional contributions are analogously derived from Feynman

19For the derivation of all additional pinch contributions we took into account all possible diagrams, not

only the ones containing only the extended scalar sector of the N2HDM. This is consistent since the gauge

dependence is cancelled already in the pinched self-energies.
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diagrams involving internal scalar-scalar-vector vertices and explicitly read

Σadd
G±G±(p2) =

−g2

32π2
p2

{
B0(p2;m2

W ,m
2
W )+

∑
Hi

O(2)
HiHi

B0(p2;m2
Hi ,m

2
W ) (B.44)

+
(cos2 ΘW−sin2 ΘW )2

cos2 ΘW
B0(p2;m2

W ,m
2
Z)+4sin2 ΘWB0(p2;0,m2

H±)

}
Σadd
H±H±(p2) =

−g2

32π2
(p2−m2

H±)

{
B0(p2;m2

A,m
2
W )+

∑
Hi

O(1)
HiHi

B0(p2;m2
Hi ,m

2
W ) (B.45)

+
(cos2 ΘW−sin2 ΘW )2

cos2 ΘW
B0(p2;m2

H± ,m
2
Z)+4sin2 ΘWB0(p2;0,m2

H±)

}
.

Note that self-energies involving the gauge boson W± as an external particle do not receive

additional gauge-independent pinch contributions.

B.2.3 Pinch contributions for the CP-odd sector

For pinching the CP-odd sector we choose the same process as for the CP-even sector,

i.e. the process µ+µ− → b̄b. The derivation of the pinch contributions is exactly analogous

to the CP-even neutral and to the charged sector. By inserting the propagators and

applying the elementary identities eq. (B.17) and eqs. (B.28)–(B.31), we isolate all pinch

contributions from the Feynman diagrams for the corresponding CP-odd self-energies. In

total, the pinch contributions read

iΣtad
AA(p2) = iΣadd

AA (p2)
∣∣∣
ξV =1

(B.46)

− ig2

64π2 cos2 ΘW
(1−ξZ)

−fAA(p2)αZ+
∑
Hi

O(1)
HiHi

gAA(p2,m2
Hi)βZHi(p

2)


iΣtad

AG0(p2) = iΣadd
AG0(p2)

∣∣∣
ξV =1

(B.47)

− ig2

64π2 cos2 ΘW
(1−ξZ)

∑
Hi

O(3)
HiHi

gAG0(p2,m2
Hi)βZHi(p

2) .

Adding the pinch contributions to the gauge-dependent self-energies allows for the gener-

ation of the pinched self-energies of the CP-odd sector:

ΣAA(p2) = Σtad
AA(p2)

∣∣∣
ξV =1

+ Σadd
AA (p2) (B.48)

ΣAG0(p2) = Σtad
AG0(p2)

∣∣∣
ξV =1

+ Σadd
AG0(p2) . (B.49)

The additional pinch contribution for the self-energy Σtad
AG0(p2) is given in eq. (5.28), and

the remaining additional gauge-independent pinch contribution explicitly reads

Σadd
AA (p2) =

−g2

32π2 cos2 ΘW
(p2 −m2

A)

×
{

2 cos2 ΘWB0(p2;m2
W ,m

2
H±) +

∑
Hi

O(1)
HiHi

B0(p2;m2
Hi ,m

2
Z)

}
(B.50)
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