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ABSTRACT

Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated

societies in northern tropical Africa. In this study, the performance of nine operational global ensemble

prediction systems (EPSs) is analyzed relative to climatology-based forecasts for 1–5-day accumulated pre-

cipitation based on the monsoon seasons during 2007–14 for three regions within northern tropical Africa. To

assess the full potential of raw ensemble forecasts across spatial scales, state-of-the-art statistical post-

processing methods were applied in the form of Bayesian model averaging (BMA) and ensemble model

output statistics (EMOS), and results were verified against station and spatially aggregated, satellite-based

gridded observations. Raw ensemble forecasts are uncalibrated and unreliable, and often underperform

relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. The

differences between raw ensemble and climatological forecasts are large and partly stem from poor prediction

for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly

improve on the raw ensembles but, somewhat disappointingly, typically do not outperform climatology.Most

EPSs exhibit slight improvements over the period 2007–14, but overall they have little added value compared

to climatology. The suspicion is that parameterization of convection is a potential cause for the sobering lack

of ensemble forecast skill in a region dominated by mesoscale convective systems.

1. Introduction

Thebulk of precipitation in the tropics is related tomoist

convection, in contrast to the frontal-dominated extra-

tropics. Because of the small-scale processes involved in

the triggering and growth of convective systems, quanti-

tative precipitation forecasts are known to have overall

poorer levels of skill in tropical latitudes (Haiden et al.

2012). This can be monitored in quasi–real time via

the World Meteorological Organization (WMO) Lead

Centre on Verification of Ensemble Prediction System

website (http://epsv.kishou.go.jp/EPSv) by comparing de-

terministic and probabilistic skill scores for 24-h pre-

cipitation forecasts for the 208N–208S tropical belt with

those for the Northern and Southern Hemisphere extra-

tropics. There are hints that precipitation and cloudiness

forecasts in the tropics show enhanced skill during regimes

of stronger synoptic-scale forcing (Söhne et al. 2008; Davis

et al. 2013; Van der Linden et al. 2017) or in regions of

orographic forcing (Lafore et al. 2017), but large parts of
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the tropical landmasses are dominated by convection that

initiates from small-scale surface and boundary layer pro-

cesses and sometimes is organized into mesoscale con-

vective systems (MCSs). The latter depends mostly on the

thermodynamic profile and vertical wind shear.

Within this context, northern tropical Africa, particu-

larly the semiarid Sahel, can be considered a regionwhere

precipitation forecasting is particularly challenging. The

area consists of vast flatlands, where MCSs during boreal

summer provide the bulk of the annual rainfall (Mathon

et al. 2002; Fink et al. 2006; Houze et al. 2015) and con-

vergence lines in the boundary layer or soil moisture

gradients at the kilometer scale can act as triggers for

MCSs (Lafore et al. 2017). Sahelian MCSs often take the

form of meridionally elongated squall lines with sharp

leading edges characterized by heavy rainfall. Synoptic-

scale African easterly waves are known to be linked to

squall-line occurrence in the western Sahel (Fink and

Reiner 2003) and lead to enhanced skill in cloudiness

forecasts over West Africa (Söhne et al. 2008).

However, numerical weather prediction (NWP)

models are known to have an overall poor ability to

predict rainfall systems over northern Africa. For exam-

ple, the gain in skill by improved initial conditions due to

an enhanced upper-air observational network during

the 2006 African Monsoon Multidisciplinary Analysis

(AMMA) campaign (Parker et al. 2008) was lost in NWP

models after 24h of forecast time, potentially because of

the models’ inability to predict the genesis and evolution

of convective systems (Fink et al. 2011).

Given the substantial challenges involved in fore-

casting rainfall in northern Africa, one might hope that

ensemble prediction systems (EPSs) provide an accurate

assessment of uncertainties and a more useful forecast

overall. An ensemble is a set of deterministic forecasts,

created by changes in the initial conditions and/or the

numerical representation of the atmosphere (Palmer

2002). With clear advantages of ensembles over single

deterministic forecasts, EPSs are now run at all major

NWP centers, which led to the creation of the TIGGE

multimodel ensemble database (Bougeault et al. 2010;

Swinbank et al. 2016). TIGGE contains forecasts from up

to 10 global EPSs, with the ensemble of the European

Centre for Medium-RangeWeather Forecasts (ECMWF)

being the most prominent and most important contributor

(Hagedorn et al. 2012). To our knowledge, this present

study is the first to rigorously and systematically assess

the quality of ensemble forecasts for precipitation over

northern tropical Africa. This is partly related to the fact

that for this region ground verification data from rain

gauge observations are infrequent on the Global Tele-

communication System (GTS), the standard verification

data source for NWP centers.

Despite many advances in the generation of EPSs,

ensembles share structural deficiencies such as disper-

sion errors and biases. Statistical postprocessing ad-

dresses these deficiencies and realizes the full potential

of ensemble forecasts (Gneiting and Raftery 2005).

Additionally, it performs implicit downscaling from the

model grid resolution to finer resolutions or station lo-

cations. The correction of systematic forecast errors is

based on (distributional) regression techniques and,

depending on the need of the user, several approaches

are at hand (Schefzik et al. 2013; Gneiting 2014). Hamill

et al. (2004) and Wilks (2009) proposed and extended

logistic regression techniques, which yield probabilistic

forecasts for the exceedance of thresholds. Here, we will

for the first time explore whether established methods

such as Bayesian model averaging (BMA; Raftery et al.

2005) and ensemble model output statistics (EMOS;

Gneiting et al. 2005), which provide complete probabi-

listic quantitative precipitation forecasts, can improve

precipitation forecasts for Africa.

The ultimate goal of this paper is to provide an ex-

haustive assessment of our current ability to predict

rainfall over northern tropical Africa, considering the

skill of raw and postprocessed forecasts from TIGGE.

Any skill, if existing, would be expected to come from

resolved large-scale forcing processes as mentioned

above. We examine accumulation periods of 1–5 days for

the monsoon seasons 2007–14 and verify against about

21000 daily rainfall observations from 132 rain gauge

stations and satellite-based gridded precipitation obser-

vations. Section 2 introduces the TIGGE ensemble, as

well as the station and satellite-based observations used

for verification. Section 3 describes our benchmark cli-

matological forecast and methods for the evaluation of

probabilistic forecasts and explains EMOS and BMA in

detail. Results are presented in section 4, where we verify

1-day accumulated ECMWF precipitation forecasts

against station observations. This analysis is performed in

particular depth and serves as a fundamental exemplar.

We also evaluate ECWMF ensemble forecasts at longer

accumulation times and for spatial aggregations, before

turning to the analysis of all TIGGE subensembles. Im-

plications of our findings and possible alternative

methods for forecasting precipitation over northern

tropical Africa are discussed in section 5.

2. Data

a. Forecasts

The TIGGE multimodel ensemble was set up as part

of the THORPEX program in order to ‘‘accelerate

improvements in the accuracy of 1-day to 2-week

370 WEATHER AND FORECAST ING VOLUME 33



high-impact weather forecasts for the benefit of humanity’’

(Bougeault et al. 2010, p. 1060). Since its start in October

2006, up to 10 global NWP centers have provided their

operational ensemble forecasts, which are accessible on a

common 0.58 3 0.58 grid. Park et al. (2008) and Bougeault

et al. (2010) discuss objectives and the setup of TIGGE,

including the participating EPSs, in great detail. They also

note early results using the TIGGE ensemble, while

Swinbank et al. (2016) report on achievements accom-

plished over the last decade. Hagedorn et al. (2012) find

that a multimodel ensemble composed of the four best

participating TIGGE EPSs, which include the ECMWF

ensemble, outperforms reforecast-calibrated ECMWF

forecasts. For the evaluation of NWP precipitation fore-

cast quality, TIGGE is the most complete and best avail-

able data source for the period 2007–14. Table 1 gives an

overview of the nine participating TIGGE EPSs that

provide accumulated precipitation forecasts.

In addition to the separate evaluation of each partici-

pating TIGGE subensemble, we construct a reduced mul-

timodel (RMM) ensemble. For each of the seven

subensembles available for the period 2008–13, the RMM

ensemble uses themean of the perturbedmembers, and the

control run, and in the case of the ECMWF EPS, further-

more, the high-resolution run, as individual contributors.

The RMMensemble therefore consists of 15 members and,

as postprocessing performs an implicit weighting of all

contributions, a manual selection of subensembles as per-

formed by Hagedorn et al. (2012) is not necessary.

Arguably, the ECMWF EPS is the leading example

among the TIGGE subensembles (Buizza et al. 2005;

Hagedorn et al. 2012; Haiden et al. 2012). It consists of a

high-resolution (HRES) run, a control (CNT) run, and 50

perturbed ensemble (ENS) members. The HRES and

CNT runs are started from unperturbed initial conditions

and differ only in their resolution. The ENSmembers are

started from perturbed initial conditions and have the

same resolution as the CNT run.Molteni et al. (1996) and

Leutbecher and Palmer (2008) describe the generation

and properties of the ECMWF system in detail.

b. Observations

Despitemultiple advances in satellite rainfall estimation,

station observations of accumulated precipitation remain a

reliable and necessary source of information.However, the

meteorological station network in tropical Africa is sparse

and clustered, and observations of many stations are not

distributed through the GTS. The Karlsruhe African Sur-

face Station Database (KASS-D) contains precipitation

observations from a variety of networks and sources.

Manned stations operated by African national weather

services provide the bulk of the 24-h precipitation data.

Due to long-standing collaborationswith these services and

African researchers, KASS-D contains many observations

not available in standard, GTS-fed station databases.

Within KASS-D, 960 stations have daily accumulated

(usually 0600–0600 UTC) precipitation observations.

After excluding stations outside the study domain, and

removing sites with less than 80% available observations

in any of themonsoon seasons, the remaining 132 stations

were subject to quality control, as described in the appendix,

and passed these tests. Based on their rainfall climate (e.g.,

Fink et al. 2017) and geographic clustering, the stationswere

assigned to three regions, as indicated inFig. 1, referred to in

this paper as West Sahel, East Sahel, and Guinea Coast.

As NWP forecasts are issued for grid cells, the com-

parison of station observations against gridded forecasts

is fraught with problems. To allow for an additional as-

sessment of forecast quality without a gauge-to-gridbox

comparison and for areas without station observations,

we use satellite-based, gridded precipitation estimates.

Based on recent studies, version 7 (and also version 6) of

the Tropical RainfallMeasuringMission (TRMM) 3B42

gridded dataset is regarded the best available satellite

precipitation product, despite a small dry bias (Roca

et al. 2010; Maggioni et al. 2016; Engel et al. 2017).

TABLE 1. TIGGE subensembles used in this study, with years of availability, number of ensemble members (number of perturbed

members 1 control run 1 any high-resolution run), initialization time, and native grid(s) used during the period of 2007–14.

Source Acronym Availability Members Initialization time (UTC) Native grid(s)

China Meteorological Administration CMA 2008–13 14 1 1 0000 TL213/T639

Centro de Previsão Tempo e

Estudos Climáticos
CPTEC 2008–14 14 1 1 0000 T126

European Centre for Medium-Range

Weather Forecasts

ECMWF 2007–14 50 1 1 1 1 0000 T399/T639

Japan Meteorological Agency JMA 2007–13/14 50/26 1 1 1200 TL159/TL319/TL479

Korea Meteorological Administration KMA 2011–14 16 1 1 0000 N320

Météo-France MF 2010–14 34 1 1 0600 TL798

Meteorological Service of Canada MSC 2008–14 20 1 1 0000 0.458 uniform
National Centers for Environmental

Prediction

NCEP 2008–14 20 1 1 0000 T126

Met Office UKMO 2007–13 23 1 1 0000 N144/N216/N400
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TRMM merges active measurements from the pre-

cipitation radar with passive, radar-calibrated information

from infrared as well as microwave measurements

(Huffman et al. 2007). Based on monthly accumulation

sums, TRMM estimates are calibrated against nearby

gauge observations. TRMM 3B42-V7 data are available

on a 0.258 3 0.258 grid with 3-hourly temporal resolution.

c. Data preprocessing

Based on 1-day accumulated station observations, we

derive 2–5-day accumulated precipitation observations

by summing over consecutive 1-day observations. As

these cover the period from 0600 UTC of the previous

day to 0600 UTC of the considered day and as all TIGGE

subensembles, except Météo-France (MF), have initiali-

zation times different from 0600 UTC, we use the most

recent run available at that time and adapt accordingly.

Specifically, for the subensembles initialized at 0000

UTC, we use the difference between the 30-h accumu-

lated and the 6-h accumulated precipitation forecasts. For

initialization at 1200UTC, we use the difference between

the 42-h accumulated and the 18-h accumulated pre-

cipitation forecasts, and for longer accumulation times,

we extend this process correspondingly.

To obtain forecasts for a specific station location from

gridded NWP forecasts, both bilinear interpolation as

well as a nearest-neighbor approach are possible. We

use the latter, implying that the forecast for the station is

the same as the forecast for the grid cell containing the

station. Especially for large gridbox sizes, bilinear in-

terpolation may not be physically persuasive, and the

nearest-neighbor approach is more compelling.

TRMM observations are temporally aggregated to the

same periods as the station observations. As they do not

cover the exact same periods, the first and last 3-h TRMM

observations are weighted by 0.5. For evaluation on

different spatial scales, NWP forecasts and TRMM obser-

vations are aggregated to longitude–latitude boxes of

0.258 3 0.258, 18 3 18, and 58 3 28. As propagation of

precipitation systems is a potential error source and in an

environment with predominantly westward movement of

these systems, the largest box is tailored to assess NWP

forecast quality without this potential source of error.

d. Consistency between TRMM and station
observations

In light of the dry bias of the TRMM observations, we

evaluate the consistency of TRMM and station observa-

tions in our datasets. Specifically, we pair each station ob-

servationwith the TRMMobservation for the 0.258 3 0.258
box that contains the station location. Figure 2 shows

contingency tables of TRMM and station observa-

tions above and below 0.2mm, respectively, and two-

dimensional frequency plots for TRMM and station ob-

servations above 0.2mm, which is our threshold for the

distinction between rain and no rain throughout the paper,

as discussed in section 3b. For all regions the prevailing

case is the one with both TRMM and the station reporting

precipitation amounts below 0.2mm. Among the dis-

agreeing cases, the one with TRMM observing more than

0.2mm and the station less than 0.2mm is more frequent,

coinciding with the intuition that a station is more likely to

miss a precipitation event reported by TRMM than vice

versa. The least squares regression lines in the two-

dimensional frequency plots illustrate the dry bias of

TRMM relative to station observations when both report

rain. Overall, the agreement between the station and

TRMM observations is fair. Disagreements of the magni-

tude and type seen here arise for reasons of differing

coverage, spatial variability, and retrieval problems,

among other concerns, and are compatible with the extant

literature (see, e.g., Roca et al. 2010; Engel et al. 2017).

3. Methods

Probabilistic forecasts are meant to provide calibrated

information about future events. To be of use, they should

satisfy two properties. First, they should convey correct

probabilistic statements, in that observations behave like

randomdraws from the forecast distributions. This property

FIG. 1. Geographical overview of the study domain, with the locations of the observation

stations (dots) within the three considered regions.
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is called calibration. Second, under all calibrated forecasts,

sharper ones with lesser uncertainty are preferred.

a. Reference forecasts

For the assessment of raw and postprocessed ensem-

ble forecast skill, the availability of a benchmark fore-

cast is essential. Here, we introduce the concept of a

probabilistic climatology that consists of the observa-

tions during the 30 years prior to the considered year at

the considered day of the year and location. This can be

understood as a 30-member observation-based ensem-

ble forecast that represents the climatological distribu-

tion of rainfall at a given location and date, but does not

incorporate dynamic information about the state of the

atmosphere. We extend the probabilistic climatology by

including observations in a 62-day window around the

considered day and refer to this as the extended prob-

abilistic climatology (EPC). Our findings generally are

insensitive to the range of thewindow being chosen from

62 to 620 days as shown in Fig. S1 in the online sup-

plemental material.

Hamill and Juras (2006) note that pooling can lead

to a deterioration when performed across data with

differing climatologies, leading to a perceived, but in-

correct improvement of assessed model forecast skill. In

our case, however, neighboring daily climatologies are

very similar, and the pooling is performed over a range

of 62 days only. EPC has better forecast quality than

standard probabilistic climatologies (Fig. S1) and is used

as benchmark in the following. As TRMM observations

are available for the period 1998–2014 only, the TRMM-

based EPC relies on this period without the considered

verification year.

b. Assessing calibration: Unified probability integral
transform histograms

Verification rank histograms and probability integral

transform (PIT) histograms are standard tools for the

assessment of calibration, and we refer the reader to

Hamill (2001), Gneiting et al. (2007), and Wilks (2011)

for in-depth discussions of their use and interpretation.

In a nutshell, for calibrated probabilistic forecasts, rank

and PIT histograms are uniform, U-shaped histograms

indicate underdispersion, and skewed histograms

mark biases.

For an ensemble forecast, the verification rank is the

rank of the observation when it is pooled with the m

ensemble members; clearly, this is an integer between 1

andm1 1. If kmembers predict no precipitation, and no

precipitation is observed, the rank is randomly drawn

between 1 and k 1 1. For a probabilistic forecast in the

form of a cumulative distribution function (CDF) F

FIG. 2. Comparison of 1-day accumulated station and TRMMobservations of precipitation during themonsoon seasons of 2007–14. The

contingency tables contain the frequencies of TRMM and station observations below and above 0.2mm, respectively. The two-

dimensional frequency plots show the joint distribution of TRMM and station observations above 0.2mm, with the linear least squares

line overlaid. Observations above 50mm exist, but are very infrequent.
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and a verifying precipitation accumulation y. 0, the

PIT is the value F(y) of the forecast CDF evaluated at

the observation. In the case of no precipitation, a value is

randomly drawn between 0 and the forecast probability

of no precipitation (Sloughter et al. 2007).

In the present study, we compare raw ensemble fore-

casts to postprocessed forecasts in the form of CDFs, and

the TIGGE subensembles have varying numbers of

members. We use the term probabilistic quantitative

precipitation forecast (PQPF) to denote all these types of

forecasts. To allow a compelling visual assessment of

calibration in this setting, we introduce the notion of a

unified PIT (uPIT). For a forecast in the form of a CDF,

the uPIT is simply the PIT. For an ensemble forecast with

mmembers, if the observation has rank i and this rank is

unique, the uPIT is a random number from a uniform

distribution between (i2 1)/(m1 1) and i/(m1 1). If k

members predict no precipitation, and no precipitation is

observed, the uPIT is a random number between 0 and

(k1 1)/(m1 1). It is readily seen that for a calibrated

PQPF the uPIT is uniformly distributed. Hereinafter, we

use 20 equally spaced bins to plot uPIT histograms.

Our uPIT histograms focus on calibration regarding

the forecasted precipitation amount. However, any

PQPF induces a probability of precipitation (PoP)

forecast for the binary event of rainfall occurrence at

any given threshold value. We use a threshold of

0.2mm to define rainfall occurrence irrespectively of

the temporal and spatial aggregation at hand, with the

results reported on hereinafter being insensitive to this

choice.1 Reliability, the equivalent of calibration for

probability forecasts of binary events, means that

events declared to have probability p occur a pro-

portion p of the time. This can be checked empirically

in reliability diagrams, where the observed frequency

of occurrence is plotted versus the forecast probability

(e.g., Wilks 2011).

c. Proper scoring rules

For the comparative evaluation of predictive skill, we

use proper scoring rules that assess calibration and

sharpness simultaneously (Gneiting and Raftery 2007;

Wilks 2011). Specifically, the continuous ranked prob-

ability score (CRPS) for a PQPF with CDF F and a

verifying observation y is defined as

CRPS(F, y) 5

ð‘
2‘

[F(x)2 1(x$ y)]
2
dx ,

where 1 is an indicator function, equal to 1 if the argu-

ment is true and equal to 0 otherwise. From every PQPF,

we can extract a deterministic forecast and compute its

absolute error (AE). If the deterministic forecast is

chosen to be the median of the forecast distribution, the

AE can be interpreted as a proper scoring rule (Gneiting

2011; Pinson and Hagedorn 2012).2 Both the AE and the

CRPS are negatively oriented, and they are reported in the

unit of the observation (here, millimeters) and so can be

compared directly. In fact, if the forecast distribution is a

deterministic forecast, the CRPS reduces to the AE

(Gneiting and Raftery 2007).

With the PoP being an essential component of a

PQPF, the evaluation of PoP forecast quality by proper

scoring rules is desirable and can be accomplished by

means of the Brier score (BS; Brier 1950). For a prob-

ability forecast p for a binary event to occur, the nega-

tively oriented BS is (12 p)2 if the event occurs and p2 if

it does not occur.

It is well known that not only the BS, but many proper

scoring rules for probability forecasts of binary events

exist and that forecast rankings can depend on the

choice of the proper scoring rule. However, every

proper scoring rule admits a representation as a

weighted average over so-called elementary scores or

losses Su, which can be interpreted economically. Spe-

cifically, suppose that we are given a probability forecast

p for a binary event and need to make a deterministic

forecast of whether or not it will happen. If correct de-

cisions do not incur any costs, a false alarm carries cost u,

and a missed event has cost 12 u for some u 2 (0, 1), an

optimal strategy is to predict that the event will happen

when p. u and to predict that it will not happen when

p, u.3 The elementary score Su is the loss incurred by

this strategy. Ehm et al. (2016) advocate the use of

so-called Murphy diagrams, which display, for each

forecast considered, the mean elementary score as a

function of u 2 (0, 1). If a forecast receives a lower ele-

mentary score than another for every u, then it is pref-

erable for any decision-maker and receives lower scores

under just any proper scoring rule (Ehm et al. 2016). In-

terestingly, the area under a forecast’s graph in aMurphy

diagram equals half its mean BS, and the height of the

graph at u5 1/2 equals half the misclassification rate

when false alarms and misses incur equal costs.

1 Specifically, we checked thresholds from 0.0 to 1.0mm, with

minimal differences in findings. Exemplary results are available

from the authors upon request.

2 For this desirable interpretation to be valid, the deterministic

forecast needs to be chosen as the median of the forecast distri-

bution. For the mathematical argument and technical details see

the review article by Gneiting (2011) and the references therein.
3When p5 u, either action can be taken. These results are ele-

mentary and well known; see Ehm et al. (2016) and the references

therein.
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A popular graphical tool for the assessment of dis-

crimination ability in binary prediction problems is the

receiver operating characteristic (ROC) diagram; for

details of which we refer the reader to section 8.4.7 of

Wilks (2011). In a nutshell, for any given probability

forecast, the ROC curve is a plot of the hit rate versus the

false alarm rate as a function of the cutoff value for the

binary decision. The area under the ROC curve (AUC) is

commonly used as a measure of resolution and discrimi-

nation skill, with higher values being preferable. In con-

trast to Murphy diagrams, which consider both reliability

and discrimination and assess the actual value of a fore-

cast in decision-making, ROC curves and AUC values

are insensitive to (any lack of) reliability and, therefore,

reflect potential skill and value only (Wilks 2011, p. 346).

d. Statistical postprocessing

Statistical postprocessing addresses structural defi-

ciencies of NWP model output. Here, we use the well-

established methods of EMOS (Gneiting et al. 2005;

Scheuerer 2014) and BMA (Raftery et al. 2005; Sloughter

et al. 2007) to correct for systematic errors in ensemble

forecasts of precipitation accumulation.

In this section, we review thesemethods with a focus on

the 52-member ECMWF EPS, and we denote the values

of its HRES, CNT, and ENS members by xHRES, xCNT,

and x1, . . . , x50, respectively. We write xENS for the mean

of the ENS members, p for the fraction (out) of (all 52)

members that predict no precipitation, and denote the

observed precipitation accumulation by y. Adaptations of

the postprocessing schemes to the other TIGGE sub-

ensembles and the RMM ensemble are straightforward.

1) ENSEMBLE MODEL OUTPUT STATISTICS

The idea of the EMOS approach is to convert an en-

semble forecast into a parametric distribution, based

on the ensemble forecast at hand (Gneiting et al. 2005).

Scheuerer (2014) introduced an EMOS approach for

precipitation accumulation that relies on the three-

parameter family of left-censored generalized extreme

value (GEV) distributions. The left-censoring allows for

a point mass at zero and the shape parameter for flexible

skewness in positive precipitation accumulations.

Briefly, the EMOS predictive distribution based on

the ECMWF ensemble is a left-censored GEV distri-

bution. The location parameter of this distribution is a

linear function of xHRES, xCNT, xENS, and p, and its scale

parameter is a linear function of the ensemble mean

difference, which is a more robust measure of ensem-

ble spread than the standard deviation. While all

parameters are estimated from training data, the shape

parameter does not link to the ensemble values

(Scheuerer 2014).

For illustration, Fig. 3a shows an EMOS post-

processed forecast distribution for 5-day accumulated

precipitation at Ouagadougou, Burkina Faso. The

52 raw ECMWF ensemble members are represented by

blue marks; they include 11 values in excess of 200mm,

with the CNT member being close to 500mm. The

ensemble forecast at hand informs the statistical pa-

rameters of the EMOS postprocessed forecast distribu-

tion, which includes a tiny point mass at zero, and a

censored GEV density for positive precipitation accu-

mulations, with the 90th percentile being at 174mm.

2) BAYESIAN MODEL AVERAGING

A BMA predictive distribution is a weighted sum of

component distributions, each of which depends on a

single ensemble member. For the ECMWF ensemble,

the BMA method for precipitation accumulation pro-

posed and studied by Sloughter et al. (2007) and Fraley

et al. (2010) implies a statistical model of the form

yjx
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CNT

, x
1
, . . . , x
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i51
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i
),

with nonnegative weights wHRES, wCNT, and wENS that

sum to 1, and reflects the members’ performance during

the training period.4 Each of the component distribu-

tions, gHRES, gCNT, and gENS, contains a point mass at

zero and a density for positive accumulations. The point

mass at zero specifies the probability of no precipitation

and is estimated in a logistic regressionmodel, where the

cube root of the member forecast and a binary indicator

of the member forecast being zero are used as pre-

dictor variables. The specification for positive amounts

is based on a gamma density for the cube-root-

transformed precipitation amount, with a mean that

is a linear function of the cube-root-transformed mem-

ber forecast and a variance that is a linear function of the

member forecast. While the statistical coefficients for

the mean of the gamma model are estimated for gHRES,

gCNT, and gENS separately, the coefficients for the vari-

ance of the gamma model are shared. To obtain the

BMA predictive distribution for the linear precipitation

accumulation in millimeters, rather than the cube root

thereof, a backtransformation is applied as described by

Sloughter et al. (2007).

Figure 3b shows such a BMA postprocessed

forecast distribution for the aforementioned forecast

4Within this context, we take the chance to correct a typo-

graphical error in Fraley et al. (2010), where the factor 1/mi is

missing in between the summation signs in their Eq. (5).
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case at Ouagadougou. The postprocessed distribution

involves a point mass of about 0.01 at zero, and a mixture

of power-transformed gamma densities for positive ac-

cumulations, with the 90th percentile being at 141mm. In

this example, the BMA and EMOS postprocessed distri-

butions are sharper than the raw ECMWF ensemble, and

nevertheless the verifying accumulation is well captured.

Adaptations to the other ensembles considered in this

paper are straightforward, as described by Fraley et al.

(2010). For example, in the case of the RMM ensemble

each of the 15 contributors receives its own component

distribution, BMA weight, logistic regression coefficients

for the probability of no precipitation, and statistical pa-

rameters for the gamma mean model, whereas the co-

efficients for the gamma variance model are shared.

3) ESTIMATION OF STATISTICAL PARAMETERS

Postprocessing techniques such as EMOS and BMA

rely on statistical parameters that need to be estimated

from training data, comprising forecast–observation-

pairs either from the station or TRMM pixel at hand, or

from all stations or applicable TRMM pixels within the

considered region, and typically from a rolling training

period consisting of the n most recent days for which

data are available at the initialization time. We employ

the regional approach with a rolling training period of

n5 20 days, which yields superior results, consistent

with the literature (e.g., Thorarinsdottir and Gneiting

2010). As shown in Figs. S2–S5 in the supplementary

material, our findings are insensitive to the choice of n

when using training periods between 20 and 50 days. The

local approach requires longer training periods and (in

experiments not shown here) yields very similar results

then.

For EMOS, parameter estimation is based on CRPS

minimization over the training data, which is computa-

tionally efficient, as closed expressions for the CRPS

under GEV distributions are available (Scheuerer 2014).

FIG. 3. EMOS and BMA postprocessed ECMWF ensemble forecasts for 5-day accumu-

lated precipitation at Ouagadougou, valid 3–8 Aug 2007. The blue marks at bottom represent

the 52 raw ECMWF ensemble members, including the HRES (H) run, the CNT (C) run, and

the 50 perturbed ENS members. (a) The EMOS postprocessed forecast includes a tiny point

mass at zero and a censored GEV density for positive accumulations. (b) The BMA post-

processed forecast includes a point mass at zero, which is represented by the solid bar, and

a mixture of power-transformed Gamma densities for positive accumulations. The 52 com-

ponent densities are represented by the thin black curves, with the HRES and CNT com-

ponents standing out. The lower 90% prediction interval is indicated in light blue, and the

dashed bar represents the verifying precipitation accumulation.
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For BMA, we employ maximum likelihood estimation,

implemented via the expectation-maximization (EM)

algorithm developed by Sloughter et al. (2007). All

computations were performed in R (R Development

Core Team 2017) based on the ensembleBMA package

(Fraley et al. 2011) and code supplied by M. Scheuerer.

4. Results

Our annual evaluation period ranges from 1 May to

15 October, covering the wet period of theWest African

monsoon. The assessment of ECMWF ensemble fore-

casts is based on monsoon seasons 2007–14, and for the

other TIGGE subensembles we restrict our evaluation

according to availability as indicated in Table 1.

For verification against station observations, this

yields more than 3000, 6000, and 12 000 forecast–

observations pairs per monsoon season in East Sahel,

West Sahel, and Guinea Coast. For verification against

TRMM observations, we use 30 randomly chosen, non-

overlapping boxes per region at 0.258 3 0.258 and 18 3 18
aggregation and eight sites per region for 58 3 28
longitude–latitude boxes. This covers substantial parts of

the study region and results in about 5000 forecast–

observation pairs per monsoon season at the smaller

aggregation levels and well over 1000 pairs at our

highest level.

In section 4a, we study the skill of 1-day accumulated

ECMWF raw and postprocessed ensemble precipitation

forecasts in detail. Sections 4b and 4c present results and

highlight differences for longer accumulation times and

spatially aggregated forecasts. Section 4d turns to results

for all TIGGE subensembles, and we investigate the

gain in predictability through intermodel variability us-

ing the RMM ensemble. In our uPIT histograms and

reliability diagrams, we show results for the last avail-

able monsoon season only (2014), given that operational

systems continue to be improving (Hemri et al. 2014).

a. 1-day accumulated ECMWF forecasts

Figure 4 shows uPIT histograms for 1-day accumu-

lated raw and postprocessed ECMWF ensemble and

EPC forecasts over West Sahel, East Sahel, and Guinea

Coast. The histograms for the raw ensemble indicate

strong underdispersion as well as a wet bias (Figs. 4a–c).

At Guinea Coast, about 56% of the observations

are smaller than the smallest ensemble member, a result

that is robust across monsoon seasons. EMOS and

BMA postprocessed forecasts generally are calibrated

(Figs. 4g–l), as is EPC (Figs. 4d–f), except that the tails of

the EMOS predictive distributions are too light. Statis-

tical postprocessing also corrects for the systemati-

cally too-high PoP values issued by the raw ECMWF

ensemble. As shown in Fig. 5, EMOS and BMA post-

processed PoP forecasts are reliable, but are hardly

ever higher than 0.70. Generally, the postprocessed

PoP forecasts have reliability and resolution similar

to EPC.

Table 2 shows the mean BS, mean CRPS, and mean

absolute error (MAE) for the various forecasts and re-

gions, with the scores being averaged across monsoon

seasons 2007–14. We use a simple procedure to check

whether differences in skill are stable across seasons. If a

method has a higher (worse) mean score than EPC

during all eight seasons, we mark the score with 22; if it

is judged to be worse during seven seasons, we use a 2.

Similarly, if a method has a smaller (better) mean score

than EPC during all seasons, we mark the score as 11; if

it performs better during seven seasons, we label it as 1

in Table 2. Viewed as a (one sided) statistical test of the

hypothesis of predictive skill equal to EPC, the associ-

ated tail probabilities or p values are 1/28 5 0:0039 . . .

and (11 8)/28 5 0:035 . . ., respectively. Clearly, the raw

ECMWFensemble underperforms relative to EPC, with

the 22 designations used throughout, and the EMOS

and BMA postprocessed forecasts perform at about the

same level as EPC. For the BS, the similar performance

of postprocessed and EPC forecasts stems from the fact

that not only do postprocessed and EPC forecasts show

similar reliability but also similar resolution, as seen

from the inset histograms in Figs. 5d–l.

The Murphy diagrams in the top row of Fig. 6

corroborate these findings. For 1-day precipitation oc-

currence, decision-makers will mostly prefer the cli-

matological reference EPC over the raw ECMWF

ensemble, and only some decision-makers will have a

slight preference for EMOS or BMA postprocessed

forecasts, as compared to EPC. Further light on these

issues is shed by the ROC diagrams in the bottom row of

Fig. 6. EMOS and BMA PoP forecasts can be in-

terpreted as recalibrated raw ensemble probabilities,

and so it is not surprising that for West Sahel and East

Sahel, raw and postprocessed forecasts show essentially

the same level of discrimination skill, at a level that is

slightly superior to EPC. For Guinea Coast, EMOS and

BMA have considerably higher AUC values than the

raw ensemble, due to the extreme concentration of the

raw ensemble probabilities at very high levels, as illus-

trated in Fig. 5c. In contrast, the Murphy curves are

sensitive to calibration and show marked differences

between raw and postprocessed forecasts. Overall, these

are sobering results, as they suggest that over northern

tropical Africa the ECMWF 1-day accumulated pre-

cipitation forecasts are hardly of practical use.

What could be possible reasons for the poor perfor-

mance of the raw forecasts? A number of recent studies
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FIG. 4. The uPIT histograms for (a)–(c) raw ECMWF ensemble, (d)–(f) EPC, and (g)–(i) EMOS and

(j)–(l) BMA postprocessed forecasts of 1-day accumulated precipitation during the monsoon season of 2014,

verified against station observations. Histograms are cut at a height of 3, with the respectivemaximal height noted.

The dashed line indicates the uniform distribution that corresponds to a calibrated forecast.

378 WEATHER AND FORECAST ING VOLUME 33



FIG. 5. Reliability diagrams for (a)–(c) raw ECMWF ensemble, (d)–(f) EPC, and (g)–(i) EMOS and

(j)–(l) BMA postprocessed forecasts of 1-day accumulated precipitation during the monsoon season of 2014,

verified against station observations. The diagonal indicates perfect reliability, and the histograms show the

relative frequencies of the PoP forecast values.
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have shown that the use of convective parameterization

is a first-order error source for realistically representing

precipitation, cloudiness, wind, and even the regional-

scale monsoon circulation in West Africa together with

their respective diurnal cycles (e.g., Pearson et al. 2014;

Marsham et al. 2013; Birch et al. 2014; Pantillon et al.

2015). Based on these results, and given that all of the

models we investigate use convective schemes, we

suspect this aspect to be a major cause of the poor

performance we find. A visual comparison of 1-day

accumulated precipitation forecasts from ECMWF

HRES and TRMM shows that rainfall structures in

TABLE 2. Mean BS at a threshold of 0.2mm, mean CRPS, and MAE for raw ECMWF ensemble, EPC, and EMOS and BMA post-

processed forecasts of 1-day accumulated precipitation during the monsoon seasons of 2007–14, verified against station observations. If

a method has a higher (worse) or lower (better) mean score than EPC during all eight seasons, the score is marked with a 22 or 11,

respectively; if it performs worse or better than EPC during seven seasons, the score is marked with a 2 or 1.

BS CRPS MAE

West Sahel East Sahel Guinea Coast West Sahel East Sahel Guinea Coast West Sahel East Sahel Guinea Coast

ENS 220.32 220.32 220.48 224.50 222.63 226.99 225.36 223.13 228.39

EPC 0.19 0.15 0.23 3.75 2.08 5.28 4.60 2.38 6.57

EMOS 0.19 0.15 0.23 3.75 2.15 15.25 4.65 222.45 6.60

BMA 10.18 0.15 110.22 3.71 2.07 115.20 4.58 2.38 6.53

FIG. 6. (a)–(c) Murphy diagrams and (d)–(f) ROC curves (with respective AUC values) for ENS, EPC, and EMOS and BMA

postprocessed 1-day accumulated PoP forecasts during the monsoon season of 2014, verified against station observations.

380 WEATHER AND FORECAST ING VOLUME 33



the model tend to be too widespread and too light,

lacking signs of mesoscale organization (see Fig. S6 for

an example). Inspection of raw ensemble data suggests

that, for both station and TRMM observations, agree-

ment between the forecasts and observations is modest

at best. Many observed precipitation events are either

not predicted at all, are strongly underpredicted, or are

predicted by (almost) all ensembles members (with

varying amounts of precipitation), yet are not observed

(see Fig. S7 for an illustrative example). In particular,

the second point is an indication of a misrepresentation

of real-world squall-line systems by the model.

b. Longer accumulation times

One might expect NWP precipitation forecasts to

improve relative to EPC at longer accumulation times,

as the main focus in forecasting shifts from determining

time and location of initiation and subsequent propa-

gation of convection toward determining regions with

enhanced or reduced activity, based on large-scale

conditions. Longer lead times might also lead to

growth in differences between perturbed members and,

thus, reduce the raw ensemble underdispersion.

The uPIT histogram in Fig. 7a indicates only slight, if

any, improvement in calibration for raw ECMWF 5-day

accumulated precipitation forecasts over West Sahel,

and the results for the other regions are similar (not

shown). Raw ensemble reliability improves at longer

accumulation times, verified against either station ob-

servations in Fig. 7b, or 58 3 28 TRMM observations in

Figs. 7c and 7d, though at a loss of resolution.

Table 3 uses the same settings as in Table 2, but the

scores are now for 5-day accumulated precipitation. The

raw ECMWF ensemble still underperforms relative to

EPC. The EMOS and BMA postprocessed forecasts

outperform EPC only slightly, with the differences in

scores being small and typically not being stable across

monsoon seasons. Despite the change in the underlying

forecast problem, even postprocessed ECMWF ensem-

ble forecasts are generally not superior to EPC.

c. Spatially aggregated observations

For the assessment of forecast skill at larger spatial

scales, we focus on ECMWF raw and BMA post-

processed ensemble forecasts over West Sahel, evalu-

ated by the Brier score and CRPS. This is due to the

similarities in CRPS and MAE results, better perfor-

mance of BMA compared to EMOS in many instances,

and results for West Sahel that are as good for BMA

postprocessed forecasts as for East Sahel, and better

than for Guinea Coast.

The use of spatially aggregated TRMM observations

avoids problems of point-to-pixel comparisons, and at

higher aggregation we can assess the forecast quality

with minimal propagation error. The dry bias of TRMM

disadvantages the raw ensemble compared to EPC and

postprocessed forecasts, but does not hinder assess-

ments regarding systematic forecast errors. As illus-

trated in Fig. 7c, 1-day PoP forecasts from the raw

ECMWF ensemble remain unreliable even at the 58 3 28
gridbox scale. It is only under large scales and longer

accumulation times simultaneously, when precipitation

occurs almost invariably, that raw ensemble PoP fore-

casts become reliable (Fig. 7d).

Table 4 shows mean Brier and CRPS scores at various

spatial aggregations for 1-day precipitation accumula-

tion, verified against TRMM observations. The raw

ECMWF ensemble forecast is inferior to EPC at all

resolutions and in every single region and season. BMA

postprocessed forecasts outperform EPC across aggre-

gation scales, and in every single region and season, but

the improvement relative to EPC remains small.

d. TIGGE subensembles and RMM ensemble

In addition to the ECMWF EPS, which we have

studied thus far, the TIGGE database contains several

more operational subensembles, as listed in Table 1.

Figure 8 shows uPIT histograms for the various sub-

ensembles and the RMM ensemble for 1-day accumu-

lated precipitation forecasts over West Sahel. All

TIGGE subensembles exhibit underdispersion and wet

biases, though to strongly varying degrees.

Figure 9 displays Brier and CRPS skill scores relative

to EPC for raw and BMA postprocessed TIGGE

subensemble and RMM ensemble forecasts during

2007–14, verified against station observations. All raw

ensembles underperform relative to EPC, in part drasti-

cally so. For most subensembles, a temporal improve-

ment in skill is visible, with themonsoon seasons of 2011–14

revealing higher skill than those during 2007–10. Post-

processing by BMA increases forecast quality. The

ECMWF, Korea Meteorological Administration (KMA),

NCEP, andUKMOensembles yield the best postprocessed

forecasts, exhibiting small positive skill relative to EPC for

most monsoon periods. The BMA postprocessed RMM

ensemble outperforms all subensembles as well as EPC, but

the improvement is small. As shown in Fig. 10, the mean

perturbed forecasts from the ECMWF, UKMO, and

NCEP ensembles are the top three contributors to the

BMA postprocessed RMM forecast.

In further experiments, we have studied raw and

postprocessed TIGGE subensemble and RMM ensem-

ble forecasts at accumulation times of up to 5 days and

spatial aggregations of up to 58 3 28 grid boxes in

TRMM. Our findings generally remain unchanged. The

raw ensemble forecasts never reach the quality of the

APRIL 2018 VOGEL ET AL . 381



climatological reference EPC. After postprocessing

with BMA, the ECMWF ensemble typically becomes

the best-performing TIGGE subensemble, showing

slightly better scores than EPC when verified against

TRMM observations, at all spatial aggregations. The

BMA postprocessed RMM forecast depends heavily on

FIG. 7. Calibration and reliability of raw ECMWF ensemble forecasts over West Sahel during the monsoon

season of 2014 at 1- and 5-day accumulations. The (a) uPIT histogram and (b) reliability diagram for 5-day ac-

cumulated precipitation, verified against station observations. (c),(d) Reliability diagrams for 1- and 5-day accu-

mulated precipitation, verified again 58 3 28 aggregated TRMM observations. Same setup as in Figs. 4 and 5.

TABLE 3. Mean BS, mean CRPS, and MAE for raw ECMWF ensemble, EPC, and EMOS and BMA postprocessed forecasts of 5-day

accumulated precipitation during the monsoon seasons of 2007–14, verified against station observations. The setup is as in Table 2.

BS CRPS MAE

West Sahel East Sahel Guinea Coast West Sahel East Sahel Guinea Coast West Sahel East Sahel Guinea Coast

ENS 0.14 220.25 220.10 2212.80 228.42 2219.69 16.23 2210.76 224.41

EPC 0.12 0.16 0.08 11.63 7.07 16.54 16.15 9.56 22.98

EMOS 0.13 0.16 20.08 11.62 7.34 16.44 115.99 9.96 22.74

BMA 10.11 110.15 0.08 1111.47 16.94 16.33 116.07 19.45 22.92
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the ECMWFmean perturbed forecast and is superior to

both EPC and the BMA postprocessed subensemble.

5. Discussion

In a first-ever thorough verification study, the quality of

operational ensemble precipitation forecasts from dif-

ferent NWP centers was assessed over northern tropical

Africa for several years, accumulation periods, and for

station and spatially aggregated satellite observations.All

raw ensembles exhibit calibration problems in the formof

underdispersion and biases and are unreliable at high PoP

forecast values. They have lower skill than the climato-

logical reference EPC for the prediction of occurrence

and amount of precipitation, with the underperformance

being stable across monsoon seasons.

After correcting for systematic errors in the raw en-

semble through statistical postprocessing, the ensemble

forecasts become reliable and calibrated, but only a few

are slightly superior to EPC. While ramifications and

developments of both EMOS and BMA might be fea-

sible (see, e.g., Fortin et al. 2006; Scheuerer and Hamill

2015), and training sets could be augmented by using

reforecast data (e.g., Di Giuseppe et al. 2013), the re-

spective benefits are likely to be incremental at this time,

though as the raw ensemble performance improves, they

might become substantial. Not surprisingly, forecast

skill tends to be highest for long accumulation times and

large spatial aggregations. Overall, raw ensemble fore-

casts are of no use for the prediction of precipitation

over northern tropical Africa, and even EMOS and

BMA postprocessed forecasts have little added value

compared to EPC.

What are the reasons for this rather disappointing

level of performance for the state-of-the-art global

EPSs? For 1-day accumulated precipitation forecasts,

the ability of an NWP model to resolve the details

of convective organization is essential. As all global

EPSs use parameterized convection, this clearly limits

the forecast skill. The fact that even postprocessed 1-day

accumulated ensemble forecasts exhibit no skill relative

to EPC implies that ensembles cannot translate in-

formation on the current atmospheric state (e.g., tropi-

cal waves or influences from the extratropics) into

meaningful impacts regarding the occurrence or amount

of precipitation. This is robust for verification against

station as well as satellite observations and cannot,

therefore, be explained by propagation errors.

For longer accumulation times and larger spatial ag-

gregations, the large-scale circulation has amuch stronger

impact on convective activity, which should weaken the

limitations through convective parameterization. The

skill of 5-day accumulated precipitation forecasts, how-

ever, increases only slightly, if at all, compared to 1-day

accumulated forecasts. The most likely reason for this is

that squall lines have feedbacks on the large-scale circu-

lation, which are not realistically represented in global

NWP models either. Marsham et al. (2013) find that the

large-scale monsoon state in (more realistic) simulations

with explicit convection differs quite markedly from runs

with parameterized convection, even when using the

same resolution of 12km. In the explicit-convection

simulation, greater latent and radiative heating to the

north weakens the monsoon flow, delays the diurnal cy-

cle, and convective cold pools provide an essential com-

ponent to the monsoon flux. We suspect that some or all

of these effects are misrepresented in global EPS

forecasts.

The fact that EPS precipitation forecasts are so poor

over northern tropical Africa is a strong demonstration

of the complexity of the underlying forecast problem.

An interesting question within this context is whether

poor predictability in the tropics is unique to northern

Africa with its strongly organized, weakly synoptically

forced rainfall systems.

Furthermore, the lack of skill motivates complemen-

tary approaches to predicting precipitation over this

region. Little et al. (2009) compare operational NCEP

ensemble, climatological, and statistical forecasts for

stations in the Thames Valley, United Kingdom. They

note that NCEP forecasts outperform climatological

forecasts, but demonstrate that statistical forecasts,

TABLE 4. Performance of spatially aggregated raw ECMWF ensemble, EPC, and BMA postprocessed forecasts of 1-day accumulated

precipitation during the monsoon seasons of 2007–14, verified against TRMM gridbox observations. The setup is as in Table 2.

TRMM 0.258 3 0.258/1 day TRMM 18 3 18/1 day TRMM 58 3 28/1 day

BS CRPS CRPS CRPS

West

Sahel

East

Sahel

Guinea

Coast

West

Sahel

East

Sahel

Guinea

Coast

West

Sahel

East

Sahel

Guinea

Coast

West

Sahel

East

Sahel

Guinea

Coast

ENS 220.30 220.23 220.48 222.29 221.44 224.03 222.24 221.56 224.43 221.95 221.53 224.22

EPC 0.19 0.14 0.23 1.07 0.57 1.35 0.94 0.58 1.36 0.81 0.49 1.07

BMA 110.17 110.13 110.21 111.03 110.55 111.29 110.89 110.55 111.28 110.76 110.45 110.95
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solely based on past observations, can outperform

NCEP forecasts by exploiting spatiotemporal de-

pendencies. These also exist over northern tropical

Africa and some additional predictability may stem from

large-scale drivers such as convectively coupled waves.

Fink andReiner (2003) note a coupling of the initiation of

squall lines to African easterly waves and Wheeler

and Kiladis (1999) the influence of large-scale tropical

waves, such as Kelvin and equatorial Rossby waves or

the Madden–Julian oscillation, on convective activity.

Pohl et al. (2009) confirm the relation between the

Madden–Julian oscillation and rainfall over West Af-

rica, and Vizy and Cook (2014) demonstrate an impact

of potential extratropical wave trains on Sahelian

rainfall. Statistical models based on spatiotemporal

characteristics of rainfall and extended by such large-

scale predictors seem a promising approach for im-

proving precipitation forecasts over our study region,

and we expect such forecasts to outperform climatol-

ogy. This approach will be explored in future work.

FIG. 8. The uPIT histograms for raw TIGGE subensemble and raw RMM ensemble forecasts of 1-day accumulated precipitation over

West Sahel during the monsoon season of 2013, verified against station observations. Same setup as in Fig. 4.
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As discussed in section 4a, we suspect convective pa-

rameterization to be a major cause of the low quality of

the model-based forecasts here. Therefore, it would be

interesting to test ensembles of convection-permitting

NWP model runs, ideally in combination with ensemble

data assimilation, but the computational costs are high,

and it will take time until a multiyear database will be-

come available for validation studies. Alternatively, it

could be tested whether systematic improvements to

convection schemes (e.g., Bechtold et al. 2014) do in fact

positively impact ensemble forecast quality. Given the

growing socioeconomic impact of rainfall in northern

tropical Africa with its rain-fed agriculture, statistical and

statistical–dynamical approaches should be fostered in

parallel in order to improve the predictability of rainfall

in this region.

FIG. 9. (a),(c) Brier and (b),(d) CRPS skill scores for raw and BMA postprocessed TIGGE subensemble forecasts of 1-day accumulated

precipitation overWest Sahel during themonsoon seasons of 2007–14, verified against station observations. Skill equal toEPC is indicated by

the dashed line.
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APPENDIX

Quality Control for Precipitation Observations
within KASS-D

Rainfall exhibits extremely high spatial and temporal

variability, which hinders automated quality checks ap-

plicable to other meteorological variables such as tem-

perature or pressure. For precipitation, Fiebrich and

Crawford (2001) note only a range and a step test. The

global range of station-observed 1-day accumulated pre-

cipitation is from 0 to 1825mm. All KASS-D observa-

tions passed this test. The step test checks if the difference

of neighboring 5-min accumulated precipitation is

smaller than 25mm. For 1-day accumulated precipita-

tion, tests of this type are not meaningful, nor are the

persistence tests used by Pinson andHagedorn (2012) for

wind speed.

However, the site-specific climatological distributions of

precipitation accumulation should be right skewed (i.e., the

median should be smaller than the mean), and in the

tropics they should have a point mass at zero (Rodwell

et al. 2010). As noted, we only consider stations with more

than 80% available observations in any of the monsoon

seasons, and all 132 stations thus selected passed these tests.
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