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Abstract—For the sustainable development of smart cities
across the globe, energy efficiency is becoming a major factor to
the maintenance and planning of buildings. In order to demon-
strate the potential of data driven approaches in understanding
building energy usage, we conduct a data analysis study based
on a 10-year data set from 361 buildings of a university campus
that are equipped with 1951 smart meters. The preliminary
results obtained from our analysis is presented. Results of
both clustering analysis and prediction analysis offer a better
understanding of common building energy usage as well as
a better identification of anomalous behaviors in the usage
patterns.

1. Introduction

Probably the greatest challenges of our time lie in the
area of sustainable development: reduction of CO2 emis-
sions, increase of energy efficiency, safeguarding the world
food supply and the integration of suitable measures into the
human environment. Buildings are responsible for 40% of
the energy consumption and 36% of the CO2 emissions in
the EU [1]. By improving the energy efficiency of buildings,
it is possible to reduce the total EU energy consumption by
5-6% and lower CO2 emissions by about 5% [1].

While reducing resource consumption and increasing
efficiency is a safe investment in the long run, necessary
investments have to be prioritized. Furthermore, measures
need to reflect the actual usage of building infrastructure,
that constantly changes based on the needs of its inhabitants.
Metering data has the potential to reflect these dynamically
changing usage very accurately. While energy companies
use data for supply planning, currently, still insufficient
(big data) tools are available for facility management to
use metering data productively. Based on our experiences
with analyzing data for industrial applications, we applied
a process of potential analysis to identify potential data-
driven innovations based on a data set provided to us by the
facility management of a closed research campus comprising
production facilities, office buildings, a computing center, a
cafeteria, transport facilities, a small scale power plant and
large scale research facilities. Buildings were built beginning
in the 1950s until today based on different civil engineering
standards, and have been reused and extended based on the

changing demands of approximately 4000 people. Except
for residential buildings the campus provides an interesting
diverse mix of energy consumers in an area of two square
kilometers. For most of those buildings we have nearly 10
years of energy consumption data available for analysis,
which provides an excellent basis for further research.

In this paper reports our initial findings applying a data
driven approach to the data set for identifying innovation
potentials. While the process was explorative, we started
with a number of initial questions:

• Is it possible to derive further understanding of the
facilities beyond existing information?

• Can we derive hints for infrastructure planning from
the data?

• Can we derive easy to understand classification and
ranking schemes for buildings?

• What other data sources need to be combined with
the data set for the sake of a better interpretation of
the data?

• Does a fine-grained look into the data allow us to
identify consumption patterns and to disaggregate
different demands?

2. Related Work

In recent years, energy load forecasting has become one
of the major areas of research in electrical engineering,
especially short-term load forecasting has become increas-
ingly important since the rise of competitive energy markets
[2]. Load forecasting is, however, challenging, due to the
inuence of many important exogenous variables. A wide
variety of procedures has been tried for short-term load
forecasting in the literature. These procedures can typically
be classified into two categories of forecasting models [2]:
time series (univariate) models, in which the load is modeled
as a function of its past observed values, and causal models,
in which the load is modeled as a function of some exoge-
nous factors, particularly weather and social variables. More
recently, machine learning techniques have been applied to
the problem with a specific focus on probabilistic inference
modeling [3], support vector machine or regression [4] and
artificial neural networks [5]. Also random forest [6] and
deep learning [7] have proven their worth for short-term load



forecasting. However, most existing researches of building
load forecasting are based on only one or several buildings
[8] [9] [10]. Researches based on large set of buildings with
various metering data are still rare.

While improving the energy systems themselves has
been a vastly studied field, much less research is published in
assessing building stock based on available data sets. This is
in part due to municipal separation of concerns and energy
field market liberalization, which rarely makes it possible
to gain access to all relevant data, particularly for research
purposes. However there are still some interesting research
work, like Mata et al. [11] provide an analysis on the current
energy usage and associated carbon dioxide (CO2) emis-
sions of the Swedish residential building stock, which in-
cludes single-family dwellings and multi-family dwellings.
[12] introduces a bottom-up statistical methodology based
on a Geographical Information System (GIS) to estimate the
energy consumption of residential stocks across an entire
city. Further, weighted robust regression and geographically
weighted regression (GWR) models are applied to analyze
the determinants and spatial patterns of water consumption
in over 2300 multi-family buildings located in New York
City. The results disclose the factors which have statistically
significant effects on water use intensity [13]. The data
set we have got possesses various resource consumption
information of a university campus, which offer us potential
to gain new hints for improving energy systems.

3. Data Overview and Preprocessing

In this section, we present a short overview of our data
set and talk about how we preprocessed the data. The data
set is made available by the university facility management
department, particularly for research dedicated to the im-
provement of the given energy infrastructure. The data set
consists of smart meter data from the 1st of January 2006 to
the 6th of May 2015. The total size is approximately 32GB.
The meters have been read every 15 minutes, the value and
time of cumulative meter readings have been recorded in
the data set accordingly. The resource consumption over a
time interval of 15 minutes is referred to as quarter con-
sumption. Additional meter information regarding location,
measuring medium, identifier etc. is also recorded. The data
set comprises in total 1951 meters distributed among 361
buildings. According to the measuring, they are categorized
into 11 types as seen in table 1.

Although additional data for a diversity of meters is
available, in our first analysis we look at load data as one
of the factors for improvement, due to the particularly high
needs for cooling and lighting in our facilities (heating is the
next obvious thing to look at). However, it is clear on the
first glance that not all buildings have the same amount of
data available, with some meters having only a few recent
measurements. The second issue found is that for some
buildings the assignment of meters is not clear. Therefore,
buildings with no clearly assigned power meters have to be
ignored. After removal of buildings with no power meter or
too few readings, we obtained load data for 185 buildings.

Medium Quantity
Chemical wastewater 223

Compressed Air 78
Water Leakage 8

Gas 4
Cafeteria Waste 1
Cooling Water 14

Rain Water 310
Electricity 780

Drinking Water 203
Purified Water 52

Heat 278
TABLE 1. MONITORING METER TYPES AND THEIR QUANTITY
DISTRIBUTED AMONGST THE 361 BUILDINGS OF THE CAMPUS.

Having a further look at the data, we found that for some
meters there are abnormally large quarterly consumption
rates. One possible explanation is the historical exchange
or reset of meters. Such anomalies (probable measurement
failures) were replaced by last-known values. Beyond obvi-
ous failures, we had to clean some outliers whose values are
considerably larger than the mean value. These outliers are
filtered by applying a reasonably safe empirical 3-sigma-
thresholds and replacing them with last-known values.

4. Load Profile Clustering

Building load profile clustering benefits the campus
management department in two aspects: 1) It can help
people enhance the comprehension on power consumption
of each building, and improve supply planning. 2) It could
help to design the Time of Use (ToU) tariff and contribute to
formulation of a more efficient and balanced campus grid.

In this section, we explore the following questions: Are
there any load cycle patterns in time domain of different
buildings? Can we classify buildings into different cate-
gories based on these patterns? By investigating the load
profile, it is easy to notice that there is a weekly pattern.
Inspired by this observation, we restrict ourselves on weekly
aggregated load data for clustering. We first upsample the
data from 15 min/sample to 3 hours/sample, then we have 8
reading samples for each day and in total 56 samples for a
week. K-means algorithm is employed to perform clustering,
and two feature vectors are selected for the algorithm:

• Absolute aggregated load. We aggregate the abso-
lute load data of all the meters in the same building
week by week from 1st Jan 2006 to 6th May 2015.

• Scaled load fluctuation. The absolute aggregated
load is scaled by subtracting mean value of itself to
show the fluctuation of the load.

By trail and error, we set K as 8 for absolute load cluster-
ing to have enough load levels. Fig 1 shows that, 7 clusters
distinguish each other by the absolute load value (there is
one cluster excluded, which contains the aggregated load
of all the other meters). The load tends to decrease during
the weekend for some buildings but there do exist some
buildings whose load does not change too much between
weekdays and weekends. This phenomenon implies the



Figure 1. Clustering results of absolute building
load profile (weekly aggregated)

Figure 2. clustering results of scaled building
load fluctuation (weekly aggregated)

Figure 3. Clustering results matrix. Rows of the
matrix stand for clusters based on absolute load
profile, columns stand for clusters based on load
fluctuation. Numbers in the matrix represent
amount of buildings in corresponding cluster.

effects of human activity and facility operation. It could be
inferred that building loads with a clear weekday/weekend
difference are dominated by human activity, while others
with no clear weekday/weekend difference are dominated
by facility operation.

Fig. 2 shows clustering results of scaled load fluctuation
with K set as 4. Mean values are subtracted from the load
profiles of each building to scale them to the same level. The
load fluctuation provides us with a new angle on viewing
and distinguishing building load profiles. It is interesting to
note that the yellow cluster works in a reverse phase style
compared with buildings in other clusters. The peaks of its
load always appear at night. The reason might be that the
equipment in these buildings needs to operate during the
night and shut down during the day. We see that there is a
potential for load balancing, it is interesting to compare the
cluster results with building types and usage types to check
the potential information gain.

We combine and reorganize the results above to obtain
the clustering results matrix shown in Fig. 3. The numbers
in the matrix stand for the amount of buildings with different
absolute load and load fluctuation. There are 7 rows in
the matrix which corresponds to 7 absolute load clusters
with increasing load, and 4 columns representing 4 load
fluctuation clusters with increasing fluctuation amplitude. It
shows that a large part (127/185) of the buildings could be
characterized as relatively low absolute load and low load
fluctuation. And there is a decreasing trend for the amount of
buildings when the absolute load increases. The first column
could be described as nearly constant low load fluctuation,
the second column is with slightly higher fluctuation but
working with an opposite load phase, the third column is
with high fluctuation, the fourth column is with highest
fluctuation and stable valley value at weekend.

5. Load Profile Prediction

Based on the knowledge acquired from clustering in last
section, we further investigate the problem of load profile
prediction. Due to European Data Protection Regulation and
privacy concerns, we do not have detailed information about
the users. Intuitively most campus buildings are planned
based on functionality. We assume users sharing the same

power meter belong to the same faculty so that they are
supposed to behave similarly. Without loss of generality, we
selected building A with two power meters and performed
load forecasting for both individual meters and the building
itself. Support Vector Machine (SVM) is used in our load
profile prediction.Considering the clear weekday/weekends
and day/night patterns in the building load profiles, the
following features are included in the feature vector for
training:

• Normalized historical time series load data with 7 *
24 * 4 bits.

• 24-hour information with 24 bits.
• Weekday information with 7 bits.
• Holiday information with 1 bit.

We train the SVM model with a one-year data set (from
1st Jan 2006 to 31st Dec 2006) and test the model with
the rest of the data. The criteria we used for measuring the
forecasting error between the actual and predicted load is
Mean Squared Error (MSE).

As we can see in Fig. 4 and Fig. 5, the trained model
could provide load prediction which matches the real data
quite well for both individual meter and building cases.
Still there are some anomalies in the load profile which go
beyond the model’s prediction capabilities. Additionally, the
trained model tends to generate larger prediction error for
weekends compared to weekdays. The MSE performance on
prediction for the individual meter and building (see Fig. 6)
are quite similar (so we omit the figure for individual meter),
which tells that the model works well for both cases. Note
that the MSE values increase considerably in the 9th year
and drop in the 10th year, which implies there might be
some sudden changes in building usage. These anomalies
should be excluded for load prediction.

6. Discussion and Future Work

Although we have derived some preliminary results on
clustering and prediction, it is believed that the work we
have done on this data set discloses only a small part of
its value. There are still quite a lot of unmined golden
nuggets. For instance, taking the data of other media into
account could provide further insight on building clustering



Figure 4. A close look into load forecasting for power meter with ID1

Figure 5. A close look into load forecasting for Building A

results. Viewing the data from a different domain through
transformation could also provide new possibilities for clus-
tering. Further, it is interesting to explore if there is any
relevance between load profile and building location. For
load forecasting, it helps to further improve the prediction
performance if the effects of season, weather and outside
temperature are taken into account. Fortunately, we have
acquired high-resolution environment data for the same
campus shortly before the submission of this manuscript.
Correlation analysis between the environmental factors and
building load profiles is scheduled for future work.

7. Conclusion

A data-driven potential analysis on building load profiles
was conducted in this paper. Load data of 185 buildings, out
of 361 buildings equipped with 1951 meters, were selected
and cleaned for further process. A better understanding of
building usage pattern is achieved through building load
profile clustering. Additionally, an SVM based load profile
forecasting model was trained and tested for both building
and individual meter cases. Results suggested good predic-
tion accuracy and a high remaining potential for insights out
of the data set.
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