

 Karlsruhe Reports in Informatics 2018,2
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Takeuti’s First-Order Theory of Ordinals

Revisited

 Peter H. Schmitt

 2018

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/

Takeuti’s First-Order Theory of Ordinals
Revisited

Peter H. Schmitt

Karlsruhe Institute of Technology (KIT), Dept. of Informatics
Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. These notes contain technical details that could not be fitted
into the paper submitted to IJCAR 2018. The conference submission
analyses the relationship between Takeuti’s theory of ordinals published
in [6] and my theory in the paper [5].

1 Introduction

In [5] a theory Th0
ord of ordinals was proposed. The theory was implemented in

the KeY program verification system and was used to mechanically derive a large
body of the result on ordinal arithmetic known from the pertinent textbooks. A
detailed report of is effort is available in the technical report [4] . The paper also
contained an account of a small case study proving the termination of Goodstein
sequences. Since termination of Goodstein sequences cannot be proved in Peano
Arithmetic this shows that Th0

ord is strictly stronger than Peano Arithmetic.
A previous paper by Gaisi Takeuti [6] that also presented a theory ThTak of

ordinals was quoted in [5]. We remarked that ThTak is more geared towards the
construction of an inner model of full Zermelo-Fraenkel (ZF) set theory and less
suitable for implementation than our theory Th0

ord. In these notes we clarify the
relation between Th0

ord and ThTak. We consider a variation Thord of Th0
ord that

only differs in a stronger form of the replacement axiom scheme. The main result
of the paper is that a definitional extention of Thord is equivalent to Th−Tak,
which is ThTak without the cardinality axiom, axiom number 22 in Figure 23.

What do these notes supply that the conference paper does not:

1. With every axiom of Thord and its numerous definitional extension the name
of the taclet is given that formalizes it in the KeY system.
This helps to find the proof scripts for each derived lemma. The name of the
taclet is part of the name of the .key file containing the proof script.

2. Sections 7 and 4

2 A Theory of Ordinals

We consulted the books [1,7] and also the books [2,3] in German on ordinal
arithmetic in axiomatic set theory.

2.1 The Core Theory

We start out with a very simple core of the theory Thord with the vocabulary
shown in Figure 1. It is more minimalistic than in [5] in that the supremum

mathematical notation Dynamic Logic
predicate n < m : (Ord,Ord) olt(n,m)
functions n+ 1 : Ord→ Ord oadd(n, o_1)

0 : Ord o_0
ω : Ord omega

Fig. 1. The vocabulary of the Core Theory

operator is not in it. It will be introduced in definitional extensions further down
the road. Also the theory in [5] used only a special case of the replacement axioms
scheme.

1. ∀x, y, z(x < y ∧ y < z → x < z) transitivity
taclet: olt_transAxiom, olt_trans, olt_transAut

2. ∀x(¬x < x) strict order
taclet olt_irref_Axiom, olt_irref

3. ∀x, y(x < y ∨ x .= y ∨ y < x) total order
taclet: olt_total_Axiom

4. ∀x(0 ≤ x) 0 is smallest element
taclet: oleq_zeroAxiom, olt_0Min, oleq_zero

5. 0 < ω ∧ ¬∃x(ω .= x+ 1) ω is a limit ordinal
taclet: omegaDef1

6. ∀y(0 < y ∧ ∀x(x < ω → x+ 1 < y)− > ω ≤ y) ω is the least limit ordinal
taclet: omegaDefLeastInf

7. ∀x(x < x+ 1) ∧ ∀x, y(x < y → x+ 1 ≤ y) x+ 1 is successor function
taclets: oSucc, oLeastSucc

8. ∀x(∀y(y < x→ φ(y))→ φ)→ ∀xφ transfinite induction scheme
taclets: oIndBasic

9. ∀x, y, z(φ(x, y) ∧ φ(x, z)→ y = z)→
∀a∃b∀y(∃x(φ(x, y) ∧ x < a)→ y < b)

replacement axiom scheme

taclet: oReplacementScheme
10. ∀x, y(x ≤ y ↔ x < y ∨ x = y) Def. of ≤

taclet oleq_Def, oleq_replace
11. ∀x(lim(x)↔ x 6= 0 ∧ ¬∃y(x = y + 1)) Def. of limit ordinal

taclet: olimDef

Fig. 2. The axioms of the Core Theory

In this text we use the mathematical notation throughout. Figure 1 also gives
the corresponding notation in Dynamic Logic that would be used in writing
taclets.

The intended meaning of the symbols in Figure 1 is fixed by the core axioms
in Figure 2. Definition of the auxilliary predicates ≤ and lim have already been
included here in items 10 and 11 to facilitate the formalisation of the core axioms.

Axioms 1 to 4 state that < is a strict linear ordering with least element
0. In Axiom 4 ≤ is of course defined by x ≤ y ↔ (x < y ∨ x = y). Axiom 9
which is taken from [6] requires some explanation. If the premiss of the axiom
∀x, y, z(φ(x, y) ∧ φ(x, z)→ y = z) is true we may unambiguously define a unary
function f by f(x) = y ⇔ φ(x, y). The righthand side of the implication in Axiom
9 may thus be rewritten as ∀a∃x∀z(z < a)→ f(z) < x) which is an instance of
the replacement axiom of Zermelo-Fraenkel set theory.

Also a remark on our quite pragmatic notation used in the formulation of
axiom schemata is in order here. The formula φ occuring in axiom scheme 8
may contain x as a free variable or not. The reader can convince himself that
in case x does not occur free in φ the axioms reduces to a tautology. φ(y) is to
stand for the formula arising from φ by replacing every free occurence of x by
y, assuming that his does not lead to a clash with bound occurences of y in φ.
There might be other free variables x̄ = 〈x1, . . . , xk〉 in φ besides x. These are
implicitly universally quantified. If you want to see this explicitely you have to
put ∀x̄ in front of ∀x with scope extending over the whole formula.

The same remarks apply to the axiom scheme 9: φ(x, y) signals that we are
interested in the free variables x, y in φ. There is no commitment involved that
x or y actually occur free in φ. The reader is invited it convince himself that in
case x or y does not occur freely the formula is either tautological or an easy
consequence of z < z + 1. As mentined in the preseding paragraph φ(x, z) arises
from φ by replacing every free occurence of y with z, as always assuming that
this can be done without clashes. If φ contains further free variables x̄ other than
x and y these are implicitly universally quantified.

These remarks apply to all axioms or lemma schemes, in particular to those
in Figure 3.

Figure 3 shows some important and usefull consequences of the core axioms.
Lemma 13 is a frequently used variant of the induction scheme. To proof ∀xφ it
suffices to proof three inductive steps.

1. The initial case, φ(0),
2. the successor inductive step,

if φ(x) holds then also φ(x+ 1) is true, and
3. the limit inductive step,

for any limit number x such that φ(y) is true for all ordinals y less than x
also φ(x) is true.

Lemma 15 is the special instance of our replacement scheme 15 with φ = y
.= t

where t is a term that will typically contain the variable λ. This is the version of
the replacement scheme used in Th0

ord in [5]

12. lim(λ)↔ λ 6= 0 ∧ ∀ov(ov < λ→ (ov + 1) < λ) equivalent Def. of limit numbers
taclets: olimDefEquiv, olimDefAdd,notLim1,notLim2

13. φ(o0)∧
∀x(φ(x)→ φ(x+ 1))∧
∀x(lim(x) ∧ ∀y(y < x→ φ(y))→ φ(x)
→
∀xφ(x)

variant of induction scheme

taclet: oInd
14. ∃xφ→ ∃x(φ ∧ ∀y(y < x→ ¬φ(y))) least number principle

taclet: least_number_principle
15. ∀a∃b∀λ(λ < a→ t < b) special case of replacement scheme

taclet: oSpecialReplacment

Fig. 3. Basic Lemmas of the Core Theory

3 First Definitional Extensions

16. 0 + 1 = 1 Def. of constant 1
taclets: one_Def, oadd01

17. ∀x(¬x < 0) taclet: olt_zero
18. 0 < 1 taclet olt_01
19. 0 6= 1 taclet: oDiff01
20. ∀x(0 < x→ 1 ≤ x) taclet olt_discret
21. ∀x(x < 1→ x = 0) taclet: olt_one
22. 0 < ω taclet omegaZero
23. 1 < ω taclet: omegaOne

Fig. 4. Definitional Extension for constant 1

x+ 1 is a unary function, which we could have named - if we wanted to - also
by s(x). As a first and simple definitional extension we find it useful to also have
the constant 1 available. This is defined in item 16 in Figure 4. Axiom 17 is an
easy consequence of the inductive definition of addition to be considered later.
But, we did not want to wait that long. Figure 4 then lists some easy lemmas
about constant 1. We want these lemmas to be applied atomatically by the prover

Before we move on to more substantial extentions and lemmas we look at
a few simple and useful lemmas in Figure 5 and 6. Sometimes more than one
taclet is associated with a mathematical statement. In these cases the taclets take
different forms to facilitate automatic proof search. There is a proof, of course,
for every taclet. No further comments on these lemmas are needed.

24. ∀x(x+ 1 6= 0) taclet o0notSuccQ, o0notSucc
25. x+ 1 .= y + 1→ x

.= y taclet 0SuccInjective
26. x < y → x+ 1 < y + 1 taclet oltPlusOne
27. x ≤ y → x+ 1 ≤ y + 1 taclet oleqPlusOne

Fig. 5. Definitional Extension for immediate successor

28. x < y + 1→ (x < y ∨ x .= y) taclet olessPlusOne
29. x ≤ y ∧ y ≤ z → x ≤ z taclet oleq_trans, oleq_transAut
30. x ≤ y ∧ y < z → x < z

taclet oltleq_trans, oltleq_transAut, oleqolt_transQ
31. x < y ∧ y ≤ z → x < z taclet oleqolt_trans, oleqolt_transAut
32. x < y → ¬y < x taclet irrByolt
33. x ≤ y → ¬y < x taclet irrByoltleq
34. x < y → ¬y ≤ x taclet olt2oleq
35. x ≤ y ∧ y ≤ x→ x

.= y taclet oleq_antisym

Fig. 6. Lemmas on transitivity and related topics

Figure 7 exhibits in Line 36 the explicit definition of the binary maximum
operator and some easy consequences in the remaining lines. We found lemmas
47 - 50 particularly useful in the successor case of inductive proofs.

Let’s move on to Figure 8. Axiom 51 defines the supremums operator
supλ<t0t1(λ), i.e., the least ordinal that is greater to or equal to all ordinals in
the set {t1(λ) | λ < t0}. Here the term t will typically contain the variable λ,
while λ is not allowed to occur in α.

While it is obvious that adding the binary maximum operator is a definitional
extension an argument is needed that this is also true for adding the supremum
operator. We assume that the reader is in sofar familiar with the concept of
definitional extension that he knows that the following lemma is a sufficent
condition.

Lemma 1. LetM be a model of the core theory. Then we can define an expansion
M1 that interprets for any two terms t0, t1 such that the variable λ does not
occur in t0 the function supλ<t0(t1) such thatM1 satisfies the axiom scheme 51.

That M1 is an expansion of M means that all syntax apart from the sup
operator is interpreted in M1 in the same way as it is interpreted in M, and
also that the universes ofM1 andM are the same.

Proof. A complete proof would proceed by induction on the number of occurences
of the sup operator in t0 or t1. We concentrate on the case where t0 or t1 do not
contain the sup operator trusting that the reader can fill in the routine details
for the general case.

For ease of notation we further assume that t0 is a ground term, i.e. contains
no variables, and that t1 only contains the variable λ. Otherwise we would have

36. ∀x, y(omax(x, y) .= (if x ≤ y then y else x)) Def. of binary maximum
taclet: omaxDef

37. z < omax(x, y)↔ (z < x ∨ z < y) taclet omaxLess
38. omax(x, y) < z ↔ (x < z ∧ y < z) taclet omaxGreater
39. z ≤ omax(x, y)↔ (z ≤ x ∨ z ≤ y) taclet omaxLeq
40. omax(x, y) ≤ z ↔ (x ≤ z ∧ y ≤ z) taclet omaxGeq
41. omax(0, x) .= x taclet omax0Left
42. omax(x, 0) .= x taclet omax0Right
43. x ≤ omax(x, y) taclet omaxLeft
44. y ≤ omax(x, y) taclet omaxRight
45. (x < y ∧ y .= z)→ x < z taclet WRolteq
46. omax(x, y) .= omax(y, x) taclet omaxSymQ
47. x < y → omax(x+ 1, y) .= omax(x, y) taclet omaxPlusOnR
48. x < y → omax(y, x+ 1) .= omax(x, y) taclet omaxPlusOnL
49. omax(x, y + 1) ≤ omax(x, y) + 1 taclet omaxPlusOneQR
50. omax(x+ 1, y) ≤ omax(x, y) + 1 taclet omaxPlusOneQL

Fig. 7. Definitional Extensions for omax

to start with an arbitrary instantiation c̄ of the extra variables in t0 and t1 which
would only clog notation. Note, that the assumption that λ does not occur free
in t0 is crucial here.
This said, let a0 denote the interpretation of t0 inM, in symbols a0 = tM0 . From
Lemma 15 we obtain

M |= ∃b∀x(x < a0 → t1 < b) (1)

By the least number principle we get a smallest ordinal b0 such thatM |= ∀x(x <
a0 → t1 < b0). We now set

supM0
λ<t0

(t1) = b0

It is easy to check that with this stipulation M1 satisfies the axiom scheme
51. ut

Besides the definition of sup Figure 8 lists properties of sup, simple ones and
crucial ones. Equation 52 is true regardless of t. Lemma 54 could be rephrased
as: x is the least ordinal that is greater or equal than all ordinals that are strictly
less than x. This is only true if x is a limit ordinal. In the successor case we have
supλ<x+1λ

.= x. Lemma 56 is usefull in proving statements involving the sup
operator via induction. Lemma 57 helps to show that two suprema are equal
especially in the case when equality between t1 and t2 is not obvious.

We may look at a term t that contains λ as a sequence tλ. We say sequence
tλ<α1 is confinal in sλ<α2 if for every x < α1 there is y < α2 with t[x/λ] ≤ s[y/λ].
If two sequences are mutually confinal in one another than they share the same
supremum. This is Lemma 58 in Figure 8. Note, that we get equality of two
suprema with different bounds α1 and α2. Lemmata 59 and 60 give simple and

51. ∀x(x < t0 → t1(x) ≤ supλ<t0 (t1(λ))) ∧
∀y(∀x(x < t0 → t1(x) ≤ y)→ supλ<t0 (t1) ≤ y))

Def. of supremum

taclet: osupDef
52. supλ<0t

.= 0 taclet osup0
53. supλ<1t

.= t[0] taclet osup1
54. lim(x)→ supλ<xλ

.= x taclet oselfSup
55. supλ<x+1λ

.= x taclet oselfSupSuc
56. supλ<x+1t

.= omax(supλ<xt, t[x]) taclet osupSucc
57. ∀λ(t1

.= t2)→ supλ<xt1
.= supλ<xt2 taclet osupEqualTerms

58. ∀x(x < z1 → ∃y(y < z2 ∧ t1[x] ≤ t2[y])) ∧ ∀y(y < z2 → ∃x(x < z1 ∧ t2[y] ≤ t1[x]))
→ supλ<z1t1

.= supλ<z2t2
taclet osupMutualCofinal

59. ∀λ(t1 ≤ t2)→ supλ<b t1 ≤ supλ<b t2 taclet: osupLocalLess
60. b1 ≤ b2 → supλ<b1t ≤ supλ<b2t taclet: osupShorter
61. supλ<ωλ = ω taclet: enum:osupOmega

Fig. 8. Definitional Extensions for sup

62. ∀x, y, z(x ≤ y ∧ y ≤ z → x ≤ z) taclets. oleq_trans, oleq_transAut
63. ∀x, y, z(x ≤ y ∧ y < z → x < z) taclets. oltleq_trans, oltleq_transAut
64. ∀x, y, z(x < y ∧ y ≤ z → x < z) taclets: oleqolt_trans, oleqolt_transAut
65. ∀x, y, z(z < (max(x, y)↔ (z < x ∨ z < y))) taclet: omaxLess
66. ∀x, y, z(max(x, y) < z ↔ (x < z ∧ y < z)) taclet: omaxGreater
67. ∀x, y(max(x, y) .= max(y, x)) taclet: omaxSymQ

Fig. 9. Derivable taclets on ≤ and max

and useful criteria for one supremum being less than another in specific cases.
Lemma 61 is a sometimes useful special case of 54.

Figure 9 shows a set of derivable lemmas using ≤ and max. Though the KeY
prover is rather strong in finding suitable instantiations of universal quantifiers
it is completely at a loss to find useful instantiations of the three quantifiers
involved in the transitivity axioms. Two taclets olt_trans and olt_transAut
picking up suitable instantiations from the open goals are among the taclets
not reproduced here. The lemmas shown in Figure 9 concern first the variations
of transitivity where ≤ occurs once or twice instead of <. Secondly, lemmas
involving the maximum function are shown.

We would like to view the natural numbers as a subtype of the ordinals. Since
KeY offers only rudimentary support for subtypes we had to find another way
to use natural numbers as ordinals. We introcude an injection onat : Z→ Ord.
Definition and some derivable consequences are presented in Figure 10. Note, that
for negative integers onat is not specified. To keep formulas short and readable
our notation does not contain information on the type of a variable symbol. We
trust that the reader can infer the type for the context. If onta(n) occurs then

47. onat(0) .= 0 taclet: onatZeroDef
48. 0 ≤ n→ onat(n+ 1) .= onat(n) + 1 taclet: onatSuccDef
49. onat(1) .= 1 taclet: onatOne
50. onat(2) .= (0 + 1) + 1 taclet: onatTwo
51. onat(3) .= onat(2) + 1 taclet: onatThree
52. onat(4) .= onat(3) + 1 taclet: onatFour
53. onat(5) .= onat(4) + 1 taclet: onatFive
54. onat(6) .= onat(5) + 1 taclet: onatSix
55. onat(7) .= onat(6) + 1 taclet: onatSeven
56. onat(8) .= onat(7) + 1 taclet: onatEight
57. onat(9) .= onat(8) + 1 taclet: onatNine
58. (0 ≤ n ∧ 0 ≤ m)→ onat(n+m) .= onat(n) + onat(m) taclet: onatoadd
59. (0 ≤ n ∧ 0 ≤ m ∧ onat(n) .= onat(m))→ n

.= m taclet: onatInj
60. (0 ≤ n ∧ 0 ≤ m)→ (onat(n) < onat(m)↔ n < m) taclet: onatolt, onatoltAut
61. 0 ≤ n→ onat(n) < ω taclet: onatLessOmega

Fig. 10. Definition of and lemmas for the injection onat

n must be of type integer. Also the same constants 0, 1, . . . are used for both
integers and ordinals as well as + for integer and ordinal addition.

4 Ordinal Arithmetic

Ordinal arithmetic plays no role in the analysis of Takeuti’s theory of ordinals.
When we started this work it was not clear whether ordinal arithmetic might
at some point be necessary or at least convenient. Anyhow, ordinal arithmetic
could also be used in other project.

62. x+ 0 .= x taclet: oadd_Def0Right
63. x+ (y + 1) .= (x+ y) + 1 taclet: oadd_DefSucc
64. lim(y)→ x+ y

.= supλ<y(x+ λ) taclet: oadd_DefLim
65. x ∗ 0 .= 0 taclet: otimes_Def0Right
66. x ∗ (y + 1) .= x ∗ y + x taclet: otimes_DefSucc
67. lim(y)→ x ∗ y .= supλ<y(x ∗ λ) taclet: otimes_DefLim, otimes_DefLimQ
68. x0 .= 1 taclet: oexp_Def0Right
69. xy+1 .= xy ∗ x taclet: oexp_DefSucc
70. (lim(y) ∧ 0 < x)→ xy

.= supλ<yx
λ taclet: oexp_DefLim

71. lim(y)→ 0y .= 0 taclet: oexp_DefLim0

Fig. 11. Definition of ordinal arithmetic operations

72. y 6= 0→ x < x+ y taclet: oaddStrictMonotone
73. x ≤ x+ y taclet: oaddMonotone
74. y ≤ x+ y taclet: oaddLeftMonotone
75. x+ y

.= 0→ (x .= 0 ∧ y .= 0) taclet: zerosum
76. x < y → z + x < z + x taclet: oltAddLessLeft
77. x ≤ y → z + x ≤ z + x taclet: oleqAddLessLeft
78. x ≤ y → x+ z ≤ y + z taclet: oleqAddLessRight, oleqAddLessRightQ
79. (x < y ∧ u < w)→ x+ u < y + w taclet: oadd2olt
80. (x ≤ y ∧ u ≤ w)→ x+ u ≤ y + w taclet: oadd2oleq
81. max(z + x, z + y) .= z +max(x, y) taclet: omaxAddL
82. max(x+ z, y + z) .= max(x.y) + z taclet: omaxAddR

Fig. 12. Lemmas on addition and order

We start out with the definition of the three arithmetic operations in Figure
11.

72. lim(y)→ lim(x+ y) taclet: olimAddolim
73. lim(x)→ ω ≤ x taclet: omegaLeastLim1, omegaLeastLim2
74. (lim(x) ∧ x ≤ ω)→ x

.= ω taclet: omegaLeastLim3
75. lim(x)→ 0 < x taclet: limitZero
76. lim(x)→ 1 < x taclet: limitOne
77. z + x

.= z + y → x
.= y taclet: oaddRightInjective

78. (lim(y) ∧ x < y)→ (x+ 1) < y taclet: olimDedekind
79. x < ω ∧ y < ω)→ (x+ y) < ω taclet: oaddLessOmega, oaddLessOmegaAxiom
80. 0 + x

.= x taclet: oadd0Left
81. x < ω → x+ ω

.= ω taclet: oaddLeftomega
82. (x < ω ∧ ω ≤ y)→ x+ y

.= y taclet: oaddLeftAbsorb
83. ω ≤ x→ ∃y, n(lim(y) ∧ n < ω ∧ x .= y + n) taclet: repLimPlusNat
84. x ≤ y → ∃z(x+ z

.= y) taclet: ordDiff
85. x+ 1 .= y + 1→ x

.= y taclet: oAddOneInj
86. x+ y < x+ z → y < z taclet: oAddOltPreserv
87. b 6= 0→ supλ<b(x+ y) = x+ supλ<by if λ not free in x

taclet: osupAddStaticTerm
88. x+ (y + z) .= (x+ y) + z taclet: oaddAssoc
89. y < ω → 1 + y

.= y + 1 taclet: oaddFiniteComOn
90. (x < ω ∧ y < ω)→ x+ y

.= y + x taclet: oaddFiniteCom

Fig. 13. Lemmas on addition

91. x ∗ 1 .= x taclet: otimesOneRight
92. 1 ∗ x .= x taclet: otimesOneLeft
93. 0 ∗ x .= 0 taclet: otimesZeroLeft
94. (0 < z ∧ x < y)→ z ∗ x < z ∗ y taclet: otimesMonotone, otimesMonotoneQ
95. x ≤ y → z ∗ x ≤ z ∗ y taclet: otimesWeakMonotoneQ
96. z ∗ x < z ∗ y → (0 < z ∧ x < y) taclet: otimesMonotoneRev
97. (0 < z ∧ z ∗ x .= z ∗ y)→ x

.= y taclet: otimesLeftInjective
98. x ≤ y → x ∗ z ≤ y ∗ z taclet: otimesLeftMonotone
99. 0 6= x→ y ≤ x ∗ y taclet: otimesRightMonotoneQ
100. x ∗ y .= 0→ (x .= 0 ∨ y .= 0) taclet: otimesZero
101. x ∗ y .= 1→ (x .= 1 ∧ y .= 1) taclet: otimesOne
102. (x < ω ∧ y < ω)→ x ∗ y < ω taclet: otimesFiniteAxiom, otimesFinite
103. (x 6= 0 ∧ x < ω)→ x ∗ ω .= ω taclet: otimesNomega, otimesNomegaQ
104. max(z ∗ x, z ∗ y) .= z ∗max(x, y) taclet: omaxTimesL
105. max(x ∗ z, y ∗ z) .= max(x, y) ∗ z taclet: omaxTimesR
106. supλ<bx ∗ y

.= x ∗ supλ<by provided λ is not free in x.
taclet: osupTimesStaticTerm

107. x ∗ (y + z) .= x ∗ y + x ∗ z taclet: odistributive, odistributiveQ
108. (x < ω ∧ y < ω ∧ z < ω)→ (x+ y) ∗ z .= x ∗ z + y ∗ z taclet: odistributiveFinite
109. x ∗ (y ∗ z) .= (x ∗ y) ∗ z taclet: otimesAssoc, otimesAssocQ
110. (x < ω ∧ y < ω)→ x ∗ y .= y ∗ x taclet: otimesFiniteCom
111. (x < ω ∧ y < ω ∧ ω ∗ x < ω ∗ y)→ x < y taclet: oltomegatimes
112. (x1 < ω ∧ x2 < ω ∧ y1 < ω ∧ y2 < ω∧

ω ∗ x1 + y1 < ω ∗ x2 + y2)→
ω ∗ x1 < ω ∗ x2 ∨ (ω ∗ x1

.= ω ∗ x2 ∧ y1 < y2)
taclet: oltlexicographic

113. (0 ≤ n1 ∧ 0 ≤ n2 ∧ 0 ≤ m1 ∧ 0 ≤ m2∧
ω ∗ onat(n1) + onat(m1) < ω ∗ onat(n2) + onat(m2)→
n1 < n2 ∨ (n1

.= n2 ∧m1 < m2)
taclet: oltlexicographicInt

114. (1 < x ∧ 1 < y)→ (x+ y) ≤ x ∗ y taclet: oleqAddTimes
115. (0 < x ∧ lim(y))→ lim(x ∗ y) taclet: olimtimes1, olimtimes1Q
116. (0 < y ∧ lim(x))→ lim(x ∗ y) taclet: olimtimes2, olimtimes2Q
117. (x 6= 0 ∧ y < ω)→ (x+ y) ∗ ω .= x ∗ ω taclet: Klaua26c1a
118. (x 6= 0 ∧ y < ω ∧ lim(z))→ (x+ y) ∗ z .= x ∗ z taclet: Klaua26c1
119. (x < ω ∧ lim(z))→ ((x .= 0∧ x ∗ z .= 0)∨ (x 6= 0∧ x ∗ z .= z)) taclet: otimesNlimit

Fig. 14. Lemmas on multiplication

120. x1 .= x taclet: oexpOne

Fig. 15. Lemmas on exponentiation

120. y 6= 0→ ∃z(y ∗ z ≤ x ∧ x < y ∗ (z + 1)) taclet: oleastMultiple
121. y 6= 0→ ∃d, r(x .= y ∗ d+ r ∧ r < y) taclet: odivQ
122. (y 6= 0 ∧ r1 < y ∧ r2 < y ∧ y ∗ d1 + r1

.= y ∗ d2 + r2)→ (d1
.= d2 ∧ r1

.= r2)
taclet: odivUnique

123. lim(y)→ ∃x(y .= ω ∗ x) taclet: odivLim

Fig. 16. Lemmas on decomposition

5 Well-ordering Pairs of Ordinals

62. (v1, v2)� (v3, v4)↔
max(v1, v2) < max(v3, v4)∨
max(v1, v2) = max(v3, v4) ∧ v2 < v4∨
max(v1, v2) = max(v3, v4) ∧ v2 = v4 ∧ v1 < v3

Def. of �

taclets: oltp_DefAxiom, oltp_Def
63. (0, 0)� (1, 0) taclet oltpLess10
64. (0, 0)� (0, 1) taclet oltpLess011
65. (1, 0)� (0, 1) taclet oltpLess012
66. (0, x)� (0, 1)→ x

.= 0 taclet oltpLess013
67. (x, y)� (1, 0)→ (x .= 0 ∧ y .= 0) taclet oltpOne
68. (x, y)� (0, 1)→ ((x .= 0 ∧ y .= 0) ∨ (x .= 1 ∧ y .= 0)) taclet oltpTwo
69. ∀v1∀v2(¬(v1, v2)� (v1, v2)) taclets: oltp_irr
70. ∀v1∀v2∀v3∀v4∀v5∀v5(

(v1, v2)� (v3, v4) ∧ (v3, v4)� (v5, v6)→ (v1, v2)� (v5, v6))
taclets: oltp_transQ, oltp_trans

71. ∀v1∀v2∀v3∀v4((v1, v2)� (v3, v4) ∨ (v3, v) � (v1, v2) ∨ (v1
.= v3 ∧ v2

.= v4))
taclet: oltp_totalAxiom

72. (t1, t2)� (t3, t2)↔ t1 < t3 taclet: oltp_same2
73. (t1, t2)� (t1, t3)↔ t2 < t3 taclet: oltp_same1
74. ∀v1∀v2((v1, v2)� (v1 + 1, v2) taclet: oltp_addOneL
75. ∀v1∀v2((v1, v2)� (v1, v2 + 1) taclet: oltp_addOneR
76. ∃v1∃v2φ(v1, v2)→ ∃v1∃v2(φ(v1, v2) ∧ ∀w1∀w2; (w1, w2)� (v1, v2)→ ¬φ(w1, w2))

taclet: oltpLeastPair2, oltpLeastPair
77. ∀v1, v2(∀v3, v4; ((v3, v4)� (v1, v2)→ φ(v3, v4))→ φ(v1, v2)) → ∀v1∀v2φ(v1, v2)

taclet: oltpInduction

Fig. 17. Definition and fundamental consequences of �

One of the main goals of these notes is a closer look at the first-order theory
of ordinals in [6] and its comparision with [5,4]. Among the axioms of this theory
are axioms on coding and decoding of pairs of ordinals The basis of this coding
is a well-ordering of pairs of ordinals, that we denote here by �. Item 62 in
Figure 17 gives the definition of �: pairs are first odered by their maximum
and pairs with the same are ordered lexicographically with the last entry as the
most significant. This relation � is irreflexive (Lemma 69), transitive (Lemma
70) and total (Lemma 71). Lemmas 74 and 75 states that increasing the first or
second entry by one yields a greater pair, which in neither case needs to be an
immediate successor as is shown by the examples (2, 3) � (4, 1) � (2, 4) and
(3, 2)� (4, 1)� (4, 2). The topic of immediate succesors and limit pairs will be
treated extensively in Figure 18 and the comments following it.

The most important fact about � is that it is a well-ordering. The property
of a well ordering, i.e. that there is not infinite decending chain p1 � p2 �

. . .� pk � . . . cannot be expressed in our first-order logic. The best we can do
is to prove that induction with respect to � works, Lemma 77. It turned out
that induction is more cumbersome to prove than the equivalent least element
principle. Thus we prove this property first, Lemma 76. To derive induction from
the least pair principle is now a piece of cake.

78. ∀v1, v2, w1, w2(succp(v1, v2, w1, w2) ↔ (v1, v2)� (w1, w2)∧
∀v3, v4((v1, v2)� (v3, v4)→
(w1, w2) = (v3, v4) ∨ (w1, w2)� (v3, v4)))

taclet: succp_Def
79. ∀v1, v2, w1, w2(succp(v1, v2, w1, w2) → ∀v3, v4((v3, v4)� (w2, w3)→

(v1, v2) = (v3, v4) ∨ (v3, v4)� (w1, w2)
taclet: succpConseq

80. ∀v1, v2, v3(succp(v1, v1, v1 + 1, 0)) taclets: oltpSuccEq2, oltpSuccEq
81. ∀v1, v2(v2 + 1 < v1 → succp(v1, v2, v1, v2 + 1)

taclets: oltpSuccMaxFirst, oltpSuccMaxFirstA
82. ∀v1, v2; (v2 + 1 = v1 → succp(v1, v2, 0, v2 + 1))

taclets: oltpSuccMaxFirst2, oltpSuccMaxFirst2A
83. ∀v1, v2(v1 < v2 → succp(v1, v2, v1 + 1, v2))

taclets: oltpSuccMaxSecond, oltpSuccMaxSecond2
84. succp(v1, v1, w1, w2)→ w1 .= v1 + 1 ∧ w2 .= 0

taclets: succpConseqEqQ, succpConseqEq
85. (v2 + 1 < v1 ∧ succp(v1, v2, w1, w2)→ w1 .= v1 ∧ w2 .= v2 + 1

taclets: succpConseqLessRP, succpConseqLessRPQ
86. succp(v2 + 1, v2, w1, w2)→ w1 .= 0 ∧ w2 .= v2 + 1

taclets: succpConseqLessR, succpConseqLessRQ
87. (v1 < v2 ∧ succp(v1, v2, w1, w2))→ w1 .= v1 + 1 ∧ w2 .= v2

taclets: succpConseqGreater, succpConseqGreaterQ
88. ∀v1, v2∃w1, w2(succp(v1, v2, w1, w2)) taclets: succpExists
89. succp(v1, v2, w1, w2)→ max(w1, w2) ≤ max(v1, v2) + 1 taclets: succpOmax

Fig. 18. Successor pairs in the well-ordering �

Now, that we know that � is a well-ordering, or at least that the usual
induction principle is true for this ordering, we can begin to investigate the notions
of successor and limit pairs. When we say successor we always mean immediate
successor. We introduce a new predicate succp(x1, x2, y1, y2) for (y1, y2) to be
the immediate successor of (x1, x2), and the predicate limp(x1, x2) for (x1, x2)
to be a limit pair. Their definitions in Lines 78 of Figure 18 and Line 90 of
Figure 19 do not come as a surprise. We use (w1, w2) = (v3, v4) as a shorthand
for w1 = v3 ∧ w2 = v4. By definition (y1, y2) is a successor pairs of (x1, x2) if it
is the least pair strictly greater then (x1, x2). This entails that (x1, x2) is the
greatest pair strictly less than (y1, y2). This is stated in Line 79.

Conditions on when a pair is a succesors of (n1, n2) are given by the lemmas
80 to 83 and is summarized in the following table

successor of (n1, n2) condition
(n1 + 1, 0) n1 = n2
(n1, n2 + 1) n1 > n2 + 1
(0, n2 + 1) n1 = n2 + 1
(n1 + 1, n2) n1 < n2

Thus

(0, 0)�
(1, 0)� (0, 1)� (1, 1)�
(2, 0)� (2, 1)� (0, 2)� (1, 2)� (2, 2)�
(3, 0)� (3, 1)� (3, 2)� (0, 3)� (1, 3)� (2, 3)� (3, 3)�
· · ·
(ω, 0)� . . .� (ω, n)� . . . (0, ω)� . . . (n, ω)� . . . (ω, ω)�

Since we defined successor pairs by a predicate as opposed to a function we
need to prove that also the reverse implications are true, i.e., for every case in
the above summary table we need to verify that when a pair is the successor of
(n1, n2) then the stated condition applies. This it the content of Lines 84 to 87
in Figure 18. From these the uniqueness of successors follows easily, i.e., from
succp(v1, v2, w1, w2) and succp(v1, v2, w3, w4) we get (w1, w2) = (w3, w4). We did
not state this explicitly as a derived lemma. We did however find need to include
the lemma that successors always exist, Line 88. Line 89 gives a useful restiction
on the growth of the components of the successor pair.

90. limp(t1, t2)↔ ∀x, y((x, y)� (t1, t2)→ ∃u,w((x, y)� (u,w) ∧ (u,w)� (t1, t2)))
taclet enum:limp_Def

91. limp(x, y)↔ ¬∃u,w(succp(u,w, x, y)) taclet limp_DefAlt
92. limp(x1, x2) ∧ (y1, y2)� (x1, x2) ∧ succp(y1, y2, z1, z2)→ (z1, z2))� (x1, x2)

taclet limp_SuccLess
93. limp(0, 0) taclet: oltpLimZeroZero
94. succp(x, y, u, w)→ ¬limp(u,w) taclet: limpSuccFalse
95. ∀v1, v2(lim(v2) ∧ v2 ≤ v1 → limp(v1, v2)) taclet: oltpLimR
96. ∀v1, v2(lim(v1) ∧ v1 ≤ v2 → limp(v1, v2 + 1)) taclet: oltpLimL
97. ∀v(lim(v)→ limp(0, v)) taclet: :oltpLimZeroR
98. ∀v(lim(v)→ limp(v, 0)) taclet: :oltpLimZeroL
99. ∀v1, v2(lim(v1) ∧ lim(v2)→ limp(v1, v2)) taclet: oltpLimLim
100. ∀v1, v2(limp(v1, v2)→ (v1 = 0 ∧ v2 = 0) ∨ (v1 = 0 ∧ lim(v2))∨

(lim(v1) ∧ v2 = 0) ∨ (lim(v1) ∧ lim(v2))∨
(v2 ≤ v1 ∧ lim(v2)) ∨ (lim(v1) ∧ ∃v3(v2 = v3 + 1 ∧ v1 < v2)

taclet: limpConseq

Fig. 19. Limit pairs in the well-ordering �

Lemmas 93 to 99 list conditions on the parts v1 and v2 that ensure that the
pair (v1, v2), or (v1, v2 + 1) in the case of lemma 96 is a limit pair. Lemma 100
states that the conditions from lemmas 93 to 99 exhaustively list all restrictions
on v1, v2 for (v1, v2), respectively (v1, v2 + 1) , to be a limit pair. We remark that
in contrast to the situation with ordinals where 0 was neither a successor nor a
limit ordinal the pair (0, 0) is a limit ordinal by the way we defined limp.

6 Coding Pairs of Ordinals

After the extensive preparations in Section 5 we can now take up defining a coding
for pairs of ordinals. More precisly we introduce a function encode : Ord× → Ord
for encoding and decode1 : Ord→ Ord, decode2 : Ord→ Ord for decoding.

It will be of great help to have another version of the induction principle from
Line 77 in Figure 17 at our disposal. This new version, shown in Line 101 in
figure 20, may be put in words as follow: If we can show
if φ(v1, v2) is true then

φ(w1, w2) is true for the successor pair (w1, w2) of (v1, v2)
and
if φ(w1, w2) is true for every pair (w1, w2) less than a limit pair (v1, v2)

then φ(v1, v2) is true
then we have proved ∀v1, v2φ(v1, v2).

The idea for the coding function encode is now quite simple: encode(v1, v2)
is the position of the pair (v1, v2) in the well-ordering �. This leads to
encode(0, 0) = 0
encode(w1, w1) = encode(v1, v2) + 1 if succp(v1, v2, w1, w2)
encode(v1, v1) = the least ordinal greater than

encode(w1, w2) for all (w1, w2)� (v1, v2) if limp(v1.v2)
These definitions correspond to Lines 102 to 104 in Figure 20. As first conse-
quences we list encode(v1, v2) = n for 1 ≤ n ≤ 4 in Line 105 of Figure 20.
Compare this also to the diagram on page 14. For finite n,m we have in general

encode(n,m) = {n
2 if m < n
m2 + n+m if n ≤ m.

This last equation has been proved using paper and pencil, is has not been verified
with a theorem prover.

As a proper coding function encode should be injective. As a stepping stone
we first prove (strict) monotony. as formulated in Line 107 of Figure 20 while
injectivity follows in Line 109.

We remark that strict monotony easily implies weak monotony as formulated
in Line 108.

It is a special, and very convenient, feature of the encoding function encode
that it is surjective, i.e. every ordinal is the code of a pair of ordinals, Line

101. ∀v1, v2(φ(v1, v2)→ (∀w1, w2(succp(v1, v2, w1, w2)→ φ(w1, w2)))
∧
limp(v1, v2) ∧ ∀w1, w2((w1, w2)� (v1, v2)→ φ(w1, w2))→ φ(v1, v2))

→ ∀v1, v2φ(v1, v2)
taclet: oltpInd2

102. encode(0, 0)) .= 0 taclet: encodeZero
103. succp(v1, v2, w1, w2)→ encode(w1, w2) .= encode(v1, v2) + 1 taclet: encodeSucc
104. limp(v1, v2)→ (∀w1, w2((w1, w2)�(v1, v2)→ encode(w1, w2)<encode(v1, v2))

∧
∀x(∀w1, w2((w1, w2)� (v1, v2)→ encode(w1, w2) < x)
→ encode(v1, v2) ≤ x) taclet : encodeLim

105. encode(1, 0) = 1 ∧ encode(0, 1) = 2 ∧
encode(1, 1) = 3 ∧ encode(2, 0) = 4

taclets: encodeOne, encodeTwo, encodeThree, encodeFour
106. encode(x, y) .= 0→ (x .= 0 ∧ y .= 0) taclets: encodeZeroV
107. (v1, v2)� (w1, w2)→ encode(v1, v2) < encode(w1, w2) taclets: encodeMonotone
108. ((v1, v2)� (w1, w2) ∨ (v1, v2) = (w1, w2))→ encode(v1, v2) ≤ encode(w1, w2)

taclets: encodeweakMonotone
109. encode(v1, v2) = encode(w1, w2)→ (v1, v2) = (w1, w2) taclets: enum:encodeInj
110. ∀v1, v2(max(v1, v2) ≤ encode(v1, v2)) taclets: encodeWeakIncreasing
111. ∀x, y(a+ x ≤ encode(a, x)) taclet: oaddEncode
112. ∀v1, v2, w1, w2; (encode(v1, v2) < encode(w1, w2)→ (v1, v2)� (w1, w2))

taclet: encodeoltpLess
113. ∀w∃v1, v2(encode(v1, v2) = w) taclets: encodeSurjective

Fig. 20. Encoding pairs of ordinals

113. In the course of the proof of surjectivity the weak increasing property
from Line 110 is used. If max(v1, v2) > 1 and max(v1, v2) 6= ω then even
max(v1, v2) < encode(v1, v2) is true. We did not need this fact, so it is not
included in the list of proved lemmas.

114. ∀w(encode(decode1(w), decode2(w)) = w) taclets: decodeDef
115. ∀v1, v2(decode1(encode(v1, v2)) = v1) taclets: decode1Id
116. ∀v1, v2(decode2(encode(v1, v2)) = v2) taclets: decode2Id

Fig. 21. Decoding for pairs of ordinals

Let us not turn to decoding. The definition of the two decoding functions is
given in the one axiom in Line 114 of Figure 21. On the face of it this axiom
looks just a some property that we want the decoding functions to satisfy. But,
by what we have proved about the encoding function there is exactly one way to
define decode1 and exactly one way to define decode2 such that the axiom holds

true. Lines 115, 116 in Figure 21 present two lemmas derivable from the defining
axiom.

7 The Bounded µ-Operator

Takeuti includes in his axioms in [6] a bounded µ-operator µx<bi(x) for terms t
with the semantics

µx<bt(x, ā) = a if t(a, ā) = 0 and t(c, ā) 6= 0 for all c < a
= 0 if t(c, ā) 6= 0 for all c

We introduce a definitional extension with the new variable binder omux<bi(x).
The axioms and some derivable lemmas are shown in Figure 22. We note that
the term i may have other free variables besides x. Lemma 118 is just a simple
test, while Lemmas 119 and 120 are the axioms in Takeuti’s theory.

117. (∃y(y < b ∧ i(y) .= 0)→ i(omux<bi(x)) .= 0 ∧ ∀z(z < b)→ i(z) 6= 0)))
∧
(¬∃y(y < b ∧ i(y) .= 0)→ omux<bi(x) .= 0)

taclet: omuDef
118. omux<0i(x) .= 0 taclet: omuZero
119. (i(c) .= 0 ∧ c < b)→ i(omux<bi(x)) .= 0 ∧ i(omux<bi(x)) < c taclet: omuTak1
120. omux<bi(x) .= 0 ∨ (i(omux<bi(x)) .= 0 ∧ omux<bi(x) < b) taclet: omuTak2

Fig. 22. The bounded µ-operator

We could with the same effort have introduced a bounded least-element
operator that works on a formula instead of a term, i.e., µx<bφ(x) is the least
element c < b such that φ(c) is true and 0 if there is no c < b with φ(c). Since
this operator plays no role in Takeuti’s paper [6] we ignored this generalization.
In total we have thus shown that ThTak is equivalent to a definitional extension
of Thord.

8 Review of Takeuti’s Theory

Figure 23 lists the axioms of Takeuti’s theory of ordinals. Following the presenta-
tion in [6] we systematically omit explicit universal quantification, but we stick to
the names of variables used in the previous sections. Instead of x′ we use x+ 1.

For each axiom in Figure 23 we list on the far right the axiom or lemma
in a definitional extention of Thord that entails it. Thus there is a definitional
extention of Thord that is at least as strong as ThTak.

In lines 12 and 13 a new binary function symbol less : Ord×Ord→ Ord is
introduced. In [6] < is used instead of less. Since boldface < is hard to distinquish

from regular < we switched to the different notation less. This has no counterpart
in our theory. If necessary less(x, y) can be replaced by (if x < y then 0 else 1).
We also use more telling notation:

encode(x, y) for j(x, y)
decode1(x) for g1(x)
decode2(x) for g2(x)

For the formula on the righthand side of axiom 17 we used in the previous sections
the relation (v, w) � (x, y). It is a central part in the derivation of Takeuti’s
axioms from the axioms of Thord and its definitial extensions to show that � is
a well-ordering on pairs of ordinals.

1. x < y ∨ x .= y ∨ y < x axiom 3, Fig.2
2. ¬x < x axiom 2, Fig.2
3. x < y ∧ y < z → x < z axiom 1, Fig.2
4. 0 < ω axiom 5, Fig.2
5. 0 ≤ x axiom 4, Fig.2
6. x < y → x+ 1 ≤ y axiom 7, Fig.2
7. x < x+ 1 axiom 7, Fig.2
8. x < ω → x+ 1 < ω easy consequence of axiom 5, Fig.2
9. 0 < y ∧ ∀x(x < y → x+ 1 < y)− > ω ≤ y) easy consequence of axiom 6, Fig.2

10. x ≤ y ↔ max(x, y) .= y definition 36, Fig. 7
11. max(x, y) .= max(y, x) lemma 67, Fig. 9
12. x < y ↔ less(x, y) .= 0
13. less(x, y) ≤ 1
14. encode(decode1(x), decode2(x)) = x lemma 114, Fig. 21
15. decode1(encode(x, y)) = x lemma 115, Fig. 21
16. decode2(encode(x, y)) = x lemma 116, Fig. 21
17. encode(v, w) < encode(x, y)↔ max(v, w) < max(x, y)∨

(max(v, w) .= max(x, y) ∧ w < y)∨
(max(v, w) .= max(x, y) ∧ w .= y ∧ v < x)

lemmas 107, 112, Fig. 20
18. (i(c) .= 0 ∧ c < b)→ i(µx<bi(x)) .= 0 ∧ i(µx<bi(x)) < c lemma 119 in Fig. 22
19. µx<bi(x) .= 0 ∨ (i(µx<bi(x)) .= 0 ∧ µx<bi(x) < b) lemma 120 in Fig. 22
20. ∀x(∀y(y < x→ φ(y))→ φ)→ ∀xφ axiom 8 in Fig. 2.
21. ∀x, y, z(φ(x, y) ∧ φ(x, z)→ y = z)→
∀a∃b∀y(∃x(φ(x, y) ∧ x < a)→ y < b)

axiom 9 in Fig. 2.

22. ∃u(∀v, x, y, z(φ(y, x, v) ∧ φ(z, x, v)→ y = z)
→ ∀v∃x(x < u ∧ ∀y(y < a→ ¬φ(x.y.v))))

not derivable from Thord

Fig. 23. Takeuti’s Theory of Ordinals

Axioms 18 and 19 are Takeuti’s definition of the bounded µ-operator. Lemmas
119 and 120 show that they follow from our definition of this operator in line

117 in Figure 22. Takeuti’s axioms 20 and 21, the induction and replacement
schemata, are literally the same as ours.

We also notice that ThTak is at least as strong as Thord: axioms 1 to 3 plus
5 in Figure 23 guarantee that < is a strict total ordering with least element
0, axioms 4, 8, and 9 characterize ω as the least limit ordinal, axioms 6 and 7
stipulate the x+ 1 is the immediate succesor fo x. Finally the axiom schemes for
transfinite induction and regularity are literally the same in both theories.

References

1. H. Bachmann. Transfinite Zahlen, volume 1 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. Springer Verlag, 2 edition, 1967.

2. D. Klaua. Kardinal- und Ordinalzahlen, Teil 1. Wissenschaftliche Taschenbücher:
Mathematik,Physik. Vieweg Braunschweig, 1974.

3. D. Klaua. Kardinal- und Ordinalzahlen, Teil 2. Wissenschaftliche Taschenbücher:
Mathematik,Physik. Vieweg Braunschweig, 1974.

4. P. H. Schmitt. A first-order theory of ordinals. Technical Report 6, Department of
Informatics, Karlsruhe Institute of Technology, 2017.

5. P. H. Schmitt. A mechanizable first-order theory of ordinals. In R. A. Schmidt and
C. Nalon, editors, Automated Reasoning with Analytic Tableaux and Related Methods
- 26th International Conference, TABLEAUX 2017, Brasília, Brazil, September 25-
28, 2017, Proceedings, volume 10501 of Lecture Notes in Computer Science, pages
331–346. Springer, 2017.

6. G. Takeuti. A formalization of the theory of ordinal numbers. Journal of Symbolic
Logic, 30(295-317), 1965.

7. G. Takeuti and W. M.Zaring. Introduction to Axiomatic Set Theory, volume 1 of
Graduate Texts in Mathematics. Springer Verlag, 1971.

