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Abstract

Simulations let scientists study properties of complex systems. At first
sight, data mining is a good choice when evaluating large numbers of sim-
ulations. But it is currently unclear whether there are general principles
that might guide the deployment of respective methods to simulation data.
In other words, is it worthwhile to target at “simulation-data science” as
a distinct subdiscipline of data science? To identify a respective research
agenda and to structure the research questions, we conduct a case study
from the domain of materials science. One insight that simulation data
may be different from other data regarding its structure and quality, which
entails focal points different from the ones of conventional data-analysis
projects. It also turns out that interpretability and usability are impor-
tant notions in our context as well. More attention is needed to gather the
various meanings of these terms to align them with the needs and priori-
ties of domain scientists. Finally, we propose extensions to our case study
which we deem necessary to generalize our insights towards the guidelines
envisioned for “simulation-data science”.

1 Introduction
For many scientific disciplines, data science plays a significant role. Methods
and tools to analyze scientific data have become much more sophisticated and
versatile in the last years. In a current research thread, we focus on data gene-
rated by simulations. Next to experiments, simulations are a prevalent method
in science. With experiments, scientists typically gather data in a controlled
environment. Insights come from analyses of observational data using, say, sta-
tistical or data mining methods. On the other hand, simulations let engineers
abstract from the real-world system and investigate interesting parts of it in
isolation.
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While both methods are fundamental, they also have certain limitations
when looked at separately. For experiments, a substantial, well-documented
challenge is to gather a sufficiently large body of observational data (Karpatne
et al, 2017). It is difficult to attain a representative sample if the physical varia-
bles are numerous. Simulations in turn can generate arbitrary volumes of data,
only at the costs of the computational effort. Researchers can systematically
examine interesting areas in the configuration space of a system. However, it
often is difficult to find a parameterization so that the simulation model accu-
rately represents a given real-world scenario. Next, the usefulness of simulation
results depends on the quality of the simulation model, i.e., the level of ab-
straction from the real world and the extent of simplifications, which may be
deliberate.

A current trend is the increasing integration of data-science methods into
the process of scientific discovery (Karpatne et al, 2017). There are examples
where data-science models have been used as a surrogate for simulations (Wang
and Shan, 2007; Simpson et al, 2001). However, it is still unclear whether there
are general principles that might guide the deployment of data-mining methods
to simulation data. It is an open question whether it is worthwhile to target at
“simulation-data science” as a distinct subdiscipline of data science, independent
of the domain.

This article is a first step in this direction. Its core is a case study where
we, a team of materials scientists and computer scientists, have studied the
deployment of data-science methods on simulation data. We see our study as an
intermediate step, to identify questions that are difficult to answer with current
methods, and to see which ones regarding the connection between simulations
and data science are specific to the application, and which ones are generic.
Based on these questions, our objective is identifying and structuring research
issues we deem relevant to advance “simulation data-science”.

In materials sciences, work that involves data science has focused on the
‘materials genome’, i.e., the identification of materials descriptors and the pre-
diction of properties for novel materials (Ghiringhelli et al, 2015; Liu et al, 2017;
Rajan, 2015). Some approaches even target at replacing experiments and simu-
lations with predictions purely based on training data (Ramprasad et al, 2017).
However, bringing together simulations of materials behavior and data-science
methods has received considerably less attention. In our study, we use data
from simulations of cracks and the assessment of their effects on the behavior
of materials. Scientists currently tend to simulate crack propagation through
materials and structures with methods like XFEM (Belytschko and Black, 1999;
Moës et al, 1999), phase field modeling (Hakim and Karma, 2009; Miehe et al,
2010), or isogeometric analysis (Verhoosel et al, 2011). We have identified se-
veral questions that are difficult to answer with these existing approaches. These
questions will serve as concrete objects of study to make some strides towards
our overall objective.

(Q1) Estimation of Current State: How can the state of the material
at time tk be inferred from sensor measurements observed earlier
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in time, i.e., at t0, . . . , tk−1, as well as at tk?

(Q2) Estimation of Time to Failure (TTF): How much further load can
be applied after time tk until the material enters a critical state?

(Q3) Probability of Failure: How likely is a material failure before tk +
∆t?

In general, simulations generate data for different system variables. For materi-
als, these variables may be stress tensors measurements at different positions on
the material. Here, scientists are eager to understand which variables reliably
indicate material failures at an early state of deformation. So there are further
relevant questions which concern the sensitivity of the answers to (Q1) – (Q3)
with respect to the measurements available.

(Q4) Variable Importance: Which variables influence the estimation
accuracy most?

(Q5) Timing of Prediction: How much does the estimation accuracy
improve when the TTF decreases, and more measurements are
available?

To address (Q1) – (Q3), we strive for a mathematical formulation of these que-
stions, e.g., as a regression or classification problem. This has been challenging
for our materials scientists, as they had to articulate information needs expli-
citly. The simulation data must have a certain structure, and the simulation
model must be of sufficient quality for a fruitful deployment of data-science
approaches. Next, scientists are interested in insights regarding the simulation
as a whole. An example is the selection of parameter values one should de-
vote attention to. This may be because they relate to inconclusiveness or cause
unexpected results. – Our study has taught us that these premises lead to three
essential challenges:

Method Selection: A necessary step is to select an appropriate data-mining
method from the multitude of existing approaches. However, for insights re-
garding the simulations as a whole, selecting an approach purely based on per-
formance may not be sufficient. Instead, one might be interested in finding
models with certain characteristics such as interpretability and usability. Both
characteristics do receive attention in the context of model selection, but their
meaning varies considerably, and they often remain unexplained (Lipton, 2016).
For simulations, it is not clear how one should formalize and quantify these
characteristics. Next, the extent of domain-specificity that is necessary here is
unclear.

Semantics: A second challenge is that simulations may yield time-series data
with special characteristics which cannot be fed one-to-one into conventional
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analysis algorithms. In our study, the data is a multivariate time series of
tensor measurements. The time dimension is not meaningful, because it is an
artificial unit intrinsic to the simulation. To illustrate further, the resolution of
the data generated can be adaptive, e.g., the simulation generates more fine-
granular output if it enters a critical state. This requires adequate prepocessing
methods which deviate from the ones for other settings like business data or
experimental data.

Data Quality: A third challenge is to deal with the quality of the simulation
model, which may be low and at the same time not known. Clearly, data ge-
nerated by a model contains some error when comparing it to the real system.
If so, the data might not help to uncover relationships relevant to the analysis
or even be misleading. When scientists want to improve the simulation mo-
del as a whole, they should know to which extent the data-mining method or
simulation-data quality is causal for the low accuracy. Next, despite low costs
compared to experiments, it generally is not possible to run simulations for all
parameter variations. Scientists must consciously decide which simulations to
run. This can result in imbalanced data sets if a certain phenomenon is only
observable in a small region of the parameter space.

As a first step in our case study, we map the time-series measurements to a
common scale to address Challenge Semantics. We then apply feature engineer-
ing to facilitate the use of standard statistical methods. To address Challenge
Method Selection, we have come up with notions of interpretability and usability
that turned out to be useful for our materials scientists. For interpretability,
materials scientists value models that allow to identify relationships between
input data and predictions. For instance, neural networks support interpreta-
bility, as they allow to readily single out variables that are good predictors of
material failure. Next, we discovered that a distinction between spatial and
temporal variable importance contributes to better interpretability. For usabi-
lity, two aspects have a strong influence in our case study: the effort required to
preprocess data for a specific data-mining model, and the algorithm runtime. A
naive application of standard performance measures, on the other hand, has not
turned out to be overly useful to select models. Instead, our materials scientists
have found it more inspiring to compare these metrics for simulations that have
been grouped by specific parameter settings. A finding from this group-wise
comparison is that, contrary to our expectation, the estimation accuracy (Q5)
does not seem to be higher with decreasing TTF.

To address the quality of simulation data (Challenge Data Quality), we pro-
pose to compare predictions on data generated by the simulation with pre-
dictions on the simulation parameters. This comparison has turned out to be
particularly useful to trace back data-quality issues to the simulation model.

While the results of our case study have already been insightful for our
materials scientists, we deem our conclusions on how a research agenda towards
simulation-data science could look like a core contribution of this current article.
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An important takeaway is that we now can articulate these steps fairly clearly,
see Section 5.

2 Related Work
An important current trend in science is to combine domain-specific theory and
data science systematically (Karpatne et al, 2017). On the one hand, data
science can be useful to improve theoretical models, e.g., through estimation
of parameters of physical models. On the other hand, domain knowledge can
provide useful constraints to restrict outputs of the the data-science model.
This trend is also visible in materials sciences, where data-science methods be-
come increasingly popular. Several studies have attributed a high potential to
data science to advance traditional materials-science methods (Ramprasad et al,
2017; Lookman et al, 2016; Müller et al, 2016; Kalidindi and De Graef, 2015;
Wagner and Rondinelli, 2016; Jain et al, 2016). A very prominent application
of data science that these studies have discussed is materials design. More spe-
cifically, the benefits expected from the deployment of data-science methods
concentrate on the Processing-Structure-Property-Performance (PSPP) relati-
onship (Agrawal and Choudhary, 2016). The PSPP relationship means that the
performance of a material depends on its properties, which in turn depends on
the structure, and the structure is the result of specific processing steps. The
exact relationships usually are not fully known, and discovering them requires
much effort, in order to conduct experiments or develop simulations. Here, data
science can be useful in two ways: in a forward direction, e.g., to predict the
properties from a material from a given structure, or for the inverse problem,
e.g., select the structure which optimizes a specific material property (Agrawal
and Choudhary, 2016).

One may further differentiate between computational materials science and
materials informatics (Hill et al, 2016). Computational materials science relies
on physical models and numerical simulations, while methods from materials
informatics are purely data-based, i.e., the application of data-science methods
to the materials domain. Computational materials use a multiscale approach.
This means that, depending on the problem at hand, models are developed at
different spatial or temporal model granularities. To this end, Hill et al menti-
ons two ways how data science could improve the connection between different
model granularities: by using simulation results from high granularity models to
predict parameters for models at finer granularity, or by building data science
models on top of the simulation outputs. However, the description of both ap-
proaches is on a high level, and the authors do not give specific examples. For
materials design, there are examples of data science used with different model
granularities (Ramprasad et al, 2017). The authors argue that the choice of
model granularity also depends on the accuracy that one expects from applying
data-science methods, but do not elaborate on how to connect models from dif-
ferent granularities. Müller et al (2016) gives a broad overview of data-science
applications in the material sciences. Most applications described are on the de-
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Figure 1: Three-point bending test.

sign of materials, such as the crystal structure predictions or the development
and discovery of density functionals. The authors also give examples from ot-
her application areas, such as machining and the material behavior under heat
treatment and deformation processes.

Data science methods have also been used in combination with simulations
in various engineering disciplines. The focus has been to optimize simulation
parameters, or to fully replace a compute-intensive simulation model with an
approximation, also called metamodeling (Wang and Shan, 2007; Simpson et al,
2001). The primary target of metamodeling is a reduction of computational
runtime. Other approaches have been proposed for the extraction of decision
rules to ease the understanding of the simulation (Pierreval, 1992; Huber and
Berthold, 1997).

However, the data-science problems discussed in these studies so far have
always been a static one, i.e., the training data is a fixed set of attributes or
features. These features are, for instance, descriptive properties of materials,
results of an experiment, or simulation parameters. An example of a static ap-
proach is a comparison of several regression models that take the chemical com-
position and mechanical properties as an input and predict the fatigue strength
of the material (Agrawal et al, 2014). In contrast, a dynamic problem relies on
process data gathered over the course of an experiment or simulation, i.e., the
resulting data is a series of measurements. Examples for dynamic approaches
with experimental data are remaining useful life prediction (Guo et al, 2017)
and electronic nose (Bhattacharya et al, 2008). To our knowledge, dynamic data
from simulations, i.e., data which is gathered at intermediate simulation steps,
has not been a focus of research.

3 Methods
3.1 Simulation Model
Our specific scenario is a simple simulation model of a three-point bending
specimen, see Figure 1. The goal of the simulation is to investigate how the
material behaves when a punch exerts an increasing mechanical stress on its
surface. More specifically, the specimen has a notch at the opposite side of the
punch, and one wants to find out if and how a crack will open under stress.
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We model the specimen with the notch and a predefined crack in the symme-
try plane with the finite element method (FEM). This means that the specimen
is represented as a mesh of interconnected nodes, which becomes finer around
the crack tip. During a simulation, the punch applies increasing deformation
onto the structure. This results in an increasing stress in the material. The
crack opens when the stress increases beyond a failure threshold, which we set
to yfailure = 0.9. The position of the punch is described relative to its initial
one and is called boundary condition displacement (bcd).

As a matter of form, we summarize the simulation parameters in the follo-
wing paragraph. However, they are not essential for the further understanding
of this article.

3.1.1 Simulation Parameters

In a real system, the geometry and the material parameters are subject to va-
riation. The simulation varies the system geometry by altering the notch angle
(α ∈ [15◦; 105◦]) and the initial crack length (l ∈ [0; 0.2mm]). The Young’s mo-
dulus E = 210 GPa (±10%), Poisson’s ratio ν = 0.3, and a prescribed isotropic
plastic yield function with the yield stress σy = 460 MPa (±10%) define the
elasto-plastic material behavior of the specimen. In the simulation, we assume
a plane strain state. Furthermore, the normal and the shear failure stresses
vary with σf = 550 MPa (±10%) and τf = 0.75 · σf . The simulation uses a
stress-based failure criterion for the interface elements along the symmetry axis,
which is defined as:

yfailure =

√(
σn

σf

)2

+

(
τn
τf

)2

(1)

The failure criterion characterizes the state of the crack during the loading,
dependent on the normal stress σn and the shear stress τn at the crack tip. It
will determine further crack opening if the corresponding nodal value exceeds
the critical value yfailure = 0.9.

3.1.2 Simulation Output

During a simulation, the bcd increases stepwise. This applies an external loading
in the symmetry axis on the opposite side of the notch. The stress evolves until
the material fails, i.e., the full time series is observed. We also make some
assumptions about sensor measurements accessible in a real-world application.
We assume that measurements are only possible on the material surface, and
that the actual stress state in the vicinity of the crack tip is unknown. Therefore,
we only consider a selection of output variables at the lower surface of the
specimen except for the notch surface. The measurements collected are the
displacements, the stresses, the maximum stress value, and its position along
the surface, in each simulation step. The data generated by the simulation is a
multivariate time series of sensor measurements. Our data set consists of 66,550
simulations.
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Sim t bcd x1 x2 … xm y

s1 t0 0 0 0.1 … 0.01 0
s1 t1 0.002 4.3 0.1 … 0.11 0.01
s1 t2 0.004 7.1 0.2 … 0.22 0.013
...
s1 tK1

0.24 22.3 0.6 … 0.66 0.91
...
sn tKn

0.19 4.2 0.42 … 0.48 0.88

Table 1: Illustration of the data structure.

3.2 Problem Formalization
The data set D is a set of n simulations S={s1, s2, . . . , sn}. For each simulation
si, i ∈ {1, . . . , n}, point in time tk, k ∈ {0, . . . ,Ki} and sensor j ∈ {1, . . . ,m},
we observe a measurement xi

tk,j
. Table 3.2 illustrates the structure of the data.

One can subset the observations either by sensor or by time. The subset by time
is a vector xi

tk,·=(xi
tk,1

, . . . , xi
tk,m

) of measurements at time tk. The subset by
sensor is a vector xi

·,j=(xi
t0,j

, xi
t1,j

, . . . , xi
tK ,j) of measurements of Sensor j. The

time series from t0 to tk is xi
[t0,tk],j

=(xi
t0,j

, xi
t1,j

, . . . , xi
tk,j

). The failure criterion
at time tk for i is yitk . The failure criterion over all simulations at time tk is
ytk = (y1tk , . . . , y

n
tk
).

The simulations use an adaptive time stepping method. This means that
the temporal resolution of measurements increases if the state changes of the
material are large. Consequently, time stamps of different simulations do not ne-
cessarily correspond to the bcd (cf. Challenge Semantics), e.g., bcd1t1 = 0.002 6=
bcd2t1 = 0.003 in Table 3.2. However, the quantity relevant for our analysis is
bcd because it corresponds to the load. So it is more meaningful to index the
values by bcd. In the following, we may write bcdk instead of bcdtk for brevity.
The adaptive time stepping has two implications on the data. First, two subse-
quent measurements in general are not equidistant in terms of their bcd. Second,
the number of observations until the simulation reaches bcdk, i.e., the length of
Vector xi, differs between simulations. We will return to this in Section 3.3.

3.2.1 (Q1)

One can formulate (Q1) as a regression problem. In general, a regression pro-
blem is of the form

y = f(x) + e (2)

where y is the response variable, in our case the failure criterion, x the sensor
values observed, and e a random error. In the following, we write bcdk instead
of bcdtk for brevity. f̂ denotes the estimate of the prediction function and ŷ the
estimate of the failure criterion.

Because the data from each simulation is a time series, the specific regression
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problem for (Q1) is

ŷibcdk
= f̂(xi

bcd0,·, x
i
bcd1,·, . . . , x

i
bcdk,·) (3)

Example 3.1 For (Q1), a simulation s1 generates values until bcd = 0.004,
and the objective is to estimate the failure criterion at this state. Formally, the
model estimates yfailure right after the punch has moved from its initial position
bcd0 = 0 to bcdk = 0.004:

ŷ10.004 = f̂(x1
0,·, x

1
0.002,·, x

1
0.004,·)

3.2.2 (Q2)

One can also estimate the failure criterion if the punch advances further to
bcdk +∆bcd. For example, after observing the sensor values until bcdk = 0.004,
one can estimate yi0.01. This gives way to a formalization of (Q2). First, we
define the critical bcd:

bcdicritical := min{bdc : yibcd ≥ ycritical} (4)

In our case, we set ycritical = 0.9 (cf. Section 3.1.1). (Q2) targets at an estimate
of the difference between the bcd at the time of failure and the bcd at time
of prediction, i.e., ∆bcd = bcdicritical − bcdk. Because bcdk is known, we can
express (Q2) as:

ˆbcd
i

critical = f̂(xi
bcd0,·, x

i
bcd1,·, . . . , x

i
bcdk,·) (5)

3.2.3 (Q3)

(Q3) aims for an estimate of the probability of failure when additional load is
applied, i.e., when the punch advances by ∆bcd. First, we define a random
variable for the maximum value of the failure criterion between bcdk and bcdk+
∆bcd.

Y max
[bcdk,bcdk+∆bcd] := max{Yv | bcdk ≤ v ≤ bcdk +∆bcd}

Next, we define Xbcdk
as the random variable of the sequence of measurements

until bcdk. Then the failure probability PY i,max is defined as:

P (Y max
[bcdk,bcdk+∆bcd] ≥ 0.9|Xbcdk

= xi
[bcd0,bcdk],·)

Alternatively, one can also interpret (Q3) as a classification problem. In this
case, there are two possible outcomes: Either the material fails or does not fail
until bcdk +∆bcd. We can define a random variable Z ∈ {0, 1} which is binary
with the probability mass function

P (Zi) =

{
PY i,max if Zi = 1

1− PY i,max if Zi = 0
(6)

The data mining task is to predict the class label (0 or 1) of the simulation.
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3.3 Preprocessing
For statistical models, a naive way to work with time series data would be to
use each measurement until bcdk as an independent variable. However, the time
dependency between observations would be lost. Thus, we extract features from
the time series on the interval [bcd0, bcdk] for each sensor. We generate a feature
on k observed values of the time series by a function of type φ : Rk → R, i.e.,
a function that maps the k observations of a sensor to a value. The set of
feature generating functions is Φ={φ1, φ2, . . . , φd}. Hence, the transformation
of the multivariate time series for one simulation into the feature space is of type
Φ: Rm×k → Rm×d. Φ(xi

·,·) is the representation of a simulation in the feature
space. For better readability, we use the shorthand xi=Φ(xsi

[bcd0,bcdk],·). After
transforming the data into the feature space, the prediction model changes to

ŷibcdk
= f̂

(
Φ(xi

[bcd0,bcdk],·)
)

= f̂
(
φ1(x

i
[bcd0,bcdk],1

), φ1(x
i
[bcd0,bcdk],2

),

. . . , φ1(x
i
[bcd0,bcdk],m

), φ2(x
i
[bcd0,bcdk],1

),

. . . , φd(x
i
[bcd0,bcdk],m

)
)

with

φl(x
i
[bcd0,bcdk],j

) =φl(x
i
bcd0,j , x

i
bcd1,j , . . . , x

i
bcdk,j

),

l ∈ {1, . . . , d}, j ∈ {1, . . . ,m}

In our study, the features are maximum, minimum, mean, average and maxi-
mum slope, and the area under the curve. Applying these transformations to
each of the 607 sensor measurements results in 3642 features.

For artificial neural networks, manual feature construction is not necessary,
because neural networks learn low-level feature representations automatically.
However, the sample rate for all simulations should be equal for a meaningful
analysis. This is not the case here, because the the bcd axis becomes finer when
the material enters a critical state. To homogenize the simulation steps, we
select the same bcd intervals for all simulations and interpolate the values such
that bcdik = bcdjk ∀i, j by using the next larger value available.

3.4 Data Mining Methods
We now list the data-mining methods used in our case study. See (Friedman
et al, 2001; Goodfellow et al, 2016) for more information.

3.4.1 Multiple Linear Regression

Linear regression models assume that the failure criterion is a linear combination
of the surface values measured.

ŷibcdk
= xi>β̂ (7)
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with the estimated coefficient vector β̂.

3.4.2 Decision Trees

A decision tree segments the feature space into M non-overlapping regions
{R1, R2, ...RM}. The prediction for all data objects that fall into segment Rm

is cm. For a regression task with the quadratic loss function, cm is the average
of the response variables of the data objects in Rm.

ŷibcdk
=

M∑
m=1

ĉm I[xi ∈ Rm] (8a)

ĉm =
1

|Rm|

n∑
i=1

[yibcdk
|xi ∈ Rm] (8b)

To avoid overfitting, decision trees are typically regularized, i.e., they have re-
strictions such as a minimum size of the segments or a maximum depth of the
tree.

3.4.3 Gradient Boosted Decision Trees

Instead of just learning one decision tree, boosting learns J trees sequentially.
The final prediction is the sum of the predictions of the individual trees

ŷibcdk
=

J∑
j=1

f̂j(x
i) (9)

where fj is the prediction function of the j-th tree. We use so-called gradient
boosted regression trees (GBRT) (Friedman et al, 2000; Chen and Guestrin,
2016), an iterative approach. The first tree segments the observation space only
coarsely, and each subsequent tree aims to compensate the error of the current
model. GBRT typically are regularized as well.

3.4.4 Logistic Regression

For the classification task in Equation 6, the model must predict a probability.
With logistic regression, the response variable is transformed such that the log-
odds are a linear function of the observations:

log

(
P (Zi = 1|X = xi)

P (Zi = 0|X = xi)

)
= xi>β̂

By doing so, the prediction is bound to the interval [0, 1]. The transformation
is similar when using GBRT for classification tasks.
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3.4.5 Recurrent Neural Networks

Recurrent neural networks (RNN) are artificial neural networks specialized for
sequential data, with directed cycles between units, e.g., between hidden units.
In our case, the input layer of the network consists of 607 units, one for each sen-
sor. The output layer consists of a single unit, which outputs ŷfailure, ˆbcdcritical
or P i

Z . The state of a recurrent hidden unit h at tk depends on the state of the
hidden unit at tk−1, the sensor values observed at tk, and model parameters θ.

hi
tk

= f(hi
tk−1

, xi
tk,·; θ) (10)

We index by t to emphasize that RNNs work on sequences of input data, inde-
pendently of the distance between observations. As explained, two simulations
can have different numbers of observations until the simulation reaches bcdk.
Although RNNs can handle sequences of different length, we interpolate to
make simulations directly comparable.

We use two different recurrent network types in our study. The first archi-
tecture is Simple RNN, which consists of self-recurrent units in the hidden layer.
The second architecture is Long Short-Term Memory (LSTM) networks, which
can remember inputs over a longer time. So the LSTMs can learn dependencies
of two distant simulation steps.

3.5 Model Parametrization
For statistical methods, we select hyperparameters, e.g., the maximum depth
of a regression tree, by cross-validation. Because of the many features, we also
apply feature selection for Linear/Logistic Regression and Decision Trees.

The selection of a suitable topology of neural networks is more difficult,
and it is not feasible to search exhaustively. When comparing networks of
different complexity, i.e., number of hidden layers and nodes, we find that a
certain complexity is necessary in our case to have good predictions. We opt for
three hidden layers with 607, 50 and 50 units for the Simple RNN. For LSTM
networks, we use two hidden layers, each with 50 units.

3.6 Error Metrics
We partition the set of simulations into two subsets Strain and Stest and use
standard error metrics to assess prediction accuracy on Stest. For regression,
we use the Mean Absolute Percentage Error (MAPE). For classification, we use
the F1-Score.

4 Study Results
We first present the accuracy of the prediction models for the regression and
classification tasks. The assessment of model accuracy taken by itself has not
been overly insightful, but it is the basis to compare different groups of simu-
lations. To this end, we discuss insightful findings on early- and late-breaking
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k Model yfailure bcdcritical

0.005

Mean 16.60 89.53
Median 16.89 25.33
Linear Regression 5.50 43.39
Regression Tree 5.53 15.13
XGBoost 5.51 15.30
Simple RNN 5.57 15.69
LSTM 5.53 15.73

0.02

Mean 13.28 114.97
Median 13.43 39.15
Linear Regression 5.33 61.00
Regression Tree 5.01 19.90
XGBoost 4.71 18.93
Simple RNN 4.60 19.96
LSTM 4.55 18.91

0.04

Mean 6.20 18.06
Median 6.19 17.92
Linear Regression 5.00 15.24
Regression Tree 5.47 16.50
XGBoost 5.00 15.20
Simple RNN 4.88 15.11
LSTM 4.95 15.01

Table 2: MAPE values, lowest errors per bcdk in bold.

simulations, as well as on the timing of predictions. Then we discuss interpre-
tability and usability in Sections 4.2 and 4.3. For reproducibility, we have made
our data and implementation publicly available1.

4.1 Model Accuracy
Table 2 lists the Mean Absolute Percentage Error (MAPE) for prediction of
yfailure ((Q1)) and bcdcritical ((Q2)) for different displacements, i.e., after the
punch advanced by 0.005, 0.02 and 0.04 towards the specimen.

In most cases, the average prediction error with standard statistical models
is higher than for the neural networks. The largest difference occurs when tran-
siting from a simple linear regression to slightly more complex regression trees
for bcdcritical at bcd0.005 and bcd0.02. One can observe that the error grows larger
with increasing k for some predictions, in particular for bcdcritical from bcd0.005
to bcd0.02. This might seem unintuitive because increasing bcd means that the
model has more information on the simulation available. One explanation is
that many simulations break relatively early, i.e., even before the punch reaches
an offset of 0.02. We had removed these early-breaking simulations from the
test set because predicting yfailure or bcdcritical for a broken specimen is mea-
ningless. A larger error after these simulations are removed indicates that the
early-breaking ones might be easier to predict.

1https://www.ipd.kit.edu/simds/readme.html
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k Logistic
Regression XGB RNN N Positive

Class
0.005 0.98 0.99 0.99 13302 82%
0.010 0.92 0.92 0.92 13302 82%
0.015 0.72 0.91 0.92 13209 82%
0.020 0.46 0.90 0.90 6395 63%

Table 3: F1-score for different settings.
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0.005 0.02 0.04

Simple RNN

Figure 2: Prediction error at different bcd. Simulations are grouped by their
bcdcritical.

For (Q3), we classify simulations into early and late breaking ones. The po-
sitive class are simulations with bcdcritical ≤ 0.04, and N is the total number of
simulations in the test set. Table 3 lists the classification accuracy for different
models at varying bcdk. Until bcd0.01, all approaches show the same perfor-
mance. For predictions at bcd0.02, class imbalance decreases, and the more
complex approaches outperform logistic regression. We hypothesize that this
is a result of more complex variable interactions in the remaining simulations
which the logistic regression fails to recognize.

4.1.1 Timing of Predictions

To further investigate late breaking simulations, we reduce the test set to only
contain simulations with bcdcritical ≥ 0.04. Figure 2 depicts the MAPE for the
prediction of bcdcritical. Here, the bcd at time of prediction is varied from 0.005
to 0.04. The simulations in the test set are partitioned further into three groups
by their actual bcdcritical: [0.04, 0.06], [0.06, 0.08], and [0.08,∞). We observe
that the average prediction error is smaller for later break points. This means
that, if the prediction takes place at, say, bcd0.03, simulations with bcdcritical ∈
[0.04, 0.06] are harder to predict than ones with bcdcritical>0.06. However, the
prediction error within each group does not change significantly with increasing
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Figure 3: Spatial and temporal importance of simulated sensor measurements.
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bcd in any group. So, contrary to our expectation, the answer to (Q5) is that
estimation accuracy does not seem to be higher with decreasing TTF.

4.2 Interpretability
The meaning of the term ’interpretability’ varies in the literature (Lipton, 2016).
In this current study, we focus on the following meaning which has turned out
to be particularly appealing to our materials scientists: A data science model
is interpretable if it allows to identify insightful simulation runs and parameter
settings. We have identified two categories of simulations our materials experts
have found interesting. The first one are interesting spatial segments and tempo-
ral ranges of the simulations (Section 4.2.1). For this category, a possible action
could be to increase or decrease the spatial or temporal resolution in some part
of the simulation model for further simulation runs. The second category is
the identification of settings where data quality might be low (Section 4.2.2).
Comparing prediction quality for different groups of simulations, e.g., by pa-
rameter settings, or after different simulation steps can point to simulations in
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this category.

4.2.1 Variable Importance

Here, variable importance is the relative contribution of a variable to the model
prediction (Gevrey et al, 2003). In our study, our domain experts have found
a distinction between spatial and temporal variable importance quite useful.
‘Spatial’ refers to sensor locations which the prediction models deem important
for a specific bcd. The temporal assessment is to identify the most important
simulation steps among all sensor locations. For standard statistical models, a
sensitivity analysis can quantify variable importance. However, a direct analysis
of the temporal sensitivity is not possible with features that summarize the
measurements over several simulation steps. So we use recurrent neural networks
instead which allow to assess both spatial and temporal importance.

To analyze spatial importance, we use a perturbation method as described in
(Gevrey et al, 2003). Perturbation means that one adds noise to sensors one-by-
one and measures the increase in prediction error compared to the model trained
on unperturbed data. Because of the high number of variables, we choose to
visualize variable importance on a schematic of the specimen with the mesh of
nodes. Figure 3a shows the right half of the experiment setup (cf. Figure 1). Our
material scientists have found this visualization particularly helpful to identify
areas on the specimen surface that influence the simulation result most.

To assess the temporal importance, we train an LSTM network with an
attention mechanism (Goodfellow et al, 2016). This mechanism lets the neural
network score the importance of a time step, i.e., the attention it pays to a
time step, on the final prediction. Our scientists have liked the visualization in
Figure 4a which shows the attention for different bcd intervals. Three periods
gain attention: the beginning of the simulation, when the punch is around
bcd0.015, and the most recent observations.

A takeaway is that visualizations that map spatial and temporal variable
importance to the simulation setup help to guide the domain experts through
the results. Inspecting the simulation model guided by variable importance,
for instance to reduce the simulation model complexity, is future work of our
materials scientists.

4.2.2 Data Quality

Although our regression models after fitting perform reasonably well on the
simulation data, some simulations seem to be more difficult to predict than
others (cf. Section 4.1). Finding an explanation for this is important. Poor
predictions could either be due to an error in the prediction model trained or
to the quality of the simulation data (cf. Challenge Data Quality).

We use the following approach to identify parts of the data space where
data quality might be an issue. We consider two approaches to answer (Q2):
The data-based approach, where we train a prediction model on the simula-
tion output presented in Section 3.2, and a parameter-based approach, where
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Figure 4: Prediction vs. actual bcdcritical at a bolt displacement of bcd0.02 at
the time of prediction.

we train a prediction model on the simulation parameters. Suppose that the
prediction accuracy for the parameter-based approach is good. Intuitively, if
there is a causal relationship between the simulation parameters and bcdcritical,
the simulation data should also bear this information. On the other hand,
if the predictions of the data-based approach are worse than the ones of the
parameter-based approach, this might indicate a lack of data quality. There
certainly is no guarantee that data quality is the cause of bad predictions. For
example, the prediction model itself might just not be suitable for the data. Ho-
wever, our conjecture seams reasonable if several prediction models fail to learn
the relationship. Furthermore, if parameter-based predictions are already bad,
this might point to a more general problem with the simulation model. Indeed,
the materials scientists in our team have found this comparison helpful in order
to assess the simulation model. We illustrate how the comparison between the
data-based and parameter-based approach can be helpful to identify potential
shortcomings in the simulation model with an example.

Example 4.1 The plot in Figure 4a shows simulations with low prediction
accuracy for the data-based approach at an actual bcdcritical between 0.002 and
0.004. Figure 4b shows the parameter-based predictions, which also are worse
than average for these simulations. Inspecting the highlighted cases brings up
that simulations have the same values for all but two parameters, and the actual
bcdcritical differs significantly. However, the data generated by the simulation
model is identical in all attributes until bcd0.02. So any data-mining model
cannot distinguish between these simulations. Further investigation has revealed
that this is a consequence of simplifications in the simulation model. For future
simulation runs, materials scientists should adapt the simulation model for this
part of the data space.
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4.3 Usability
In our study, we have come to the conclusion that it mainly depends on three
points whether a method is usable. The first two are the effort necessary for
data preprocessing and the runtime of model training. A third aspect has been
that finding a good parametrization of models may be difficult in some cases.
But this is not specific for simulation data, and we do not elaborate on it in the
following.

Preprocessing: If preprocessing is non-standard or domain-specific, it entails
intellectual effort and implementation work which bog down usability. In our
case, the difficulty of preprocessing mainly depends on the specific semantics
(Challenge Semantics), which are different than for, say, experimental or bu-
siness data where instance-wise cleaning of noise or of user-input errors tends
to be more common. We in turn use interpolation to make sequences directly
comparable. However, this step also distorts the original values and must be
well considered. For standard statistical methods, we have derived features like
average and maximum slope for the simulation data at hand (cf. Section 3.3).
Clearly, not all features are suitable for all variables. For a sinusoidal curve
for instance, the average might not be as meaningful as, say, the amplitude or
frequency. So although feature engineering is a standard step in data mining,
it can be challenging here. This is because the product of the number of si-
mulation variables and the one of features can grow very large. Consequently,
feature engineering for each variable individually may not be feasible.

Runtime: Low runtimes of model training is important here, because the
workflow of creating simulations often is iterative. Scientists start with a ba-
sic simulation model that might contain unreasonable simplifications or even
design flaws. After some simulations, they revisit the model, fix and rerun it.
In fact, our materials scientists would have liked more iterations within this
current study to improve the models. If data science is part oft the workflow,
model training needs to be fast. In our study, these runtimes differ by orders of
magnitude. Linear/Logistic Regression and simple Regression/Decision Trees
are trained within seconds. For XGBoost, runtimes in our setup have varied
between several minutes to a few hours, because of an expensive grid search
for model hyperparameters. For RNNs, runtimes can be up to several hours,
depending on the architecture and the length of the input sequences. If one
even decides to increase the temporal resolution of the simulation, the input
sequences grow larger, and runtimes might become prohibitive.

A takeaway from the assessment of usability is that the time from simulation
data to model prediction is crucial. In addition, it is likely that simulation
models evolve quickly based on the first results from the data-science models.
Furthermore, findings from Section 4.1 indicate that model accuracy has turned
out to be of less importance in a simulation setting. In consequence, usabi-
lity might benefit from trading model accuracy for a reduction of time from
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simulation to prediction, for instance by starting with only one rather simple
data-science model.

5 Towards Simulation-Data Science
A core finding from our case study is that we have identified generalizations to
our approach which we deem necessary to make some strides towards the gui-
delines envisioned for ”simulation-data science”. These generalizations depend
on the nature of the modifications made to the simulation setup. We present
them as extensions to our study with increasing level of generality.

1. Extended Data Analysis: The first level is that the simulation data avai-
lable stays as is, only its analysis may be different. Here, it may be insightful to
deploy further data-mining approaches, to study other aspects of interpretability
and usability. For example, the grid-like nature of the simulation model looks
like a good fit for convolutional neural networks. Such topologies could help to
identify local motifs, i.e., groups of correlated measurements that are important
for certain predictions (LeCun et al, 2015). Others have experimented with dif-
ferent approaches, like the identification of relationships of simulation variables
(Brady and Yellig, 2005), or clustering of simulations (Burrows et al, 2011).
However, they do not address interpretability or usability as systematically as
envisioned here.

2. Advanced Materials Simulations: The second level is to use more ad-
vanced simulation approaches to study similar problems of material failures.
This requires modifying the simulation model, by varying characteristics such
as geometrical details, loading scenarios, strain rate, or by adding material pa-
rameters that we have consciously left aside so far for the sake of simplicity. Me-
asurements at the internal nodes of the specimen could also augment the data.
Including these nodes in the simulation output might give a more complete view
on the specimen. At the same time, this might also increase the dimensionality
of the data by orders of magnitude. This in turn may call for methods which can
handle high-dimensional data inherently, or to include dimensionality-reduction
techniques. With all these modifications, while the general structure of the data
remains, the domain-specific research questions might change as well. For cyclic
loads for instance, (Q2) might be less relevant. On the other hand, predicting
the load cycle when the material will most likely fail should be more interes-
ting. Finally, more complex scenarios like cyclic loads might have different data
characteristics, like sinusoidal curves, and require a more sophisticated feature
engineering than the one here (cf. Section 4.3).

3. Different Simulation Types: The third level is to abstract from mate-
rial failures and to consider other types of simulations. For example, materials
science has certain particularities. One is that it follows a multi-scale appro-
ach. This means that researchers may use different modeling approaches of
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different space and time scales (Steinhauser, 2017). Our study has been on the
macroscopic length scale (centimeter to meter range). This gives way to less
complex interactions of model variables than, say, in a micro- or nanometer
scale. In general, there are different ways to categorize computer simulations
(Winsberg, 2015; Wikipedia Contributors, 2017). Examples are continuous vs.
discrete time scales or agent-based vs. equation-based modeling. Future work
includes selecting different examples from such taxonomies systematically. It
may then be possible to evaluate whether the challenges and methods from our
study are general, and whether our current understanding of interpretability
and usability remains to be meaningful for other simulations.

6 Conclusions
This article has been a first step to identify and structure open research questions
for the deployment of data-science methods to simulation data. Its core has been
a case study on material failures. We have proposed extensions to our study
which we deem necessary to advance our insights towards general guidelines
envisioned for “simulation-data science”.
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