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Models with a light, additional gauge boson are attractive extensions of the standard model. Often
these models are only considered as effective low energy theory without any assumption about an
UV completion. This leaves not only the hierarchy problem of the SM unsolved, but introduces a
copy of it because of the new fundamental scalars responsible for breaking the new gauge group. A
possible solution is to embed these models into a supersymmetric framework. However, this gives
rise to an additional source of fine-tuning compared to the MSSM and poses the question how natural
such a setup is. One might expect that the additional fine-tuning is huge, namely, O(M2

SUSY/m
2
Z′).

In this paper we point out that this is not necessarily the case. We show that it is possible to find
a focus point behaviour also in the new sector in co-existence to the MSSM focus point. We call
this ’Double Focus Point Supersymmetry’. Moreover, we stress the need for a proper inclusion of
radiative corrections in the fine-tuning calculation: a tree-level estimate would lead to predictions
for the tuning which can be wrong by many orders of magnitude. As showcase, we use the U(1)B−L
extended MSSM and discuss possible consequence of the observed 8Be anomaly. However, similar
features are expected for other models with an extended gauge group which involve potentially large
Yukawa-like interactions of the new scalars.

I. INTRODUCTION

Supersymmetry (SUSY) is still one of the best candi-
dates for physics beyond standard model (BSM), which
provides an elegant solution to hierarchy problem, achiev-
ing gauge coupling unification at a high scale, and pro-
viding a dark matter candidate [1]. However, the current
null results from LHC direct SUSY searches together with
the measured 125 GeV Higgs mass have exacerbated the
little hierarchy problem and put pressure on the Minimal
Supersymmetric Standard Model (MSSM) as natural ex-
tension of the SM. The little hierarchy is usually encoded
in the following equation:

m2
Z ∼ −2m2

Hu − 2µ2 , (1)

in order to prevent large fine-tuning, one needs m2
Z ∼

m2
Hu
∼ µ2 at the SUSY scale what becomes more and

more disfavoured. To quantify the resulting amount of
tuning, one can use one of the common measures like the
one of Barbieri-Giudice [2]

∆Z = max
∣∣∣∣∂ lnm2

Z

∂ lnα

∣∣∣∣ (2)

where α represents the fundamental parameters of the
model. With this measure one finds that the tuning
stemming from µ is at tree-level given by ∆µ ' 2µ2/m2

Z .
More recently, it was found that a more accurate pre-
diction is actually ∆ ' µ2/m2

Z once loop corrections
are taken into account [3] 1. The other source of the

1 This connection between the supersymmetric µ-term and the
fine-tuning usually leads to the assumption that natural SUSY

fine-tuning is m2
Hu

which shows a large sensitive on the
radiative corrections from (s)tops and the gluino. Conse-
quently, the fine-tuning in the MSSM has a significant
correlation with the value of the SM-like Higgs mass
which also depends strongly on these particles. The
SUSY masses necessary to explain the measured mass of
125 GeV [5, 6] unavoidable introduce a sizeable amount
of fine-tuning which is typically very large in most regions
of the parameter space. This is especially the case in uni-
fied scenarios like the constrained MSSM (CMSSM) with
only a small set of free parameters at the scale of grand
unification (GUT). The most important exception is the
focus point region where the fine-tuning has only a mild
dependence on the stop masses [7–18].

The situation becomes more complicated when a new
gauge group is introduced. We consider here the case of
an additional Abelian group which gets broken by a pair
of scalars η1, η2 with charges ±1 under this group. In
this case, one should also consider the tadpole equation
associated with these new states and calculate the corre-
sponding amount of tuning needed to fulfil them. Under
the assumption that the new superfields also receive their
SUSY mass from a dimensionful term in the superpoten-
tial (called µη in the following), one finds at tree-level a
very similar connection as eq. (1) between the mass of
the new gauge boson m2

Z′ and the SUSY parameters

m2
Z′ ∼ −m2

η − µ2
η , (3)

If one assumes that the U(1) gauge coupling g′ is of the
same order as the weak coupling g, the current LHC

necessarily needs a light Higgsino mass. However, it was also
pointed out that this strong conclusion can be avoided by intro-
ducing a non-holomorphic soft-term µ′ [3, 4]
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bound for mZ′ is in the multi-TeV range [19]. For such
heavy Z ′, one does not need to worry too much about the
fine-tuning induced by eq. (3) [20, 21]. However, a very
light Z ′ is still allowed for tiny g′. In general, there are
some motivations to consider such a light vector boson,
e.g.

• Self-interacting dark matter (SIDM) [22–24] pro-
vides a possibility to reconcile the tension between
the small scale structure observations and the con-
ventional cold DM (CDM) predictions [25–27], see
for instance Ref. [28] for a recent summary. One
possible explanation for the self-interaction of DM
is the exchange of light gauge bosons [29].

• An anomaly has been reported from isoscalar
8Be∗(1+) → 8Be(0+) + e+e− transitions: a bump
in the opening angle distributions of e+e− pairs
with 6.8σ significance was observed [30]. This con-
flicts with the standard expectation, which predicts
that the distribution of opening angles of e+e−
pairs should follow a smoothly downward curve.
In addition, in the related isovector 8Be∗′(1+) →
8Be(0+) + e+e− transition no excess is visible. If
one takes this excess serious, it could be originate
from a new light vector boson X with the decay
channel 8Be∗(1+) → 8Be(0+) + X → 8Be(0+) +
e+e− [30, 31]. The necessary mass to fit the data
is

mX = 16.7 ± 0.35(stat) ± 0.5(sys) MeV . (4)

Refs. [31, 32] have examined the case of a purely
vector interaction with quarks. It has been shown
that in order to be compatible with existing exper-
imental constraints, the new vector boson should
be protophobic [31], i.e., the coupling to proton is
highly suppressed compared with the coupling to
neutron. This proposal has stimulated many re-
lated works [33–41].

Such a light Z ′ is expected to dominate the overall
fine-tuning in the model if mη and µη are O(MSUSY) 2.

We want to study in the following for the first time
explicitly the impact of a light Z ′ on the fine-tuning
in supersymmetric models. As example, we consider
an U(1)B−L extension of the MSSM which was in
the past mainly studied in the context of heavy Z ′

masses [42–49]. In particular, we discuss the necessary

2 We don’t make in the following any assumption how the different
fine-tunings shall be combined, but we discuss them separately.
Often, the tunings are dominates by the different µ-terms. In
these cases the overall fine-tuning is given by ∆ = ∆Z

µ × ∆Z′
µη

.
The situation is more complicated if the same parameter (like an
universal scalar mass m0) contributes significantly to the tuning
in both sectors at the same time.

Superfield Spin 1
2

Spin 1 Gauge group Coupling
B̂ λB̃ B U(1)Y g1
Ŵ λW̃ W SU(2)L g2
ĝ λg̃ g SU(3)c g3
B̂′ λB̃′ B′ U(1)B−L gB

TABLE I. Vector superfields of the BLSSM and correspond-
ing gauge couplings.

Superfield NG U(1)Y ⊗ SU(2)L ⊗ SU(3)c ⊗ U(1)B−L
Q̂ 3 1

6
⊗ 2⊗ 3⊗ 1

6

Û 3 − 2
3
⊗ 1⊗ 3⊗ − 1

6

D̂ 3 1
3
⊗ 1⊗ 3⊗ − 1

6

L̂ 3 − 1
2
⊗ 2⊗ 1⊗ − 1

2

Ê 3 1 ⊗ 1⊗ 1⊗ 1
2

ν̂R 3 0 ⊗ 1⊗ 1⊗ 1
2

Ĥu 1 1
2
⊗ 2⊗ 1⊗ 0

Ĥd 1 − 1
2
⊗ 2⊗ 1⊗ 0

η̂1 1 0 ⊗ 1⊗ 1⊗ −1
η̂2 1 0 ⊗ 1⊗ 1⊗ 1

TABLE II. Chiral superfields of the BLSSM and their charges
under U(1)Y ⊗ SU(2)L ⊗ SU(3)c ⊗ U(1)B−L gauge group.

conditions to reach a focus-point like behaviour in the
new sector of the model. We show that the new focus
point can co-exist with the well-know MSSM focus point
resulting in a ’Double Focus Point’ (DFP) scenario. We
also discuss the radiative corrections to the fine-tuning.
These corrections cause significant deviations in the
actual fine-tuning prediction from the tree-level estimate
∆Z′

µη ∼ µ
2
η/m

2
Z′ .

The rest of paper is organized as follows: in section II
we present the details of the considered model. In sec-
tion III we show the analytical derivation of the DFP
and calculate the dominant radiative corrections to the
fine-tuning. In section IV we perform a numerical study
of the fine-tuning to validate our analytical results. Af-
terwards, we analyse the impact of the 8Be anomaly. We
conclude in section V.

II. THE U(1)B−L EXTENDED MSSM

In the simplest U(1)B−L extension of the MSSM, the
chiral superfields are extended by a pair bileptons (η̂1, η̂2)
and three generations of right-handed neutrino superfield
ν̂Ri . The complete particle contents and charge assign-
ments are listed in table I and II. This model is known
as the BLSSM and its superpotential is given by

W =Y iju ÛiQ̂jĤu − Y ijd D̂iQ̂jĤd − Y ije ÊiL̂jĤd + µĤuĤd

Y ijη ν̂Riη̂1ν̂Rj + Y ijν L̂iĤuν̂Rj − µη η̂1η̂2 . (5)
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Here i, j denote family indices and all colour and isospin
indices are suppressed. The soft-breaking terms are

LBLSSM = LMSSM −MBB′λB̃λB̃′ −
1

2
MB′λB̃′λB̃′

−m2
1|η1|2 −m2

2|η2|2 −m2
ν,ij(ν̃

c
Ri)
∗ν̃cRj

−Bµηη1η2 + T ijν Huν̃
c
RiL̃j + T ijη η1ν̃

c
Riν̃

c
Rj (6)

After Higgs states and bileptons receive vacuum expecta-
tion values (VEVs), the electroweak and U(1)B−L sym-
metry are broken to U(1)em. After symmetry breaking,
the complex scalars are parametrised by

H0
d =

1√
2

(iσd + vd + φd) , H0
u =

1√
2

(iσu + vu + φu) ,

η1 =
1√
2

(iσ1 + v1 + φ1) , η2 =
1√
2

(iσ2 + v2 + φ2) .(7)

Following the MSSM definition tanβ = vu/vd, we denote
the ratio of the two bilepton VEVs as tanβ′ = v1/v2.

The particle content of the BLSSM gives rise to gauge-
kinetic mixing even if it is absent at a given scale. This
introduces two additional gauge couplings gY B ≡ gY B−L
and gBY ≡ gB−LY , i.e. the general form of the covariant
derivatives is

Dµφ =

∂µ − i∑
i,j

QiφgijV
µ
j

φ i, j = Y,B − L

(8)
Here, Qiφ is the U(1) charge of the particle φ under the
gauge group U(1)i (i = Y,B − L).
However, as long as the two Abelian gauge groups are un-
broken, we are allowed to make a change of basis. This
freedom is used go to a basis where electroweak preci-
sion data is respected in a simple way: by choosing a
triangle form of the gauge coupling matrix, the bilepton
contributions to the Z mass vanish:(

gY Y gY B
gBY gBB

)
→
(
g1 g̃
0 gB

)
, (9)

and the gauge couplings are related by [50]:

g1 =
gY Y gBB − gY BgBY√

g2BB + g2BY
,

g̃ =
gY BgBB + gBY gY Y√

g2BB + g2BY
,

gB =
√
g2BB + g2BY . (10)

In addition, After electroweak and U(1)B−L breaking,
the gauge-kinetic mixing further induces a mixing be-
tween the neutral SUSY particles from the MSSM and
from the new sector, i.e. there are seven neutralinos in
this model. In the gauge sector, the three neutral gauge
bosons B,W 3 and B′ are rotated to the mass eigenstates
γ, Z, Z ′ via:  B

W
B′

 = R (θ, θ′)

 γ
Z
Z ′

 , (11)

where the rotation matrix R(θ, θ′) depends on two angles
θ and θ′ with following expression cos θW − cos θ′W sin θW sin θW sin θ′W

sin θW cos θW cos θ′W − cos θW sin θ′W
0 sin θ′W cos θ′W

 . (12)

The entire mixing between the U(1)B−L and the SM
gauge depends on mixing angle θ′, which can be approx-
imately expressed as [51]

tan 2θ′W '
2g̃
√
g21 + g22

g̃2 + 16 (vη/v)
2
g2B − g22 − g21

. (13)

with v =
√
v2u + v2d and vη =

√
v21 + v22 .

III. FOCUS POINT BEHAVIOUR AND LOOP
CORRECTED FINE-TUNING IN THE BLSSM

After setting up the model, we begin to investigate
the focus point property. Compared to the MSSM, the
tadpole equations become more complicated and we just
present the most relevant ones:

m2
Hd

=
1

8
DH +

1

tanβ
Bµ − µ2 (14)

m2
Hu = −1

8
DH + tanβBµ − µ2 (15)

m2
η1 =

1

4
Dη +

1

tanβ′
Bµη − µ2

η , (16)

m2
η2 = −1

4
Dη + tanβ′Bµη − µ2

η . (17)

with DH = (g21 + g̃2 + g22)v2 cos 2β + 2g̃gBv
2
η cos 2β′ and

Dη =
(
v2 cos 2βgB g̃ + 2v2η cos 2β′g2B

)
. It is easy to see

that for small kinetic mixing coupling g̃, the MSSM sec-
tor and U(1)B−L sector are decoupled. Therefore, the
little hierarchy problems for two sectors can be treated
separately. Nevertheless, there will be a non-trivial link
between the fine-tuning of both sectors because of the
relations of soft-breaking terms at the GUT scale. Under
this assumption eq. (14) reduces to the standard MSSM
tadpole equation and the little hierarchy problem can be
handled as usual. In the B − L sector we have to dis-
tinguish the cases of small tanβ′ (' 1) and large tanβ′

(� 1) which we discuss separately in the following.

A. Small tanβ′

In analogy to the MSSM, the tadpole equation of the
B−L sector, eq. (17), can be simplified for tanβ′ ' 1 to

m2
Z′ = −m2

η2 − µ
2
η , (18)

Here, we used m2
Z′ = g2Bv

2
η. The important question

is now, if it possible to obtain naturally values for mη
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and µη which are significantly smaller than the ordi-
nary SUSY parameters during the renormalisation group
equation (RGE) evolution. Or, to phrase it differently:
is it possible to find a focus point behaviour? To answer
this question, one needs to check the running ofm2

η2 . The
one-loop beta function is given by

dm2
η2

dt
=

g2B
16π2

(−12M2
BB′ +M2

B′) . (19)

whereMBB′ is a soft-breaking term mixing the two gaug-
ino fields. Due to the absence of any Yukawa interaction
in the running, it is impossible to obtain a focus point be-
haviour in this scenario. mη2 will always increase during
the evaluation from the GUT to the SUSY scale. Thus,
in this simplest realisation, it is not possible to obtain a
DFP for small tanβ′. However, this would become pos-
sible in the singlet extension of the model (N-BLSSM),
with an additional superpotential term

δW = λ Ŝ η̂1 η̂2 (20)

λ will give new contributions to the running of m2
η2 . We

discuss this briefly in appendix A.

B. Large tanβ′

We turn now to the case of large tanβ′ which is usually
not considered in the case of heavy Z ′ masses. The rea-
son is that the new D-term contributions to the sfermion
masses result in tachyonic states once tanβ′ is too large.
However, this is not the case for a light Z ′. The corre-
sponding tadpole equation in this case is given by

m2
Z′ = −m2

η1 − µ
2
η . (21)

The one-loop running of m2
η1 is given by

dm2
η1

dt
=

y2η
8π2

(4m2
η1 + 4m2

νR + 4A2
η) . (22)

Here the soft trilinear term Aη = T ijη /Y
ij
η . We assumed

here that yη as well as m2
νR are diagonal and degener-

ated. We defined yη ≡ Y iiη . We can now investigate the
necessary conditions to obtain a focus point in the run-
ning. Before we proceed, the following comments are at
place

• We assume the beta functions of m2
Hu

and m2
η1 to

be independent from each other. This is justified
as long as gauge kinetic mixing is small.

• Since the beta function of m2
Hu

depends on m2
q,

m2
u and A2

t , we must solve the coupled system of
equations. In the B−L sector we need to consider
mη1 , Aη and mνR .

• In contrast to the MSSM sector, where the top
Yukawa coupling is fixed by experiment, we can
treat yη as free parameter. If we demand pertur-
bativity up to MGUT), the maximal allowed value
for yη is about 0.42.

The relevant one-loop beta functions can be written into
matrix form. The MSSM part is given by

d

dt


m2
Hu
m2
u

m2
q

A2
t

 =
y2t

8π2

 3 3 3 3
2 2 2 2
1 1 1 1
0 0 0 12



m2
Hu
m2
u

m2
q

A2
t

 , (23)

and the BLSSM one by

d

dt

 m2
η1

m2
νR
A2
x

 =
y2η

8π2

 6 12 6
4 8 4
0 0 28

 m2
η1

m2
νR
A2
η

 (24)

The coupled beta functions can be solved in terms of
eigenvectors and eigenvalues. We obtain

m2
Hu
m2
u

m2
q

A2
t

 = κ12

 3
2
1
6

 e12I[t] +κ6

 3
2
1
0

 e6I[t]

+ κ0

 −1
0
1
0

+ κ′0

 −1
1
0
0

 , (25)

as well as

 m2
η1

m2
νR
A2
η

 = ε28

 3
2
7

 e28K[t] +ε14

 3
2
0

 e14K[t]

+ ε0

 −2
1
0

 (26)

with so far arbitrary coefficients κi and εi. The functions
I and K are defined in Appendix B. Approximate values
are e14K[t] ' 1/10 and e6I[t] ' 1/3. This results in


m2
Hu

[QGUT]
m2
q[QGUT]

m2
u[QGUT]

A2
t [QGUT]

 =


m2

0

m2
0 + κ′0 − 2κ12

3
m2

0 − κ′0 − 4κ12

3
6κ12


→

m2
Hu

[QSUSY]
m2
q[QSUSY]

m2
u[QSUSY]

A2
t [QSUSY]

 =


0

m2
0

3 + κ′0 − 2κ12

5
2m2

0

3 + κ′0 − 4κ12

5
2
3κ12

 , (27)

and
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 m2
η1 [QGUT]

m2
νR [QGUT]
A2
η[QGUT

 =

 m2
0

43
54m

2
0 − 7

20ε28
7ε28


→ m2

η2 [QSUSY]
m2
νR [QSUSY]
A2
η[QSUSY]

 =

 0
7
54m

2
0 − 7

20ε28
7

100ε28

 (28)

Eq. (A5) and (28) show that m2
Hu

and m2
η1 evolve to

zero at low scale no matter what value we take for m0

which means that the weak scale and UB−L breaking
scale are insensitive to variation of fundamental param-
eters. As a consequence, we obtain DFP SUSY even for
several TeV sfermions which are induced by large m0. A
few more comments:

1. Besides m0, there are three parameters: κ12, κ′0,
and ε28. Here κ12 and ε28 represent large A-term
generated by gravity mediation.

2. The parameters κ′0 and κ14 give deviation from the
soft masses are predicted by minimal supergravity.
The source of the deviation could be for instance
hybrid anomaly or gauge mediation.

3. The parameters κ12,κ0 and ε28 are all dimension-
ful. They can be related to m0 via dimensionless
parameters x,y and z respectively. This turns out
to be helpful for the numerical calculation.

C. Radiative corrections to the fine-tuning

Up to now, we have shown that it is possible to find
naturally parameter regions in which |µ| and |µη| at
the same time are significantly smaller than the ordi-
nary SUSY scale. Nevertheless, µη is still expected to
be of the same size as µ, i.e. O(100 GeV). In that
case, the tree-level estimate for the fine-tuning would be
∆µη ∼ µ2

η/m
′,2
Z which predicts values for the fine-tuning

above 106 for µη > 100 GeV and m′Z < 100 MeV. In that
case, the overall fine-tuning would be completely domi-
nated by the new sector and all the considerations about
DFP wouldn’t have been necessary at all. However, it
has rather recently been pointed out in Ref. [3] that loop
corrections to the fine-tuning are very important in the
MSSM. The same kind of corrections is even more im-
portant here. The starting point of the discussion is the
one-loop corrected tadpole equation which is in general
given by

0 = m2
η1vη + µ2

ηvη +
1

2
g2Bv

3
η + δtη (29)

with

δtη =
∂V (1)

∂vη
(30)

Here, V (1) is the one-loop effective potential which can
be calculated as usual as [52]

V (1) =
1

16π2

all fields∑
i

risiCim
4
i

(
log

m2
i

Q2
− ci

)
(31)

with ri = 1 for real bosons, otherwise 2; Ci is a colour
factor; {si, ci} = {− 1

2 ,
3
2} for fermions, { 14 ,

3
2} for scalars

and { 34 ,
5
6} for vector bosons. In the case of large yη as

needed for DFP, the dominant contributions are due to
right (s)neutrinos.
In general, δtη can be parametrised as

δtη = vηδ1 + v2ηδ2 + v3ηδ3 (32)

Because of symmetry reasons, δ2 always vanishes. There-
fore, the fine-tuning with respect to µη becomes

∆µη =
µ2
η

(g2B + 2δ3)v2η
(33)

Thus, for a reliable calculation of the fine-tuning, the
knowledge of δ3 is crucial. One fiends for three gen-
erations of degenerated right sneutrinos with masses
O(MSUSY) that δ3 at the SUSY scale is given by

δ3 = −
3y4η
2π2

log
2v2ηy

2
η

M2
SUSY

(34)

From this one obtains an improvement in the fine-tuning
at the loop level of

∆Tree
µη

∆Loop
µη

∼
3y4η
g2Bπ

2
log

g2BM
2
SUSY + 2m′,2Z y

2
η

2m′,2Z y
2
η

(35)

The gain in the fine-tuning as function of yη and gB for
mZ′ = 100 MeV is shown in Figure 1. One might be
surprised by these huge changes in the fine-tuning due
to the radiative corrections. However, the same radia-
tive corrections push also the mass of the light B − L
scalar, which is at tree-level O(mZ′), into the multi GeV
range. Thus, the fine-tuning regarding the new vec-
tor boson mass (∂ lnm2

Z′/∂ lnµη) becomes comparable
to the fine-tuning regarding the pole mass of the scalars
(∂ ln logm2

hη
/∂ lnµη). Moreover, since higher order cor-

rections don’t modify the general form of the radiatively
corrected tadpole equation but are only corrections to
the coefficients ci, similar huge changes in the fine-tuning
won’t occur by going to a higher loop level. Therefore,
the numerical most important effects are already caught
by the one-loop corrections 3.

3 It has been discussed in the context of other models that the
fine-tuning measure with respect to mZ can clearly deviate from
a measure with respect to mh [53]. It would be interesting to
see if a proper inclusion of loop corrections in the fine-tuning
calculation reduces this discrepancy.
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FIG. 1. The improvement in the fine-tuning as function of
gB and yη when including radiative corrections to the tad-
pole equations. The lines correspond to contours of constant
log10

(
∆Tree
µη /∆Loop

µη

)
. We used here mZ′ = 100 MeV and

MSUSY = 2.5 TeV.

IV. NUMERICAL RESULTS

A. General results

We are going to compare the analytical results of the
last section with a fully numerical calculation to check
the validity of our results. For this purpose, we have
implemented the considered model into the Mathematica
package SARAH [54–58]4. We used this implementation to
generate a spectrum generator for the model based on
SPheno [59, 60]. SPheno solves numerically the full two-
loop RGEs, calculates the mass spectrum at the full one-
loop level and includes all important two-loop correction
to the neutral scalar masses [61–63]. In order to keep the
uncertainty of the Higgs mass to a low level also in the
presence of very heavy SUSY scales, SPheno provides an
effective calculation within the SM [64] where all SUSY
effects are absorbed into λ via a pole mass matching of
the Higgs masses at the SUSY scale [65]. Also a routine
to obtain the electroweak fine-tuning is available out-of-
the-box. This routine has been extended to calculate also
the fine-tuning with respect to Z ′ as

∆Z′
= max

∣∣∣∣∂ lnm2
Z′

∂ lnα

∣∣∣∣ (36)

4 We could use the already existing implementation of the BLSSM
which we had slightly to modify: since the eigenstates are mass
ordered, the definition of the neutral gauge boson mixing was
changes from γ−Z−Z′ to γ−Z′−Z and the boundary conditions
needed to be adjusted.
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FIG. 2. The fine-tuning in the (m0, κ) plane for mZ′ =
100 MeV and gB = 10−4 (top) or gB = 10−3 (bottom). We
set M1/2 = 700 GeV, tanβ = 20, tanβ′ = 10, Yη = 0.4,
sy = −0.1, sz = sx = 0, g̃(QGUT) = 0. In the gray shaded
areas the SM-like Higgs doesn’t fall into the desired range of
[122,128] GeV. The orange line is the electroweak fine-tuning
with respect mZ (which is dominated byM1/2), the blue lines
show µη (in GeV) and the dashed black line give the calcu-
lated fine-tuning using the approximations eqs. (33) and (34).

with α = {m0,M1/2, µ
′}. To obtain the loop corrected

fine-tuning, we calculate the one-loop corrected tadpole
equations with a diagrammatic approach and solve them
numerically with respect to all four VEVs using a broydn
routine. The VEVs obtained in that way are then used
to calculate the dependence of the vector boson masses
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on a finite variation of the parameters at the GUT scale.
We checked that the fine-tuning obtained in that way is
independent of the chosen size of the finite variation if a
sufficiently small value of 10−6 is chosen. All parameter
scans have been carried out using the package SSP [66].
One important question is how accurate the coefficient
of 43

54 ' 0.8 for the soft-term of the right sneutrino soft-
term is at the GUT scale. So far, we discussed only the
one-loop running, but haven’t considered the impact of
two-loop RGEs. In order to check this, we use a more
general parametrisation

m2
νR [QSUSY] = κm2

0 1 (37)

and treat κ is free parameter. The other GUT conditions
are

m2
Hu

= m2
Hd

= m2
η1 = m2

η2 ≡ m
2
0

m2
l = m2

d = m2
e ≡ m2

01

m2
q,11 = m2

q,22 = m2
u,11 = m2

u,22 ≡ m2
0

mq,33 ≡ (1− x)m2
0 mu,33 ≡ (1 + x− 3y)m2

0

M1 = M2 = M3 = MB ≡M1/2

Ti ≡ 3ym0Yi (i = e, d, u) Tη ≡
√

7zYη (38)

The calculated fine-tuning in the (m0, κ) plane for a Z ′
mass of 100 MeV and different values of gB is shown in
Figure 2. We find that the numerical calculation confirms
our analytical results to a large extent: the focus point
behaviour can be observed for κ values below 0.86 even
for large m0. Also the numerically calculated fine-tuning
agrees with our analytical approximation. It is also found
that the fine-tuning has a strong dependence on the value
of gB for fixed mZ′ as expected from eq. (35). These
results confirm that a light Z ′ mass in supersymmetric
models doesn’t lead unavoidably to a huge fine-tuning as
a one might expect. However, two conditions must be ful-
filled: (i) the presence of a focus point, (ii) a Yukawa-like
coupling to the scalars which give mass to the Z ′ which
is much bigger than the corresponding gauge coupling.
A more detailed parameter scan of the model is beyond
the scope of this paper and we will only discuss one more
aspect: what is the size of the expected fine-tuning if the
8Be should be explained within this model.

B. The 8Be anomaly

It has been shown in Ref. [32] that the 8Be could be
explained by a B-L gauge boson with a mass of about
17 MeV. However, strong constraints on the new cou-
plings exist, especially on the one induced by gauge
kinetic mixing. In general, the couplings to the SM
fermions for the B − L vector boson are given by

gu =
1

3
gB +

2

3
g̃ , gν = −gB

gd =
1

3
gB −

1

3
g̃ , ge = −gB − g̃ . (39)
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FIG. 3. Dependence of the ratio between g0 and gd on gd at
GUT scale. Regions shaded in grey are the allowed region that
explains Be anomaly. The red dashed contour corresponds the
abstract value of δ and black corresponds to ε.

which can be rewritten to

gu = −1

3
ε+

2

3
δ , gν = −ε

gd = +
2

3
ε− 1

3
δ , ge = −δ . (40)

by defining gB = ε and δ = −gB + g̃. The authors in
Ref. [32] showed that, if the signal is real, δ and ε must
fulfil

0.002 < |ε| < 0.008 , |δ| < 0.001 (41)

These constraints for ε and δ can be translated into
constraints on the gauge couplings at the GUT scale.
The preferred parameter ranges for gB(GUT) and
g̃(GUT) are shown in Fig. 3. Here, we used the two-loop
SUSY RGEs with gauge kinetic mixing as calculated
by SARAH based on the generic results of Ref. [67]. One
can see that gB must be smaller than 0.01 at the GUT
scale. In contrast, g̃ must be bigger by a factor 2 to 4.
This is already an unexpected hierarchy in the gauge
couplings which might be hard to realize in a full model
like E6 × E6 which gets broken to GSM × U(1)B−L
[68–70]. Nevertheless, we take these parameter ranges
as given. Since gB and g̃ are still sufficiently small to
have only a weak link between the MSSM and BLSSM
section, the discussion in the last section about the DFP
behaviour remains fully valid. However, as expected
from the analytical discussion and from the general
results in the last subsection one must expect that
the fine-tuning is rather large: for the values of gB
necessary to explain the anomaly one expects only an
improvement of the fine-tuning at the loop level by



8

Input
m0 M1/2 x y z κ

4600 680 0.22 -0.45 0.1 0.83

tanβ tanβ′ yη mZ′ gB g̃
18.5 10 0.41 0.017 0.01 0.003

Running parameters
µ µη gB g̃
613 395 0.0036 0.0026

Masses
h1 h2 h3 h4 A0

1 A0
2

1.4 122.4 4236 4640 4264 4640

t̃1 t̃2 q̃1,2 G̃ l̃ ν̃R

2063 3024 ∼4700 1750 ∼4500 ∼2000

χ̃0
1 χ̃0

2,3 χ̃0
4 χ̃0

5 χ̃0
6 χ̃0

7

284 397 531 611 657 680
Fine-Tuning

∆Z
m0

∆Z
M1/2

∆Z
µ ∆Z′

m0
∆Z′
µη

83 172 45 3347 3695

TABLE III. An example for a parameter point explaining the
8Be anomaly within the BLSSM. All dimensionful parameters
are given in units of GeV.

a few orders of magnitude, i.e. the tiny Z ′ mass still
causes an enormous fine-tuning even when the radiative
corrections are included.
We performed a random scan for this model fixing mZ′

as well as the new gauge couplings. The features of an
representative parameter point which is in agreement
with the Higgs mass measurement and which could
explain the 8Be anomaly is summarised in Table III. The
fine-tuning in the MSSM sector is O(170) and dominated
by M1/2 because of the gluino mass limit. Thus, to
further improve this tuning, it would be necessary to
give up gaugino unification to find a ’gaugino focus
point’ [12, 71]. In the B − L sector the tuning with
respect to m0 and µη are of similar size and above 3000.
This is not terribly good, but better than one might
have expected. One possibility to further improve the
tuning would be to assume a cut-off scale well below
1016 GeV: in that case the tuning with respect to m0

becomes smaller because of the shorter running, and the
tuning with respect to µη could be further reduce by
larger yη because of the relaxed perturbativity condition.

V. CONCLUSION

In this paper, we have considered the naturalness in
supersymmetric models with a light Z ′ gauge boson. We
have shown that the additional fine-tuning due to the
new sector can be much smaller than the expected value
O(M2

SUSY/m
2
Z′). Two mechanisms are used to reduce the

fine-tuning. First, it is possible to find relations of the
SUSY breaking parameters at the GUT scale for which

the a focus point in the MSSM and in the new sector co-
exist. We call this Double Focus Point Supersymmetry.
Second, we have discussed the importance of radiative
corrections to the fine-tuning calculation which can al-
ter the prediction by many orders of magnitude. For
both effects one needs a large Yukawa-like (Y ) coupling
to the scalars which are responsible for the gauge sym-
metry breaking of the new group. We have discussed
this explicitly at the example of the U(1)B−L extended
MSSM (BLSSM). In particular, the radiative corrections
alter the prediction of the fine-tuning by a factor Y 4/g2,
where g is the new gauge coupling. We have confirmed
this analytical estimate by a fully numerical calculation.
We found that for mZ′ = 100 MeV an additional fine-
tuning of O(100) is easily possible for g ' 10−4. Finally,
we have considered the 8Be anomaly in this model. Be-
cause of the necessary coupling strength to explain this
excess in the BLSSM, a fine-tuning with respect to Z ′
above 103 seems to be unavoidable as long as perturba-
tivity up to MGUT ∼ 1016 GeV is demanded.
We expect that similar features are present in other
SUSY models with extended gauge sectors which involve
potentially large Yukawa-like couplings to the new scalars
like left-right models [72, 73] or separately gauged baryon
and lepton number [74].
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Appendix A: NBLSSM with small mixing

We now turn to calculate the DFP for m2
Hu

and m2
η2 in

N-BLSSM. After taking the gauge coupling and Yukawa
coupling Yν to zero, the total one-loop beta functions for
m2
Hu

and m2
η2 are given as

βm2
Hu

=
1

16π2

(
6m2

Huy
2
t + 6m2

qy
2
t + 6m2

uy
2
t + 6T 2

t

)
βm2

η2
=

1

16π2

(
2m2

η2λ
2 + 2m2

η1λ
2 + 2m2

sλ
2 + 4T 2

λ

)
(A1)

where Tt = ytAt and Tλ = λAλ are the soft trilinear
terms. The calculation of the MSSM section is com-
pletely analog to the BLSSM. The matrix form of the
RGEs in the B-L sector are

d

dt


m2
η2

m2
η1

m2
s

A2
λ

 =
λ2

8π2

 1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 6



m2
η2

m2
η1

m2
s

A2
λ

 . (A2)
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This can be solved as
m2
η2

m2
η1

m2
s

A2
λ

 = λ6

 1
1
1
3

 e6J[t] +λ3

 1
1
1
0

 e3J[t]

+ λ0

 −1
0
1
0

+ λ′0

 −1
1
0
0

 . (A3)

The interesting point is that the exponent e6I[t] re-
mains approximately 1/3 even though considering the ex-
tended gauge group. Furthermore the exponent e3J[t] is
approximately 4/5. For the derivation of e6I[t] and e3J[t],
see appendix B. The subtle point is that the e6I[t] and
e3J[t] are only calculable when they become Bounlli type.
The price we should pay is the smallness of gauge-kinetic
mixing couplings i.e. gBY ∼ gY B ∼ O(10−2). For now
we have

m2
Hu

[QGUT]
m2
q[QGUT]

m2
u[QGUT]

A2
t [QGUT]

 =


m2

0

m2
0 + κ′0 − 2κ12

3
m2

0 − κ′0 − 4κ12

3
6κ12


→

m2
Hu

[QSUSY]
m2
q[QSUSY]

m2
u[QSUSY]

A2
t [QSUSY]

 =


0

m2
0

3 + κ′0 − 2κ12

5
2m2

0

3 + κ′0 − 4κ12

5
2
3κ12

 , (A4)

as well as
m2
η2 [QGUT]

m2
η1 [QGUT]

m2
s[QGUT]

A2
λ[QGUT]

 =


m2

0

5m2
0 + λ′0 − 4λ6

5

9m2
0 − λ′0 − 8λ6

5
3λ6


→

m2
η2 [QSUSY]

m2
η1 [QSUSY]

m2
s[QSUSY]

A2
λ[QSUSY]

 =


0

4m2
0 + λ′0 − 4λ6

5

8m2
0 − λ′0 − 8λ6

5
25
48λ6

 . (A5)

Appendix B: Appendix

We show in this appendix the derivation of e6I[t] and
e3J[t] which are the integral between GUT and SUSY
scale for coupling yt and λ.

e6I[t] = exp

(
6

∫ logQ0

logQ

yt[ρ]2

8π2
d log ρ

)
, (B1)

e3J[t] = exp

(
3

∫ logQ0

logQ

λ[ρ]2

8π2
d log ρ

)
. (B2)

Since yt and λ are the dominant couplings in the model,
their beta functions belong to the Bernoulli type as long
as the kinetic mixing couplings become negotiable com-
pared with other gauge couplings. This is subtle in real-
ization of protophobic vector boson model but is suitable
for SIDM with light hidden photon mediator.

dαa
dt

= 2baα
2
a ,

dαt
dt

= 2(sαt −
∑
a

raαa) ,

dαλ
dt

= 2(sαλ −
∑
a

raαa) , (B3)

with the definition αt = y2t /16π2,αa = g2a/16π2 and
αλ = λ2/16π2. Here s = 6 for yt and s = 3 for λ.
a ranges from 1 to 4. There is a formal solution for
eq. (B3),

αt[Q] =
αt[Q0]Et[Q]

1− 2sαt[Q0]Ft[Q]
,

αλ[Q] =
αλ[Q0]Eλ[Q]

1− 2sαλ[Q0]Fλ[Q]
, (B4)

where

E [Q] =
∏
a

(
1− 2baαa[Q0] log

(
Q

Q0

)) ra
ba

,

F [Q] =

∫ logQ

logQ0

E [ρ]d log ρ . (B5)

ra and ba can be extracted from the beta function of
corresponding Yukawa coupling. Different E and F cor-
respond to different ra and ba. Substituted eq. B5 into
the definition of the exponent gives

esI[t] = exp

[
2s

∫ log[Q]

log[Q0]

αt[ρ]d log[ρ]

]

=
1

2sαt[Q0]Ft[Q]

= 1 +
2sαt[Q]Ft[Q]

Et[Q]
, (B6)

esJ[t] = exp

[
2s

∫ log[Q]

log[Q0]

αλ[ρ]d log[ρ]

]

=
1

2sαλ[Q0]Fλ[Q]

= 1 +
2sαλ[Q]Fλ[Q]

Eλ[Q]
. (B7)

As a consequence, the ratio F/E determining the loca-
tion of focus point. Though F and E are varied with the
extended gauge group, the ratio remains invariant which
is proven numerically. In our case when the strict gauge
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coupling unification is imposed, we have Et[174] = 13.5
and Ft[174] = −135.721 where the top quark pole mass
is chosen as low energy scale. Then the exponent of
exp(6I[t]) is approximately 1/3 which is the same as liter-
ature. For exp(3J [t]), we not only need the ratio Fλ/Eλ

but the input value of λ at low scale. In order to es-
cape the dangerous landau pole for λ, it is natural to set
λ = 0.5 at low scale. Thus the exponent exp(3J [t]) is
approximately 4/5. The same procedure can be applied
to BLSSM with large tanβ′, the exponent exp(10K[t]) is
1/10.
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