KIT | KIT-Bibliothek | Impressum | Datenschutz

Air–water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy

Moosmann, Markus; Schimmel, Thomas; Barthlott, Wilhelm; Mail, Matthias

Abstract:
Underwater air retention of superhydrophobic hierarchically structured surfaces is of increasing interest for technical applications. Persistent air layers (the Salvinia effect) are known from biological species, for example, the floating fern Salvinia or the backswimmer Notonecta. The use of this concept opens up new possibilities for biomimetic technical applications in the fields of drag reduction, antifouling, anticorrosion and under water sensing. Current knowledge regarding the shape of the air–water interface is insufficient, although it plays a crucial role with regards to stability in terms of diffusion and dynamic conditions. Optical methods for imaging the interface have been limited to the micrometer regime. In this work, we utilized a nondynamic and nondestructive atomic force microscopy (AFM) method to image the interface of submerged superhydrophobic structures with nanometer resolution. Up to now, only the interfaces of nanobubbles (acting almost like solids) have been characterized by AFM at these dimensions. In this study, we show for the first time that it is possible to image the air–water interface of submerged hierarchically structured (micro-pillars) surfaces by AFM in contact mode. ... mehr

Open Access Logo


Verlagsausgabe §
DOI: 10.5445/IR/1000079680
Veröffentlicht am 16.11.2018
Originalveröffentlichung
DOI: 10.3762/bjnano.8.167
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Coverbild
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Jahr 2017
Sprache Englisch
Identifikator ISSN: 2190-4286
urn:nbn:de:swb:90-796805
KITopen-ID: 1000079680
HGF-Programm 43.22.01 (POF III, LK 01)
Erschienen in Beilstein journal of nanotechnology
Band 8
Heft 1
Seiten 1671–1679
Schlagworte AFM in liquid, air retention, atomic force microscopy, bionics, Salvinia effect
Nachgewiesen in Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page