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Abstract Mortality models most often are used to make projections of life
expectancy. A good mortality model should satisfy some desirability crite-
ria (Cairns et al (2008)). Models should be robust which means that parameter
uncertainty should be low and small changes in the data should not result in
significant changes in the estimates of the parameters and in their interpretation.
Most of the existing mortality models are not robust against outliers due to
wars, pandemics etc. or so called "longevity outliers". This paper is not the first
attempt to deal with outliers in mortality data. Hyndman and Ullah (2007) used
a combination of robust, nonparametric statistics and functional data analysis
in developing a method for projection of age-specific mortality rates observed
over time. While their objective was to identify and remove outliers, we high-
light the necessity of incorporating them into projections in order to capture, in
a more realistically way, perturbations that may occur in the future. The main
contribution of this paper is to utilize a highly robust estimator to minimize the
effect of outliers on point forecasts of life expectancy. We compare the point
forecast accuracy and bias of seven stochastic models for life expectancy pro-
jection in the presence of outliers. Based on one-step ahead forecast errors we
conclude that the Hyndman and Ullah method (2007) is the most accurate and
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the least biased and in the Lee-Carter family of models the Lee-Carter (1992)
and the Cairns-Blake-Dowd (2006) produce the most accurate point forecast of
life expectancy when death rates across outlying years are replaced by highly
robust estimates.

1 Introduction

Economic development, advances in medicine and healthcare, improvements
in living conditions have resulted in a continuous increase in life expectancy
during the last century all over the world. According to WHO (2015) in 2013
life expectancy at birth globally, for both sexes, was 71 years. Since 1990 life
expectancy at birth has increased globally by 6 years. As people live longer,
interest has shifted to the older generations. Nowadays, the global population
aged 60 years can expect to live another 20 years on average, 2 years longer
than in 1990.
Fundamental reforms in welfare policy have been taking place in many coun-
tries as a result of forecasts of an increasing elderly population. The population
projections rely on age-specific projections of mortality rates. As mortality pro-
jections have become increasingly important, numerous models for mortality
modelling and projection have been developed (e.g. Pollard (1987), Booth and
Tickle (2008), Cairns et al (2008)). Because improvements in mortality projec-
tion may have an impact in guiding policy decisions regarding the allocation of
current and future resources, the accurate modelling and projection of mortality
rates and life expectancy are of growing interest to researchers (Hyndman and
Ullah (2007)).

A wide variety of projection methods are in use, both between and within
countries which produce different outcomes. Choosing the right model can eas-
ily become a challenge. The choice is usually supported with experts’ opinions
and knowledge, informed judgement, or assumptions on target levels of the
life expectancy. Besides the observed past trends determine which method and
historical period should be used. It is clear that in practice there does not exist a
single "best" life expectancy prediction model for all countries. However, it is
important to consider whether it is a good model or not. This requires a check-
list of criteria against which a model can be assessed (Cairns et al (2008)).
Robustness is one of the desired criteria. It means that parameter uncertainty
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should be low and small changes in the data should not result in significant
changes in the estimates of the parameters and in the interpretation of them.
Obviously, the presence of outliers has a serious effect on the modelling and
projection of mortality and life expectancy.

Past life expectancy projections from official sources have generally underes-
timated the gains in life expectancy. As an example we present life expectancy
projections (fig. 1) made in 2004 and 2013 for the 28 European Union member
states (EU-28). Underestimation of life expectancy of both sexes is notice-
able from 2005 to 2013. The assumption of fastest increase in average life
expectancy in the next three decades results in one-year difference between
these two projections in 2050. Such prediction failures for the EU-28 reduce
the chance for an adequate anticipation of the need for additional investments
in health and social services and pensions for the elderly. Table 1 presents

Fig. 1 Longevity trends (in years) at age 65 and projections for EU-28, 1960-2060
Data source: http://data.worldbank.org

how serious consequences may occur when life expectancy projections are
inaccurate. Projections of the average life expectancy for women aged 65 in
2050 (ex = 23.9 and ex = 24.7) are the basis for calculating the ruin probabil-
ities. The probability of "retirement ruin" is defined as the probability that a
retirement (pension) plan is unsustainable. In short: under assumption of de-
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Table 1 The probability of ruin for spending rates w (0.01, 0.02,....,0.1) for µ = 2.5% and σ=5%

ex 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

23.9 0.005 0.036 0.097 0.183 0.284 0.388 0.489 0.582 0.663 0.732
24.7 0.005 0.039 0.121 0.204 0.326 0.419 0.520 0.607 0.743 0.769

fined contribution plan and randomness of capital St the probability of ruin:
P(PVx > w) = P(

∫ Tx
x=0 e−(µt+σBt)dt > w), where Tx is the future lifetime of an

individual age x, µ is the drift modelling the trend of the capital investment,
σ - the volatility modelling the diffusion of the capital investment. For details
in calculation the probabilities of ruin see Trzpiot and Majewska (2015). The
probability of ruin of a pensioners (here a woman at 65) can be interpreted
in the following way: A woman with retirement age of 65, estimated life ex-
pectancy ex = 23.9 and spending rate 0.06 (i.e. Euro 30 000 annually from a
pension account of Euro 500 000) faces retirement ruin with probability 0.388.
For ex = 24.7 the probability of ruin is 0.419. So it is entirely clear that the un-
derestimation of life expectancy might result in a significant higher probability
of ruin.
In view of these facts, we want to examine the effect of using simple robust
estimators in mortality models on the forecast accuracy of these models. As a
result, we get information on the robustness of some existing stochastic mor-
tality models from the Lee-Carter family. We use the outlier detection concept
of Hyndman and Shang (2010) that is based on robust principal components
analysis. Classical models are compared with the robust model of Hyndman
and Ullah (2007). There is a difference in the meaning of robustness: The ro-
bust Hyndman-Ullah method assigns zero weight to outliers, while we use a
very robust estimator to reduce the weights of outliers.
This article is organized as follows: In section 2 we describe briefly the mor-
tality projection models that are included in our comparison. In section 3 we
analyse the dataset in terms of the presence of outliers and compare the point
forecast accuracy of these methods. The evaluations focus only on life ex-
pectancy. Results and conclusions appear in the last section of the paper.
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2 Stochastic mortality models

The majority of existing stochastic models can be presented in the age-period-
cohort framework. The general model can be written as (Hunt and Blake
(2014)):

η

(
E
(

Dxt

Ext

))
= αx +

N

∑
i=1

fi

(
x,θ (i)

)
κ
(i)
t + γt−x. (1)

This equation has the following components:

• The link function η transforms the observed data into a form suitable for
modelling (the raw data usually consists of death counts Dxt and exposures
to risk Ext at ages x and for years t).

• The static age function αx captures the general shape of the mortality curve.
• N age/period terms fi

(
x,θ (i)

)
κ
(i)
t , consisting of companion pairs of t period

terms κ
(i)
t , which give the evolution of mortality t rates through time, and age

functions fi
(
x,θ (i)

)
that determine which segments of the age range these

trends affect.
• Cohort parameters γt−x determine the lifelong effects that are specific to

different generations denoted by their year of birth.

Parametric age functions fi
(
x,θ (i)

)
take a specific functional form and are

parameterised by a small number of variables θ (i) over more general non-
parametric age functions β (i).
We consider mortality rates qxt defined as the underlying probability that an
individual aged x at year t will survive until year t +1, and mxt - the underlying
death rate.

2.1 Lee-Carter family of models

The Lee Carter model under a Poisson setting (LC model) assumes a Poisson
distribution of the deaths (Brouhns et al (2002)). The model structure proposed
by Lee and Carter (1992) assumes that there is a static age function, αx, a unique
non-parametric age-period term (N = 1), and no cohort effect:

log mxt = αx +β
(1)
x κ

(1)
t . (2)

In order to project the evolution of mortality, only the time-varying index κt

needs to be projected under the assumption of an ARIMA process.
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Renshaw and Haberman (2006) generalised the Lee-Carter model by incor-
porating a cohort effect (RH model):

logmxt = β
(1)
x +β

(2)
x κ

(2)
t +β

(3)
x γ

(3)
t−x. (3)

Mortality projections for this model are derived using the time series projec-
tion of the estimated κt and γt−x, generated using univariate ARIMA processes
under the assumption of independence between the period and the cohort ef-
fects. To estimate the model Renshaw and Haberman (2006) assumed a Poisson
distribution of deaths.

Cairns, Blake and Down proposed a model structure with two age-period
terms (N = 2) with pre-specified age-modulating parameters β

(1)
x = 1 and

β
(2)
x = x− x, no static age function and no cohort effect (Cairns et al, 2006).

Thus, the CBD model is given by:

logitqxt = κ
(1)
t +κ

(2)
t (x− x) (4)

where x is the average age in the data. Cairns et al (2006) obtain mortality
projections by projecting the period effects κ

(1)
t and κ

(2)
t using a bivariate

random walk with drift.
Cairns et al. (2009) extended the original CBD model by adding a cohort

effect and a quadratic age effect (CBD extension):

logitqxt = κ
(1)
t +κ

(2)
t (x− x)+κ

(3)
t [(x− x)2 −σ

2
x ]+ γt−x (5)

where σ2
x is the average value of (x− x)2.

2.2 Robust approach to mortality modelling

Hyndman and Ullah (2007) showed a particular version of a Lee-Carter method-
ology the so-called functional demographic model. They proposed a method-
ology to forecast age-specific mortality rates, based on the combination of
functional data analysis, nonparametric smoothing and robust statistics. The
approach allows for smooth functions of age, is robust to outliers, and provides
a modelling framework easy to fit to constraints and other information (Hynd-
man and Ullah (2007)).
This method (HUrob) utilizes the RAPCA algorithm (Hubert et al (2002)),
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which stands for Reflection Algorithm for Principal Component Analysis, to
obtain projection-pursuit estimates of principal components and their associated
scores. Note that for spectral data, e.g. n = 50, p = 1000, the algorithm reduces
the 1000-dimensional original data set to 49 dimensions. If p ≥ n the RAPCA
method starts by reducing the data space to the affine subspace spanned by the
n observations (it is done by a singular value decomposition). The main step
of the RAPCA algorithm is to search for the direction in which the projected
observations have the largest robust scale. To make the algorithm computation-
ally feasible, the collection of directions to be investigated are restricted to all
directions that pass through a highly robust location estimator (the L1-median).
Having found the first direction, the data are reflected such that the first eigen-
vector is mapped onto the first basis vector, then the data are projected onto the
orthogonal complement of the first eigenvector. This is simply done by omitting
the first component of each (reflected) point. Doing so, the dimension of the
projected data points can be reduced by one and consequently, the computations
do not need to be done in the full dimensional space (Rousseeuw et al (2006)).
The integrated squared error provides a measure of the accuracy of the princi-
pal component approximation for each year. Outlying years would result in a
large integrated squared error (see Hyndman and Ullah (2007) for details). By
assigning zero weight to outliers, the HUrob method can be used to model and
forecast mortality rates without possible the influence of outliers.
In a broad analysis conducted by Shang et al (2011) the HUrob method pro-
vided more accurate forecasts of life expectancy than the simpler methods in
section 3.2. A very important finding of their analysis is the fact that adopting
robust estimation procedures minimises the effect of outliers on point forecasts.
The approach taken into the consideration in this study, is based on a classi-
cal robust method where outliers are not excluded from the dataset. A good
estimation method should be able to recover the underlying "normal" mortality
varying pattern across age and year, with minimal effects of the noises including
the outliers. Hence, death rates in the outlying years are replaced by a highly
robust location estimator the spatial median.

3 Empirical analysis

The data sets were taken from the Human Mortality Database (HMD, 2015).
For the analysis we have chosen UK female and male mortality data for age
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group 55-100 between 1922 and 1990. We restricted the age range to 55-100
as the CBD model and the extension of CBD model have been particularly
designed to fit higher ages in the first part, identification of potential outliers in
the development of age-specific mortality rates of the analysed population was
conducted. In section 3.2, we compare the point forecast accuracy and bias of
the seven stochastic models for life expectancy projection.

3.1 Identification of outliers

In order to identify potential outliers we use the approach proposed by Hyn-
dman and Shang (2010). It treats mortality data as a time series of functions
which are the realizations of the data on the functional space. Then these curves
are visualized using functional equivalents of boxplots (or bagplots), and on
this basis outliers in the observed curves are identified. The functional highest
density region (HDR) boxplot displays the modal curve (i.e., the curve with the
highest density), and the inner and outer regions. The functional HDR boxplot
provides an additional advantage in that it can identify unusual "inliers" that
fully in sparse regions of the sample space (Hyndman and Shang (2008)). Fig-
ures 2-5 show the functional highest density region (HDR) boxplots for two
periods, 1922-1960 and 1961-1990, separet for males and females. Figures 2-5
were produced with the R package rainbow (Shang and Hyndman (2009)).
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Fig. 2 The functional HDR boxplot [UK,
1922-1960, males, age: 55-100]
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Fig. 3 The functional HDR boxplot [UK,
1961-1990, males, age: 55-100]
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Fig. 4 The functional HDR boxplot [UK,
1922-1960, females, age: 55-100]
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Fig. 5 The functional HDR boxplot [UK,
1961-1990, females, age: 55-100]

In figures 2- 5 the dark grey regions show the 50% HDR and the light grey
regions show the 95% HDR. Curves outside these regions are identified as
outliers. In each of these periods outliers clearly exist in the data and we seek
to identify them. For male the population, in the first period the years 1934 and
1948 (in fig. 2) are outliers, in the second period the outliers (inf fig. 3) are
1961 and 1963. For the female population - in the first period the outlying years
are 1929 and 1940 (see fig. 4). Becerra et al (2006) found strong evidence
for power laws in casualty distributions for all disasters (natural and violent
conflict), both globally and by continent except for North America and non-EU
Europe. Moreover, their power-law findings for casualties in natural disasters
fit in with established results for whole wars, terrorist events and events in
individual modern wars. In the second period the outliers are 1963 and 1989
(see fig. 5).In addition, we observe significantly higher mortality rates in the
age groups 85-100 years. Hence, we need methods that are not sensitive to the
presence of outliers.

3.2 Projection of mortality and life expectancy

We have tested the following models: The classical LC model given by (3),
the RH model (4), the CBD model (5), the extension of the CBD model (6),
the HUrob model described in section 2.2, and the modification of the LC and
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CBD models where the death rates across outlying year were replaced by their
median.
All models were calibrated using two samples in order to determine their abil-
ity to make accurate projections. In the first test the models were calibrated
with population mortality data using the period 1922 to 1960. Mortality rates
were volatile during this period and the data also include the impact of World
War II. We carried out stochastic projections from 1961 to 2011 for the ages
of 55 to 100. The projections were then compared against the actual mortality
experienced during the period to test the projection accuracy of the models.
The comparison is is implemented as follows : Using the data in the fitting
period, we compute one-step-ahead point projections, and determine the pro-
jection errors by comparing the projections with the actual out-of-sample data.
Then, we increase the fitting period by one year, and compute one-step-ahead
projections, and calculate the projection errors. In the second test the models
were calibrated for the data for the period from 1961 to 1990. The mortality
rates during this period were relatively smooth and show improvement over
time. Projections were carried out from 1991 to 2011. Both test results were
then compared and the life expectancy was calculated only for the age of 65.
To measure point forecast accuracy, we used the mean absolute forecast error
(MAFE) and the mean forecast error (MFE). The MAFE is the average of ab-
solute errors, and measures forecast precision, regardless of sign. The MFE is
the average of errors and is a measure of bias. These measures are often used
to evaluate forecasts of log mortality rates and life expectancyc (Shang et al,
2011; Shang, 2015).
Table 3 provides summaries of the point forecast accuracy based on the MAFEs
for one-step-ahead forecasts of mortality rates averaged over different ages and
years in the projection period for UK males. Table 2 shows the corresponding
MFEs for one-step-ahead forecasts. Table 5 presents the MAFEs for one-step-
ahead life expectancy point forecasts averaged over years in the projection
period for males. Corresponding MFEs for one-step-ahead point forecasts of
life expectancy are shown in Table 4.
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Table 2 MFEs for one-step-ahead point forecasts of male log mortality rates by method. The mean is
taken over ages and years in the projection period

Mortality model MFE for 1961-2000 MFE for 2001-2011

LC -0.431 -0.119
LC (Median) -0.171 -0.013
RH model -0.251 -0.064
CBD 0.859 0.537
CBD (Median) 0.245 0.329
CBD extension -0.017 0.010
HUrob 0.000 0.000

Table 3 Point forecast accuracy of male log mortality rates by method, as measured by the MAFE
for one-step-ahead forecasts. The mean is taken over ages and years in the projection period

Mortality model MAFE for 1961-2000 MAFE for 2001-2011

LC 0.388 0.208
LC (Median) 0.183 0.110
RH model 0.205 0.157
CBD 0.327 0.183
CBD (Median) 0.158 0.075
CBD extension 0.282 0.125
HUrob 0.102 0.025

Table 4 MFEs for one-step-ahead point projections of female life expectancy by method. The mean
is taken over ages and years in the projection period.

Mortality model MFE for 1961-2000 MFE for 2001-2011

LC -0.570 0.493
LC (Median) -0.275 0.294
RH model 0.270 0.161
CBD -0.213 -0.300
CBD (Median) -0.201 -0.126
CBD extension 0.303 0.159
HUrob 0.001 0.001

Table 5 Point forecast accuracy of female life expectancy by method, as measured by the MAFE for
one-step-ahead forecasts. The mean is taken over years in the projection period.

Mortality model MAFE for 1961-2000 MAFE for 2001-2011

LC 0.615 0.693
LC (Median) 0.314 0.302
RH model 0.380 0.580
CBD 0.632 0.429
CBD (Median) 0.201 0.196
CBD extension 0.212 0.195
HUrob 0.147 0.162
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4 Results and conclusions

Based on the information provided in tables 2-5 it is clear that the HUrob
method tends to perform better than the other LC family methods. The HUrob
method achieves the best point forecast accuracy for male life expectancy.
Among the robust improvements of classical methods the CBD method per-
forms best for males. The LC (Median) provides smaller errors than classical
methods. The CBD (Median) method is superior among the LC methods. We
also notice small errors for the RH method and the LC (Median). In general,
there is a clear association between differences in the age patterns in forecast
errors and differences in the size and sign of forecast errors in life expectancy.
The HUrob method and the extensions of CBD methods tend to overestimate
life expectancy, while the other LC methods underestimate life expectancy.
Overall, the of our investigation findings regarding point forecasts of life ex-
pectancy rates indicate that the HUrob method is the most accurate and the least
biased. In general, the HUrob method leads to smaller MAFE values than the
LC family methods. This result was expected, and the same conclusions were
obtained by Shang et al (2011). This is due to two factors. First, the smooth-
ing of mortality rates means that the observational error is treated separately
from dynamic changes over time. Second, the additional principal components
allow more complicated dynamics to be modelled, rather than the restriction to
simple age-specific time trends that result from a single principal component.
Regarding the direction of bias, the HUrob method shows a tendency towards
a one-step-ahead overestimation of the life expectancy for males. In contrast,
the LC family methods exhibit a strong tendency towards a one-step-ahead
underestimation of the life expectancy.
Comparisons between HUrob and LC methods with a robust estimator demon-
strate the effect of adopting robust estimation procedures to minimise the effect
of outliers on point forecasts. The most interesting finding is that a highly robust
estimator considered in classical and simple models provides smaller forecast
errors. The robust methods perform well in terms of accuracy and bias, both
with regard to mortality rates and life expectancy. In each case, the reduction
in forecast accuracy due to robust estimation is greatest when the forecasting
period is longer.
This comparative analysis was limited to the most popular stochastic mortality
models. Indication of the best model was beyond the aim of this study. Neverthe-
less, this analysis suggest to conduct a survey with different mortality models,
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length of historical and forecast periods. It must be also acknowledged that
outliers identified in the case of the UK in the period 1922-1960 are specific,
due to World War II. However, there is no doubt that any outlier may affect the
predicted trend of mortality rates and the resulting mortality and life expectancy
projections could be biased.
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