
Effi ciently Conducting Quality-of-
Service Analyses by Templating
Architectural Knowledge

Sebastian Michael Lehrig

The Karlsruhe Series on
Software Design

and Quality

25

Sebastian Michael Lehrig

Efficiently Conducting Quality-of-Service Analyses
by Templating Architectural Knowledge

The Karlsruhe Series on Software Design and Quality
Volume 25

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Efficiently Conducting Quality-of-
Service Analyses by Templating
Architectural Knowledge

by
Sebastian Michael Lehrig

Print on Demand 2018 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-0756-7
DOI: 10.5445/KSP/1000079766

This document – excluding the cover, pictures and graphs – is licensed
under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Dissertation, Universität Stuttgart
Fakultät 5: Informatik, Elektrotechnik und Informationstechnik

Tag der mündlichen Prüfung: 24. November 2017
Referenten: Prof. Dr.-Ing. Steffen Becker, Prof. Dr. Ralf H. Reussner

E�iciently Conducting
Quality-of-Service Analyses by
Templating Architectural

Knowledge

Von der Fakultät Informatik, Elektrotechnik
und Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Sebastian Michael Lehrig M. Sc.
aus Lennestadt, Deutschland

Hauptberichter: Prof. Dr.-Ing. Ste�en Becker
Mitberichter: Prof. Dr. Ralf H. Reussner

Tag der mündlichen Prüfung: 24. November 2017

Institut für Softwaretechnologie (ISTE) der Universität Stuttgart

2017

Abstract

Software architects engineer software systems, i.e., they design, document,
implement, test, operate, and maintain such systems in a systematic, dis-
ciplined, and quanti�able manner. Here, software architects make design
decisions that de�ne the system-wide boundaries of achievable software
quality. Because of this far-reaching impact and potentially high realization
e�orts, taken decisions are expensive to revise. To reduce the risk of such
revisions, software architects can apply architectural analyses. Such archi-
tectural analyses quantify a system’s quality properties based on architec-
tural models that (semi-)formally capture taken decisions, e.g., the structure
of the planned software. Subsequently, software architects can compare
quanti�cations against pre-speci�ed software quality requirements. If re-
quirements are violated, software architects only have to iteratively revise
their architectural models and not the whole software to be realized. As
soon as requirements are feasible, software architects can initiate the real-
ization of the planned software.

However, the creation of suitable architectural models can cause high ini-
tial e�orts for software architects. During creation, software architects
formerly had to manually apply architectural knowledge, e.g., by looking
up architectural styles and architectural patterns. Existing architectural
analysis approaches like Palladio [BKR09] lack support for directly reusing
architectural knowledge. This lack makes the design-space for software
architects unnecessarily large; architects potentially consider designs that
violate prescribed constraints. Moreover, this lack makes an automatic
processing of architectural knowledge impossible; architects have to manu-
ally model architectural styles and patterns over and over again, even in
recurring situations. These issues point to an unused potential to make the
work of software architects more e�cient.

To use this potential, I propose the Architectural Template (AT) method, a
software engineering method that makes architectural analyses of quality-

i

Abstract

of-service (QoS) properties more e�ective and e�cient. In the AT method,
software architects quantify QoS properties based on so-called Architec-
tural Templates (ATs), i.e., reusable design and analysis templates that
capture recurring architectural knowledge. Software architects only have
to customize such templates with the parts speci�c to their software appli-
cation. ATs therefore reduce e�ort and lead to a more e�ective and e�cient
engineering method.

For evaluating the AT method, I have extended the architectural analysis
approach Palladio [BKR09] with the AT method and have followed the AT
method in three case studies and a preliminary controlled experiment. The
case studies focus on the domains of distributed computing, cloud comput-
ing, and big data and associated QoS properties performance, scalability,
elasticity, and cost-e�ciency. Concrete cases are CloudStore, a distributed
online book shop that is migrated to a cloud computing environment, Word-
Count, a statistical analysis in big data to be operated in Apache’s Hadoop,
and Znn.com, a distributed news service to be analyzed by an external soft-
ware architect. The case studies show that the AT method is applicable to
the investigated domains and associated QoS properties. Moreover, evalua-
tion results indicate that AT application is a matter of minutes while saving
more than 90% of recurring modeling e�orts. The preliminary controlled
experiment has con�rmed these results in an experiment with 7 involved
software architects. A main limitation is the high e�ort for specifying ATs;
AT speci�cation can take several person months of e�ort. However, these
e�orts pay o� when ATs are reused often.

ii

Abstract (in German)

Softwarearchitekten gehen ingenieurmäßig bei der Entwicklung von Soft-
waresystemen vor, d.h., sie entwerfen, dokumentieren, implementieren,
testen, betreiben und warten diese Systeme auf systematische, disziplinierte
und quanti�zierbare Art und Weise. Hierbei tre�en Softwarearchitekten Ent-
wurfsentscheidungen, die die systemweiten Grenzen der erreichbaren Soft-
warequalität bestimmen. Aufgrund dieser weitreichenden Auswirkungen
und potenziell hoher Entwicklungskosten sind einmal getro�ener Entwurfs-
entscheidungen nur unter hohem Aufwand zu revidieren. Um das Risiko
solcher Revisionen zu reduzieren, können Softwarearchitekten sogenannte
Architekturanalysen verwenden. Diese Architekturanalysen ermöglichen
es Softwarearchitekten, die Qualitätseigenschaften eines Systems zu quan-
ti�zieren. Eine solche Quanti�zierung basiert auf Architekturmodellen, die
die getro�enen Entwurfsentscheidungen (semi-)formal erfassen, z.B. die
Struktur der geplanten Software. Nachfolgend können Softwarearchitekten
erhaltene Quanti�zierungen mit vorgegebenen Anforderungen an die be-
nötigte Softwarequalität vergleichen. Sind diese Anforderungen verletzt, so
müssen Softwarearchitekten lediglich ihre Architekturmodelle iterativ revi-
dieren und nicht das gesamte zu realisierende Softwaresystem. Sobald die
Anforderungen erfüllbar sind, können Softwarearchitekten die Realisierung
des geplanten Systems einleiten.

Allerdings kann die Erstellung geeigneter Architekturmodelle einen hohen
Initialaufwand für Softwarearchitekten bedeuten. Während einer solchen
Erstellung mussten Softwarearchitekten zuvor Architekturwissen manuell
anwenden, z.B. durch das Nachschlagen von Architekturstilen und Archi-
tekturmustern. Existierenden Ansätzen zur Architekturanalyse, wie z.B.
Palladio [BKR09], mangelt es an Unterstützung, solches Architekturwissen
direkt wiederzuverwenden. Dieser Mangel macht den Entwurfsraum für
Softwarearchitekten unnötig groß; Softwarearchitekten erwägen potentiell
sogar Entwürfe, die vorgeschriebene Designeinschränkungen verletzen.

iii

Abstract (in German)

Ferner macht dieser Mangel eine automatische Verarbeitung von Architek-
turwissen unmöglich; Softwarearchitekten müssen Architekturstile und
Architekturmuster immer und immer wieder modellieren, sogar in wieder-
kehrenden Situationen. Diese Probleme zeigen ein ungenutztes Potential
auf, um die Arbeit von Softwarearchitekten e�zienter zu gestalten.

Um dieses Potential zu nutzen, schlage ich die Architectural Template (AT)-
Methode vor; eine Softwareengineeringmethode, welche Architekturanaly-
sen für QoS-Eigenschaften1 e�ektiver und e�zienter macht. Mit der AT-
Methode quanti�zieren Softwarearchitekten QoS-Eigenschaften auf Basis
von sogenannten Architectural Templates (ATs), d.h., wiederverwendbaren
Entwurfs- und Analysevorlagen, die wiederkehrendes Architekturwissen
erfassen. Softwarearchitekten müssen diese Vorlagen lediglich an Stellen
anpassen, die spezi�sch für ihre Softwareapplikation sind. ATs reduzie-
ren daher Aufwand und führen zu einem e�ektiveren und e�zienteren
ingenieurmäßigen Vorgehen.

Zur Evaluation der AT-Methode habe ich den Architekturanalyseansatz
Palladio [BKR09] mit der AT-Methode erweitert und in drei Fallstudien
sowie einem vorläu�gen kontrollierten Experiment angewendet. Die Fall-
studien konzentrieren sich auf die Cloud Computing, verteilte Systeme und
Big Data Domänen und den assoziierten QoS-Eigenschaften Performance,
Skalierbarkeit, Elastizität und Kostene�zienz. Bei den konkreten Fällen
handelt es sich um CloudStore, einem verteilten Onlinebuchhandel, der in
eine Cloud Computing Umgebung migriert werden soll, WordCount, einer
statistischen Big Data Analyse, die in Apache’s Hadoop betrieben werden
soll, und Znn.com, einem verteilten Nachrichtendienst, der durch einen
externen Softwarearchitekten analysiert werden soll. Die Fallstudien zeigen,
dass die AT-Methode in den untersuchten Domänen und für die assoziierten
QoS-Eigenschaften anwendbar ist. Zudem zeigen die Evaluationsergebnisse,
dass ATs innerhalb von wenigen Minuten angewendet werden können und
gleichzeitig über 90 % wiederkehrender Modellierungsaufwände einsparen.
Das vorläu�ge kontrollierte Experiment hat diese Ergebnisse in einem Ex-
periment mit 7 Softwarearchitekten bestätigt. Eine Haupteinschränkung
ist der hohe Aufwand für die Spezi�kation von ATs; eine AT-Spezi�kation
kann mehrere Personenmonate an Aufwand verursachen. Allerdings zahlen
sich diese Aufwände aus, wenn ATs oft wiederverwendet werden.

1 QoS (Quality of Service): Dienstgüte.

iv

Acknowledgements

When I was little, I have adored my father for being such a versatile and
skilled programmer: among the �rst computer games I have ever played
in good ol’ DOS times was a maze game, home-brewed by my father, that
even allowed me to design my own mazes. He was (and still is!) a great
role model for me; so great that, already at the age of eight, I have decided
that I would learn programming and study computer science as soon as I
grew older. I have never changed my mind about that decision, nor have I
regretted it.

Now, several years later, you, the interested reader (well, at least of this
acknowledgement), have one of my proudest achievements in your hands—
a scienti�c treatise, my PhD thesis, that is settled in the context of my
favorite topic in computer science: software architecture (but more about
that later...). Since my decision to study computer science, a lot of people
have helped me to reach this achievement, especially during the years I was
writing up this thesis. Without these people, I would certainly have never
succeeded, so it’s time for a big thanks to all of these people that became
so important to me.

First of all, I want to thank my family for the incessant unconditional
support: thank you Papa, thank you Mama, I love you both! I also want
to thank my beloved wife, Maxi, for her perseverance in times that turned
out to be much harder than expected. You have always stood by me and
given me the stability I have needed. Thank you, Maxi, I truly love you!
Christel and Edith, thank you for the genuine warmth with which you
have welcomed me in your family. Hans and Christoph, you’re the coolest
brothers-in-law I could have imagined—cheers!

Writing up a thesis is not only hard for the author but also for his whole
environment—I therefore have to thank all my friends that kept on going
with me—you guys never left my heart! Patrick, thanks for being one of

v

Acknowledgements

the best friends I have ever had. Christina, I have loved growing up with
you—you were the best sister I have never had. Jens and Moritz, you rock!
It feels like Artsem has ever existed and I cannot imagine a world without
it anymore, so cheers to our next sessions, let them be legendary! Oli and
Anka. I was actually not sure whether I should rather put you to “family”.
Thanks for all the good time we had together (and for the shelter). You’ll
always get shelter (and a co�ee) wherever future brings Maxi and me. Tobi,
you were one of the best things that happened to me during my Chemnitz
time: thanks for being there! Sergej and Gosia, thanks for all the warm-
hearted help—you managed what I was unable to manage! I’ll be there
whenever you need me!

Next, I want to thank all my direct colleagues I have worked with. You
did a great job, not only content-wise, but also at an interpersonal level;
most of you I can certainly call my friends! I especially want to thank
Ste�en, my supervisor, for being the best “Doktorvater” one can have. Your
feedback was always constructive and has helped me to improve myself.
In this context, I also thank Ste�, Balzac, and Felix for their enduring psy-
chological support. A special thanks goes to all of my “Doktorgeschwister”
Matthias, Christian S., Anas, Marie, Stefan, Markus F., Marcus, Christian H.,
Claudia, Jörg, Uwe, Christopher, and Markus v. D. Our mutual assistance
was extraordinary—thank you and keep on going! Matthias and Marcus,
thank you again for your extensive reviewing; that has helped me so much!
Wilhelm, I also wish you all the best, thanks for the good time at the Zukun-
ftsmeile! Jutta, Kristin, and Sammy—without you, literally nothing would
have worked—thanks for everything!

Having worked in well-�nanced projects, I was so lucky to get my own
group of minions, my faithful student workers. All of you guys did excep-
tional work, thank you so much, I’m deeply indebted to you! Daria, you
were the very �rst and most loyal one—I wish you all the best! Hendrik,
you got what it takes to become a great researcher! Max, you made it all
work—thanks! Christian, that was an impressive work, thanks! Marcel and
Edith, I also want to thank you for your very good work!

Also the students that I have supervised during their Bachelor’s and Master’s
theses did extraordinary jobs. Daria, Alex, and Hendrik, you did an amazing
job in bringing the AT method to a whole new level—thank you! Daniel,

vi

Acknowledgements

you have extremely helped me with OpenStack, thanks! Mohammed, Vinay,
Christoph, and Manoveg—thanks for your good contributions!

A big thanks goes to all members of the CloudScale project. Guys (and
Ivana), you were the best! Thanks for the good time and the success we
had!

Another big thanks goes to our friends at the KIT and all other members
of the Palladio community. Ralf, you’re the best “Doktoropa” I could wish
for! It feels good to know that I’m always received with open arms in
Karlsruhe—thank you and again thanks to the whole team for what we
achieved together!

I’m also thankful for the good time I had during my research stay in L’Aquila.
Thanks Vittorio for being an exceptional host and thanks Catia and Davide
for all the fun we had.

Finally, I want to thank all the researchers I have met on countless con-
ferences for their valuable ideas and feedback. A special thanks goes to
Clemens Szyperski (remember the burger from Montréal?), Ra�aela Miran-
dola (remember presentation bingo Palladio Days 2011?), Murray Woodside,
Dorina Petriu, Jan Bosch, and Philippe Kruchten.

It appears that getting a PhD means not only writing up a thesis. If I look
at this acknowledgement, a pathbreaking decision, an extensive process,
adventure, and a large chunk of luck were involved. Most prominently, I
had great luck with you folks and a great time! Thank you!

Dublin, 1st of December 2017 Sebastian Michael Lehrig

vii

Contents

Abstract . i

Abstract (in German) . iii

Acknowledgements . v

1. Introduction . 1
1.1. Analyzing Quality-of-Service 2
1.2. Exploiting Reusable Architectural Knowledge 3
1.3. Requirements for Supporting Reusable Architectural

Knowledge . 5
1.4. Problem Statement . 6
1.5. Solution Overview . 7
1.6. Scienti�c Contributions 9
1.7. Thesis Structure . 11

2. Foundations . 13
2.1. Evaluation and Research Methods 14

2.1.1. Goal/Question/Metric (GQM) Method 15
2.1.2. Software Quality Models 17
2.1.3. Data Collection Procedures 19
2.1.4. Systematically Engineering Methods 21

2.2. Software Architecture . 24
2.2.1. Software Components and their Types 25
2.2.2. Service Level Objectives 27
2.2.3. Design Decisions 28
2.2.4. Reusable Architectural Knowledge 28

2.3. Model-Driven Software Engineering 34
2.3.1. Metamodeling . 34

ix

Contents

2.3.2. Model Transformations 37
2.3.3. Quality Assurance of Model Transformations via

Testing . 39
2.3.4. Pro�les and Stereotypes 44
2.3.5. Ways to Describe Semantics of Metamodels 45
2.3.6. Standards and Technologies 46

2.4. Templates . 47
2.4.1. Template Terms . 49
2.4.2. Template Examples 50
2.4.3. Template Categories 50
2.4.4. Template Characteristics 54

2.5. Architectural Analyses of Quality-of-Service Properties . 56
2.5.1. Integration of Architectural Analyses in Development

Processes . 57
2.5.2. Architectural Models with Quality-of-Service

Attributes . 69
2.5.3. Palladio . 72

3. Example System: An Online Book Shop 79
3.1. Engineer Requirements of the Book Shop 80

3.1.1. The Book Shop’s Usage Model 80
3.1.2. The Book Shop’s Service Level Objectives 81

3.2. Specify Architectural Model of the Book Shop 81
3.2.1. The Book Shop’s Repository Model 82
3.2.2. The Book Shop’s System Model 83
3.2.3. The Book Shop’s Architectural Model 84
3.2.4. The Book Shop’s Applications of Architectural

Templates . 85
3.2.5. The Book Shop’s Validation of Architectural Template

Constraints . 86
3.3. Conduct Architectural Analysis of the Book Shop 87
3.4. Discussion of the Book Shop Example 89

4. The Architectural Template Method 91
4.1. Architectural Template Processes 92

4.1.1. Architectural Template Application 92
4.1.2. Architectural Template Analysis Integration 95
4.1.3. Architectural Template Speci�cation 98

x

Contents

4.2. Architectural Template Language 109
4.2.1. Classi�cation of Architectural Templates 110
4.2.2. Formalization of Types and Instances 112
4.2.3. Intension of the Architectural Template Language . 114
4.2.4. Technical Realization of Types and Instances 116
4.2.5. The Architectural Template Metamodel 119

4.3. Architectural Template Tooling 147
4.4. Extensions of the Architectural Template Method 148

4.4.1. Reuse Mechanism for AT Speci�cation 149
4.4.2. Optimization of Actual AT Parameters 151

4.5. Assumptions and Limitations of the Architectural Template
Method . 152

5. Evaluation . 157
5.1. Related Studies . 159

5.1.1. Related Case Studies 160
5.1.2. Related Controlled Experiments 162

5.2. Evaluation Design . 163
5.2.1. Research Questions 165
5.2.2. Data Collection Procedure(s) 167
5.2.3. Analysis Procedure(s) 173
5.2.4. Validity Procedure(s) 178

5.3. Case Studies . 178
5.3.1. Case Study: CloudStore 179
5.3.2. Case Study: WordCount 184
5.3.3. Case Study: Znn.com 189
5.3.4. Further Case Studies 194

5.4. Controlled Experiment . 196
5.4.1. Controlled Experiment Design 196
5.4.2. Summary of Preliminary Lessons Learned 202

5.5. Evaluation of AT Method Extensions 205
5.5.1. Evaluation of the Reuse Mechanism for AT

Speci�cation . 205
5.5.2. Evaluation of the Optimization of Actual AT

Parameters . 206
5.6. Lessons Learned . 206

5.6.1. Summary of Answers to Research Questions 207
5.6.2. Summary of Threats to Validity 216

xi

Contents

5.6.3. Discussion of Generalizability 217

6. RelatedWork . 219
6.1. Architectural Knowledge Management 222

6.1.1. ADDSS . 222
6.1.2. Archium . 224
6.1.3. PAKME . 225
6.1.4. ADMD3 . 226
6.1.5. Discussion of Architectural Knowledge Management 227

6.2. Architectural Knowledge in Architectural Description
Languages . 229
6.2.1. Acme . 230
6.2.2. Aesop . 232
6.2.3. Rapide . 233
6.2.4. SADL . 233
6.2.5. Wright . 235
6.2.6. UML . 236
6.2.7. Discussion of Architectural Description Languages 238

6.3. Architectural Knowledge in the Pattern Community . . . 242
6.3.1. POSA . 244
6.3.2. DPML . 245
6.3.3. RBML . 246
6.3.4. COMLAN . 248
6.3.5. PMF . 249
6.3.6. Discussion of Approaches in the Pattern Community 250

6.4. Architectural Knowledge in Architectural Analyses 252
6.4.1. Knowledge-Speci�c Generation of Analysis Models 254
6.4.2. Knowledge Captured via Completions 257
6.4.3. SASSY . 261
6.4.4. Discussion of Architectural Analyses 263

6.5. Feature Model Compiled from Related Works 268
6.5.1. Features of Selection Mechanisms 269
6.5.2. Features of Capturing Mechanisms 270
6.5.3. Features of Application Mechanisms 278

6.6. Classi�cation of Related Works 282
6.7. Discussion of Related Works 284

xii

Contents

7. Conclusion . 291
7.1. Summary . 291

7.1.1. Summary: The AT Method 292
7.1.2. Summary: Evaluation of the AT Method 296
7.1.3. Summary: Extensions of the AT Method 298
7.1.4. Summary: Classi�cation Schema and Related Works 298

7.2. Assumptions and Limitations 299
7.3. Future Work . 300

7.3.1. Additional Features for Software Architects 300
7.3.2. Additional Features for AT Engineers 302
7.3.3. Further Empirical Evaluations 303
7.3.4. Missing Features Within Architectural Analyses . . 305

A. Feature Models . 307

B. AT Tooling: Reference Implementation 309
B.1. AT Application Support 309

B.1.1. Initializing Palladio Projects with ATs 310
B.1.2. Applying ATs to Palladio Models 314

B.2. AT Integration Support . 318
B.3. AT Speci�cation Support 319

B.3.1. Integrating New Metrics 319
B.3.2. Creating AT Catalogs 321
B.3.3. Creating Pro�les 324
B.3.4. Creating Completions 326
B.3.5. Testing Completions 329

C. Case Study Reports . 335
C.1. Case Study Report: CloudStore 335

C.1.1. CloudStore . 336
C.1.2. Background: Cloud Computing 339
C.1.3. CloudStore: Case Study Design 346
C.1.4. CloudStore: Results 352

C.2. Case Study Report: WordCount 388
C.2.1. WordCount and Hadoop MapReduce 390
C.2.2. WordCount: Case Study Design 392
C.2.3. WordCount: Results 394

xiii

Contents

C.3. Case Study Report: Znn.com 407
C.3.1. Znn.com . 408
C.3.2. Znn.com: Case Study Design 408
C.3.3. Znn.com: Results 410

D. Controlled Experiment: Material 421
D.1. Installation Guide for AT Tooling 422
D.2. Installation Guide for SimuLizar 423
D.3. Workshop Document . 424
D.4. CloudStore Description 448
D.5. Task description for the Treatment Group 451
D.6. Task description for the Control Group 459

E. Controlled Experiment: Report 467
E.1. Controlled Experiment: Execution 467
E.2. Controlled Experiment: Analysis 469
E.3. Controlled Experiment: Interpretation 473
E.4. Controlled Experiment: Evaluation of Validity 477

Bibliography . 479
Own Publications (Cited) . 479
Own Publications (Uncited) . 484
Supervised Theses (Cited) . 484
Cited Literature . 485

xiv

List of Figures

1.1. Architectural analyses of QoS properties 3
1.2. Exploiting reusable architectural knowledge for creating

architectural models. 5
1.3. Creating and analyzing architectural models with ATs. . . . 8

2.1. Phases and deliverables of the GQM method. 16
2.2. ISO/IEC’s Product Quality Model. 18
2.3. Means of the AT Method. 22
2.4. Overview of the method engineering process 23
2.5. Reusable architectural knowledge: di�erences. 30
2.6. The loadbalancing architectural pattern introduces a

loadbalancer component to distribute workload. 33
2.7. Transformations map a source model to a target model. . . . 38
2.8. Transformation contracts: sets of constraints. 40
2.9. Test engineers systematically test model transformations

provided by software engineers. 42
2.10. Capturing variants of reusable architectural knowledge via

templates. 48
2.11. Data �ow of di�erent template categories. 51
2.12. Development process with integrated architectural analysis. 58
2.13. Speci�cation of architectural models. 61
2.14. Conducting architectural analyses. 68
2.15. Realization of completions. 71
2.16. The PCM includes UML-like models for specifying and

analyzing QoS-relevant attributes of software systems. . . . 73
2.17. PCM extensions enrich the PCM with models for elastic

environments. 77

3.1. Illustration of the book shop’s usage model. 80
3.2. Illustration of the book shop’s repository model. 82

xv

List of Figures

3.3. Illustration of the book shop’s system model. 83
3.4. Overview of the book shop’s architectural model. 84
3.5. Applying Architectural Templates to the book shop’s

architectural model. 86
3.6. Cumulative distribution function of response times for di�erent

workloads and con�gurations. 88

4.1. Software architects apply ATs from a catalog of ATs speci�ed
by AT engineers. 93

4.2. An architectural model of the book shop with two constraint
violations. 95

4.3. AT-induced elements are automatically integrated during the
transformation of an architectural model to a QoS analysis
model. 96

4.4. A completion integrates elements induced by the loadbalancing
AT into the book shop’s architectural model. 97

4.5. AT engineers specify ATs in cooperation with AT testers to
assure a high quality. 98

4.6. Data �ow of ATs . 111
4.7. Instance-of relationships of the book shop example. 114
4.8. Instance-of relationships of architectural models, pro�les, and

ATs. 118
4.9. Metamodel: AT catalogs. 122
4.10. Metamodel: ATs. 124
4.11. Metamodel: AT roles. 127
4.12. Metamodel: AT constraints. 131
4.13. Metamodel: AT completions. 134
4.14. Metamodel: Pro�les. 138
4.15. Metamodel: Stereotypes. 142
4.16. Metamodel extension: AT roles with inheritance support. . . 150

6.1. Features and domains of approaches that can capture
architectural knowledge. 220

6.2. Di�erent model versions depicted as images. 223
6.3. A UML collaboration for the observer pattern. 237
6.4. The replica dimension ensures that replicated elements have

the same cardinality. 246

xvi

List of Figures

6.5. A transformation from a UML model with a bound
collaboration to a corresponding LQN model. 255

6.6. Features to support reusable knowledge in architectural
analysis methods. 269

6.7. Features of selection mechanisms for reusable architectural
knowledge. 269

6.8. Features of capturing mechanisms for reusable architectural
knowledge. 271

6.9. Features of application mechanisms for reusable knowledge. 278

B.1. Wizard for creating Palladio projects based on ATs. 311
B.2. The wizard allows to set a custom name for the Palladio project. 312
B.3. The wizard lists each AT that provides a default AT instance. 312
B.4. The wizard creates an initial Palladio project from the selected

AT. 313
B.5. Automatically initialized Palladio resource environment

diagram. 314
B.6. A view on the resource environment of the book shop example

within the corresponding Sirius-based Palladio editor. 315
B.7. The dialog for selecting and applying an AT. 316
B.8. The dialog for selecting and binding roles of ATs. 316
B.9. A view on the system of the book shop example within the

corresponding Sirius-based Palladio editor. 317
B.10. The tree-based editor for AT catalogs. 322
B.11. The properties view when selecting an AT role. 323
B.12. The properties view when selecting an OCL constraint. . . . 323
B.13. Context menu for adding an AT to an AT catalog. 324
B.14. The graphical editor for creating pro�les. 325
B.15. Con�guration of a completion with an allocation PCM

blackbox parameter. 328
B.16. Palladio’s run dialog for conducting architectural analyses. . 329
B.17. AT tooling creates a temporary project where a completion’s

in- and output models are stored. 330

C.1. PCM model of the CloudStore online book shop. 337
C.2. Behavior of web page components interacting with database

and image components. 339
C.3. Overview of the three phases in the CloudStore case. 347

xvii

List of Figures

C.4. The three-layer AT (excerpt). 354
C.5. The loadbalancing AT for resource containers (excerpt). . . 356
C.6. The three-layer and loadbalancing ATs applied to the

CloudStore model (with constraint violation). 359
C.7. The three-layer and loadbalancing ATs applied to the

CloudStore model (�xed version). 360
C.8. Cumulative distribution function of response times for di�erent

workloads and con�gurations of the modernized CloudStore
(phase 2). 361

C.9. The horizontal scaling AT for resource containers (excerpt). 364
C.10. The horizontal scaling AT applied to the CloudStore model. 365
C.11. The vertical scaling AT for resource containers (excerpt). . . 367
C.12. ATs for elasticity and cost-e�ciency applied to the CloudStore

model. 368
C.13. Cumulative distribution function of response times for di�erent

workloads and con�gurations of the modernized and migrated
CloudStore. 371

C.14. Experiment principles and threats to validity. 382
C.15. Performance-impacting actions of Hadoop’s MapReduce

processing pipeline . 391
C.16. The Hadoop MapReduce AT (excerpt). 395
C.17. PCM system created by the default AT instance of the Hadoop

MapReduce AT. 396
C.18. System after execution of the Hadoop MapReduce AT’s

completion. 397
C.19. PCM model of the Znn.com news service. 408
C.20. The horizontal scaling AT applied to the Znn.com model. . . 411
C.21. Znn.com’s response times over simulation time for 300

concurrent customers. 412
C.22. Znn.com’s number of resource containers over simulation time. 413

xviii

List of Tables

4.1. Intension of the AT language (ι(LAT)) 115
4.2. Catalog notations . 123
4.3. AT notations . 125
4.4. Role notations . 129
4.5. Constraint notation . 132
4.6. Completion notations . 136
4.7. Pro�le, stereotype, and extension notations 140
4.8. Pro�le Application notations for AT instances 144

5.1. Overview of research questions and associated metrics and
hypotheses . 163

6.1. Classi�cation of related works based on derived feature model 283

A.1. Cardinality-based feature modeling notation 308

C.1. Request for a suitable architectural analysis approach 348
C.2. Request for AT capturing the three-layer architectural style 349
C.3. Request for AT capturing the loadbalancing architectural

pattern . 349
C.4. CloudStore’s SLOs for phase 2 (modernization) 350
C.5. Request for ATs capturing reusable architectural knowledge

that fosters cloud computing properties 350
C.6. CloudStore’s additional SLOs for phase 3 (migration) 351
C.7. Metric measurements collected in the CloudStore case study 369
C.8. WordCount’s SLO . 393
C.9. Metric measurements collected in the WordCount case study 398
C.10. Znn.com’s SLO . 410
C.11. Metric measurements collected in the Znn.com case study . 414

xix

E.1. Metric measurements collected in the controlled experiment 470

“Each problem that I solved became a
rule, which served afterwards to solve
other problems.”

— René Descartes 1596 – 1650

1. Introduction

A system’s software architecture is its fundamental organization of soft-
ware components, their relations, and their environment [ISO07]. Addi-
tionally, software architecture describes the set of design decisions that
have led to such an organization [TMD09, p. 58]. Once taken, these de-
sign decisions de�ne the system-wide boundaries of achievable software
quality [HAZ07, BCK98, Chap. 1]. Because of this far-reaching impact and
potentially high realization e�orts of the system, design decisions are ex-
pensive to revise [BCK98, Chap. 2] and should consequently be evaluated
as early as possible [CKK02, BT03, Gar14].

The main task of software architects is to make design decisions such that
a system’s quality requirements are �nally met and optimal trade-o�s have
been achieved [TMD09, Sec. 17.1]. For e�ectively ful�lling this task without
risking revisions, software architects can engineer software architectures.
In engineering, software architects approach the design, documentation,
implementation, testing, operation, and maintenance of software architec-
tures in a systematic, disciplined, and quanti�able manner [IEE10]. Such an
engineering approach helps software architects in making informed design
decisions, that is, decisions with predictable, intended (i.e., requirement-
satisfying) outcomes.

This thesis focuses on a concrete category of such engineering approaches:
architectural analyses. Architectural analyses allow software architects to
quantify quality-of-service (QoS) properties based on architectural models
of their system. These quanti�cations enable early evaluations and, thus,
inexpensive revisions of disadvantageous design decisions. However, the

1

1. Introduction

creation of suitable architectural models for architectural analyses formerly
required a high modeling e�ort [SW02, p. 458]—even in recurring modeling
situations [Leh13].

To approach this problem, this thesis contributes the Architectural Template
(AT) method as an extension to architectural analyses. The AT method
provides software architects with templates that formally capture reusable
architectural knowledge (such as architectural styles and architectural
patterns) for recurring modeling situations. By applying such templates
to architectural models, software architects become more e�ective and
e�cient because captured design decisions can automatically be integrated
into architectural models, checked for consistency, and be analyzed.

This introductory chapter re�nes this motivation and idea behind the AT
method and gives an overview of this thesis. Section 1.1 details how archi-
tectural analyses allow to quantify QoS properties while Section 1.2 outlines
the bene�ts of exploiting reusable architectural knowledge for the creation
of architectural models. Subsequently, Section 1.3 derives requirements to
pro�t from these bene�ts in architectural analyses and Section 1.4 inspects
concrete architectural analysis methods to illustrate their lack of support
for these requirements. Section 1.5 explains how the AT method copes with
this lack and Section 1.6 lists concrete, scienti�c contributions of this thesis.
Finally, Section 1.7 explains the structure of this thesis.

1.1. Analyzing Quality-of-Service

A concrete category of engineering approaches are architectural analy-
ses [TMD09, p. 291]. Architectural analyses quantify a system’s quality-of-
service (QoS) properties based on architectural models that (semi-)formally
capture taken decisions, e.g., the structure of the planned software. Sub-
sequently, software architects can compare quanti�cations against pre-
speci�ed QoS requirements. If requirements are violated, software archi-
tects only have to iteratively revise their architectural models and not
the whole software to be realized. As soon as requirements are feasible,
software architects can initiate the realization of the planned software.

2

1.2. Exploiting Reusable Architectural Knowledge

Figure 1.1 illustrates the data �ow of such architectural analyses as intro-
duced by Koziolek [Koz08, p. 3]. Involved artifacts are denoted with a
representative symbol and data �ow via thick arrows.

architectural
model

analysis
results

QoS analysis
model

transformation

analysis

feedback

encapsulation
into tools

Legend:

data flow

model

Figure 1.1.:Architectural analyses of QoS properties (based on [Koz08, p. 3]).

As shown in Figure 1.1 (left), the data �ow starts with an architectural model
that is transformed to a QoS analysis model (e.g., Markov chains [Tri82],
queuing networks [LZGS84], stochastic Petri nets [BK98], or stochastic
process algebras [HHK02]). Figure 1.1 (right) shows that such analysis mod-
els can be analyzed. The resulting analysis results provide quanti�cations
of the QoS properties of interest. These analysis results serve software
architects as feedback for revising the architectural model.

The dashed border in Figure 1.1 shows that appropriate tools encapsulate
the steps from architectural model to analysis results. Underlying QoS
analysis models are therefore transparent to software architects and cause
no creation e�orts. However, the creation of suitable architectural models
can cause high initial e�orts for software architects [SW02, p. 458]. As
described in the next section, such e�orts can be lowered by exploiting
design decisions that can be reused over multiple architectural models.

1.2. Exploiting Reusable Architectural Knowledge

Software architects commonly commit “theft” [Kru95] to e�ciently create
architectural models. That is, software architects reuse (“steal” [Kru95])
design decisions that have been proven to solve previous but similar design

3

1. Introduction

problems [Ale77, p. x]. If given a name, such proven design decisions form
reusable architectural knowledge [KLvV06]. Concrete examples of reusable
architectural knowledge are architectural styles, architectural patterns, and
reference architectures [TMD09].

The application of reusable architectural knowledge to architectural models
can have several bene�ts for software architects:

Generic documentation. Design decisions included in reusable architec-
tural knowledge can be documented generically [HAZ07], e.g., as
pattern descriptions in architectural handbooks [BCK98, TMD09,
BMR+96, SSRB00, KJ04, KJ04, BHS07a, BHS07b]. This generality
saves documentation e�orts; only the design decision to apply such
knowledge requires documentation.

Conformance checks. Reusable architectural knowledge can include design
decisions about constraints on the architectural model [KLvV06].
Software architects can check whether these decisions conform to
their architectural models. These conformance checks ensure that
knowledge is consistently applied, thus, particularly ensuring an
e�ective application of reusable architectural knowledge.

Knowledge integration. Reusable architectural knowledge can include de-
sign decisions about the existence of elements and their interac-
tion [KLvV06]. Software architects can reuse these existential de-
cisions for integrating associated elements into their architectural
models e�ciently.

Figure 1.2 extends Figure 1.1 to illustrate these bene�ts. Figure 1.2 (left)
illustrates that sources of reusable architectural knowledge provide software
architects with generic information that they can use for e�ectively and
e�ciently creating architectural models.

Figure 1.2 particularly annotates the bene�ts outside of the dashed border,
which indicates that software architects may manually apply reusable ar-
chitectural knowledge. To relieve software architects from such manual
e�orts as much as possible, the next section describes requirements for an
appropriate tool support.

4

1.3. Requirements for Supporting Reusable Architectural Knowledge

architectural
model

analysis
results

QoS analysis
model

transformation

analysis

feedback

encapsulation
into tools

Legend:

data flow

model

- generic documentation
- conformance checks
- knowledge integration

architectural
knowledge

sources

Figure 1.2.: Exploiting reusable architectural knowledge for creating architectural
models.

1.3. Requirements for Supporting Reusable
Architectural Knowledge

The bene�ts previously described in Section 1.2 enable software architects
to become more e�ective and e�cient in their engineering task. However, to
fully pro�t from these bene�ts within architectural analyses, the following
requirements must be satis�ed:

Rformal: Capture knowledge in a formal way. Reusable architectural knowl-
edge shall be captured formally. Only formally captured knowledge
allows to automate both conformance checks and knowledge inte-
grations.

Rarchitecture: Give architecture-level feedback. Software architects shall be
able to check conformance to reusable architectural knowledge au-
tomatically and already during the creation of architectural models.
This early feedback allows software architects to maintain confor-
mance to knowledge throughout model creation, thus, avoiding
revision risks due to inconsistently made design decisions at the
architectural level.

Rsemantics: Define semantics for architectural analyses. Once it has been in-
tegrated, knowledge shall be interpretable by architectural analyses.
That is, integrated elements must have well-de�ned semantics that
are understood by the employed architectural analysis.

5

1. Introduction

Radditions: Allow to formalize additional knowledge. It shall be possible to
formalize additional reusable architectural knowledge. This possibil-
ity acknowledges the plethora of reusable architectural knowledge
available as, e.g., described in architectural handbooks. For an opti-
mal support for formalizing additional knowledge, it is particularly
required to provide:

• a process for such a formalization and

• quality assurance steps to ensure that said formalizations capture
reusable architectural knowledge correctly.

1.4. Problem Statement

Unfortunately, no existing architectural analysis approach satis�es all the
requirements described in Section 1.3 [Leh13]. Some existing approaches
on architectural analyses satisfy Rformal and Rsemantics while approaches
from the software architecture domain exemplify the realization of Rformal,
Rarchitecture, and Radditions but lack analysis capabilities:

Architectural analysis approaches. Koziolek surveys [Koz10] architectural
analysis approaches, e.g., SPE [SW02], that lack formalisms for cap-
turing reusable architectural knowledge, thus, violating all require-
ments of Section 1.3. Some architectural analysis approaches [PW00,
CG02, MPW15, WPS02, VDGD05, Bec08, Hap09, Hap11, MGMS11,
Rat13] support an integration of formally captured knowledge with
well-de�ned semantics (Rformal and Rsemantics). However, neither of
these approaches supports the exploitation of conformance checks
at the architectural level (Rarchitecture) while allowing to formalize
additional reusable architectural knowledge (Radditions).

So�ware architecture domain. Some approaches from the software archi-
tecture domain [GMW00, GAO94, LKA+95, MR97, All97, MHG01,
KFGS03, TTSOF16] support automated conformance checks while
allowing to formalize additional reusable architectural knowledge
(Rformal, Rarchitecture, and Radditions). However, these approaches
lack support for integrating knowledge into architectural models
suited for architectural analyses of QoS properties (Rsemantics).

6

1.5. Solution Overview

Therefore, software architects are currently required to conduct all or some
knowledge application steps manually when constructing architectural
models suited for architectural analyses. For example, when preparing
architectural models for architectural analyses, software architects have
to manually check whether design decisions are consistently applied. In
consequence, software architects can have high e�orts in creating such
architectural models, even in recurring situations.

These issues underline the unused potential to fully pro�t from the bene�ts
of Section 1.2. That is, there is potential to make the work of software
architects more e�ective and e�cient, e.g., by introducing concepts from
the software architecture domain into architectural analyses.

1.5. Solution Overview

To bene�t from the unused potential described in Section 1.4, I propose
the Architectural Template (AT) method, a software engineering method
that makes architectural analyses of QoS properties more e�ective and
e�cient. In the AT method, software architects quantify QoS properties
based on so-called Architectural Templates (ATs), i.e., reusable design and
analysis templates that capture reusable architectural knowledge. Software
architects only have to customize such templates with the parts speci�c to
their software application. ATs therefore reduce e�ort and lead to a more
e�ective and e�cient engineering method.

Figure 1.3 illustrates the creation of architectural models and the conduction
of architectural analyses with AT support. As shown in Figure 1.3 (top-
left), software architects can apply ATs from a pre-speci�ed AT catalog
when creating architectural models. Figure 1.3 (center) shows that such
applications are formally applied to architectural models.

Formalized applications allow to pro�t from the three bene�ts described in
Section 1.2. First, as shown in Figure 1.3 (top-left), each AT comes with a
generic documentation of the captured reusable architectural knowledge; an
AT’s application allows software architects to inspect this documentation.
Second, as shown in Figure 1.3 (bottom-left), ATs formally capture con-
straints of reusable architectural knowledge, thus, enabling an automated

7

1. Introduction

architectural model
with applied ATs

@

analysis
results

QoS analysis
model

- knowledge integration
- transformation

analysis

feedback

encapsulation
into tools

Legend:

data flow

model

feedback

AT catalog
(with generic

documentation)

conformance checks

AT application

X
constraint
violations

Figure 1.3.:Creating and analyzing architectural models with ATs.

Figure 1.2 is similar to Figure 1.3 but shows that the bene�ts from Sec-
tion 1.2 are now encapsulated into tools. The encapsulation particularly
satis�ed the �rst three requirements from Section 1.3: ATs formally capture
knowledge (Rformal), give architecture-level feedback (Rarchitecture), and
de�ne semantics for architectural analyses (Rsemantics).

The fourth and �nal requirement (Radditions) demands that further reusable
architectural knowledge can be formalized. The AT method satis�ed this
requirement by introducing a domain-speci�c language—the AT language—
for the speci�cation (and application) of ATs. Moreover, the AT method
provides processes and quality assurance steps explaining how so-called
AT engineers can formalize custom ATs using the AT language.

The AT method accordingly satis�es all requirements de�ned in Section 1.3
and provides a solution to the problem stated in Section 1.4.

8

conformance checking. Detected constraint violations serve software archi-
tects as feedback for revising their architectural models. Third, as shown
in Figure 1.3 (bottom-right), ATs formally capture decisions about the ex-
istence of elements, thus, enabling an automated knowledge integration.
Knowledge is integrated prior to the transformation to QoS analysis mod-
els.

1.6. Scienti�c Contributions

1.6. Scientific Contributions

The main contributions of this PhD thesis are the following1:

(1) ATmethod. The AT method is introduced as a software engineering
method that uses ATs to make approaches for architectural analy-
ses of QoS properties more e�ective and e�cient. The AT method
consists of:

AT processes: AT processes describe in natural language how soft-
ware architects apply ATs and how AT engineers specify ATs.

AT language: The AT language provides formalizations to document
and specify ATs.

AT tooling: AT tooling supports AT processes and serves as a refer-
ence implementation.

(2) Evaluation of the ATmethod. For evaluating the AT method, we (i.e., my
colleagues and I) have conducted three case studies and a preliminary
controlled experiment. We have used and extended the architectural
analysis approach Palladio [BKR09] for these evaluations.

The three case studies focus on the domains of distributed computing,
cloud computing, and big data. These domains are suited because
they come with interesting quality properties, and a large amount of
architectural constraints to foster these properties. First, we migrate
CloudStore [LB16], a distributed online book shop, from a classical
distributed bare-metal setup to a virtualized cloud computing envi-
ronment. We guide our migration along appropriate architectural
knowledge captured via ATs. Second, we model and analyze the sta-
tistical analysis WordCount [Whi09] when it is operated in Apache
Hadoop, a processing pipeline commonly used in big data. We create
and apply an AT that captures Apache Hadoop as a reference archi-
tecture. Third, an external software architect models and analyzes
Znn.com [CGS09], a distributed news service. The software architect
successfully reuses an AT previously created during the CloudStore
case study.

1 A summary of these results has been published in a scienti�c journal [LHB17].

9

1. Introduction

The case studies show that the AT method is applicable to the in-
vestigated domains and suited for the associated QoS properties
performance, scalability, elasticity, and cost-e�ciency. Moreover,
our results indicate that AT application is a matter of minutes while
saving more than 90 % of recurring modeling e�orts. The preliminary
controlled experiment has con�rmed these results in an experiment
with 7 involved software architects.

A detailed threads to validity discussion highlights remaining lim-
itations. A main limitation is the high e�ort for AT engineers; AT
speci�cation can take several person months of e�ort. Another limi-
tation is that further evaluation is needed for generalizing gained
results, e.g., to other domains and QoS properties. Otherwise, mainly
technical issues in AT tooling remain.

(3) Extensions of the ATmethod. I illustrate two optional extensions to the
AT method:

Reusemechanism: For making AT engineers more e�cient, we have
extended the AT method with a reuse mechanism that allows to de-
rive new ATs from existing ones. The evaluation of this mechanism
indicates that AT engineers become over 200 % more productive in
reuse scenarios.

Optimization: We have integrated the optimization framework Per-
Opteryx [KKR11] into the AT method to automatically determine
optimal con�gurations for AT applications using genetic algorithms.
This addition makes software architects even more e�cient because
they save e�ort to manually determine such con�gurations. We
have conducted a proof-of-concept evaluation of the optimization
mechanism on a small example, which shows that such optimiza-
tions are possible.

(4) Classification. I provide a novel classi�cation schema for combining
reusable architectural knowledge with architectural analyses of QoS
properties. Moreover, I use this schema to systematically classify re-
lated works of the AT method and to highlight several opportunities
for future works.

10

1.7. Thesis Structure

1.7. Thesis Structure

The remainder of this thesis is structured into the following chapters:

Chapter 2 describes the foundations relevant for the AT method. Foun-
dations include the evaluation and research methods employed by
this thesis as well as fundamentals on software architecture, model-
driven software engineering, templates, and architectural analyses
of QoS properties.

Chapter 3 introduces an online book shop as a simple example system to
illustrate the AT method. In a �ctional scenario, a software architect
follows the AT method to engineer this book shop. The software
architect starts with engineering requirements, continues with an
AT-based speci�cation of an architectural model, and eventually
conducts an architectural analysis with the architectural model. This
illustration of the AT method subsequently allows to discuss some
�rst lessons learned that con�rm the promised bene�ts of the AT
method.

Because of its simplicity, the book shop example is used throughout
this thesis for illustrative purposes. Particularly the evaluation in
Chapter 5 extends the book shop example to a full case study—the
CloudStore case study.

Chapter 4 introduces the AT method. Each of the AT method’s constituents
(AT processes, AT language, and AT tooling) is described in full detail.
Moreover, the two extensions of the AT method (reuse mechanism
and optimization mechanism) are described. A discussion of assump-
tions and limitations of the AT method complements this chapter.

Chapter 5 describes the evaluation of the AT method. After discussing re-
lated studies and introducing the general evaluation design, each of
the conducted case studies—CloudStore, WordCount, and Znn.com—
are described in detail. Afterwards, the conduction of further (but
smaller) case studies is outlined, the controlled experiment is de-
scribed, and the evaluation of AT method extensions is described. A
summary of lessons learned closes the evaluation chapter.

11

1. Introduction

Chapter 6 surveys related works on the AT method by investigating four
di�erent domains: architectural knowledge management, architec-
tural description languages, the pattern community, and architec-
tural analyses of QoS properties. The chapter compiles a model of
common features from this investigation; particularly allowing the
chapter to systematically classify both the investigated related works
and the AT method. Based on this classi�cation, related works are
discussed and related to the AT method.

Chapter 7 concludes this thesis with a summary of lessons learned, a dis-
cussion of assumptions and limitations, and with prospects on future
works.

12

“Invention, strictly speaking, is little
more than a new combination of those
images which have been previously
gathered and deposited in the memory;
nothing can come of nothing.”

— Joshua Reynolds 1723 – 1792

2. Foundations

This section describes the fundamentals of the AT method. These funda-
mentals provide and explain the vocabulary to describe how the AT method
helps software architects to analyze quality-of-service (QoS) properties (see
De�nition 2.1). For example, performance is a QoS property that analyses
can quantify, e.g., in terms of response times and throughput.

De�nition 2.1 (Quality-of-Service)

• “[Quality-of-service] denote[s] all non-functional aspects of a service
which may be used by clients to judge service quality.” [DLS05]

• “The quality of service (QoS) o�ered by a distributed system re�ects the
system’s ability to deliver its services dependably and with a response
time and throughput that is acceptable to its users.” [Som10, p. 484]

The input to such analyses are architectural models that manifest the design
decisions that software architects have made. Based on quanti�ed analysis
results, software architects can judge whether made design decisions fos-
ter a system’s QoS properties and optimal trade-o�s have been achieved.
Therefore, QoS analyses enable software architects to make informed design
decisions. The AT method enables software architects to reuse recurring
and well-proven design decisions e�ectively and e�ciently, i.e., reusable ar-
chitectural knowledge like architectural styles and architectural patterns.

13

2. Foundations

This chapter introduces the fundamentals for the AT method as follows.
Section 2.1 describes empirical evaluation and research methods for quan-
tifying QoS properties that the AT method utilizes. Moreover, Section 2.2
overviews fundamentals on software architecture and reusable architectural
knowledge. The AT method formally captures this knowledge based on
techniques from model-driven software engineering that are described in
Section 2.3 and based on templates that are described in Section 2.4. Finally,
Section 2.5 provides fundamentals on architectural analyses of QoS prop-
erties. The AT method allows software architects to integrate previously
captured reusable architectural knowledge into architectural models for
such analyses.

2.1. Evaluation and Research Methods

Prechelt [Pre01, p. 30] describes software engineering as an engineering
discipline. Consequently, methods in the area of software engineering have
to be evaluated with respect to their quality properties (see De�nition 2.2).
This claim particularly holds for QoS properties, which are a special kind
of quality property covering non-functional aspects (cf. De�nition 2.1).
Typically, evaluations of quality properties are conducted empirically, based
on experience, and with a concrete goal in mind.

De�nition 2.2 (Quality Property) “[The] inherent property or character-
istic of an entity that can be distinguished quantitatively or qualitatively by
human or automated means.” [ISO14]

One of the main goal-oriented approaches to measure properties of software
systems is the Goal/Question/Metric (GQM) method [vSB99, pp. 21-25]. The
GQM method is based on de�ning goals, deriving questions related to these
goals, and specifying metrics (see De�nition 2.3) that shall help to answer
these questions.

De�nition 2.3 (Metric) “[A metric is a] precisely de�ned method which is
used to associate an element of an (ordered) set V to a system S.” [BF08]

14

2.1. Evaluation and Research Methods

In the AT method, the GQM method is used to systematically derive metrics
of quality properties to be analyzed. This section therefore continues with
detailing the GQM method in Section 2.1.1. Afterwards, Section 2.1.2 de-
scribes quality models, which specify possible quality properties of software
products. To quantify such quality properties, Section 2.1.3 describes data
collection procedures. Finally, Section 2.1.4 de�nes the term method and
describes how to systematically construct methods like the AT method.

2.1.1. Goal/Question/Metric (GQM) Method

The Goal/Question/Metric (GQM) method is a goal-oriented approach to
establish a software measurement program. The approach was developed
by Basili and Weiss [BW84] and later expanded by Basili et al. [BCR02].
Furthermore, Solingen and Berghout [vSB99] contribute to the original
work by providing further analyses and examples as well as by adding
techniques like a cost/bene�t analysis. They particularly describe the GQM
method in the form of a practical guide. Because of its practical nature, this
thesis refers to this guide of Solingen and Berghout [vSB99] regarding the
GQM method.

The GQM method, as illustrated in Figure 2.1, consists of four phases:
the planning, de�nition, data collection, and interpretation phase [vSB99,
pp. 21-22]. Figure 2.1 visualizes each of the four phases as a grey-shaded
box; white boxes denote involved deliverables.

Planning Phase. The planning phase is the �rst phase and constitutes the
framework of the measurement program. It includes the selection,
speci�cation and characterization, and the planning of a project the
measurement is applied on. The main deliverable of this phase is a
project plan.

Definition Phase. The second phase is the de�nition phase. It compiles a
GQM plan that speci�es the measurement program. The de�nition
phase consists of three main parts which are developed top-down
[vSB99, p. 23].

The GQM plan includes a set of explicit measurement goals and re-
�nes these goals to questions making the goal attainment operational:
by analyzing the answers to the questions, engineers can decide

15

2. Foundations

Interpretation Phase

Data Collection Phase

Definition PhasePlanning Phase

goal

question

metric measurement

answer

goal attainment

collected data

pr
oj

ec
t p

la
n

refers to

refers to

refers to

basis
for

describes
project of

specifies uses

Figure 2.1.: Phases and deliverables of the GQM method: planning phase, de�nition
phase, data collection phase, and interpretation phase (derived from [vSB99, p. 22]).

Data Collection Phase. The data collection phase is the third phase. It ex-
ecutes the measurements of the project and collects the data as
speci�ed by the metrics of the GQM plan.

For collection, engineers use so-called data collection procedures,
which are further described in Section 2.1.2. The phase includes the
implementation of the data collection procedure as well as the data
collection and storage itself.

Interpretation Phase. The interpretation phase is the fourth and �nal phase.
Its purpose is to use, interpret, and evaluate the collected data to
draw conclusions regarding the measurement program. Like the
de�nition phase, it consists of three main parts but interprets the
parts bottom-up instead of top-down [vSB99, p. 23].

16

whether the goals are attained. Moreover, the GQM plan identi�es
metrics that, when measured, provide the data to answer the ques-
tions. Additionally speci�ed hypotheses state the expected answers
to the questions. Specifying hypotheses is important to increase
the learning e�ect from the measurement by eventually compar-
ing measurement-based answers with expected answers (cf. [vSB99,
pp. 55-56]).

2.1. Evaluation and Research Methods

The measurement results are the �rst part. A measurement result
refers to a concrete metric and uses the collected data to provide
the result. Secondly, the measurement results allow to answer the
respective questions of the GQM plan. Thirdly, the answers are used
to evaluate the goal attainment.

Besides these three parts, the interpretation phase compares the
hypotheses of the GQM plan to the measurement-based answers. In
the case that a hypothesis and a measurement-based answer di�er,
an engineer has to �nd the reason for this di�erence. The engineer
can, for instance, further inspect and analyze the collected data or
take additional measurements.

The AT method employs the GQM method to elaborate new de�nitions and
metrics for QoS properties (cf. Section 4.1.3.2). Moreover, the evaluation of
the AT method in Chapter 5 is designed and executed based on the GQM
method.

2.1.2. So�ware Quality Models

Software quality is a software product’s capability to satisfy the di�erent
needs by its users, developers, and other stakeholders [ISO14]. These needs
are captured by various quality properties. For software systems, software
quality models provide a categorization of these quality properties (see
De�nition 2.4). Thus, they allow to re�ne the general term “quality” into
concrete properties that can be handled individually. In the context of the
GQM method, quality models are useful to derive concrete questions (“What
is the product’s quality property X?”) whenever a goal is related to quality.
Furthermore, the GQM method can pro�t from the existing literature that
addresses metrics related to the quality properties.

De�nition 2.4 (Software Quality Model) “[A] de�ned set of character-
istics, and of relationships between them, which provides a framework for
specifying quality requirements and evaluating quality.” [ISO14]

In the past, several quality models were developed as, for instance, by Boehm
[Boe78] or McCall et al. [MRW77]. Based on these �rst developments,

17

2. Foundations

the ISO/IEC de�ned the ISO/IEC 9126-1 [ISO01] standard that presents
ISO/IEC’s quality model. The successor of this standard is the ISO/IEC
25010 [ISO11] standard. As the latter is the newest standard currently
available, this thesis concentrates on the ISO/IEC 25010 quality model only
and does not evaluate other quality models.

The feature diagram1 in Figure 2.2 shows the eight main quality proper-
ties of the ISO/IEC 25010 product quality model: functional suitability,
performance e�ciency, compatibility, usability, reliability, security, main-
tainability, and portability. ISO/IEC 25010 composes each of these main
properties to subproperties. For instance, performance e�ciency includes
time behavior, resource utilization, and compliance. For concrete descrip-
tions of each (sub)property, this thesis refers to the ISO/IEC 25010 [ISO11]
standard as the (sub)properties should be well-known by software engineers.
Nonetheless, this thesis gives a detailed description of a used property at
the relevant place.

System/Software
Product Quality

Performance
Efficiency

Usability Reliability Security

Maintain-
ability

Functional
Suitability Portability

Compatibility

Legend:

mandatory
feature

feature
reference

root
feature

Figure 2.2.: ISO/IEC’s Product Quality Model (derived from [ISO11]).

In addition to the quality model, the ISO/IEC describes suitable metrics for
each quality property. The ISO/IEC 25023 [ISO16b] (formerly ISO/IEC 9126-
3 [ISO03b]) standard describes these metrics for each quality property of
the product quality model. Whenever this thesis refers to one of ISO/IEC’s
metrics, the thesis describes the metric at the relevant place.

1 See Appendix A for a detailed description of syntax and semantics of feature diagrams.

18

2.1. Evaluation and Research Methods

2.1.3. Data Collection Procedures

Data collection procedures execute data collection tasks, e.g., the measure-
ments as speci�ed by a GQM plan [vSB99, p. 66]. According to Solingen and
Berghout, data collection procedures can utilize manual forms, electronic
forms, and automated data collection tools [vSB99, pp. 67-68]. Manual and
electronic forms provide the means for collecting data from human partici-
pants of the measurement. Automated data collection tools use prede�ned
algorithms for calculating metrics on the respective artifact.

Prechelt [Pre01, pp. 35-48] provides a wider scope concerning data collection
procedures. He distinguishes between six empirical methods:

Questionnaires cumulate subjective data from its participants by collecting
answers to a set of speci�ed questions. For this collection, question-
naires can utilize manual and electronic forms as well as conduct
structured interviews. For example, a questionnaire can ask a partic-
ipant for advantages and disadvantages observed during the usage
of a tool.

Case studies collect data of methods by means of application examples in
a realistic application domain. For example, a realistic application
domain can be a public cloud computing environment. A case study
may then inspect methods to migrate a simple application into such
an environment.

Case studies allow to compare methods without keeping every in�u-
encing factor constant, thus, also limiting the expressiveness of the
comparison. For instance, in the example above, di�erent engineers
may use the methods, there may be no time restrictions, it may be
allowed to discuss the migration with colleagues and to use web
resource, etc.

Benchmarks are precisely speci�ed use cases for tools or methods. Further-
more, benchmarks specify algorithms for calculating quantitative
properties of the tool or method. Thus, they are like automated data
collection tools and are a special case of case studies.

For example, TPC-W [Tra02] is a standardized benchmark for an
e-commerce application. The TPC-W speci�cation [Tra02] describes

19

2. Foundations

browsing and shopping use cases and states how to calculate whether
these use cases achieved their QoS requirements.

Field studies are also like case studies but observe real software projects
instead of arti�cial ones. Their advantage is that they provide more
realistic results. Their disadvantage is that their results are hard to
interpret and reproduce.

The example for case studies above describes a simple application
to be migrated. Instead of a simple application, a �eld study may
inspect the migration of a real industrial-size application.

Controlled experiments compare tools or methods like case studies but
keep the number of variable properties low. Their advantage is that
the low number of variable properties makes the interpretation of the
data easy and statistically signi�cant as varying comparison results
can be explained by the variable properties. Their disadvantage is
that they are costly. For instance, whenever artifacts created by an
engineer are compared, individual traits need to be removed. Hence,
many other engineers need to create these artifacts, too.

Meta studies cumulate their data from studies related to a common topic.
Typically, meta studies are inexpensive but require several studies
on the same subject.

A concrete meta study method is a systematic literature review
(SLR) [KC07]. In an SLR, a set of sources (e.g., journals, confer-
ence papers, and books) on a common topic is investigated based on
prede�ned criteria (e.g., de�nitions and metrics for quality proper-
ties). The result is a set of synthesized data with key insights on the
common topic (e.g., a concrete de�nition and typical metrics for a
quality property).

Because several factors in�uence the AT method (e.g., the software architect
applying it, the kind of architectural knowledge applied, the actual system
to be engineered, etc.), evaluating the whole AT method within a controlled
experiment is hard. This thesis therefore uses case studies for evaluating
the AT method as a whole (see Section 5.3). In addition, a pre-study to
a controlled experiment with particular focus on the e�ort for software
architects when following the AT method is conducted (see Section 5.4).

20

2.1. Evaluation and Research Methods

The AT method itself incorporates data collection procedures for �nding and
deriving suitable de�nitions and metrics of the quality properties of interest.
For �nding metrics and de�nitions, the AT method employs systematic
literature reviews as a concrete meta study method. For deriving metrics,
the AT method employs the GQM method (cf. Section 2.1.1).

2.1.4. Systematically Engineering Methods

A core contribution of this thesis is the AT method. This section therefore
de�nes what constitutes a method (Section 2.1.4.1) and describes how to sys-
tematically construct methods via method engineering (Section 2.1.4.2).

2.1.4.1. Methods

Given that the AT method is applied for engineering information system,
only methods specialized for this purpose are of interest. De�nition 2.5
acknowledges this purpose by de�ning a method2 as a set of means for
engineering such systems.

De�nition 2.5 (Method) “A method for information systems engineering
is an integrated collection of documentation and speci�cation techniques,
processes, and tools, for e�ective, e�cient, and consistent support of the infor-
mation system engineering process.” (based on [Har97, p. 25])

As stated in De�nition 2.5, the means of a method include documentation
and speci�cation techniques, processes, and tools. These means need par-
ticularly to be integrated into the whole engineering process. The purpose
of a method is to provide support for engineering processes e�ectively,
e�ciently, and consistently.

The AT method is an example of such a method. As outlined in Figure 2.3,
the AT method provides a set of di�erent means: the AT language for
documentation and speci�cation of ATs, AT processes to be followed, and
an AT tooling that supports these processes. These means are intended to
2 For brevity, this thesis treats “method” and “information systems engineering method” as

synonyms.

21

2. Foundations

make the work of engineers more e�ective and e�cient while ensuring a
consistent application of ATs. Chapter 4 describes each of these means in
detail.

Architectural Template (AT)
language

Architectural Template (AT)
tooling

Architectural Template (AT)
processes for engineers used within

used

within

used within

Figure 2.3.: The Architectural Template (AT) method is an example for a method
and consists of a set of di�erent means—AT language, AT processes, and AT tooling.

2.1.4.2. Method Engineering

Method engineering is an engineering discipline for constructing meth-
ods:

De�nition 2.6 (Method Engineering) “Method engineering is an engi-
neering discipline to adopt, tailor, and develop methods for the engineering of
information systems.” (based on [Bri96])

Optimally, method engineers construct methods from existing methods
[MCF+95, p. 8]. As stated in De�nition 2.6, method engineers can either di-
rectly adopt existing methods (complete reuse) or tailor existing methods to
the concrete situation at hand (application of minor modi�cations). If reuse
is impossible, method engineers must develop a method from scratch.

Figure 2.4 illustrates the according process for constructing methods. The
rounded rectangles represent actions that need to be conducted during
the process. Thick arrows between actions denote allowed traversals from
an action to another action. Actions can be traversed both forwards and
backwards, thus allowing for an iterative re�nement of methods.

22

2.1. Evaluation and Research Methods

(1) document
motivation

(2) search for
existing methods

(3) reuse existing method
(adapt or tailor) or

develop new method

(4) evaluate method,
e.g., via case studies

Legend: action change of action

Figure 2.4.:Overview of the method engineering process (based on [MCF+95, p. 7]).

As shown in Figure 2.4, the method engineering process consists of four
actions:

(1) documentmotivation. In the �rst action, method engineers document
the motivation to construct a method. The motivation includes
several aspects of the method (cf. [MCF+95, p. 7]): a �rst attunement
of basic intuitions and concepts, potential users, and advantages
and disadvantages in state-of-the-art methods. Method engineers
document these aspects in cooperation with experts of the domain
in which the method will be used.

In this thesis, Chapter 1 documents the motivation for the AT method.

(2) search for existingmethods. The previously documented motivation
helps method engineers in searching for existing methods [MCF+95,
p. 8]. For domains with a plethora of existing methods, systematic
literature reviews (see Section 2.1.3) help method engineers in con-
ducting systematic searches. The result of the search is a set of
existing methods that are related to the documented motivation.

In this thesis, Chapter 6 describes methods related to the AT method.
Moreover, Section 2.3.3 describes a method for testing and Section 2.5
a method for architectural analyses. Both of these methods are
related to the AT method as described in the next action.

(3) reuse existingmethods (adapt or tailor) or develop newmethod. In ac-
tion (3), method engineers construct the method. The previously
documented motivation and the identi�ed set of existing methods
allows method engineers to decide whether to reuse an existing
method or to develop a new method [MCF+95, p. 8].

23

2. Foundations

Chapter 4 describes the AT method as a new method. However, the
AT method extends the existing method for architectural analyses
described in Section 2.5. Moreover, for quality assurance of ATs, the
AT method includes the testing method described in Section 2.3.3.
The methods described in Chapter 6 are unsuited for being reused
in the construction of the AT method because these methods have
di�erent pragmatisms, however, individual features were integrated
into the AT method where relevant.

(4) evaluatemethod, e.g., via case studies. Once constructed, method en-
gineers evaluate the method [MCF+95, p. 8]. The means of the
method (techniques, processes, tools) can be evaluated using data col-
lection procedures like case studies and controlled experiments (see
Section 2.1.3). Lessons learned from such evaluations serve method
engineers as input to an iterative re�nement of the method [MCF+95,
p. 8].

In this thesis, Section 5.3 evaluates the AT method based on case
studies. Furthermore, Section 5.4 describes a pre-study to a controlled
experiment for the AT method. The lessons learned from these
evaluations have partly been considered for iterative re�nements
of the AT method. Chapter 4 describes the AT method after these
re�nements have been integrated.

2.2. So�ware Architecture

Software architecture is the fundamental organization of a software system
in terms of software components, their relations, and their environment
(�rst part of De�nition 2.7). For example, an online book shop may be
organized via software components that deliver web pages, which request
data from a database. The book shop may be operated in a local on-premise
environment or a public cloud computing environment.

Software architecture particularly describes the set of design decisions that
have led to such an organization (second part of De�nition 2.7). The main
task of software architects is to make these decisions such that the system’s

24

2.2. Software Architecture

service level objectives are �nally met and optimal trade-o�s have been
achieved [TMD09, Sec. 17.1].

De�nition 2.7 (Software Architecture)

• “The fundamental organization of a system embodied in its components,
their relationships to each other, and to the environment, and the
principles guiding its design and evolution.” [ISO07]

• “A software system’s architecture is the set of principal design decisions
made about the system.” [TMD09, p. 58]

This section details the aspects of software architecture important for the
AT method. Being �rst-class citizens in software architecture, the concept
of software components and their types are detailed in Section 2.2.1. Af-
terwards, Section 2.2.2 describes service level objectives as a means for
software architects to formulate requirements for their software architec-
ture. To ful�ll such requirements, software architects make design decisions,
which are described in Section 2.2.3. Software architects’ decision making
can be governed by reusable architectural knowledge, e.g., in the form
of architectural styles and architectural patterns, which is overviewed in
Section 2.2.4. The AT method allows to formalize this knowledge. This
formalization enables software architects to be governed consistently and
automatically, which makes them more e�cient in ensuring the ful�llment
of service level objectives.

2.2.1. So�ware Components and their Types

According to Szyperski3, software components are units of composition for
software entities:

De�nition 2.8 (Software Component) “A software component is a unit
of composition with contractually speci�ed interfaces and explicit context
dependencies only. A software component can be deployed independently and
is subject to composition by third parties.” [Szy02, p. 41]
3 Szyperski’s de�nition is well-accepted in component-based software engineering because

of its focus on composability (cf. [GTWJ03, p. 7]).

25

2. Foundations

Compositions are based on exposed and contractually speci�ed interfaces
because interfaces are the only way components4 interact with their en-
vironment (cf. Meyer’s design-by-contract principle [Mey97, Chap. 11]).
Accordingly, a component that requires a certain interface can only be
composed with a component that provides this interface. The contract
between these two components states that if the preconditions speci�ed
in the interface hold, the providing component can guarantee speci�ed
postconditions. The scope of such guarantees can cover both functional
properties (e.g., operation signatures and protocols) and non-functional
properties (e.g., QoS characteristics) [BJPW99].

Szyperski emphasizes that software components have explicit context de-
pendencies only. That is, components expose every dependency to their
environment that they need to ful�ll their guarantees. Required interfaces
are the typical concept to express such dependencies to other components,
e.g., the UML follows this approach [Obj11, Sec. 7.3.24]. Besides required
interfaces, explicit context dependencies also relate to the environment into
which components are deployed [Szy02, Sec. 4.1.7].

The second sentence of De�nition 2.8 illustrates implications of the interface-
based component de�nition. The encapsulation of features behind inter-
faces makes components well-separated from their context. This separation
allows components to be deployed independently. Components particularly
become units of deployment, i.e., they cannot be deployed partially.

A further implication is that components can be composed by third parties,
i.e., other stakeholders than the creators of components. Third parties com-
pose only based on the exposed interfaces of components; without knowing
the components’ internals (black-box principle [Dry07, Sec. 3.1.2]). For
example, in the component-based development process by Cheesman and
Daniels [CD00], software architects act as third parties and let component
developers provision components.

Such a process allows for an iterative development as illustrated in the
left-hand action (3) of Figure 2.13 (see Section 2.5.1.1 for a detailed descrip-
tion of Figure 2.13). Initially, software architects request components from
component developers by specifying the interfaces these components need
to provide, i.e., they specify component types as de�ned in De�nition 2.9.

4 For brevity, this thesis treats “component” and “software component” as synonyms.

26

2.2. Software Architecture

This way, software architects can already plan an initial software architec-
ture without having component internals available. Meanwhile, component
developers can implement the components that conform to the requested
component types. Once implemented, software architects can �nally re�ne
their initial software architecture by substituting component types with
conforming components.

De�nition 2.9 (Software Component Type) “The speci�cation of a set
of interfaces that conforming components need to expose.” (based on [CD00,
p. 8]5)

2.2.2. Service Level Objectives

Service level objectives (SLOs) are the quality-of-service targets of a soft-
ware system (see De�nition 2.10). To specify an SLO, requirements engi-
neers need to determine a suitable metric and a threshold for this metric. The
metric is “a de�ned measurement method and measurement scale” [Clo14]
and the threshold the lower limit for which a metric measurement violates
the SLO.

De�nition 2.10 (Service Level Objective) “The quality-of-service tar-
get to be achieved—for each service activity, function, and process.” (based
on [Gar03])

An example SLO is the performance metric maximum response time com-
bined with a concrete threshold of 1 second. A guarantee of 1 second re-
sponse time in 100% of the time can be unrealistic depending on the con-
text of the system. Therefore, a re�ned threshold of 1 second for 90% of
all requests within one month can be a viable alternative. The resulting
performance SLO accordingly states that “the system shall respond with
a maximum response time of 1 second for 90% of all request within one
month”.

5 Cheesman and Daniels [CD00, p. 8] refer to “component speci�cations” instead of “software
component types”. This thesis uses the latter to be consistent with the vocabulary used in
Palladio (cf. Section 2.5.3).

27

2. Foundations

Violations of SLOs potentially lead to contractually speci�ed penalties, e.g.,
system users may get discounts for system usage. As described in the next
section, software architects thus need to make design decisions that ful�ll
SLOs as best as possible.

2.2.3. Design Decisions

Design decisions describe why and how software architects have applied
changes to a software architecture (see De�nition 2.11). These decisions
therefore characterize the system-wide boundaries of achievable software
quality and, thus, ful�llable SLOs.

De�nition 2.11 (Design Decision) “A description of the set of architec-
tural additions, subtractions and modi�cations to the software architecture,
the rationale, and the design rules, design constraints and additional require-
ments that (partially) realize one or more requirements on a given architec-
ture.” [JB05]

The “why” is covered by a rationale that gives the reasons for applied
changes. For example, the rationale may state that a design decision ensures
the ful�llment of a performance requirement. An example for a performance
requirement is the SLO de�ned in Section 2.2.2 (“the system shall respond
with a maximum response time of 1 second for 90% of all request within
one month”).

The “how” is covered by a description of restrictions for future elements (de-
sign constraints) and of actual changes to elements (additions, subtractions,
and modi�cations) according to documented design rules.

Making design decisions potentially results in new requirements that have
to be addressed by future design decisions (last part of De�nition 2.11).

2.2.4. Reusable Architectural Knowledge

Based on De�nition 2.12, architectural knowledge is the combination of
design decisions with the resulting (changes in the) software architecture
when these decisions are made.

28

2.2. Software Architecture

De�nition 2.12 (Architectural Knowledge)
“Architectural Knowledge = Design Decisions + Design” [KLvV06]

Software architects repeatedly create and extend architectural knowledge
when designing software architectures. Hereby, architects become more
e�cient if they reuse previously created knowledge. Such a reuse is possible
for recurring design problems that allow for the same changes in software
architecture to be applied.

Examples of reusable architectural knowledge are architectural styles, ar-
chitectural patterns, and reference architectures [TMD09]. These kinds of
reusable knowledge use the concept of roles, as de�ned in De�nition 2.13,
to assign responsibilities to architectural elements [BHS07b, p. 309], e.g., to
components, connectors, and resource containers.

De�nition 2.13 (Role) “The responsibility of a design element within a
context of related elements.” [BHS07b, p. 395]

A role’s responsibilities can be speci�ed as a set of design decisions [BHS07b,
p. 309]. The assignment of roles then leads to the application of these
design decisions [BHS07b, Sec. 11.2]. For reusable architectural knowledge,
roles may include well-proven design decisions to solve a given recurring
problem [Ale77, p. x]. These design decisions are well-proven because they
provided solutions for previous but similar problems.

A key goal for software architects is to apply reusable architectural knowl-
edge consistently [BCK98, Sec. 12.2]. That is, software architects should
avoid both partial applications of architectural knowledge (e.g., by miss-
ing role assignments) and violations of a role’s responsibilities (e.g., by
introducing state to a component that acts in a stateless role). This consis-
tency between software architecture and applied architectural knowledge is
captured in the quality property conceptual integrity (see De�nition 2.14).

De�nition 2.14 (Conceptual Integrity) “Conceptual integrity refers to
consistency in the design of the architecture, and it contributes to the under-
standability of the architecture and leads to fewer errors of confusion.” [BCK98,
Sec. 12.2]

29

2. Foundations

To exemplify reusable architectural knowledge and the role concept, the
remainder of this section describes architectural styles, architectural pat-
terns, and reference architectures. Figure 2.5 illustrates the main di�erences
between these kinds of reusable architectural knowledge.

scope

application
domain

knowledge

system
structure

application structure
(components & connectors)

programming
(language level)

shallow

deep

architectural styles
(design constraints)

architectural patterns
(existential decisions)

reference architectures
(existential decisions &

design constraints)

Figure 2.5.: Reusable architectural knowledge (cloud symbols) di�ers in scope (X-
axis), application domain knowledge (Y-axis), and kinds of design decisions (paren-
theses within cloud symbols). The �gure is based on [TMD09, p. 92].

The X-axis and Y-axis of Figure 2.5 show Taylor et al.’s [TMD09, p. 92]
classi�cation of reusable architectural knowledge into scope (X-axis) and
application domain knowledge (Y-axis). The scope dimension gives the
targeted level of abstraction of reusable architectural knowledge; ranging
from a programming level over the application level to the system level.
The application domain knowledge dimension gives the amount of domain-
speci�c knowledge inherent to reusable architectural knowledge; ranging
from shallow domain dependence (i.e., the knowledge is general) to a deep
domain dependence (i.e., the knowledge is domain-speci�c).

In Figure 2.5, cloud symbols denote di�erent kinds of reusable architectural
knowledge—architectural styles, architectural patterns, and reference archi-
tectures. The position of these symbols provides the classi�cation based on
scope and application domain knowledge. For example, architectural styles
and architectural patterns mainly target the application structure scope but
architectural styles provide more shallow knowledge than architectural pat-
terns. As in Taylor et al.’s [TMD09, p. 92] classi�cation, cloud symbols are
used because this classi�cation serves only as a rough guide. This fuzziness

30

2.2. Software Architecture

acknowledges that the di�erence, e.g., between architectural patterns and
architectural styles, is often subject to discussion [BMR+96, p. 394�.].

In contrast to Taylor et al.’s [TMD09, p. 92] classi�cation, a cloud symbol’s
text in parentheses additionally denotes the kinds of design decisions de�n-
ing the associated reusable architectural knowledge. While architectural
styles only contain design decisions about design constraints, architectural
patterns contain existential decisions, i.e., decisions about the existence of
elements. Reference architectures de�ne a set of domain-speci�c architec-
tural styles and architectural patterns, thus, including both kinds of design
decisions.

The advantage of this additional classi�cation dimension is that design
decisions provide a more distinct di�erentiation criterion. The AT method
particularly allows to formalize the di�erent kinds of design decisions.
Based on this formalization, the AT method allows to capture the illustrated
kinds of reusable architectural knowledge as a whole. Because these kinds
of reusable architectural knowledge are in the focus of the AT method, the
following sections describe and exemplify these kinds in detail.

2.2.4.1. Architectural Styles

An architectural style introduces a set of roles that constrain a system, i.e.,
include only design decision about design constraints. When an architec-
tural style is applied, these constraints foster particular quality properties.
De�nition 2.15 covers these aspects by paraphrasing roles as a “named
collection of architectural design decisions”.

De�nition 2.15 (Architectural Style) “An architectural style is a named
collection of architectural design decisions that (1) are applicable in a given
development context, (2) constrain architectural design decisions that are
speci�c to a particular system within that context, and (3) elicit bene�cial
qualities in each resulting system.” [TMD09, p. 73]

Moreover, De�nition 2.15 points out that architectural styles are applicable
in speci�c contexts. For example, in the context of information systems,
the three-layer architectural style is often applied [BMR+96, p. 47]. The

31

2. Foundations

three-layer architectural style introduces roles to structure a system into
three di�erent logical layers: a presentation layer, an application layer,
and a data access layer. The roles’ constraints dictate that each of these
layers can only access the respective lower-level layer. Because of this
restriction, a three-layer system becomes loosely coupled and therefore
more maintainable.

2.2.4.2. Architectural Patterns

An architectural pattern introduces a set of roles that re�ne a system (see
�rst item of De�nition 2.16). For this re�nement, roles include design
decisions about the existence of additional elements. These additional
elements are intended to solve a recurring design problem.

Roles can be parametrized to introduce variation points to select di�erent
design decisions (see second item of De�nition 2.16). Variation points are
con�gured based on the context of the system, e.g., the expected work-
load.

De�nition 2.16 (Architectural Pattern)

• “[An architectural] pattern provides a scheme for re�ning elements of
a software system or the relationships between them. It describes a
commonly-recurring structure of interacting roles that solves a general
design problem within a particular context.” [BHS07b, p. 392]

• “An architectural pattern is a named collection of architectural design
decisions that are applicable to a recurring design problem, parametrized
to account for di�erent software development contexts in which that
problem appears.” [TMD09, p. 73]

For example, the loadbalancing architectural pattern [BHS07a] requires
the existence of a component acting as a loadbalancer. Figure 2.6 (left)
shows such a loadbalancer component as deployed on a dedicated loadbalancer
server. As loadbalancer, the component distributes workload (i.e., incoming
requests) over replicas of a given architectural element. In Figure 2.6 (right),
the architectural element is a resource container that is replicated n times

32

2.2. Software Architecture

loadbalancer server

server replica n

component
replica n

load-
balancer

server replica 1

component
replica 1

Legend:

compo-
nent

resource
container

requests

…

Figure 2.6.: The loadbalancing architectural pattern introduces a loadbalancer com-
ponent to distribute workload.

(server replica 1 to server replica n), including allocated components (component
replica 1 to component replica n).

Workload distribution is a common way to improve a system’s performance.
Typical variation points are the concrete architectural element (e.g., a re-
source container with all deployed components or only a single component),
the number of replicas, and the loadbalancing strategy (e.g., round-robin).

2.2.4.3. Reference Architectures

A reference architecture de�nes a domain-speci�c architectural style and a
set of domain-speci�c architectural patterns to be applied in that style (see
De�nition 2.17). These patterns provide the variation points to account for
di�erent domains and contexts.

De�nition 2.17 (Reference Architecture) “A reference architecture is
the set of principal design decisions that are simultaneously applicable to
multiple related systems, typically within a single application domain, with
explicitly de�ned points of variation.” [TMD09, p. 58]

For example, AUTOSAR [Wie13] (AUTomotive Open System ARchitecture)
de�nes a reference architecture for software in automobiles—independent
of concrete vendors and cars. AUTOSAR prescribes a three-layered architec-
tural style with a basic software layer, a runtime environment layer, and an

33

2. Foundations

application layer [Wie13]. Architectural patterns are prescribed for these
layers, e.g., describing which component interfaces are required on the
basic software layer.

2.3. Model-Driven So�ware Engineering

In model-driven software engineering (MDSE), models describe a domain’s
problem in an abstract and (semi-)formal way. Abstraction allows, e.g.,
software architects during architectural modeling, to concentrate on the
essential parts of the problem by omitting irrelevant details and, thus,
keeping the model compact. Because models are (semi-)formal6, models can
be transformed into other models and textual artifacts. This way, models
can both become part of the software and serve for documentation [VSC06,
p. 366]. To specify models, Domain-Speci�c Languages (DSLs) are used, i.e.,
(semi-)formal languages designed and implemented for a speci�c domain.

This section describes MDSE topics relevant for this thesis: the AT method
introduces a DSL—the AT language—for the speci�cation and application
of ATs. Once speci�ed, software architects can apply ATs to their architec-
tural models and map these models to analysis models for QoS analyses.
Therefore, Section 2.3.1 gives clear de�nitions for models and metamodels
(that allow to specify DSLs like the AT language). Afterwards, Section 2.3.2
describes model transformations (as used for the mapping of architectural
to analysis models). Section 2.3.3 describes how test engineers can ensure
the quality of model transformations via testing (to ensure that AT map-
pings are correct). To extend DSLs, Section 2.3.4 describes pro�les and
stereotypes (which are used by ATs to extend architectural models with
AT applications). The semantics for these extensions can be de�ned as
described in Section 2.3.5.

2.3.1. Metamodeling

Metamodeling is concerned with engineering models and metamodels—the
central artifacts of MDSE. Therefore, this section gives clear de�nitions for
6 Models are semi-formal if “their notations have a formal syntax, but no formal seman-

tics” [APS07].

34

2.3. Model-Driven Software Engineering

these artifacts (Section 2.3.1.1 and Section 2.3.1.2). Moreover, this section
details how to specify these artifacts formally and systematically (Sec-
tion 2.3.1.3).

2.3.1.1. Models

Models have the most important role in MDSE. Nonetheless, there are
several di�erent de�nitions for this term. Baier et al. [BBJ+08, p. 94] give a
de�nition of a model that �ts the needs of this thesis.

De�nition 2.18 (Model) “A model describes a (real) system in a simpli�ed
(abstract) manner in pursuance of a concrete goal.” [BBJ+08, p. 94] (translated
by the author)

Based on a fundamental book of Stachowiak [Sta73, p. 207], Baier et al.
[BBJ+08, p. 94] emphasize that a model has three characteristics: abstraction,
pragmatics, and homomorphism7. Abstraction describes the property that
the model removes details which are unnecessary to serve a speci�c purpose.
The purpose re�ects the goal of creating the model (pragmatics). Thus, the
pragmatics dictate the attributes of interest when abstracting. Additionally,
statements of the model should also relate to the modeled entity (with
respect to the pragmatics), i.e., there must be a homomorphism between
model and represented entity.

2.3.1.2. Metamodels

Metamodels specify syntax and semantics of models. Baier et al. [BBJ+08,
p. 94] de�ne metamodels as follows.

De�nition 2.19 (Metamodel) “A metamodel is a precise de�nition of con-
structs and rules for the creation of models. It includes an abstract syntax, at
least one concrete syntax as well as static and dynamic semantics.” [BBJ+08,
p. 94] (translated by the author)
7 Stachowiak [Sta73, p. 207] uses the German words “Verkürzungsmerkmal”, “Pragmatisches

Merkmal”, and “Abbildungsmerkmal”. Abstraction, pragmatics, and homomorphism are no
literal translations of these words but precisely re�ect their meaning (cf. [Bec08, p. 31]).

35

2. Foundations

With these characteristics, metamodels can be used to de�ne DSLs [Küh06]:
a metamodel describes a set of models that conform to it, i.e., each model
uses the constructs and obeys the rules dictated by the metamodel. Meta-
model constructs—the elements of a metamodel—are called metaclasses.

A model conforming to a metamodel is called an instance of the metamodel.
The shorter forms model instance and just model are also common. Fur-
thermore, a metamodel can have its own metamodel, the so-called meta
metamodel, and so forth.

De�nition 2.19 is based on the concepts introduced by Völter et al. [VSC06,
pp. 56-58]. Accordingly, the abstract syntax speci�es the set of syntactically
correct model instances independent of its concrete representation. A
concrete representation is speci�ed by a concrete syntax that complies with
the abstract syntax. There can be several concrete syntaxes, e.g., a textual
and a graphical syntax.

The static semantics put further constraints (criteria for well-formedness)
on the set of syntactically valid model instances. These semantics can
be checked without knowing the meaning of the model. In contrast, the
dynamic semantics specify its meaning, which allows to interpret the model
in a given context.

2.3.1.3. Formally and Systematically Defining DSLs

The AT method introduces with the AT language a DSL (as detailed in
Section 4.2). To make this introduction as precise and systematic as possible,
this thesis applies the metamodeling concepts introduced by Kühne [Küh06].
Therefore, this section brie�y outlines Kühne’s main concepts for formally
and systematically de�ning DSLs.

According to Kühne, a language L can equivalently be de�ned by the
metamodelMM or by the intension ι of the language, i.e.,MM(L) ∼ ι(L)
[Küh06]. The intension of a language is the sum of its attributes [Car88], e.g.,
an AT “represents an architectural style” ∧ “has a name” ∧ Therefore,
there are two options to approach the de�nition of a language L: (a) collect
all required attributes of L, i.e., derive ι(L), or (b) specify the metamodel
of L, i.e., de�neMM(L) directly.

36

2.3. Model-Driven Software Engineering

In any case, users of a DSL eventually need MM(L) to apply L in a
model-driven way. For example, model transformations and graphical
editors require the speci�cation of metamodels. To derive such a metamodel
systematically, software engineers can proceed using a combination of
options (a) and (b) [Leh14a].

Software engineers begin with option (a) by deriving required attributes,
e.g., based on pragmatism and example usage scenarios of the DSL. After
collecting the attributes ofL, software engineers have a �rst version of ι(L).
The intension for the AT language is derived like this in Section 4.2.3.

Based on this intension, software engineers can subsequently derive a �rst
version ofMM(L). The crux of the matter is that software engineers can,
by this approach, assure that the metamodel is correct by construction, i.e.,
thatMM(L) ∼ ι(L) holds. Following this principle, the AT metamodel is
derived in Section 4.2.5.

Once a �rst version ofMM(L) exists, software engineers can iteratively
re�ne this metamodel based on feedback by its users. Such iterations have
indeed occurred for the AT metamodel: after an initial version of the results
was published [Leh14a], the role concept of the AT metamodel has been
re�ned, e.g., by further constraints (cf. Section 4.2.5).

2.3.2. Model Transformations

In MDSE, models play the most important role and become “at least as
import as source code” [VSC06, p. 4]. Consequently, software engineers
need mechanisms to convert one model into another model in order to apply
a re�nement, a refactoring, etc. to the former one. For this purpose, MDSE
uses model transformations as a key technology (see De�nition 2.20).

De�nition 2.20 (Model Transformation) “A model transformation is a
computable function that maps model instances of a set of source metamodels
onto model instances of a set of target metamodels.” [BBJ+08, p. 97] (translated
by the author)

37

2. Foundations

The attribute computable is essential for an automated processing of trans-
formations8. Computability allows to reuse transformations, which particu-
larly decreases development costs and increases development speed and
software quality [VSC06, p. 13].

Figure 2.7 illustrates a transformation. Figure 2.7 (left) depicts a source
model instantiated from a source metamodel. Figure 2.7 (right) depicts a
target model instantiated from a target metamodel. The transformation
depicted between the two models computes the target model based on the
source model. Typically, the metamodels of source and target model are
di�erent. Still, they can have the same metamodels, e.g., for refactorings.
Such transformations are so-called in-place transformations [CH06].

transformation

Legend:

data flow

instance of

model

source
model

source
metamodel

target
model

target
metamodel

Figure 2.7.: Transformations map a source model to a target model.

Another common classi�cation of transformations is to distinguish between
model-to-model (M2M) transformations and model-to-text (M2T) transfor-
mations [BBJ+08, p. 97]. While an M2M transformation generally follows
the above scheme, an M2T transformation generates texts like source code,
con�guration �les, XML, etc. from a source model. Consequently, M2T
transformations are a special case of M2M transformations where the target
metamodel is an arbitrary or structured text �le [CH06].

In this thesis, M2M transformations are used to map architectural models
to QoS analysis models. For the speci�cation of these transformations, the
QVT Operational Mapping (QVT-O) [Obj16] language is used, i.e., an im-
perative approach. In unidirectional scenarios like the mapping from archi-
tectural models to QoS analysis models, QVT-O has the advantages that it is
more maintainable and easier to learn than common alternatives [Leh12].
8 For brevity, this thesis treats “transformation” and “model transformation” as synonyms.

38

2.3. Model-Driven Software Engineering

2.3.3. Quality Assurance of Model
Transformations via Testing

Model transformations are manually speci�ed by software engineers and,
thus, prone to implementation errors. For example, a software engineer can
easily forget to specify how to map seldomly instantiated metaclasses from
a source to a target model. Still, a correct mapping may require a mapping
for each metaclass of a source metamodel. Because of this error-proneness,
quality assurance of transformations is required.

This section describes transformation testing as a concrete quality assur-
ance approach. The AT method employs transformation testing for assuring
the conceptual integrity (cf. De�nition 2.14) of applied architectural knowl-
edge.

According to De�nition 2.21, transformation testing is a process in which
test engineers execute a transformation on a set of source models. Subse-
quently, they validate the transformation by comparing the resulting target
models with the expected output.

De�nition 2.21 (Transformation Testing) “Transformation testing exe-
cutes a transformation on input models and validates that the actual output
matches the expected output [...].” [SCD12]

Testing is more lightweight when compared to formal approaches like
mathematical proofs, model checking, theorem proving, and static analy-
sis [CS13]. Although testing is unable to verify conceptual integrity (like
formal approaches), testing can be automated, easily uncover faults, and
involves low computational e�ort.

Section 2.3.3.1 details how software engineers can specify expectations to
transformations via contracts and Section 2.3.3.2 how they proceed when
testing transformations.

2.3.3.1. Contracts of Transformations

Following Meyer’s design-by-contract principle [Mey97, Chap. 11], trans-
formation contracts declare what a transformations computes (but not

39

2. Foundations

how) [CMSD04]. De�nition 2.22 states that such declarations are realized
as three sets of constraints.

De�nition 2.22 (Transformation contract) “A transformation contract
is a tuple of three sets of constraints:

• pre-conditions—a set of constraints to be matched for a model to be
candidate as a source model of the transformation,

• post-conditions—a set of constraints to be matched for a model to be
considered as a valid target model produced by the transformation, and

• source-target-conditions—a set of constraints on the relationships and
evolution of elements from the source to the target model.” (based on
[CMSD04])

Figure 2.8 illustrates transformation contracts based on these constraint
sets. Figure 2.8 illustrates a transformation like Figure 2.7. In addition,
black boxes represent constraint sets that are matched for source and target
models. Pre-conditions match for the source model, post-conditions for
the target model, and source-target-conditions match for both. The confor-
mance of source and target models to source and target metamodels are
implicit pre- and post-conditions, respectively.

transformation

Legend:

data flow

instance of

model

source
model

source
metamodel

target
model

target
metamodelpre-conditions post-conditions

source-target-conditions
constraint set

Figure 2.8.: Transformation contracts consist of three sets of constraints: pre-
conditions, post-conditions, and source-target-conditions.

Transformation contracts are commonly speci�ed via OCL [SCD12]. OCL
is suited because it is a constraint expression language, well-supported by

40

2.3. Model-Driven Software Engineering

tools, and well-known by software engineers [CBBD09]. In these aspects,
OCL outperforms alternatives like B and the Java Modeling Language
(cf. [CMSD04]).

The bene�t of transformation contracts is that software engineers can
characterize transformations as application conditions (pre-conditions) and
expected results (post-conditions and source-target-conditions) [CMSD04].
Therefore, transformation contracts can particularly be used as oracle func-
tions for testing models, which is described in the next section.

2.3.3.2. Process for Transformation Testing

Figure 2.9 illustrates Selim et al.’s [SCD12] process for transformation test-
ing. Rounded rectangles in Figure 2.9 represent actions that need to be
conducted during the process. While rectangles of high-level actions are
white, rectangles for sub-actions are grey-shaded. The roles that conduct
high-level actions are annotated as well. The thick arrows between actions
denote allowed traversals from an action to another action. Actions can be
traversed both forwards and backwards, thus allowing for an iterative and
incremental approach. The thin arrows represent �ow of artifacts during
development. Each concrete artifact is denoted with an according name
and a representative icon.

According to Figure 2.9, software engineers develop a model transforma-
tion to be tested. Once developed, software engineers hand this model
transformations over to test engineers. These engineers test the model
transformation and provide feedback to the software engineers in terms of
a fault report.

Test engineers execute the following sub-actions to test the model transfor-
mation:

(1) specify test goals and adequacy criteria. First, test engineers must spec-
ify their test goals [FH86], e.g., to test functional correctness. More-
over, test engineers specify for each test goal a set of adequacy
criteria [SCD12]. For example, when transforming class diagrams,
an adequacy criterion may state that for each class attribute, each
representative value must be instantiated in at least one test source
model.

41

2. Foundations

develop
model transformation

Legend: action

flow of artifact

change of action

sub-action

software
engineer

test engineer

te
st

 tr
an

sf
or

m
at

io
n

(1) specify
test goals and

adequacy criteria

(4) execute test suite
and evaluate results

(2) create and assess
test suite

(3) build
oracle function

fault
report

adequacy
criteria

test
suite

oracle
function

model
transformation

Figure 2.9.: Test engineers systematically test model transformations provided by
software engineers.

Adequacy criteria di�er depending on whether a black-box or a white-
box testing approach is used [SCD12]. In black-box testing, test
engineers can only access transformation contracts—transformation
implementations are unavailable. In white-box testing, test engineers
have in contrast full access to transformation implementations.

The adequacy criterion for the coverage of class attributes as ex-
empli�ed above can be applied in black-box testing. However, a
criterion that checks for the coverage of transformation implementa-
tion code requires white-box testing. Also testing single units of the
transformation implementation requires white-box testing. For these
reasons, white-box testing is typically applied by the developers of
the transformation whereas black-box testing is applied by dedicated
test engineers for quality assurance [Moh12].

(2) create and assess test suite. In the second action, test engineers create
a test suite that includes a set of source models to be tested with
a transformation. Test engineers derive this test suite based on
the previously speci�ed adequacy criteria [SCD12]: the goal is to
cover as many criteria as possible. Based on assessing this coverage,

42

2.3. Model-Driven Software Engineering

transformation engineers can determine whether a test suite is likely
to uncover faults within a transformation.

For example, the adequacy criterion for the coverage of class at-
tributes implies that each representative value of each class attribute
needs to be covered. To derive a test suite, test engineers accord-
ingly must iterate over each class attribute and each representative
value while specifying appropriate test source models. After these
iterations, the adequacy criterion for the coverage of class attributes
is covered and the likelihood to uncover faults with the test suite is
increased.

(3) build oracle function. In this action, test engineers build an oracle func-
tion. The oracle function checks whether a transformation produces
the correct target models [SCD12].

For conducting such checks, the oracle function compares produced
target models with expected outcomes. Test engineers can spec-
ify expected outcomes via concrete models and via transformation
contracts [SCD12]. If speci�ed via concrete models, the oracle func-
tion checks whether these models equal the corresponding target
models (model di�erencing [KPP06]). If speci�ed as transformation
contracts, the oracle function validates the contract’s constraints on
source and target models.

(4) execute test suite and evaluate results. In the fourth and �nal action,
test engineers execute the test suite and subsequently use the oracle
function to evaluate transformation results [SCD12]. Each failed
check of the oracle function points to a potential fault within the
transformation.

Test engineers create a report of these faults and hand this report over
to the developers of the transformation. Afterwards, the developers
can resolve reported faults or ask test engineers to revise their oracle
function in case expectations about outcome were wrong.

43

2. Foundations

2.3.4. Profiles and Stereotypes

Pro�les are extensions of metamodels with a speci�c purpose (see De�ni-
tion 2.23). For example, ATs use pro�les to extend metamodels of archi-
tectural models with facilities to apply reusable architectural knowledge
(see Section 2.2.4 for a description of reusable architectural knowledge).
These facilities allow to bind elements of architectural models to roles of
previously captured reusable architectural knowledge. Without a pro�le-
based extension, the creation of bindings would be unsupported by the
architectural model.

De�nition 2.23 (Pro�le) “A pro�le de�nes limited extensions to a reference
metamodel with the purpose of adapting the metamodel to a speci�c platform
or domain.” [Obj11, p. 670]

Pro�les specify extensions as a set of stereotypes, which de�ne how the
elements of a metamodel are extended (see De�nition 2.24). Stereotypes
mark the extended elements and optionally enrich these elements with
further attributes—so-called tagged values. For example, pro�les used
by ATs include stereotypes for each role of the formalized architectural
knowledge. Tagged values allow to model the parameters of such roles.

De�nition 2.24 (Stereotype) “A stereotype de�nes how an existing meta-
class may be extended, and enables the use of platform or domain speci�c
terminology or notation in place of, or in addition to, the ones used for the
extended metaclass.” [Obj11, p. 679]

Pro�les and their stereotypes are on the same level of abstraction as the
extended metamodel. In contrast, pro�le applications (see De�nition 2.25)
specify which pro�les are applied to a model, i.e., they are on the metamodel
instance level. Pro�le applications particularly specify where and which
stereotypes are applied, including an assignment of actual parameters to
their tagged values. For example, the application of an AT and its roles to
an architectural model is realized as pro�le application (cf. Chapter 4).

De�nition 2.25 (Pro�le Application) “A pro�le application is used to
show which pro�les have been applied to a package.” [Obj11, p. 677]

44

2.3. Model-Driven Software Engineering

Because pro�les do not change a metamodel itself (which would be a heavy-
weight extension), pro�les are referred to as lightweight extensions [Obj11,
p. 659]. The bene�t of such lightweight extensions is that tools depending
on a given metamodel do not break due to metamodel changes and can
even provide a generic support for stereotype extensions. For example,
an editor for models of a metamodel can show which stereotypes have
been applied to a model element and provide editing support for assigning
actual parameters to tagged values. For these reasons, ATs use pro�les for
applying architectural knowledge to architectural models.

2.3.5. Ways to Describe Semantics of Metamodels

As mentioned in Section 2.3.1, the semantics of a metamodel specify its
meaning, allowing to interpret metamodel instances in a given context.
There are two metamodel-related aspects in the AT method: (1) the AT
method de�nes with the AT language a metamodel on its own and (2) the
AT language itself allows to extend metamodels (of architectural models) by
additional semantics. The semantics of both aspects must be described.

While descriptions in natural language are possible, their ambiguity gives
reason for more formal ways. According to Kleppe [Kle08, p. 135], more
formal ways to describe semantics are denotational, pragmatic, translational,
and operational. A brief overview of these ways allows to argue why the
AT method follows the pragmatic way for aspect (1) and the translational
way for aspect (2):

Denotational semantic descriptions are based on mathematical constructs—
so-called denotations. Denotations represent metamodel elements
and can be collected in sets. Such sets formalize the state of the
modeled entity. The semantics of operations, e.g., to insert an element
into a model, can then be formalized as partial functions that alter
this state accordingly.

Pragmatic semantic descriptions provide an executable tool that takes
metamodel instances as input—a so-called reference implementation.
The execution of this reference implementation with a concrete
model allows to observe the model’s intension.

45

2. Foundations

Translational semantic descriptions specify a translation from a source
metamodel to a target metamodel with well-described semantics.
This combination of translation and existing semantics indirectly
de�nes the semantics for the source metamodel. To specify a trans-
lation, model transformations (cf. Section 2.3.2) can be used.

Operational semantic descriptions specify how an abstract machine, e.g., a
state transition system, executes instances of a metamodel. Similar to
translational semantics, source model instances therefore have to be
translated, e.g., into state representations. In addition, the execution
behavior of the abstract machine needs to be speci�ed, e.g., via state
transitions.

For aspect (1), i.e., the AT metamodel, the pragmatic way is chosen for its
simplicity [Kle08, p. 135]. The so-called AT tooling (see Section 4.3) provides
a reference implementation interpreting instances of the AT metamodel,
thus, realizing the pragmatic way. To complement this formal semantics
de�nition, Section 4.2.5 informally describes the AT metamodel in natural
language. This informal description allows to grasp the semantics of the AT
metamodel more intuitively and to check AT tooling for conformance.

For aspect (2), i.e., extensions of architectural models, the AT method uses
the translational way because it is expected to be the “best” and quickest
formal way if a suitable target metamodel exists [Kle08, p. 138]. In the AT
method, target metamodels are well-described languages for architectural
models. With ATs, recurring elements in instances of these languages (i.e.,
reusable architectural knowledge) can be formalized. Because this architec-
tural knowledge can be expressed in the target architectural model language
(by de�nition), such languages are also suitable targets for translational
semantic descriptions. Section 4.2.5.6 describes the AT method’s use of
transformations to implement the translational way.

2.3.6. Standards and Technologies

Several standards and technologies have emerged to help software engineers
in e�ectively and e�ciently applying MDSD. This section overviews the
standards and technologies relevant for the AT method.

46

2.4. Templates

The Meta Object Facility (MOF) [Obj15] provides a standard for specifying
metamodels. For metamodel speci�cation, MOF speci�es the MOF model as
a standardized metamodel for metamodels.

The Eclipse Modeling Project—an MDSD project of the Eclipse Founda-
tion [Gro09, p. 8]—is related to the MOF. The core of the project is the
Eclipse Modeling Framework (EMF) that includes a MOF implementation,
the so-called Ecore metamodel [SBPM09]. The Ecore metamodel, thus,
allows to specify metamodels technically.

Several projects exist that use EMF to provide MDSD capabilities, e.g., for
abstract and concrete syntax development and for working with model
transformations. Particularly, the transformation language QVT-O (cf. Sec-
tion 2.3.2) is part of the Eclipse Modeling Project and makes use of EMF.

Another standard and technology is the Object Constraint Language (OCL)
[Obj14]. OCL is a declarative language that initially was speci�ed for de-
scribing constraints on UML models. In fact, the OCL is nowadays able
to specify queries and constraints on any MOF-based modeling language
[VSC06, p. 96]. For MDSD, OCL is especially important because OCL can
enrich metamodels with constraints, thus, allowing to formalize static se-
mantics, and because transformations can use OCL to operate on models.

2.4. Templates

Template is a common English term characterizing some kind of blueprint
[Oxf16b, Ame11]. Templates are used in a variety of domains and contexts,
amongst others in model-driven software engineering. In this particular do-
main, several examples for templates can be found [BG07b, TA05b, HJS+09,
Cza98, CA05, Obj11, VCC15]; however, no common de�nition for the term
exists. This section therefore derives a de�nition for templates that best
�ts the understanding within the model-driven context of this thesis, thus,
providing a clear and consistent view on templates:

De�nition 2.26 (Template) “In model-driven software engineering, a tem-
plate is a reusable model blueprint from which (parts of) concrete models can
be instantiated. As such, their purpose is to make knowledge for recurring

47

2. Foundations

modeling situations reusable. For a controlled reuse, templates come with
static parts that cannot be customized and dynamic parts that are intended to
be customized within prescribed constraints.” (author’s de�nition)

In the AT method (see Chapter 4), such templates—Architectural Tem-
plates (ATs)—are used as proposed by Riehle [Rie03]. Riehle argues to use
templates to formalize reusable architectural knowledge like illustrated in
Figure 2.10.

Legend:

template

model

instantiated by
three-layer

architectural style

strict three-
layered system

X

relaxed three-
layered system

✓

…

Reusable Architectural
Knowledge

Templates Architectural
Model

concept

smart home
system

book
shop

Figure 2.10.:Capturing variants of reusable architectural knowledge via templates
that can be instantiated by architectural models (based on [Rie03]).

Figure 2.10 (left) shows that reusable architectural knowledge is on a conceptual
level. For example, a description of the three-layer architectural style may be
documented in natural language and mainly serve communication pur-
poses, e.g., providing software architects a representative name and a rough
understanding of the knowledge.

Because such an informal documentation deliberately leaves room for inter-
pretation, di�erent realization variants of the knowledge exist. As shown in
Figure 2.10 (middle), Riehle proposes to use templates for capturing di�erent
variants. For example, a strict three-layered system captures the three-layer
architectural style described in Section 2.2.4.1 where the presentation layer
can only access the application layer but not the data access layer. In
contrast, a relaxed three-layered system [BMR+96, pp. 45/46] allows direct ac-
cesses from presentation to data access layer. In terms of QoS properties,
the relaxed variant comes with an improved performance (due to the al-
lowed shortcut) but sacri�ces maintainability (due to a tighter coupling of
layers).

48

2.4. Templates

Figure 2.10 (right) shows that templates �nally allow software architects
to apply the captured knowledge to architectural models. For example, an
online book shop may apply the strict three-layered system template whereas
a smart home system may apply the relaxed three-layer system template.
For realizing such an application of templates, software architects use
appropriate modeling tools. In particular, these tools can check whether
architectural models maintain the conformance to prescribed constraints
as formally captured within the applied templates (cf. last sentence of
De�nition 2.26).

Because templates are the central concept of the AT method, the remainder
of this section thoroughly derives and explains the template de�nition given
in De�nition 2.26 and describes typical template characteristics. De�ni-
tion 2.26 is derived from common terms associated to templates described
in Section 2.4.1 and template examples described in Section 2.4.2. The set
of examples allows Section 2.4.3 to generalize to common template cate-
gories and Section 2.4.4 to derive common template characteristics. Such
categories and characteristics become important for precisely classifying
ATs.

2.4.1. Template Terms

Common English dictionaries de�ne a template as a “model for others
to copy” [Oxf16b], “preset format” [Oxf16b, Ame11], “pattern” [Oxf16b,
Ame11], “gauge” [Ame11], and “blueprint” [Oxf16a]. In the IT domain,
common terms characterizing templates are “document” [MWR14, Kri98],
“pattern” [VJ02], “parametrized element” [Obj11], and “model schema”
[VCC15].

While all of these terms cover valid template characteristics, De�nition 2.26
uses the term blueprint because it best �ts to the context in which the
templates of this thesis are applied: ATs serve as blueprints for software
architecture models, similar to blueprints in civil engineering. Additionally,
the term blueprint allows to clearly separate ATs from patterns and styles
in software architecture (cf. Section 2.2.4).

49

2. Foundations

2.4.2. Template Examples

In the IT domain, templates are applied for the creation of IT-related artifacts.
Examples include:

• document templates, e.g., for creating initial documents in o�ce
tools like Microsoft Word where actually “every [...] document is
based on a template” [MWR14, p. 498],

• preset forms, e.g., used as starting point to document architectural
knowledge like architectural styles and patterns [BG07b, BMR+96,
TA05b],

• templates in metaprogramming, e.g., in the C++ programming lan-
guage where a template is “a pattern from which actual classes or
functions can be generated” [VJ02, p. 514],

• web templates, e.g., for web documents like HTML pages that serve
as a “prototypical document or part thereof” [Kri98], and

• various templates in model-driven software engineering that provide
“built-in support for variability” [HJS+09] such as:

– templates in generative programming and software product lines
that are combined with a data model to generated textual arti-
facts [Cza98, CA05],

– UML templates where a template is a “parameterized element that
can be used to generate other model elements” [Obj11, p. 632],
and

– so-called aspectual templates that “inject new functionalities”
[VCC15] into a model via model weaving [MKBJ08].

2.4.3. Template Categories

The examples from Section 2.4.2 di�er in their data �ow characteristics.
These di�erences allow to induce three categories for templates: (a) initiator
templates, (b) generator templates, and (c) bound templates. Sections 2.4.3.1
to 2.4.3.3 detail these categories based on Figure 2.11 (which visualizes
these three template categories in terms of their data �ow). Afterwards,

50

2.4. Templates

Section 2.4.3.4 describes hybrid approaches as a combination of the former
three template categories.

(c) Bound Templates
 (binding-based)

«binds»

Examples:
- Microsoft Word templates
- preset forms for documenting
 architectural knowledge

Examples:
- templates in generative
 programming
- PHP files, JavaServer Pages

Examples:
- C++ templates, Java generics
- UML & aspectual templates
- web templates

Template
Engine

«queries»

«references»

(b) Generator Templates
 (query-based)

(a) Initiator Templates
 (customization-driven)

Set of Templates

Template
Language

Source
Model

Model
Language

Target
Model

Source
Model

Model
Language

Template

Target
Model

Template
Engine

Template

Template
Engine

Initial
Model

Source
Model

Target
Model

(Controlled)
Customization

«conforms to
(if controlled)»

«conforms
to»

«conforms
to» «conforms

to»

Legend:

TemplateModel Data Flow Instance of AssociationMeta Model

Figure 2.11.:Data �ow of di�erent template categories. (a) For initiator templates,
a template engine creates an initial model that conforms to a given template. To
maintain conformance, a subsequent customization with source model elements
might be controlled by an appropriate tool. (b) For generator templates, a template
engine evaluates queries from a template to a source model and subsequently embeds
query results within the template instance. (c) For bound templates, source models
link (bind) a set of templates. A template engine can subsequently weave bound
templates into the source models.

51

2. Foundations

2.4.3.1. Initiator Templates

Figure 2.11 (a) illustrates the case of initiator templates. A template is
the input to a template engine, which instantiates the input template to
produce an initial model. The initial model conforms to the template by
construction, i.e., it adheres all template constraints. After construction, the
initial model needs to be customized with elements of a source model. Such
a source model can either be a mental or a (semi-)formal model with custom
information. During customization, source model elements are integrated
into the initial model to form a target model. The target model conforms
to the original template as long as it satis�es all template constraints. To
ensure conformance, an appropriate customization tool can be employed
for a controlled customization.

Due to their customization-driven nature, initiator templates serve as start-
ing points for specifying more concrete target models, guided along tem-
plate constraints. Examples from Section 2.4.2 that �t into this category
are classical document templates in o�ce tools and preset forms (where
template instantiation and conformance checks to constraints are typical
manual tasks).

2.4.3.2. Generator Templates

Figure 2.11 (b) illustrates the case of generator templates. A template and a
source model with custom information are the input to a template engine,
which produces a �nal target model out of these inputs. For the integration
of source model elements into the template, the template includes queries
formulated against the model language of the source model. This depen-
dency on the model language decouples the template from the concrete
instance of the model language, i.e., the concrete source model. The tem-
plate engine executes the template’s queries against the concrete source
model to determine the elements to be integrated within the template. After
these elements are determined, the template engine instantiates the target
model by copying the template into the target model and by substituting
each query with the respective query result. Once instantiated, the target
model therefore conforms to the template by construction.

52

2.4. Templates

Generator templates advocate customization only within the source model;
generated target models typically remain untouched and are “ready to use”.
Examples from Section 2.4.2 that �t into this category are templates used
in generative programming. Particularly PHP �les and JavaServer Pages �t
into this category.

2.4.3.3. Bound Templates

Figure 2.11 (c) illustrates the case of bound templates. A source model that
binds a set of templates is the input to a template engine, which transforms
the source model to a target model by including bound template constructs.
Each binding (1) associates the source model to a respective template and
(2) speci�es which template parameters shall be substituted with which
source model elements. For enabling such bindings, the model language
of the source model accordingly needs appropriate means to reference the
template language. Such references can be realized either within the model
language directly (i.e., the model language includes direct associations
to the template language) or indirectly via extension mechanisms of the
model language (e.g., the model language supports pro�les similar to UML’s
pro�les; cf. Section 2.3.4). In any case, the template engine can derive how to
include templates from such bindings: (1) it copies each associated template
into the source model while (2) substituting template parameters with
bound model elements. After such an instantiation, the a�ected parts of
the resulting target model conform to the previously bound templates.

Bound templates suggest customization either for the original model itself
or for the binding (for example, by updating existing bindings and by
adding bindings to further templates; cf. [OVDPB01a]). As for generator
templates, generated models typically remain untouched and are “ready to
use”. Examples from Section 2.4.2 that �t into this category are templates
from template metaprogramming (e.g., C++ templates and Java generics),
UML templates, and aspectual templates.

2.4.3.4. Hybrid Templates

Besides the pure categories illustrated in Figure 2.11, hybrid template ap-
proaches combine these categories. For example, a hybrid template ap-

53

2. Foundations

proach may combine initiator templates (to generate an initial model and
to get support for controlled customization) with bound templates (to add
further aspects to the model).

The templates introduced in this thesis (Architectural Templates; ATs)
indeed realize such a combination for specifying architectural models
(cf. Chapter 4). Firstly, ATs can generate an initial architectural model,
e.g., satisfying the constraints of a particular architectural style. Secondly,
further ATs can be added to the initial architectural model, e.g., to apply
various architectural patterns.

2.4.4. Template Characteristics

This section describes common template characteristics derived from the
template examples and categories of the previous sections. These character-
istics were the basis for the template de�nition (De�nition 2.26): templates
allow (1) to instantiate (parts of) concrete models, (2) are reusable for re-
curring modeling situations, and (3) come with static and dynamic parts.

Templates can instantiate (parts of) concrete models. Templates classify
the artifacts created from such templates, i.e., each concrete artifact con-
forms to the respective template [CA05]. Because of this classi�cation
aspect, templates can be seen as type models and conforming artifacts as
instance models (cf. [Küh06]). This observation particularly implies that
templates have to be instantiated (i.e., an instance of the type model has to
be created) when being applied.

Such an instantiation either directly or indirectly results in a concrete model.
In the direct case (initiator templates and generator templates), template
instances manifest directly in a concrete model (an initial model for initiator
templates and a target model for generator templates). In the indirect case
(bound templates), template instances modify parts of an existing source
model that, after integration of such instances, serves as the concrete target
model.

In Figure 2.11, the template engine executes the instantiation task. Here,
instantiation can either be fully automated by a tool (e.g., Microsoft Word)

54

2.4. Templates

or manually be conducted by a user of the template (e.g., when manu-
ally copying a preset form as a preparation for documenting architectural
patterns).

Templates are reusable for recurring modeling situations. The classi�ca-
tion characteristic of templates (see previous paragraph) induces the main
bene�t of templates: their reusability [Rie03]. However, not every template
is reusable. Reusability of a template generally increases with the number
of artifacts classi�ed by the template. (Because templates can be seen as
type models, they classify a set of concrete instance models/artifacts.)

In the case that a template only classi�es one element, a template is too
speci�c and loses its classi�cation characteristic. In this case, the template
becomes useless because the concrete artifact could directly be used in place
of the template.

However, if the number of classi�ed elements increases too much, a template
can become too abstract. A template becomes too abstract as soon as it
abstracts from the knowledge it intends to make reusable for recurring
modeling situations. For example, a document template for a letter will
include knowledge about addresses. If this letter template would abstract
from addresses, it would classify more documents, however, loose letter-
speci�c knowledge and thus its pragmatics. When writing letters, such a
template makes too few knowledge reusable and consequently causes more
manual modeling e�ort. Therefore, template engineers must determine
a good trade-o� between specialization and abstraction when designing
templates, e.g., by getting feedback from template users.

Templates comewith static anddynamicparts. Concrete models resulting
from template applications are customized towards the concrete modeling
situation at hand [OVDPB01b, Kri98, Par04, Obj11]. Such a customization
initializes the situation-speci�c information that di�erentiates the template
instance from the template.

To maintain conformance to the template during customization, templates
internally consist of two parts: a static part that cannot be customized
and a dynamic part that can only be customized within prescribed con-
straints [Kri98]. Static parts cover the knowledge that will be reused in

55

2. Foundations

every recurring modeling situation. For example, a template for a letter
would always prescribe an address �eld. Dynamic parts cover variable in-
formation that are situation-speci�c. For example, the letter template would
allow to customize the contents of the address �eld. Templates constrain
customizations of dynamic parts based on the knowledge of the recurring
modeling situation. For example, the letter template would prescribe di�er-
ent address-related constraints, e.g., that the zip code is required within an
address �eld and that it must consist of numbers only.

It depends on the template category how static and dynamic parts are tech-
nically handled. Initiator templates allow customization after the creation
of the initial model. In case such a customization is controlled by a suitable
tool, only dynamic parts can be customized as exempli�ed with the letter
example. In other cases, customization is unconstrained, for example, Mi-
crosoft Word allows arbitrary changes to the initial model and preset forms
for documentation can be used manually, i.e., without tool support.

Generator templates include queries against a model language; these queries
represent their dynamic parts. Customization can only occur within the
concrete source model that is queried. Query results are �nally embedded
within the static parts of the template.

Bound templates include formal template parameters within their static
parts that have to be bound; these parameters represent their dynamic parts.
Customization is only possible by binding conforming actual parameters to
these formal parameters.

2.5. Architectural Analyses of
Quality-of-Service Properties

With architectural analyses, software architects can quantify a system’s QoS
properties based on architectural models of the system (see De�nition 2.27).
These quanti�cations allow architects to assess SLOs (see Section 2.2.2).
For example, an SLO for performance may require 90 % of response times
to stay below 1 second. With an architectural analysis for performance,
architects can analyze whether this SLO is ful�lled for their current system
design.

56

2.5. Architectural Analyses of Quality-of-Service Properties

De�nition 2.27 (Architectural Analysis) “Architectural analysis is the
activity of discovering important system properties using the system’s archi-
tectural models.” [TMD09, p. 291]

Koziolek surveys several architectural analysis approaches [Koz10]. The
principal idea of these approaches is to map architectural models annotated
with QoS-relevant attributes to suitable formal analysis models like Markov
chains [Tri82], queuing networks [LZGS84], stochastic Petri nets [BK98],
and stochastic process algebras [HHK02]. After this mapping, existing
solvers and simulations of these analysis models can quantify the QoS
metrics of interest while reporting their results to software architects.

The AT method extends such architectural analyses by a build-in support
for reusing and processing architectural knowledge [Leh14b, LHB17]. This
section therefore describes the fundamentals for such extensions: the devel-
opment process with architectural analyses (Section 2.5.1) and architectural
models annotated with QoS-relevant attributes (Section 2.5.2). Additionally,
this section describes Palladio [BKR09] as an example of an architectural
analysis approach (Section 2.5.3). Palladio is particularly used for the evalu-
ation of the AT method.

2.5.1. Integration of Architectural Analyses
in Development Processes

Koziolek and Happe [KH06] introduce a process that integrates architectural
analyses in the component-based development process of Cheesman and
Daniels [CD00]. This section summarizes the process of Koziolek and
Happe based on Figure 2.12.

In Figure 2.12, rounded rectangles represent actions that need to be con-
ducted during development. The thick arrows between these actions denote
allowed traversals from an action to another action. Actions can be traversed
both forwards and backwards, thus allowing for iterative and incremental
developments (in contrast to the classical waterfall model). The thin arrows
represent �ow of artifacts during development. Each concrete artifact is
denoted with an according name and a representative icon.

57

2. Foundations

(1) engineer
require-
ments

architectural
model

(2) specify
architectural

model

(3) conduct
architectural

analysis

(4) provision
components

(5) assemble
system

(6) test
system

(7) deploy
system

SLOs

components tested
system

system

Legend: action flow of artifactchange of action

analysis
results

usage
models

Figure 2.12.:Development process with integrated architectural analysis (based
on [KH06]).

The development process starts with action (1) and progresses until action
(7). The AT method extends actions (2) and (3), i.e., the speci�cation of
architectural models and the conduction of architectural analyses. After
brie�y overviewing all actions (to understand the context of the AT method),
dedicated subsections describe these two actions in detail (to focus on the
actions extended by the AT method):

(1) engineer requirements. Requirements engineers elicit, identify, analyze,
and specify requirements of a system. For these tasks, requirements
engineers collaborate (e.g., via meetings and interviews) with stake-
holders of the system (e.g., with system users and domain experts).

The outcome are usage models and SLOs for the system to be devel-
oped. Usage models specify functional requirements and how users
interact with the system. SLOs characterize the quality-of-service
targets for such interactions (cf. De�nition 2.10).

(2) specify architectural model. In this action, software architects create
architectural models based on usage models, SLOs, and previously
collected analysis results (if architectural analyses have already been
conducted in an earlier iteration).

The resulting architectural model includes the design decisions that
the software architects have made, e.g., existential decisions9 about

9 Existential decisions are decisions about the existence of elements (cf. Section 2.2.4).

58

2.5. Architectural Analyses of Quality-of-Service Properties

software components and their allocation to speci�c processing re-
sources. For making these decisions, software architects collaborate
with component developers and system deployers.

(3) conduct architectural analysis. Software architects run an architectural
analysis based on usage models and the architectural model of the
system. The analysis results serve as feedback for revising the archi-
tectural model if results indicate that SLOs are violated.

Architectural analyses require that SLO-relevant information are
provided within the input models. For example, usage models need
to cover the probabilities with which users request system oper-
ations. Another example is that the architectural model needs to
cover the envisioned characterization of processing resources, e.g.,
CPU processing rates. Software architects need to ensure that such
information are present in the input models. If not present, software
architects collaborate with domain experts, requirements engineers,
component developers, and system deployers, respectively, to gather
the required information and to enrich the models accordingly.

(4) provision components. Software architects and project managers de-
cide which software components are bought, reused from existing
component repositories, or newly implemented. Here, software
components need to conform to their speci�cation as given by the ar-
chitectural model. Afterwards, software components are provisioned
based on the made decisions.

(5) assemble system. Software architects manage the creation of the soft-
ware system by assembling the given components according to the
architectural model. During assembly, software components are
con�gured, e.g., regarding speci�c frameworks and component con-
tainers. Moreover, legacy components potentially require adapters
that provide the interfaces speci�ed in the architectural model by
delegating to these legacy components. The �nal output of this ac-
tion is a completely assembled software system, including all its code
artifacts.

(6) test system. Test engineers assess, in a test environment and according
to the usage models, whether the system’s functional requirements
and SLOs can be ful�lled. Testing is important because of several

59

2. Foundations

risks: the architectural analysis may have missed SLO-relevant fac-
tors, provisioned components and the assembled system may include
bugs, and the system may not conform to the architectural model.
If issues are revealed, test engineers trigger software architects to
resolve the issues by iterating through previous actions. Once test
results are satisfying, the software system is tested and ready for
deployment.

(7) deploy system. System deployers install the tested system in the target
environment where system users can request system operations.
The architectural model serves again as input because it speci�es on
which resources the components of the system need to be allocated.
After successful execution of this action, the system is in operation.

2.5.1.1. Specify Architectural Model

Software architects specify architectural models based on usage models,
SLOs, and—if already available—results from previously conducted analyses
(action (2) in Figure 2.12). During this process, software architects make
design decisions about components, their assembly into a system, and the
allocation of these components on processing resources. Their decision-
making is particularly governed by architectural knowledge. This section
details this speci�cation of architectural models based on Figure 2.13.

Figure 2.13 generally uses the same syntax as Figure 2.12. Additionally,
rounded rectangles of high-level actions include grey-shaded rounded rect-
angles that represent the sub-actions that are conducted within these high-
level actions. The roles that conduct these actions are annotated as well. In
Figure 2.13, the role of the software architect conducts the high-level action
specify architectural model while cooperating with component developers
that newly implement components and with system deployers that specify
deployment information. The cooperation with component developers is
facilitated with a repository—represented as cylinder—that allows to store
and interchange assets like interfaces, component types, and components.
In the following, each of these high-level actions is described in detail.

60

2.5. Architectural Analyses of Quality-of-Service Properties

sp
ec

ify
 d

ep
lo

ym
en

t

Legend: action flow of artifactchange of action

(1) identify system
interfaces and busi-

ness component types

(2) analyze
component
interactions

software
architect

usage
models

SLOs analysis
results

sp
ec

ify
 a

rc
hi

te
ct

ur
al

 m
od

el

(3) specify
components

ne
w

ly
 im

pl
em

en
t c

om
po

ne
nt

s

component
developer

(3) implement
components

(1) analyze
component

requirements

(2) specify functional
and extra-functional

informationinterfaces,
component
types, and

components

existing
assets

component
types

repository

require-
ments

architectural
knowledge

(4) integrate resource
environment and
allocation models

system
deployer

(1) specify resource
environment

(2) specify
allocation

system

components

component
types

(binary)
components

refined
system

initial
system

resource
environment

allocation

system

resource
environment

usage
models

architectural model
sub-action

components

Figure 2.13.: Software architects specify an architectural model; component devel-
opers may provision components by implementing them anew; system deployers
specify the allocation of the system to resources (based on [KH06]).

So�ware Architect: Specify Architectural Model To specify an architec-
tural model, Figure 2.13 (left) shows that software architects proceed from
(1) the identi�cation of system interfaces and business components types
over (2) the analysis of component interactions and (3) the speci�cation of
components to (4) the integration of models describing how components
are allocated to a resource environment:

(1) identify system interfaces and business component types. At �rst, soft-
ware architects create an initial system model. Here, the tasks for
software architects are to identify the interfaces of the system, to
identify business interfaces and business component types that pro-

61

2. Foundations

vide these business interfaces, and to apply architectural knowledge
where feasible. If possible, they reuse existing assets from the repos-
itory of interfaces, component types, and components.

For system interfaces, software architects require one interface for
each use case of the given usage models [CD00, p. 86]. The system
interactions needed for ful�lling these use cases de�ne the operations
of the respective interface [CD00, p. 86]. In the model of the initial
system, the system provides these system interfaces.

For business interfaces, software architects require one interface for
each core business type [CD00, p. 92]. These core business types
represent the primary business information that the system man-
ages [CD00, p. 92]. For example, a book is a typical core business
type within an online book shop. The according business interfaces
are responsible for managing such business types, e.g., by providing
operations to add, alter, and buy books. For each business interface,
software architects specify a dedicated business component type
that provides this interface [CD00, p. 99].

The relevant architectural knowledge during the �rst action are
architectural styles and reference architectures [BBB+16, p. 223].

Software architects apply architectural styles (cf. De�nition 2.15) to
prescribe the role of business components inside the system. For
example, when applying the three-layer architectural style (cf. Sec-
tion 2.2.4.1) to a system, business components play the role of data
access layer components while further components will be needed
for the roles of presentation layer and application layer.

Similarly, architects can apply reference architectures (cf. De�ni-
tion 2.17) if available for the system’s domain. For example, in the
automotive domain, the AUTOSAR reference architecture (cf. Sec-
tion 2.2.4.3) prescribes a three-layer architectural style where busi-
ness components reside on the basic software layer. Additionally,
AUTOSAR prescribes which automotive-speci�c component inter-
faces and component types are required on each layer.

(2) analyze component interactions. In this action, software architects re-
�ne the model of the initial system with operations of business
interfaces, further component types, connectors, and by applying

62

2.5. Architectural Analyses of Quality-of-Service Properties

architectural patterns. For this re�nement, software architects need
to analyze component interactions as follows.

First, architects discover business operations for the business in-
terfaces as identi�ed in action (1). For this discovery, they inspect
each operation of each system interface and decide how the sys-
tem should interact with business components to provide these
operations [CD00, p. 104]. From these interactions, software ar-
chitects can derive the operation signatures that the business in-
terfaces of business component types need to cover. For exam-
ple, getting details about a book in an online book shop requires
an interaction with the business component that manages books.
A suitable operation signature for the components’ business in-
terface is Book:getDetails(String:bookID) where the operation
getDetails returns a data transfer object of type Book with detailed
book information as identi�ed by a unique book identi�er bookID of
type String.

Second, software architects model the interactions between system
operations and business component types [CD00, p. 104]. Depend-
ing on the previously selected architectural styles and reference
architectures, these interactions are either direct or indirect.

In the direct case, business component types provide the same inter-
faces as the system. Therefore, software architects can simply create
delegation connectors from provided interfaces of the system to pro-
vided interfaces of business component types. For example, when
following the microservice architectural style [New15], business
component types can be designed to provide presentation, applica-
tion, and data access logic altogether and, thus, directly provide all
operations of a system interface.

In the indirect case, intermediate component types intervene inter-
actions between operations of the system and business component
types. Software architects therefore need to create these component
types and connect them appropriately. For example, when follow-
ing the three-layer architectural style, business component types
acting as data access layer components are preceded by component
types on presentation layer and application layer. Here, software
architects need to specify suitable component types and assemble

63

2. Foundations

them via assembly connectors with the business component types on
the data access layer. Software architects further create delegation
connectors from provided system interfaces to component types on
the presentation layer.

Finally, software architects apply architectural knowledge in the
form of architectural patterns (cf. De�nition 2.16) to re�ne the sys-
tem [BBB+16, p. 223]. Such a re�nement is necessary if a particular
design problem needs to be solved. For example, already available
analysis results can indicate that performance SLOs are violated be-
cause of a bottleneck component at the application layer. A software
architect can therefore apply performance architectural patterns
to solve this problem, e.g., the loadbalancing architectural pattern
(cf. Section 2.2.4.2).

(3) specify components. In this action, software architects complete the
model of the system by substituting component types with con-
crete components. In contrast to component types, these concrete
components contain both functional and extra-functional behavior
speci�cations for each provided operation.

Software architects request concrete components from component
developers. For executing such requests, software architects put
their speci�cations of component types into the shared repository
(cf. Figure 2.13). Afterwards, software architects trigger component
developers to specify concrete components that realize these com-
ponent types. Once component developers have speci�ed these
components, they share them again via the repository and trigger
software architects. Software architects �nally use the shared com-
ponents to substitute the corresponding component types in their
system model. As soon as every component type is substituted with
a concrete component speci�cation, the system model is completed.

(4) integrate resource environment and allocationmodels. Next, software
architects create an architectural model that re�nes the previously
created system model with information of the systems’ deployment
context. The deployment context describes how system components
are allocated to resource environments with processing resources.

64

2.5. Architectural Analyses of Quality-of-Service Properties

Software architects request a speci�cation for such deployment con-
texts from system deployers. For executing such requests, software
architects hand usage models and the system model over to these
system deployers. Subsequently, the system deployers can specify
resource environment and allocation models suitable for the planned
system and its usage.

Once speci�ed, system deployers pass resource environment and
allocation models back to software architects. In turn, software ar-
chitects then integrate these models into the system model. Software
architects particularly check the interoperability of these models
and whether no constraints of the previously applied architectural
knowledge are violated. For example, in action (1), software archi-
tects can have decided for an architectural style in which each logical
layer needs to be allocated to a dedicated tier. Now, in action (4),
software architects can check whether system deployers obeyed
this architectural style and trigger another speci�cation iteration
if constraints were violated. The integration of system, resource
environment, and allocation models �nally results in a completely
speci�ed architectural model.

Component Developer: Newly Implement Components Letting compo-
nent developers implement components anew is a sub-action of the provision
components action of the overall development process, i.e., of action (4) in
Figure 2.12. In this sub-action, component developers specify and imple-
ment components that realize a given set of component type speci�cations
as requested by software architects.

For each component to be speci�ed and implemented, Figure 2.13 (upper
right) shows that component developers proceed from (1) an analysis of the
component’s requirements over (2) the speci�cation of the component’s
(extra-)functional information within a model to (3) the implementation of
the speci�ed component as a binary artifact:

(1) analyze component requirements. In this action, component develop-
ers determine the speci�cation and implementation requirements
of the components [KH06]. If information from a component’s type

65

2. Foundations

speci�cation are insu�cient for this determination, component de-
velopers interact with software architects for clari�cation.

For example, component developers may need to clarify which de-
pendencies a component responsible for ordering books can have.
Payments for ordered books, for instance, can either be realized by
depending on an external payment service or by including payment
functionality directly within the component. Software architects
may assess both options and clarify, based on the assessment result,
which option component developers should implement.

(2) specify functional and extra-functional information. Component devel-
opers specify appropriate, i.e., requirements-ful�lling, functional and
extra-functional information of the components [KH06]. These infor-
mation can be utilized by architectural analyses and guide component
developers in implementing these components.

The speci�cation of functional information covers provided and
required interfaces as well as the internal dependencies between
provided and required operations of these interfaces. State machines
can, for instance, be used for specifying these dependencies [KH06].

The speci�cation of extra-functional information covers resource
demands, reliability values, data �ow, and transition probabilities for
these dependencies [KH06]. These information cover factors that
have an impact on the QoS of the component’s operations. Therefore,
the speci�cation of these information is especially important for
architectural analyses.

After the speci�cation of (extra-)functional information, component
developers share their speci�cations with software architects via
the repository (cf. Figure 2.13). Therefore, software architects can
subsequently re�ne component types within their system model with
the corresponding component speci�cations. Component developers
continue by implementing the just speci�ed components.

(3) implement components. In this action, component developers imple-
ment the components according to their speci�cation. For this im-
plementation, software developers use a target technology such as
Enterprise Java Beans (EJBs) [CD00, p.147�]. The �nal results are
binary implementations of the speci�ed components. Component

66

2.5. Architectural Analyses of Quality-of-Service Properties

developers store the implemented components in the repository.
Software architects can later assemble the system out of these com-
ponents (action (5) of the overall development process in Figure 2.12).

System Deployer: Specify Deployment For specifying an architectural
model, software architects need to integrate deployment information of the
modeled system. System deployers provide these information by modeling
the system’s allocation to the target environment of processing resources.

For a given set of usage models and a system model, Figure 2.13 (lower
right) shows that system deployers proceed from (1) the speci�cation of an
environment model of processing resources to (2) the speci�cation of an
allocation of system components to these resources:

(1) specify resource environment. In this action, system deployers create a
model of the environment of processing resources where the system
will operate. Because this environment needs to be aligned to the
system and its usage, the system model and the usage models are
input to this action.

These inputs allow system deployers to derive the required physical
and virtual processing resources, e.g., in terms of interconnected
servers with various CPU and hard disk drive characterizations. As
additional source of information, system deployers can also take
existing processing resources into account.

(2) specify allocation. In this action, system deployers specify how system
components are allocated to the previously speci�ed resource en-
vironment. Every component of the system needs an allocation to
an available processing resource. The resulting allocation model
and the resource environment model are �nally passed to software
architects for an integration into the architectural model.

2.5.1.2. Conduct Architectural Analysis

Software architects conduct architectural analyses (action (3) in Figure 2.12)
based on usage models, SLOs, and the previously speci�ed architectural

67

2. Foundations

model. During this process, software architects specify which QoS prop-
erties they want to analyze and conduct the analysis by transforming all
inputs to a suitable analysis model. This section details such a conduction
of architectural analyses based on Figure 2.14.

(1) specify QoS monitors

(2) transform to analysis model

software
architect

usage
models

SLOs

analysis
results

co
nd

uc
t a

rc
hi

te
ct

ur
al

 a
na

ly
si

s

(3) evaluate QoS properties

architectural
model

Legend: action

flow of artifact

change of action

sub-action

QoS
analysis
model

architectural
model with
QoS monitors

Figure 2.14.: Software architects conduct architectural analyses based on informa-
tion from usage models, SLOs, and architectural models (based on [KH06]).

Figure 2.14 uses the same syntax as the �gures of the previously describe
processes (Figure 2.12 and Figure 2.13). In the following, the three sub-
actions of architectural analyses as conducted by software architects are
discussed in detail.

(1) specify QoSmonitors. Software architects con�gure which metrics will
be measured—via so-called QoS monitors [BBL17, Sec. 6.3.1]. A QoS
monitor points to (1) an architectural element for which measure-
ments need to be taken and (2) a set of concrete metrics that have to
be measured for that element. In setting up these monitors, architec-
tural analyses are con�gured to measure the con�gured metrics.

(2) transform to analysis model. In this action, software architects trans-
form the architectural model (with annotated QoS monitors) to a QoS
analysis model [KH06]. Depending on the metrics of interest and the
analysis approach used, di�erent kinds of QoS analysis models are
created. For example, simulation and layered queuing network mod-

68

2.5. Architectural Analyses of Quality-of-Service Properties

els can be used to analyze performance metrics (cf. Section 2.5.3.1).
In case the architectural model can directly be analyzed (e.g., by
a simulation that directly interprets the architectural model), no
transformation is needed.

(3) evaluate QoS properties. In this action, software architects evaluate
the monitored QoS properties by running a suitable analysis tool
and interpreting its analysis results. Such tools take the previously
created QoS analysis models as input. For example, simulation tools
can be used for simulation models and analytical solvers for layered
queuing network models (cf. Section 2.5.3.1).

For the interpretation of analysis results, software architects compare
the results to the prede�ned SLOs. If SLOs are violated, software
architects either modify the architectural model or renegotiate SLOs;
afterwards they reevaluate the monitored QoS properties. Software
architects iteratively proceed like this until all SLOs are ful�lled.

2.5.2. Architectural Models with
Quality-of-Service Attributes

Architectural analyses as described in Section 2.5.1.2 are based on QoS
analysis models. Clearly, these models must cover the attributes required
to analyze the QoS properties of interest. This observation induces that
also the transformations that create these models need to have access to
such QoS-speci�c attributes; otherwise they would be unable to create
them. However, most languages for specifying architectural models—the
input to such transformations—cannot express QoS-speci�c attributes. For
example, the UML [Obj11] lacks several attributes that would be required
for performance analyses (e.g., resource demands, workload speci�cations,
characterizations of input data, etc.).

The options to resolve this issue are either to use languages for architec-
tural models that cover the required QoS-speci�c attributes directly or to
annotate architectural models with such attributes. Either way, the rel-
evant QoS attributes to be included in architectural models have to be
derived. The GQM method as introduced in Section 2.1.1 can be used to
make such a derivation goal-driven (Section 2.5.2.1). Moreover, if annotated

69

2. Foundations

to architectural models, QoS attributes have to be integrated during the
transformation to QoS analysis models. So-called completions can realize
such an integration (Section 2.5.2.2).

2.5.2.1. Goal-Driven Derivation of Quality-of-Service Attributes

Pragmatic architectural models for QoS analyses are tailored to answer
QoS-related questions [BBB+16, p. 103], e.g., “how many servers are needed
to serve a particular workload with acceptable performance?”. To answer
such questions, architectural models should optimally only include the
minimally required QoS attributes (i.e., the model needs an appropriate
abstraction level; cf. Section 2.3.1). For example, if only performance is
of interest, architectural models should only cover performance-relevant
attributes like component behavior, dependencies to other components,
usage characteristics, and deployment information (cf. [BGMO06]).

Software architects can use the GQM method (cf. Section 2.1.1) to derive
the QoS attributes to be included in architectural models [BBB+16, p. 104].
In this context, goals correspond to QoS requirements formulated as SLOs
(cf. Section 2.2.2). For example, a performance goal can be formulated as the
SLO “the system shall respond with a maximum response time of 1 second
for 90% of monthly requests”. Such goals allow to formulate questions
like “how many servers are needed to ful�ll the performance goal?”. An
exemplary metric to answer this question is the “response time of the
system for monthly peak workloads and 3 servers”. Given the metric to be
analyzed, only those factors that impact its measurement need to become
attributes of the architectural model. For the previous example metric, the
number of servers needs to be covered, for instance.

2.5.2.2. Integration of Quality-of-Service Attributes via Completions

Architectural models are kept on a high level of abstraction such that soft-
ware architects can focus on key design decisions. However, for architec-
tural analyses to be accurate, QoS-relevant details (identi�ed as described in
Section 2.5.2.1) need to be present in the QoS analysis model generated from
the architectural model. So-called completions [WPS02] provide a means
to integrate such details into architectural models (see De�nition 2.28).

70

2.5. Architectural Analyses of Quality-of-Service Properties

De�nition 2.28 (Completion) “A completion is a general means to capture
QoS attributes, modify architectural models, and describe all of the expected
elements.” (based on [WPS02])

For this integration, completions modify architectural models with relevant
QoS attributes and expected elements. Completions technically realize their
modi�cation via in-place model transformations (see Section 2.3.2). Happe
et al. [HFBR08] detail such a realization as illustrated in Figure 2.15.

architectural
model

transformation
engine

extended
architectural

model

++

«references»

annotation
model

«..»
completion

library

++ Legend:

data flow

association

model

Figure 2.15.: Realization of completions (based on [HFBR08]).

On the left side of Figure 2.15, an annotation model references elements
of an architectural model, e.g., components and connectors. The annota-
tion model can be realized as a pro�le application if the language of the
architectural model supports extensions via pro�les (cf. Section 2.3.4).

Annotations mark the elements that need to be re�ned with QoS-relevant
details. On the bottom of Figure 2.15, a transformation engine executes this
re�nement in the form of a M2M transformation (cf. Section 2.3.2). The
inputs to this transformation are the annotated architectural model and
a completion library. The completion library provides the transformation
speci�cations (completions) that include the logics for re�ning annotated
elements with QoS-relevant details. Accordingly, the output of the transfor-
mation is an extended architectural model that includes these details (right
side of Figure 2.15).

71

2. Foundations

2.5.3. Palladio

Palladio [BKR09] is a concrete example of an architectural analysis method
and serves as evaluation and application example of the AT method. Pal-
ladio supports several QoS properties, for example, performance [BKR09],
scalability [LB14a], elasticity [LB14a], cost-e�ciency [LE15], reliability
[BKBR12], energy-e�ciency [OGW+14], as well as security [HFL16]. More-
over, Palladio has the advantage that its architectural language, the Palladio
Component Model (PCM), is UML-like and therefore expected to have a
high acceptance by software architects [BKR09]. Initial empirical results
indeed con�rm this expectation [Mar07, p. 99], despite pointing out some
improvement opportunities in usability, e.g., regarding high initial and
overall modeling e�orts. To alleviate such e�orts, the AT method extends
Palladio with a build-in support for applying reusable architectural knowl-
edge. The AT method’s extensions are exempli�ed in Chapter 3 and detailed
in Chapter 4.

Being the targeted architectural analysis of the AT method, the remainder
of this section details concepts of Palladio. Section 2.5.3.1 describes the
basic paradigms for architectural modeling with the PCM. Afterwards,
Section 2.5.3.2 details Palladio’s extensions for elastic environments, which
are needed for the evaluation of the AT method within the cloud computing
domain in Chapter 5.

2.5.3.1. The Palladio Component Model

The Palladio Component Model (PCM) [BKR09] is an architecture descrip-
tion language that particularly supports QoS-relevant attributes, e.g., for
performance and reliability. Instances of the PCM can therefore be analyzed
with respect to QoS metrics like response times, utilization, throughput,
and mean time to failure. In the following, this section details the idea
behind the PCM based on Figure 2.16.

Figure 2.16 (left) illustrates that PCM models are constituted of partial
models. Each of these partial models is inspired by the UML and covers
QoS-relevant attributes of the system to be modeled:

72

2.5. Architectural Analyses of Quality-of-Service Properties

Analysis / Implementation

Partial PCM Models

System

Repository

Allocation

Resource
Environment

Usage

part of
part of

part of

part of

part o
f

SimuLizar

ProtoCom
Prototype

Code
Skeletons

LQNs

SimuCom
simulation

simulation

numerical
analysis

execution

implementation

…… …

model-to-model
transformation

model-to-text
transformationmodel-to-text

transformation

model-to
-te

xt

tra
nsfo

rm
ation

interpretation

QoS
Monitors

pa
rt o

f
PCM

Model

Figure 2.16.: The PCM includes partial, UML-like models for specifying QoS-relevant
attributes of software systems (left). PCM models can then be analyzed and imple-
mented in various tools (right).

Repository Model. Models a repository of components and component
types, thus allowing for an iterative development (cf. Section 2.2.1).
Components and component types provide and optionally require a
set of interfaces.

Components conform to a component type if they (1) at least provide
the provided interfaces of the type and (2) at most require the re-
quired interfaces of the type. Components can substitute conforming
component types whenever such types are used. This substitutability
particularly allows to reuse components whenever their provided
interfaces are required.

In contrast to component types, components include behavior spec-
i�cations for each operation of a provided interface. For example,
software architects can model requests to operations of required

73

2. Foundations

interfaces and demands to resources like CPUs and hard disk drives.
In Palladio, these behavior speci�cations are called Service E�ect
Speci�cations (SEFFs).

SystemModel. Models a system that instantiates and assembles compo-
nents and component types from repository models. Instances of
components and component types are called assembly contexts.

The system provides interfaces on its own such that its users can
externally access it. For implementing its provided interfaces, the
system delegates requests to appropriate assembly contexts. If these
assembly contexts require further interfaces, the system includes
assembly connectors that delegate requests to appropriate provid-
ing interfaces of further assembly contexts. Moreover, a system
can require interfaces if assembly contexts depend on services of
external systems. In this case, the system delegates requests from
corresponding assembly contexts to its required interfaces.

Allocation Model. Models the allocation from assembly contexts (system)
to containers (resource environment). Therefore, the allocation spec-
i�es from which container assembly contexts demand resources.

Resource Environment Model. Models the resource environment (e.g., in
terms of hardware) on which the system is allocated. The environ-
ment consists of containers connected via networks. Containers can,
for instance, represent bare-metal or virtualized servers. Containers
particularly include a set of active resources like CPUs and hard disk
drives. Each of these resources comes with di�erent processing rates
and scheduling strategies.

Usage Model. Models the workload to a system in terms of its users. The
usage model consists of di�erent usage scenarios, each either being
a closed workload (�xed number of users) or an open workload
(users enter based on inter-arrival rates). In each usage scenario,
users can access operations provided by the system. Users access
such operations with a certain probability and with speci�c work
parameters, e.g., characterizing the size of input data.

QoSMonitors. Models which metrics are measured during analysis [BBL17,
Sec. 6.3.1]. A QoS monitor points to (1) a PCM element for which
measurements need to be taken and (2) a set of concrete metrics that

74

2.5. Architectural Analyses of Quality-of-Service Properties

have to be measured for that element. For example, a QoS monitor
can be con�gured to measure response times of an operation of a
system interface.

In sum, these partial models form a complete PCM model. PCM models can
then serve as input to various analysis tools as illustrated in Figure 2.16
(right):

SimuCom. SimuCom is a simulation of the modeled system. Simulation
logic is generated by a M2T transformation according to the input
PCM model. During simulation, SimuCom can take measurements
for QoS metrics like response times.

SimuLizar. SimuLizar is a simulation of the modeled system. The simula-
tion interprets the input PCM model to provide measurements for
QoS metrics like response times.

Because SimuLizar interprets PCM models, it can also acknowledge
changes of these instances during simulation-time. This feature
therefore allows to model self-adaptive systems. SimuLizar was
extended with support for dedicated models for these self-adaptive
systems (see Section 2.5.3.2).

LQNs. Layered Queuing Networks (LQNs) extend queuing networks with
layered structures and related elements, e.g., to fork/join di�erent
layers. Based on input PCM models, M2M transformations can create
LQN models. These models can then be solved with numerical mean-
value approximation methods, e.g., to provide mean response times
as output. In contrast to simulations, these methods require less time
for analyses; however, provide only information about mean values.

ProtoCom Prototype. ProtoCom transforms PCM models into runnable
QoS prototypes. Such QoS prototypes can execute in di�erent target
environments and mimic demands to di�erent types of processing re-
sources. Their execution therefore allows to take QoS measurements
for an early assessment of the modeled software system within a
real environment.

Code Skeletons. Based on a PCM model, a M2T transformation generates
appropriate code skeletons. These skeletons serve developers as

75

2. Foundations

starting point for implementing the modeled system. Code skele-
tons are therefore especially important in green�eld and forward
engineering.

2.5.3.2. Extensions for Elastic Environments

Palladio was initially designed for static environments, i.e., for resource
environments that do not change the amount of their computing resource
over time. However, the usage of information systems shifted from a static
to a highly dynamic behavior that challenged such static environments. For
example, online shops often observe workload increases before Christmas.
In such scenarios, static environments demand that resources are aligned
to the maximum workload to be expected (over-provisioning). Otherwise,
customers will remain unserved, which eventually leads to business losses.
The disadvantage of this solution is that over-provisioning is expensive
during non-peak times.

Elastic environments—like found in the cloud computing domain [MG11]—
revise the assumption that resource environments are static: to minimize
expenses for resources, their amount is now elastically adapted to changing
workloads. Because the AT method is evaluated in the cloud computing do-
main, this section reports on Palladio extensions for modeling and analyzing
these elastic resource environments as shown in Figure 2.17.

Figure 2.17 (bottom) shows that Palladio’s modeling extensions cover work-
loads that change over time (so-called Usage Evolutions) and self-adaptation
rules that react on these changes by adapting the amount of resources:

Usage Evolution Model. Usage Evolution models specify how workload
parameters, as characterized in PCM usage models, change over
time [Gop14, BSL16, KHK+17]. For example, steadily increasing and
periodically varying arrivals of users can be modeled.

Self-Adaptation Rules. Self-adaptation rules react on changes to measure-
ments of QoS monitors. For example, when a certain response time
threshold is exceeded, a self-adaptation rule could trigger a scaling-
out of bottleneck resources. These rules therefore consist of two
parts, a trigger and an action that can be activated by the trigger.

76

2.5. Architectural Analyses of Quality-of-Service Properties

Analysis / Implementation

SimuLizar

ProtoCom
Prototype

Code
Skeletons

LQNs

SimuCom
simulation

simulation

numerical
analysis

execution

implementation

…… …

model-to-model
transformation

model-to-text
transformationmodel-to-text

transformation

model-to
-te

xt

tra
nsfo

rm
ation

interpretation

PCM
Model

Extensions
for Elastic

Environments

Usage
Evolution

Self-Adaptation
Rules

part of part of

Partial PCM Models

System

Repository

Allocation

Resource
Environment

Usage

part of
part of

part of

part of

part o
f

QoS
Monitors

pa
rt o

f

Figure 2.17.: PCM extensions enrich the PCM with models for elastic environments,
i.e., with Usage Evolutions and Self-Adaptation Rules.

The trigger relates measurements to pre-speci�ed thresholds to de-
termine whether to activate the action. The action describes the
change in the system to be applied.

As of the time of writing this thesis, only SimuLizar supports analyzing
PCM models with these extensions. At simulation-time, SimuLizar updates
workload parameters according to an input Usage Evolution model. For
these updates, SimuLizar samples the Usage Evolution model once per
simulated time unit to receive the concrete workload parameter for the
current simulation time.

Moreover, SimuLizar supports actions (of self-adaptation rules) formulated
in the M2M transformation languages QVT-O (described in Section 2.3.2),
Story Diagrams [vDHP+12], and Henshin [ABJ+10]. The execution of an
action therefore involves the transformation of the currently simulated

77

PCM instance into an adapted version. SimuLizar subsequently continues
by simulating the adapted version.

“Few things are harder to put up with
than the annoyance of a good example.”

— Mark Twain 1835 – 1910

3. Example System:
An Online Book Shop

This chapter illustrates the fundamentals introduced in Chapter 2 along
an online book shop example system. The book shop is based on an archi-
tectural model suited for architectural analyses that we previously spec-
i�ed [LB16]. Our model particularly re�ects the QoS properties of an
implemented and deployed book shop version [LB16].

The book shop example is intentionally described on a high level of abstrac-
tion. The example is therefore suited for illustrative purposes throughout
this thesis. Moreover, Chapter 5 re�nes the book shop example to a full
case study—the CloudStore case study—to evaluate the AT method.

This chapter takes the perspective of the book shop’s requirements engineer
and software architect. These roles execute the �rst three actions of the
development process with architectural analyses (see Section 2.5.1). Firstly,
the requirements engineer collects requirements in the form of usage models
and SLOs (Section 3.1). Secondly, the software architect speci�es the book
shop’s architectural model (Section 3.2). Thirdly and �nally, the software
architect conducts an architectural analysis with the architectural model to
check whether the book shop’s SLOs can be ful�lled for the given usage
model (Section 3.3). The chapter closes with a discussion of the book shop
example (Section 3.4).

79

3. Example System: An Online Book Shop

3.1. Engineer Requirements of the Book Shop

In the �rst step of the development process with architectural analyses
(cf. Section 2.5.1), the requirements engineer captures the book shop’s
requirements via a usage model (Section 3.1.1) and SLOs (Section 3.1.2).

3.1.1. The Book Shop’s Usage Model

After collaborating with the book shop’s stakeholders, the requirements
engineer identi�es the two main use cases of the shop: customers shall be
able to browse books and to order books. The requirements engineer further
expects that 100 concurrent customers steadily use the book shop, i.e., a
closed workload of 100 customers. These customers browse books in 95 %
of the cases and order books in 5 % of the cases.

Figure 3.1 illustrates how the requirements engineer documents these use
cases and workloads in a usage model. A customer (UML actor symbol)
can request (UML association symbol) the use cases (UML use case sym-
bols) browse books and order books within the Book Shop system (UML system
symbol).

customer

Legend:Book Shop

browse
books

order
books

probability: 5 %

probability: 95 %closed workload
population: 100

requestsuse case

QoS attribute annotation

System

Figure 3.1.: Illustration of the book shop’s usage model.

Besides these functional speci�cations, the requirements engineer annotates
(dashed line with a circle) QoS-relevant attributes (UML note symbol). In
Figure 3.1, customer and customer’s requests are annotated. The customer
workload is a closed workload of population 100 and the requests follow
a probabilistic distribution where 95% of requests browse books and 5% of
requests order books. These attributes are QoS-relevant because several QoS
properties depend on the workload of the system. For example, performance

80

3.2. Specify Architectural Model of the Book Shop

can vary depending on the number of requests per time interval. Also
security properties are impacted by workload, e.g., evident from denial-of-
service attacks.

3.1.2. The Book Shop’s Service Level Objectives

During the collaboration with the book shop’s stakeholders, the require-
ments engineer identi�es that a response time of 1 second is satisfactory
for potential customers if met in at least 90 % of the cases. Moreover, the
requirements engineer notes that the number of initial customers (100
customers) is expected to increase to 500 customers in 1 year.

These observations induce a performance and a capacity requirement. To
capture these requirements, the requirements engineer speci�es the follow-
ing SLOs:

SLOPerformance: 90 % of the book shop’s responses for browsing and ordering
books shall have a maximum response time of 1 second.

SLOCapacity: The book shop shall handle up to 500 concurrent customers
without violating SLOPerformance.

3.2. Specify Architectural Model of the Book Shop

Given the book shop’s requirements, its software architect can create an
appropriate architectural model (step two of the development process;
cf. Section 2.5.1). The software architect �rst speci�es component types
and lets component developers realize implementing components (Sec-
tion 3.2.1). Second, the software architect assembles these components into
a system (Section 3.2.2). Third, the software architect collaborates with sys-
tem deployers to compile an architectural model of the shop (Section 3.2.3).
Fourth, the software architect applies architectural knowledge in the form
of ATs to this model (Section 3.2.4). This application of ATs exempli�es
how templates can be bound to models.

81

3. Example System: An Online Book Shop

3.2.1. The Book Shop’s Repository Model

By following the process for specifying architectural models (as described
in Section 2.5.1.1), the software architect derives which component types
are needed for the book shop. Figure 3.2 illustrates the resulting repository
of component types and their interfaces.

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

IBrowseBooks
+ home()
+ bestSellers()
+ newProducts()
…

IOrderBooks
+ shoppingCart()
+ buyRequest(
 String : customerID,
 String : bookID)
…

IBusiness
+ handleBuy(
 String : customerID,
 String : bookID)
…

Book Shop
Web
Pages

IBook
+ Book : getBookDetails(
 String : bookID)
+ addBook(Book : book)
…

IImages
+ getImage(
 String : imageID)

«provides»

«provides»

«provides»

ICustomer
+ Customer : getCustomerDetails(
 String : customerID)
+ addCustomer(Customer : customer)
…

«provides»

«provides»

«provides»«requires» «requires»

«requires»

Legend:

compo-
nent type

interface
relation

interface
+ return type :
 operation(
 parameter1,
 …)
…

Figure 3.2.: Illustration of the book shop’s repository model.

In Figure 3.2, component types (UML component symbols with dashed
border) provide and require various interfaces (UML class symbols). Each
interface de�nes various operations (second compartment of interface sym-
bols). An operation (starting with a +-symbol followed by the operation
name) can optionally have return types (prepended to the operation name)
and multiple parameters (appended to the operation name in parenthe-
ses).

As shown in Figure 3.2 (top), each previously speci�ed use case (browse
books and order books) requires a dedicated interface (IBrowseBooks and
IOrderBooks) and a component type (Book Shop Web Pages) that provides these
interfaces. Also each core business type (books and customers) requires a
dedicated interface (IBook and ICustomer) and a providing component type
(Book & Customer Data Provider). The software architect has further decided to
use a dedicated component type (Book Shop Business Rules) to determine how

82

3.2. Specify Architectural Model of the Book Shop

data about books and customers is created, changed, and received. Book Shop
Business Rules exposes the IBusiness interface to provide this functionality.

As shown in Figure 3.2 (bottom), the software architect speci�es a dedicated
component type for retrieving images of books (Book Image Provider). With
this component, the software architect wants to support the typical behavior
of web browsers—receiving an HTML page and subsequently its image
references [JW04].

After specifying these component types, the software architect collaborates
with component developers that implement corresponding components.
The component developers particularly provide models of implemented
components to the software architect (cf. Section 2.5.1.1). Using these
models of the components, the software architect assembles a model of the
book shop’s system as describe in the next section.

3.2.2. The Book Shop’s SystemModel

By assembling the previously speci�ed components, the software architect
creates a system model for the book shop. Figure 3.3 illustrates this model.

Book Shop

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

Legend:

compo-
nent

requests

SystemBook Shop
Web
Pages

providing role
requiring role

IBrowseBooks,
IOrderBooks

IImages

IBusiness
IBook,

ICustomer

Figure 3.3.: Illustration of the book shop’s system model.

In this model, the software architect speci�es which business components
(UML component symbols) are part of the book shop system (UML system
symbol). Components expose their provided interfaces via providing roles
(UML symbol for implementing interfaces) and their required interfaces
via requiring roles (UML symbol for using interfaces). Possible requests

83

3. Example System: An Online Book Shop

are illustrated via UML connectors from requiring to providing roles. In-
terfaces of providing roles outside of the system’s border are accessible by
customers.

In Figure 3.3, the Book ShopWeb Pages component provides such interfaces to
browse and order books. To provide its functionality, Book ShopWeb Pages
requests information from the Book Shop Business Rules component, which in
turn can request data about books and customers from the Book & Customer
Data Provider component. If a web page returned by Book Shop Web Pages
references images, these references can be fetched via the Book Image Provider
component.

3.2.3. The Book Shop’s Architectural Model

The software architect re�nes the previously speci�ed system model with
deployment information, which results in an architectural model for the
book shop (cf. Section 2.5.1.1). For this re�nement, the software architect
collaborates with a system deployer to integrate information about the book
shop’s allocation into a resource environment. Figure 3.4 gives a high-level
overview of the resulting architectural model.

Web & Application Server

Image Server

Database Server

Book Shop
Web
Pages

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

customer

Legend:

compo-
nent

resource
container

requests

QoS attribute

annotation

CPU processing
rate: 1 GHz

CPU processing
rate: 1 GHz

CPU processing
rate: 1 GHz

Figure 3.4.:Overview of the book shop’s architectural model.

With this overview, software architects can easily follow the requests (UML
connector symbols) from customers through the book shop’s business
components (UML component symbols) allocated on various resource con-
tainers (UML node symbols).

84

3.2. Specify Architectural Model of the Book Shop

Like Figure 3.3, Figure 3.4 shows that customers access the book shop
via the Book Shop Web Pages component to browse and order books. If a
web page returned by Book ShopWeb Pages references images, a customer’s
browser subsequently fetches these reference via the Book Image Provider
component.

Additionally, Figure 3.4 shows that Book ShopWeb Pages and Book Shop Business
Rules are allocated on a Web & Application Server, Book & Customer Data Provider on
a Database Server, and Book Image Provider on a dedicated Image Server. The soft-
ware architect has received these information from the system deployer.

The system deployer particularly annotated QoS attributes to the resource
containers. In the current setup, each resource container contains a CPU
with a processing rate of 1 GHz. This attribute is QoS-relevant because the
processing rate impacts how long it takes to serve CPU demands as caused
by executing a component’s operations. In consequence, performance
metrics like response times and throughput are directly impacted.

3.2.4. The Book Shop’s Applications
of Architectural Templates

The software architect is interested in applying architectural knowledge to
make the book shop maintainable and to ensure that the shop ful�lls its
SLOs. For maintainability, the software architect wants to apply the three-
layer architectural style (cf. Section 2.2.4.1). For ful�lling the book shop’s
SLOs, the software architect investigates the option to use the loadbalancing
architectural pattern (cf. Section 2.2.4.2). To apply such knowledge in a
formalized way, the software architect uses ATs.

Figure 3.5 illustrates the book shop’s architectural model after the appli-
cation of corresponding ATs (bold italic text in dashed boxes). Following
the idea of bound templates (see Section 2.4), the software architect has
bound the roles of the formalized knowledge (italic text prepended with an
@-sign) to appropriate architectural elements, including a set of actual pa-
rameters (appended to a role in parentheses). Architectural modeling tools
and architectural analyses can utilize ATs as exempli�ed in the following.

The three-layer AT introduces roles to structure the book shop into a pre-
sentation layer (bound to Book ShopWeb Pages), an application layer (bound to

85

3. Example System: An Online Book Shop

Web & Application Server

Image Server

Database Server

three-layer

Book Shop
Web
Pages

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

@presentation layer @application layer @data access layer

customer

 loadbalancing
@loadbalanced container (
 number of replicas = 2
)

Legend:

compo-
nent

resource
container

applied AT
@role (
 parameter = value,
 …)

requests

role binding
@

Figure 3.5.:Applying Architectural Templates to the book shop’s architectural
model.

The loadbalancing AT (bottom middle of Figure 3.5) introduces a loadbal-
anced container role bound to the Web & Application Server. In a preprocessing
step of an architectural analysis, a template engine will re�ect the perfor-
mance impact of this binding by creating a loadbalancer in front of the
container that distributes workload. According to the parameter given in
Figure 3.5, the loadbalancer will distribute workload over 2 replicas of the
Web & Application Server container.

3.2.5. The Book Shop’s Validation
of Architectural Template Constraints

The architectural modeling tool of the software architect automatically
validates the constraints of applied ATs. This validation reveals that the
software architect did not bind a logical layer to the Book Image Provider. This

86

Book ShopBusiness Rules), and a data access layer (bound to Book&Customer Data
Provider). These roles constrain the bound components to only access the
respective lower-level layer (in Figure 3.5 shown from left to right). Because
ATs formalize such constraints, an architecture tool with AT support can
ensure their ful�llment, e.g., by forbidding direct connections from Book
ShopWeb Pages to Book & Customer Data Provider. Such an assurance becomes
especially useful in maintenance scenarios that potentially violate taken
design decisions.

3.3. Conduct Architectural Analysis of the Book Shop

is an issue because the three-layer AT requires an assignment for every
component.

The Book Image Provider presents images directly to customers. Therefore,
to resolve the issue, the software architect decides to additionally bind the
presentation layer role to the Book Image Provider. At this point, the three-layer
AT has helped the software architect to maintain a model conforming to
the three-layer architectural style, i.e., it improved maintainability of the
modeled system.

3.3. Conduct Architectural Analysis
of the Book Shop

The applied loadbalancing AT allows the software architect to analyze
the book shop’s SLOs by varying the parameter number of replicas of the
loadbalanced container role. First, the software architect con�gures an
architectural analysis for number of replicas = 1 to calculate SLOCapacity.
The architectural analysis yields 400 concurrent customers as a result, which
implies that SLOCapacity is violated.

The architectural analysis particularly reports how response times are
distributed. Figure 3.6 illustrates these response times as a cumulative
distribution function. For 400 customers, Figure 3.6 shows that indeed 90 %
(Y-axis) of the response times are under the 1 second mark (X-axis).

To resolve the SLO violation, the software architect repeats this analysis
for number of replicas = 2. Interestingly, this analysis results in a capacity
of only 180 concurrent customers, thus, pointing to an even more severe
violation of SLOCapacity. Figure 3.6 illustrates the corresponding response
time distribution for 180 customers.

To explain this capacity degradation, the software architect investigates
the number of jobs waiting at the Database Server: for 400 customers and
number of replicas = 1, approximately 50 jobs wait at the Database Server;
for 180 customers and number of replicas = 2, the number of waiting jobs
increases to 90. This observation points to the Database Server as a reason for
the capacity degradation. Because of the replicated Web & Application Server,

87

3. Example System: An Online Book Shop

Cumulative Distribution Function (CDF)

1: 400 Customers; 1 Replica 2: 180 Customers; 2 Replicas

3: 1,000 Customers; 1 Replica; 2GHz CPU in Database Server

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Response Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
u

m
m

e
d
 P

ro
b
a
b
ili

ty
 [

%
] SLO

Performance

fulfilled:

90% response times  1 second

SLO
Performance

fulfilled:

100% response times  1 second

400 customers

180 customers

1,000 customers

Figure 3.6.:Cumulative distribution function of response times for di�erent work-
loads and con�gurations.

an increased number of concurrent jobs arrives at the Database Server. The
increased workload at the Database Server makes this server the book shop’s
bottleneck.

After identifying this bottleneck, the software architect wants to analyze
whether increasing the processing rate of the Database Server’s CPU helps
to increase capacity. Therefore, the software architect changes the corre-
sponding processing rate from 1GHz to 2GHz. Additionally, the software
architect sets number of replicas = 1 again to save costs for the additional
server that did not help to increase the book shop’s capacity.

After having the architectural model modi�ed, the software architect runs
another architectural analysis. In the modi�ed version, the book shop’s
capacity increases to over 1, 000 concurrent customers (the maximum num-
ber the software architect considered for the analysis). Because the CPU

88

3.4. Discussion of the Book Shop Example

of the Database Server now processes with 2GHz, it services jobs twice as
fast, which evidently removes the capacity degradation: even for 1, 000
concurrent customers, response times are below the 0.2 seconds mark as
highlighted in Figure 3.6.

Being con�dent that the book shop will ful�ll all speci�ed SLOs, the software
architect can continue now to implement, deploy, and operate the shop
according to its architectural model.

3.4. Discussion of the Book Shop Example

The book shop example illustrates how software architects make use of
reusable architectural knowledge during the development process with
architectural analyses. While state-of-the-art approaches let software ar-
chitects informally apply reusable architectural knowledge, the AT method
represents a formal approach for such applications. This combination of
formalized architectural knowledge and architectural analyses o�ers advan-
tages for software architects. In detail, the book shop example illustrates
the following advantages:

Automated detection of constraint violations of architectural styles.
Violations of constraints of architectural styles (cf. De�nition 2.15)
can automatically be detected. For example, the software architect
automatically discovers a missing binding of the presentation layer
role in Section 3.2.5. These discoveries help software architects to
maintain the conceptual integrity between architectural models and
applied architectural styles.

Automated generation of additional elements of architectural patterns.
Architectural patterns re�ne systems with additional elements (cf.
De�nition 2.16). If architectural patterns are formalized, these ad-
ditional elements can automatically be generated. For example, the
application of the loadbalancing AT has ensured that a loadbalancer
and replicas of the annotated resource container were automatically
generated for the architectural analysis in Section 3.3.

Context-aware application of architectural knowledge.
In Section 3.3, the software architect is surprised that an increased

89

3. Example System: An Online Book Shop

number of load-balanced server replicas can degrade capacity. This
degradation is in contrast to what the loadbalancing pattern promises.
However, the architectural analysis reveals that the book shop’s
database server—a context factor for the loadbalancing pattern—
actually becomes overloaded when too many replicas exist. For such
situations, the combination of reusable architectural knowledge with
architectural analyses is bene�cial.

Declarative application of reusable architectural knowledge.
Section 3.2.4 illustrates how the concept of bound template (cf. Sec-
tion 2.4.3.3) can be applied to architectural models. Bindings are
speci�ed declaratively. Based on this declaration, a template engine
takes care of weaving relevant elements into the architectural model.
Therefore, this kind of speci�cation relieves software architects from
potentially complex, manual adaptations of architectural models.

Overall, these advantages show that ATs can make software architects more
e�ective and e�cient in their modeling tasks. The challenge is, however, to
provide software architects with a suitable set of such ATs. The AT method
therefore includes an appropriate process for engineering ATs. The next
chapter introduces the AT method in detail.

90

“We are what we repeatedly do. Excel-
lence, then, is not an act, but a habit.”

— Aristotle 384 B.C. – 322 B.C.

4. The Architectural
Template Method

The Architectural Template method is a software engineering method with
which software architects can reuse architectural knowledge from pre-
speci�ed templates—Architectural Templates (ATs; see De�nition 4.1)—for
architectural modeling and architectural analyses. ATs are speci�ed by AT
engineers, i.e., implemented, quality-assured, and provided within catalogs.
In applying ATs from such catalogs, software architects reuse knowledge
and become more e�ective and e�cient in their architectural analysis tasks
(see De�nition 4.2).

De�nition 4.1 (Architectural Template) “An Architectural Template
(AT) is a template for reusable architectural knowledge that software architects
can apply for architectural modeling and architectural analyses.” (author’s
de�nition)

De�nition 4.2 (Architectural Template method) “The Architectural
Template method (AT method) is a software engineering method that uses ATs
to make approaches for architectural analyses of QoS properties more e�ective
and e�cient.” (author’s de�nition)

This chapter describes the AT method by covering the processes of the AT
method in Section 4.1, the AT language for specifying and applying ATs in
Section 4.2, and an accompanying AT tooling in Section 4.3. Additionally,
Section 4.4 describes extensions to these core aspects: a reuse mechanism
for AT speci�cation and an optimization mechanism for con�guring AT

91

4. The Architectural Template Method

applications. Section 4.5 closes this chapter with a discussion of assumptions
and limitations of the AT method.

4.1. Architectural Template Processes

The AT method extends existing processes for architectural analyses. Dur-
ing the specify architectural model process (cf. Section 2.5.1.1), software
architects can additionally apply architectural knowledge via ATs, which
allows to automatically check for constraint violations of applied archi-
tectural knowledge. Moreover, during the conduct architectural analysis
process (cf. Section 2.5.1.2), a template engine automatically integrates
elements induced by applied architectural knowledge into architectural
models. AT engineers specify ATs with such capabilities and provide them
within catalogs.

Section 4.1.1 describes these extensions for architectural modeling and
Section 4.1.2 for architectural analysis. Section 4.1.3 details the process of
AT engineers to specify ATs.

4.1.1. Architectural Template Application

When following the AT method, software architects use their modeling tools
to apply ATs to architectural models. For example, Section 3.2.4 illustrates
how a software architect applies ATs to the architectural model of the book
shop example. This section details this process for AT applications.

During modeling, software architects can select and apply suitable ATs to
their architectural model. Figure 4.1 illustrates this addition as an extended
version of Figure 2.13. In Figure 4.1, un�lled thick arrows denote where
the AT method extends existing actions. There are two of these extensions:
one for the identify system interfaces and business component types action
and one for the analyze component interactions action.

While these actions originally prescribed to apply architectural knowledge
informally (cf. Section 2.5.1.1), their extensions allow to apply architectural
knowledge formally via ATs. For applying ATs, software architects create
appropriate role bindings and set actual parameters like illustrated for the

92

4.1. Architectural Template Processes

(1) identify system
interfaces and busi-

ness component types

(2) analyze
component
interactions

software
architect

usage
models

SLOs analysis
results

sp
ec

ify
 a

rc
hi

te
ct

ur
al

 m
od

el

refined
system

initial
system

architectural model
with role bindings

@

(1*) select and apply
suitable ATs for

architectural styles and
reference architectures

(2*) select and apply
suitable ATs for

architectural patterns

AT
catalog

(3) specify
components

(4) integrate resource
environment and
allocation models

system

specify ATs

AT
engineer

request:
suitable

ATs

?

Legend: action

flow of artifact

change of actionsub-action

extension of action

Figure 4.1.: Software architects apply ATs from a catalog of ATs speci�ed by AT
engineers.

book shop example in Figure 3.5. The �nal result of the specify architectural
model process is therefore an architectural model with role bindings (bottom
right in Figure 4.1).

Like the original process in Figure 2.13, the extending actions distinguish
the kind of architectural knowledge to be applied. While the �rst action
(action (1*) in Figure 4.1) targets architectural styles and reference archi-
tectures, the second action (action (2*) in Figure 4.1) targets architectural
patterns. This distinction acknowledges the higher level of abstraction of
architectural styles and reference architectures compared to architectural
patterns (cf. Section 2.2.4).

Software architects can particularly use ATs of architectural styles and
reference architectures to instantiate their architectural model. For example,
a software architect may instantiate an architectural model according to

93

4. The Architectural Template Method

the AUTOSAR reference architecture (cf. Section 2.2.4.3) and re�ne this
initial model with additional business component types. Conceptually, ATs
thus realize the concept of initiator templates (cf. Section 2.4.3.1).

Before software architects apply ATs, they select suitable ATs from an AT
catalog (bottom left in Figure 4.1). Software architects select by matching
their SLOs to the promises of the architectural knowledge that was formal-
ized as ATs. ATs provide an informal documentation for this purpose. For
example, for performance SLOs, software architects may select an AT that
promises to improve response times, e.g., the loadbalancing AT applied to
the book shop example in Figure 3.5.

If existing AT catalogs lack such suitable ATs, software architects either
continue without ATs (thus, following the original architectural analysis
process) or request suitable ATs from AT engineers (left side of Figure 4.1).
Once AT engineers have speci�ed the requested ATs, they include them in
an AT catalog. Software architects can subsequently select and apply these
ATs. Section 4.1.3 details the speci�cation process for AT engineers.

Once ATs have been applied, architecture modeling tools can prevent soft-
ware architects from violations of constraints captured in the applied ATs.
For example, modeling tools can avoid the creation of invalid connections
and point to missing elements or existing but invalid elements. This way,
software architects can easily maintain the conceptual integrity between ar-
chitectural models and applied architectural knowledge. Software architects
are particularly relieved from manual integrity checks as was originally
required during the integrate resource environment and allocation models
action (cf. Section 2.5.1.1).

Figure 4.2 exempli�es an AT-based constraint validation for the book shop
example. The X-symbol marks constraint violations of the applied three-
layer AT. There are two of such constraint violations; each annotated
with a brief description. First, the Book Image Provider lacks a role binding.
This is a constraint violation because the three-layer AT requires every
component to have such a binding (Section 3.2.5 describes this situation in
detail). Second, a direct connection from a component of the presentation
layer to a component of the data access layer exists. This is a constraint
violation because the three-layer AT prescribes that presentation layer
components can only request data from presentation and application layer
components.

94

4.1. Architectural Template Processes

Web & Application Server

Image Server

Database Server

three-layer

Book Shop
Web
Pages

Book Shop
Business
Rules

Book &
Customer
Data Provider

Book
Image
Provider

@presentation layer @application layer @data access layer

customer

Legend:

compo-
nent

resource
container

applied AT
@role (
 parameter = value,
 …)

requests

role binding
@

X

X constraint
violation

X
A role of the
three-layer AT
needs to be bound.

Presentation layer
components cannot
directly request data
from data access layer
components.

Figure 4.2.:An architectural model of the book shop with two constraint violations.

4.1.2. Architectural Template Analysis Integration

In the AT method, software architects apply ATs by binding roles to their
architectural models. These roles formally re�ect the semantics of their
associated architectural knowledge. For roles that constrain architectural
models, e.g., for roles of architectural styles, semantics are re�ected by
automatic constraint checks as described in the previous section. For roles
that re�ne an architectural model by additional elements, e.g., for roles
of architectural patterns (cf. Section 2.2.4.2), semantics are re�ected by an
automated integration of these additional elements into the architectural
model. This section describes the required process extensions for this
integration.

Figure 4.3 illustrates these process extensions as an extended version of Fig-
ure 2.14. As before, software architects transform their architectural model
to a QoS analysis model for conducting architectural analyses. Additionally,
if roles of ATs are bound to the architectural model, this transformation
additionally needs to integrate role-induced elements. Figure 4.3 denotes
this addition by extending the transform to analysis model action with an
action to integrate AT-induced elements.

Conceptually, this integration of ATs conforms to bound templates (cf. Sec-
tion 2.4.3.3). That is, a template engine automatically weaves elements
induced by AT roles into the annotated architectural model. Technically,
this integration is realized as a completion (cf. Section 2.5.2.2): bound roles

95

4. The Architectural Template Method

(1) specify QoS monitors

(2) transform to analysis model

software
architect

usage
models

SLOs

analysis
results

co
nd

uc
t a

rc
hi

te
ct

ur
al

 a
na

ly
si

s

(3) evaluate QoS properties

QoS
analysis
model

architectural model with
role bindings and
QoS monitors

Legend: action

flow of artifact

change of action

sub-action

extension of action

architectural model
with role bindings

@

@

(2*) integrate AT-induced elements

Figure 4.3.:AT-induced elements are automatically integrated during the transfor-
mation of an architectural model to a QoS analysis model.

By using a completion to map bound roles to elements of an architectural
model, the semantics of these roles are de�ned via translational semantics
(cf. Section 2.3.5). Here, it is important that only elements already sup-
ported by the underlying language for architectural models are created
because translational semantics require a translation to a language with
well-described semantics.

Figure 4.4 illustrates such a translation using the book shop example from
Section 3.2.4. Figure 4.4 (top) shows that the loadbalanced container role of
the loadbalancing AT is bound to the book shop. A completion can map
this architectural model with a role binding to a semantically equivalent
architectural model without a role binding.

As shown in Figure 4.4 (bottom), an appropriate completion may create a
loadbalancer component allocated on a dedicated Loadbalancer Server. Ac-
cording to the number of replicas parameter, the loadbalancer component is

96

annotate the architectural model and a completion instructs a transforma-
tion engine (representing the template engine) how to weave elements into
the architectural model. Such a realization causes no additional e�ort for
software architects because the execution of the completion is completely
automatic.

4.1. Architectural Template Processes

Image Server

Book
Image
Provider

Image Server

Book
Image
Provider

Loadbalancer Server

Web & Application Server’

Book Shop
Web
Pages’

Book Shop
Business
Rules’

Load-
balancer

Web & Application Server

Book Shop
Web
Pages

Book Shop
Business
Rules

customer

Database Server

Book &
Customer
Data Provider

Web & Application Server Database Server

Book Shop
Web
Pages

Book Shop
Business
Rules

Book &
Customer
Data Provider

customer

 loadbalancing
@loadbalanced container (
 number of replicas = 2
)

Legend:

compo-
nent

resource
container

applied AT
@role (
 parameter = value,
 …)

requests

role binding
@

completion

architectural model
with
role bindings

@

architectural model
without
role bindings

Figure 4.4.:A completion integrates elements induced by the loadbalancing AT into
the book shop’s architectural model, which de�nes the semantics of the bound role.

connected with two replicas of the loadbalanced container, i.e., of the Web &
Application Server. These constructs (component, connector, and resource con-
tainer) are completely supported by architectural modeling languages like
the PCM and therefore precisely de�ne the semantics of the loadbalanced
container role of the loadbalancing AT.

Once completions have integrated all AT-induced elements, the transforma-
tion to the QoS analysis model can be executed exactly like in the original
process. The next section describes how AT engineers specify ATs and
include completions with such capabilities.

97

4. The Architectural Template Method

4.1.3. Architectural Template Specification

So-called AT engineers specify ATs to be used by software architects. AT
engineers are triggered by a request for ATs, e.g., when a software architects
needs a concrete architectural style formalized as AT. During the speci�ca-
tion of ATs, AT engineers cooperate with AT testers who assure the quality
of ATs via testing. Once quality-assured, AT engineers put the speci�ed
ATs into an AT catalog that can be used by software architects.

In Figure 4.5, the AT speci�cation process is illustrated as a re�nement
of the specify ATs action from Figure 4.1. Figure 4.5 (left) illustrates the
specify ATs action for AT engineers while Figure 4.5 (right) illustrates the
assure quality of ATs action for AT testers. After describing the possible
contents of requests for ATs, each of these high-level actions is described
in the following.

(1) identify QoS
properties and suitable
analysis approaches

sp
ec

ify
 A

Ts

AT
catalog

request:
suitable

ATs

?

AT
engineer

(2) select reusable
architectural
knowledge

(3) specify ATs (with
parametrizable roles,

constraints, completions)

(4) assure the quality
of the specified ATs,

e.g., by testing

QoS properties &
analysis approaches

architectural
knowledge sources

AT
tester

ATs

as
su

re
 q

ua
lit

y
of

 A
Ts

(1) specify
test goals and

adequacy criteria

(4) execute test suite
and evaluate results

(2) create and assess
test suite

(3) build
oracle function

fault
report

adequacy
criteria

test
suite

oracle
function

Legend: action flow of artifactchange of actionsub-action

available artifacts

Figure 4.5.:AT engineers specify ATs in cooperation with AT testers to assure a
high quality.

98

4.1. Architectural Template Processes

4.1.3.1. Contents of Requests for ATs

Requests for suitable ATs trigger the speci�cation process of AT engineers.
This section classi�es possible contents of such requests.

A classi�cation of requests is important because the contents of requests
impact the actions that AT engineers have to perform. If the contents of
requests only broadly characterize the ATs to be formalized, AT engineers
have to gather the missing information. For instance, if a request only
contains the QoS properties that are of interest, AT engineers �rst have
to select appropriate reusable architectural knowledge for fostering such
properties. In contrast, AT engineers can save the e�ort to perform such a
selection if a request directly contains the concrete reusable architectural
knowledge to be formalized.

Generally, AT engineers need to identify the reusable architectural knowl-
edge to be formalized and the architectural analysis approaches to be sup-
ported. Both aspects are described and discussed in the following.

Reusable Architectural Knowledge. To select the reusable architectural
knowledge to be formalized, requests for ATs may contain the following
information; ordered from the most speci�c to the broadest information:

Direct request. Often, software architects need particular reusable archi-
tectural knowledge to be formalized. In this case, AT engineers have
a precise and focused formalization task.

For example, if a software architect wants to apply the loadbalancing
architectural pattern, the software architect may request a formal-
ization of this concrete pattern from an AT engineer.1

QoS properties. Reusable architectural knowledge can indirectly be re-
quested based on the QoS properties of interest. In this case, AT
engineers are required to search and select appropriate architectural
knowledge that fosters these QoS properties.

1 In personal communication with members of the Palladio (cf. Section 2.5.3) community on
established conferences and workshops, I was in fact asked for the formalization of the
loadbalancing architectural pattern.

99

4. The Architectural Template Method

For example, the CloudScale project [BSL+13] has requested ATs for
the QoS properties scalability, elasticity, and cost-e�ciency. This
request has driven the selection of typical reusable architectural
knowledge for these properties and the formalization of this knowl-
edge via ATs (see Section 5.3.1).

Application domains. Requestors may be interested in reusable architec-
tural knowledge for a whole application domain. In this case, re-
quests are even broader formulated than requests for QoS properties
because AT engineers �rst have to identify which QoS properties
are relevant in the requested application domain. Once identi�ed,
AT engineers can continue as for requests for QoS properties.

For example, the CloudScale project [BSL+13] started with a gen-
eral interest in the cloud computing domain. Only after scalability,
elasticity, and cost-e�ciency had been identi�ed as relevant QoS
properties in this domain [LEB15], the speci�cation of suitable ATs
was able to continue.

Architectural Analysis Approaches. To identify the architectural analysis
approaches for which ATs have to be formalized, requests for ATs may
contain the following information; ordered from the most speci�c to the
broadest information:

Direct request. Software architects usually have a preferred architectural
analysis approach. Therefore, software architects may directly re-
quest such an approach. In this case, AT engineers precisely know
for which architectural analysis they have to formalize ATs.

For example, a software architect may request Palladio (Section 2.5.3)
as the target architectural analysis approach. Given that the tooling
of the AT method is fully compliant with Palladio (cf. Section 4.3),
this request has the bene�t that the AT method can be used out-of-
the-box.

QoS properties. A requestor may be interested in analyzing particular QoS
properties and not in the concrete architectural analysis approach
used for such analyses. Moreover, architectural analysis approaches
di�er in supported QoS properties. Therefore, AT engineers have

100

4.1. Architectural Template Processes

to identify architectural analysis approaches that support the QoS
properties of interest. If no suitable approach is available, AT en-
gineers have to integrate support for the requested QoS properties
into an existing or a new approach.

For example, the CloudScale project [BSL+13] requested to analyze
the QoS properties scalability, elasticity, and cost-e�ciency. How-
ever, no existing architectural analysis approach had support for all
of these properties. CloudScale’s request has consequently driven the
integration of metrics for scalability, elasticity, and cost-e�ciency
into Palladio [LB14a].

Di�erent Request Scenarios. Requests for ATs may vary in the provided
information about both reusable architectural knowledge and approaches
on architectural analyses. These variations stem from di�erent scenarios
that requestors (e.g., software architects, researchers, and companies) want
to realize.

Software architects typically request concrete architectural knowledge for
a concrete architectural analysis approach. In contrast, researchers and
companies are often interested in several ATs. For example, because ATs
create value for software architects, companies can be interested in selling
AT catalogs for a speci�c application domain. Vendors of architectural
modeling tools can also be interested in the integration of ATs to increase
the value of such tools.

4.1.3.2. AT Engineer: Specify ATs

Figure 4.5 (left) illustrates the actions for AT engineers to specify ATs.
AT engineers proceed from (1) the identi�cation of QoS properties and
suitable analysis approaches over (2) the selection of reusable architectural
knowledge and (3) the speci�cation of ATs to (4) the assurance of the ATs’
quality:

(1) identify QoS properties and suitable analysis approaches. The �rst ac-
tion of AT engineers is the identi�cation of QoS properties and
suitable architectural analysis approaches. That is, for the QoS prop-
erties of interest (e.g., performance), AT engineers select or derive

101

4. The Architectural Template Method

de�nitions and metrics (e.g., response times) and identify, extend,
or implement a suitable analysis approach for these metrics (e.g.,
Palladio). New de�nitions and metrics can systematically be selected
with systematic literature reviews (cf. Section 2.1.3) and derived by
elaborating GQM plans (cf. Section 2.1.1). As shown in Figure 4.5,
the outputs of this action are the QoS properties of interest along
with the selected analysis approaches.

The input to this action determines the required e�ort, i.e., the con-
tents of a request for ATs (cf. Section 4.1.3.1). The more speci�c
the contents, the less e�ort AT engineers require gathering the re-
quired information. In the extreme case, the request contains the
QoS properties of interest (e.g., performance) along with a suitable
architectural analysis approach (e.g., Palladio supports performance
metrics like response times, utilization, and throughput). In this case,
AT engineers have no e�ort in this action. The other extreme is a
broad request for ATs for a whole application domain; especially
if QoS properties and metrics for this domain have to be identi�ed
and a suitable architectural analysis approach is lacking. In this
case, AT engineers have to conduct a systematic literature review,
elaborate a GQM plan, and implement or extend an architectural
analysis appropriately.

(2) select reusable architectural knowledge. In the second action, AT en-
gineers select reusable architectural knowledge to be formalized. If
not directly provided in the request for ATs, AT engineers select
this knowledge from sources that �t to the previously identi�ed
QoS properties, e.g., from books on appropriate styles, patterns, and
reference architectures. As shown in Figure 4.5, the selected sources
are particularly the output of this action.

A generally good source are books on software architecture, e.g.,
[BCK98, TMD09, BMR+96, SSRB00, KJ04, KJ04, BHS07a, BHS07b].
These books document architectural knowledge in the form of archi-
tectural styles and patterns for general and distributed software.

For more speci�c domains, specialized software architecture books
document appropriate architectural knowledge. For example, for
the domain of cloud computing, several of such books exist [RH11,
Wil12, EPM13, FLR+14].

102

4.1. Architectural Template Processes

Besides such books, specialized architectural knowledge is often
directly documented by providers of services and frameworks. For
example, Amazon Web Services (AWS) provides architectural knowl-
edge for their cloud computing services in the “AWS Architecture
Center” [AWS16].

(3) specify ATs (with parametrizable roles, constraints, completions).
In the third action, AT engineers formalize the previously selected
knowledge via ATs. The roles of ATs provide the means to capture
this knowledge, e.g., in terms of decisions about constraints (i.e., roles
contain constraints) and about the existence of elements (i.e., roles
contain a completion to create such elements). Roles can include
parameters to account for variation points, e.g., to con�gure the
number of replicas for a loadbalancer. AT engineers create roles,
constraints, and completions step-wise and iteratively, analogously
to existing processes for pattern creation (cf. Section 6.3.5).

Roles are particularly tied to the architectural elements of the analy-
sis approach’s language: roles can only be bound to such elements
and completions can only create such elements. For example, if
Palladio (cf. Section 2.5.3) is selected as analysis approach, the PCM—
Palladio’s architectural description language—de�nes the set of suit-
able elements.

(4) assure the quality of the specified ATs, e.g., by testing. Before AT engi-
neers add speci�ed ATs to an AT catalog, AT engineers have to assure
the quality of these ATs. ATs need quality assurance because ATs
interpret the architectural knowledge to be formalized. Still, this
interpretation has to consistently maintain the architectural deci-
sions of the formalized knowledge, i.e., the interpretation must have
a high conceptual integrity (cf. De�nition 2.14). For ATs, concep-
tual integrity relates to decisions about constraints (in the form of
role constraints) and the existence of elements (as created by role
completions).

The AT method suggests testing as a quality assurance technique
because testing is lightweight (cf. Section 2.3.3). Testing allows to
assure the conceptual integrity of ATs, e.g., by checking whether a
completion’s output includes the expected elements.

103

4. The Architectural Template Method

As shown in Figure 4.5, AT engineers closely collaborate with AT
testers that execute the concrete testing actions. For triggering these
actions, AT engineers hand the previously gathered artifacts over
to AT testers. These inputs serve AT testers for a rigorous planning
and execution of AT testing. Once �nished with testing, AT testers
provide AT engineers with a report of faults detected during testing.

AT engineers use the fault report to resolve problems of speci�ed
ATs. These problems can be either due to faulty AT speci�cations
or due to misinterpretations of formalized architectural knowledge
by AT testers. In the former case, AT engineers return to action (3)
and add missing elements or correct existing elements of ATs. In the
latter case, AT engineers inform AT testers and together collaborate
on resolving misinterpretations.

Flexibility of Collaboration. The collaboration between AT engineers and
AT testers is �exible. In action (3), AT engineers may specify a preliminary
version of ATs that only contains role and parameter speci�cations (i.e., the
signature of ATs). Afterwards, AT engineers can directly hand the available
artifacts over to AT testers in action (4). AT testers can then prepare
testing while AT engineers, in parallel, continue to specify constraints
and completions of the ATs back in action (3). Once both tasks are �nished,
AT testers execute all testing tasks on the completely speci�ed ATs to
�nalize action (4).

The advantage of this approach is that AT speci�cation and AT testing are
parallelized. Therefore, the overall duration for the speci�cation of ATs is
lowered.

4.1.3.3. AT Tester: Assure Quality of ATs

Conceptually, quality assurance of model transformations and ATs is similar
for two reasons. First, ATs include completions that are implemented as
transformations. Second, ATs include constraints that particularly de�ne
the pre-conditions for these completions. For these reasons, the process
for quality assurance of ATs re�nes the testing process for transformations
described in Section 2.3.3.2.

104

4.1. Architectural Template Processes

Figure 4.5 (right) illustrates the re�ned process for quality assurance of ATs
along the actions for so-called AT testers. AT testers proceed from (1) the
speci�cation of test goals and adequacy criteria over (2) the creation and
assessment of a test suite and (3) the building of an oracle function to (4)
the execution of the test suite and the evaluation of execution results; with
the following speci�cs for AT testing:

(1) specify test goals and adequacy criteria. The main goal of AT testers is
to test ATs’ conceptual integrity (cf. De�nition 2.14). For specifying
adequacy criteria for this goal, AT testers need to be aware of typical
root causes for AT faults. Giacinto identi�ed the following typical
root causes in her Master’s thesis [Gia16, Sec. 6.3]:

- Missing applications of AT roles: Software architects may forget to
assign required AT roles to their architectural models. In this case,
the validation of the architectural model should fail. If the validation
is nonetheless successful, the AT is faulty.

Therefore, an appropriate adequacy criterion is the coverage of
missing applications of AT roles. Full coverage is achieved if each
possible combination of role applications is missing in at least
one test case of a test suite. For n roles of an AT, there are 2n of
these combinations (also counting the special case where the set of
missing applications is empty; i.e., the positive test case).

- Faulty actual parameters of AT roles: Software architects may spec-
ify invalid actual parameters for AT roles. For example, a software
architect may specify −1 number of replicas for the loadbalanced
container role of the loadbalancing AT (see Figure 4.4). An actual
parameter of −1 is obviously invalid because a negative number of
replicas cannot occur. In this case, the validation of the architec-
tural model should fail. If the validation is nonetheless successful,
the AT is faulty.

The parameters of AT roles induce di�erent groups of possible
actual parameters: normal, boundary, and faulty actual parame-
ters. Normal actual parameters are typical valid values for an AT
parameter, e.g., 2 number of replicas. Boundary actual parameters
are extreme but valid values for an AT parameter, e.g., the special

105

4. The Architectural Template Method

cases 1 and MAXIMUM_INTEGER number of replicas. Faulty ac-
tual parameters are invalid values for an AT parameter, e.g., −1 and
0 number of replicas.

According to the partition testing strategy [Som10, Chap. 8.1.2],
each of these groups should be covered by at least one test case.
Therefore, an appropriate adequacy criterion is the coverage of
normal, boundary, and faulty actual parameters for applications of
AT roles.

The number of required test cases for full coverage depends on the
type of an AT’s formal parameter and its usage. For example, the
only faulty values of a formal parameter of type Strinд may be a
null pointer and an empty string. Covering these two cases in the
test suite thus leads to a full coverage of faulty actual parameters.

- Missing constraints of AT roles: An architectural model with an ap-
plied AT may violate constraints of the architectural knowledge
formalized by the AT. For example, when the three-layer AT is ap-
plied, a component of the presentation layer may directly request
data from a data layer component like illustrated in Figure 4.2. In
this case, the validation of the architectural model should fail. If
the validation is nonetheless successful, the AT is faulty.

The reason for such faults is that AT engineers have missed to for-
malize constraints of the corresponding architectural knowledge.
During the speci�cation of ATs (step (3) of the AT speci�cation
process in Figure 4.5), AT engineers interpret the architectural
knowledge to be formalized. Because such interpretations are con-
ducted manually, AT engineers may simply forget the formalization
of certain constraints. Also wrongly formalized constraints are pos-
sible, e.g., when AT engineers misunderstand the corresponding
architectural knowledge.

Fortunately, the likelihood is low that both AT engineers and AT
testers forget or misunderstand the same constraints. The only
precondition is that they interpret the architectural knowledge
independently from each other.

Consequently, an appropriate adequacy criterion is the coverage of
constraints of AT roles. For full coverage, AT testers have to specify

106

4.1. Architectural Template Processes

at least a positive and a negative test case for each constraint of the
formalized architectural knowledge. For identifying constraints,
AT testers manually interpret the architectural knowledge to be for-
malized. This identi�cation is redundant to and independent from
the interpretation AT engineers, which increases the likelihood to
discover missing constraints.

- Uncoveredmetamodel elements in completions: Software archi-
tects may use arbitrary elements of the metamodel of an architec-
tural model to which an AT is applied; as long as no metamodel
or AT constraints are violated. For example, the book shop model
in Figure 4.4 (top) will remain valid if the Web & Application Server
would additionally include a model element for a virtual machine (if
supported by the metamodel). In this case, the output of the comple-
tion should not only be valid but also acknowledge the additional
metamodel element correctly. In above example, the completion
result in Figure 4.4 (bottom) should include a virtual machine in
both replicas of the Web & Application Server. If this is not the case, the
AT is faulty.

The reason for such faults is that AT engineers missed to cover the
metamodel element in question within an AT’s completion. For
example, the completion illustrated in Figure 4.4 may lack the logic
to copy the element for virtual machines. Faults like this typically
occur for rarely-used and newer metamodel elements because it is
less likely that AT engineers think of these situations (cf. [Gia16,
Sec. 7.1.1]).

Therefore, an appropriate adequacy criterion is the coverage of
metamodel elements. For full coverage, AT testers have to provide
at least one test case per metamodel element. If full coverage is
unrealistic, especially rarely-used and newer metamodel elements
should be tested.

- Coding errors: Faulty ATs may contain coding errors within their
completions. In this case, the pre-conditions of a completion are ful-
�lled but its post- and source-target-conditions are violated (cf. Sec-
tion 2.3.3.1). The typical causes for such a situation range from

107

4. The Architectural Template Method

simple faults (e.g., assigning a wrong value) to complex and con-
ceptual faults (e.g., allocating a replicated component on the wrong
server).

Coding errors are the most generic type of root cause, which makes
the suggestion of concrete adequacy criteria hard. Still, because a
completion is a re�nement transformation that enriches architec-
tural models with additional expected elements (cf. De�nition 2.28),
AT testers should explicitly test whether a completion creates such
elements correctly.

Therefore, an appropriate adequacy criterion is the coverage of
AT-induced elements (cf. Section 4.1.2). Full coverage is achieved if
each element to be created is tested with at least one test case.

(2) create and assess test suite. AT testers create and assess a test suite
exactly like described for the testing of transformations in Sec-
tion 2.3.3.2. In summary, AT testers derive the test suite directly
from the speci�ed adequacy criteria and use the coverage of these
criteria to assess the test suite.

(3) build oracle function. As described in Section 2.3.3.2, testers can specify
oracle functions either via concrete models for model di�erencing or
via transformation contracts. Both approaches have been applied for
testing ATs by Giacinto [Gia16]. Her results support the following
statements.

In case of faults in completions, model di�erencing is well-suited for
identifying the cause for these faults [Gia16, Sec. 6.3]. The di�erences
between target and expected model typically point to the concrete is-
sues at hand. For example, a missing connector directly points to the
completion logic where connectors are created. Similarly, a wrong
value of an attribute directly points to the completion logic where
the value is set. The downside, however, is that model di�erencing
is computationally expensive [SCD12] and requires one expected
model per test case, thus, causing high speci�cation e�orts [Gia16,
Sec. 7.2]. Giacinto has therefore only applied model di�erencing to
identify fault causes that were otherwise hard to �nd.

In contrast, transformation contracts are more lightweight because
they check only particular constraints instead of comparing whole

108

4.2. Architectural Template Language

models. Moreover, transformation contracts are reusable over vari-
ous test cases because the contract’s constraints have to hold inde-
pendently of speci�c models.

Instead of OCL, Giacinto uses QVT-O (cf. Section 2.3.2) for specify-
ing transformation contracts [Gia16, Sec. 5.3.4]. The use of QVT-O
allows to overcome OCL’s limitation of only working within the
context of one metamodel [CMSD04]. In contrast, QVT-O transfor-
mations can use two models as input, i.e., both the source and the
target model of a completion. QVT-O transformations can there-
fore check a contract’s source-target-conditions and output whether
these conditions are ful�lled. QVT-O particularly includes an ex-
tended OCL version [Obj16, Chap. 8.2.2], thus, allowing AT testers
to bene�t from OCL as well.

(4) execute test suite and evaluate results. AT testers execute the test suite
and evaluate execution results using the oracle function as described
for transformations testing in Section 2.3.3.2. Based on evaluation
results, AT testers create a fault report that helps AT engineers to
resolve any problems (cf. action (4) in Section 4.1.3.2)

4.2. Architectural Template Language

The AT language allows AT engineers to specify ATs and software architects
to apply ATs (see De�nition 4.3). Given this pragmatism, the AT language
becomes an integral part of the AT method because it impacts both AT
processes and AT tooling.

De�nition 4.3 (Architectural Template language) “The Architectural
Template (AT) language is the language to specify and apply ATs.” (author’s
de�nition)

This section details the theoretical foundations and the formalization of the
AT language. The AT language’s formalization is realized as a metamodel—
the AT metamodel.

109

4. The Architectural Template Method

ATs are classi�ed as hybrid templates that combine initiator and bound
templates (Section 4.2.1). A core characteristic of such templates is the
di�erentiation between types and instances, which motivates the formal-
ization of AT types and AT instances (Section 4.2.2). After clarifying these
theoretic foundations, the intension of the AT language is derived as a basis
for metamodel speci�cation (Section 4.2.3) and the technical realization of
types and instances is described (Section 4.2.4). Finally, the AT metamodel
is described that follows this technical realization while adhering to the
AT language’s intension (Section 4.2.5). The overall process therefore fol-
lows the formal and systematic de�nition process for DSLs described in
Section 2.3.1.3.

4.2.1. Classification of Architectural Templates

In the AT application process (Section 4.1), software architects can both
instantiate architectural models with ATs and bind further ATs to their
architectural model. According to the template categories from Section 2.4.3,
ATs can thus be classi�ed as hybrid templates that combine initiator and
bound templates. Figure 4.6 illustrates this combination from the viewpoint
of software architects.

The data �ow for ATs starts at the left side of Figure 4.6 where an AT of an
AT catalog serves as initiator template. The AT initiator (part of AT tooling)
acts as template engine to create an initial architectural model from this AT.
A subsequent customization is controlled via the editors of the AT tooling,
i.e., AT tooling prevents software architects from violating AT constraints
when they specify the architectural model (see the AT application process
in Section 4.1.1). Within AT constraints, AT editors allow customization
with application-speci�c elements (from an application-speci�c model) and
bindings to additional ATs (from an AT catalog). Because of these bindings,
ATs not only act as initiator but also as bound templates. The result after
customization is, therefore, only an intermediate architectural model into
which bound ATs have to be integrated in a subsequent task. To execute
this integration task, the AT engine (part of AT tooling) acts as a second
template engine. The �nal result is an architectural model that conforms to
all previously bound ATs, i.e., the model satis�es all constraints of each AT
within the set of ATs.

110

4.2. Architectural Template Language

AT
language

initial
architectural model

application-
specific model

elements

controlled
customization

intermediate
architectural model

AT
initiator

AT catalog

AT
engine

architectural model
(e.g., PCM model)

«conforms
to»

«binds initiator AT»

«binds initiator &
further ATs»

architectural model
language

(e.g., PCM)

«profiled»

«profiled»

profile
language

(e.g., PCM Profiles)

«extendable via» «references»

«extends via profiles»

«..»

Legend:

templatemodel

data flow

instance of association

metamodel

Figure 4.6.:Data �ow of Architectural Templates (ATs). ATs are hybrid templates
that combine initiator templates (for the creation of initial models and a controlled
customization) and bound templates (for embedding further templates).

The models illustrated in Figure 4.6 are instances of di�erent metamodels:
while ATs are instances of the AT language, all architectural models are
instances of an architectural model language such as the PCM. However,
a strict separation between these two metamodels would make binding
templates within architectural models impossible. Bound templates there-
fore require that there is an according mean to reference from architectural
model language to template language (cf. Section 2.4.3).

111

4. The Architectural Template Method

To realize such a reference, the AT language depends on a pro�le lan-
guage (cf. Section 2.3.4). This dependency allows the AT language to ex-
ternally extend architectural model languages in a lightweight manner.
The prerequisite for such an extension is that the architectural model lan-
guage supports such a pro�le language. For example, the PCM supports
PCM pro�les [KDH+12] for external extensions, an integration of EMF
pro�les [LWWC12] within the PCM tooling.2

Given this prerequisite, a concrete AT can provide a pro�le for a particular
architectural model language. The pro�le extends this language by the ca-
pability to bind the AT. The initial architectural model and the intermediate
architectural model in Figure 4.6 can realize such bindings because they are
instances of the pro�led architectural model language.

A metamodel extension by pro�les also requires a precise semantics de�ni-
tion of the extension. In the AT method, extension semantics are de�ned via
translational semantics as described in Section 4.1.2: The AT engine eventu-
ally embeds bound templates into an unpro�led instance of the architectural
model language. This embedding particularly speci�es the semantics of the
AT application because the target architectural model language is assumed
to have well-de�ned semantics. Here, the main condition is that template
constructs can be expressed (and thus �nally embedded) in the target ar-
chitectural model language. Technically, each AT therefore includes an
appropriate completion.

4.2.2. Formalization of Types and Instances

ATs are templates that ful�ll the template characteristics described in Sec-
tion 2.4.4. Accordingly, the AT metamodel needs to distinguish between AT
types (or short ATs) and AT instances. The notion of types and instances
is indeed suitable because ATs classify the AT instances that can be cre-
ated based on them (classi�cation is needed for instance-of relationships;
cf. [Küh06]). For example, the software architect of the book shop (Sec-
tion 3.2.4) may use a di�erent set of components to engineer an online shop
for �owers and the resulting architecture would still conform to the bound

2 EMF pro�les can similarly be integrated into other EMF-based architectural model lan-
guages [LWWC12].

112

4.2. Architectural Template Language

three-layer AT. This section formalizes these core concepts—ATs and AT
instances—of the AT metamodel.

Following the terminology of Kühne [Küh06], ATs are type models for AT
instances, i.e., ATinstance Ct AT , and AT instances are prescriptive token
models of the planned software, i.e., so f twareCiATinstance . The instance-of
relation between ATs and AT instances describes an ontological instantia-
tion because both reside on the same linguistic level, i.e.,ATinstanceCot AT .

A change to a higher linguistic level is needed to specify such ATs and
AT instances. This speci�cation is enabled by the AT language LAT . Ac-
cordingly, a speci�ed AT is a linguistic instance of the AT metaclass of the
AT language, i.e., AT Clt LAT(AT). Analogously, a speci�ed AT instance
is a linguistic instance of the AT instance metaclass of the AT language,
i.e., ATinstance Clt LAT(AT instance). The latter two metaclasses of the
AT language require an association describing the ontological instance-of
relation, i.e., LAT(AT instance) is instance of LAT(AT) and LAT(AT) is
type of LAT(AT instance).

Figure 4.7 illustrates the discussed instance-of relationships based on the
three-layer AT. The upper-right of the �gure shows these relationships
along the two linguistic levels L0 and L1 and the two ontological levels O0
and O1.

Furthermore, Figure 4.7 uses Kühne’s notion of a meaning µ that “assigns
meaning to a model (element)” [Küh06]. The AT language de�nes the
meaning for elements of linguistic level L1 using ι(LAT) (see Section 2.3.1.3
for the de�nition of the intention ι). The meaning of the three-layer AT
(O1 on L0) is based on the referred architectural knowledge concept using
ι(three-layer). This concept de�nes the meaning of the book shop model
(O0 on L0) via its extension ϵ(three-layer), i.e., all elements falling under
the three-layer concept [Küh06]. Also the AT language spans an extension
ϵ(LAT), de�ning all valid models that the language can specify, e.g., a
three-layer book shop model.

113

4. The Architectural Template Method

extension

intension
AT

AT instance

instance

type

three-layer AT

Book Shop

linguistic
«instanceOf»

linguistic
«instanceOf»

ontological
«instanceOf»

AT Language

Book Shop
ERP

System

E-Mail
Server

...

extension intension “has ATs”
“has AT instances”
...

concept

“has three layers”
“components can only
access components of
the next layer”
...

Book Shop ∈ ε(μ(AT instance))

ε ι

ι

∈

∈

ε

μ
(B

oo
k

Sh
op

)
∈

ε(

μ
(t

hr
ee

-la
ye

r
A

T)
)

L0 L1

O1

O0

μ

μ

μ

⊲
l
t

⊲
l
t

⊲
o
t

ERP System

Flower Shop

...Book Shop
Book Shop

Figure 4.7.: Instance-of relationships of the book shop example (based on [Küh06]).

4.2.3. Intension of the Architectural Template Language

This section provides the intension—and thus the required attributes—of
the AT language. The AT languages’ intension particularly serves as basis
for de�ning the AT language via a metamodel in subsequent sections.

As described in Section 2.3.1.3, a language’s typical usage scenarios allow
to derive a language’s intension. The typical usage scenarios of the AT
languageLAT are re�ected in the AT processes from Section 4.1. Therefore,
the intension of the AT language ι(LAT) can be derived by analyzing the
minimally required attributes to enable these AT processes.

Table 4.1 summarizes the results of this analysis.3 The �rst column of
Table 4.1 provides the core elements of the AT language, i.e., AT catalogs,
ATs, AT roles, AT constraints, AT completions, and AT instances. The
second column of Table 4.1 lists the attributes associated to these elements.
These attributes can be derived from the AT processes in Section 4.1 as
follows.

3 An initial version of these results was published in [Leh14a].

114

4.2. Architectural Template Language

Table 4.1.: Intension of the AT language (ι(LAT))

Element Attributes

AT catalog “has ID”, “has name”, “collects ATs”

AT “has ID”, “has name”, “represents and documents architectural knowledge”, “sup-
ports architectural analyses”, “has default AT instance”, “has roles”

AT role “has ID”, “has name”, “has AT constraints”, “has formal parameters”, “has AT com-
pletion”

AT constraint “has ID”, “has name”

AT completion “references model transformation”

AT instance “classi�ed by ATs”, “has bindings between architectural elements and AT roles”,
“bindings have actual parameters”

The selection of ATs (�rst task of actions (1*) and (2*) of AT application
in Figure 4.1) induces the need of a uniquely identi�able, named catalog
of ATs to select from (“AT catalog has ID”, “AT catalog has name”, and
“AT catalog collects ATs”). A selection particularly requires ATs to have
unique identi�ers (“AT has ID”) and convenient names (“AT has name”).
The selection criteria are based on the architectural knowledge represented
and documented by the AT (“AT represents and documents architectural
knowledge”) and supported architectural analyses (“AT supports architec-
tural analyses”). For example, a software architect who wants to improve
the maintainability of a Palladio model may select the three-layer AT: the
AT represents the three-layer architectural style (along with its promise
to improve maintainability) and is supported by Palladio. As discussed in
the previous section, the selection also induces the need of AT types and
instances (“AT language has ATs”, “AT language has AT instances”, and “AT
instances are classi�ed by ATs”).

Given these fundamental formalisms of the AT language, the application
of ATs (second task of actions (1*) and (2*) of AT application in Figure 4.1)
can be inspected next. As described in Section 4.1.1, software architects
apply an AT either by instantiating a new architectural model from the AT
(“AT has default AT instance”) or by binding the AT’s uniquely identi�able,
named roles to an existing architectural model (“AT has roles”, “AT role has
ID”, and “AT role has name”). Furthermore, AT roles de�ne constraints and
are parametrizable (“AT role has AT constraints” and “AT role has formal
parameters”; cf. action (3) of AT speci�cation in Figure 4.5). Constraints

115

4. The Architectural Template Method

are uniquely identi�able and named, which allows software architects to
quickly recognize the meaning of a constraint in natural language (“AT
constraint has ID” and “AT constraint has name”).

For the assignment of roles to architectural elements, AT instances have
to maintain an appropriate binding (“AT instance has bindings between
architectural elements and AT roles”). These bindings can particularly have
actual parameters for each formal parameter of an AT role (“AT instance
bindings have actual parameters”).

The quality property analysis (described in Section 4.1.2) requires that AT
roles specify a completion (“AT role has AT completion”). Technically, such
a completion is realized by a suitable model transformation that integrates
AT-induced elements (cf. Section 4.1.2). Therefore, a completion needs to ref-
erence an implementing transformation (“AT completion references model
transformation”). Figure 4.4 illustrates a completion for the loadbalanced
container role of the loadbalancing AT.

4.2.4. Technical Realization of Types and Instances

AT types and AT instances are the core concepts of the AT language. There-
fore, this section describes how these concepts are technically realized in the
AT metamodel. After selecting a suitable realization option (Section 4.2.4.1),
the induced structural dependencies for the AT metamodel are described
(Section 4.2.4.2).

4.2.4.1. Selection of Realization Option

The intension of the AT language (Section 4.2.3) requires that AT instances
bind AT roles to architectural elements and assign actual parameters to
formal parameters of bound AT roles. These requirements may be realized
by extending the targeted architectural model:

(a) externally via an annotation model, e.g., by de�ning a metamodel
for bindings that reference a PCM element and an AT role while
assigning actual parameters to each formal parameter of an AT role,

116

4.2. Architectural Template Language

(b) heavyweight, e.g., by extending the architectural elements of the
PCM to specify role bindings and parameter assignments, or

(c) lightweight, e.g., by reusing EMF pro�les [LWWC12] to bind roles
and to assign actual parameters.

Options (a) and (b) both have the disadvantage that existing tools have to
be extended or newly be developed, e.g., to provide editing support for role
bindings and parameter assignments. As described in Section 2.3.4, pro�les
instead have the advantage that existing tools may already provide tool
support for pro�le-based extensions. For example, Palladio has an integrated
support for EMF pro�les [KDH+12] that enables software architects to use
the normal PCM editors to apply pro�les, including stereotype applications
and assignments of actual parameters to tagged values. For this reason, the
AT metamodel employs option (c) for realizing role bindings and parameter
assignments.

4.2.4.2. Structural Dependencies of Selected Realization Option

This section explains the structural dependencies for the AT metamodel
that are induced from the metatmodel’s realization via pro�les (i.e., the
realization option selected in Section 4.2.4.1).4

In terms of structure, the realization via pro�les requires that a dedicated
pro�le is associated to an AT. For each AT role, the dedicated pro�le provides
a stereotype that represents the role and speci�es the role’s formal param-
eters as tagged values. Once such a pro�le is available, a corresponding
pro�le application allows to bind the pro�le’s stereotypes to architectural
elements and to assign actual values to tagged values. Therefore, such pro-
�le applications realize the concept of AT instances, including the attributes
required by the AT language’s intension (cf. Table 4.1).

Figure 4.8 illustrates the described structural dependencies and the result-
ing instantiation relationships between involved (meta)models. Linguistic
instantiation levels are depicted via white rectangles. Figure 4.8 orders
these instantiation levels from the highest linguistic level (top) to the lowest
linguistic level (bottom):

4 Section 4.2.1 describes this realization from a data �ow perspective.

117

4. The Architectural Template Method

L0: ATs and AT instances

(exists only conceptually;
technically realized as

profile application)

L0: architectural models L0: profiles and profile
applications

L1: profile language

L2: language definition
language

L1: AT language

Legend:

model

instance of association

metamodel

AT metamodel

profile
(stereotypes represent

AT roles)

«..»
AT

profile
application

(represents AT instance)

«..»

L1: architectural model
language

«linguistic
instanceOf»

«references
EClass of»

«linguistic
instanceOf»

«linguistic
instanceOf»

«linguistic
instanceOf»

«linguistic
instanceOf»

«ontological
instanceOf»

«ontological
instanceOf»

«extends»

«extends»

«linguistic
instanceOf»

«references
Stereotype of»

«references»

«references
Stereotype

instances of»

Ecore

AT instance
@

PCM model

PCM EMF Profiles

«..»

linguistic
level

concept

Figure 4.8.: Instance-of relationships of architectural models, pro�les, and ATs.

L2: The highest linguistic level (top of Figure 4.8) describes the level for
languages to de�ne languages (i.e., meta metamodels). EMF’s Ecore
metamodel is an example for such a language (cf. Section 2.3.6).

L1: The languages of the next lower level (middle of Figure 4.8) are speci-
�ed with the language from L2, thus, linguistic instances of the L2
language. Figure 4.8 shows that the architectural modeling language
(e.g., the PCM), the pro�le language (e.g., EMF Pro�les), and the AT
language (i.e., the AT metamodel) are speci�ed at this linguistic level.
In particular, the PCM, EMF pro�les, and the AT metamodel are all
linguistic instances of Ecore.

118

4.2. Architectural Template Language

L0: Analogously, the languages of the lowest level (bottom of Figure 4.8) are
speci�ed with the corresponding languages from L1, thus, linguistic
instances of these L1 languages. Figure 4.8 shows that architectural
models (e.g., PCM models), pro�les and pro�le applications, and ATs
and AT instances are speci�ed at this linguistic level.

Besides linguistic instance-of relationships, Figure 4.8 illustrates two onto-
logical instance-of relationships at L0: pro�le applications are ontological
instances of pro�les and AT instances are ontological instances of ATs.
Section 4.2.2 describes the rationale for ontological instantiation of ATs
and AT instances; the argumentation is analogous for pro�les and pro�le
applications.

Figure 4.8 illustrates that AT instances are only de�ned conceptually and are
technically realized via pro�le applications. For this reason, a pro�le holds
a reference to an AT and an AT’s roles reference corresponding stereotypes
of a pro�le. These references enable the navigation from pro�les and
pro�le applications to ATs and vice-versa. Particularly, the stereotype that
represents an AT role (and vice-versa) can be identi�ed.

As shown in Figure 4.8, these references are enabled at L1. ATs can refer-
ence pro�les because the AT metamodel references EMF Pro�les’ Stereotype
metaclass. Pro�les can reference ATs because the EMF Pro�les metamodel
references ECore’s EClass metaclass, which allows pro�les to reference ar-
bitrary elements of Ecore-based models. Because the AT metamodel is
speci�ed via Ecore, pro�les can thus reference ATs.

For the same reason, pro�les and pro�le applications can particularly ref-
erence elements of the PCM and of PCM models. That is, a pro�le can
specify which PCM elements are extended by a pro�le’s stereotypes and
a pro�le application can specify to which concrete PCM model elements
such stereotypes are applied.

4.2.5. The Architectural Template Metamodel

This section describes the AT metamodel as speci�ed via EMF’s Ecore
(cf. Section 2.3.6). The AT metamodel realizes ATs and AT instances as
described in Section 4.2.4. The remaining elements of the AT metamodel
are derived from the AT language’s intension described in Section 4.2.3.

119

4. The Architectural Template Method

For each language element of the intension, a representing metaclass is
created. Each metaclass is then enriched with the corresponding intension
attributes as de�ned in Table 4.1. Therefore, the AT metamodel adheres to
the AT language’s intension by construction.

In this section, the semantics of the AT metamodel are informally described
in natural language. AT tooling (Section 4.3) serves as a reference implemen-
tation for these semantics. Therefore, AT tooling formally de�nes semantics
in a pragmatic way (cf. pragmatic semantics in Section 2.3.5).

The remainder of this section is structured as follows. First, an overview
of the metamodel and its main elements is given (Section 4.2.5.1). Second,
abstract syntax, semantics, and concrete syntax are detailed for each meta-
class. The AT metamodel includes metaclasses for catalogs (Section 4.2.5.2),
ATs (Section 4.2.5.3), roles (Section 4.2.5.4), constraints (Section 4.2.5.5),
completions (Section 4.2.5.6), stereotypes (Section 4.2.5.7), and AT instances
(Section 4.2.5.8).

4.2.5.1. Overview of the Metamodel

This section describes the main elements of the AT language. Main elements
are highlighted in bold.

Software architects apply an AT by creating an AT instance. AT instances
formalize the set of bindings with actual parameters from architectural
elements to AT roles (cf. bound templates in Section 2.4.3.3). The bound
roles in Figure 3.5 exemplify such bindings and their graphical syntax.

AT engineers specify the ATs (i.e., AT types) to be bound. Each AT consists
of:

(1) A set of roles to re�ne and restrict elements of architectural models—
AT instances bind such roles similar to models that bind stereotypes
of UML pro�les (cf. Section 2.3.4). Each role may include:

• formal parameters to acknowledge for variation points (cf. ac-
tion (3) in Section 4.1.3.2)—formal parameters are realized by as-
signing each role a stereotype (cf. Section 2.3.4) that de�nes these
parameters,

120

4.2. Architectural Template Language

• constraints to express restrictions as, e.g., shown in Figure 4.2,
and

• a completion that can map bound roles to a semantically equiva-
lent architectural model construct—this mapping de�nes the se-
mantics of the role via translational semantics (cf. Section 2.3.5).
For instance, the loadbalanced container role in Figure 4.4 re�nes
the bound resource container with a loadbalancer—its completion
expresses this re�nement formally.

(2) A documentation that describes the architectural knowledge that
is modeled, e.g., to point to the QoS properties potentially impacted
by this knowledge.

(3) An optional default AT instance to be used as initiator template
(cf. Section 2.4.3.1).

These constituents allow to formalize architectural knowledge, e.g., coming
in the form of architectural styles (i.e., roles with constrains) and architec-
tural patterns (i.e., roles that re�ne elements via completions). Such ATs
are �nally collected in AT catalogs.

4.2.5.2. Metamodel: Catalog

An AT catalog is a collection of ATs within a common repository. Software
architects can select ATs from and AT engineers can put ATs into such
catalogs. According to the AT language’s intension (cf. Table 4.1), AT
catalogs further have a unique identi�er and a name.

Abstract Syntax Figure 4.9 illustrates the metaclass Catalog that realizes
the concept of AT catalogs.

Catalog inherits from Entity, which provides Catalog with attributes for a
unique identi�er (id; inherited from Identifier) and a name (entityName; inher-
ited from NamedElement). In Figure 4.9, the metaclasses Entity, Identifier, and
NamedElement are abstract and reused from the PCM (cf. Section 2.5.3.1) but
may be analogously de�ned without PCM dependency.

121

4. The Architectural Template Method

Catalog

AT

Entity

NamedElement

entityName : EString

Identifier

id : EString

[1..1] catalog

[0..*] ATs

Figure 4.9.: The metaclass Catalog inherits from Entity and contains a set of ATs.

Moreover, Catalog has a containment reference to the ATmetaclass. As shown
in Figure 4.9, a Catalog includes an arbitrary number of ATs and each AT is
contained in exactly one catalog.

Semantics AT engineers put an AT into an AT catalog by adding an
instance of the AT metaclass to the containment reference of an instance of
the Catalog metaclass. Software architects can subsequently select and use
the added AT from this catalog. AT tooling (Section 4.3) supports these use
cases.

Concrete Syntax Table 4.2 illustrates the concrete syntax of AT catalogs.
There are two alternative notions to depict AT catalogs: a compact and an
expanded notion.

The �rst row in Table 4.2 shows the compact notion of Catalog instances.
A catalog is depicted as a stacked AT logo with the catalog name (e.g.,
“Catalog Name”) underneath. This notion is useful to illustrate data �ow of
ATs as, e.g., used in Figure 4.1, without explicitly stating contained ATs.

122

4.2. Architectural Template Language

Table 4.2.:Catalog notations

Metaclass Notation Description
Catalog

Catalog
Name

Compact notion of an AT catalog
with the name “Catalog Name”, e.g.,
used in Figure 4.1.

Catalog Expanded notion of an AT cata-
log with the name “Catalog Name”.
Subentries illustrate two contained
ATs named “An AT Name” and “An-
other AT Name”.

The second row in Table 4.2 shows the expanded notion of Catalog instances.
A catalog is depicted as an expanded list where the list head contains an
entry for the catalog name (e.g., “Catalog Name”) prepended with a stacked
template symbol and the string “Catalog”. Each list entry represents a
contained AT. An AT entry provides the AT’s name prepended with a
template symbol and the string “AT”. The example in Table 4.2 shows two
ATs named “An AT Name” and “Another AT Name”. This notion is useful
to illustrate the ATs contained in a catalog.

4.2.5.3. Metamodel: AT

As stated in De�nition 4.1, an AT is a template representing and document-
ing reusable architectural knowledge. Software architects can apply ATs for
both architectural modeling and architectural analyses while AT engineers
specify ATs. An optional default AT instance provides software architects
with an initial architectural model corresponding to the represented archi-
tectural knowledge, e.g., a reference architecture.

ATs formalize reusable architectural knowledge in terms of the architec-
tural knowledge’s roles (cf. Section 2.2.4). Furthermore, ATs have a unique
identi�er and a name for selection purposes (cf. the AT language’s intension
in Table 4.1).

123

4. The Architectural Template Method

Abstract Syntax Figure 4.10 illustrates the metaclass AT that realizes the
concept of ATs.

AT

documentation : EString

defaultInstanceURI : EString

Entity

Role

NamedElement

entityName : EString

Identifier

id : EString

[1..1] AT

[0..*] roles

Figure 4.10.: The metaclass AT inherits from Entity and contains a set of roles.

AT inherits from Entity, which provides AT with attributes for a unique identi-
�er and a name (as detailed for the Catalog metaclass in Section 4.2.5.2). AT
engineers use the documentation attribute to point to the modeled architec-
tural knowledge, e.g., via a natural language description or a hyperlink to
such a description. Moreover, the defaultInstanceURI references the location
of the AT’s default instance as a uniform resource identi�er (URI).

AT has a containment reference to the Role metaclass. As shown in Fig-
ure 4.10, an AT includes an arbitrary number of roles and each Role is con-
tained in exactly one AT.

Semantics AT semantics are mainly determined by an AT’s roles, which
constrain and re�ne architectural elements. In addition, the semantics of
the attributes of the AT metaclass are as follows.

The id attribute is a unique identi�er of an AT, thus, suited as identi�er
for ATs within tools. In contrast, the entityName attribute represents a

124

4.2. Architectural Template Language

human readable (but not necessarily unique) version of this identi�er. The
entityName of an AT is, thus, a convenient mean for AT engineers and
software architects to identify an AT.

The documentation attribute is an informal mean to describe the represented
architectural knowledge. A tool with AT support must be able to show the
documentation attribute to involved stakeholders. For example, the documen-
tation helps software architects in determining the suitability of an AT and
AT testers in developing their interpretation of the described architectural
knowledge.

The defaultInstanceURI attribute must be a unique identi�er of the location of
a default AT instance. Software architects must be able to use this default
AT instance as initiator template for a new architectural model (initiator
templates are described in Section 2.4.3.1). A tool with AT support must
provide an according wizard.

AT tooling (Section 4.3) serves as a reference implementation for above use
cases.

Concrete Syntax Table 4.3 illustrates the concrete syntax of ATs. There
are two alternative notions to depict ATs: a compact and an expanded
notion.

Table 4.3.:AT notations
Metaclass Notation Description

AT

AT Name

Compact notion of an AT with the name
“AT Name”, e.g., used in Figure 4.5.

AT @AT Name

@A Role

@Another Role

Expanded notion of an AT with the name
“AT Name”. Inner dashed boxes depict two
contained AT roles named “A Role” and “An-
other Role” (cf. Section 4.2.5.4).

The �rst row in Table 4.3 shows the compact notion of instances of the AT
metaclass. An AT is depicted as an AT logo with the AT name (e.g., “AT
Name”) underneath. This notion is useful to illustrate data �ow of ATs as,
e.g., used in Figure 4.5, without explicitly stating contained roles.

125

4. The Architectural Template Method

The second row in Table 4.3 shows the expanded notion of instances of the
AT metaclass. An AT is depicted as dashed box where the top left of the
box contains the AT name (e.g., “AT Name”) prepended with an @-symbol.
Contained dashed boxes represent AT roles as described in Section 4.2.5.4.
The example in Table 4.3 shows two roles named “A Role” and “Another
Role”. This notion is useful to illustrate the roles contained in an AT.

4.2.5.4. Metamodel: Role

In correspondence to the general role de�nition (De�nition 2.13), a role
of an AT speci�es the responsibility of an architectural element within a
context of related elements. When software architects assign AT roles to
architectural elements, AT roles thus restrict and re�ne assigned elements.
AT engineers specify how AT roles realize such restrictions (via constraints)
and re�nements (via completions). Furthermore, AT roles have a unique
identi�er and a name for clarity when being illustrated (cf. the AT language’s
intension in Table 4.1).

An AT role references exactly one stereotype of a pro�le associated to the AT
(cf. Section 2.3.4). As described in Section 4.2.1, the referenced pro�le allows
to externally extend architectural model languages in a lightweight manner.
In the case of AT roles, pro�les provide AT role with formal parameters
(tagged values of a stereotype) to acknowledge for variation points (cf. action
(3) in Section 4.1.3.2). Moreover, pro�les allow software architects to create
AT instances by creating pro�le applications (cf. De�nition 2.25). Pro�le
applications bind the associated roles to architectural elements and support
the speci�cation of actual parameters via tagged values.

Abstract Syntax Figure 4.11 illustrates the metaclass Role that realizes the
concept of AT roles.

Role inherits from Entity, which provides Role with attributes for a unique
identi�er and a name. Entity and its superclasses are detailed for the Catalog
metaclass in Section 4.2.5.2.

Role has a containment reference to the Constraint metaclass. As shown in
Figure 4.11, a Role includes an arbitrary number of constraints and each Con-
straint is contained in exactly one role. Constraint is abstract to acknowledge

126

4.2. Architectural Template Language

Role

Entity

Identifier

id : EString

NamedElement

entityName : EString

CompletionConstraint

Stereotype

[1..1] role

[0..1] completion

[1..1] role

[0..*] constraints

[1..1] stereotype

Figure 4.11.: The metaclass Role inherits from Entity, contains a set of constraints
and an optional completion, and references a stereotype.

for di�erent kinds of constraints, e.g., constraints formulated via the OCL
(cf. Section 2.3.6). Section 4.2.5.5 details the Constraint metaclass.

Role further has a containment reference to the Completion metaclass. As
shown in Figure 4.11, a Role contains either no or exactly one completion
and each Completion is contained in exactly one role. Completion is abstract to
acknowledge for di�erent kinds of completions, e.g., a completion imple-
mented via QVT-O (cf. Section 2.3.2). Section 4.2.5.6 details the Completion
metaclass.

Furthermore, Role has a reference to exactly one Stereotype. Stereotype indi-
rectly provides Rolewith formal parameters (via tagged values) and allows to
bind roles to architectural elements (via pro�le applications). Section 4.2.5.7
details the Stereotype metaclass.

Semantics AT roles formalize the roles of the represented architectural
knowledge. As such, AT roles restrict and re�ne bound architectural ele-
ments. An AT role is bound by applying the referenced stereotype.

If an AT role is bound to an architectural element, the following conditions
must be met before an architectural analysis can be started:

127

4. The Architectural Template Method

• all constraints of the AT role have to hold and

• the completion of the AT is able to re�ne the bound architectural
element with additional architectural elements if such elements are
needed to conform to the represented architectural knowledge.

If no completion is speci�ed, the semantics of an applied role are solely
determined by its constraints (and vice-versa). A role that contains neither
constraints nor a completion is invalid. For usability purposes, architecture
modeling tools of software architects can prevent software architects from
constraint violations and point to already existing constraint violations as
exempli�ed in Figure 4.2.

Moreover, the semantics of the attributes of the Role metaclass are as follows.
The id attribute is a unique identi�er of a role, thus, suited as identi�er for
roles within tools. The entityName attribute represents a human readable
(but not necessarily unique) version of this identi�er. The entityName of a
role is, thus, a convenient mean for AT engineers and software architects
to identify a role.

AT tooling (Section 4.3) serves as a reference implementation for integrat-
ing constraint checks, executing completions, and for applying roles via
stereotypes.

Concrete Syntax Table 4.4 illustrates the concrete syntax of AT roles. Dif-
ferent notions can be used depending on whether a role contains constraints,
formal parameters, and a completion.

The �rst row in Table 4.4 shows a role without constraints and parameters.
A role is depicted as dashed box where the top left of the box contains the
role name (e.g., “Role”) prepended with an @-symbol.

The second row in Table 4.4 shows a role with constraints. In addition to the
notion in the �rst row, a role’s box contains a straight horizontal line with
its constraints displayed underneath. Each constraint starts with a bold
text “inv” (an abbreviation for “invariant” in the style of OCL expressions)
followed by the constraint’s name and a colon. In the next line, a repre-
sentative expression for the constraint follows. This expression can, for
instance, be an OCL expression (cf. Section 2.3.6). The example in Table 4.4

128

4.2. Architectural Template Language

Table 4.4.: Role notations

Metaclass Notation Description
Role @Role A role with the name “Role”.
Role @Role

inv constraint 1:
 expression 1
inv constraint 2:
 expression 2
…

A role with constraints. The name of
each constraint (“constraint 1”, “con-
straint 2”, etc.) is depicted after a bold
“inv” (invariant) text.
Each concrete constraint is visualized
via a textual expression (“expression 1”,
“expression 2”, etc.). For example, an
OCL expression can be used as expres-
sion.

Role @Role (
 parameter 1 : type 1,
 parameter 2 : type 2,
 …
)

A role with formal parameters “parame-
ter 1” of type “type 1”, “parameter 2” of
type “type 2”, etc.
Technically, formal parameters are real-
ized as tagged values of stereotypes; ac-
cordingly the names and types of tagged
values are illustrated.

Role @Role

 completion.qvto

A role with a completion referencing a
QVT-O transformation located at “com-
pletion.qvto”.

shows two constraints named “constraint 1” and “constraint 2” and with
the expressions “expression 1” respectively “expression 2”.

The third row in Table 4.4 shows a role with formal parameters. In addition
to the notion in the �rst row, a role’s name is appended with an opening
and a closing parenthesis. Between these parentheses, formal role param-
eters are denoted as a comma-separated list. For each formal parameter,
its name and its type separated by a colon are given. Technically, parame-
ters (including names and types) are derived from the tagged values of a
role’s referenced stereotype. The example in Table 4.4 shows two param-
eters named “parameter 1” and “parameter 2” and with the type “type 1”
respectively “type 2”.

129

4. The Architectural Template Method

The fourth row in Table 4.4 shows a role with a completion. In addition to
the notion in the �rst row, a role’s box contains a straight horizontal line
with its completion displayed underneath. A completion starts with a bold
arrow-symbol followed by the location of the completion’s transformation
�le. The example in Table 4.4 shows a completion that references the
QVT-O transformation “completion.qvto”.

A role can contain constraints, formal parameters, and a completion alto-
gether. The corresponding notions can therefore be combined.

4.2.5.5. Metamodel: Constraint

AT constraints specify what software architects are forbidden to change
in a software architecture (cf. [JB05]). Such restrictions prescribe software
architects possible design decisions, which can ensure that architectural
design remains sound. AT constraints can, thus, formalize reusable architec-
tural knowledge applied to an architectural model. These constraints can
then ensure the conformance to the architectural knowledge by prohibiting
design decisions that would violate conformance.

Technically, constraints can be formulated via di�erent constraint languages,
e.g., via the OCL (Section 2.3.6), Alloy [Jac12], B [Abr96], VDM [Jon90], and
Z [Spi92]. The AT language and AT tooling (cf. Section 4.3) are exempli�ed
with constraints formulated in OCL. In contrast to the other constraint lan-
guages, OCL has the advantage that it is integrated with UML and, thus, the
best-known language to software architects [Abr96, p. 303]. Moreover, the
applicability and suitability of OCL for formalizing architectural constraints
has been shown by Tibermacine et al. [TFS10a].

In the AT language, the extensibility for di�erent constraint languages is
acknowledged by de�ning an abstract metaclass for constraints. A dedicated
subclass is used for adding support for OCL constraints; alternatives like
Alloy may be realized analogously. Furthermore, constraints have a unique
identi�er and a name for selection purposes (cf. the AT language’s intension
in Table 4.1).

130

4.2. Architectural Template Language

Constraint

expression : EString

Entity

Identifier

id : EString

NamedElement

entityName : EString

OCLConstraint

Figure 4.12.: The abstract metaclass Constraint inherits from Entity. The metaclass
OCLConstraint realizes a concrete Constraint.

Abstract Syntax Figure 4.12 illustrates the metaclass Constraint that realizes
the concept of AT constraints.

The metaclass Constraint is abstract to acknowledge for di�erent kinds of
constraints, e.g., OCL constraints. The attribute expression holds a corre-
sponding string representation of an OCL constraint. Moreover, Constraint
inherits from Entity, which provides Constraint with attributes for a unique
identi�er and a name. Entity and its superclasses are detailed for the Catalog
metaclass in Section 4.2.5.2.

The metaclass OCLConstraint inherits from Constraint, thus, realizing a con-
crete constraint kind. OCLConstraint represents constraints formulated via
OCL (cf. Section 2.3.6). The attribute expression of an OCLConstraint holds a
corresponding string representation of an OCL constraint. Accordingly,
OCL syntax and semantics [Obj14] hold for this expression.

Semantics A constraint speci�es a restriction for elements of an architec-
tural model. Software architects can evaluate whether such a constraint
holds for a given architectural model.

The evaluation context of a constraint is the AT role that contains the
constraint. Starting from this context, AT engineers specify restrictions on

131

4. The Architectural Template Method

the role itself, on the bound element, and on directly and indirectly related
elements and roles. A constraint’s expression holds an evaluation rule for
such restrictions.

For instance, an OCL constraint—i.e., a concrete variant of a constraint—
must hold an OCL expression within the expression attribute. An example
constraint can easily be formulated for the number of replicas of the load-
balancer in Figure 4.4. The number of replicas should be strictly greater
than zero because a loadbalancer always needs at least one component
attached. In OCL, this constraint can be formulated as self.numberOfReplicas >
0 in the context of the associated AT role.

In case the evaluation of a constraint indicates a violation of the restriction,
software architects are informed about this violation. For convenience,
software architects are provided with the constraint’s name. If software
architects need more details, they can inspect the concrete expression of a
constraint.

AT tooling (Section 4.3) exempli�es constraint evaluations for OCL con-
straints. AT tooling also serves as a reference implementation for such
evaluations.

Concrete Syntax Table 4.5 shows the concrete syntax of AT constraints.

Table 4.5.:Constraint notation
Metaclass Notation Description
Constraint inv constraint name:

 expression A constraint named “constraint name” is
depicted after a bold “inv” (invariant) text.
After a colon, the constraint’s textual ex-
pression is denoted underneath, e.g., for-
mulated in OCL.

Table 4.5 shows that a constraint is denoted with a textual syntax similar
to OCL. A constraint starts with a bold text “inv” (an abbreviation for
“invariant” in the style of OCL expressions) followed by the constraint’s
name and a colon. In the next line, the constraint’s expression is given.
This expression can, for instance, be an OCL expression as exempli�ed in
the previous paragraph about constraint semantics.

132

4.2. Architectural Template Language

4.2.5.6. Metamodel: Completion

In the AT method, completions (cf. Section 2.5.2.2) integrate QoS-relevant
elements and attributes into architectural models to which AT roles have
been bound. The QoS-relevant elements and attributes are inherent to the
architectural knowledge captured by the associated AT role. For instance,
the loadbalanced container role in Figure 4.4 re�nes the bound resource
container with a loadbalancer—its completion expresses this re�nement
formally.

Like constraints that can be formulated in various constraint languages,
completions can be realized with various M2M transformation languages,
e.g., QVT-O (Section 2.3.2) and ATL [JABK08]. The AT language and AT
tooling (cf. Section 4.3) are exempli�ed with completions formulated in
QVT-O for the reasons given in Section 2.3.2. Still, the AT language acknowl-
edges for extensions with di�erent transformation languages by de�ning
the metaclass for completions as abstract. A dedicated subclass is used
for adding support for QVT-O completions; alternatives like ATL may be
realized analogously.

Abstract Syntax Figure 4.13 illustrates the metaclass Completion that real-
izes the concept of completions of AT roles.

Completion is abstract to acknowledge for di�erent kinds of M2M languages.
The attribute completionFileURI of a Completion references the location of
the corresponding transformation �le via a uniform resource identi�er
(URI). QVTOCompletion inherits from Completion, thus, realizing a concrete
completion kind for completions formulated via QVT-O (cf. Section 2.3.2).

Moreover, a Completion has one or more parameters that describe which
models a completion uses. The metaclass CompletionParameter is abstract to
acknowledge for di�erent types of concrete parameters. Concrete param-
eters di�er in their kind of use (input or output), supported metamodels
(e.g., the PCM), and how parameters are received (for input parameters)
respectively stored (for output parameters). Given these characteristics,
parameters become part of a completion’s transformation contract (cf. Sec-
tion 2.3.3.1).

133

4. The Architectural Template Method

Completion

completionFileURI :
EString

CompletionParameter

QVTOCompletion

PCMBlackboardCompl
etionParameter

PCMOutputCompletion
Parameter

PCMTemplateCompleti
onParameter

templateFileURI :
EString

PCMFileExtensions

SYSTEM

ALLOCATION

RESOURCEENVIRONMENT

REPOSITORY

USAGEMODEL

RESOURCETYPE

MONITORREPOSITORY

PCMMEASURINGPOINT

SERVICELEVELOBJECTIVE

PCMCompletionParameter

FileExtension

PCMFileExtension

fileExtension :
PCMFileExtensions = system

GenericFileExtension

fileExtension : EString

[1..1] completion

[1..*] parameters

[1..1] fileExtension

Figure 4.13.: The abstract metaclass Completion contains one or more parameters,
which can be of di�erent kinds. The metaclass QVTOCompletion realizes a concrete
Completion.

The subclasses of CompletionParameter shown in Figure 4.13 are all speci�c
to Palladio. During Palladio-based analyses, models are stored in and re-
ceived from a blackboard. A model from the blackboard is identi�ed by the
�le extension of the model (conceptually, this corresponds to the identi-
�cation via a metamodel). Therefore, the subclass PCMCompletionParameter
contains a fileExtension. Common PCM �le extensions like “system” for PCM
system models are captured in the PCMFileExtensions enumeration, which
is used as fileExtension type for the PCMFileExtension metaclass. Other �le
extensions are generically covered by typing fileExtension as a string for the
GenericFileExtension metaclass.

PCMCompletionParameter is abstract because it lacks information about how
models are received and stored. Its subclasses introduce this information:

• PCMBlackboxCompletionParameter receives a model from the blackboard
of Palladio. Changes to the model of the completion are stored on
the blackboard.

134

4.2. Architectural Template Language

• PCMTemplateCompletionParameter loads a template model to Palladio’s
blackboard and then proceeds like PCMBlackboxCompletionParameter.
The templateFileURI attribute references the location of the correspond-
ing template model via a URI.

• PCMOutputCompletionParameter is created as completion output and
then stored on Palladio’s blackboard.

Semantics Completions specify further semantics of AT roles (i.e., in
addition to constraints). While constraint semantics rely on the applied
constraint language, completion semantics rely on the applied M2M trans-
formation language for specifying completions, the execution of the com-
pletion, and the requirements of the AT method to a completion’s in- and
output models.

Semantics of the applied M2M language are de�ned by the transformation
language itself. For example, the QVT speci�cation [Obj16] describes the
semantics of QVT-O.

Moreover, if an AT role with a completion is bound to an architectural model,
the completion is executed prior to the architectural model’s transformation
to a QoS analysis model (as described in Section 4.1.2). If several roles with
completions are bound to an architectural model, all of these completions
are executed in their binding order (however, software architects may
change this order by using editors for AT application).

Furthermore, the AT method requires that:

• the input model of a completion is an architectural model to which
the completion’s role has been bound,

• the output model of a completion is an architectural model extended
by a role’s induced QoS-relevant elements and attributes,

• the output model of a completion, i.e., the extended architectural
model, has well-de�ned semantics in the architectural modeling
language regarding the completion’s extensions.

The last requirement assures that tools for architectural analyses can process
the extended architectural model. Because completions map to models
with well-de�ned semantics, completions de�ne semantics of AT roles in

135

4. The Architectural Template Method

a translational way (cf. Section 2.3.5). That is, the completion maps the
bounded role—for which semantics have to be de�ned—to a semantically
equivalent architectural model. This model expresses the induced elements
and attributes in terms of a well-de�ned architectural modeling language.
For this reason, the extended architectural model can be analyzed with QoS
analysis tools.

Concrete Syntax Table 4.6 illustrates the concrete syntax of AT comple-
tions.

Table 4.6.:Completion notations
Metaclass Notation Description
Completion completion.qvto A completion is depicted as a bold arrow-

symbol followed by its �le URI, e.g., refer-
encing a QVT-O transformation “comple-
tion.qvto”.

Table 4.6 shows that a completion is denoted with a bold arrow-symbol be-
cause arrows are common for visualizing model transformations. After the
arrow-symbol, the URI of the transformation �le’s location is denoted. The
example in Table 4.6 shows a completion for which a QVT-O transformation
�le is located at “completion.qvto”.

The concrete syntax of the referenced transformation depends on the con-
crete transformation language. For example, the QVT speci�cation [Obj16]
describes a textual concrete syntax for QVT-O.

4.2.5.7. Metamodel: Stereotype (Formal Parameters and Role Bindings)

Each AT role references a stereotype (cf. Section 4.2.4.2) that:

• provides roles with formal parameters via tagged values and

• allows to bind roles to architectural elements via pro�le applications.

136

4.2. Architectural Template Language

Regarding the AT language’s intension (cf. Table 4.1), a referenced stereo-
type thus realizes an AT role’s attribute “has formal parameters”. Stereo-
types are particularly a prerequisite for software architect to apply corre-
sponding pro�les to their architectural models. In a pro�le application, an
AT instance’s attributes “has bindings between architectural elements and
AT roles” and “bindings have actual parameters” are realized because pro�le
applications specify where and which stereotypes are applied, including an
assignment of actual parameters to their tagged values (cf. Section 2.3.4).
Section 4.2.5.8 details pro�le applications.

As described in Section 4.2.4.2, AT roles reference stereotypes of the EMF
pro�le metamodel [LWWC12] that provides an adaptation of UML pro-
�les [Obj11, Chap. 18] for metamodels speci�ed via EMF’s Ecore metamodel,
e.g., the PCM and the AT metamodel. The PCM particularly has full support
for EMF pro�les [KDH+12], which allows for lightweight extensions of the
PCM with ATs.

The following paragraphs describe the abstract syntax, semantics, and
concrete syntax of pro�les and stereotypes of the EMF pro�le metamodel.
Additionally, the relation to ATs and AT roles is detailed.

Abstract Syntax Figure 4.14 illustrates the metaclasses Profile and Stereotype
that realizes the concept of EMF Pro�le’s pro�les and stereotypes.

The metaclasses of the EMF Pro�le metamodel (Figure 4.14 bottom) extend
metaclasses of ECore, i.e., EMF’s metamodel (Figure 4.14 top). Extended
metaclasses provide the basic mechanisms for pro�les to contain stereotypes
and for stereotypes to extend metaclasses and to contain tagged values.

As described in the note in Figure 4.14, a Profile instance needs to reference
an AT. Given a pro�le (respectively its application), this reference allows
to identify the represented AT (respectively its AT instance). Furthermore,
the metaclass Profile inherits from EPackage, which allows a Profile to contain
a set of EClassifier instances. Because Stereotype (indirectly) inherits from
EClassifier, a Profile can particularly contain a set of Stereotype instances. The
operation getStereotypes of Profile returns these instances as a result. Likewise,
a Stereotype provides the operation getProfile to return its containing Profile.

137

4. The Architectural Template Method

Profile

getStereotypes() : Stereotype

Stereotype

getProfile() : Profile

getTaggedValues() : EStructuralFeature

Extension

EClass

EPackage

EClassifier

EStructuralFeatureReferences
corresponding AT.

[1..1] source

[0..*] extensions

[1..1] target

[0..1] ePackage

[0..*] eClassifiers

[0..1] eContainingClass

[0..*] eStructuralFeatures

Figure 4.14.: The metamodel of EMF Pro�les extends metaclasses of the metamodel
of EMF. This extension enables a Profile to reference its corresponding AT and
to contain Stereotypes. A Stereotype contains tagged values (realized as EStruc-
turalFeatures) and extends metaclasses (EClasses) that are referenced via contained
Extensions.

Stereotype directly inherits from EClass and can, thus, contain a set of EStruc-
turalFeature instances. An EStructuralFeature allows to specify a typed attribute,
e.g., a parameter of a method or a member variable of a class [SBPM09,
Sec. 5.3]. In the EMF Pro�le metamodel, Stereotype uses instances of ES-
tructuralFeature to specify tagged values. The operation getTaggedValues of
Stereotype provides these instances as a result. In the context of the AT lan-
guage, these tagged values correspond to formal parameters of AT roles.

Moreover, a Stereotype contains extensions that specify which metaclasses
the Stereotype extends. The target of an Extension references the extended
metaclass (in ECore typed as EClass).

Semantics The EMF metamodel de�nes pro�les as extensions of EMF-
based metamodels. A pro�le’s stereotypes de�ne how and which meta-

138

4.2. Architectural Template Language

classes can be extended by applications of these stereotypes. As stated in
De�nition 2.24, a stereotype’s extension can extend metaclasses by platform
or domain speci�c terminology, e.g., by role names of reusable architectural
knowledge as in the AT method. A stereotype’s tagged values further enrich
extended metaclasses by additional attributes, e.g., used to specify formal
parameters of AT roles. A pro�le particularly references the concrete AT
that the pro�le and its stereotypes represent.

Further details on the semantics of EMF pro�les are provided by Langer et
al. [LWWC12]. Langer et al. detail the semantics both in natural language
and in a pragmatic way via a reference implementation.

Concrete Syntax AT engineers can specify pro�les and stereotypes in a
dedicated view, thus, demanding a concrete syntax of pro�les and stereo-
types. Once speci�ed and referenced by an AT role, a stereotype and its
tagged values can, however, be denoted as part of the AT role (as described
in Section 4.2.5.4).

EMF pro�les’ concrete syntax for pro�les and stereotypes [LWWC12] fol-
lows UML’s notion for pro�les and stereotypes [Obj11, Chap. 18]. Table 4.7
illustrates this concrete syntax.

The �rst row in Table 4.7 shows that a pro�le is denoted via UML’s package
symbol. The top rectangle of the package symbol includes the name of
the pro�le prepended with the “pro�le” string in guillemets (« and »). The
stereotypes contained by a pro�le are denoted—according to their own
concrete syntax—inside the bottom rectangle of the package symbol. The
example in Table 4.7 shows a pro�le named “Pro�le Name” that contains
the stereotypes “Stereotype 1” and “Stereotype 2”.

The second row in Table 4.7 shows a stereotype without tagged values.
Such a stereotype is depicted as a rectangle that contains the stereotype’s
name in bold; located underneath the “stereotype” string in guillemets. The
example in Table 4.7 shows a stereotype named “Stereotype Name”.

The third row in Table 4.7 shows a stereotype with tagged values. In
addition to the notion in the second row, a stereotype’s rectangle contains
a straight horizontal line with its tagged values displayed underneath. For
each tagged value, its name and its type separated by a colon are given.

139

4. The Architectural Template Method

Table 4.7.: Pro�le, stereotype, and extension notations

Metaclass Notation Description
Profile

(for ATs)
«profile» Profile Name

«stereotype»
Stereotype 1

«stereotype»
Stereotype 2

…

A pro�le is depicted as a UML pack-
age symbol. In the top rectangle
of the package symbol, the string
“pro�le” in guillemets followed by
the pro�le’s name “Pro�le Name” is
included. Inner rectangles depict
the contained stereotypes named
“Stereotype 1”, “Stereotype 2”, etc.

Stereotype
(for AT roles)

«stereotype»
Stereotype Name

A stereotype is depicted using a
rectangle that includes the string
“stereotype” in guillemets and gives
the stereotype’s name “Stereotype
Name” underneath in bold.

Stereotype
(for AT roles)

«stereotype»
Stereotype Name

Value 1 : Type 1
Value 2 : Type 2
…

A stereotype with tagged values
“Value 1” of type “Type 1”, “Value 2”
of type “Type 2”, etc. for each EStruc-
turalFeature contained by the stereo-
type.

Extension An extension is denoted as an arrow
with a black-�lled head. The arrow
starts at an extension’s source Stereo-
type and ends an extension’s target
EClass.

The example in Table 4.7 shows two tagged values named “Value 1” and
“Value 2” and with the type “Type 1” respectively “Type 2”.

The fourth row in Table 4.7 shows the notion of an extension. An extension
is illustrated as an arrow with a black-�lled arrow head. The source role of
the Extension metaclass references the Stereotype at which the arrow starts.
The target role of the Extension metaclass references the EClass at which the
arrow ends.

140

4.2. Architectural Template Language

4.2.5.8. Metamodel: Profile Application (AT Instances)

An AT instance is the application of an AT to an architectural model. Be-
cause there can be several AT applications for a single AT, the AT classi�es
these AT instances (attribute “AT instance classi�ed by ATs” of the AT
language’s intension in Table 4.1). Software architects realize AT applica-
tions by specifying a binding between an AT’s roles and the architectural
elements of the architectural model where the roles are applied on (attribute
“AT instance has bindings between architectural elements and AT roles”
in Table 4.1). Such bindings particularly specify the actual parameters for
the formal parameters of AT roles (attribute “AT instance bindings have
actual parameters” in Table 4.1).

While AT instances are a conceptual part of the AT language, the AT meta-
model does not have a dedicated AT instance metaclass for their technical
realization. Instead, Section 4.2.4 argues that AT instances are technically
realized as pro�le applications.

The principle idea behind this realization is that pro�le applications de-
scribe where and which stereotypes are applied to a model, including an
assignment of actual parameters to their tagged values. Because each AT
role references exactly one stereotype, a corresponding pro�le application
to an architectural model (indirectly) binds the AT role to an architectural
element. In particular, because an AT role’s formal parameters are real-
ized as tagged values of the referenced stereotype (cf. Section 4.2.5.7), a
corresponding pro�le application assigns actual parameters to the formal
parameters of the AT role.

Similar to the use of stereotypes of the EMF pro�le metamodel by AT
roles (cf. Section 4.2.5.7), the realization of AT instances is based on pro�le
applications of the EMF pro�le metamodel. The following paragraphs
describe the abstract syntax and semantics of these pro�le applications,
including the relation to AT instances. For the concrete syntax, a dedicated
notion for AT instances is introduced.

Abstract Syntax Figure 4.15 illustrates the metaclasses ProfileApplication
and StereotypeApplication that realize the concept of EMF Pro�le’s pro�le
applications.

141

4. The Architectural Template Method

ProfileApplication

StereotypeApplication

Extension EObject

Instantiated as Dynamic EMF
instance that is typed by the
corresponding stereotype
instance.

[1..1] profileApplication

[0..*] stereotypeApplications

[1..1] extension [1..1] appliedTo

Figure 4.15.:A ProfileApplication contains stereotypeApplications. A StereotypeAppli-
cation applies a Stereotype (referenced via its Extension) to an EObject. Moreover, a
StereotypeApplication is dynamically instantiated from a corresponding Stereotype
instance, which allows StereotypeApplication to assign actual parameters to tagged
values.

The metaclass ProfileApplication conceptually corresponds to the applica-
tion of an AT (i.e., ProfileApplication realizes the concept of AT instances).
Furthermore, a ProfileApplication contains an arbitrary number of stereoty-
peApplications.

A StereotypeApplication conceptually corresponds to the application of an
AT role to an architectural element. The StereotypeApplication references the
Extension of a stereotype that represents the AT role (cf. the metamodel for
stereotypes in Section 4.2.5.7). The concrete AT role can, thus, be derived by
navigating from the Stereotype associated to the Extension over the containing
Profile and the referenced AT to the AT’s Role that references the Stereotype.

A StereotypeApplication’s appliedTo reference identi�es the architectural el-
ement to which the AT role is applied. The appliedTo reference points to
exactly one EObject. Because each EMF-based metaclass inherits from EObject,
a StereotypeApplication can thus reference arbitrary elements of architectural
models speci�ed in an EMF-based language. The PCM is realized based on
EMF and therefore ful�lls this prerequisite.

Moreover, a StereotypeApplication needs to assign actual parameters to the
tagged values de�ned in a Stereotype instance. As described in the note
in Figure 4.15, EMF pro�les realize such assignments using the Dynamic

142

4.2. Architectural Template Language

EMF instantiation mechanism [SBPM09, Sec. 14.3]. Because AT engineers
specify the tagged values of stereotypes at run time, also the concrete data
model—that includes the concrete tagged values—for a stereotype instance
is only known at run time. In such situations, Dynamic EMF allows to create
a run time object that is typed by the stereotype instance. This dynamically
created object then provides the means to assign actual parameters to
the tagged values of its type (i.e., the stereotype instance). To create a
StereotypeApplication instance, �rst such a dynamic object needs to be created
and then the remaining attributes that make up a StereotypeApplication (i.e.,
the referenced Extension and EObject) can be initialized.

Semantics A pro�le application speci�es which elements of a model are
extended according to the stereotypes of a pro�le. Extended elements are
marked with the stereotype, which provides additional type information.
Moreover, extended elements can assign actual parameters to the tagged
values de�ned in the stereotype.

In the AT language, a pro�le application represents the concept of an AT
instance. Because each stereotype has a corresponding AT role, the applica-
tion of such a stereotype represents the binding of an AT role. Similarly,
the assignment of actual parameters to a stereotype’s tagged values cor-
responds to the assignment of actual parameters to an AT role’s formal
parameters.

Further details on the semantics of EMF pro�le applications are provided by
Langer et al. [LWWC12]. Langer et al. detail the semantics both in natural
language and in a pragmatic way via a reference implementation.

Concrete Syntax Software architects specify AT instances (via pro�le ap-
plications) directly in their editors for architectural models. Accordingly, AT
instances need a concrete syntax for their representation in such editors.

Because AT instances are realized via pro�le applications, UML’s notion for
pro�le applications [Obj11, Sec. 18.3.9] can easily be adapted for illustrating
AT instances. The UML describes three alternative notion options:

the external notion annotates a model element outside of the element’s
graphic node,

143

4. The Architectural Template Method

the internal/joined notion annotates a model element inside of the ele-
ment’s graphic node joined above the element’s name, and

the internal/separated notion annotates a model element inside of the ele-
ment’s graphic node via a separated compartment.

Table 4.8 describes all of these notion options for AT instances.

Table 4.8.: Pro�le Application notations for AT instances
Metaclass Notation Description

ProfileApplication
(for AT instances)

AT name An AT instance (which is rep-
resented using a pro�le appli-
cation) is depicted as a dashed
rectangle. The rectangle in-
cludes the name “AT name” of
the referenced AT at the mid-
dle top and in a bold and italic
font.

StereotypeApplication
(for AT role

bindings)

AT name
@AT role name

model
element

The external notion of an AT
role binding (as represented by
a stereotype application). The
name of the AT role “AT role
name” is denoted as part of
the containing AT instance “AT
name” (represented by a pro-
�le application) and in an italic
font. The name is prepended
with the @-symbol and linked
to the target model element
named “model element” with
a dashed line that ends with a
circle.

144

4.2. Architectural Template Language

StereotypeApplication
(for AT role

bindings)

model
element

@AT role name Internal/joined notion of an AT
role binding (represented by a
stereotype application). The
role name “AT role name” is
given above the name of the
target model element named
“model element”. The name is
prepended with the @-symbol.

StereotypeApplication
(for AT role

bindings)
model

element

@AT role name Internal/separated notion of an
AT role binding (represented
by a stereotype application).
The name of the AT role “AT
role name” is given within a
separate compartment (visual-
ized as rectangle) of the target
model element named “model
element”. The AT role name is
prepended with the @-symbol.

StereotypeApplication
(for actual

parameters)

@AT role name (
 parameter 1 = value 1,
 parameter 2 = value 2,
 …
)

A binding of an AT role named
“AT role name” with actual pa-
rameters for the external and
internal/joined notions. The
binding assigns “value 1” to
“parameter 1”, “value 2” to “pa-
rameter 2”, etc. for each ES-
tructuralFeature contained by the
Stereotype representing the AT
role.

145

4. The Architectural Template Method

StereotypeApplication
(for actual

parameters)

@AT role name

 parameter 1 = value 1
 parameter 2 = value 2
 …

A binding of an AT role named
“AT role name” with actual pa-
rameters for the internal/sepa-
rated notion. The binding as-
signs “value 1” to “parameter
1”, “value 2” to “parameter 2”,
etc. for each EStructuralFeature
contained by the Stereotype rep-
resenting the AT role.

The �rst row in Table 4.8 shows that an AT instance (realized as pro�le
application) is denoted as a dashed rectangle; similar to UML’s symbol
for template class parameters [Obj11, Sec. 17.4.7]. The rectangle contains
the name of the AT that belongs to the AT instance (a pro�le application
references its corresponding pro�le, which in turn references the AT). The
name is denoted in a bold and italic font. The example in Table 4.8 shows
an AT application of an AT named “AT name”. In the book shop exam-
ple in Section 3.2.4, the ATs named “three-layer” and “loadbalancing” are
applied.

The second row in Table 4.8 shows an AT role binding (realized as stereotype
application) in the external notion. Accordingly, the bound role is annotated
outside of the graphic node of the bound model element. While the UML
suggests an annotation within a dedicated comment symbol (cf. [Obj11,
Sec. 18.3.9]), bindings of AT roles are annotated in the rectangle of the
corresponding AT instance. The annotation is realized using the name of
the bound AT role prepended with an @-symbol. Embedding bound roles
in the AT instance’s rectangle has the advantage that bound roles can easily
be associated to their corresponding ATs. The reference to the targeted
model element is then visualized using a dashed line that ends with a circle.
The example in Table 4.8 shows an AT role binding of an AT role named
“AT role name” of an AT named “AT name” that is bound to a model element
named “model element”. The book shop example in Section 3.2.4 uses the
external notion for illustrating role bindings of the ATs named “three-layer”
and “loadbalancing”.

146

4.3. Architectural Template Tooling

The third row in Table 4.8 shows an AT role binding (realized as stereotype
application) in the internal/joined notion. Accordingly, the bound role
is annotated inside of the graphic node of the bound model element. In
accordance to the UML (cf. [Obj11, Sec. 18.3.9]), the name (prepended with
an @-symbol) of the bound AT role is directly attached above the name
of the targeted model element. The example in Table 4.8 shows an AT
role binding of an AT role named “AT role name” that is bound to a model
element named “model element”.

The fourth row in Table 4.8 shows an AT role binding (realized as stereotype
application) in the internal/separated notion. The notion is similar to the
internal/joined notion. The only di�erence is that the annotation is located
in a separate compartment (i.e., a surrounding rectangle).

The �fth row in Table 4.8 shows an AT role binding with actual parameters;
such a notion is suited in conjunction with the external notion and the
internal/joined notion. For each formal parameter of the bound AT, the
parameter name and a value conforming to the parameter type are given
(separated by a colon). The example in Table 4.8 shows two actual param-
eters that assign “value 1” to “parameter 1” and “value 2” to “parameter
2”.

The sixth row in Table 4.8 shows an AT role binding with actual parameters;
such a notion is suited in conjunction with the external notion and the
internal/joined notion. The notion is similar to the previously described al-
ternative notion but contains a dedicated inner compartment for visualizing
the assignment of actual parameters.

4.3. Architectural Template Tooling

A typical mean of a method are tools (cf. Section 2.1.4.1). Tools help en-
gineers to follow the processes of a method e�ectively, e�ciently, and
consistently, e.g., by automating process actions and by technically realiz-
ing method artifacts. Another bene�t of tools is that they can de�ne the
semantics of method artifacts in a pragmatic way, i.e., in the form of a
reference implementation (cf. Section 2.3.5).

147

4. The Architectural Template Method

Therefore, the AT method provides an accompanying set of tools—the AT
tooling [ATt]. AT tooling extends Palladio (cf. Section 2.5.3) by a wizard for
AT-based instantiation of architectural models, an engine that executes AT
mappings speci�ed as in-place QVT Operational (QVT-O) model transfor-
mations (cf. Section 2.3.2), and editors for AT speci�cation and application,
including constraint checks via OCL (cf. Section 2.3.6). Palladio has the
advantage that it is suited for software architects and supports several
QoS metrics (cf. Section 2.5.3). Palladio therefore serves for illustrating
and evaluating the AT method for a particular architectural analysis ap-
proach. Moreover, AT tooling provides a reference implementation for the
AT metamodel (Section 4.2.5), thus de�ning the metamodel’s semantics
(in the preceding section informally described in natural language) in a
pragmatic way. Appendix B provides details on AT tooling.

4.4. Extensions of the Architectural
Template Method

The preceding sections describe the AT method’s core. This section de-
scribes extensions to this core that make AT engineers and software archi-
tects even more e�cient.

For making AT engineers more e�cient, Openkowski [Ope17] introduces a
reuse mechanism for ATs. This mechanism allows to derive new ATs from
existing ones.

For making software architects more e�cient, I have integrated the op-
timization framework PerOpteryx [KKR11] into the AT method. The in-
tegration allows software architects to automatically determine optimal
con�gurations for AT parameters using evolutionary algorithms, thus, sav-
ing e�ort to determine such parameters manually.

Openkowski’s reuse mechanism is described in Section 4.4.1. Afterwards,
Section 4.4.2 details the integration of the optimization framework. An
evaluation—indicating the e�ectiveness of both extensions—is provided in
Section 5.5.

148

4.4. Extensions of the Architectural Template Method

4.4.1. Reuse Mechanism for AT Specification

In his Master’s thesis [Ope17], Openkowski introduces a reuse mechanism
for the speci�cation of ATs. The mechanism allows AT engineers to specify
child AT roles that inherit properties from one or more parent AT roles, i.e.,
realizing multiple inheritance on the level of AT roles. Inherited properties
are parameters, constraints, and completions of parent AT roles.

For example, an AT engineer may specify an AT that enriches the load-
balancing AT with a cache in front of the loadbalancer (cf. the caching
architectural pattern [BHS07a, Sec. 7.10]). In this case, a new role cached
and loadbalanced container can, for instance, inherit from the loadbalanced
container role while providing an additional completion to attach a cache
in front of the loadbalancer.

In detail, Openkowski has extended each means of the AT method (AT
processes, AT language, and AT tooling) as follows:

Extension of AT processes: For specifying ATs based on reuse mechanisms,
only the AT speci�cation process from Section 4.1.3 requires an ex-
tension. More precisely, only action (3), i.e., the speci�cation of ATs
(with parametrizable roles, constraints, completions), requires an
extension: AT engineers are additionally required to identify reuse
opportunities and, in case such opportunities exist, to specify appro-
priate role inheritance relationships to existing AT roles (cf. [Ope17,
Sec. 7.2] for details).

Extension of AT language: Openkowski has extended the metamodel of AT
roles from Section 4.2.5.4 as illustrated in Figure 4.16.

The Role metaclass includes a new association superRoles to itself,
thus, allowing to specify parent roles for roles. A role can have an ar-
bitrary number of parent roles, thus, particularly allowing to specify
multiple-inheritance relationships. The association roleIncludingInher-
ited is a derived attribute—an ordered set of all roles directly and
indirectly accessible from a role via superRoles united with the role
itself. The C3 linearization algorithm [BCH+96] is used for obtain-
ing the order. The algorithm assures that the linearization does not
reorder the linearizations of its parent roles and avoids the diamond
problem (cf. [Ope17, Sec. 7.4]).

149

4. The Architectural Template Method

Role

Entity

Identifier

id : EString

NamedElement

entityName : EString

Stereotype

CompletionConstraint

[1..1] stereotype

[1..1] role

[0..*] constraints

[1..1] role

[0..1] completion

[0..*] superRoles

[1..*] /roleIncludingInherited

[0..*] /constraintsIncludingInherited [0..*] /completionIncludingInherited
{ordered}

{ordered}

Figure 4.16.: The metaclass Role is extended by a new self-association superRoles
that allows to specify inheritance relationships. Based on this relationship, the
associations roleIncludingInherited, constraintsIncludingInherited, and completionIn-
cludingInherited can be derived.

Semantically, when a role inherits from one or more other roles,
their sets of parameters and constraints are united. While parameter
union is modeled via stereotypes inheriting from other stereotypes
(cf. [Ope17, Sec. 8.3.4]), constraint union is modeled by the derived
attribute constraintsIncludingInherited as shown in Figure 4.16.

Completions, in contrast, are orchestrated to be executed one after
the other [Ope17, Sec. 7.4]. The set of inherited completions must
therefore be ordered. For this ordering, the C3 linearization order as
described above is used. The derived attribute completionIncludingIn-
herited includes the resulting ordered set of completions.

More detailed semantics and a concrete syntax are provided by
Openkowski [Ope17, Sec. 7.4–Sec. 8.2].

Extension of AT tooling: Openkowski and I have fully integrated the reuse
mechanism for AT speci�cation in AT tooling. Our integration covers
the extended metamodel, the implementation of the C3 linearization

150

4.4. Extensions of the Architectural Template Method

algorithm to determine derived attributes, modi�ed conformance
checks to check against inherited constraints, and an extended AT
integration support to orchestrate the execution of completions.
Openkowski provides details on this integration in his Master’s
thesis [Ope17, Sec. 8.3].

4.4.2. Optimization of Actual AT Parameters

This section overviews an extension of the AT method that allows to opti-
mize AT-based architectural models. The optimization is realized based on
an integration of the PerOpteryx optimization framework [KKR11] into the
AT method. The integration allows software architects to automatically de-
termine optimal con�gurations of AT parameters. This automation makes
software architects more e�cient as parameters have not to be determined
manually.

Koziolek et al. [KKR11] introduce PerOpteryx as an approach and frame-
work for optimizing architectural models. PerOpteryx optimizes by au-
tomatically varying design decisions and assessing the impact on quality
properties via architectural analyses. Variations are determined by evo-
lutionary algorithms; given their suitability for multi-objective optimiza-
tion [DK01].

Technically, the variations executed by PerOpteryx are formalized via so-
called degrees of freedom [Koz11a, Sec. 6.3.2.2]. A degree of freedom speci-
�es how to vary design decisions of a speci�c type. For example, design
decisions of type “allocation” specify that allocation decisions can be varied
over a given set of target resource containers.

For the integration of PerOpteryx in the AT method, I have introduced a
new type of degree of freedom: a type for actual AT parameters. Actual
AT parameters can be varied depending on their data types. For example,
for the loadbalancing AT, actual parameters for the number of replicas may
be automatically varied between 1 and 10. The rationale behind this new
degree of freedom is that AT parameters, as part of captured reusable
architectural knowledge, cover high-level architectural decisions with huge
impact on QoS properties.

151

4. The Architectural Template Method

In detail, I have extended each means of the AT method (AT processes, AT
language, and AT tooling) for the integration of PerOpteryx as follows:

Extension of AT processes: For enabling software architects to optimize AT
parameters, the speci�cation and analysis of architectural models
(cf. Section 4.1.3) additionally requires an identi�cation of concrete
degrees of freedom and the con�guration and execution of the opti-
mization itself. Koziolek details these process extensions in her PhD
thesis [Koz11a, Sec. 5.2].

Extension of AT language: For the integration of PerOpteryx, the AT lan-
guage has required no extensions.

Extension of AT tooling: For the integration of AT tooling with PerOpteryx,
PerOpteryx must be able to run Experiment Automation work�ows
(cf. Appendix B.2) and to use actual AT parameters as degree of
freedom. I have implemented an appropriate PerOpteryx plug-in
that lets PerOpteryx use Experiment Automation [Perb]. Moreover,
I directly included the degree of freedom for actual AT parameters
in the PerOpteryx framework [Pera].

4.5. Assumptions and Limitations of the
Architectural Template Method

The AT method currently has several assumptions and limitations. The
following list describes the most important ones.

Embedding AT-induced elements via completions. AT engineers specify
completions to embed AT-induced elements into architectural mod-
els (action (3) in Section 4.1.3.2). Here, the AT method assumes
that such elements can be expressed in the targeted architectural
modeling language. Given this assumption, AT engineers can legit-
imately use completions to de�ne AT semantics in a translational
way (cf. Section 2.3.5).

However, AT engineers may want to specify ATs that induce ele-
ments that are inexpressible within the targeted architectural model-
ing language. For example, self-adaptive systems require elements

152

4.5. Assumptions and Limitations of the Architectural Template Method

to characterize self-adaptation rules; however, such elements do not
exist, e.g., in Palladio. For this example, AT engineers cannot directly
specify a legit completion that accurately covers the semantics of
architectural knowledge for self-adaptation rules.

The lacking support for a special kind of architectural elements
can motivate an extension of the targeted architectural modeling
language. For example, the lack of elements to characterize self-
adaptations in Palladio has motivated Palladio’s extension of such
elements (cf. Section 2.5.3.2). Once extended, the described express-
ibility assumption holds and AT engineers can legitimately specify
semantic-preserving completions.

If the extension of the targeted architectural modeling language is
no option, AT engineers may specify ATs that do not integrate AT-
induced elements via completions. In this case, architectural analyses
will not re�ect any QoS-impacts of such elements. Still, such ATs
can be useful for documenting decisions to apply a speci�c kind
of reusable architectural knowledge. This way, at least subsequent
development actions (as described in Section 2.5.1) can consider the
applied architectural knowledge. For example, when deploying a
system, system deployers may con�gure self-adaptations as speci�ed
by a software architect within an AT application.

Focus on QVT-O for completions. Completions can generally be imple-
mented in various model transformation languages (Section 2.5.2.2).
For example, the related work investigated in Section 6.4.2 uses
completions implemented as graph transformations (Woodside et
al. [WPS02]), QVT-R (L. Happe [Hap11]), QVT-O (J. Happe [Hap09]
and Rathfelder [Rat13]), and completion components (a dedicated
completion language introduced by Becker [Bec08]).

The AT language and AT tooling (cf. Section 4.3) are exempli�ed
with completions formulated in QVT-O for the reasons given in Sec-
tion 2.3.2. Still, the AT language acknowledges for extensions with
di�erent transformation languages by de�ning the metaclass for
completions as abstract. A dedicated subclass is used for adding sup-
port for QVT-O completions; alternatives like Becker’s completion
components may be realized analogously.

153

4. The Architectural Template Method

Focus on Palladio for architectural analyses. The AT method is introduced
as a method to extend architectural analyses (cf. De�nition 4.2).
However, the AT method currently focuses on Palladio as a concrete
architectural analysis approach. While AT processes (Section 4.1)
are described independently of Palladio, the AT language and AT
tooling partly depend on Palladio:

• In the AT language, the metamodel for completions (described
in Section 4.2.5.6) provides dedicated PCM parameters. Other
approaches are required to provide their own parameters by ex-
tending the abstract CompletionParameter metaclass appropriately.

• In the AT tooling, the support for the application (Appendix B.1)
and integration (Appendix B.2) of ATs is tailored to Palladio. Other
approaches may add application support analogously.

Because there are only these direct dependencies to Palladio, the
AT method is likely to suit other approaches as well. An indication
for this suitability is given by the integration of the AT method
not only with the Palladio approach but also with the CloudScale
method [LB15b, BBL17]. However, a detailed evaluation of this kind
of generalizability is left as a future work.

ATs are cross-cutting. ATs are cross-cutting architectural models both hor-
izontally and vertically. Horizontally, ATs can impact elements of
one level of abstraction, e.g., by constraining relationships between
components of an architectural model’s system. Vertically, ATs can
impact elements between di�erent levels of abstraction, e.g., by
introducing a new component in an architectural model’s system
while allocating this component to a new resource container in an
architectural model’s resource environment.

The application of ATs to the online book shop in Section 4.1.2
exempli�es such cross-cuts. In the book shop, the constraints of
the three-layer AT are checked against multiple components of the
system model, i.e., horizontally. Moreover, the completion of the
loadbalancing AT induces elements for both system and resource
environments models, i.e., vertically. AT roles are particularly bound
to elements of the system model and the resource environment model,
thus, impacting multiple views on the architectural model.

154

4.5. Assumptions and Limitations of the Architectural Template Method

Still, the cross-cutting characteristic of an AT captures a single
concern: the formalization of a particular reusable architectural
knowledge. In that sense, ATs conform to Dijkstra’s “separation of
concerns” [Dij82] principle. To integrate this concern, ATs weave
knowledge-induced elements into architectural models (via comple-
tions) and allow to check constraints of the architectural model as a
whole.

ATs are therefore similar to aspect-oriented [CB05] and view-based
[ASB10, Bur14] modeling approaches5; and to aspectual templates
(cf. Section 2.4.2) in particular. In contrast to some of these ap-
proaches, the AT method is however limited in visualizing AT-speci�c
views, i.e., a single view that illustrate how the concern covered by
an AT is applied to the targeted architectural model. For example,
the related work COMLAN provides such a feature (see Section 6.3.4).
Providing and analyzing speci�c views of AT applications is left as a
future work.

AT tooling only covers systems and resource environments. The applica-
tion support of AT tooling for ATs (Appendix B.1) is currently limited
to PCM’s system and resource environment editors. Software archi-
tects therefore have no integrated tool support to bind AT roles to
other PCM models, e.g., PCM’s allocation model.

The ATs evaluated in this thesis (Chapter 5) only had to be applied
to system and resource environment models; the existing tool sup-
port was su�cient here. If ATs formalize architectural knowledge
that impacts other PCM models, software architects may apply such
ATs using Palladio’s generic pro�ling mechanisms. In such a case,
however, future works should optimally provide an integrated AT
application support for such models like for system and resource
environment editors due to an improved usability for software ar-
chitects.

AT tooling lacks integrated support for AT specification. AT tooling’s spec-
i�cation support for ATs (Appendix B.3) is currently restricted to
generic tree-based editors and externally speci�ed pro�les, comple-
tions, and tests. An integrated speci�cation environment for these

5 Wimmer et al. [WSK+11] provide a survey of such approaches.

155

4. The Architectural Template Method

speci�cations potentially makes AT engineers more e�ective and
e�cient when specifying ATs. Such an environment should particu-
larly support the concrete graphical syntax for ATs as described in
Section 4.2.5.

Because the focus of this thesis is on the e�ectiveness and e�ciency
of software architects, I saved the e�ort to develop such an integrated
environment. This development is therefore left as a future work.

156

“When you can measure what you are
speaking about, and express it in num-
bers, you know something about it; but
when you cannot express it in numbers,
your knowledge is of a meagre and un-
satisfactory kind.”

— Lord Kelvin 1824 – 1907

5. Evaluation

In this chapter, I evaluate the AT method to derive lessons learned regarding
its e�ectivity and e�ciency. The main target groups of the evaluation are
software architects and AT engineers because of their predominant role
in the AT method. For deriving representative lessons learned, I focus on
realistic software systems, e.g., a more detailed and realistic version of the
book shop example from Chapter 3. Using the Goal-Question-Metric (GQM)
template [BCR02], typically used to describe goals of empirical studies, the
evaluation goal therefore is to:

Analyze: the AT method

For the purpose of: conducting architectural analyses

With respect to: e�ectivity and e�ciency

From the viewpoint of: software architects and AT engineers

In the context of: realistic software systems.

In order to achieve this evaluation goal, I employ the empirical data collec-
tion procedures described in Section 2.1.3. Because the evaluation goal is
set in the context of realistic software systems, I focus on case studies as a
concrete data collection procedure. Additionally, I outline how a controlled
experiment on the e�ciency of software architects can be designed and
describe a preliminary execution of this experiment.

157

5. Evaluation

The case studies are set in the domains of distributed computing, cloud
computing, and big data. These domains cover the quality properties main-
tainability, performance, scalability, elasticity, and cost-e�ciency. This
coverage illustrates the generalizability of the AT method to various do-
mains and quality properties.

For software architects, the evaluation results of the case studies indicate
that the AT method can e�ectively and e�ciently be applied: AT application
is a matter of minutes while saving more than 90 % of recurring modeling
e�orts. This result is particularly con�rmed by the preliminary controlled
experiment. The evaluation of the optimization mechanism (i.e., the AT
method extension described in Section 4.4.2) shows that AT parameters can
automatically be optimized, thus, reducing e�orts of software architects
even more. However, in situations where software architects suspect bugs
in ATs or AT tooling, software architects mistrust analysis results. This
mistrust leads to e�ort-intensive analysis iterations to pin-point the causes
of suspected bugs. The case studies reveal that mistrust is often (but not al-
ways) inappropriate because applied ATs re�ect the corresponding reusable
architectural knowledge correctly. In the evaluation of the AT method, an
observed cause of mistrust was that the promised QoS improvements of
applied knowledge were missed (judging based on analysis results). This
miss has led software architects to suspecting bugs in ATs and AT tooling
instead of context factors that rendered the applied knowledge inappro-
priate. For example, a software architect in one case study replicated a
non-bottleneck resource and was expecting performance gains. After miss-
ing performance improvements, the software architect blamed the applied
AT instead of inspecting further analysis results that would have revealed
the bottleneck resource. The main derived lessons are that (1) AT tooling
should be further improved to strengthen trust in its implementation (and
to resolve actual bugs) and (2) software architects need further training in
resolving unsuspected analysis results. Resolving these lessons is left as
future work.

For AT engineers, the evaluation results of the case studies indicate that AT
engineers can e�ectively create ATs but often need high e�orts: evaluation
results show that AT speci�cation can take several person months. The
bene�ts for software architects typically outweigh these e�orts, especially
if ATs are reused often. Observed causes for high e�orts were di�culties
in debugging ATs, lack of an integrated speci�cation environment, and a

158

5.1. Related Studies

missing support of reusing previously speci�ed (elements of) ATs. The main
derived lessons are that (1) AT tooling should be enriched with an integrated
speci�cation environment with debugging support and (2) reuse mecha-
nisms for ATs need to be supported. The integrated environment (lesson
(1)) is left as future work. However, after the conduction of the case studies,
lesson (2) has led to the AT method extension of the reuse mechanisms
for the speci�cation of ATs described in Section 4.4.1. As the evaluation
of this mechanism shows, the mechanism can increase productivity of AT
engineers by over 200 %.

The remainder of this chapter is structured as follows. To establish a sound
evaluation basis, Section 5.1 inspects previously conducted empirical stud-
ies. These studies show that software architects can apply architectural
analyses e�ectively; however, inspections of involved e�orts are often miss-
ing. Afterwards, Section 5.2 elaborates a generic GQM plan for evaluating
the AT method. This plan is used for evaluating both the case studies and
the controlled experiment. The case studies are described and discussed in
Section 5.3. Subsequently, Section 5.4 outlines the controlled experiment
and its preliminary conduction. Section 5.5 describes the evaluations of the
extensions of the AT method (introduced in Section 4.4). Section 5.6 �nally
summarizes the lessons learned from all of these empirical investigations.

5.1. Related Studies

Following empirical evaluations reporting guidelines [JP05, JCP08, RH09],
this section overviews earlier empirical studies related to architectural
analyses. Such an overview of related studies clari�es the context and
provides a sound evaluation basis [JCP08]. More general related work—
without focus on empirical evidence—is described in Chapter 6.

Potential empirical evaluation approaches vary in their amount of qualita-
tive vs. quantitative investigation [Bas07]. In the context of more qualita-
tive studies, Section 5.1.1 describes related case studies. In the context of
more quantitative studies, Section 5.1.2 describes related controlled experi-
ments.

159

5. Evaluation

5.1.1. Related Case Studies

Several existing case studies on architectural analyses report their e�ectivity
over various domains (e.g., business information systems) and technologies
(e.g., virtualization). Section 5.1.1.1 describes such case studies with a focus
on performance; the QoS property most closely related to the investigations
in this chapter.1 Despite its relevance, only few of the described case
studies inspect the e�ort for architectural analyses as well. Section 5.1.1.2
summarizes the results of these inspections and concludes that currently
no existing study inspects the impact on e�ort when exploiting reusable
architectural knowledge.

5.1.1.1. E�ectivity of Architectural Analyses

In their pioneering work on Software Performance Engineering (SPE)
[SW02], Smith and Williams report the �rst successfully executed case
studies on architectural analyses of performance. Their case studies cover
the domains of business information systems for web applications and the
�nancial sector, computer-aided design, distributed systems, and embedded
real-time systems. They therefore show that architectural analyses are
generally applicable to a variety of domains.

Smith and Williams particularly describe reusable architectural knowledge
in the form of patterns [SW02, Chap. 10] and anti-patterns [SW02, Chap. 11].
Their case studies con�rm the e�ectivity of exploiting such knowledge.
However, opposed to the AT method, they require software architects to
apply reusable architectural knowledge manually.

More closely related to this thesis, we have previously conducted a case
study with Palladio (see Section 2.5.3) and within our virtualized on-premise
infrastructure [LZ11]. For the four cases we consider, our architectural anal-
ysis provides accurate results (e.g., our prediction error regarding through-
put was below 14 % on average), indicating that architectural analyses are
applicable to virtualized environments. However, we have not investigated
the application of reusable architectural knowledge during modeling.

1 The described case studies have been systematically selected as described in [LB16].

160

5.1. Related Studies

Rathfelder et al. [RBKR12] also conduct a case study with Palladio but
within a more realistic, industrial context: the e-mail system of the 1&1
Internet AG, which is Germany’s largest e-mail provider. Their case study
shows that Palladio is applicable in this realistic context while maintaining
high accuracy (their prediction error regarding resource utilization was
“mostly less than 10 %” [RBKR12]). Unfortunately, this case study does not
inspect the exploitation of reusable architectural knowledge.

Huber et al. [HBR+10b] provide further evidence for Palladio’s applicability
in industry within their case study on the IBM System z9 mainframe for stor-
age virtualization. Their results indicate that Palladio accurately analyzes
such virtualized environments because their prediction error regarding
throughput is ∼20 %. Again, no exploitation of reusable architectural knowl-
edge is considered in this study.

De Gooijer et al. [dGJKK12] use Palladio to analyze an industrial distributed
system from ABB with several million lines of code that is deployed in a
virtualized environment. They provide further evidence that architectural
analyses are applicable to such environments because their predictions
regarding resource utilization deviate at most by 30 %. As the studies men-
tioned before, they do not describe the application of reusable architectural
knowledge for creating their models.

5.1.1.2. E�ort of Architectural Analyses

Both Rathfelder et al. [RBKR12] and Huber et al. [HBR+10b] argue that soft-
ware architects have to trade-o� between analysis accuracy and modeling
e�ort. While all authors from Section 5.1.1.1 describe means to lower such
e�ort, quanti�cations of e�ort are only provided by Huber et al. [HBR+10b],
Smith and Williams [SW02], and Koziolek et al. [KSBH12] (who extend the
work of de Gooijer et al. on the ABB case study [dGJKK12]):

Huber et al. [HBR+10b] estimate that non-Palladio experts can create ac-
curate performance models for similar systems like IBM System z9
with an e�ort of 4 person months.

Smith andWilliams [SW02, p. 458] estimate that architectural analysis ef-
forts may cause up to 10% of total project costs. In a later work
[WS03], they con�rm this estimate by conducting a case study with

161

5. Evaluation

an arti�cial business case where they estimate that one full-time per-
formance engineer is needed in addition to a team of 15 developers.

Koziolek et al. [KSBH12] provide several e�ort estimates for the case study
on ABB’s system, i.e., for an existing system with several million lines
of code. Their estimates include post-mortem estimates of the actual
e�ort (126 person hours) and optimistic (24 person hours), realistic
(65 person hours), and pessimistic (162 person hours) estimates of
expected e�orts for similar projects. The estimates of these expected
e�orts assume that some issues, e.g., immaturity of tool support, are
resolved (cf. [KSBH12]).

Such estimates can serve as good base lines for e�ort estimations, e.g., of
new projects. However, these estimates are unsuited if software architects
heavily exploit reusable architectural knowledge like in the AT method.
Additional studies are required to quantify the expected lower e�ort due to
reuse.

5.1.2. Related Controlled Experiments

The case studies previously described in Section 5.1.1 indicate that archi-
tectural analyses are applicable to the domain of web applications (where
also the AT method is evaluated). This insight, however, should be con-
sidered with care because case study results are not necessarily generaliz-
able [SDAH08]; they are more exploratory. For more generalizable theories,
controlled experiments are favorable [SDAH08].

According to our recent survey [LB15c], only Martens et al. [MKPR11] con-
ducted such experiments on the accuracy and e�ort of architectural analy-
ses. For reuse scenarios of architectural models, their results indicate that
component-based architectural analysis approaches like Palladio save e�ort
without sacri�cing accuracy—compared to monolithic performance model-
ing approaches like SPE [SW02], UML Performance Simulator [Mar04], and
Capacity Planning [MDA04] for which no component reuse is intended.

The results of Martens et al. [MKPR11] show that reuse of (parts of) archi-
tectural models in the context of architectural analyses is possible. This
possibility particularly holds for Palladio. However, Martens et al. restrict

162

5.2. Evaluation Design

their reuse to components and lack an investigation of higher-level reusable
architectural knowledge.

5.2. Evaluation Design

This section describes a generic design for evaluating the AT method. Con-
crete data collection procedures (cf. Section 2.1.3) can reuse and re�ne this
generic design. The case studies in Section 5.3.1 to Section 5.3.4 and the con-
trolled experiment in Section 5.4 exemplify such a reuse and re�nement.

The section is organized according to the reporting guidelines for experi-
mental designs by Runeson and Höst [RH09] and based on the GQM method
(cf. Section 2.1.1) to derive the design. At �rst, Section 5.2.1 derives research
questions from the overall evaluation goal of the AT method. For answering
these research questions, Section 5.2.2 derives metrics for the collection of
empirical data. Section 5.2.3 speci�es how this data is analyzed to answer
the research questions and de�nes hypotheses stating which answers are
expected. A description of validity procedures concludes the evaluation
design in Section 5.2.4.

Table 5.1 overviews all research questions, along with associated metrics
and hypotheses. The following subsections describe this table in detail.

Table 5.1.:Overview of research questions and associated metrics and hypotheses

Qapplication e�ort How much e�ort do software architects require to apply ATs?

Mtime for AT selection Exclusive time for executing the AT selection action of the AT application
process (cf. Section 4.1.1), i.e., time from start to �nish of the action minus
time not spend on the action during this interval.

Mtime for AT application Exclusive time for executing the AT application action of the AT applica-
tion process (cf. Section 4.1.1), i.e., time from start to �nish of the action
minus time not spend on the action during this interval.

M#ATs Number of ATs within the employed AT catalog.
M#AT roles Number of AT roles of the applied AT.
M#AT parameters Number of parameters as sum over all AT roles of the applied AT.

Htime-size correlation The time metric Mtime for AT selection positively correlates with the size
metric M#ATs and the time metric Mtime for AT application positively cor-
relates with the size metrics M#AT roles and M#AT parameters .
Rejection: The correlation is not positive, i.e., the correlation coe�cient is
not greater than 0.0.

163

5. Evaluation

He�ort is low Compared to the overall e�orts for specifying architectural models suited
for architectural analyses, AT selection and AT application e�ort is low.
Rejection: The sum of Mtime for AT selection and Mtime for AT application is
higher than 40 person minutes.

Qe�ort saving How much creation e�ort can software architects save when ap-
plying ATs?

M∆time Di�erence between the time for manually creating AT-induced elements
and the time for selecting and applying an AT. (Note: requires a redundant
manual creation by a control group.)

M∆components Di�erence between the number of components (i.e., types of components)
after and before the execution of AT completions.

M∆assembly ctx. Di�erence between the number of assembly contexts (i.e., instances of
components) after and before the execution of AT completions.

M∆operations Di�erence between the number of operations as sum over all interfaces
(provided by components) after and before the execution of AT comple-
tions.

M∆self-adapt. Di�erence between the number of lines of self-adaptation rules after and
before the execution of AT completions.

H∆time-∆size correlation The time metric M∆time positively correlates with all of the four size met-
rics M∆components , M∆assembly ctx. , M∆operations , and M∆self-adapt. .
Rejection: The correlation is not positive, i.e., the correlation coe�cient is
not greater than 0.0.

He�ort is lowered Applying the AT method lowers e�ort compared to manually creating
architectural models directly in the targeted architectural analysis ap-
proach.
Rejection: Any of above metrics (M∆time , M∆components , M∆assembly ctx. ,
M∆operations , M∆self-adapt.) is negative.

Qconformance Do software architects e�ectively bene�t from checking whether
their architectural models violate conformance to applied ATs?

M#detected violations Total number of actually detected conformance violations.
M#resolved violations Total number of resolved violations after they have been detected.

Hviolations are detected Violations are detected, which indicates that conformance checks are pos-
sible and helpful.
Rejection: M#detected violations equals 0.

Hviolations are resolved All detected violations are resolved, which indicates an increased bene�t
of conformance checks.
Rejection: M#resolved violations < M#detected violations .

Qbene�ts What are e�ective bene�ts of the AT method?

Mbene�ts Any bene�ts of the AT method observed during its empirical investiga-
tion.

Hbene�ts exist Bene�ts are observed and subjectively reported.
Rejection: Mbene�ts is empty.

Qlimitations What are e�ective limitations of the AT method?

164

5.2. Evaluation Design

Mlimitations Whenever a limitation is observed, it is collected, e.g., an AT has to be
adapted for its application or a potential AT application is not performed
due to any kind of problem.

Hlimitations exist Some limitations will be discovered, thus helping to identify future work
directions. No critical limitations are excepted, i.e., limitations that render
the AT method generally unsuitable.
Rejection: Mlimitations is empty.

Qspeci�cation e�ort How much e�ort do AT engineers require for specifying ATs?

Mtime for AT speci�cation Exclusive time for executing each of the AT speci�cation actions of the
AT speci�cation process (cf. Section 4.1.3), i.e., time from start to �nish of
an action minus time not spend on an action during this interval.

M#AT roles Number of roles of an AT.
M#AT constraints Number of constraints of an AT.
M#completion LOC Number of lines of completions of an AT.

Htime-size correlation The time metric Mtime for AT speci�cation positively correlates with the
size metrics M#AT roles , M#AT constraints , and M#completion LOC .
Rejection: The correlation is not positive, i.e., the correlation coe�cient is
not greater than 0.0.

He�ort is high Compared to the overall e�orts for specifying architectural models suited
for architectural analyses, AT speci�cation e�ort is high.
Rejection: Mtime for AT speci�cation is lower than 6.5 person hours.

Qquality assurance Does quality assurance help AT engineers to improve the concep-
tual integrity of speci�ed ATs e�ectively?

M#detected errors Total number of actually detected errors by following the AT method’s
test-based quality assurance process.

M#resolved errors Total number of resolved errors after they have been detected.

Herrors are detected Errors are detected, which indicates that quality assurance is possible and
helpful.
Rejection: M#detected errors equals 0.

Herrors are resolved All detected errors are resolved, which indicates an increased bene�t of
the AT method’s quality assurance steps.
Rejection: M#resolved errors < M#detected errors .

5.2.1. Research Questions

As stated in the introduction of Chapter 5, the overall evaluation goal of
the AT method is to analyze the e�ectivity and e�ciency of the AT method
for conducting architectural analyses. From these properties—e�ectivity
and e�ciency—and involved roles—software architects and AT engineers—
research questions for evaluating the AT method can be derived.

165

5. Evaluation

The following list provides these research questions along with their ratio-
nale (the list starts with questions related to software architects and ends
with questions related to AT engineers):

Qapplication e�ort: How much e�ort do software architects require to
apply ATs?
A criterion for e�ciency is the needed e�ort to achieve a task [LB15c].
This question addresses this criterion from the viewpoint of software
architects.

Qe�ort saving: How much creation e�ort can software architects save
when applying ATs?
Similar to the previous question (and for the same motivation), this
question addresses e�ort. However, the focus of this question in
on how much e�ort can be saved, thus, more directly targeting the
AT method’s main promise of making architectural analyses more
e�cient.

Qconformance: Do software architects e�ectively bene�t from check-
ing whether their architectural models violate conformance
to applied ATs?
Section 1.2 describes conformance checks as a main bene�t for soft-
ware architects when exploiting reusable architectural knowledge.
Therefore, this question asks whether the AT method indeed provides
this bene�t.

Qbenefits: What are e�ective bene�ts of the AT method?
During the conduction of an evaluation, other bene�ts than the
AT method’s main bene�ts may be observed. Therefore, this ques-
tion openly asks for such bene�ts; such open questions typically
accompany empirical evaluations [RH09].

Qlimitations: What are e�ective limitations of the AT method?
Analogously to the previous question, limitations of the AT method
may be observed. Therefore, this question openly asks for such
limitations.

Qspecification e�ort: Howmuch e�ort do AT engineers require for spec-
ifying ATs?
As the �rst question, this question inspects the e�ort criterion. How-
ever, the focus is on the viewpoint of AT engineers.

166

5.2. Evaluation Design

Qquality assurance: Does quality assurance help AT engineers improve
the conceptual integrity of speci�ed ATs e�ectively?
As a major part of the AT method, the e�ectiveness of its testing-
based quality assurance approach needs to be inspected. Therefore,
this question calls for such an inspection.

Table 5.1 is structured along these research questions. In addition, the table
provides associated metrics and hypotheses as described next.

5.2.2. Data Collection Procedure(s)

Data collection procedures specify how the empirical data for answering
research questions is gained [RH09]. Fitting to the GQM method (cf. Sec-
tion 2.1.1), I specify these procedures via metrics aligned to the research
questions from Section 5.2.1.

In the following, for each question, a dedicated subsection describes its
associated metrics. Table 5.1 provides a summary of these metrics.

5.2.2.1. Metrics: Howmuch e�ort do so�ware architects
require to apply ATs?

QuestionQapplication e�ort (“How much e�ort do software architects require
to apply ATs?”) can be quanti�ed based upon the following metrics:

Time-basedmetrics quantify e�ort by measuring the time software archi-
tects require for executing the actions of the AT application process
(cf. Section 4.1.1); a commonly applied type of metric for quantifying
e�ort [LB15c]. The AT application process for software architects
comes with two main actions (AT selection and AT application) that
motivate the following two metrics:

Mtime for AT selection measures the exclusive time for executing the AT
selection action of the AT application process (cf. Section 4.1.1), i.e.,
the time from the start to the �nish of the action minus time not
spend on the action during this interval. For example, a software
architect may require 30 minutes to study an AT catalog and to
select a suitable AT for a given context.

167

5. Evaluation

Mtime for AT application measures the exclusive time for executing the AT
application action of the AT application process (cf. Section 4.1.1),
i.e., the time from start to �nish of the action minus time not spend
on the action during this interval. For example, a software architect
may require 20 minutes to bind an AT’s roles and to set actual
parameters.

Size-basedmetrics quantify e�ort by measuring the number of elements
that software architects have to investigate and create during the
actions of the AT application process (cf. Section 4.1.1). Martens et
al. [MKPR11] have showcased the utility of size-based metrics in
the context of architectural analyses. For the selection of an AT, the
number of ATs within AT catalogs is relevant; for the application of
an AT, the number of the AT’s roles and parameters are relevant:

M#ATs measures the number of ATs within the employed AT catalog.
For example, a software architect may require more e�ort to select
a suitable AT if an AT catalog contains 100 ATs instead of 10 ATs.

M#AT roles measures the number of AT roles of the applied AT. For
example, a software architect may require more e�ort to apply an
AT with 10 roles instead of 1 role.

M#AT parameters measures the number of parameters as sum over all
AT roles of the applied AT. For example, a software architect may
require more e�ort to apply an AT with 10 parameters instead of 1
parameter.

5.2.2.2. Metrics: Howmuch creation e�ort can so�ware architects save
when applying ATs?

Question Qe�ort saving (“How much creation e�ort can software architects
save when applying ATs?”) can be quanti�ed based upon similar met-
rics than described for the previous question (Qapplication e�ort). However,
quanti�cations compare the application of ATs against manual knowledge
application approaches:

168

5.2. Evaluation Design

Time-basedmetrics quantify e�ort saving by measuring the time di�er-
ence between AT-based and manual applications of reusable archi-
tectural knowledge. Such time-based metrics are typically applied by
controlled experiments to measure the e�ciency of methods [LB15c].
The following metric is the most relevant and most direct time-based
metric in the AT method’s context:

M∆time measures the di�erence between the time for manually cre-
ating AT-induced elements and the time for selecting and applying
an AT. For example, a manual knowledge application may take
100minutes while an AT-based application may take 50minutes ,
thus, resulting in a measurement of 100minutes − 50minutes =
50minutes .

To measure this metric, software architects are required to create
two redundant versions of an architectural model—a version where
knowledge is integrated via ATs and a version where knowledge is
integrated manually. Typically, the AT-based architectural model
is created by a treatment group of software architects while the
other architectural model is created by a control group of di�erent
software architects [LB15c]. For computing a value for the metric
for multiple time measurements, statistical aggregation functions,
e.g., for median and mean values, can be employed [LB15c].

Size-basedmetrics quantify e�ort saving by measuring the di�erence in
the number of architectural model elements after and before the
execution of AT completions. The rationale behind this di�erence is
that AT-induced elements would have to be created manually without
completions, i.e., by manually modifying the targeted architectural
model. In such modi�cation scenarios, our previously conducted case
study [LB16] indicates that measuring di�erences re�ects involved
e�orts appropriately.

According to Martens et al. [MKPR11], relevant elements of archi-
tectural models are components, assembly contexts, and interface
operations (cf. Section 2.5.3.1); additionally, in the context of elastic
environments (cf. Section 2.5.3.2), self-adaptations are relevant:

M∆components measures the di�erence between the number of com-
ponents (i.e., types of components) after and before the execution

169

5. Evaluation

of AT completions. For example, a completion may integrate 10
additional components into an architectural model.

M∆assembly ctx. measures the di�erence between the number of as-
sembly contexts (i.e., instances of components) after and before the
execution of AT completions. For example, a completion may inte-
grate 10 additional assembly contexts into an architectural model.

M∆operations measures the di�erence between the number of opera-
tions as sum over all interfaces (provided by components) after and
before the execution of AT completions. For example, a completion
may integrate 10 additional operations into an architectural model.

M∆self-adapt. measures the di�erence between the number of lines of
self-adaptation rules after and before the execution of AT comple-
tions. For example, a completion may integrate 100 additional lines
of self-adaptation rules into an architectural model.

5.2.2.3. Metrics: Do so�ware architects e�ectively benefit from checking
whether their architectural models violate conformance to
applied ATs?

Question Qconformance (“Do software architects e�ectively bene�t from
checking whether their architectural models violate conformance to applied
ATs?”) can be quanti�ed based upon the metrics derived by Giacinto [Gia16,
Chap. 7]:

M#detected violations measures the total number of actually detected confor-
mance violations, thus, directly measuring the e�ectivity of con-
formance checks. For example, during the AT-based creation of an
architectural model, software architects may detect 10 violations to
constraints of an applied AT.

M#resolved violations measures the total number of resolved violations after
they have been detected. For example, after detecting 10 violations
to constraints of an applied AT, software architects may only resolve
9 violations . The rationale behind this metric is that it gives an
indication whether software architects successfully exploit detected
violations as feedback for revising their architectural model.

170

5.2. Evaluation Design

5.2.2.4. Metrics: What are e�ective benefits of the ATmethod?

Question Qbene�ts (“What are e�ective bene�ts of the AT method?”) is an
open question for bene�ts. Open questions suggest a broad range of answers
formulated in natural language [RH09] and are directly asked to participants
of empirical investigations [RH09]. The participant’s answers often provide
additional and unexpected insights. Accordingly, the following metric
simply collects the answers to Qbene�ts:

Mbenefits collects any bene�ts of the AT method observed during its em-
pirical investigation in natural language. For example, a software
architect may state: “The AT method’s formalization of an architec-
tural pattern helped me to better understand the pattern itself.”

5.2.2.5. Metrics: What are e�ective limitations of the ATmethod?

Question Qlimitations (“What are e�ective limitations of the AT method?”)
is an open question for limitations. Therefore, Qlimitations forms the coun-
terpart of Qbene�ts and can analogously be answered:

Mlimitations collects any limitations of the AT method observed during the
empirical investigation, e.g., an AT has to be adapted for its appli-
cation or a potential AT application is not performed due to any
kind of problem. For example, a software architect may state: “I was
unsure whether this AT was the right one, so I ignored it.”

5.2.2.6. Metrics: Howmuch e�ort do AT engineers
require for specifying ATs?

Question Qspeci�cation e�ort (“How much e�ort do AT engineers require for
specifying ATs?”) can be quanti�ed based upon the following metrics:

Time-basedmetrics quantify e�ort by measuring the time AT engineers re-
quire for executing the actions of the AT speci�cation process (cf. Sec-
tion 4.1.3); analogously to the time-based metrics of Qapplication e�ort:

171

5. Evaluation

Mtime for AT specification measures the exclusive time for executing each
of the AT speci�cation actions of the AT speci�cation process (iden-
ti�cation, selection, speci�cation, and quality assurance; cf. Sec-
tion 4.1.3), i.e., the time from start to the �nish of the action minus
time not spend on the action during this interval. For example, an
AT engineer may require 8 hours to specify a requested AT in a
controlled environment.

Size-basedmetrics quantify e�ort by measuring the number of elements
that AT engineers have to investigate and create during the actions
of the AT speci�cation process (cf. Section 4.1.3); analogously to
the size-based metrics of Qapplication e�ort. Major elements when
creating ATs are AT roles, AT constraints, and AT completions:

M#AT roles measures the number of roles of an AT. For example, an
AT engineer may require more e�ort to specify an AT with 10 roles
instead of 1 role.

M#AT constraints measures the number of constraints of an AT. For
example, an AT engineer may require more e�ort to specify an AT
with 50 constraints instead of 10 constraints .

M#completion LOC measures the number of lines of completions of an
AT. For example, an AT engineer may require more e�ort to specify
an AT with 1, 000 LOCs instead of 100 LOCs .

5.2.2.7. Metrics: Does quality assurance help AT engineers to improve the
conceptual integrity of specified ATs e�ectively?

Question Qquality assurance (“Does quality assurance help AT engineers to
improve the conceptual integrity of speci�ed ATs e�ectively?”) is similar to
Qconformance but with a focus on AT engineers and their quality assurance
process:

M#detected errors measures the total number of actually detected errors by
following the AT method’s test-based quality assurance process, thus,
directly measuring the e�ectivity of quality assurance. For example,
during quality assurance, AT engineers may detect 10 errors in an
AT completion.

172

5.2. Evaluation Design

M#resolved errors measures the total number of resolved errors after they
have been detected. For example, after detecting 10 errors in an AT
completion, AT engineers may only resolved 9 errors . The rationale
behind this metric is that it gives an indication whether AT engineers
successfully exploit detected errors as feedback for revising ATs.

5.2.3. Analysis Procedure(s)

Analysis procedures precisely specify how to interpret empirical data gained
from measuring metrics [RH09]. To specify these procedures, I follow again
the GQM method: for each question, I formulate expected answers as
hypotheses. Along with hypotheses, I state appropriate rejection criteria.

In the following, for each question, a dedicated subsection describes its
associated hypotheses and rejection criteria. Table 5.1 provides a summary
of these hypotheses and rejection criteria.

5.2.3.1. Hypotheses: Howmuch e�ort do so�ware architects
require to apply ATs?

The following hypotheses characterize the expected answers to question
Qapplication e�ort (“How much e�ort do software architects require to apply
ATs?”):

Htime-size correlation states that there are positive correlations between the
time metric Mtime for AT selection and the size metric M#ATs as well as
between the time metric Mtime for AT application and the size metrics
M#AT roles and M#AT parameters.

Martens et al. [MKPR11] provide evidence that time- and size-based
e�ort metrics positively correlate. A correlation would con�rm
that results regarding e�ort can be triangulated over such metrics.
Moreover, a correlation would allow future studies to estimate e�ort
based on size, i.e., without depending on human interactions like
time-based metrics require.

Rejection: The correlation is not positive, i.e., the correlation coe�-
cient is not greater than 0.0. Because all considered metrics are ratio

173

5. Evaluation

scaled, the Pearson correlation coe�cient [WRH+00, Sec. 10.1] is
employed.

He�ort is low states that AT selection and AT application e�ort is low, com-
pared to the overall e�orts for specifying architectural models suited
for architectural analyses.

For the comparison to overall e�orts, Koziolek’s realistic estimates
of 65 person hours are used as a reference point (cf. Section 5.1.1.2).
I assume that “low” means that AT e�orts cause at most 1 % of the
overall e�orts, i.e., at most 40 person minutes (1 % · 65 person hours
≈ 40 person minutes).

Rejection: The sum of Mtime for AT selection and Mtime for AT application
is higher than 40 person minutes.

5.2.3.2. Hypotheses: Howmuch creation e�ort can so�ware architects
save when applying ATs?

The following hypotheses characterize the expected answers to question
Qe�ort saving (“How much creation e�ort can software architects save when
applying ATs?”):

H∆time-∆size correlation states that the time metric M∆time positively corre-
lates with the size metricsM∆components,M∆assembly ctx.,M∆operations,
and M∆self-adapt..

As for Htime-size correlation, the motivation behind this hypothesis
is the expected positive correlation of time- and size-based e�ort
metrics [MKPR11].

Rejection: The correlation is not positive, i.e., the correlation coe�-
cient is not greater than 0.0. Because all considered metrics are ratio
scaled, the Pearson correlation coe�cient [WRH+00, Sec. 10.1] is
employed.

He�ort is lowered states that applying the AT method lowers e�ort compared
to manually creating architectural models directly in the targeted
architectural analysis approach.

174

5.2. Evaluation Design

This hypothesis describes and follows directly from the main promise
of the AT method (cf. Chapter 4), i.e., that the AT method makes archi-
tectural analyses more e�cient. The subsequent rejection criterion
employs the previously introduced di�erence metrics to quantify
the saved e�ort—only if e�ort is actually saved, this hypothesis is
accepted.

Rejection: Any of the di�erence metrics from Section 5.2.2.2 (M∆time,
M∆components, M∆assembly ctx., M∆operations, M∆self-adapt.) is negative.

5.2.3.3. Hypotheses: Do so�ware architects e�ectively benefit from
checking whether their architectural models violate conformance
to applied ATs?

The following hypotheses characterize the expected answers to question
Qconformance (“Do software architects e�ectively bene�t from checking
whether their architectural models violate conformance to applied ATs?”):

Hviolations are detected states that violations are detected.

Accepting this hypothesis indicates that conformance checks are
possible and helpful, thus, directly targeting the e�ectivity of such
checks. Its acceptance particularly shows that software architects
became aware of violations, thus, indicating that AT tooling provides
a su�cient reporting mechanism of violations.

Rejection: M#detected violations equals 0.

Hviolations are resolved states that all detected violations are resolved.

Accepting this hypothesis indicates that software architects success-
fully use detected violations as feedback for revising their architec-
tural models. Therefore, conformance checks are bene�cial both for
“diagnosis” and “therapy” of conformance violations.

Rejection: M#resolved violations < M#detected violations.

175

5. Evaluation

5.2.3.4. Hypotheses: What are e�ective benefits of the ATmethod?

The following hypothesis characterizes the expected answer to question
Qbene�ts (“What are e�ective bene�ts of the AT method?”):

Hbenefits exist states that bene�ts are observed and subjectively reported.

The rationale behind this hypothesis is that it is unlikely that each
positive aspect in the usage of the AT method can be foreseen. Fore-
seeing is especially hard because of human-based activities [WRH+00,
Chap. 9].

Rejection: Mbene�ts is empty.

5.2.3.5. Hypotheses: What are e�ective limitations of the ATmethod?

The following hypothesis characterizes the expected answer to question
Qlimitations (“What are e�ective limitations of the AT method?”):

Hlimitations exist states that some limitations will be discovered.

The rationale behind this hypothesis is analogous to hypothesis
Hbene�ts exist: foreseeing limitations is hard because of human in-
volvement [WRH+00, Chap. 9]. I expect no critical limitations, i.e.,
limitations that render the AT method generally unsuitable. Detected
limitations therefore help to identify future work directions, e.g., in
the form of additional features, correctable bugs in AT tooling, and
improvements in usability.

Rejection: Mlimitations is empty.

5.2.3.6. Hypotheses: Howmuch e�ort do AT engineers
require for specifying ATs?

The following hypotheses characterize the expected answers to question
Qspeci�cation e�ort (“How much e�ort do AT engineers require for specifying
ATs?”):

176

5.2. Evaluation Design

Htime-size correlation states that the time metric Mtime for AT speci�cation posi-
tively correlates with the size metrics M#AT roles, M#AT constraints, and
M#completion LOC.

Similar to Htime-size correlation for software architects (associated to
Qapplication e�ort), the motivation behind this hypothesis is the the
expected positive correlation of time- and size-based e�ort metrics
[MKPR11].

Rejection: The correlation is not positive, i.e., the correlation coe�-
cient is not greater than 0.0. Because all considered metrics are ratio
scaled, the Pearson correlation coe�cient [WRH+00, Sec. 10.1] is
employed.

He�ort is high states that AT speci�cation e�ort is high, compared to the over-
all e�orts for specifying architectural models suited for architectural
analyses.

For the comparison to overall e�orts, Koziolek’s realistic estimates
of 65 person hours are used as a reference point (cf. Section 5.1.1.2).
I assume that “high” means that AT e�orts cause at least 10 % of the
overall e�orts, i.e., at least 6.5 person hours (10% · 65 person hours
= 6.5 person hours).

Rejection: Mtime for AT speci�cation is lower than 6.5 person hours.

5.2.3.7. Hypotheses: Does quality assurance help AT engineers to improve
the conceptual integrity of specified ATs e�ectively?

The following hypotheses characterize the expected answers to question
Qquality assurance (“Does quality assurance help AT engineers to improve
the conceptual integrity of speci�ed ATs e�ectively?”):

Herrors are detected states that errors are detected.

Accepting this hypothesis indicates that quality assurance is possible
and helpful, thus, directly targeting the e�ectivity of quality assur-
ance. The hypothesis’ acceptance particularly shows that AT engi-
neers became aware of errors, thus, indicating that the AT method’s
quality assurance steps are su�ciently described.

177

5. Evaluation

Rejection: M#detected errors equals 0.

Herrors are resolved states that all detected errors are resolved.

Accepting this hypothesis indicates that AT engineers successfully
use detected errors as feedback for revising ATs. Therefore, the AT
method’s quality assurance is bene�cial both for “diagnosis” and
“therapy” of errors in ATs.

Rejection: M#resolved errors < M#detected errors.

5.2.4. Validity Procedure(s)

Especially measuring e�ort comes with high validity threats because e�ort is
often measured based on human interactions [WRH+00, Chap. 9]. Human-
based measurements can, for instance, result in poor reproducibility of
case studies. To cope with such threats, the evaluation design describes
hypotheses (e.g., Htime-size correlation) that triangulate [Sea99] results from
human-based measurements (i.e., measurements of time-based metrics) and
size-based measurements.

Another aspect is the quality of the evaluation design itself. I try to maxi-
mize its quality by following case study reporting guidelines [RH09] and
by letting colleagues review the evaluation design two times regarding
reproducibility. Moreover, parts of the evaluation plan have been pub-
lished [LB15c, LB16], i.e., these parts were externally reviewed and accepted.
This external acceptance is an indication for a high quality of the evaluation
design.

5.3. Case Studies

We have used the evaluation design from Section 5.2 in several case stud-
ies to evaluate the AT method. This section provides brief summaries of
these case studies: Section 5.3.1 summarizes the CloudStore case study,
Section 5.3.2 the WordCount case study, Section 5.3.3 the Znn.com case
study, and Section 5.3.4 further (but smaller) case studies. Detailed reports
of the �rst three case studies are provided in Appendix C.

178

5.3. Case Studies

5.3.1. Case Study: CloudStore

This section summarizes the case study on CloudStore, an online book shop
similar to the book shop example from Chapter 3. A detailed case study
report is provided in Appendix C.1.

5.3.1.1. CloudStore: Description

CloudStore [LSB+17] represents a distributed, CPU-bound online book shop
where customers can search and order books, similar to (but more complex
than) the book shop example from Chapter 3. CloudStore’s implementation
is based on a legacy implementation of the TPC-W benchmark [Tra02]. In
our previous e�orts [LB16, LSB+17], we have conducted a case study to
migrate this legacy version to a version that operates in a cloud computing
environment. We have applied the AT method for planning this migration,
e.g., to analyze whether CloudStore would bene�t from the loadbalancing
architectural pattern inside the cloud computing environment. Accordingly,
CloudStore has two main advantages: (1) it refers to the well-speci�ed TPC-
W benchmark [Tra02] that is popular both in academia and industry and
(2) it represents a typical distributed legacy system for which a migration
needs to be planned, thus, �tting to a typical purpose of architectural
analyses.

5.3.1.2. CloudStore: Goal

The CloudStore case study re�nes the overall evaluation goal by focusing on
planning a migration within the distributed and cloud computing domains.
Therefore, the AT method’s e�ectivity and e�ciency is evaluated in these
domains and their typical QoS properties (performance, scalability, elasticity,
and cost-e�ciency). By including this re�nement into the GQM template
for the overall evaluation goal, the particular goal of the CloudStore case
study is to:

Analyze: the AT method

For the purpose of: conducting architectural analyses for planning migra-
tions

179

5. Evaluation

With respect to: e�ectivity and e�ciency

From the viewpoint of: software architects and AT engineers

In the context of: realistic distributed and cloud computing systems.

5.3.1.3. CloudStore: Case Description

To achieve the goal of the CloudStore case study, CloudStore’s software
architect requests a set of suitable ATs from an AT engineer. In this request
scenario, the software architect’s request is of the broadest kind (cf. Sec-
tion 4.1.3.1): the software architect requests ATs for a whole application
domain (cloud computing) and is interested in several QoS properties (per-
formance, scalability, elasticity, and cost-e�ciency). Therefore, the AT
engineer is required to extensively work on each action of the AT speci�ca-
tion process (cf. Section 4.1.3).

5.3.1.4. CloudStore: Summary of Lessons Learned

This section brie�y summarizes the main lessons learned within the Cloud-
Store case study; a detailed analysis and interpretation is provided in Ap-
pendix C.1. The summary is aligned along the questions of the evaluation
design (cf. Section 5.2).

Qapplication e�ort: How much e�ort do so�ware architects require to apply
ATs? Software architects have only low e�ort for applying ATs (com-
pared to the overall e�orts for specifying architectural models). Indeed, on
average, we have required only about 5minutes to apply ATs. This result is
in line with the AT method’s goal to make software architects more e�cient
because only low e�ort is introduced for bene�ting from the exploitation
of reusable architectural knowledge (cf. Section 1.2). However, the result is
biased because we are experts on the AT method and already knew which
ATs we required, thus, minimizing selection times of appropriate ATs from
the AT catalog.

E�ort for software architects varies depending on the number of ATs in the
employed AT catalog and the number of roles and parameters of the applied

180

5.3. Case Studies

AT. We additionally noted that e�ort is caused by the number of applied
roles, e.g., the three-layer AT includes only 4 roles but we have bound
these roles to a total of 8 architectural elements of CloudStore. Therefore, a
metric for the number of applied roles should be applied for future empirical
investigations.

Predicting the time for selecting and applying ATs solely based on the
identi�ed correlation will result in inaccurate estimates. Future work may
investigate whether metrics with strong correlations with selection and
application time can be de�ned, e.g., similar to the complexity metrics by
Martens et al. [MKPR11].

Qe�ort saving: How much creation e�ort can so�ware architects save when
applying ATs? E�ort can e�ectively be lowered by applying ATs. Investi-
gated ATs have saved creation e�orts for assembly contexts and for speci-
fying self-adaptive behavior by providing generic self-adaptation rules.

We were unable to provide estimates of the saved time when applying
ATs because we lacked a control group not following the AT method (as
is required by the employed metrics). Future empirical investigations may
tackle this lack; the controlled experiment outlined in Section 5.4 exempli�es
such an investigation.

Qconformance: Do so�ware architects have e�ective benefits from checking
whether their architectural models violate conformance to applied ATs?
Software architects can e�ectively bene�t from the AT method’s confor-
mance checks. Our results particularly indicate that conformance checks
help to apply ATs correctly.

However, during the CloudStore case study, we only detected one con-
formance violation. Therefore, no conclusive insights have been gained—
especially regarding the long-term bene�ts of conformance checks (e.g.,
regarding maintainability) and regarding software architects that have not
participated in creating the applied ATs. Future investigations may focus
on these aspects.

181

5. Evaluation

Qbenefits: What are e�ective benefits of the ATmethod? We have collected
3 bene�ts of the AT method during the CloudStore case study. These
bene�ts both con�rm expected and reveal unexpected bene�ts.

The �rst bene�t (“detected constraint violations helped to correctly apply
the three-layer AT”) shows that conformance checks not only maintain and
ensure conformance but also help software architects to apply ATs. We
expect that such a help will be most bene�cial for software architects not
involved in AT speci�cation and, especially, novice software architects.

The second bene�t (“as an expert, AT application is a matter of a few
minutes”) con�rms that AT application can come with low e�orts. It would,
however, be interesting to inspect whether such bene�ts are observed by
non-experts of the AT method as well.

The third bene�t (“the architectural analysis showed that the application of
the loadbalancing AT was not bene�cial in the given context; without anal-
ysis, this issue would have been hard to show”) empirically con�rms that
architectural analyses help in making context-aware informed decisions.
During the case study, we were actually surprised that an increased number
of loadbalanced replicas can degrade capacity. This degradation is in con-
trast to what the loadbalancing architectural pattern promises. However,
the architectural analysis has revealed that CloudStore’s Database Server—a
context factor for the loadbalancer—actually becomes overloaded when
too many replica exist. Here, the combination of reusable architectural
knowledge with architectural analyses was bene�cial.

Qlimitations: What are e�ective limitations of the ATmethod? We have col-
lected 5 limitations of the AT method during the CloudStore case study.
The limitations point to technical issues in AT tooling (�rst 4 limitations)
and an issue in selecting suitable ATs (last limitation).

AT tooling issues relate to EMF pro�les and debugging mechanisms (�rst
limitation), missing reuse mechanisms for ATs (second limitation), lack of
in-editor syntax checks when specifying OCL constraints (third limitation),
and customizability of self-adaptations (fourth limitation). Fortunately, all
of these issues are of technical nature and do not render the AT method
infeasible. However, for making the AT method more practically relevant,
these issues should be resolved. Openkowski has—meanwhile—already

182

5.3. Case Studies

resolved the second limitation by introducing reuse mechanisms for the
speci�cation of ATs (cf. Section 4.4.1). Resolving the remaining limitations
remains as a future work.

The �fth and last limitation (“conceptually, the three-layer AT does not
completely �t to CloudStore”) is not of technical nature but relates to a
conceptual mismatch between the selected AT and the targeted system. In
CloudStore, assembly contexts for web pages, e.g., Home Page, communicate
over a dedicated Database Access assembly context to CloudStore’s Database.
Because this structure de�nes three logical layer, we have applied the three-
layer AT to CloudStore as illustrated in Figure C.7. While all constraints
of the captured knowledge are ful�lled, the role names of the three-layer
AT do not perfectly �t to CloudStore: the application layer role is applied
to CloudStore’s Database Access assembly context and the data access layer
role is applied to CloudStore’s Database assembly context. We may argue
that Database Access also includes application layer logic and that Database
models the access to CloudStore’s database. However, the alternative (and
common) role names “presentation layer”, “middle layer”, and “data layer”
of the three-layer architectural style may be more intuitive in the context
of CloudStore. A next step in the CloudStore case would therefore be
to let software architects and AT engineers re-agree on this terminology.
We conclude that, in general, software architects and AT engineers must
steadily cooperate to avoid confusion due to unsuitable role names.

Qspecification e�ort: How much e�ort do AT engineers require for specifying
ATs? AT engineers have high e�orts for specifying ATs (compared to
the overall e�orts for specifying architectural models). The identi�cation of
suitable QoS properties and their integration into Palladio has caused the
most e�ort, i.e., approximately 2.5personmonths . We had high e�orts in
this step because neither established metrics for scalability, elasticity, and
cost-e�ciency nor a suitable architectural analysis have existed when we
started with the case study. However, we expect that only little e�ort is re-
quired in domains with well-established metrics and analysis approaches.

Once we had �nished with our integration into Palladio, on average, we
have required about 8hours to select, specify, and quality-assure a single
AT. Given the potential e�ort that software architects save when applying
the AT method, we believe that 8hours are a�ordable. Moreover, resolving

183

5. Evaluation

some limitations in AT tooling promises to lower AT speci�cation e�orts
(see previous lesson learned).

Not all suspected e�ort-causing factors indeed cause e�ort. For example, we
identi�ed a negative correlation between speci�cation time and the number
of AT roles and constraints. This correlation even suggests that “the more
roles and constraints an AT needs to capture, the less time is required for its
speci�cation”. Because such a statement makes no causal sense, we suggest
a more controlled inspection of these factors. Furthermore, we identi�ed
a positive correlation of 0.83 between speci�cation time and completion
lines of code, indicating that the size of completions indeed in�uences the
e�ort for specifying ATs. According to Evans’ classi�cation [Eva96], this
correlation is even “very strong”; thus, making completions a primary factor
for speci�cation e�orts.

Qquality assurance: Does quality assurance help AT engineers to improve the
conceptual integrity of specified ATs e�ectively? The AT method’s quality
assurance helps in e�ectively improving conceptual integrity of speci�ed
ATs: testing has revealed faults in the speci�cation of several ATs. This
testing is a lightweight quality assurance technique because it requires little
e�ort compared to a full-blown formal veri�cation. The typical root causes
for AT faults (cf. Section 4.1.3.3) particularly have helped to e�ciently detect
the actual faults. Once detected, we have shown that faults can be removed,
thus, leading to an improved conceptual integrity. We therefore suggest to
always include the proposed quality assurance steps in any AT speci�cation
e�orts.

Given its importance, future work should target a more extensive support
for quality assurance. For example, an automated generation of test models
that cover the typical root causes for AT faults is a promising future work
direction.

5.3.2. Case Study: WordCount

This section summarizes a case study that we have conducted in the big data
domain; a domain concerned with processing large data sets [Whi09]. The
concrete case is the WordCount application [Whi09], which is a commonly

184

5.3. Case Studies

used example application in the big data domain. A detailed case study
report is provided in Appendix C.2.

5.3.2.1. WordCount: Description

The WordCount application [Whi09] counts the number of occurrences
of each word over a set of input texts. For example, the texts “software
architects apply an AT” and “AT engineers create an AT” may be processed.
WordCount then outputs a count of 3 for the word “AT”, a count of 2 for
the word “an”, and a count of 1 for the remaining words.

5.3.2.2. WordCount: Goal

In our case study, we have created and analyzed an architectural model
for WordCount. We have created this model based on an AT that captures
a typical reference architecture for big data applications. The reference
architecture is based on Apache’s Hadoop framework [Whi09] that imple-
ments the MapReduce architectural style [DG08]. Compared to the ATs
speci�ed during the CloudStore case study, the unique feature of the Hadoop
MapReduce AT is that it provides a default AT instance (cf. Section 4.2.5.3),
i.e., can be used as initiator template.

Accordingly, the goal of the WordCount case study was to:

Analyze: the AT method

For the purpose of: conducting architectural analyses based on initiator
templates

With respect to: e�ectivity and e�ciency

From the viewpoint of: software architects and AT engineers

In the context of: realistic big data systems.

185

5. Evaluation

5.3.2.3. WordCount: Case Description

We have achieved the goal of the WordCount case study in three consecutive
steps. First, in the context of his Master’s thesis [Sax15], Manoveg Saxena
has acted as software architect to create a reference model for Hadoop
applications—with full support for Palladio-based analyses. Second, I have
acted as AT engineer to extract the Hadoop MapReduce AT from this ref-
erence model. Third, I have acted as software architect to showcase the
application of this AT to the WordCount case. The third and last step has
required only minor e�ort (less than 1hour) compared to setting up, run-
ning, and analyzing the WordCount application on an actual computing
cluster. Therefore, our results point to an improved e�ciency when using
ATs as initiator templates.

5.3.2.4. WordCount: Summary of Lessons Learned

This section brie�y summarizes the main lessons learned within the Word-
Count case study; a detailed analysis and interpretation is provided in
Appendix C.2. The summary is aligned along the questions of the evalua-
tion design (cf. Section 5.2).

Qapplication e�ort: How much e�ort do so�ware architects require to apply
ATs? The application of the Hadoop MapReduce AT involves minor ef-
fort for software architects: the AT-based initialization of WordCount’s
architectural model took us less than 2minutes . We expect that this result
can be generalized to other AT-based initializations because the initializa-
tion wizard requires no complicated con�guration and automates most
creation tasks; the selection of an AT with default AT instance is enough.

Qe�ort saving: How much creation e�ort can so�ware architects save when
applying ATs? E�ort can e�ectively be lowered by applying ATs. An inter-
esting observation is that, compared to the size-based metric measurements
in the CloudStore case study, the measurements of size-based metrics are
signi�cantly higher for the Hadoop MapReduce AT. Furthermore, the Hadoop
MapReduce AT is the �rst inspected AT for which additional operations
were created by completions.

186

5.3. Case Studies

We account both of these observations to the fact that we captured a ref-
erence architecture within the AT; opposed to the architectural styles and
architectural patterns captured during the CloudStore case study. As de-
scribed in Section 2.2.4.3, reference architectures can provide additional
component interfaces with additional operations, de�ne an architectural
style, and group sets of architectural patterns. Based on this de�nition, the
higher values for the taken metric measurements can be explained.

We conclude that ATs that capture reference architectures can save software
architects more e�ort than ATs that capture di�erent kinds of architec-
tural knowledge. However, we note that reference architectures have the
downside of being domain-speci�c (cf. Section 2.2.4.3), thus, being not as
universally applicable as architectural styles and architectural patterns.

Qconformance: Do so�ware architects have e�ective benefits from checking
whether their architectural models violate conformance to applied ATs?
At least for WordCount and the Hadoop MapReduce AT, no bene�ts were
gained from automated conformance checks. However, that such bene�ts
generally exist has been shown during the CloudStore case study.

Moreover, two factors about the Hadoop MapReduce AT make it hard to
cause conformance violations at all. First, the AT contains only two con-
straints; each checking that roles are bound to the correct architectural
element (i.e., to assembly contexts). However, AT tooling allows only to
bind roles to the correct elements; the tool does not allow binding roles to
wrong target elements. Second, the AT-based initialization also prevents
software architects from violating conformance compared to a completely
manually created architectural model.

In such situations, software architects do not necessarily require confor-
mance checks. Fortunately, software architects then face situations where
conformance violations are unlikely—grounded in the capabilities of applied
ATs and AT tooling.

Qbenefits: What are e�ective benefits of the ATmethod? We have collected
2 bene�ts of the AT method during the WordCount case study. These
bene�ts con�rm the lessons learned about application e�ort: we were

187

5. Evaluation

clearly impressed by the little e�ort we have spent to model a complex
Hadoop-based system.

The �rst bene�t (“we had very little e�ort with the AT-based instantiation
of the architectural model”) covers the e�ort aspect. As our measurements
show, we only required 2minutes for the instantiation of the model, which
con�rms our impression.

The second bene�t (“the bound AT heavily reduces the complexity of the
underlying Hadoop infrastructure”) covers the complexity aspect. Indeed,
we had minor analyzing e�ort using our architectural model; compared
to setting up, running, and analyzing the Apache Hadoop application on
actual hardware.

We conclude that we were able to con�rm the main promise of the AT
method, i.e., to make software architects more e�cient.

Qlimitations: What are e�ective limitations of the ATmethod? We have col-
lected 3 limitations during the WordCount case study. These limitations
point to current drawbacks of theHadoopMapReduce AT and in SimuLizar.

The �rst limitation (“the AT is currently in�exible and misses parameters,
e.g., for con�guring the number of map and reduce replicas”) shows that
the AT is only a �rst proof-of-concept for an AT-based initialization. Future
work is needed to make the AT more �exible, however, the proof-of-concept
of an AT-based initialization was successful.

The second limitation (“the AT-annotated architectural model appears in-
complete because map and reduce assembly context are unconnected”)
points to a potential visualization issue of AT-based architectural models.
Due to the fact that missing elements are created by AT completions, AT-
based architectural models potentially appear incomplete as, e.g., shown
in Figure C.17. A possible solution to this issue is to provide software ar-
chitects with a view on the architectural model that previews the elements
to be generated, e.g., by depicting missing elements in a greyed-out form
along with the remaining elements. Future work may inspect this issue
further.

The third limitation (“the applied analysis tool (SimuLizar) lacks support for
asynchronous map and reduce tasks, which can generally lead to inaccurate

188

5.3. Case Studies

analysis results”) relates to a tooling issue in SimuLizar; i.e., a tool on which
AT tooling depends. Saxena [Sax15, Sec. 7] has identi�ed this issue in his
Master’s thesis and reports on it in detail. Because the issue in�uences
prediction accuracy, Saxena suggests improving SimuLizar with support for
asynchronous communication. Rathfelder [Rat13] provides a good starting
point for such an improvement because he describes such an improvement
for other Palladio analysis tools, e.g., for SimuCom.

Qspecification e�ort: How much e�ort do AT engineers require for specifying
ATs? The case study again con�rms that AT engineers have high e�orts for
specifying ATs (compared to the overall e�orts for specifying architectural
models). In contrast to the CloudStore case study, the speci�cation of the AT
itself has caused the most e�ort, i.e., approximately 2.5personmonths .

We had high e�orts in this step because Saxena’s reference model has
required extensive investigations of and experimentation with Hadoop’s
processing pipeline. We suspect that such an amount of e�ort can even
be generalized to most reference architectures, given their typically high
amount of (domain-speci�c) design decisions. However, we expect that
such e�orts pay-o� when captured in ATs that are reused often.

It remains open how time- and size-based metrics correlate, thus, more
experiments that provide the required data are needed. In the CloudStore
case study, we have established �rst results in this direction, however, not
with focus on an AT-based initialization of architectural models. Future
work may continue with investigations in this direction.

Qquality assurance: Does quality assurance help AT engineers to improve the
conceptual integrity of specified ATs e�ectively? The AT method’s quality
assurance helps in e�ectively improving conceptual integrity of speci�ed
ATs. The discussion of this result is analogous to the CloudStore case
study.

5.3.3. Case Study: Znn.com

This section summarizes a case study where a student, Igor Rogic [Rog16],
has applied ATs to analyzing the elastic news service Znn.com [CGS09].

189

5. Evaluation

The Znn.com case study serves as an external validation of AT application;
I only interacted with the student via mail in case of concrete questions. A
detailed case study report is provided in Appendix C.3.

5.3.3.1. Znn.com: Description

Znn.com [CGS09] represents a typical news service. The main requirement
is to provide news content to customers within reasonable response time.

Moreover, due to the nature of news, Znn.com is expected to face varying
workloads (cf. [CGS09]), e.g., peak workloads in the event of breaking
news. Znn.com therefore requires the implementation of suitable elasticity
mechanisms.

5.3.3.2. Znn.com: Goal

The context of Znn.com is the same as in the CloudStore case study (realistic
distributed and cloud computing systems; cf. Section 5.3.1). Therefore, the
goal was to analyze whether ATs for elasticity that we have speci�ed during
the CloudStore case study can be reused and con�gured for Znn.com:

Analyze: the AT method

For the purpose of: conducting architectural analyses for determining suit-
able parameters for elasticity mechanisms

With respect to: e�ectivity and e�ciency

From the viewpoint of: external software architects

In the context of: realistic distributed and cloud computing systems.

190

5.3. Case Studies

5.3.3.3. Znn.com: Case Description

To cope with varying workloads cost-e�ciently, the provider of Znn.com re-
quires that the Znn.com service shall employ elasticity mechanisms. These
elasticity mechanisms shall be able to dynamically adapt both the number of
load-balanced server replicas and the content mode (multimedia vs. textual)
of Znn.com.

Therefore, in the Znn.com case, a software architect has to determine
suitable parameters for Znn.com’s elasticity mechanisms. Parameters to
be determined can relate to the dynamic load-balancing strategy (e.g., the
determination of a threshold when a scale-out should be triggered) and the
selection strategy of the content mode (e.g., determining a peak workload
when content mode should optimally be switched to textual).

5.3.3.4. Znn.com: Summary of Lessons Learned

This section brie�y summarizes the main lessons learned within the case
study on Znn.com; a detailed analysis and interpretation is provided in Ap-
pendix C.3. The summary is aligned along the questions of the evaluation
design (cf. Section 5.2). Only questions relevant for AT application are con-
sidered because the Znn.com case study does not involve the speci�cation
of new ATs.

Qapplication e�ort: How much e�ort do so�ware architects require to apply
ATs? The data provided by Rogic unfortunately does not allow to precisely
analyze AT application e�orts, especially since Rogic has only measured
the total time for creating and analyzing Znn.com’s architectural model and
not the exclusive time for AT-related actions. However, Rogic’s total time
of 46hours can be compared to the total time of 214hours for the creation
of the CloudStore model (cf. Section C.1.1): we required approximately 4.5
times more time to create the CloudStore model. Therefore, CloudStore can
be considered signi�cantly more complex than Znn.com.

A lowered complexity of Znn.com (compared to CloudStore) implies dif-
ferent expectations for its evaluation. For example, it is less likely that
conformance to applied reusable architectural knowledge is violated and

191

5. Evaluation

less bene�ts and limitations may be observed during the conduction of
the case study. When answering the subsequent questions, the lowered
complexity of Znn.com is therefore taken into account.

Qe�ort saving: How much creation e�ort can so�ware architects save when
applying ATs? E�ort can e�ectively be lowered by applying ATs. The
interpretation of this result is analogous to the CloudStore case study
because the horizontal scaling AT was applied there as well.

Qconformance: Do so�ware architects have e�ective benefits from checking
whether their architectural models violate conformance to applied ATs?
At least for Znn.com and the horizontal scaling AT, no bene�ts were gained
from automated conformance checks. That such bene�ts generally exist
has been shown during the CloudStore case study, however, even in the
CloudStore case study, only other ATs than the horizontal scaling AT have
triggered conformance violations.

A possible explanation for these observations is that software architects
apply the horizontal scaling AT correctly because it involves no complex
constraints. Indeed, the constraints of this AT mainly check that actual
parameters are set correctly, e.g., that the number of initial replicas is positive.
Software architects potentially do not violate such constraints as parameter
names often suggest valid values intuitively. Future investigations may
provide more conclusive answers for this question.

Qbenefits: What are e�ective benefits of the ATmethod? We have collected
2 bene�ts during the Znn.com case study. These bene�ts indicate that even
novice software architects can reuse pre-speci�ed ATs and correctly apply
these ATs to architectural models.

The �rst bene�t (“the horizontal scaling AT—speci�ed in the context of the
CloudStore case study—has been reused during the Znn.com case study”)
covers the reuse aspect. Because Rogic was able to reuse the previously
speci�ed horizontal scaling AT within another case study, reuse of ATs is
possible. This result holds at least for intra-domain reuse: both CloudStore
and Znn.com are located in the context of distributed and cloud computing
systems. The horizontal scaling AT particularly captures a typical cloud

192

5.3. Case Studies

computing architectural pattern [EPM13, FLR+14]. More general ATs like
the three-layer AT potentially allow for an inter-domain reuse; however,
this expectation requires con�rmation in future empirical studies.

The second bene�t (“a novice software architect was able to correctly apply
an AT and to conduct an AT-based architectural analysis”) points to a main
bene�t of the AT method—an increased e�ciency of software architects.
As the bene�t shows, an increased e�ciency (due to the time-e�cient
application of reusable architectural knowledge) is not only achieved for
expert software architects. An increase e�ciency is particularly achieved for
novice software architects without deep architectural knowledge—because
the required architectural knowledge is correctly captured within ATs.

Qlimitations: What are e�ective limitations of the ATmethod? We have col-
lected 2 limitations during the Znn.com case study. These limitations show
that software architects may distrust ATs and that the tooling extended by
the AT method requires improvement.

The �rst limitation (“the software architect has suspected the AT to be
faulty based on unsatisfying analysis results; however, the unsatisfying
results were caused by a performance bottleneck unrelated to the applied
AT”) covers the distrust aspect. An inspection of Znn.com’s Database Server
after re-analyzing the Znn.com model shows that this server is over-utilized
and cannot cope with the number of requests. Therefore, Znn.com is unable
to scale by adding additional Application Servers—a similar results as we have
observed during the CloudStore case study. To resolve this issue Rogic could
have, for example, increased the processing rate of the Database Server’s CPU.
The interesting observation, however, is that Rogic did not resolve the issue
at all but suspected a faulty AT.

A solution to lower such distrust in ATs is to train software architects more
in interpreting analysis results and inspecting the causes of quality issues
such as performance bottlenecks. Software architects can also be supported
by an automated detection of quality anti-patterns (cf. [BBL17, Chap. 7])
and hotspot detections (cf. [Str13, Sec. 4.3]). Again, further empirical inves-
tigations are needed to analyze the impact of these solutions on the trust in
ATs of (novice) software architects.

193

5. Evaluation

The second limitation (“mail support was required pointing to the Exper-
imentation Automation Framework for conducting AT-based analyses”)
relates to a tooling issue in the Experimentation Automation Framework as
extended by AT tooling (cf. Appendix B.2). In its current form, the Experi-
mentation Automation Framework provides the required functionality to
extend architectural analyses with AT support. However, the Experiment
Automation Framework lacks an intuitive user interface for con�guring
architectural analyses. Due to this lack, Rogic has particularly ran into
problems to create a correct con�guration and, consequently, has requested
my support via mail. Upon having received this request, I have pointed
Rogic to an example con�guration. Based on this example, Rogic �nally
managed to create a correct con�guration to run architectural analyses
with the Experimentation Automation Framework.

Given the observed issue, future work should target improving the usability
of the Experiment Automation Framework. A promising direction for such
an improvement is provided by the CloudScale Environment [Cloa]: the
CloudScale Environment also extends the Experiment Automation Frame-
work but enriches it with a dedicated and intuitive user interface. An
integration of this user interface into the Experiment Automation Frame-
work itself is, however, missing at the moment.

5.3.4. Further Case Studies

Because only the WordCount case study (cf. Section 5.3.2) involves an AT
with initiator template capabilities, I have conducted further (but smaller)
case studies with a special focus on ATs used as initiator templates. This
section brie�y points to these case studies: a migration of previously ex-
isting initiator templates of Palladio projects (Section 5.3.4.1) and the cre-
ation of initiator templates for the book shop example and CloudStore
(Section 5.3.4.2).

5.3.4.1. Migration of Templates from the Palladio Template Wizard

The wizard coming with AT tooling (cf. Section B.1.1) was inspired by the
original Palladio project wizard [Palb]. The original wizard comes with four

194

5.3. Case Studies

initiator templates (“Minimum Example Template”, “Minimum Event Tem-
plate”, “PCM Standard Components and Interfaces Repository”, “Techreport
Component Type Example”). These templates are normal Palladio projects
that are simply copied by the wizard into a new Palladio project during a
wizard-based initialization.

With AT tooling, such a behavior can be similarly realized by an AT that
contains just a default AT instance pointing to a templated Palladio project;
no AT roles are needed. I have accordingly created an AT for migrating each
of the four templates from the original wizard. Moreover, the AT catalog
containing these templates is shipped along with AT tooling (see [ATt]). AT
tooling therefore provides full support for initializing the Palladio projects
available in the old Palladio wizard.

Given that I only had to link the originally used templates from the new
ATs, AT creation required only minor e�ort. On average, I required approx-
imately 2minutes for creating such ATs.

I conclude that such simple initiator templates—without AT roles and
planned variation points—can be created with less e�ort than reference
architectures as, e.g., investigated in the WordCount case study (cf. Sec-
tion 5.3.2). The fact that I was able to migrate pre-existing templates (that
have existed independently of the AT method) particularly indicates that
this result has a high external validity.

5.3.4.2. Creation of ATs for the Book Shop Example and CloudStore

Similarly to the initiator templates described in the preceding section, I
have created ATs to initialize the book shop example from Chapter 3 and for
the CloudStore model from Section 5.3.1. Again, the AT catalog containing
these templates is shipped along with AT tooling (see [ATt]) and provides
an e�cient means to instantiate these models. Con�rming the results from
the preceding section, I have only required approximately 2minutes for
creating these ATs.

195

5. Evaluation

5.4. Controlled Experiment

Motivated by threats to validity for the conducted case studies (cf. Ap-
pendix C), controlled experiments should be conducted to analyze the AT
method further. Such controlled experiments promise more reproducible
and statistically solid results.

To ease planning such controlled experiments in future works, this sec-
tion outlines a design for such experiments and summarizes an already
conducted pre-study based on this design. The design follows the lessons
learned for conducting controlled experiments in the context of architec-
tural analyses that we have derived within a survey [LB15c]. Moreover,
the pre-study was conducted by Nützel in the context of his Bachelor’s
thesis [N1̈5]. While this section only provides a summary, Appendix E
provides a detailed report of the execution, analysis, and interpretation of
the pre-study.

5.4.1. Controlled Experiment Design

The goal of a controlled experiment for the AT method will typically be a
re�nement of the goal given in the introduction of this chapter. The case
studies on Section 5.3.1, Section 5.3.2, and Section 5.3.3 each exemplify
such a re�nement. Also Nützel’s goal corresponds to the goal stated in this
chapter’s introduction [N1̈5, Sec. 1.2].

Analogously to case studies, controlled experiments are reported according
to a typical structure like described by Jedlitschka et al. [JCP08]. The
subsequent sections follow this structure to describe the design of controlled
experiments for the AT method. Section 5.4.1.1 describes potential research
questions and empirical procedures. Afterwards, Section 5.4.1.2 outlines a
plan for a controlled experiment (required experiment material, tasks, and
scenarios). Subjects involved in controlled experiments are characterized
in Section 5.4.1.3.

196

5.4. Controlled Experiment

5.4.1.1. Controlled Experiment: Research Questions and Procedures

The evaluation design described in Section 5.2 provides a good resource
for research questions and procedures for data collection, analysis, and
validity. The evaluation design has proven to be applicable in the previously
described case studies. Moreover, also Nützel’s controlled experiment uses
research questions [N1̈5, Sec. 3.5] and procedures [N1̈5, Sec. 3.8] from this
evaluation design.

Additionally, our survey [LB15c] reveals that experiments often assess the
quality with which subjects achieve their tasks, e.g., in terms of correctness
and analysis accuracy. For architectural analyses, our survey particularly
reveals that achieved prediction accuracy can be assessed, e.g., against a
reference solution. Nützel follows this idea as described in his experiment
design [N1̈5, Sec. 3.5].

5.4.1.2. Controlled Experiment: Experiment Planning

During experiment planning, a protocol for the experiment is created that
reproducibly describes how to conduct the experiment [JCP08]. This section
outlines relevant aspects of experiment planning for the AT method: the
general experiment design, scenarios used within the experiment, required
material for experimentation, and concrete tasks to be conducted by subjects
during the experiment.

Design Nützel [N1̈5, Sec. 3.2] suggests a between-subject design for the
controlled experiment, i.e., an experiment involving a treatment and a
control group.

In the treatment group, software architects �rst have to attend a one-day
workshop on Palladio, SimuLizar, and the AT method. Afterwards, the
software architects follow the AT method to solve a common task—the
modi�cation and analysis of a given architectural model.

The control group consists of software architects that have to use Palla-
dio and SimuLizar natively to solve the common task. In contrast to the
treatment group, experts on SimuLizar are selected as subjects, thus, no
preceding training is required.

197

5. Evaluation

Nützel’s hypothesis [N1̈5, Sec. 3.5] is that, after the workshop, even novice
software architects out-perform (regarding prediction accuracy and re-
quired e�ort) the SimuLizar experts in modifying and analyzing a given
architectural model when following the AT method. The questions and
procedures from Section 5.4.1.1 are used to test this hypothesis.

Scenarios During the controlled experiment, subjects have to solve tasks
for one or more architectural analysis scenarios. For receiving reproducible
and comparable results, these scenarios must be characterized in detail.
Moreover, selected scenarios must �nd a balance between complexity and
simplicity; given that subjects will have a limited amount of time to solve the
task. Goal and research questions generally allow to set a focus, determining
the required level of complexity.

In the controlled experiment planned by Nützel [N1̈5, Sec. 3.3], a simple
variant of CloudStore (cf. Section 5.3.1) is used as scenario. The scenario
starts with a given CloudStore model that violates pre-speci�ed SLOs. The
task of subjects is to resolve these violations by applying reusable architec-
tural knowledge (the vertical scaling and the horizontal scaling architectural
patterns).

In the following, CloudStore is used to exemplify other aspects of experi-
ment planning.

Experiment Material Experiment materials are objects used during con-
trolled experiments [JCP08]. For the AT method, Nützel [N1̈5, Sec. 3.3]
provides the following experiment materials:

Installation guides (Appendix D.1 and Appendix D.2): A set of documents
explaining the setup of the tooling environment (Palladio, SimuLizar,
and AT tooling). The documents include installation guidelines for
the Eclipse IDE and required plug-ins. Moreover, they describe how
an example project can be imported.

Workshop document (Appendix D.3): A document describing who to train
software architects in using Palladio, SimuLizar, and AT tooling. The
document comes in the form of a hands-on workshop with tasks to
be executed.

198

5.4. Controlled Experiment

CloudStore description (Appendix D.4): A description of CloudStore; simi-
lar to the description given in Appendix C.1.1. CloudStore is used as
a scenario during the experiment.

CloudStoremodels (evaluation project available at [ATt]): A set of Palladio
projects (for treatment and control group, respectively) containing
the CloudStore model.

Task descriptions (Appendix D.5 and Appendix D.6): Descriptions of tasks
to be executed by the human subjects of the controlled experiment.
For each of the two groups, i.e., the treatment and the control group,
a dedicated task description document is provided.

Tasks Nützel [N1̈5, Sec. 3.4] structures the experiment in tasks to be
executed by involved human subjects. The previously described experiment
materials contain detailed descriptions of these tasks (see Appendix D.5 and
Appendix D.6). In summary, treatment and control group have to proceed
as follows:

(1) answer background questions to collect information about character-
istics and context of the human subject. For example, subjects are
asked to rate their knowledge of Eclipse, ATs, SimuLizar, and model
transformations. These factors potentially help to interpret experi-
mentation results once collected.

(2) understand architectural analysis scenario to become familiar to the
given case that is investigated. In Nützel’s experiment [N1̈5, Sec. 3.3],
CloudStore without self-adaptation capabilities and with a perfor-
mance bottleneck is given as a scenario.

Subjects �rst have to read a description of CloudStore as given in
Appendix D.4. Because each subject is given the same description, it
is expected that each subject gains the same level knowledge about
CloudStore.

Afterwards, subjects have to answer control questions about Cloud-
Store, e.g., asking for the rationale of CloudStore’s worker pools.
These questions are expected to help subjects understanding the
scenario. Moreover, the answers to these questions allow to assess

199

5. Evaluation

whether subjects have indeed understood the given description of
CloudStore or whether there are deviations among subjects.

Finally, subjects have to import a given CloudStore model (evaluation
project at [ATt]) into their workspace and analyze this model to de-
tect the performance issue. These tasks are expected to help subjects
deepen their understanding of CloudStore further. As before, control
questions allow to assess whether subjects have executed the tasks
correctly or whether there are deviations among subjects.

(3) resolve QoS issues either with support for ATs (treatment group) or
without such support (control group).

Similar to the case descriptions of this chapter’s case studies, Nützel’s
task description �rst states the targeted SLOs for performance, elas-
ticity, and cost-e�ciency. From the analysis of the previous task, it
is evident that the current CloudStore version violates these SLOs
and, thus, a QoS issue needs to be resolved.

Subjects are therefore asked to analyze whether the application of
reusable architectural knowledge would help to ful�ll these SLOs.
First, subjects have to investigate the application of the vertical scal-
ing architectural pattern (cf. Appendix C.1.4.3). Second, subjects have
to investigate the application of the horizontal scaling architectural
pattern for resource containers (cf. Appendix C.1.4.3).

For both of these knowledge applications, subjects get a brief de-
scription of the respective architectural pattern. Moreover, subjects
get con�guration parameters, e.g., stating when a self-adaptation
shall be triggered. As before, control questions check whether sub-
jects were successful, e.g., in knowledge application, architectural
analysis, and in resolving the QoS issue.

The treatment group is pointed to the documentation of the AT
catalog to be used [Clob]. Subjects have to select and apply the
vertical scaling and horizontal scaling ATs based on the descriptions
of this catalog. No subject has applied these ATs before because,
during the workshop, only other ATs are used for training.

The control group, in contrast, is forbidden to apply ATs. However,
subjects are explicitly allowed to reuse any existing recon�gurations

200

5.4. Controlled Experiment

(“You may copy transformation code from existing recon�gurations
or completely reuse an existing transformation, if you know any.”).
For example, subjects may reuse the default examples for vertical
scaling coming with SimuLizar or they may copy recon�gurations
included within corresponding ATs. Given that we have selected
subjects from a group of SimuLizar experts that partly even know
the AT method, the expectation was that subjects indeed make use
of this possibility (which, however, turned out to be not the case).

(4) finalize experiment by handing-over the �lled-out task description and
any other produced results (e.g., screenshots from architectural anal-
yses) to the experimenter.

5.4.1.3. Controlled Experiment: Subjects

The design of the controlled experiment requires the selection of human
subjects that are divided into a treatment and a control group. While
subjects of the treatment group are assumed to be software architects
with no experience with the AT method, subjects of the control group are
assumed to be experts on Palladio and SimuLizar. Therefore, the treatment
group undergoes a training prior to executing experiment tasks; the control
group directly executes experiment tasks.

In Nützel’s pre-study [N1̈5, Sec. 4.2], 5 subjects participated in the treatment
group and 3 subjects in the control group. These subjects have the following
characteristics.

The 5 subjects from the treatment group were selected from employees of
the Software Engineering Chair of the TU Chemnitz. Out of these subjects,
3 subjects were student workers with a Bachelor’s degree in computer
science, i.e., with a basic understanding of software engineering. The other
2 subjects were PhD students with a Master’s degree in computer science,
i.e., potentially with a more solid understanding of software engineering.
Moreover, the experiment was accounted for their normal work as employ-
ees.

The 3 subjects in the control group were selected from the Software En-
gineering Group and Heinz Nixdorf Institute of the Paderborn University
and volunteered to participate in the experiment. All subjects had at least a

201

5. Evaluation

Bachelor’s degree in computer science and extensively worked on both Pal-
ladio and SimuLizar (at least one year active development and usage). These
subjects can therefore be seen as experts on Palladio and SimuLizar. More-
over, 2 subjects (Daria Giacinto and Matthias Becker; cf. Appendix C.1.3.3)
had experience with the AT method; however, being in the control group,
were forbidden to follow the AT method.

5.4.2. Summary of Preliminary Lessons Learned

This section brie�y summarizes the main lessons learned within Nützel’s
preliminary controlled experiment [N1̈5, Chap. 4–6]; a detailed analysis and
interpretation is provided in Appendix E. The summary is aligned along the
questions of the evaluation design (cf. Section 5.2). Only questions relevant
for AT application are considered because the controlled experiment does
not involve the speci�cation of new ATs.

Qapplication e�ort: How much e�ort do so�ware architects require to apply
ATs? Software architects have low e�ort in using ATs for architectural
analyses (compared to the overall e�orts for specifying architectural mod-
els). Indeed, with an average of 9.4minutes for the horizontal scaling AT,
subjects of the controlled experiment were close to our e�orts of 6minutes
to apply this AT during the CloudStore case study (cf. Section 5.3.1). Given
that inexperienced software architects were selected as subjects, our re-
sults from Section 5.3.3.4 are therefore con�rmed: the AT method indeed
achieves an increase e�ciency for novice software architects.

Qe�ort saving: How much creation e�ort can so�ware architects save when
applying ATs? Saved e�orts increase with the amount of self-adaptations
included in ATs. Indeed, we can con�rm that we had signi�cant e�orts
for specifying the self-adaptation rules of the investigated ATs (cf. Ap-
pendix C.1.4.4) and, thus, reusing these rules saves a signi�cant amount
of e�ort. The two investigated ATs indicate that the faced time can range
from half an hour to more than two hours. Compared to the typical time
for applying ATs (3minutes on average; cf. the CloudStore case study), the

202

5.4. Controlled Experiment

saved time of 36.7minutes (vertical scaling AT) and 110.6minutes (horizon-
tal scaling AT) is signi�cant because these values range from approximately
92 % to approximately 97 % saved time.

Moreover, the data for these adaptation-intensive ATs shows that reuse
of adaptation rules can render other e�ort-saving factors less signi�cant.
For example, our data shows that the number of captured components is a
bad indicator for saved e�ort of the investigated ATs. The data therefore
indicates that combining various metrics (e.g., via a linear combination)
potentially yields a better predictor for e�ort saving than considering each
metric in separation.

Moreover, the data indicates that e�ort can e�ectively be lowered by apply-
ing ATs. The interpretation of this result is analogous to the CloudStore
case study because both the vertical scaling AT and the horizontal scaling
AT were applied there as well.

Qconformance: Do so�ware architects have e�ective benefits from checking
whether their architectural models violate conformance to applied ATs?
At least for this setup of the controlled experiment where the vertical scaling
AT and horizontal scaling AT are applied to CloudStore, no bene�ts were
gained from automated conformance checks. Appendix C.3.3.3 discusses
this observation in detail.

Qbenefits: What are e�ective benefits of the ATmethod? We have collected
2 bene�ts during the experiment. These bene�ts indicate that experiment
tasks were clear and that AT application is manageable in the context of
controlled experiments.

The �rst bene�t (“the instructions for the experiment were good”) covers
the clarity of experiment tasks. A subject of the control group explicitly
wrote this statement in a free text �eld of the task description. The fact
that the subject did so without being asked explicitly about the quality of
the instructions is an indication that the task description is indeed com-
prehensible. Another indication for comprehensibility is that we received
no clari�cation questions regarding the task description. We conclude that
experiments in future work can reuse our task description or create similar
ones.

203

5. Evaluation

The second bene�t (“based on an AT’s documentation, AT application is
straight-forward”) points to the suitability of AT applications within con-
trolled experiments and a good usability of ATs in general. However, for
the vertical scaling AT, we observed confusion about how to apply the AT.
Only after we have again pointed to the Wiki with the AT’s documenta-
tion [Clob], participants were able to correctly apply the AT. Afterwards,
for the horizontal scaling AT, participants had no problems to apply the AT.
We conclude that AT documentation is essential. While the Wiki [Clob]
has the advantage that it is easily accessible, its disadvantage is that it is not
tightly integrated into AT tooling—software architects currently have to
manually access the Wiki. Future versions of AT tooling should therefore
strive for a tight integration of AT documentation in addition to the Wiki,
e.g., by o�ering a context help during AT application.

Qlimitations: What are e�ective limitations of the ATmethod? We have col-
lected 3 limitations during the experiment. The limitations mainly point to
technical issues in AT tooling and in tools extended by AT tooling.

The �rst limitation (“the main issue is with compilation errors produced
when something is wrong with the QVT-O �le and with debugging sup-
port”) was reported by a subject of the control group and relates to di�-
culties when specifying recon�guration rules for SimuLizar. The subject
notes that debugging is di�cult when using QVT-O in conjunction with
SimuLizar. SimuLizar indeed lacks support for a debugging mode in which
breakpoints in the QVT-O �le are considered; debugging is purely based on
logging. Furthermore, we have experienced the same issue when we acted
as AT engineers to specify ATs that include reusable self-adaptation rules.
While this is only a technical issue and no conceptual one, future work
on SimuLizar on improving debugging support can increase SimuLizar’s
practical relevance.

The second limitation (“the recon�guration engine does not work correctly”)
describes an issue observed by a subject of the control group. Instead
of using QVT-O, the subject tried to use Story Diagrams [vDHP+12] as
an alternative M2M transformation language to specify recon�guration
rules (cf. Section 2.5.3.2). Unfortunately, SimuLizar’s engine for executing
recon�guration rules for Story Diagrams su�ers from bugs causing a wrong
recon�guration behavior. Because of this technical issue, the subject was

204

5.5. Evaluation of AT Method Extensions

unable to provide correct analysis result. This issue should be �xed in
future works, despite not a�ecting the utility of ATs as long as QVT-O
recon�guration rules are used.

The third limitation (“tooling problems still exist”) is an observation we
made during the controlled experiment with the treatment group. As
described in Appendix E.1, we had to intervene because of problems in AT
tooling. However, at the time of writing, the reported problem has been
already resolved in AT tooling.

This example shows that Nützel’s pre-study has helped in improving the
AT method. Moreover, despite conceptually unimportant, tooling issues
bias subjects in empirical evaluations. These biases can lead to question-
able conclusions that, most notably, may not re�ect the properties of the
concepts under investigation. We therefore conclude that future empirical
investigations should optimally �rst resolve currently known tooling issues
or explicitly explain subjects how to handle such issues.

5.5. Evaluation of AT Method Extensions

The evaluation of the extensions of the AT method (described in Section 4.4)
indicates the e�ectiveness of these extensions. Section 5.5.1 brie�y outlines
Openkowski’s evaluation of the reuse mechanism for AT speci�cation
that indicates an increase in productivity of AT engineers. Afterwards,
Section 5.5.2 summarizes a successful proof-of-concept evaluation of the
optimization approach for actual AT parameters.

5.5.1. Evaluation of the Reuse Mechanism
for AT Specification

Openkowski has evaluated the reuse mechanism for AT speci�cation (cf. Sec-
tion 4.4.1) in his Master’s thesis [Ope17, Chap. 9]. His results indicate an
increased productivity of AT engineers when reuse is possible.

Openkowski started the evaluation by selecting reuse scenarios, e.g., the
combination of the loadbalancing AT with an AT capturing the caching

205

5. Evaluation

architectural pattern [BHS07a, Sec. 7.10]. Afterwards, he has realized each
scenario in two variants: a variant based on the novel reuse mechanism and
a variant based on copying speci�cation elements from two existing ATs
into a new AT that combines the two ATs. Finally, he has compared both
variants for each reuse scenario regarding speci�cation e�ort and quality of
the resulting AT. While quality has remained constant, his results indicate
a signi�cantly lower e�ort; resulting in an average productivity increase of
210 % over all investigated reuse scenarios.

Openkowski’s Master’s thesis [Ope17, Chap. 9] provides a detailed descrip-
tion of this evaluation, including a threads to validity discussion.

5.5.2. Evaluation of the Optimization of Actual AT Parameters

We have successfully conducted a small proof-of-concept evaluation for the
optimization of actual AT parameters (cf. Section 4.4.2). For this evaluation,
we have created a minimal example architectural model where the loadbal-
ancing AT is applied [Loa]. Afterwards, we con�gured PerOpteryx with
a degree of freedom that varies the value of the number of replicas param-
eter. Running PerOpteryx with this con�guration takes about 2minutes
total execution time and points to an optimal value of 2 replicas. We have
concluded that the optimization of such parameters is possible, however,
further investigations are needed for more generalizable results.

5.6. Lessons Learned

This section summarizes the evaluation of the AT method. Section 5.6.1 lists
and discusses the main lessons learned from the conducted empirical studies.
These lessons show that the goal to analyze the AT method (cf. introduction
of this chapter) is attained to a great extent. Moreover, further experiments
are required to strengthen the validity and the extend of gained insights
as summarized in Section 5.6.2. The generalizability of gained insights is
�nally discussed in Section 5.6.3.

206

5.6. Lessons Learned

5.6.1. Summary of Answers to Research Questions

Overall, learned lessons point to a gained e�ectivity and e�ciency for
software architects. The work of AT engineers is e�ectively supported
by the proposed quality assurance techniques while their e�ort is high
compared to the overall speci�cation e�ort for a single architectural model.
However, these e�orts pay-o� when ATs are reused for specifying and
analyzing further models.

In detail, we have learned the following lessons; formulated as answers
to (and ordered by) the questions posed in the evaluation design in Sec-
tion 5.2:

(1) AT application is a matter of minutes; the required e�ort in-
creases slightly with the number of ATs to select from, an
AT’s roles and parameters, and the number of AT roles to be
bound.

Experienced software architects with existing knowledge of the AT
method manage to select and apply ATs to architectural models in
up to 7minutes (cf. the CloudStore case study). Using ATs as initia-
tor templates involves less e�ort, i.e., approximately 2minutes for
experienced software architects (cf. the WordCount case study). The
pre-study of the controlled experiment particularly shows that even
inexperience software architects manage AT applications within
7minutes after having completed a one-day training.

Furthermore, the measurements of size-based metrics point to fac-
tors impacting the required e�orts of software architects. The e�ort
for selecting ATs is impacted by the size of employed AT catalogs.
The e�ort for binding a selected AT is impacted by the number of
AT roles, parameters, and actually bound AT roles. As discussed
for the CloudStore case study (Appendix C.1.4.5), a single factor
alone is a bad predictor for estimating the time that software ar-
chitects will require applying a given AT. However, a metric that
combines these factors via a weighted function promises to be a good
predictor; similar to the complexity metrics discussed by Martens
et al. [MKPR11]. Future work on determining these weights and
assessing the resulting metric is still needed, though.

207

5. Evaluation

The evaluation of the optimization mechanism (Section 5.5.2) has
shown that the determination of suitable AT parameters can be
automated. This automation promises to make software architects
even more e�cient, however, further evaluations of this optimization
are required.

(2) Depending on the kind of knowledge, software architects can
save hours (i.e., more than 90%) of recurringmodeling e�orts
by applying ATs; the saved e�orts increase with the number
of AT-induced elements (components, assembly contexts, op-
erations, self-adaptation rules, etc.).

ATs can be seen as an automation of recurring modeling tasks. In
this sense, it is quite obvious that software architects save e�ort
when applying ATs. Indeed, we, acting as software architects, have
required only a maximum of 7minutes (cf. the CloudStore case study)
to select and apply a single AT while we have measured time savings
beyond 2 hours (i.e., more than 90% of modeling time; cf. the pre-
study to the controlled experiment). Interestingly, we have observed
di�erences in the amount of saved e�ort depending on the kind of
captured architectural knowledge (architectural styles, architectural
patterns, and reference architectures).

At the lower end of the scale, captured architectural styles appear to
save the least e�ort: the size-based e�ort metrics for the three-layer
AT in the CloudStore case study indicate that no e�ort is saved at
all. However, given that architectural styles only provide design
decisions that constrain systems (cf. Section 2.2.4.1), e�ort saving
cannot be measured in terms of size-based metrics, which quantify
existential decisions only. Better measures for architectural styles
are, for instance, metrics that quantify saved maintainability e�orts
due to automated conformance checks. An investigation of such
measures for maintainability scenarios and saved maintainability
e�orts is left as future work.

Higher on the scale, ATs that capture architectural patterns achieve
the e�ort savings over 90 % as described above. Opposed to architec-
tural styles, size-based metrics are suitable indicators for these e�ort
savings. The reason is that architectural patterns provide existential
decisions (cf. Section 2.2.4.2) and size-based metrics quantify the

208

5.6. Lessons Learned

impact of captured existential decisions. The CloudStore case study
shows that ATs that capture architectural patterns can save e�ort for
the creation of components, assembly contexts, and self-adaptation
rules. However, analogously to the metrics that quantify e�ort of
software architects (discussed in the preceding lesson), sticking only
to a single size-based metric leads to bad predictions for saved e�orts.
Again, combining and weighting these metrics within a composed
metric promises a more universal predictor; its derivation and as-
sessment is left as future work.

At the upper end of the scale, the WordCount case study indicates
that captured reference architectures save the most creation e�ort:
size-based metrics for the Hadoop MapReduce AT have higher val-
ues than the ATs investigated in the other studies. As reasoned in
Section 5.3.2.4, the increased e�ort saving can be explained by the
property of reference architectures to provide an architectural style
and a set of architectural patterns (cf. Section 2.2.4.3). Moreover,
reference architectures can even de�ne additional operations; as
measured via M∆operations. A downside of reference architectures is,
however, their restriction to speci�c domains and, thus, their more
limited reusability.

(3) Conformance checks can help maintaining conformance to
captured architectural knowledge while AT tooling often en-
sures conformance by construction; however, additional long-
term investigations regarding maintainability are missing.

In the CloudStore case study, we, acting as software architects, have
successfully detected and resolved a conformance violation to the
applied three-layer AT. Therefore, we concluded that ATs can help
maintaining the conformance to architectural styles imposed on
architectural models.

For other kinds of architectural knowledge, we have observed that
AT tooling often ensures conformance by construction, i.e., no ex-
plicit detection of conformance violation is necessary. As discussed
in the WordCount case study, AT tooling ensures that AT roles can
only be bound to architectural elements, thus, making wrong bind-
ings impossible. Moreover, the AT-based initialization of captured

209

5. Evaluation

reference architectures creates conforming models automatically,
which again avoids conformance violations.

In the Znn.com case study and the controlled experiment, we have
observed that ATs of architectural patterns often involve no complex
constraints because they only focus on correctly set AT parameters.
For example, a constraint of the horizontal scaling AT checks that only
positive values are assigned to the number of initial replicas parameter.
Because no subject violated such constraints, we have concluded that
names of AT parameters suggest valid values intuitively; making
conformance violations unlikely.

However, our evaluation only covers short-term investigations for
conformance checks. As we discuss in the context of the CloudStore
case study, long-term bene�ts of conformance checks regarding
maintainability are expected, especially if further software architects
get involved in modi�cations. Therefore, an interesting future work
is an investigation of such long-term bene�ts.

(4) Several e�ective bene�ts (beyond saved e�orts and consis-
tency checks) have been observed during the evaluation; high-
lights are the possibility of making context-aware informed
decisions, complexity hiding, reusability of ATs, an increased
e�ectivity and e�ciency of novice software architects, and
the learnability of the AT method based on the available doc-
umentation.

The preceding lessons point to the main promises of the AT method:
an increased e�ectivity and e�ciency for software architects, e.g.,
due to an automated consistency checking. In addition to these
bene�ts, we have observed further bene�ts during our evaluation.
The most interesting of these bene�ts are the following:

context-aware informed decisions: during the CloudStore case study,
we were surprised that an increased number of load-balanced
replica can degrade capacity. This degradation is in contrast to
what the loadbalancing architectural pattern promises. However,
the architectural analysis has revealed that CloudStore’s Database
Server—a context factor for the loadbalancer—actually becomes

210

5.6. Lessons Learned

overloaded when too many replica exist. In general, recurring ar-
chitectural knowledge therefore does not help per se; it depends
on the context.

Fortunately, combining recurring architectural knowledge with
architectural analyses has enabled us to detect this issue and to
make appropriate design decisions as countermeasures. Results
from architectural analyses have particularly allowed us to make
these decisions in an informed manner.

complexity hiding: in the WordCount case study, we have observed
that the Hadoop MapReduce AT hides complexity of the captured ar-
chitectural knowledge. Complexity is caused by the size of Apache’s
MapReduce framework that would, without AT support, require
software architects to understand how to setup, operate, and ana-
lyze Apache Hadoop applications. In capturing these information
via an AT, software architects can directly analyze such applications
without deep knowledge of Apache’s MapReduce framework.

This example suggests that complexity hiding is especially high
for captured reference architectures, due to the higher amount of
captured design decisions. Future work may inspect this bene�t
further, e.g., for other kinds of architectural knowledge.

reusability of ATs: in both, the Znn.com case study and the con-
trolled experiment, software architects have reused ATs speci�ed
during the CloudStore case study. While we have therefore ob-
served successful intra-domain reuse, future empirical studies may
inspect inter-domain reuse as well (cf. Section 5.3.3.4).

increased e�ectivity and e�iciency of novice architects: during both
the case study on Znn.com and the controlled experiment, novice
software architects have successfully applied ATs. We have there-
fore concluded that the AT method leverages deep architectural
knowledge to an abstraction level at which even novice software
architects can apply this knowledge. This bene�t is therefore a
consequence of complexity hiding (see above).

learnability of the ATmethod via the available documentation: af-
ter the pre-study on the controlled experiment, subjects have stated

211

5. Evaluation

that AT application is straight-forward based on an AT’s documen-
tation. These statements indicate that the documentation of the
AT method and concrete ATs is easy to learn, given that novice
software architects successfully applied previously unknown ATs.

Moreover, documentation of ATs appears to be essential and, thus,
needs to be easily accessible by software architects. While our
current approach of documenting ATs in a Wiki [Clob] provides
a platform-independent and ubiquitous way of documentation, a
tighter integration with AT tooling potentially eases documentation
access further. Such a tight integration is therefore planned as a
future work.

(5) Several e�ective limitations have been observed during the
evaluation; main limitations are technical issues in AT tool-
ing and external tools, immature ATs, visualization issues,
and distrust in ATs.

We have observed several limitations of the AT method during our
evaluation. The main limitations �t into the following categories:

technical issues in AT tooling: AT tooling currently has some limita-
tions of technical nature that should be �xed in the future. While
these limitations are conceptually unimportant, such �xes will im-
prove the practical relevance of the AT method and lower potential
threats to the validity of future empirical investigations.

In detail, we have identi�ed the following issues in AT tooling:

• the editor for specifying constraints via OCL lacks a static syntax
analysis and syntax highlighting (cf. Section 5.3.1.4),

• the EMF pro�les framework is error-prone and hard to debug in
case of errors (cf. Section 5.3.1.4), and

• altering self-adaptation rules contained in an AT requires the
adaptation of the whole AT (cf. Section 5.3.1.4).

For resolving these issues, we suggest an integrated AT speci�ca-
tion environment that hides the EMF pro�les framework in the

212

5.6. Lessons Learned

background, provides debugging support, and supports static syn-
tax checks and syntax highlighting of constraints formulated in
OCL.

technical issues in external tools: we have observed some technical
issues in external tools that are extended by AT tooling. Similarly
to the preceding issues, these issues are conceptually unimportant
but should be �xed for an increased practical relevance and fewer
threats in future empirical investigations.

In detail, we have identi�ed the following issues in external tools:

• SimuLizar lacks support for asynchronous communication, which
should be added (cf. Section 5.3.2.4),

• SimuLizar lacks support for debugging QVT-O recon�guration
rules, which should also be added (cf. Section 5.4.2),

• SimuLizar su�ers from bugs in its execution engine for Story
Diagrams that should be �xed (cf. Section 5.4.2), and

• the Experiment Automation Framework lacks an intuitive user
interface; future work should provide such an interface based on
the interface provided in the CloudScale Environment (cf. Sec-
tion 5.3.3.4).

immature ATs: the Hadoop MapReduce AT is only a proof-of-concept
realization and requires further improvement; the maturity of
other ATs needs to be assessed in further reuse scenarios (cf. Sec-
tion 5.3.2.4).

visualization issues: the Hadoop MapReduce ATs has shown that AT-
based architectural models can appear incomplete, due to missing
elements that will be created by AT completions. We have therefore
suggested to enrich views on AT-based architectural models with
previews of AT-induced elements (cf. Section 5.3.2.4).

distrust in ATs: software architects may doubt whether ATs function
correctly even if these ATs are correct. We have observed such
a distrust in ATs in the Znn.com case study where a novice soft-
ware architect has blamed the AT for causing unexpected analysis
results, despite context factors were the actual cause. We have

213

5. Evaluation

therefore suggested to train software architects for such situations
and to support them via automated quality anti-pattern and hotspot
detections (cf. Section 5.3.3.4).

(6) AT speci�cation e�orts can take several personmonths for (1)
identifying suitable QoS properties and analysis approaches
in domains lacking established metrics and analyses and (2)
specifying complex and exhaustive architectural knowledge,
for instance, large reference architectures. Otherwise, the
speci�cation and quality assurance of a single AT is a matter
of hours; depending on the number of captured constraints
for architectural styles, the size of an AT’s completion for ar-
chitectural patterns, and the complexity of the knowledge to
be captured for reference architectures. Initiator ATswithout
variation points can be created within minutes.

In domains where novel QoS properties and metrics have to be iden-
ti�ed and integrated into architectural analyses (as part of AT speci-
�cation), e�orts for these tasks can take several person months. For
example, we, acting as AT engineers, have spent 2.5personmonths
for these tasks in the CloudStore case study due to the novelty of
scalability, elasticity, and cost-e�ciency in the cloud computing do-
main. Fortunately, such e�orts have only to be investigated once per
novel QoS property and can be reused for further AT speci�cations.

Moreover, similarly high speci�cation e�orts can arise if the captured
knowledge is complex and exhaustive. For example, we have spent
2.5personmonths for creating the reference architectural model of
Apache’s MapReduce framework (Hadoop) in the WordCount case
study. We suspect that such high e�orts only occur for reference
architectures because we have not observed such high e�orts for
capturing other kinds of reusable architectural knowledge (cf. Sec-
tion 5.3.1.4).

For other kinds of knowledge, we have observed that AT engineers
require approximately 8hours for creating a single AT in the Cloud-
Store case study. Of these 8hours , AT engineers have typically
spend 1hour on selecting the architectural knowledge to be speci�ed,
4hours on the speci�cation itself, and 3hours on quality assurance.

214

5.6. Lessons Learned

Furthermore, the measurements of size-based metrics point to fac-
tors impacting the required e�orts of AT engineers. While we have
not revealed relevant factors over each kind of architectural knowl-
edge (cf. Section 5.3.1.4), we have identi�ed potential factors for
each kind in separation. The e�ort for capturing architectural styles
is impacted by the number of captured constraints. Based on the
three-layer AT (cf. Section 5.3.1.4), we estimate that AT speci�cation
requires approximately 10minutes per captured constraint. The ef-
fort for capturing architectural patterns is re�ected in the size of an
AT’s completions. Based on the architectural patterns speci�ed in
the CloudStore case study, we estimate that AT speci�cation requires
approximately 1hour per 100 to 150 lines o f code of an AT’s comple-
tion. As argued above, the e�orts for reference architectures mainly
depend on the complexity of the captured architectural knowledge.
Finally, we have found no indication that the number of AT roles
plays a signi�cant role for speci�cation e�orts.

The speci�cation of the ATs used as initiator templates in Section 5.3.4
has shown that such simple initiator ATs require only minor e�ort,
i.e., approximately only 2minutes per AT. These ATs are simple be-
cause they only link pre-existing architectural models via default AT
instances; without de�ning AT roles and variation points. An inter-
esting future work is therefore to inspect how such simple ATs can
systematically be enriched with variation points, e.g., in a step-wise
process. The outcome of such a process can, for instance, be a more
complex reference architecture. Moreover, insights in the evolution
of ATs can be gained when analyzing such a process.

The evaluation of the reuse mechanism for AT speci�cation in Sec-
tion 5.5.1 indicates that speci�cation e�orts can signi�cantly be
decreased in scenarios where reuse is possible. An external evalua-
tion and further experimentation with further reuse scenarios is still
needed, though.

In summary, this lesson provides a good �rst base line for estimating
AT speci�cation e�orts. However, these estimates su�er from some
validity threats, e.g., resulting from the fact that I (as an expert) have
been involved in specifying most ATs. Further experimentation is
therefore required to provide more solid estimates.

215

5. Evaluation

(7) Quality assurance of ATs is e�ective because it enabled us to
successfully detect and resolve faults. AT testing has revealed
faults in the speci�cation of several ATs (cf. Section 5.3.1.4 and Sec-
tion 5.3.3.4). Given that testing is a light-weight quality assurance
technique, we have required little e�ort for quality assurance com-
pared to a full-blown formal veri�cation. The typical root causes for
AT faults (cf. Section 4.1.3.3) have particularly helped to e�ciently
detect the actual faults. Once detected, we have shown that faults can
be removed, thus, leading to an improved conceptual integrity. We
therefore suggest to always include the proposed quality assurance
steps in any AT speci�cation e�orts.

Given its importance, future work should target a more extensive tool
support for quality assurance. For example, an automated generation
of test models that cover the typical root causes for AT faults is a
promising future work direction.

5.6.2. Summary of Threats to Validity

For the CloudStore case study, threats to validity are discussed in detail (Ap-
pendix C.1.4.6). Threats regarding WordCount, Znn.com, and the pre-study
to the controlled experiment are brie�y highlighted and related to the threats
from the CloudStore case study in Appendix C.2.3.4, Appendix C.3.3.4, and
Appendix E.4, respectively.

Being typical for empirical studies, a main threat to internal validity remains
“low statistical power” (cf. Appendix C.1.4.6) because only few subjects—
often only myself—were involved in executing actions of the AT method.
The pre-study to the controlled experiment alleviates this threat for software
architects (as multiple software architects have executed the same actions),
however, for AT engineers, such an experiment is still left as future work.

Regarding external validity, some threats remain that a�ect the generaliz-
ability of the learned lessons. Generalizability is therefore discussed in the
next section.

216

5.6. Lessons Learned

5.6.3. Discussion of Generalizability

Within the assumptions and limitations discussed in Section 4.5, our evalua-
tion indicates that the AT method can be generalized to various computing
paradigms and QoS properties. This section brie�y discusses such general-
ization aspects.

We speci�ed and applied ATs in the domains of distributed computing,
cloud computing, and big data to conduct architectural analyses regarding
performance, scalability, elasticity, and cost-e�ciency. Our success shows
that the AT method is applicable to these domains and QoS properties, and
can potentially be generalized to further domains and QoS properties.

However, further empirical studies are needed for more conclusive results.
The investigation of other domains (e.g., automotive) and QoS properties
(e.g., reliability) is needed. A more detailed investigation of maintainability
(an internal quality and not a QoS property) would especially be interesting
as the three-layer AT already indicates that such quality properties can be
covered as well.

217

“Inventing is a combination of brains
and materials. The more brains you
use, the less material you need.”

— Charles Kettering 1876 – 1958

6. RelatedWork

The AT method is related to approaches that capture reusable architectural
knowledge, especially in the context of architectural analyses. This chapter
surveys such related works by analyzing appropriate research domains.
The chapter inspects the following domains1 (a typical key feature of the
domain is given in parentheses and bold text at the end of the domain
description):

Architectural knowledgemanagement. In architectural knowledge man-
agement, design decisions are documented systematically. An exam-
ple for such a design decision is the decision to apply reusable archi-
tectural knowledge, e.g., an architectural pattern. For documenting
this kind of decision, approaches in architectural knowledge man-
agement typically link to informally captured knowledge (informal
documentation).

Architectural description languages. The domain of architectural descrip-
tion languages (ADLs) focuses on the (semi-)formal speci�cation of
architectural models. Several approaches in this domain formally cap-
ture architectural styles and provide mechanisms to check whether
architectural models conform to these styles (conformance checks
to architectural styles).

Pattern community. The pattern community focuses on capturing patterns,
e.g., design patterns and architectural patterns. Some approaches

1 Related works on templates are described in Section 2.4 and on empirical studies in Sec-
tion 5.1.

219

6. Related Work

in this domain allow to formally capture such patterns and provide
mechanisms to check whether architectural models conform to these
patterns (conformance checks to (architectural) patterns).

Architectural analyses. The domain of architectural analyses provides ap-
proaches that quantify QoS properties based on analysis models
that have been generated from architectural models. For the genera-
tion of analysis models, several of these approaches exploit formally
captured knowledge (QoS analysis).

Figure 6.1 illustrates these domains, their key features, and associated
approaches as investigated in this chapter. Each circle denotes a feature and
includes the approaches that provide this feature. Analogously, each dashed
rectangle denotes a domain and the approaches that belong to this domain.
Approaches are denoted by a representative name in square brackets. For
example, this chapter investigates the ADDSS approach (in Section 6.1.1),
which belongs to the domain of architectural knowledge management and
provides the informal documentation feature.

architectural
knowledge
management

architectural
description
languages

pattern
community architectural

analyses

informal
documentation conformance checks

to architectural styles

conformance checks to
(architectural) patterns QoS analysis

[ADDSS] [Archium]

[PAKME] [ADMD3]
[Acme]

[UML]
[Aesop] [Rapide]

[SADL][Wright]

[POSA]

[DPML]

[RBML]

[COMLAN]
[PMF]

[Petriu & Wang]
[Cortellessa et al.] [Mani et al.]
[Woodside et al.] [Verdickt et al.]

[Becker] [J. Happe] [L. Happe]
[Rathfelder] [SASSY]

capturing mechanisms for
reusable architectural knowledge

Legend:

domain

feature

[approach]

Figure 6.1.: Features and domains of approaches that can capture architectural
knowledge.

As can be seen in Figure 6.1, all approaches provide capturing mechanisms
for reusable architectural knowledge. Besides PMF, each approach addi-

220

tionally provides exactly one of the above-described key features (informal
documentation, conformance checks to architectural patterns, conformance
checks to architectural styles, or QoS analysis). In particular, the additional
feature is typical for exactly one domain; only PMF, UML, and POSA deviate
from this scheme.

Figure 6.1 shows that no approach provides a combination of these addi-
tional features. The AT method provides this combination, i.e., it uniquely
combines:

capturingmechanisms for reusable architectural knowledge to enable ar-
chitects to e�ectively and e�ciently apply reusable architectural
knowledge to architectural models,

informal documentation to ease software architects the selection of cap-
tured architectural knowledge,

conformance checks to ensure that captured knowledge is consistently
applied, and

QoS analysis to provide software architects with quantitative data, allow-
ing them to make more informed decisions about the suitability of
applied knowledge.

In the remainder of this chapter, I detail this classi�cation of related works
and the AT method itself. I start with a detailed description and discussion
of the domains and associated approaches, i.e., the architectural knowledge
management domain (Section 6.1), the architectural description language
(ADL) domain (Section 6.2), the pattern community domain (Section 6.3),
and the architectural analysis domain (Section 6.4). Based on my per-
domain discussions, I compile a feature model for methods that exploit
reusable knowledge in architectural analyses (Section 6.5). This feature
model allows me to classify each investigated approach and the AT method
in detail (Section 6.6). Finally, I discuss this detailed classi�cation, which
con�rms that the AT method provides a unique combination of existing
features (Section 6.7). In the discussion, I particularly highlight which
features would complement the AT method, thus, providing opportunities
for future works.

221

6. Related Work

6. Related Work

6.1. Architectural Knowledge Management

Tyree and Akerman [TA05b] argue for documenting design decisions2

to communicate the rationale of a software architecture among involved
stakeholders. Moreover, for documenting design decisions, they propose
an initiator template3 [TA05b]. This initiator template is similar to initiator
templates for documenting reusable architectural knowledge [HAZ07].
Given this similarity, the application of reusable architectural knowledge
itself documents relevant design decisions in a reusable manner [HAZ07].

This thesis complies to these ideas by viewing reusable architectural knowl-
edge as a set of proven design decisions (cf. Section 2.2.4). The application of
ATs particularly documents the design decision to apply concrete reusable
architectural knowledge. Therefore, the AT method is related to manage-
ment tools for architectural knowledge. This section describes such tools
and discusses their relation to the AT method.

Tang et al. [TAJ+10] compare tools to manage architectural knowledge.
From these tools, only three support the application of reusable architectural
knowledge as described above [TAJ+10]: ADDSS (Section 6.1.1), Archium
(Section 6.1.2), and PAKME (Section 6.1.3). Moreover, in the Palladio com-
munity, a similar tool has been introduced—ADMD3 (Section 6.1.4).

Given their support for reusable architectural knowledge, all of these tools
are closely related to the AT method. However, in contrast to the AT method,
these tools lack support for automatically quantifying QoS properties with
architectural analyses. To detail these issues, each of the four tools is
described and related to the AT method in the following.

6.1.1. Architecture Design Decision Support System (ADDSS)

The Architecture Design Decision Support System (ADDSS) [CNPDn06]
is a web-based tool for managing architectural knowledge in the form of
architectural styles and architectural patterns. Using this tool, software ar-
chitects can link requirements over design decisions to architectural models.
Moreover, ADDSS captures the evolution of architectural knowledge, which
2 Design decisions are described in Section 2.2.3.
3 Initiator templates are described in Section 2.4.3.1.

222

6.1. Architectural Knowledge Management

allows software architects to inspect di�erent versions, e.g., of architectural
models as illustrated in Figure 6.2 and linked design decisions.

Figure 6.2.:Di�erent model versions depicted as images (from [CNPDn06]).

Like the AT method, ADDSS allows software architects to document the
application of reusable architectural knowledge with a focus on architec-
tural styles and architectural patterns. ADDSS informally captures this
reusable architectural knowledge with a unique name, a description in
natural language, and a representative image.

However, ADDSS is limited regarding its integration into architectural
analyses. For example, architectural models can only be captured as image
�les and ADDSS’ reusable architectural knowledge covers only informal
data such as a description in natural language. Therefore, ADDSS is suited
for documentation tasks only. In contrast, the AT method both documents
the application of reusable architectural knowledge and utilizes information
from the reused knowledge within architectural analyses.

223

6. Related Work

6.1.2. Archium

Jansen and Bosch introduce Archium [JB05] as an architectural knowledge
management tool centered around the idea of software architecture as a
set of design decisions (see the second part of De�nition 2.7 at page 25).
Accordingly, Archium provides design decisions as �rst-class modeling
entities.

In Archium, a design decision is captured via an initiator template for de-
sign decisions. This initiator template covers typical decision attributes
in natural language, for example, a general description, design rules, de-
sign constraints, consequences, advantages, and disadvantages. Software
architects specify architectural models by modeling the application of one
design decision after the other. Each design decision can add elements to
the architectural model and put constraints on further decisions. Altogether,
the design decisions that software architects have made form the software
architecture and induce a corresponding architectural model.

Archium allows to formalize reusable architectural knowledge via a spe-
cialization of so-called design fragments. Design fragments capture a set of
design decisions as modeled in Archium. Such a design fragment formalizes
reusable architectural knowledge if exactly the knowledge’s design deci-
sions are captured by the fragment. Once speci�ed, software architects can
make the design decision to apply a design fragment—similar to applying
an AT in the AT method.

Archium de�nes design decisions over a targeted architectural description
language with common concepts like components and connectors. There-
fore, Archium can better be integrated into architectural analyses as ADDSS
(Section 6.1.1) that only captures architectural models via image �les.

The implementation of Archium integrates the targeted architectural de-
scription language with the programming language Java [JvdVAH07]. In
consequence, Archium’s implementation only supports architectural de-
cisions made within source code. The advantage of this close integration
with a system’s realization is that architectural knowledge is less likely to
vaporize—the knowledge can explicitly be linked from source code to archi-
tectural model. The disadvantage of this close integration is that software
architects have to work on a low level of abstraction. However, as described

224

6.1. Architectural Knowledge Management

in Section 2.2, software architects often make design decisions before the
actual source code is available. Furthermore, some design decisions cannot
directly be linked to source code elements, e.g., decisions about the non-
existence of elements and decisions motivated by the business environment
(cf. [KLvV06]). For example, the design decision to develop a system in Java
barely makes sense to be annotated in Java source code.

In the AT method, software architects can apply reusable architectural
knowledge directly at the level of architectural models. In contrast to
Archium, software architects can therefore make high level design deci-
sions. Moreover, the AT method supports architectural analyses to quantify
the impact of design decisions on a system’s quality properties. Such anal-
yses are not supported by Archium. For lower level decisions, the tight
integration of Archium with source code is, however, a promising extension
for actions that follow after the architectural analysis action in the devel-
opment process (cf. Section 2.5.1). Langhammer and Krogmann [LK15]
inspect such an extension in the context of architectural analyses; their
extension is complementary to the AT method.

6.1.3. Process-Centric Architecture Knowledge Management
Environment (PAKME)

A further web-based management tool for architectural knowledge is
the Process-centric Architecture Knowledge Management Environment
(PAKME) [ABGJ05]. PAKME follows a collaborative software architecture
process that allows multiple stakeholders to manage architectural knowl-
edge [BGK06]. PAKME’s implementation [BG07a] uses initiator templates
to capture such knowledge uniformly. Once captured, software architects
can refer to this knowledge to reason about design decisions.

Compared to ADDSS (Section 6.1.1), the initiator templates of PAKME
for reusable architectural knowledge are more �ne-grained. For example,
the template for architectural patterns in PAKME includes attributes for a
pattern’s application context, targeted problem, proposed solution, and af-
fected QoS properties. ADDSS only provides a general description attribute
for capturing such issues.

225

6. Related Work

As for ADDSS, PAKME su�ers from the fact that attributes are only captured
in natural language, thus, making PAKME mainly suitable for documenta-
tion tasks. In contrast, the AT method both documents the application of
reusable architectural knowledge and utilizes information from the reused
knowledge within architectural analyses.

Moreover, PAKME lacks an explicit representation of architectural mod-
els; despite captured design decisions can imply such models [JvdVAH07].
Therefore, knowledge management and architectural models are decoupled
in PAKME. This decoupling can foster the vaporization of architectural
knowledge because software architects have to manually synchronize de-
sign decisions and architectural models. In the AT method, the application
of reusable architectural knowledge is closely coupled with the targeted
architectural model, thus, avoiding this potential for vaporization of knowl-
edge.

6.1.4. Architectural Design and Modelling with Design
Decision Documentation (ADMD3)

The Architectural Design and Modelling with Design Decision Documen-
tation (ADMD3) approach [DR12, Dur16] introduces a method for archi-
tectural knowledge management. ADMD3’s process, language, and tool
combine a systematic requirement elicitation with architectural pattern
selection and application to architectural models for documentation.

Whenever software architects want to select an architectural pattern from
ADMD3’s pattern catalog, they have to answer validation questions that
are associated to this pattern. For example, a validation question associated
to the loadbalancing architectural pattern may ask whether the targeted
system is performance-critical. If software architects answer with “yes”,
the selected pattern is validated and software architects can apply the
pattern. If software architects answer with “no”, the selected pattern is
invalidated and software architects have to continue with other architectural
decisions than applying the pattern. If software architects cannot answer
the associated questions, they have to elicit further requirements that allow
them to eventually answer the questions. Analogously, if a selected and
validated architectural pattern includes variants (e.g., a loadbalancer can be

226

6.1. Architectural Knowledge Management

variable in its loadbalancing strategy), additional questions associated to
the pattern determine a concrete variant. These additional questions either
result in the selection of a variant, a variant’s rejection, or in the elicitation
of further requirements.

Finally, software architects can apply the selected and validated pattern
variant to an architectural model. ADMD3 formalizes such applications
based on roles, similar to the AT method. ADMD3’s formalization approach
reuses a dedicated framework for this purpose; the PMF as described in
Section 6.3.5. Another commonality is that ADMD3’s targeted architectural
description language is the PCM (cf. Section 2.5.3.1).

Besides associated questions, ADMD3 formalizes architectural patterns
using typical attributes of initiator templates for architectural patterns (Sec-
tion 6.3.1 details a typical template) such as goal, keywords, advantages,
drawbacks, QoS properties, and relations to other patterns. As for ADDSS
(Section 6.1.1) and PAKME (Section 6.1.3), these attributes are captured in
natural language, thus, only serving documentation and design decision
tracing.

For documenting pattern advantages and drawbacks, ADMD3 assumes that
a pattern’s impact on QoS properties cannot accurately be evaluated [DR12].
Therefore, ADMD3 does not quantify such impacts but only documents
whether the impact is generally positive or negative. The AT method rejects
this assumption by providing means to evaluate QoS properties based on
formalized reusable architectural knowledge—the main di�erence between
ADMD3 and the AT method. Still, ADMD3 is interesting as an orthogonal
extension of the AT method for earlier actions in the development pro-
cess, i.e., requirement elicitation and systematic selection and validation of
reusable architectural knowledge.

6.1.5. Discussion of Architectural Knowledge Management

The described tools for managing architectural knowledge all provide means
to document reusable architectural knowledge and its application to ar-
chitectural models. This documentation allows a system’s stakeholders to
comprehend taken design decisions. Applications of ATs are similar in this

227

6. Related Work

respect. Di�erences in the following concepts can be observed among the
investigated tools.

Selectionmechanism Most tools provide no systematic approach for se-
lecting reusable architectural knowledge. Only ADMD3 provides an ap-
proach for this purpose; based on a systematic questioning technique.

The AT method currently lets software architects select ATs from AT cata-
logs, without further guidance. It would therefore be interesting to extend
the AT method with an approach similar to ADMD3. Such an extension
potentially makes the selection of ATs more systematic and e�cient.

Capturing mechanism The tools vary in attributes to capture reusable
architectural knowledge in natural language. While ADDSS provides a
generic “description” attribute, PAKME and ADMD3 employ typical at-
tributes of initiator templates for architectural knowledge. Archium uses
an initiator template for design decisions; reusable architectural knowledge
is captured as a composite design decision (a design fragment) that groups
a set of sub-decisions.

The AT language formally captures reusable architectural knowledge via
AT roles. AT roles capture decisions about constraints (via OCL) and the ex-
istence of elements (via completions). In addition, ATs provide a generic and
informal “documentation” attribute in natural language; similar to ADDSS.
Informal documentation is not the focus of the AT method—its focus is a
formal combination of reusable architectural knowledge with architectural
analyses. Future work may inspect the bene�ts (e.g., in terms of understand-
ability) for software architects when using a more structured approach like
Archium, PAKME, and ADMD3 for informal documentation.

Architectural models The described tools also vary in their dependency
to architectural models. ADDSS only links to an image representing a
system’s software architecture and PAKME does not explicitly reference
an architectural model at all. In contrast, Archium integrates the targeted
architectural description language directly in source code, which requires
existing source code but reduces knowledge vaporization.

228

6.2. Architectural Knowledge in Architectural Description Languages

Both ADMD3 and the AT method follow a role-based approach to bind
reusable architectural knowledge to architectural models. The advantage of
this approach is that design decisions are precisely and explicitly linked to
architectural models (in contrast to ADDSS and PAKME) and that high-level
decisions can be expressed (in contrast to Archium). Still, Archium’s ap-
proach is an interesting extension for the AT method for actions that follow
the architectural analysis action in a system’s development process.

Support for architectural analyses The main di�erence between the AT
method and the described tools is that none of these tools supports quanti-
tative architectural analyses. These analyses allow software architects to
quantify the impact of applied reusable architectural knowledge on QoS
properties. Given such quanti�cations, software architects can make more
informed decisions for the selection and application of reusable architectural
knowledge. Particularly, software architects can reason on quantitative
data when documenting the design decision to apply reusable architec-
tural knowledge—here, the AT method provides a valuable extension to the
domain of architectural knowledge management.

6.2. Architectural Knowledge in Architectural
Description Languages

Formalizations of architectural styles originate from the architectural de-
scription language (ADL) community [Gie08, p. 51]. Therefore, several
related works can be found in the ADL community, given that ATs can also
formalize architectural styles as a concrete kind of reusable architectural
knowledge. This section describes these related works and relates them to
the AT method.

Medvidovic and Taylor [MT00] survey ten ADLs. From these ADLs, the
following ones are related to the AT method because they allow for specify-
ing architectural styles: Acme (Section 6.2.1), Aesop (Section 6.2.2), Rapide

229

6. Related Work

(Section 6.2.3), SADL (Section 6.2.4), and Wright (Section 6.2.5).4 The UML
is relevant as well because the UML can be counted as an ADL, provides
similar constructs as the AT method, and is of high practical relevance
(Section 6.2.6). As the discussion of these ADLs shows (Section 6.2.7), the
formalization of architectural knowledge in these ADLs is often similar to
ATs, however, all of these ADLs lack support for architectural analyses of
QoS properties.

6.2.1. Acme

Acme [GMW00] is an ADL with support for architectural constraints and
architectural styles, including a reuse mechanism for these architectural
styles and an accompanying speci�cation process [Kom98].

Architectural constraints are formulated via an OCL-like, custom-build
constraint language that is based on �rst-order predicate logic. Software
architects can associate constraints to any architectural element of archi-
tectural models speci�ed with Acme. Moreover, Acme distinguishes two
types of constraints: invariant and heuristic constraints. Violations of in-
variant constraints make architectural models invalid whereas violations
of heuristic constraints only produce a warning for software architects.

Architectural styles are formulated as (1) a set of element types, (2) addi-
tional constraints and parameters, and (3) a default instance of the archi-
tectural style.5 Software architects can use a style’s types to instantiate
concrete architectural elements. These elements then provide the type’s
parameters as attributes and conform to the type’s constraints. A style’s
additional constraints and parameters hold for the whole system to which
the style is applied. A style’s default instance prescribes the minimal set of
architectural elements that must be part of such a system.

The reuse mechanism of Acme for architectural styles is based on subtyp-
ing via inheritance [Mon99, Sec. 4.4.6]. When a child architectural style

4 In his Master’s thesis [Ope17, Chap. 6], Openkowski relates the AT method to a subset of
these ADLs (Acme, SADL, Wright) and provides detailed examples. His work has served as
a starting point for this section.

5 Acme refers to architectural styles as families, to element types as structural types, to
parameters as properties, and to a default instance as default structure.

230

6.2. Architectural Knowledge in Architectural Description Languages

extends a parent architectural style, the child style inherits all element
types, constraints, parameters, and the default instance of the parent style.
Subsequently, the child style may add further or extend existing element
types, constraints, and parameters. A child style is however forbidden to
rede�ne elements of the parent architectural style. This restriction ensures
that any architectural model that conforms to the child style also conforms
to the parent style.

Some works [KG10, TFS10a] provide extensions to Acme that are related
to the AT method. Kim and Garlan [KG10] show how to use the SAT
solver Alloy [Jac12] to analyze properties of architectural styles, e.g., to
analyze whether a style’s constraints are contradictory to each other. They
conclude that such analyses are applicable to realistic systems. Instead of
using Alloy, Tibermacine et al. [TFS10a] suggest an approach based on OCL
for specifying and checking constraints of architectural styles. They argue
that modeling with the OCL is easier to learn and, thus, more e�cient. To
the best of my knowledge, they do not provide empirical evidence for this
hypothesis.

The AT method follows the suggestion of Tibermacine et al. [TFS10a]
by allowing AT engineers to specify and check constraints via the OCL.
Constraint violations are shown to software architects as warnings as
long as no architectural analysis is started (similar to Acme’s heuristic
constraints). However, an architectural analysis �rst triggers a constraint
check and returns an error when any constraints are violated (similar
to Acme’s invariant constraints). This more restrictive approach ensures
that AT completions have strong guarantees that their preconditions hold,
however, comes at the cost of a less �exible constraint violation handling.
Investigating the impact of this lowered �exibility on usability remains as a
future work.

Regarding the formalization of architectural styles, Acme and the AT
method di�er in the general approach: Acme follows a type-based ap-
proach while the AT method follows a role-based approach. The type-based
approach lets software architects directly instantiate architectural elements
conforming to a particular architectural style. In contrast, the AT method’s
role-based approach lets software architects �rst instantiate general archi-
tectural elements (e.g., a component) and subsequently bind roles to these
elements. While the role-based approach requires this additional binding

231

6. Related Work

step, it is more �exible when multiple roles need to be applied and when
changes to styles or the architectural model are required.

Apart from that, Acme and the AT method have several commonalities.
Acme’s additional constraints and parameters associated to an architectural
style can analogously be represented via an AT that contains a role for a
system with according constraints and parameters. Acme’s default instance
is similar to an AT’s default instance, however, prescribes a minimal set of
architectural elements. The default instance of an AT does not prescribe
that its elements are required. An AT’s default instance instead provides
an initiator template to software architects, i.e., it serves as an (optional)
starting point for architectural modeling. Also the reuse mechanisms of
Acme and AT method are similar; the only di�erence is that the AT method
de�nes additional semantics for reusing completions (which do not exist in
Acme).

The main di�erence between Acme and the AT method is that Acme lacks
support for architectural analyses of QoS properties. Here, the AT method
provides software architects with a more extensive decision support for
applying architectural styles.

6.2.2. Aesop

Aesop [GAO94] is a framework for developing architectural modeling tools
that are speci�c to an architectural style. Aesop comes with a generic
component-based ADL that de�nitions of architectural styles can re�ne.
Out of such style de�nitions, Aesop can generate a corresponding modeling
tool.

In Aesop, architectural styles are de�ned by subtyping C++ classes via
inheritance. Engineers can subtype either Aesop’s basic ADL classes for
components, connectors, etc. or classes of other architectural styles.

Constraints of architectural styles are hardcoded within the methods of
the associated classes. As already the original authors note [GAO94], the
downside of this approach is that constraints are obscured within imperative
code. This approach particularly makes it hard to analyze constraints, e.g.,
to check whether two constraints are con�icting.

232

6.2. Architectural Knowledge in Architectural Description Languages

In the AT method, constraints are represented in a dedicated modeling con-
struct, thus, not su�ering from these disadvantages. The reuse mechanisms
of Aeosp and AT method are similar in the sense that both are based on
subtyping by inheritance. In contrast to Aesop, the AT method supports
architectural analyses of QoS properties.

6.2.3. Rapide

Rapide [LKA+95] is a component-based ADL specialized to event-based and
distributed systems. The ADL supports the speci�cation of communication
patterns to constrain inter-component interaction, thus, characterizing
communication aspects of the employed architectural style. For example, a
communication pattern may express that a set of outgoing connectors of a
component has to follow a multicast communication. An accompanying
simulation tool allows software architects to check whether an architectural
model conforms to these communication patterns.

In contrast to Rapide, the OCL-based constraints of the AT method check
only structural constraints. Therefore, Rapide’s constraints for restricting
the communication between components are an interesting extension for
the AT method. Additions to Palladio’s simulations are particularly re-
quired to dynamically check for violations of communication constraints;
analogously to Rapide’s simulation.

Rapide lacks support for capturing other architectural knowledge, e.g.,
architectural patterns and structural constraints of architectural styles.
Here, the AT method outperforms Rapide. Moreover, Rapide’s simulation
is restricted to analyses of the correct communication behavior. Analyses
of QoS properties, e.g., related to performance, are not provided.

6.2.4. Structural Architecture Description Language (SADL)

The Structural Architecture Description Language (SADL) [MR97] is a
component-based ADL to formally specify architectural models via a �rst-
order predicate logic. SADL supports completion-like re�nement mappings
from abstract to more concrete architectural models. Moreover, SADL
supports the formalization of architectural styles via element types. These

233

6. Related Work

types can include formal constraints to restrict inter-type relationships and
re�nement mappings.

SADL provides a reuse mechanism that allows architectural styles to sub-
type other architectural styles via inheritance. Architectural styles inherit
types including associated constraints from parent styles. Similar to Acme’s
reuse mechanism (cf. Section 6.2.1), SADL allows to extend inherited ele-
ment types with further constraints but forbids to override existing con-
straints; adding further element types is also possible. In contrast to Acme,
SADL additionally provides constructs for exporting and importing element
types of architectural styles. These constructs enable engineers to explicitly
mark element types that are suited for reuse and to selectively import only
the element types required within an inheriting architectural style.

SADL’s re�nement mappings relate elements of an abstract source model
to corresponding elements of a concrete target model. Being a re�nement
mapping, each source element is associated to at least one target element.
These associations are formally speci�ed via a �rst-order predicate logic that
allows to check whether a concrete model correctly implements an abstract
model. If correctly implemented, the concrete model satis�es the abstract
model’s constraints exactly as the abstract model itself. Checking this
kind of correctness is a means to formally ensure the conceptual integrity
(cf. De�nition 2.14) of the re�ned architectural model.

SADL’s completions (implemented as re�nement mappings) are more for-
mal than the AT method’s completions (implemented as QVT-O transfor-
mations). In that sense, SADL takes its place alongside related formal
speci�cation approaches like the Z language [Spi92] and the UML+Z frame-
work [APS07].

The bene�t of such formal approaches is that they are amenable to formal
analyses and to consistency checking [APS07]. For example, SADL’s �rst-
order predicate logic allows for mathematically proving conformance of
the re�ned model to the original model, thus formally ensuring conceptual
integrity.

The downside of formal approaches is that they are more complex and,
consequently, unintuitive and impractical for engineers [APS07]. The rea-
son for this complexity is that re�nements in formal approaches require

234

6.2. Architectural Knowledge in Architectural Description Languages

mathematical proofs. At best, the correctness of re�nements can be generi-
cally proven for reusable re�nement patterns as particularly suggested by
SADL and the UML+Z framework [APS07]. However, even such generic
proofs come at high costs for engineers: conducting such proofs in the �rst
place is still time consuming, expensive, and requires training; changes in
re�nement patterns (e.g., for introducing a new variation point) require
engineers to prove correctness anew; and mathematical notions are hard to
communicate among (non-technical) stakeholders.

For these reasons, the AT method follows a more practical approach by
using a less formal transformation language (QVT-O) for specifying comple-
tions. Quality is assured via testing, which is more lightweight than formal
approaches. Although testing is unable to verify correctness as described
above, testing can be automated, easily uncover faults, and involves low
computational e�ort.

The AT method is inspired by SADL’s import/export mechanism to select/-
expose reusable element types. In the AT method, each AT role is allowed
for being reused, i.e., the AT method is less restrictive than SADL. A reusing
AT can however select only the AT roles from other ATs that are rele-
vant. Moreover, in contrast to SADL, the AT method supports architectural
analyses of QoS properties.

6.2.5. Wright

Wright [All97] is another component-based ADL with support for archi-
tectural styles. Similar to ADLs like Acme (Section 6.2.1) and SADL (Sec-
tion 6.2.4), Wright formalizes architectural styles based on element types
with constraints. Element types can be used to instantiate conforming
architectural elements. As a reuse mechanism for de�ning architectural
styles, Wright allows that architectural styles inherit all element types of
a parent style; engineers may add further element types and constraints
(analogously to Acme’s reuse mechanism; cf. Section 6.2.1).

Wright’s structural constraints are formulated in a �rst-order predicate
logic. Behavioral constraints can be formulated via additional predicates
that reference communicating sequential process (CSP) [Hoa78] models.

235

6. Related Work

These CSP models formally describe allowed and forbidden communication
patterns, similar to the patterns used in Rapide (cf. Section 6.2.3).

Like the AT method, Wright combines several features of other ADLs
(e.g., reuse mechanism and constraints in �rst-order predicate logic). In
contrast to the AT method, Wright has a focus on behavioral constraints of
architectural styles. For behavior-intensive architectural styles, Wright’s
approach of using CSP models for specifying communication patterns
is therefore a promising extension to the AT method’s constraints that
currently only support structural OCL expressions. The AT method goes
beyond Wright’s capabilities by additionally supporting completions and
architectural analyses.

6.2.6. Unified Modeling Language (UML)

The Uni�ed Modeling Language (UML) [Obj11] is a general-purpose model-
ing language for software systems. Despite there has been some discussion
on whether the UML can be counted as an ADL [Pan10], the UML certainly
includes several aspects of ADLs, e.g., modeling constructs for components
and connectors [HNS99], and has explicitly been related to ADLs, e.g., to
SADL [KCSS02]. Moreover, the UML has a high practical relevance be-
cause software architects indeed use the UML for documenting software
architectures in industrial organizations [LCM06].

This section therefore describes the UML constructs closely related to the
AT method: collaborations (Section 6.2.6.1), templates (Section 6.2.6.2), and
pro�les (Section 6.2.6.3).

6.2.6.1. UML Collaborations

The UML proposes collaborations [Obj11, Sec. 9.3.3] as a means to capture
and describe design patterns, e.g., the observer pattern. A UML collabora-
tion de�nes a set of roles and their connections to each other, e.g., subject
and observer of the observer pattern. Via so-called collaboration uses, col-
laboration roles can be bound to concrete entities, e.g., to components.
Bound entities have to provide the attributes and operations required by
the role they play. The collaboration can then be used to describe how

236

6.2. Architectural Knowledge in Architectural Description Languages

bound entities achieve a joint task. For example, a collaboration for the
observer pattern can be used to describe how observers are registered at
a subject. The collaboration can particularly describe constraints for the
communication behavior among its roles.

Additionally, the UML describes a reuse mechanism for collaborations.
Child collaborations may inherit and extend roles of parent collaborations.
Analogously to Acme (cf. Section 6.2.1), child roles cannot override con-
straints from their parents and have to comply to these constraints.

Concrete syntaxes for collaborations are a dashed ellipse icon or, alterna-
tively, a rectangle icon (like in UML composite structure diagrams). These
icons contain the name of the collaboration and a compartment with its
roles and connectors. Figure 6.3 illustrates this syntax for the observer
pattern, including a constraint on the size of the observed queue.

Observer

Legend: collaboration collaboration constraint

Observer.reading =
length(Subject.queue)

Subject : CallQueue Observer : SlidingBarIcon

role connector

Figure 6.3.:A UML collaboration for the observer pattern (based on [Obj11,
Sec. 9.3.3]).

Collaborations are only of descriptive nature, i.e., collaborations provide no
semantics for integrating structures or behavior into bound entities. Rather,
collaborations require that bound entities already comply to the structure
and behavior described by the collaboration. In contrast, ATs provide
integration semantics in the form of completions that ensure that applied
architectural knowledge is integrated in the targeted architectural model.
This approach to integration particularly enables architectural analyses
with the targeted architectural model.

Otherwise, there are several similarities between collaborations and ATs.
Both follow a role-based approach to bind architectural knowledge. The con-
crete syntax of ATs is also similar to the one of collaborations. Furthermore,
collaborations and ATs both use an inheritance-based reuse mechanism.

237

6. Related Work

6.2.6.2. UML Templates

In Section 2.4, UML templates [Obj11, Sec. 17.4] are classi�ed as bound tem-
plates. As such, UML templates provide a facility to let models (e.g., an archi-
tectural model) bind model elements to template parameters. Once bound,
a template engine can appropriately weave template constructs into the
binding model. Other related works have particularly used UML’s templates
to weave design patterns [VCC15] and resource environments [BTN+14]
into architectural models.

ATs are a similar means to weave recurring architectural knowledge into
architectural models. Instead of a pure substitution mechanism to include
parameters in templates (cf. Section 2.4.3.3), ATs use completions for such
an inclusion. Completions provide a higher �exibility for weaving param-
eters into templates, e.g., enabling the processing of the number of replicas
parameter of the Loadbalancing AT (cf. Section 3.2.4). However, completions
are more complex to specify than simple substitutions. For this reason, the
AT method includes a dedicated quality assurance step (cf. Section 4.1.3.3).
In addition to this di�erence, UML templates have—in contrast to the AT
method—not been applied in the context of architectural analyses.

6.2.6.3. UML Profiles

UML pro�les [Obj11, Chap. 18] are described in Section 2.3.4. The AT
method employs such pro�les to extend languages for specifying architec-
tural models in a lightweight manner. In the AT method, these extensions
allow software architects to bind ATs to architectural models; including the
speci�cation of actual parameters for the formal parameters of ATs.

6.2.7. Discussion of Architectural Description Languages

ADLs focus on one particular kind of reusable architectural knowledge—
the formalization of architectural styles (as de�ned in Section 2.2.4.1). All
described ADLs therefore provide means to capture constraints on archi-
tectural models. UML collaborations additionally provide means to capture
design patterns. The investigated ADLs di�er in the following concepts
and features.

238

6.2. Architectural Knowledge in Architectural Description Languages

Types vs. roles To formalize architectural knowledge, the investigated
ADLs mainly follow a type-based approach (Acme, Aesop, Rapide, SADL,
Wright). UML follows a role-based approach.

In type-based approaches, architectural elements are created as instances
of a type that is speci�c to an architectural style. For example, in the three-
layer architectural style, software architects are only allowed to create
“presentation layer components”, “middle layer components”, and “data
access layer components”. Type-based approaches have in common that
targeted architectural elements are of exactly one type. The advantage of
this limitation is that software architects can create appropriate elements in
a single instantiation step; simply by selecting the type to be instantiated.
For example, style-speci�c architectural modeling tools generated with
Aesop provide software architects with a palette of style-speci�c types of
components and connectors for instantiation. However, in scenarios where
software architects want to modify styles (e.g., to combine a three-layer ar-
chitectural style with additional company-speci�c constraints), completely
new types have to be created; and based on these new types the archi-
tectural model has to be modi�ed. Therefore, type-based approaches can
slow-down software architects in maintenance and evolution scenarios.

In role-based approaches, architectural elements are created in their general
form and subsequently bound to roles of architectural styles (or of design
patterns like for UML’s collaborations). For example, in the three-layer
architectural style, software architects may �rst create an architectural
model with several components and then assign each component either
the “presentation layer component role”, the “middle layer component
role”, or the “data access layer component role”. In contrast to type-based
approaches, software architects accordingly require two steps to create
elements with an applied architectural style: (1) instantiate the element and
(2) bind a role. While the additional role-binding step may cause a higher
e�ort initially, binding roles is more �exible than a type-based instantiation:
bound roles can naturally be unapplied or modi�ed and multiple roles can
be bound to architectural elements. For example, in addition to roles of
the three-layer style, roles with company-speci�c constraints can be bound
to components. This �exibility provides a clean separation of di�erent
concerns (e.g., of the three-layer style and a company-speci�c style) and a
natural means to support maintenance and evolution scenarios. For this
reason, the AT method employs such a role-based approach.

239

6. Related Work

Invariant vs. heuristic constraints Acme is the only approach that distin-
guishes between invariant and heuristic constraints, i.e., the severity of
constraint violations. In case of constraint violations, this di�erence allows
modeling tools to show software architects errors (invariant constraints) or
just warnings (heuristic constraints).

In the AT method, constraint violations are similarly distinguished. During
modeling, software architects get warnings when violating constraints, e.g.,
to point to missing but required architectural elements. When starting
an architectural analysis, however, such violations are shown as errors to
software architects, thus, forcing them to create architectural models that
conform to applied architectural knowledge.

Structural vs. behavioral constraints Most ADLs (Acme, Aesop, SADL,
Wright, UML) support structural constraints, e.g., to forbid direct connec-
tions from presentation to data access layer components. Aesop embeds
these constraints in imperative code, which obscures constraints. All other
ADLs formulate constraints via some kind of �rst-order predicate logic.
The �rst-order predicate logic is either custom-build (Acme, SADL, Wright)
or based on existing languages like Alloy (Kim and Garlan’s Acme ex-
tension [KG10]) and OCL (Tibermacine et al.’s Acme extension [TFS10a],
UML).

Rapide, Wright, and the UML support behavioral constraints; speci�ed as
allowed or forbidden communication patterns between components. Rapide
and Wright formulate communication patterns via some kind of process
algebra—a custom-build algebra in Rapide and CSPs in Wright. Communi-
cation patterns can then be checked against a simulation of the modeled
software. The UML only provides informally documented behavioral con-
straints, which makes conformance checks infeasible.

ATs currently support structural constraints formulated via OCL. Future
work may investigate extending ATs with support for behavioral constraints,
e.g., based on CSPs like in Wright. The metaclass Constraint of the AT
language is de�ned as an abstract class (cf. Section 4.2.5.5), thus, only an
appropriate subclass for CSPs and support for checking constraints needs
to be added, e.g., in Palladio-based simulations.

240

6.2. Architectural Knowledge in Architectural Description Languages

Consistency checks Besides checking the conformance to structural and
behavioral constraints, some ADLs provide additional analysis mechanisms
for constraints. These mechanisms include inter-constraint consistency
checks (Kim and Garlan’s Acme extension [KG10]) and formal consistency
checks of re�nements (SADL).

Consistency checks complement the conformance checks of the AT method
and, consequently, may be included in future works. Besides constraint
checks, the AT method supports architectural analyses of QoS properties.
None of the investigated ADLs has support for such analyses.

Refinement semantics From the investigated ADLs, only SADL describes
semantics for re�ning abstract architectural models to more concrete ar-
chitectural models. Conceptually, such re�nements de�ne completions for
abstract architectural models as particularly employed by the AT method.

In contrast to the AT method, SADL follows a formal re�nement approach,
similar to Z [Spi92] and UML+Z [APS07]. While this formal approach
allows for verifying conceptual integrity, the AT method’s approach of
testing is more practical for ensuring conceptual integrity. Analyzing the
suitability of a more formal approach than QVT-O completions is still a
promising prospect for future work.

Concrete syntaxes Most of the investigated ADLs (Acme, Aesop, Rapide,
SADL, Wright) provide a concrete syntax for specifying and applying archi-
tectural styles that is textual. For the speci�cation of architectural styles,
only the UML provides a concrete graphical syntax. For the application
of architectural styles, Acme, Aesop, and the UML provide a concrete
graphical syntax. The type-based approach of Acme and Aesop enables
them to de�ne an icon for each type to be applied, e.g., di�erent icons
for components of presentation, middle, and data access layer. UML’s
role-based approach suggests annotating existing icons for architectural
elements, e.g., by prepending element names with the names of bound roles
in guillemets [Obj11, Chap. 18].

Because the AT method follows a role-based approach, its graphical syntax
for specifying and applying ATs is inspired by the UML. For example,
AT instances (Section 4.2.5.8) also prepend role names to element names

241

6. Related Work

while using an @-symbol instead of guillemets (to distinguish from UML
stereotype applications).

The AT method particularly uses a graphical concrete syntax (instead of
a textual one) for specifying AT applications because the targeted ADL
(the PCM) also provides a graphical syntax. This way, AT applications can
be internally speci�ed in PCM editors. A textual concrete syntax of AT
applications would require either an external speci�cation or a concrete
textual syntax for the PCM (into which AT applications can be internally
embedded). An investigation of such realizations is left as potential future
work because it is out of this thesis’ scope.

Reuse mechanisms Except for Rapide, all investigated ADLs provide a
reuse mechanism for specifying new architectural styles based on existing
ones. For all of these ADLs, the reuse mechanism is based on inheritance
to subtype architectural styles.

Inheritance semantics are similar over all ADLs. Depending on the approach,
child architectural styles inherit all element types (respectively roles) of
parent styles; including their constraints. Only SADL allows element types
to selectively inherit parent element types. Additional constraints and
element types (respectively roles) can be speci�ed on child styles. However,
existing constraints cannot be changed.

The reuse mechanism of ATs follows SADL’s approach of selective inheri-
tance, i.e., AT engineers can specify (select) the parent AT roles from which
child AT roles inherit. Additionally, the reuse mechanism de�nes semantics
for reusing completions: when reusing multiple roles, the C3 linearization
algorithm de�nes a total order in which completions have to be executed
(cf. Section 4.4.1).

6.3. Architectural Knowledge
in the Pattern Community

The pattern community originates in Christopher Alexander’s work on
patterns for buildings and towns [Ale77]. In the introduction of his book,

242

6.3. Architectural Knowledge in the Pattern Community

Alexander notes: “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice” [Ale77, p. x]. Beck and
Cunningham [BC87] have �rst applied this idea of patterns to the software
engineering discipline. Afterwards, patterns in software engineering be-
came especially popular with the “Gang of Four”6 book [GHJV95], which
includes 23—nowadays well-known—design patterns for object-oriented
software. In their book series on “Pattern-Oriented Software Architecture”
(POSA) [BMR+96, SSRB00, KJ04, BHS07a, BHS07b], Buschmann et al. have
lifted the idea of these design patterns to the architectural level, i.e., to
architectural patterns as described in Section 2.2.4.2.

As a concrete kind of architectural knowledge, architectural patterns are
related to the AT method. Especially the formalization of such patterns in
the context of model-driven engineering is relevant. This section therefore
describes related works in this area.

The POSA book series provides a good starting point (Section 6.3.1). In addi-
tion, Taibi’s book [Tai07] describes 16 pattern formalization approaches. Of
these approaches, the most related ones are DPML (Section 6.3.2) and RBML
(Section 6.3.3) because they are model-based (as the AT method) and not
purely mathematical (as the other approaches described by Taibi [Tai07];
cf. [Ope17, Chap. 6]). Furthermore, a Google Scholar7 search with the term
“architectural pattern” “formalization” “model-based” OR “model-driven” yields the
work of That et al. on COMLAN as another relevant work (Section 6.3.4).
PMF (Section 6.3.5) is also relevant because PMF is used by ADMD3 (de-
scribed in Section 6.1.4) as formalization mechanism. As the discussion
of these approaches shows (Section 6.3.6), the formalization of architec-
tural patterns is typically role-based like ATs, however, all approaches lack
support for architectural analyses of QoS properties.

6 The “Gang of Four” are the four authors of the book [GHJV95]—Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides.

7 Google Scholar (https://scholar.google.de) is a search engine for scienti�c publications.

243

https://scholar.google.de

6. Related Work

6.3.1. Pattern-Oriented So�ware Architecture (POSA)

The Pattern-Oriented Software Architecture (POSA) book series [BMR+96,
SSRB00, KJ04, BHS07a, BHS07b] follows a role-based approach to archi-
tectural patterns. This thesis has adapted this approach as described in
Section 2.2.4.2.

Furthermore, POSA introduces an initiator template for documenting ar-
chitectural patterns (Section 6.3.1.1) and so-called pattern compounds to
document combinations of architectural patterns (Section 6.3.1.2).

6.3.1.1. POSA’s Initiator Template

POSA’s initiator template [BMR+96, Sec. 1.5] covers the following informa-
tion regarding an architectural pattern: name and aliases, example usages,
typical application contexts, descriptions of the addressed problem and the
general solution idea, detailed descriptions about structural and dynamic
aspects, guidelines for implementation, descriptions of variants, known
uses in existing systems, positive and negative consequences on system
quality, and relations to other patterns. These information help software
architects in selecting a suitable pattern and in applying the pattern. For
this reason, architectural knowledge management tools, e.g., ADMD3 (Sec-
tion 6.1.4), typically use POSA’s or a similar initiator template for pattern
documentation.

In contrast to POSA’s structured initiator template for documentation,
ATs only include a generic documentation attribute of type String (see Sec-
tion 4.2.5.3). Therefore, ATs are more �exible but guide AT engineers less
in structuring their documentation of architectural knowledge. In the AT
catalog created for this thesis, ATs refer with their documentation attribute
to a Wiki [Clob] if they formalize an architectural pattern. By convention,
the Wiki itself documents the architectural pattern according to POSA’s
template. The advantage of this approach is that an AT’s documentation
can be accessed independently of AT tooling. In future works, an empirical
evaluation may investigate bene�ts for AT engineers and software archi-
tects when using more structured documentation attributes within the AT
metaclass.

244

6.3. Architectural Knowledge in the Pattern Community

6.3.1.2. POSA’s Pattern Compounds

POSA’s pattern compounds [BHS07b, Chap. 6] document a composition-
based combination of other patterns. Pattern compounds are therefore
closely related to reuse mechanisms for architectural knowledge.8 To docu-
ment a pattern compound in graphical syntax, POSA suggests using Vlis-
sides’ [Vli98] pattern:role notation, i.e., to prepend names of reused roles
with the name of the reused architectural pattern (separated by a colon).
This way, multiple applied roles from di�erent patterns can easily be distin-
guished from each other, even when their names are equal.

In the AT method, the pattern:role notation may be used to visualize a role’s
inherited roles and roles bound to architectural elements. The graphical
syntax of bound AT roles is described in Section 4.2.5.8: in its current form,
only role names are given. Given that ATs often have long names and that
no role name occurred twice in the evaluation (Chapter 5), this notion was
su�cient so far. As a potential extension, however, the pattern:role notation
may be integrated as an optional alternative notion to visualize reused and
applied roles.

6.3.2. Design Pattern Modeling Language (DPML)

The Design Pattern Modeling Language (DPML) [MHG01, MHG02, Tai07,
Chap. 2] is a dimension-based language to formalize design patterns. DPML
de�nes a dimension as a set of elements that act in a certain role. For
example, a “replica” dimension for the loadbalancing architectural pattern
may contain the set of elements acting in roles that require replication
when being load-balanced. DPML then allows to associate such dimensions
to a pattern’s roles. For example, as shown in Figure 6.4, the “replica”
dimension may be assigned to the the “load-balanced container” role and
the corresponding “assembly connectors” roles that have to be replicated.
DPML’s semantics demand that each so-assigned role refers to the same
number of elements as de�ned in the dimension. In the previous example,
each assigned role therefore refers to the same number of replicas, thus,
requiring a load-balanced container, an incoming assembly connector, and
an outgoing assembly connector for each replica. A dimension therefore
8 For concrete examples, the interested reader is referred to [BHS07b, Chap. 6].

245

6. Related Work

represents a dedicated construct to ensure that cardinalities of assigned
roles are consistent.

Legend:
componentscomponents

requiring role
providing role noteresource

container

loadbalancer server

load-
balancer

load-balanced container

component

providing roles
originally linked to the
replicated components

requiring roles
originally linked to the
replicated components

components

replica

dimension assembly connector
association

Figure 6.4.: The replica dimension ensures that replicated elements have the same
cardinality.

In contrast, other role-based approaches either include dedicated cardi-
nality constraints (e.g., RBML as described in Section 6.3.3) or require for-
mulating appropriate constraints in a constraint language such as in OCL.
The AT method follows an OCL-based approach because the OCL is well-
known [LCM06] and, thus, more practical for software architects. Moreover,
the evaluation of DPML [Tai07, Chap. 2]—conducted by DPML’s original
authors—has shown that software architects have di�culties in understand-
ing the dimension concept. On the architectural level, the dimension-based
approach further seems to divide roles into too �ne-granular elements, e.g.,
the loadbalancing architectural pattern formalized as AT only requires bind-
ing a loadbalancing role to the entity to be loadbalanced. The dimension-
based formalization as exempli�ed above requires more bindings, thus,
appearing more complicated in practice.

6.3.3. Role-Based Metamodeling Language (RBML)

The Role-Based Metamodeling Language (RBML) [KFGS03, Tai07, Chap. 9]
is a role-based language to formalize design patterns. Despite not explicitly
focused on architectural patterns, RDML introduces a role concept for
models [KFGS03] that is similar to the role concept employed by ATs.

According to RDML’s role concept [KFGS03], roles (1) have structural and
behavioral properties that can be inherited from parent roles, (2) de�ne

246

6.3. Architectural Knowledge in the Pattern Community

conformance constraints, and (3) are context-sensitive. AT roles share
these characteristics. First, parameters and completions of ATs provide
bound elements with additional structural and behavioral properties. AT
roles particularly support inheritance for these properties. Second, ATs
contain constraints for conformance checks (which are also inherited).
Third, context-sensitivity is re�ected in the fact that AT roles can only
be bound to speci�c architectural elements. For example, if an AT role
is applied in the context of a system model, attributes associated to the
AT role are hidden in the context of a resource environment model (and
vice-versa).

RBML extends the UML with its role concept, e.g., allowing to capture
structural aspects of design patterns via UML classes. Here, RBML’s roles
restrict UML base metaclasses, e.g., a UML class. RBML speci�es its re-
strictions via the OCL. These restrictions de�ne a subset of the UML that
only allows to create instances that conform to the formalized pattern. For
example, a restriction for a class may demand that the class is abstract; a
suitable restriction when, e.g., implementing the abstract factory pattern
(cf. [GHJV95, p. 87�.]).

Interestingly, RDML’s approach to capture design patterns by restricting
UML’s design space has more in common with this thesis’ de�nition of
architectural styles (Section 2.2.4.1) than it has with the one of architectural
patterns (Section 2.2.4.2). Similar to RDML’s patterns, architectural styles
are collections of constraints to restrict systems. Architectural patterns,
instead, are typically associated with design decisions about the existence
of elements (cf. Section 2.2.4.2). This distinction becomes unfortunately
fuzzy when restricting the design space to such an extent that only few
existential design decisions remain (like RDML does). For this reason,
the di�erence between architectural patterns and architectural styles is
often subject to discussion (e.g., in [BMR+96, p. 394�.]). Here, RDML lies
somewhere in between; and ATs provide facilities to capture both kinds of
architectural knowledge, thus, leaving the resolution of such discussions to
AT engineers.

247

6. Related Work

6.3.4. Composition-Centered Architectural Pattern
Description Language (COMLAN)

That et al. [TSO12, TSOB15, TTSOF16] de�ne the Composition-Centered
Architectural Pattern Description Language (COMLAN) as a role-based
language to capture architectural patterns. COMLAN’s roles can extend ex-
isting component-based languages [TTSOF16], e.g., Acme (cf. Section 6.2.1).
Role characteristics are captured via constraints formulated in the OCL.

Software architects can apply COMLAN’s patterns to architectural models
via a dedicated mapping model. The mapping model speci�es bindings of
pattern roles to architectural elements. Once applied, COMLAN allows
to create views that visualize only those elements that are related to an
applied pattern. COMLAN uses completion-like transformations to create
dedicated models for these views.

Another key concept in COMLAN is its reuse mechanism to compose ar-
chitectural patterns, motivated by the observation that software architects
often combine preexisting patterns into new ones [TSOB15]. COMLAN pro-
vides dedicated combining operations for its reuse mechanism [TTSOF16]:
the stringing and overlapping operators. The stringing operator creates a
connector between two components of two distinct patterns. The overlap-
ping operator merges two components of two distinct patterns into a new
component. Using these operators, complex patterns can be composed out
of more simple patterns.

In contrast to most other approaches, COMLAN’s reuse mechanism is based
on composition instead of subtyping by inheritance. In the AT method, AT
roles may inherit from other roles. Here, the C3 algorithm determines a
total order in which inherited completions are executed. This ordering can
be seen as a dedicated composition operator for completions, similar to the
operators in COMLAN. However, a fundamental di�erence between these
operators is that COMLAN’s operators are only used to combine patterns
whereas the AT method’s total ordering speci�es a whole completion. COM-
LAN’s views are only capable of weaving single architectural patterns into
an architectural model; the AT method’s completions instead weave each
applied AT into an architectural model. In that sense, COMLAN’s mecha-
nism is more �ne-grained than the one of the AT method and has a focus

248

6.3. Architectural Knowledge in the Pattern Community

on creating pattern-speci�c views. The creation of such pattern-speci�c
views is a potential extension to the AT method.

The role-based binding of COMLAN and AT method is similar. However,
COMLAN requires de�ning a dedicated adapter metamodel for each target
architectural description language. The AT method employs a lightweight
metamodel extension based on pro�les instead. A particular advantage of
this approach is that software architects can create role-bindings internally
in the architectural description language. In contrast, COMLAN requires
an external creation of a mapping model.

6.3.5. Pattern Modeling Framework (PMF)

The Pattern Modeling Framework (PMF) [EBL06] is a method providing a
process, tool support, and a language (EPattern) to specify patterns for Ecore
(see Section 2.3.6) metamodels. Patterns are used for detection purposes and
not for application, thus, PMF provides no instantiation- or binding-based
application mechanism. Still, the EPattern language uses the concept of roles
to characterize targeted model elements, e.g., components in architectural
models. Like related approaches, a pattern’s roles characterize targeted
elements with constraints; PMF’s tooling supports the OCL for constraint
speci�cation.

EPattern supports a combination of inheritance and composition as reuse
mechanism for patterns. A child pattern may inherit from a parent pattern.
Analogously to approaches in the ADL domain (cf. Section 6.2.7), child
patterns inherit roles including their constraints and may add additional
roles and constraints. Additionally, pattern roles can relate to roles of
other patterns over explicitly exposed ports for roles. Using these relations,
additional constraints can be formulated.

In contrast to most other approaches, PMF provides a pattern creation pro-
cess for engineers. Engineers start by understanding a pattern’s structure,
continue with a step-wise speci�cation of model elements for pattern, roles,
ports, and constraints, and �nish with an optimization step to simplify the
pattern model. The whole process is of iterative nature.

PMF’s creation processes has served as a basis for the AT speci�cation
process (described in Section 4.1.3.2). Both processes describe the required

249

6. Related Work

steps to capture the architectural knowledge to be formalized. In contrast
to patterns speci�ed via the EPattern language, ATs additionally require
engineers to specify completions. These completions provide additional
semantics for weaving AT-induced elements into the targeted architectural
model.

Another fundamental di�erence is that software architects can apply ATs
to architectural models. PMF only provides the possibility to detect pattern
occurrences in (architectural) models. Accordingly, PMF also lacks support
for improving architectural analyses by utilizing information from applied
patterns.

6.3.6. Discussion of Approaches in the Pattern Community

While related work on ADLs focuses on architectural styles (cf. Section 6.2.7),
the pattern community (not surprisingly) has a strong focus on patterns—
ranging from design patterns (DPML, RBML) over architectural patterns
(POSA, COMLAN) to general model patterns (PMF). Other di�erences of
the investigated approaches rely in the following concepts.

Roles vs. dimensions The predominant approach to capture patterns is
based on roles (POSA, RBML, COMLAN, PMF). Only DPML provides with
dimensions an addition to this concept.

Even though a dimension-based approach is an interesting alternative,
pure role-based approaches have proven to be more intuitive to software
architects (cf. Section 6.3.2). For this reason, the AT method is role-based
but does not employ the dimension concept.

Informal vs. formal From the investigated approaches, only the POSA
series captures patterns in an informal way. POSA proposes an initiator
template for documentation purposes—stating which information should be
given for documenting a pattern. Other related works suggest using this (or
similar) templates for documentation as well, e.g., ADMD3 (Section 6.1.4)
and the AT method itself.

250

6.3. Architectural Knowledge in the Pattern Community

The rationale behind more formal approaches is that formalized patterns
can provide additional analysis capabilities, going beyond documentation
only. Such analyses are discussed next.

Analyses Approaches on pattern formalization focus on conformance
checks of constraints to improve conceptual integrity (DPML, RBML, COM-
LAN). All of these approaches have in common that they check only struc-
tural constraints and not behavioral aspects.

COMLAN explicitly documents applications of patterns as annotations to
the targeted architectural model. Even if all elements playing roles in a
pattern are removed, COMLAN can therefore point to constraint violations
(e.g., missing required elements). The other approaches lack this kind of
constraint check, however, the AT method follows a similar approach as
AT applications are also annotated on the architectural model.

PMF can detect its formalized patterns in targeted models. This detection
allows software architects to check whether models conform to a required
pattern or whether an anti-pattern occurs that should be removed. Such an
automatic detection is still a current research topic (cf. [vL13, Gie08, p. 53])
and an extension opportunity for the AT method.

In contrast to the AT method, no investigated approach provides support
for architectural analyses of QoS properties.

Constraints The investigated approaches either informally document con-
straints (POSA) or suggest to additionally use a dedicated constraint lan-
guage such as the OCL (DPML, RBML, COMLAN, PMF). The AT method
is in line with these suggestions: AT constraints may be documented in
natural language but each role requires also constraints formulated in a
constraint language. AT tooling currently supports constraints formulated
in the OCL.

Refinement semantics No investigated approach provides re�nement se-
mantics (like completions) to weave patterns into the targeted model. In-
stead, the approaches require that elements acting in a pattern’s role already
exist in the targeted model. Patterns can then manually (DPML, RBML,

251

6. Related Work

COMLAN) or automatically (PMF) be linked to the target model, giving the
bene�t of conformance checks as described above.

In the AT method, architectural knowledge is instead imposed on the tar-
geted architectural model, i.e., AT-induced elements are woven into the
architectural model. ATs include completions for this purpose, which partic-
ularly ensure that architectural analyses can be conducted that accurately
re�ect the formalized architectural knowledge.

Reuse mechanisms As reuse mechanisms, the investigated approaches
support subtyping by inheritance on a per-role basis (RBML, PMF) and
compositions of patterns (POSA’s pattern compounds, COMLAN, PMF).
DPML provides no reuse mechanism for patterns.

ATs analogously support inheritance for AT roles. Additionally, the comple-
tion execution order is speci�ed when reusing completions. An integration
of further reuse semantics is left as future work, e.g., via similar composition
approaches as above. In his Master’s thesis, Openkowski [Ope17, Sec. 7.1]
provides details about the possible integration options.

6.4. Architectural Knowledge
in Architectural Analyses

Architectural analyses—as investigated in this thesis—are methods to quan-
tify a system’s QoS properties based on architectural models (see Section 2.5
for a detailed description). The focus of the AT method is on such quanti-
tative methods instead of qualitative methods like SAAM [KBWA94] and
ATAM [KBK+99].9 Qualitative methods may complement quantitative
methods, e.g., by identifying the most relevant QoS properties to be quanti-
�ed. However, due to a di�erent focus of the AT method, this section only
discusses quantitative methods.

Quantitative methods have been surveyed by Koziolek [Koz10]. Koziolek
investigates component-based methods, which �ts to the AT method’s fo-
cus on software architecture (cf. Section 2.2). Component-based methods

9 See [DN02, BZJ04, KBK+05, SS12] for surveys of qualitative methods.

252

6.4. Architectural Knowledge in Architectural Analyses

originate in the pioneering work of Smith on the Software Performance
Engineering (SPE) [SW02] method. SPE allows to quantify performance
properties on the level of UML-like architectural models. The methods
surveyed by Koziolek extend SPE by models of software components that
software engineers can reuse within further analyses, along with tool sup-
port for model editing and model-driven transformations to underlying
analysis models. For example, CB-SPE [BM04] and Palladio (cf. Section 2.5.3)
provide such extensions.

These methods are related to the AT method because their components
capture reusable architectural knowledge within reusable components. SPE
and Palladio particularly provide the basis for the AT method: SPE pro-
cesses and Palladio’s tooling are extended by the AT method. However, the
methods that Koziolek [Koz10] has investigated lack support for reusing
higher-level architectural knowledge (cf. [HBR+10a]), e.g., guiding soft-
ware architects in composing components. The AT method extends these
methods as a complementary method for capturing and applying reusable
architectural knowledge like architectural styles, architectural patterns,
and reference architectures. Regarding such reusable architectural knowl-
edge, Koziolek only mentions Smith’s informal descriptions of performance
patterns and anti-patterns [SW02] and Happe’s use of completions for in-
tegrating messaging patterns of a message-oriented middleware in PCM
models (discussed in Section 6.4.2.4).

In the following, this section therefore supplements Koziolek’s survey with
architectural analysis methods with support for high-level reusable architec-
tural knowledge.10 For such existing analysis methods, there are two major
categories: methods that transform architectural models to analysis models
utilizing knowledge-speci�c information (Section 6.4.1) and methods that
capture knowledge via completions (Section 6.4.2). In these major cate-
gories, software architects apply reusable architectural knowledge manually.
Instead, the SASSY method employs an optimization algorithm for such
applications (Section 6.4.3). The discussion of these methods (Section 6.4.4)
shows that methods either have too strong dependencies to analysis models
or do not exploit reusable architectural knowledge already for the design
of architectural models.
10 In her Master’s thesis [Gia16, Chap. 3], Giacinto systematically identi�es several of the

investigated methods and brie�y relates these to the AT method. Her work has served as a
starting point for this section.

253

6. Related Work

6.4.1. Knowledge-Specific Generation of Analysis Models

Some architectural analysis approaches [PW00, CG02, MPW15] provide
techniques to generate analysis models that are knowledge-speci�c. These
approaches have in common that generation techniques directly target the
level of analysis models, thus, are directly depending on concrete analysis
models.

In contrast, the AT method is independent of concrete analysis models
because AT completions weave knowledge-induced elements directly in the
targeted architectural model. After these elements have been woven into
the architectural model, transformations to various analysis models can be
chained. For example, Palladio’s transformations to analysis models can
be applied after AT-induced elements have been woven into a PCM model.
This independence therefore allows to reuse existing transformations to
various analysis models instead of requiring engineers to specify such
transformations anew.

The following subsections relate the AT method to each approach in de-
tail.

6.4.1.1. Petriu andWang [PW00]

Petriu and Wang [PW00] use style-speci�c UML collaborations (cf. Sec-
tion 6.2.6.1) to type UML models with style-speci�c roles. For each UML
collaboration, a dedicated model transformation is speci�ed. These trans-
formations allow to generate analysis models (LQN models as described in
Section 2.5.3.1) from UML models with bound collaborations. The authors
exemplify their approach with the client-server [BCK98, p. 217�], pipes and
�lters [BMR+96, p. 53�], and blackboard [BMR+96, p. 71�] architectural
styles.

For example, Figure 6.5 (left) illustrates a collaboration for the “client-server
with forwarding broker” style bound to a UML model. Figure 6.5 (right)
illustrates the result of a corresponding transformation of this model to an
LQN model. Following the idea of the captured style, the client and the
server are now intervened by a broker that forwards requests.

254

6.4. Architectural Knowledge in Architectural Analyses

client-server with
forwarding broker

Legend: collaboration component requiring role
providing role

resource
container

client machine

client

requestrole binding

server machine

server

serverclient

transformation

client

server

forwarding
broker

LQN
task

LQN
resource

client
CPU

broker
CPU

server
CPU

Figure 6.5.:A transformation from a UML model with a bound collaboration to a
corresponding LQN model (based on [PW00]).

Given that Petriu and Wang formalize architectural knowledge for an ADL
and utilize this formalization in transformations to analysis models, their
approach is closely related to the AT method. While their approach allows
to type architectural elements only with one role, the role-based approach
of the AT method provides support for binding multiple roles. Software
architects therefore have a higher �exibility in the AT method (see Sec-
tion 6.2.7 for a detailed discussion). Additionally, the AT method comes
with support for constraint checks and a general process for extending
architectural analyses with ATs, e.g., describing quality assurance steps for
the conceptual integrity of the formalized knowledge. Another di�erence is
that the AT method employs completions (that weave AT-induced elements
directly in the architectural model) instead of transforming to analysis
models.

6.4.1.2. Cortellessa et al. [CG02]

Cortellessa and Grassi [CG02] specify component and connector types of
an architectural style for mobile code. These types can be used in ADLs
like Acme (cf. Section 6.2.1) to create architectural models. For so-created
architectural models, the authors specify a transformation to an analysis
model (a Markov decision process model; cf. [Bel57]). This analysis model
can be used to analyze performance-related QoS properties.

255

6. Related Work

Cortellessa and Grassi show how a particular architectural style can be for-
malized for ADLs while utilizing this formalization for generating analysis
models. Therefore, the work of Cortellessa and Grassi is closely related to
the AT method, similar to Petriu and Wang’s approach. However, their work
su�ers from the same issues as Petriu and Wang’s approach: the type-based
approach is in�exible and transformations directly to the analysis model
have to be speci�ed. Moreover, Cortellessa and Grassi focus only on one
architectural style (code mobility) and provide no guidelines to formalize
further architectural knowledge.

6.4.1.3. Mani et al. [MPW15]

Mani et al. [MPW15] introduce a method to synchronize applications of ar-
chitectural patterns within an architectural model with a previously created
analysis model. In a �rst step, a transformation creates the analysis model
(an LQN model as described in Section 2.5.3.1) from an initial architectural
model. In a second step, software architects can bind roles of architectural
patterns to their architectural model. These patterns are formalized via
RBML (described in Section 6.3.3), i.e., via a role-based approach. In a third
step, software architects specify and execute a transformation that weaves
pattern-induced elements into the architectural model. In a fourth and �nal
step, a corresponding transformation for the previously created analysis
model is automatically derived and executed, thus, keeping the analysis
model in sync with the architectural model. The automatic derivation of
this transformation in based on information of the original mapping from
architectural model to analysis model (�rst step) and the transformation
that modi�ed the architectural model (third step).

The method of Mani et al. is similar to the AT method because it follows
a role-based formalization approach and applies transformations to inte-
grate pattern-induced elements into architectural models. Both methods
also provide processes for software architects and an accompanying tool
support. Mani et al.’s method is especially interesting because pattern ap-
plications do not require a complete regeneration of the corresponding
analysis model; the existing analysis model is instead directly modi�ed
via generated transformations. A downside of this approach is that the
generated transformations are LQN-speci�c. If additional analysis models

256

6.4. Architectural Knowledge in Architectural Analyses

have to be supported, additional transformation generators have to be engi-
neered. The AT method saves this e�ort because existing transformations
to analysis models can completely be reused. Mani et al. particularly require
software architects to specify transformations for modifying architectural
models; the AT method instead lets AT engineers specify transformations
in a reusable fashion. Besides these main di�erences, ATs additionally
include a reuse mechanism and support constraint checks of the formalized
knowledge on the architectural level. Moreover, the AT method provides a
quality assurance process for the formalized knowledge.

6.4.2. Knowledge Captured via Completions

Several architectural analysis approaches [WPS02, VDGD05, Bec08, Hap09,
Hap11, Rat13] use completions (as described in Section 2.5.2.2) to integrate
QoS-relevant details into architectural models that subsequently serve as
input to architectural analyses. For example, Verdickt et al. [VDGD05]
integrate details about the Common Object Request Broker Architecture
(CORBA) [Obj12] middleware. A subsequent architectural analysis can
then accurately re�ect the impact of choosing CORBA as middleware.

The focus of these approaches is the integration of lower-level, technology-
speci�c factors that impact QoS properties. These approaches therefore
do not utilize reusable architectural knowledge directly on the level of
architectural models, e.g., to check whether an architectural pattern has
been consistently applied. In contrast, the AT method combines the idea of
completions (for integrating AT-induced elements) with concepts from the
ADL and pattern domains (for providing feedback to software architects
when applying ATs). This combination allows, for example, to check for a
consistent application of an architectural pattern while integrating pattern-
induced elements for architectural analyses.

The following subsections relate the AT method to each approach in de-
tail.

257

6. Related Work

6.4.2.1. Woodside et al. [WPS02]

Woodside et al. [WPS02] have introduced the idea of completions as a
general means to re�ne and extend architectural models with QoS-relevant
elements. Being QoS-relevant, the inclusion of these elements improves
the accuracy of subsequent architectural analyses. For example, elements
may be included that model the CORBA middleware, execution delays of
web browsers, and assumptions about internet delays. To indicate where a
completion is applied, architectural models are annotated, e.g., based on
UML pro�les (cf. Section 2.3.4).

The AT method builds up on Woodside et al.’s idea of completions to weave
elements induced by AT roles into architectural models. However, the
AT language is specialized in capturing reusable architectural knowledge
while Woodside et al. describe a more general approach. This generality
prohibits Woodside et al.’s completions to exploit speci�c constraints of
reusable architectural knowledge, e.g., to check for a consistent annotation
of multiple architectural elements. In contrast, AT roles additionally contain
constraints that allow for consistency checks. This way, the semantics of
reusable architectural knowledge can better be re�ected. Besides this main
di�erence, the AT method comes with an engineering process for ATs,
which particularly includes quality assurance for completions.

6.4.2.2. Verdickt et al. [VDGD05]

Verdickt et al. [VDGD05] use completions for integrating details about the
CORBA middleware into UML models for performance analyses. For ex-
ample, their completions enrich a client-server communication captured
via UML collaborations (cf. Section 6.2.6.1) by CORBA-speci�c communi-
cation elements like object request brokers. Their completions transform
the whole UML model, without depending on dedicated annotations like
Woodside et al. [WPS02] suggest.

Verdickt et al. [VDGD05] focus on a concrete kind of completions—on com-
pletions that integrate middleware details. This concreteness allows them to
focus on the elements of UML models that are impacted by middleware de-
cisions (UML activities, UML deployments, UML collaborations). However,
their focus is di�erent than the focus of the AT method, which focuses on

258

6.4. Architectural Knowledge in Architectural Analyses

capturing architectural knowledge at the application layer. Software archi-
tects can apply AT roles (and, thus, completions) selectively to architectural
elements and check for consistency via AT constraints. Verdickt et al., in
contrast, always transform the whole architectural model, e.g., integrating
CORBA details into each possible inter-component communication, and
lack a constraint mechanism.

6.4.2.3. Becker [Bec08]

Becker [Bec08] uses completions to include details about middleware and
runtime container services into PCM models. For example, he describes
completions for the protocols SOAP and RMI and for processing overheads
due to encryption, compression, and authorization [Bec08, p. 182]. Becker
uses feature models (cf. Appendix A) as annotatable roles to con�gure which
completions will be executed [Bec08, Sec. 4.5.2]. Moreover, he introduces
so-called completion components as a special kind of components that in-
clude the QoS-impact of infrastructure layers as con�gured via the feature
models [Bec08, Sec. 4.5.3]. When a quality analysis is started, Becker’s com-
pletions can replace connectors (connector completions) or wrap components
(container completions).

Becker’s completions are complementary to ATs as they focus on a di�er-
ent kind of knowledge (knowledge about lower application layers). Fea-
ture models for con�guring completions are a viable alternative to the
AT method’s use of pro�les. Becker rejected pro�les as option because
pro�les were unavailable for EMF-based metamodels when he wrote his
thesis [Bec08, p. 158]. However, EMF pro�les (cf. Section 4.2.4.1) have re-
solved this problem. Pro�les have the advantage that their extensions can
easily be integrated in existing editors, thus, providing software architects
with an internal DSL for applying architectural knowledge. Feature models
instead annotate architectural models externally, which is better suited for
con�guring lower application layers (like Becker does) but less suited for
coping with application-layer concerns (like the AT method does).

Several ATs (e.g., the loadbalancing AT and caching AT) reuse concepts
of Becker’s completion components to delegate requests. However, sim-
ple replacements (like in Becker’s connector completions and container
completions) are often impossible because an AT’s re�nements are more

259

6. Related Work

complex. For example, the loadbalancing AT additionally creates several
replicas of the bound component, including their allocation to additional
resources. The AT method therefore uses QVT-O transformations to imple-
ment completions, which is a more general approach.

6.4.2.4. J. Happe [Hap09]

Like Becker (cf. preceding section), J. Happe provides completions for PCM
models. In contrast to Becker, completions are con�gurable via additional
element types. He provides completions for general purpose operating
systems schedulers [Hap09, Chap. 3 to Chap. 5] (e.g., for Windows and
Linux) and for message-oriented middlewares [Hap09, Chap. 6] (e.g., for
implementations of the Java Message Service standard [MHC00]). Similar
to Becker’s and Verdickt’s works, Happe therefore only focuses on lower
application layers, i.e., infrastructure layers.

6.4.2.5. L. Happe [Hap11]

L. Happe provides a special kind of completions implemented in QVT-R that
allows for variability in completions themselves [Hap11, Sec. 4]. To con-
�gure this variability, Happe uses feature models to annotate architectural
elements with roles (like Becker; cf. Section 6.4.2.3). Supporting variability
is expected to be best suited in situations where multiple completions share
common parts that can be reused—only the variable parts then have to be
engineered.

Happe’s QVT-R-based approach provides an alternative to the AT method’s
QVT-O-based completions. However, she does not provide empirical ev-
idence that would indicate a preference of QVT-R over QVT-O [Hap11,
Sec. 9.3.2]. Indeed, initial empirical evidence that I have previously col-
lected indicates that QVT-O outperforms QVT-R regarding maintainability
in uni-directional transformation scenarios [Leh12, Sec. 7.2]—and comple-
tions represent uni-directional scenarios. I selected QVT-O for this reason
(cf. Section 2.3.2).

Further, L. Happe provides completions that extend J. Happe’s message-
oriented middleware completions for PCM models [Hap11, Sec. 5.3]. These

260

6.4. Architectural Knowledge in Architectural Analyses

extensions focus on completions of architectural patterns for concurrency
and are, thus, closely related to this thesis. Happe covers patterns for
loadbalancing [Hap11, Sec. 5.3.3.1], managing states [Hap11, Sec. 5.3.3.2],
communication in pipes and �lters architectures [Hap11, Sec. 5.3.4.1], and
thread pools [Hap11, Sec. 5.3.5].

Happe’s patterns provide formalization opportunities for further ATs. In
contrast to her formalization, ATs not only provide completions but also ap-
plication mechanisms for software architects, including consistency checks
of applied architectural knowledge.

6.4.2.6. Rathfelder [Rat13]

Rathfelder provides completions for integrating event-based communica-
tion patterns in PCM models [Rat13]. He provides completions for point-
to-point and publish/subscribe communication. Similar to J. Happe (Sec-
tion 6.4.2.4), Rathfelder has integrated elements that conform to these
patterns directly in the targeted ADL, i.e., the PCM. His integration enables
software architects to directly instantiate event-based connectors in PCM
models. The associated completions de�ne the semantics of these new
elements by mapping to ordinary PCM constructs (i.e., via translational
semantics; cf. Section 2.3.5).

The AT method can be seen as a generalization of Rathfelder’s approach.
By utilizing pro�les and stereotypes, ATs are generically integrated into the
targeted ADL. AT completions de�ne the semantics of such integrations,
analogously to Rathfelder’s approach. AT constraints ensure the consistency
of applied architectural knowledge while Rathfelder has enriched the PCM
with additional static constraints for this purpose.

6.4.3. Self-Architecting So�ware Systems (SASSY)

Menascé et al. [MSMG10, GHK+10, MGMS11] introduce Self-Architecting
Software Systems (SASSY). In SASSY, an architectural model without appli-
cations of architectural patterns is the input to an optimization algorithm.
The algorithm optimizes the architectural model by consecutively applying

261

6. Related Work

architectural patterns, e.g., the loadbalancing architectural pattern. The
optimization �nishes when a user-de�ned utility function is maximized.

SASSY’s utility function aggregates values that quantify various quality
properties. Supported quality properties are performance, availability, and
security. For each of these quality properties, the operations of an architec-
tural models’ components have to provide suitable quanti�cation functions.
Here, Menascé et al. simply assign each operation a static quanti�cation
value per property, e.g., a static execution time to re�ect an operation’s
response time. SASSY’s patterns include appropriate functions to propagate
such quanti�cations. For instance, the loadbalancing pattern’s execution
time function uniformly selects the execution time of the operation in
question from one available component replica. This function therefore
approximates a simple round-robin strategy (cf. [MSMG10]).

Besides quanti�cation functions, SASSY’s patterns include roles to char-
acterize structural and behavioral aspects and an adaptation transforma-
tion. The structural descriptions provide a pattern’s components and con-
nectors while the behavior is captured via a process algebra (�nite state
processes [KM98]). SASSY’s optimization algorithm applies a pattern’s
adaptation transformation to weave a pattern’s structure and behavior into
the targeted architectural model, thus, applying the pattern [GHK+10].

Similar to the feedback for software architects that the AT method provides
via architectural analyses, SASSY’s utility functions serve as architectural
analysis to guide the optimization algorithm. SASSY’s utility functions
become, however, inaccurate as soon as the assumption that an operation’s
quanti�cation value can statically be determined is violated. Such violations
can indeed occur, e.g., when components are allocated on the same resource
and in�uence each other’s QoS properties (cf. [Koz11a, pp. 76-77]). Palladio,
as extended by the AT method, does not su�er from this issue because
Palladio supports the analysis of such in�uences [BKR09].

SASSY’s adaptation transformations are similar to completions of the AT
method. In contrast to completions, however, SASSY’s transformations
assume that the modeled system is self-adaptive. Transformations can
then issue required adaptations to a self-adaptation manager [GHK+10].
Moreover, adaptation transformations are triggered by the optimization
algorithm whereas, in the AT method, software architects decide where
to apply architectural knowledge. These observations show that SASSY

262

6.4. Architectural Knowledge in Architectural Analyses

is specialized to the realization of self-adaptive systems; the AT method
is a more general engineering method. Nonetheless, SASSY’s approach to
optimization points to an interesting direction for future extensions of the
AT method.

6.4.4. Discussion of Architectural Analyses

Approaches on knowledge-speci�c transformations to analysis models
(Section 6.4.1) are directly depending on their metamodels. This depen-
dence causes problems when additional analysis models and architectural
knowledge have to be supported: for each kind of architectural knowledge,
transformations to each analysis model have to be engineered.

Instead, completion-based approaches (Section 6.4.2) integrate architectural
knowledge on the level of architectural models and subsequently chain
transformations to analysis models. This way, completions for architectural
knowledge and transformations from architectural model to analysis model
can be engineered independently of each other. Unfortunately, completion-
based approaches often target infrastructure layer details instead of appli-
cation layer architectural knowledge and do not exploit such knowledge
for designing architectural models, e.g., via conformance checks.

SASSY is a special approach because it automatically applies architectural
knowledge to optimize an architectural model. However, it depends on two
unsatisfying assumptions: QoS of operations can be statically determined
and the modeled system must be self-adaptive.

In the following, these and further di�erences and commonalities are sum-
marized, discussed, and related to the AT method.

Abstraction level of knowledge integration As mentioned, the approaches
discussed in Section 6.4.1 generate knowledge-speci�c analysis models.
In contrast, the approaches discussed in Section 6.4.2 use completions to
integrate applied knowledge directly into architectural models, i.e., prior to
the architectural model’s transformation to an analysis model. Therefore,
completions maintain the abstraction level of the architectural modeling
language instead of changing it to the level of analysis models.

263

6. Related Work

The bene�t of maintaining the abstraction level is that existing tools for
this abstraction level can be reused. For example, software architects can
use existing model editors to open architectural models that have been
extended via completions. Particularly existing transformations to analysis
models can completely be reused.

Because of this bene�t, the AT method uses completions instead of directly
generating analysis models. In consequence, all of Palladio’s analysis tools
(cf. Section 2.5.3.1) are supported by the AT method.

Abstraction level of capturedknowledge The abstraction level of captured
knowledge varies over the discussed approaches. Several approaches inte-
grate knowledge about infrastructure layers like middleware and runtime
container services into architectural models (Woodside et al. [WPS02],
Verdickt et al. [VDGD05], Becker [Bec08], J. Happe [Hap09], L. Happe
[Hap11]). Another set of approaches integrates reusable architectural
knowledge on a higher level of abstraction, i.e., the application layer. More
precisely, these approaches integrate reusable architectural knowledge in
terms of architectural styles (Petriu and Wang [PW00], Cortellessa et al.
[CG02]) and architectural patterns (Mani et al. [MPW15], Woodside et al.
[WPS02], L. Happe [Hap11], Rathfelder [Rat13], SASSY [MGMS11]).

Both abstraction levels are important for achieving a high accuracy when
conducting architectural analyses. In that sense, application layer and
infrastructure layer approaches complement each other. From the viewpoint
of software architects, application layer approaches are especially important
in the early actions of architectural model speci�cation (actions (1) to (3) in
Section 2.5.1.1) while infrastructure layer approaches become more relevant
when specifying deployments (actions (4) in Section 2.5.1.1).

The AT method focuses on reusable architectural knowledge on the ap-
plication layer. In contrast to the other approaches in this category, ATs
additionally exploit constraints of the captured knowledge in their formal-
ization, e.g., to check for a consistent application of ATs.

Explicit vs. implicit element integration Reusable architectural knowledge
on the application layer is either explicitly or implicitly integrated into
architectural models. In the explicit variant, elements induced by roles of

264

6.4. Architectural Knowledge in Architectural Analyses

captured knowledge are directly included in the architectural model. In
the implicit variant, roles of captured knowledge are played by elements
of the architectural model; induced elements are included in subsequent
processing steps (e.g., at completion execution time).

Verdickt et al. [VDGD05] and SASSY [MGMS11] follow the explicit variant:
on knowledge application, induced elements are directly created. The other
approaches all follow the implicit variant.

The implicit variant has the advantage that only core business components
have to be explicitly included in the architectural model. The architectural
model provides, thus, a compact view on business logic. Applications of
reusable architectural knowledge can be separated to a dedicated view,
e.g., showing all or only a selection of bound roles. However, a roll-out
representation with knowledge-induced elements requires an additional
processing step (e.g., by executing a completion).

The explicit variant is useful if a more compact version of the architectural
model is unnecessary. For example, in SASSY, the optimization algorithm
would not bene�t from separating business components with components
induced by reusable architectural knowledge—here, it is unnecessary to
present software architects a compact version of the architectural model
between each optimization step.

The AT method follows the implicit variant because of its focus on software
architects and the given bene�ts. AT tooling particularly supports the
creation of a roll-out representation of architectural models by executing
all relevant completions (cf. Appendix B.3.5).

Types vs. roles vs. all-or-nothing Architectural knowledge application is
either type- or role-based, or follows an “all-or-nothing” paradigm (cf.
[Bec08, p. 65]). Four approaches are type-based (Petriu and Wang [PW00],
Cortellessa et al. [CG02], J. Happe [Hap09], Rathfelder [Rat13]), �ve ap-
proaches are role-based (Mani et al. [MPW15], Woodside et al. [WPS02],
Becker [Bec08], L. Happe [Hap11], SASSY [MGMS11]), and one approach
follows the all-or-nothing paradigm (Verdickt et al. [VDGD05]).

Verdickt et al.’s [VDGD05] all-or-nothing approach does not mark archi-
tectural elements with knowledge-speci�c information. Instead, their re-

265

6. Related Work

�nement transformation simply replaces all connectors of the architectural
model with knowledge-speci�c details (in their case with CORBA-speci�c
details). Advantages of this approach are that it requires no adaptations of
metamodels (thus, requiring no modi�cations of modeling editors, for exam-
ple) and software architects save e�ort to learn about and use knowledge-
speci�c elements (e.g., additionally requiring a per-element role-binding).
The main downside of the all-or-nothing approach is its in�exibility. That
is, software architects lose control about where knowledge should be in-
tegrated (and where not). Especially for high-level architectural knowl-
edge like architectural styles and architectural patterns, software architects
would therefore lose one of their main responsibilities (cf. Section 2.2).

For these reasons, the AT method follows a role-based approach instead
of the all-or-nothing approach. In Section 6.2.7, type- and role-based ap-
proaches are discussed and related to the AT method.

Variability of knowledge integration: configuration techniques Re�ne-
ment transformations can be con�gured for integrating varying knowledge.
The following con�guration techniques exist; ordered from the least �exible
option to the most �exible option:

Configuration via (meta)model elements. (Meta)model elements that are
knowledge-speci�c can provide information to re�nement transfor-
mations, e.g., allowing to only transform connectors of a “CORBA
connector” type. Cortellessa et al. [CG02], J. Happe [Hap09], and
Rathfelder [Rat13] employ this option.

Configuration via profiles. Pro�les are a lightweight mechanism for extend-
ing metamodels (cf. Section 2.3.4). Consequently, dedicated pro�les
can provide information to re�nement transformations (as detailed
in Section 2.5.2.2). Woodside et al. [WPS02] indeed suggest UML
pro�les as a means for parametrizing completions.

Configuration via markmodels. Architectural models can be referenced
(marked) by dedicated models (mark models) to con�gure re�nement
transformations. Software architects have to provide these mark
models as an additional input to re�nement transformations (action
(2) in Section 2.5.1.2). This option is followed by Mani et al. [MPW15],
Becker [Bec08], and L. Happe [Hap11].

266

6.4. Architectural Knowledge in Architectural Analyses

Configuration via transformation parameters. Transformations for re�ne-
ments may be parametrized arbitrarily. For example, the number of
replicas to be loadbalanced by a loadbalancer may directly be passed
to the transformation. Mark models (as discussed in the previous
option) are a special case of this option. Woodside et al. [WPS02]
describe the possibility of transformation parameters further.

The AT method follows the “con�guration via pro�les” option. As discussed
in Section 6.4.2.3, pro�les have the advantage of an easy integration into
existing editors without having to change the targeted ADL. Moreover,
pro�les do not require transformations to request additional inputs.

Variabilityofknowledge integration: configurationcontents The informa-
tion to con�gure re�nement transformations (via the techniques described
above) may be of di�erent kinds. Typical examples include the following:

Element types and attributes. The type and attributes of an element to
be re�ned determine the behavior of a re�nement transformation.
Verdickt et al. [VDGD05], Cortellessa et al. [CG02], J. Happe [Hap09],
and Rathfelder [Rat13] only follow this option. Cortellessa et al.
[CG02], J. Happe [Hap09], and Rathfelder [Rat13] particularly ex-
tend the targeted ADL with knowledge-speci�c types for receiving
the required information (see previous paragraph). Also the other
approaches utilize information about types and attributes but addi-
tionally support other options.

Dedicated configuration parameters. Parameters may be introduced with
the dedicated purpose of con�guring re�nement transformations.
Woodside et al.’s transformation parameters [WPS02] represent such
parameters.

Featuremodels. Feature models (cf. Appendix A) are a typical means to sys-
tematically structure and con�gure features. For example, a feature
model can allow to activate encryption and to select a required en-
cryption algorithm. Feature models are employed by Becker [Bec08]
and L. Happe [Hap11]. L. Happe’s approach [Hap11] particularly
allows to con�gure whole completion variants via an extended fea-
ture model, thus, giving software architects a high �exibility for
knowledge integration.

267

6. Related Work

Rolemodels. Reusable architectural knowledge typically uses the concept
of roles (cf. Section 2.2.4). Therefore, some approaches use models of
roles to parametrize bound elements. Petriu and Wang [PW00] use
UML Collaborations (cf. Section 6.2.6.1) and Mani et al. [MPW15]
the RBML (cf. Section 6.3.3) as role models.

Besides utilizing information of types and attributes, the AT method uses
role models because roles suit the domain of software architecture. In the
AT method, roles are bound via stereotypes to architectural elements. These
stereotypes provide bound elements with additional attributes (via tagged
values) that can be accessed by re�nement transformations.

The option to use feature models, e.g., referenced by stereotypes, may be
investigated in future work. To maintain the bene�t of an easy editor
integration, the employed pro�le framework should then optimally support
the con�guration of referenced feature models.

Manual vs. automatic knowledge application SASSY (Section 6.4.3) is the
only approach that applies reusable architectural knowledge automatically.
Automatic applications are useful for SASSY’s design space exploration—
its optimization algorithm applies reusable architectural knowledge as a
heuristic for the most promising design decisions. This heuristic restricts
the possible design space, thus, making the optimization more e�cient.

The other approaches—like the AT method—require software architects to
manually apply architectural knowledge. Here, software architects have
more control about which architectural knowledge to apply. An automatic
optimization of so-created models is, however, a reasonable and comple-
mentary addition to these approaches.

6.5. Feature Model Compiled from RelatedWorks

The previous sections reveal typical features to support reusable knowledge
in architectural analysis methods. I have compiled these features into the
feature model (cf. Appendix A) illustrated in Figure 6.6.

268

6.5. Feature Model Compiled from Related Works

reusable knowledge in
architectural analysis methods

application
mechanism

capturing
mechanism

selection
mechanism

Figure 6.6.: Features to support reusable knowledge in architectural analysis
methods.

In Figure 6.6, the features associated to the root feature represent the main
mechanisms to select, capture, and apply reusable architectural knowledge.
Each of these features references a more detailed feature model (as denoted
by the triangle symbol). This section describes and re�nes these feature
models for the selection mechanism (Section 6.5.1), capturing mechanism
(Section 6.5.2), and application mechanism (Section 6.5.3). The overall
feature model allows to systematically classify and discuss related works
and the AT method in subsequent sections (Section 6.6 and Section 6.7).

6.5.1. Features of Selection Mechanisms

Software architects use selection mechanisms for selecting knowledge
to be applied. Figure 6.7 illustrates the feature model for such mechanisms.
Software architects have three complementing selection options: manual,
question-based, and (semi-)automatic.

selection
mechanism

question-
basedmanual (semi-)

automatic

Figure 6.7.: Features of selection mechanisms for reusable architectural knowledge.

In a manual selection, software architects manually select the knowledge
from a catalog. Software architects can base their manual selection on their
experience, descriptions provided within the catalog, requirements in the

269

6. Related Work

form of usage models and SLOs, and previously gathered analysis results
(see the development process described in Section 2.5.1). Manual selec-
tion is the most simple and common mechanism among the investigated
methods.

In a question-based selection, the manual selection of software architects is
supported with a question-technique like in ADMD3 (Section 6.1.4). This
technique provides an additional means to validate the suitability of the
selection.

In a (semi-)automatic selection, an optimization algorithm automatically
selects the knowledge to be applied. The algorithm either lets software
architects con�rm whether the knowledge should indeed be applied (semi-
automatic variant) or directly applies the knowledge (fully automatic vari-
ant). SASSY (Section 6.4.3) applies the fully automatic variant.

6.5.2. Features of Capturing Mechanisms

Engineers use capturing mechanisms to formalize reusable architectural
knowledge. Figure 6.8 illustrates the feature model for such mechanisms.
The root feature (capturing mechanism) includes four mandatory features
(knowledge kind, capturing paradigm, captured decisions, and concrete
syntax) and four optional features (process, documentation, reuse mech-
anism, and quality assurance). In the following, each of these features is
described in a dedicated subsection.

6.5.2.1. Capturing Mechanism: Process

An approach may describe a process for using the capturing mechanism.
Such a description covers each action to be followed by engineers that
want to formalize reusable architectural knowledge. For example, the
PMF (Section 6.3.5) provides a dedicated process description but the RBML
(Section 6.3.3) provides only a description of its speci�cation language for
reusable architectural knowledge.

270

6.5. Feature Model Compiled from Related Works

capturing
mechanism

reuse
mechanismarbitrary

text

initiator
templateroles

types

decisions

behavioral

structural

knowledge
kind

architectural
style

architectural
pattern

reference
architecture

 infrastructure

constraints

heuristic

invariant

constraint
severity

constraint
kind

refinement

consistency
checks testing

inter-
constraint

refinements

concrete
syntax

textual

graphical

inheritance composition

substitution-
based

architectural
model

analysis
model

dimensions

stringing

overlapping

quality
assurance

design
pattern

general
transformation

formal synchroni-
zation support

completion
components

feature
models

configuration
technique

transformation
parameter

(meta)model
elements

captured
decisions

capturing
paradigm

transformation
target

mark
modelsprofiles

variability
support

configuration
contents

element types
and attributes

dedicated
parameters

role
models

selective
import

selective
export

documen-
tation

informal

hybrid

all-or-nothing

process

Figure 6.8.: Features of capturing mechanisms for reusable architectural knowledge.

271

6. Related Work

6.5.2.2. Capturing Mechanism: Knowledge Kind

As shown in Figure 6.8 (knowledge kind feature), reusable architectural
knowledge to be captured can be of di�erent kinds, i.e., targeting di�erent
levels of abstraction. An approach may support one or more kinds of
knowledge.

Section 2.2.4 describes architectural styles, architectural patterns, and
reference architectures as the focus of the AT method. These kinds de-
scribe high-level knowledge, especially important for software architects.
Knowledge about infrastructure is on a lower level of abstraction, which
is especially important for system deployers. Most approaches on com-
pletions focus on this kind of knowledge (cf. discussion in Section 6.4.4).
Similarly, design patterns are also on a lower level of abstraction but
especially important for component developers. For example, UML Collabo-
rations (Section 6.2.6.1) and several approaches from the pattern community
(Section 6.3) focus on design patterns.

6.5.2.3. Capturing Mechanism: Capturing Paradigm

Figure 6.8 (capturing paradigm feature) illustrates general paradigms to
capture knowledge. The investigated approaches either follow an all-or-
nothing approach or use decisions, types, or roles as �rst-class citizens for
capturing knowledge.

All-or-nothing approaches simply re�ne all elements of the architectural
model with knowledge-speci�c details (where feasible). Therefore, these
approaches need no dedicated constructs that can be applied to architectural
models.

Decision-based approaches have design decisions as �rst-class citizens.
Architectural knowledge is then captured as a set of such decisions; the
application of this set is a design decision on its own. Architectural models
can be inferred from the set of made decisions.

Type-based approaches create architectural elements via instances types
that are knowledge-speci�c. Here, �rst-class citizens of architectural models
are de�ned on a per-knowledge base.

272

6.5. Feature Model Compiled from Related Works

Role-based approaches bind roles to common elements of architectural
models, e.g., components and connectors. These roles cover design deci-
sions, e.g., about constraints and re�nements. The �rst-class citizens remain
the elements of architectural models. Optionally, role-based approaches
support the concept of dimensions, which ensures that cardinalities of
role assignments are consistent.

Only Verdickt et al. use the all-or-nothing approach (cf. discussion in
Section 6.4.4). Some approaches from the domain of knowledge manage-
ment, e.g., Archium (cf. Section 6.1.2), employ the decision-based approach.
The other approaches are either type- or role-based (cf. discussion in Sec-
tion 6.2.7). DPML is the only approach that additionally makes use of the
dimension concept (cf. Section 6.3.2).

6.5.2.4. Capturing Mechanism: Documentation

Knowledge may be informally documented in natural language (optional
documentation feature in Figure 6.8). Documentation is either based on
arbitrary text or on initiator templates.

In the arbitrary text variant, knowledge is captured via a generic documen-
tation in natural language. In the initiator template variant, knowledge
is captured via an initiator template covering typical attributes of reusable
knowledge as, e.g., listed in the POSA books (cf. Section 6.3.1). These
attributes are informally set via sentences in natural language.

6.5.2.5. Capturing Mechanism: Captured Decisions

At the bottom of Figure 6.8, the captured decisions feature illustrates
which design decisions are typically captured. The investigated approaches
cover decisions captured via formal constraints, informal text, and (semi-
)formal re�nements.

Design decisions captured via formal constraints Support to capture de-
sign decisions about constraints can be classi�ed along supported constraint
severities and constraint kinds:

273

6. Related Work

constraint severity. The constraint states whether software architects are
only warned about constraint violations (heuristic constraints) or
whether software architects receive an error (invariant constraints).

constraint kind. The constraint kind states whether a constraint restricts
structural or behavioral properties of an architectural model.

For each of the features, an approach may support one or both of the given
options to capture decisions about constraints. Section 6.2.7 discusses both
features in detail.

Design decisions captured via informal text Arbitrary decisions may be
informally captured via text formulated in natural language. Such decisions
are naturally part of an approach’s documentation mechanism as described
in Section 6.5.2.4.

Design decisions captured via (semi-)formal refinements A cpaturing ap-
proach can capture design decisions about the existence of elements via
re�nements; technically realized as model transformations. Regarding
such re�nements, the following features vary over the investigated ap-
proaches:

formal. A re�nement may be de�ned formally, e.g., via �rst-order predi-
cate logic. As discussed in Section 6.2.7, formal re�nements allow
for verifying the conceptual integrity of re�nements but are more
complex to specify.

variability support. A re�nement varies its output depending on its inputs,
thus, providing support for variability. Variability support comes
with a con�guration technique and con�guration contents.

The con�guration technique speci�es how a re�nement is con�g-
ured for integrating variations of reusable knowledge. There may
be a con�guration via metamodel elements, pro�les, mark mod-
els, and transformation parameters. These options are discussed in
Section 6.4.4.

The con�guration contents specify what information a re�nement
processes to produce varying output. A re�nement may process

274

6.5. Feature Model Compiled from Related Works

element types and attributes, dedicated parameters for variation,
feature models, and models of roles. These options are discussed in
Section 6.4.4 as well.

synchronization support. Information from re�nements can be used to
synchronize models related to the targeted architectural model, e.g.,
a previously generated analysis model. The synchronization updates
these models with the new elements created by the re�nement. Only
Mani et al. (Section 6.4.1.3) provide support for such a synchroniza-
tion mechanism.

transformation target. As discussed in Section 6.4.4, a re�nement’s trans-
formation can integrate knowledge on two di�erent levels of abstrac-
tion: either into analysis models or directly into architectural
models. The latter variant describes a transformation that realizes a
completion. If realized as completions, re�nements are independent
of transformations from architectural model to analysis models. This
independence fosters reuse of such transformations (cf. Section 6.4.4).

The investigated approaches use di�erent variants to implement
completions; support for multiple variants is also possible. UML
templates (Section 6.2.6.2) use a substitution-based variant as Sec-
tion 2.4.3.3 describes for bound templates in general. Becker’s com-
pletion components are a similar variant specialized to component-
based substitutions of connectors and containers (Section 6.4.2.3).
Other approaches that implement re�nements via completions use
general purpose transformation approaches, e.g., L. Happe uses
QVT-R (cf. Section 6.4.2.5).

6.5.2.6. Capturing Mechanism: Reuse Mechanism

The reuse mechanism feature shown in Figure 6.8 is an optional means
to capture knowledge by reusing previously captured knowledge. The
reused abstraction is a module [LR10] and is determined by the capturing
paradigm. For example, types and roles can represent such modules but
also the captured knowledge as a whole (e.g., a set of roles). As discussed in

275

6. Related Work

Section 6.2.7 and Section 6.3.6, the two major reuse techniques for modules
are inheritance and composition.11

Inheritance as a reusemechanism Inheritance is a reuse mechanisms in
which one or more modules are merged into a reusing module, which can
subsequently extend merged elements. Most approaches de�ne a module as
the captured knowledge as a whole. Therefore, a reusing module typically
inherits all roles (or types) of other modules.

Optionally, modules can be de�ned more �ne-granular, e.g., as a type or
role. SADL (Section 6.2.4), for instance, lets a type inherit all constraints and
re�nement speci�cations of another type. If de�ned on such a �ne-granular
level, modules to be merged can explicitly be selected (selective import)
and explicitly allowed for being merged (selective export).

Composition as a reuse mechanism Composition is a reuse mechanism
that puts reused modules into a larger composite module. COMLAN (Sec-
tion 6.3.4) illustrates two composition variants: stringing and overlap-
ping.

In the stringing variant, modules are related to each other via connec-
tors. These connectors de�ne module behavior as the interaction between
modules. Another example of the stringing variant is PMF’s composition
mechanism (cf. Section 6.3.5).

In the overlapping variant, reused modules are nested within the reusing
module, which allows to create module hierarchies. Reusing modules can
delegate to nested modules for de�ning (parts of) their behavior. Another
example (besides COMLAN) of the overlapping variant are POSA’s pattern
compounds (cf. Section 6.3.1).

11 Alternatively, “inheritance” may be rephrased as composition by extension and “composi-
tion” as composition by connection and containment [LR10]. The sub features of the latter
then correspond to composition by connection (stringing) and composition by containment
(overlapping). I have refrained from this alternative because the investigated approaches
follow the here presented terminology.

276

6.5. Feature Model Compiled from Related Works

6.5.2.7. Capturing Mechanism: Quality Assurance

Optionally, a capturing mechanism provides dedicated means for assuring
the quality of the captured knowledge (quality assurance feature in Fig-
ure 6.8). The main quality property targeted is the conceptual integrity of
the captured knowledge, i.e., whether the knowledge is consistently cap-
tured (cf. De�nition 2.14 in Section 2.2.4). Consistency checks and testing
are the two concrete quality assurance techniques that have been discussed
in Section 6.2.7.

Consistency checks Consistency checks formally proof whether knowl-
edge is captured consistently. These checks can target the consistency
between constraints and of re�nements.

Checking inter-constraint consistency proves that constraints do not
contradict each other. Checking re�nement consistency proves that a
re�nement from an abstract model to a re�ned model is correct. That is,
the re�ned model satis�es the abstract model’s constraints exactly as the
abstract model itself.

The bene�t of these consistency checks is that they are able to formally
verify consistency properties. Their downside is that they require formally
captured decisions (cf. Section 6.5.2.5) and often require conducting proofs
manually (cf. Section 6.2.4). Therefore, such consistency checks are often
complex and e�ort-intensive.

Testing In testing, conceptual integrity is not veri�ed but checked against
representative examples. Testing is therefore a complementary but more
lightweight approach to formal consistency checks.

Section 2.3.3 provides a general description of testing. The AT method
integrates testing as described in Section 4.1.3.3.

6.5.2.8. Capturing Mechanism: Concrete Syntax

Section 6.2.7 discusses concrete syntaxes for capturing reusable architec-
tural knowledge. At least one concrete syntax is needed but using several

277

6. Related Work

concrete syntaxes is possible as well. Moreover, a concrete syntax can
be textual (e.g., like in Acme), graphical (e.g., like in UML), or a hybrid
combination of textual and graphical syntax.

6.5.3. Features of Application Mechanisms

Software architects use applicationmechanisms to apply previously cap-
tured reusable architectural knowledge to architectural models. Figure 6.9
illustrates the feature model for such mechanisms. The root feature (appli-
cation mechanism) includes one mandatory feature (application paradigm)
and �ve optional features (element integration, architectural model, analy-
sis support, concrete syntax, and initialization support). In the following,
each of these features is described in a dedicated subsection.

application
paradigm

instantiation

binding

decision

architectural
model

image

source-code

ADL QoS
analysis

qualitative quantitative

conformance
checks

analysis
support

concrete
syntax

hybrid

textual

external

internal

initialization
support

knowledge-
specific view

heavyweight lightweight annotation

knowledge
detection

optimization

explicit implicit

application
mechanism

element
integration

syntax
integration

syntax
kind

graphicalfor or during
analyses

Figure 6.9.: Features of application mechanisms for reusable knowledge.

278

6.5. Feature Model Compiled from Related Works

6.5.3.1. Application Mechanism: Element Integration

When knowledge with formally captured re�nements is applied, elements
induced by the knowledge’s existence decisions need to be integrated
into the targeted architectural model (element integration feature in
Figure 6.9). There are two integration variants: explicit and implicit.

In the case of an explicit element integration, induced elements are inte-
grated at the time of knowledge application. In the case of an implicit
element integration, induced elements are integrated at the time of architec-
tural analysis start. The implicit variant is useful to keep the architectural
model compact and suitable if induced elements do not have to be manually
altered. Section 6.4.4 discusses the two variants in detail.

6.5.3.2. Application Mechanism: Application Paradigm

The application paradigm feature in Figure 6.9 determines the general
paradigm with which architectural knowledge is formally applied. The
application paradigm is directly in�uenced by the capturing paradigm
(Section 6.5.2.3).

If an all-or-nothing approach is used, knowledge is automatically applied
for or during analyses. If a type-based approach is used, knowledge is
applied by instantiation. If a decision-based approach is used, knowledge
is applied by a dedicated “knowledge application” decision (cf. discussion in
Section 6.1.2). If a role-based approach is used, knowledge is applied by the
speci�cation of a binding between roles and architectural elements. Only
Verdickt et al. follow an all-or-nothing approach as discussed in Section 6.4.4.
Type- and role-based approaches are discussed in Section 6.2.7 and the only
fragment-based approach (Archium) is discussed in Section 6.1.2.

Approaches that follow the binding-based application paradigm have dif-
ferent options to enable bindings between elements of an architectural
model and roles. Either the architectural model’s metamodel is extended in
a heavyweight or lightweight manner, or an external annotation pro-
vides the binding information. These options are described and discussed
in Section 4.2.4.1.

279

6. Related Work

6.5.3.3. Application Mechanism: Architectural Model

Figure 6.9 shows three representation options of an architectural model
to which knowledge is applied: as image, in source-code, and via an ADL
instance.

In the simplest option, only an informal image represents the architectural
model. An application mechanisms may document architectural models
before and after knowledge applications via such images. Another option is
to use source-code to represent the architectural model, e.g., by introduc-
ing dedicated annotations for architectural elements and design decisions
like the application of architectural knowledge. The third option is to spec-
ify an architectural model via an ADL. Knowledge applications can then
be integrated via the various application paradigms (cf. Section 6.5.3.2).
Section 6.1.5 discusses each option in detail.

6.5.3.4. Application Mechanism: Analysis Support

The investigated approaches vary in their support for knowledge-based
analyses—ranging from conformance checks over knowledge detection to
QoS analyses. The OR-feature-group in Figure 6.9 shows that supporting
multiple of such analyses is possible.

Some approaches can check previously captured (structural and behav-
ioral) constraints, thus, realizing conformance checks. These checks are
described and discussed in Section 6.2.7 for approaches on ADLs and in
Section 6.3.6 for the pattern community.

A knowledge detection of previously captured knowledge within a tar-
geted architectural model is another kind of analysis. For example, PMF
(Section 6.3.5) provides a pattern detection mechanism. Knowledge detec-
tion is discussed in Section 6.3.6.

Several of the investigated approaches provide means to conduct a QoS
analysis. Approaches may provide means to conduct qualitative QoS
analyses like SAAM [KBWA94] and ATAM [KBK+99] only (see introduction
of Section 6.4). However, the focus of this work are quantitative QoS
analyses as investigated throughout Section 6.4. Section 6.4.4 additionally

280

6.5. Feature Model Compiled from Related Works

discusses the option to use results from QoS analyses as feedback to an
optimization as applied by SASSY (Section 6.4.3).

6.5.3.5. Application Mechanism: Concrete Syntax

Analogously to the capturing mechanism, the application mechanism can
have one or more concrete syntaxes as shown in Figure 6.9. An approach
may lack such a concrete syntax if no application mechanism is supported,
e.g., PAKME (Section 6.1.3), or if an approach’s re�nements only integrate
elements explicitly, e.g., Verdickt et al. (Section 6.4.2.2) and SASSY (Sec-
tion 6.4.3). Approaches with concrete syntax vary in syntax kind, syntax
integration, and in support for knowledge-speci�c views.

The syntax kind feature states whether a textual, graphical, or hybrid
kind of syntax is supported; support for multiple of these options is also
possible. For example, Acme (Section 6.2.1) provides both a textual and
a graphical syntax for knowledge application. The syntax integration
feature states whether integrated syntaxes are internal, external, or both.
For example, most type-based approaches like Acme (Section 6.2.1) provide
an internal syntax integration for visualizing knowledge applications di-
rectly in architectural model views. Becker (Section 6.4.2.3) instead provides
an external integration by referencing architectural models externally from
feature models. Section 6.2.7 discusses these features of concrete syntaxes
for applying reusable architectural knowledge.

An application mechanism can optionally provide a concrete syntax for
a knowledge-speci�c view. Then, a view for the targeted architectural
model can be created that only shows elements related to the applied
knowledge. COMLAN (Section 6.3.4) exempli�es this optional feature.

6.5.3.6. Application Mechanism: Initialization Support

Optionally, an architectural model can be initialized based on previously
captured knowledge (initialization support feature in Figure 6.9). Techni-
cally, this feature can be realized as an initiator template (cf. Section 2.4.3.1).
Default instances of Acme (Section 6.2.1) and ATs (Section 4.2.5.3) provide
such initiator templates.

281

6. Related Work

6.6. Classification of RelatedWorks

The feature model introduced in Section 6.5 allows to systematically clas-
sify the support for reusable knowledge in architectural analysis methods.
Table 6.1 provides this classi�cation for the AT method and the related work
investigated from Section 6.1 to Section 6.4. In the following, this classi�ca-
tion is described. Subsequently, Section 6.7 discusses this classi�cation to
provide a summary of this chapter.

In Table 6.1, the �rst column gives a representative name of an investigated
work. The second column points to the section in which a work is inves-
tigated (i.e., described and discussed). The remaining columns denote the
leaf features of the feature model.

For each leaf feature, the header of Table 6.1 provides a representative
name of the feature (vertical text). The parent features of these leaf fea-
tures are given above; a horizontal line groups all child features of a parent
feature. For example, the capturing mechanism (described in Section 6.5.2)
includes eight child features—process, knowledge kind, capturing paradigm,
documentation, captured decisions, reuse mechanism, quality assurance,
and concrete syntax—and, e.g., the knowledge kind feature (described in
Section 6.5.2.2) contains �ve child features on its own—architectural style,
architectural pattern, reference architecture, infrastructure, and design pat-
tern. The header of Table 6.1 follows this hierarchical structure consistently
with the feature model of Section 6.5.

The rows below the header point to the investigated works. Horizontal lines
separate the investigated domains and the AT method from each other:

• The architectural knowledge management domain (Section 6.1) pro-
vides the approaches ADDS, Archium, PAKE, and ADMD3.

• The ADL domain (Section 6.2) provides Acme, Aesop, Rapide, SADL,
Wright, and UML.

• The pattern domain (Section 6.3) provides POSA, DPML, RBML,
COMLAN, and PMF.

• The architectural analysis domain (Section 6.4) provides the works
of Petriu and Wang, Cortellessa et al., Mani et al., Woodside et al.,

282

6.6.
Classi�cation

ofRelated
W

orks

Table 6.1.:Classi�cation of related works based on derived feature model
sel. m. capturing mechanism application mechanism

knowledge capturing reuse quality concrete elem. application arch. analysis concrete
kind paradigm doc. captured decisions mechanism assur. syntax int. paradigm model support syntax

Name Sec. m
an

ua
l

qu
es

tio
n-

b.
au

to
m

at
ic

pr
oc

es
s

ar
ch

.s
ty

le
ar

ch
.p

at
te

rn
re

f.
ar

ch
.

in
fra

st
ru

ct
ur

e
de

sig
n

pa
tte

rn
al

l-o
r-

no
th

in
g

de
ci

sio
ns

ty
pe

s
ro

le
s

di
m

en
sio

ns
ar

bi
tr.

te
xt

in
it.

te
m

p.
he

ur
ist

ic
in

va
ria

nt
st

ru
ct

ur
al

be
ha

vi
or

al
in

fo
rm

al
fo

rm
al

(m
)m

.e
le

m
.

pr
o�

le
s

m
ar

k
m

od
el

tra
ns

.p
ar

am
.

ty
pe

s&
at

tr.
de

di
c.

pa
ra

m
.

fe
at

ur
e

m
od

.
ro

le
m

od
.

sy
nc

.s
up

.
an

a.
m

od
el

ar
ch

.m
od

el
in

he
rit

an
ce

se
l.

im
p.

se
l.

ex
p.

st
rin

gi
ng

ov
er

la
pp

in
g

in
te

r-
co

ns
tr.

re
�n

em
en

t
te

st
in

g
te

xt
ua

l
gr

ap
hi

ca
l

hy
br

id
ex

pl
ic

it
im

pl
ic

it
fo

r/
du

r.
an

a.
in

st
an

tia
tio

n
de

ci
sio

n
he

av
yw

ei
gh

t
lig

ht
w

ei
gh

t
an

no
ta

tio
n

im
ag

e
so

ur
ce

-c
od

e
A

D
L

co
nf

.c
he

ck
s

kn
ow

l.
de

t.
Q

oS
an

al
ys

is
op

tim
iz

at
io

n
te

xt
ua

l
gr

ap
hi

ca
l

hy
br

id
in

te
rn

al
ex

te
rn

al
kn

ow
l.-

sp
.v

.
in

it.
su

p.

ADDSS 6.1.1 X - - - X X - - - - X - - - X - - - - - X - X - - - - X - - - X - - - - - - - - X - X - -
Archium 6.1.2 X - - - X X X X X - X - - - - X - - - - X - X - - - - X - - - - X - - - - - X - - X - - -
PAKME 6.1.3 X - - X - X - - - - X - - - - X - - - - X - X -
ADMD3 6.1.4 - X - X - X - - - - - - X - - X - - - - X - X - - - - - - - X - - X - - - - - X - X - - -

Acme 6.2.1 X - - X X - - - - - - X - - X - X X X - - - - - - - - - - - - - - X - - - - X - - X - - - - - X - - - - - - X X - - - X X - X - - X
Aesop 6.2.2 X - - - X - - - - - - X - - - - - X X - - - - - - - - - - - - - - X - - - - - - - X - - - - - X - - - - - - X X - - - X X - X - - -
Rapide 6.2.3 X - - - X - - - - - - X - - - - - X - X - X - - - - - X - - - - - - X X - - - X - - X - - -
SADL 6.2.4 X - - - X - - - - - - X - - - - - X X - - X - - - - X - - - - - X X X X - - - X - X - - - X - X - - - - - - X X - - - X - - X - - -
Wright 6.2.5 X - - - X - - - - - - X - - - - - X X X - - - - - - - - - - - - - X - - - - - - - X - - - - - X - - - - - - X X - - - X - - X - - -
UML 6.2.6 X - - - - - - - X - - - X - X - - - - - X - - - - - - - - - - - - X - - - - - - - - X - - - - - - X - - - - X - - - - - X - X - - -

POSA 6.3.1 X - - - - X - - - - - - X - - X - - - - X - - - - - - - - - - - - - - - - X - - - - X - - - - - - X - - - - X - - - - - X - X - - -
DPML 6.3.2 X - - - - - - - X - - - X X - - - X X - X - - - - - - - - X - - X X - - - - X - - X - -
RBML 6.3.3 X - - - - - - - X - - - X - - - - X X - - - - - - - - - - - - - - X - - - - - - - - X - - - - - - - - X - - X X - - - - X - - X - -
COMLAN 6.3.4 X - - - - X - - - - - - X - - - - X X - - - - - - - - - - - - - - - - - X X - - - - X - - - - - - - - X - - X X - - - - X - X - X -
PMF 6.3.5 X - - X - X - - X - - - X - - - - X X - - - - - - - - - - - - - - X - - X - - - - - X - - - - - - - - - - - X - X - - - X - X - - -

Petriu & W. 6.4.1.1 X - - - X - - - - - - X - - - - - - - - - - X - - - X - - X - X - - - - - - - - - - X - - X - X - - - - - - X - - X - - X - - X - -
Cortellessa 6.4.1.2 X - - - X - - - - - - X - - - - - - - - - - X - - - X - - - - X - - - - - - - - - X - - - X - X - - - - - - X - - X - X - - X - - -
Mani 6.4.1.3 X - - X - X - - - - - - X - - - - - - - - - - - X - X - - X X X - - - - - - - - - - X - - X - - - - - X - - X - - X - - X - - X - -
Woodside 6.4.2.1 X - - - - X - X - - - - X - - - - - - - - - - X - X X X - - - - X - - - - - - - - X - - - X - - - - X - - - X - - X - - X - X - - -
Verdickt 6.4.2.2 X - - - - - - X - X - - - - - - - - - - - - - - - - X - - - - - X - - - - - - - - X - - X - X - - - - - - - X - - X - - - - - - - -
Becker 6.4.2.3 X - - - - - - X - - - - X - - - - - - - - - - - X - X - X - - - X - - - - - - - - - X - - X - - - - - X - - X - - X - - X - - X - -
J. Happe 6.4.2.4 X - - - - - - X - - - X - - - - - - - - - - X - - - X - - - - - X - - - - - - - - X - - - X - X - - - - - - X - - X - - X - X - - -
L. Happe 6.4.2.5 X - - - - X - X - - - - X - - - - - - - - - - - X - X - X - - - X - - - - - - - - - X - - X - - - - - X - - X - - X - - X - - X - -
Rathfelder 6.4.2.6 X - - - - X - - - - - X - - - - - X X - - - X - - - X - - - - - X - - - - - - - - X - - - X - X - - - - - - X - - X - - X - X - - -
SASSY 6.4.3 - - X - - X - - - - - - X - - - - - - - - - - - - - X - - - - - X - - - - - - - - X - - X - X - - - - - - - X - - X X - - - - - - -

AT method 4 X - - X X X X - - - - - X - X - X X X - - - - X - - X - - X - - X X X - - - - - X - X - - X - - - - X - - - X X - X - - X - X - - X283

6. Related Work

Verdickt et al., Becker, J. Happe, L. Happe, Rathfelder, and Menascé
et al. (on SASSY).

• The AT method (Chapter 4) is classi�ed in the last row.

An “X” in Table 6.1 marks a feature supported by an approach; a “-” denotes
an unsupported feature. For example, the �rst row below the header of
Table 6.1 provides the classi�cation of ADDSS, which Section 6.1.1 describes
in detail. As denoted in Table 6.1, ADDSS’ selection mechanism is manual.
ADDSS’ capturing mechanism covers the knowledge kinds architectural
style and architectural pattern, follows a capturing paradigm based on in-
formal decisions, supports documentation with arbitrary text, and provides
a concrete syntax that is hybrid. ADDSS’ application mechanism follows an
application paradigm based on decisions, relates to an architectural model
represented as image, and provides a concrete syntax that is hybrid and
external. ADDSS provides no further features, e.g., does not provide a
question-based selection mechanism.

6.7. Discussion of RelatedWorks

The classi�cation of related works in Section 6.6 re�ects the discussions
for the domains of architectural knowledge management (Section 6.1.5),
ADLs (Section 6.2.7), patterns (Section 6.3.6), and architectural analyses (Sec-
tion 6.4.4). To summarize—and as evident from Table 6.1—the investigated
domains each have a di�erent focus:

Informal documentation. In the architectural knowledge management do-
main, the focus is on the informal but systematic documentation of
reusable architectural knowledge.

Conformance checks to architectural styles. The ADL domain has a focus
on type-based formalizations of architectural styles. Formalizations
allow to check whether architectural models conform to these styles.

Conformance checks to (architectural) patterns. The pattern domain has a
focus on role-based formalizations of (architectural) patterns. For-
malizations allow to check whether architectural models conform to
these patterns.

284

6.7. Discussion of Related Works

QoS analysis. In the architectural analysis domain, the focus is on integrat-
ing knowledge into architectural models (or directly into analysis
models) for quantifying QoS properties via architectural analyses.

The AT method is unique in that it combines these key features. That is,
the AT method provides features to capture reusable architectural knowl-
edge both informally and formally. Informally captured knowledge serves
for documentation purposes, e.g., allowing software architects to select
ATs without having to dive into their technical implementation. Formally
captured knowledge serves for conducting conformance checks and QoS
analyses, e.g., allowing software architects to consistently apply reusable
architectural knowledge while being enabled to quantitatively analyze the
impact of the applied knowledge on QoS properties.

In the following, the features of the AT method are brie�y summarized and
discussed at a more detailed level. The summary and discussion follows
the features of Table 6.1 from the left to the right and highlights potential
future works.

Selection mechanism Like most other approaches, the AT method fol-
lows a manual selection approach for captured knowledge. A potential
future work is to complement the AT method’s selection mechanism with
question-based and (semi-)automatic selection techniques (cf. discussion in
Section 6.1.5).

Capturing mechanism: process PAKME (Section 6.1.3), ADMD3 (Sec-
tion 6.1.4), Acme (Section 6.2.1), PMF (Section 6.3.5), Mani et al. (Sec-
tion 6.4.1.3), and the AT method provide process descriptions for capturing
reusable architectural knowledge. The other approaches lack dedicated pro-
cess descriptions, which potentially leads to incomplete and inconsistently
captured knowledge (cf. [Dur16, p. 100]).

Capturing mechanism: knowledge kind The AT method has a focus on
reusable architectural knowledge on the application level, i.e., on archi-
tectural styles, architectural patterns, and reference architectures. This
focus has allowed to integrate ideas from the ADL and pattern domains into
the AT method, e.g., conformance checks. In contrast, several approaches

285

6. Related Work

from the domain of architectural analyses focus on the infrastructure level
and, thus, do not integrate ideas from the ADL and pattern domains. For
example, no approach from the architectural analysis domain also features
conformance checks.

Capturingmechanism: capturingparadigm The AT method follows a role-
based approach for capturing knowledge because of its �exibility. Sec-
tion 6.2.7 and Section 6.4.4 discuss advantages and disadvantages of this
approach in detail.

Capturing mechanism: documentation In contrast to most approaches,
the AT methods acknowledges the need for informal documentation: ATs
have a dedicated documentation attribute (cf. Section 4.2.5.3). While this
attribute can contain arbitrary text, the documentation of ATs created for
this thesis refers to a Wiki [Clob] that documents the capture knowledge
according to POSA’s initiator template. A potential future work is an
empirical comparison of the current version of ATs (i.e., with arbitrary text)
and a modi�ed version where the documentation of ATs has to strictly
follow POSA’s initiator template. Section 6.1.5 discusses documentation
aspects in more detail.

Capturingmechanism: captured decisions Unlike most other approaches,
ATs can capture both constraints and re�nements. ATs support heuristic
and invariant structural constraints. Support for behavioral constraints like
in Rapide and SADL is left as future work.

An AT’s re�nements can be con�gured via pro�les and utilize information
from element types, element attributes, and AT roles. AT re�nements are
implemented as completions, i.e., as transformations targeting the archi-
tectural model level instead of the analysis model level. As discussed in
Section 6.4.4, the bene�t of this approach is that subsequent transforma-
tions from architectural to analysis models can completely be reused. A
potential future work is a more formal treatment of re�nements like illus-
trated in SADL (Section 6.2.4). As discussed in Section 6.2.7, the bene�t of
such a formal treatment is the veri�cation of the conceptual integrity of
re�nements.

286

6.7. Discussion of Related Works

Capturingmechanism: reusemechanism AT roles can selectively inherit
decisions (in the form of constraints and completions) from other AT roles
as discussed in Section 6.2.7. This reuse mechanism lowers the e�ort for AT
engineers to specify ATs that share decisions with already speci�ed ATs. The
AT method’s reuse mechanism is inspired by existing reuse mechanisms
from the ADL and pattern domains, e.g., by Acme’s (Section 6.2.1) and
SADL’s (Section 6.2.4) reuse mechanisms. In the domain of architectural
analyses, no other approach provides such a reuse mechanism.

Capturingmechanism: quality assurance For the quality assurance of cap-
tured knowledge, Acme (Section 6.2.1) provides formal consistency checks
between captured constraints and SADL (Section 6.2.4) provides consis-
tency checks for re�nements. All other approaches lack dedicated quality
assurance features for their capturing mechanism.

The AT method employs testing as a quality assurance technique; a unique
feature over all investigated approaches. As discussed in the section about
SADL (Section 6.2.4), testing is more practical than more formal approaches.
Still, extending ATs with consistency checks between constraints (like in
Acme) and re�nements (like in SADL) is a reasonable prospect for future
works.

Capturingmechanism: concrete syntax For capturing knowledge, the AT
language introduces a graphical concrete syntax (Section 4.2.5). This syn-
tax is inspired by graphical syntaxes in related works, e.g., by the UML’s
graphical syntax (cf. Section 6.2.6).

As Table 6.1 shows, several approaches provide a textual concrete syntax for
capturing knowledge. Future works may extend the AT language with such
a textual syntax and inspect whether AT engineers can use it e�ectively
and e�ciently.

Applicationmechanism: element integration Naturally, only approaches
that capture re�nements (e.g., via completions) provide the element in-
tegration feature. The AT method integrates elements captured via AT
completions implicitly, i.e., at the time an architectural analysis is started.
As discussed in Section 6.4.4, an implicit integration is especially useful to

287

6. Related Work

keep architectural models focused on business components, without explic-
itly weaving knowledge-induced elements into the model that potentially
obscure the view on business logic.

Most approaches follow the implicit variant; only Verdickt et al. (Sec-
tion 6.4.2.2) and SASSY (Section 6.4.3) integrate elements explicitly, i.e.,
at the time of knowledge application. Verdickt et al.’s all-or-nothing ap-
proach hinders software architects in marking knowledge applications at
architectural elements, which induces the need of an explicit element inte-
gration. Moreover, SASSY’s optimization algorithm would not bene�t from
the implicit variant as SASSY’s optimization already operates at analysis
time.

Application mechanism: application paradigm Only the AT method and
Woodside et al. (Section 6.4.2.1) follow a binding-based application paradigm
that is lightweight (i.e., based on pro�les). As discussed in Section 4.2.4.1,
the main bene�t of this approach is that it easily allows to extend existing
architectural analysis methods like Palladio.

Application mechanism: architectural model The AT method (as most
other approaches) represents architectural models in terms of a dedicated
ADL. ADDSS and Archium are the only approaches that provide alterna-
tives.

ADDSS (Section 6.1.1) illustrates the use of normal images as a representa-
tion of architectural models. Such a feature may complement the documen-
tation of ATs.

Archium (Section 6.1.2) annotates architectural elements and involved de-
sign decisions directly to source-code. As discussed in Section 6.1.2, such
an approach may complement the AT method in actions following the
architectural analysis action.

Application mechanism: analysis support As discussed in the introduc-
tion of this section, a unique key feature of the AT method is that it com-
bines conformance checks (of the ADL and pattern domains) with QoS
analyses (of the architectural analysis domain). Table 6.1 clearly illustrates

288

6.7. Discussion of Related Works

this di�erence at the columns associated to the “analysis support” feature.
As the evaluation of the AT method indicates, this combination makes
software architects more e�ective and e�cient in conducting architectural
analyses.

Table 6.1 particularly points to future work opportunities. First, knowledge
detection mechanisms like in PMF (Section 6.3.5) may be combined with
ATs as discussed in Section 6.3.6. Second, knowledge-based optimization
techniques like in SASSY (Section 6.4.3) may be applied to the AT method
as discussed in Section 6.4.4.

Application mechanism: concrete syntax The AT language describes a
graphical and internal concrete syntax for applying ATs (Section 4.2.5).
Similar to the concrete syntax for capturing architectural knowledge, this
syntax is inspired by graphical syntaxes in related works, e.g., by the UML’s
graphical syntax (cf. Section 6.2.6).

The suitability of this syntax depends on the targeted ADL. For example,
the PCM de�nes a graphical syntax that suits the graphical concrete syntax
of AT applications, thus, allowing for an internal integration into PCM
model editors.

An extension with a textual syntax for AT applications is left as a future
work. Table 6.1 provides several related works that can be used as an
inspiration for such a textual syntax, e.g., most approaches from the ADL
domain provide a textual syntax. Supporting knowledge-speci�c views like
COMLAN (Section 6.3.4) is also left as future work.

Application mechanism: initialization support Only the AT method and
Acme (Section 6.2.1) provide an initialization support for architectural
models. This initialization support is realized via initiator templates (cf. Sec-
tion 2.4.3.1) for architectural models. These initiator templates provide
software architects a starting point for creating similar architectural mod-
els.

289

“Knowledge of what is possible is the
beginning of happiness.”

— George Santayana 1863 – 1952

7. Conclusion

When constructing architectural models suited for architectural analyses,
software architects previously had to conduct all or some steps for ap-
plying reusable architectural knowledge manually. The high e�orts for
software architects caused by this manual approach have motivated this
PhD thesis.

The thesis introduces the Architectural Template (AT) method as a means to
lower manual e�orts in scenarios where reusable architectural knowledge
can be applied. As the evaluation of the AT method shows, the AT method
achieves this goal, thus, making software architects more e�ective and
e�cient. Moreover, the evaluation has revealed some limitations and future
work opportunities.

This chapter summarizes and discusses these results. Section 7.1 provides a
summary, Section 7.2 a discussion of assumptions and identi�ed limitations,
and Section 7.3 a list of future work directions.

7.1. Summary

The novel contributions of this thesis are the AT method, its evaluation,
and two AT method extensions (a reuse mechanism and an optimization
mechanism). Moreover, the thesis provides a novel classi�cation schema
for combining reusable architectural knowledge with architectural anal-
yses of QoS properties, evaluated by a classi�cation of related works of
the AT method. In the following, each of these novel contributions is
summarized.

291

7. Conclusion

7.1.1. Summary: The AT Method

The AT method is a software engineering method to make approaches for
architectural analyses of QoS properties more e�ective and e�cient. For
achieving this goal, AT engineers �rst have to capture reusable architectural
knowledge (e.g., architectural styles, architectural patterns, and reference ar-
chitectures) in reusable templates—so-called Architectural Templates (ATs).
Afterwards, software architects can apply these ATs to initialize and extend
architectural models. The two main advantages of this application are that
ATs (1) maintain conformance to the captured knowledge by construction
and via automated constraint checks and (2) architectural elements cap-
tured in the template can automatically be included via completions, i.e., an
automatic weaving of such elements into the targeted architectural model.
These advantages promise to increase e�ectivity and e�ciency with which
software architects model and analyze architectural models, especially if
complex architectural knowledge is captured. For example, reference ar-
chitectures can cover multiple detailed but relevant factors for accurate
architectural analyses—ATs can capture and hide such factors from software
architects and only expose application-speci�c variation points that require
decision making by software architects.

The AT method is structured into three means: AT processes, AT language,
and AT tooling:

(1) AT processes guide software architects and AT engineers in following
the AT method.

So�ware architects select and apply ATs during the creation of ar-
chitectural models; the integration of AT-induced elements for
conducting accurate architectural analyses is automated.

For creating architectural models, software architects commonly se-
lect and apply reusable architectural knowledge—this holds already
for preexisting methods (cf. Section 2.5.1). However, in contrast to
preexisting methods (that require a manual knowledge application),
the AT method enables a formal application of knowledge captured
within ATs. Software architects only have to select suitable ATs
from a pre-speci�ed AT catalog and bind each selected AT to their
architectural model, thus, following the concept of bound templates.

292

7.1. Summary

This approach has been illustrated for architectural styles and ar-
chitectural patterns. Additionally, ATs can be used to create a new
architectural model from scratch based on a pre-speci�ed model
blueprint, thus, following the concept of initiator templates. This
approach has been illustrated for reference architectures.

Subsequent modi�cations of AT-enabled architectural models are
checked against formal constraints contained in bound ATs. These
checks maintain the conceptual integrity (i.e., the conformance) to
the captured reusable architectural knowledge.

For conducting architectural analyses, software architects trans-
form their architectural models to QoS analysis models—just as
in preexisting approaches. However, during this transformation,
AT-induced elements are integrated. Based on the information
available in ATs, this integration can be automated as shown in AT
tooling.

In case software architects require new ATs, they request suitable
ATs from AT engineers by specifying targeted domains, QoS proper-
ties, analysis approaches, and/or concrete architectural knowledge
to be captured. Such requests then trigger the process for AT engi-
neers.

AT engineers specify ATs based on requests by software architects
and in cooperation with AT testers for quality assurance. The
resulting ATs are eventually provided to software architects via AT
catalogs.

Before specifying ATs, AT engineers identify the QoS properties
and corresponding architectural analysis approaches for which ATs
need to be speci�ed. The request by software architects de�nes
the prevailing constraints for this identi�cation. Similarly, AT engi-
neers select and understand the concrete architectural knowledge to
be speci�ed based on the request and existing sources for reusable
architectural knowledge, e.g., books on software architecture.

While sources for reusable architectural knowledge typically cap-
ture knowledge informally, the goal for AT engineers is to inter-
pret and formally capture this knowledge within ATs suited for
architectural analyses. Therefore, AT engineers next specify ATs;

293

7. Conclusion

consisting of parametrizable roles (for de�ning variation points),
constraints, and completions. The AT language speci�es syntax
and semantics of these elements, thus, providing AT engineers with
the formalisms to specify ATs.

For all kinds of investigated architectural knowledge, the concept of
roles has been important to assign responsibilities to elements of ar-
chitectural models. However, depending on the kind of knowledge
to be captured, AT engineers proceed di�erently in specifying roles
of ATs. For architectural styles, roles globally prescribe the types
of architectural elements within an architectural model. To specify
these types, AT engineers focus on formally capturing design de-
cisions about design constraints (via AT constraints) within roles.
For architectural patterns, roles prescribe re�nements of individual
elements within an architectural model. To specify these re�ne-
ments, AT engineers focus on formally capturing design decisions
about the existence of elements (via AT completions) within roles.
For reference architectures, roles expose planned variation points
within a blueprint architectural model. The blueprint particularly
includes a domain-speci�c architectural style and architectural pat-
terns. To specify this blueprint, AT engineers focus on creating a
reference architectural model that is then captured as an initiator
template (via an AT default instance). Such ATs can expose planned
variation points via AT roles. Moreover, such ATs can include ap-
plied architectural styles and architectural patterns (formalized via
dedicated AT roles) coming as part of the reference architecture.

Finally, AT engineers trigger AT testers for assuring the quality for
the speci�ed ATs. Quality assurance is important because of two
main reasons. First, AT engineers may misinterpret the reusable
architectural knowledge to be captured, thus, external parties (e.g.,
AT testers and software architects) need to assess whether ATs
meet the expected behavior. Second, AT engineers may introduce
faults in AT roles, e.g., in constraints and completions, which vio-
late the conceptual integrity to the captured reusable architectural
knowledge.

The introduced quality assurance process for AT testers is inspired
by existing processes for testing model transformations, given the

294

7.1. Summary

similarity of AT constraints and AT completions to transforma-
tion contracts and transformation speci�cations. Accordingly, AT
testers proceed by specifying test goals and adequacy criteria, cre-
ating and assessing a test suite, building oracle functions, executing
the test suite, and evaluating test results. The outcome of this
process is a report of identi�ed faults.

AT engineers resolve identi�ed faults in cooperation with AT testers
and software architects. A set of typical root-causes helps AT
engineers in �nding and resolving the causes for faults e�ciently.
Once all faults are resolved, AT engineers �nally expose quality-
assured ATs in AT catalogs to be used by software architects.

(2) The AT language speci�es syntax and semantics of ATs and their applica-
tion to architectural models. For these capabilities, the AT language
introduces a type-instance relationship between ATs and AT in-
stances matching the introduced AT processes. While AT engineers
specify ATs, software architects specify AT instances to express the
application of ATs to architectural models.

ATs are collected in AT catalogs, which allow AT engineers to provide
ATs to software architects. The constituents of an AT are its roles, a
documentation, and an optional default AT instance. AT roles can
include formal parameters (specifying variation points), constraints
(expressing restrictions on elements playing the role), and a comple-
tion (re�ning elements playing the role). A completion particularly
de�nes role semantics in a translational way. An AT’s documentation
provides a natural language description of the captured architectural
knowledge. The optional default AT instance de�nes an initiator
template for an AT-based initialization of architectural models.

AT instances describe the application of corresponding ATs to archi-
tectural models via bindings. To bind an AT, each of an AT’s roles
has to be linked to appropriate architectural elements. If an AT role
includes formal parameters, actual parameters have to be provided
along with the binding.

Technically, the AT language employs pro�les and pro�le applica-
tions to realize ATs and AT instances. Each AT contains a pro�le
that extends the metamodel of the targeted architectural model in

295

7. Conclusion

a lightweight manner. Extensions cover stereotypes for each AT
role to be applied; tagged values of stereotypes correspond to formal
parameters of the corresponding AT role. Based on such pro�les, AT
instances can be speci�ed using existing pro�le application mecha-
nisms.

(3) AT tooling provides tool support for software architects and AT engi-
neers that want to follow the AT method. Moreover, AT tooling
de�nes the semantics of the AT language in a pragmatic way, i.e.,
via a reference implementation.

Tool support for software architects includes a wizard for AT-based
initializations of architectural models and editors for applying ATs to
architectural models. Moreover, a job for executing AT completions
for the integration of AT-induced elements into architectural models
is provided. The editors and the job are speci�c to Palladio as a
concrete architectural analysis approach, despite it is expected that
other approaches can be supported similarly. Tool support for AT
engineers includes a framework for integrating new metrics into ar-
chitectural analyses (QuAL), editors for creating AT catalogs, pro�les,
and completions, and a basic facility for testing completions.

7.1.2. Summary: Evaluation of the AT Method

We have evaluated the AT method with three main case studies (CloudStore,
WordCount, and Znn.com), some smaller, special-focused case studies, and
a preliminary controlled experiment. Over all of these empirical investiga-
tions, we were able to reuse a uniform evaluation design. Our successful
reuse indicates that future empirical investigates can reuse (parts of) this
design as well.

The main lessons learned from our investigations are:

(1) Software architects require only a few minutes to apply ATs. E�orts
slightly increase with AT catalog size, an AT’s roles and parameters,
and the number of AT roles to be bound.

296

7.1. Summary

(2) Software architects typically save more than 90 % of recurring mod-
eling e�orts by applying ATs. E�ort saving grows with the number
of AT-induced elements.

(3) Conformance checks can help software architects maintaining the
conformance to the captured architectural knowledge. Moreover, AT
tooling often ensures conformance by construction, e.g., by prohibit-
ing role assignments to wrong architectural elements.

(4) Software architects get several further bene�ts from the AT method.
Making the decision to apply knowledge becomes more context-
aware and more informed (because of the support for architectural
analyses). ATs can hide complexity that is unimportant for designing
architectural models but important for producing accurate analysis
results. Moreover, ATs are reusable over multiple architectural mod-
els. We have observed that particularly novice software architects
bene�t from an increased e�ectivity and e�ciency and that the AT
method can easily be learned based on the provided documentation.

(5) Some issues exist that should be resolved in future works. AT tooling
and external tools su�er from some technical issues while lacking
an integrated environment for AT application, speci�cation, and
debugging; and some of the provided ATs are still immature. Visual-
ization issues exist for elements that will be created by completions
but are invisible to software architects; a preview of AT-induced
elements is therefore suggested. Finally, we have observed that (even
unfounded) distrust in ATs exists in case results from architectural
analyses deviated from the expectations of software architects; soft-
ware architects should therefore get more training and further tool
support in understanding analysis results.

By cross-checking these lessons over multiple empirical investigations, we
have lowered potential validity threats. We have evaluated the generaliz-
ability of our lessons as good given that we have covered the domains of dis-
tributed computing, cloud computing, and big data and the QoS properties
performance, scalability, elasticity, and cost-e�ciency. Further empirical
investigations should strengthen and extend these lessons further, e.g., for
the automotive domain and for reliability as an additional QoS property.

297

7. Conclusion

7.1.3. Summary: Extensions of the AT Method

Two optional mechanisms extend the AT method—a reuse mechanism and
an optimization mechanism:

The reusemechanism allows AT engineers to de�ne AT roles that inherit
from multiple other AT roles. The AT speci�cation process is ap-
propriately extended by actions to identify and exploit reuse op-
portunities. For this exploitation, the AT language is extended by
a self-association for AT roles to specify inheritance relationships
among roles. AT tooling provides an extended editor support and an
implementation of the C3 linearization algorithm to derive the order
of inherited properties, e.g., utilized for orchestrating completions.

The reuse mechanism has been evaluated for a set of reuse scenarios.
Compared to a realization of these scenarios without reuse mech-
anism, the reuse mechanism has increased the productivity of AT
engineers by 210% on average. This result points to a signi�cantly
increased e�ciency for AT engineers in reuse scenarios.

The optimizationmechanism allows software architects to automatically
determine actual AT parameters based on evolutionary algorithms.
For achieving this goal, the optimization framework PerOpteryx has
been integrated into the AT method. The integration additionally
requires software architects to identify and specify AT parameters
as concrete degrees of freedom to be optimized. Moreover, soft-
ware architects have to con�gure and execute the optimization itself.
AT tooling provides appropriate PerOpteryx plug-ins that enable
software architects to execute these actions.

The optimization mechanism has been evaluated via a small proof-
of-concept example. The evaluation shows that the optimization
mechanism is applicable, however, further evaluations are required
for more generalizable results.

7.1.4. Summary: Classification Schema and RelatedWorks

The AT method is related to works that capture reusable architectural
knowledge. By inspecting 25 of such related works for common features, I

298

7.2. Assumptions and Limitations

have created a novel classi�cation schema. Subsequently, I have used this
schema for classifying all 25 related works and the AT method itself.

At a high level of abstraction, the classi�cation reveals the core features of
di�erent domains. The AT method is unique in that it combines all of these
core features:

Informal documentation of captured architectural knowledge in natural
language and in a systematic manner. The architectural knowledge
management domain focuses on this feature.

Conformance checks to architectural styles that are captured as types for
elements of architectural models. The ADL domain focuses on such
type-based formalizations.

Conformance checks to (architectural) patterns that are captured as roles
bound to elements of architectural models. The pattern domain
focuses on such role-based formalizations.

Knowledge integration for QoS analyses into architectural models or di-
rectly into analysis models. The architectural analysis domain fo-
cuses on such integrations of reusable architectural knowledge.

7.2. Assumptions and Limitations

Section 4.5 provides a detailed discussion of assumptions and limitations
of the AT method. Brie�y summarized, the following assumptions and
limitations are discussed: the assumption that AT-induced elements can
be speci�ed as completions, the focus on QVT-O for implementing com-
pletions, the focus on Palladio for architectural analyses, the observation
that ATs can cross-cut di�erent concerns, and technical restrictions of AT
tooling. The evaluation of the AT method shows that the AT method can ef-
fectively and e�ciently be applied within these assumptions and limitations
(see Section 4.5 for a detailed discussion on how to cope with them).

299

7. Conclusion

7.3. Future Work

Throughout this thesis, future work opportunities are derived: Section 4.5
derives future work from assumption and limitations of the AT method,
Section 5.6 from the evaluation of the AT method, and Section 6.7 from
related works.

This section highlights and summarizes some of these future works. Sec-
tion 7.3.1 describes future work on features for software architects and
Section 7.3.2 for AT engineers. Afterwards, further empirical evaluations
are suggested in Section 7.3.3. Section 7.3.4 brie�y highlights future work
on architectural analysis approaches in general.

7.3.1. Additional Features for So�ware Architects

Both the evaluation of the AT method and the investigation of related works
have revealed several features that potentially provide additional bene�ts
for software architects:

Question-based and (semi-)automatic selection. The selection of ATs from
AT catalogs may be supported by a question-based mechanism like
in ADMD3 (cf. Section 6.1.4). Moreover, it would be interesting to
investigate (semi-)automatic selection mechanisms like in SASSY
(cf. Section 6.4.3). Such (semi-)automatic mechanisms can naturally
extend the AT method’s optimization mechanism because both mech-
anisms are based on feedback from architectural analyses.

Integrated documentation. The documentation of ATs currently links to a
Wiki. However, the controlled experiment has shown that software
architects can easily miss to follow these links, which can result in
problems to apply ATs (cf. Section 5.4.2). A tighter integration of an
AT’s documentation in AT tooling promises to avoid such problems.
For example, a context help when binding AT roles may inform
software architects directly about valid bindings.

Textual syntax. In addition to the graphical concrete syntax, the AT lan-
guage can be extended with a textual concrete syntax for AT appli-
cation like available in most related ADLs inspected in Section 6.6.

300

7.3. Future Work

Such an extension will especially pave the way to extending archi-
tectural analyses with textually speci�ed architectural models with
the AT method.

Knowledge-specific views. Because ATs hide AT-induced elements, archi-
tectural models can appear incomplete to software architects. A
feature for previewing such elements when viewing architectural
models can therefore help software architects (cf. Section 5.6). For
example, COMLAN provides such knowledge-speci�c views (cf. Sec-
tion 6.3.4).

Anti-pattern and hotspot detection. In the Znn.com case study, the soft-
ware architect has blamed the applied AT to cause unsatisfying
QoS analysis results despite the AT has worked correctly (cf. Sec-
tion 5.3.3.4). This distrust in ATs shows that especially novice soft-
ware architects have problems in detecting the root-causes of un-
satisfying results. For this reason, we have suggested supporting
software architects with an automated detection of quality anti-
patterns (cf. [BBL17, Chap. 7]) and hotspot detections (cf. [Str13,
Sec. 4.3]).

Knowledge detection. A knowledge detection mechanisms like in PMF
(cf. Section 6.3.5) is able to support software architects to detect
reusable architectural knowledge, captured via ATs, automatically
within architectural models. Such a mechanism would particularly
allow to detect bad design decisions if an AT captures anti-patterns
(see the discussion in Section 6.3.6).

ATs in the full development lifecycle. ATs may be utilized to support soft-
ware architects in further actions of the analysis-driven development
process described in Section 2.5.1.

For example, the generation of QoS prototypes like Palladio’s Pro-
toCom prototypes (cf. Section 2.5.3.1) may utilize information cap-
tured in ATs to create knowledge-speci�c prototypes. In previous
works [LLK13, Kla14], we have indeed prepared ProtoCom to be
easily extensible, e.g., for generating QoS prototypes for multiple tar-
get platforms. We have particularly showcased this extensibility for
JavaEE [GL13] and the SAP HANA Cloud platform [Abd14, Kla14,
KL14]. Targeted platforms can be seen as reference architectures that

301

7. Conclusion

can be captured via ATs. Such ATs can then ensure the conceptual
integrity to constraints of the captured reference architecture at the
level of architectural models while con�guring ProtoCom with the
necessary information to generate QoS prototypes that accurately
re�ect the associated QoS properties.

Another example is to support software architects in the provision-
ing of components (i.e., action (4) of the development process from
Section 2.5.1). As shown by Archium (cf. Section 6.1.2), architec-
tural decisions can be annotated to source code. Such annotations
have the bene�t that vaporization of architectural knowledge is less
likely. Accordingly, when provisioning components in green �eld
and forward engineering, architectural decisions captured by ATs
may be generated into code skeletons. An appropriate extension of
Palladio’s code skeleton generator (cf. Section 2.5.3.1) is therefore
interesting for future works.

7.3.2. Additional Features for AT Engineers

The evaluation of the AT method and investigated related works have also
revealed several future work opportunities for AT engineers:

Behavioral constraints. AT engineers may enrich ATs with behavioral con-
straints like in Rapide (cf. Section 6.2.3) and SADL (cf. Section 6.2.4).
Behavioral constraints would further improve the capability of ATs
to maintain the conceptual integrity to the captured reusable archi-
tectural knowledge.

Consistency checks between constraints. ATs can be extended with con-
sistency checks between constraints like in Acme (cf. Section 6.2.1).
Such checks ensure that constraints do not contradict each other.
Especially when combined with the AT method’s reuse mechanism
for ATs, such checks are expected to become useful [PGH07].

Formal completions. Assuring the quality of re�nements captured via com-
pletions is currently based on transformation testing. A formal speci-
�cation of completions like in SADL (cf. Section 6.2.4) would allow to
formally ensure the conceptual integrity of the re�ned architectural
model.

302

7.3. Future Work

Integrated AT specification environment. The evaluation of the AT method
indicates that software architects can e�ectively and e�ciently fol-
low the AT method. However, the work of AT engineers is often
tedious; caused by technical tooling issues and missing features
(cf. Section 5.6). These lacks make it currently impossible to eval-
uate the potential e�ectivity and e�ciency of AT engineers in a
controlled manner. I have therefore suggested to provide an inte-
grated environment for AT speci�cation with additional features
(cf. Section 4.5).

The integrated environment should provide the following features:

• graphical editors for AT speci�cation using the graphical syntax
de�ned within the AT language (currently, only tree-based editors
exist; cf. Section 4.5); in addition, a textual syntax like available
in most related ADLs (cf. Section 6.6) for AT speci�cation can be
provided and evaluated,

• pro�les that are generated out of AT speci�cations and kept in
sync with these ATs (instead of requiring AT engineers to specify
pro�les separately; cf. Section 4.5 and Section 5.6),

• editors for specifying completions and tests directly embedded in
the environment (instead of depending on external tools; cf. Sec-
tion 4.5),

• static syntax analysis and highlighting during OCL speci�cation
(cf. Section 5.6),

• debugging support for completions (cf. Section 5.6), and

• an automated generation of test models covering typical root
causes for AT faults (cf. Section 5.6).

7.3.3. Further Empirical Evaluations

The evaluation of the AT method can be extended in several dimensions
(see Section 5.6 for a detailed discussion):

303

7. Conclusion

E�ort estimation. For estimating the e�orts for AT application and AT
speci�cation, further experiments on relevant in�uence factors and
accurately weighting their impact need to be conducted.

Quality properties. Further quality properties should be investigated. This
holds both for QoS properties, e.g., reliability, and internal quality
properties, e.g., maintainability. Particularly the long-term impact of
using ATs, e.g., on maintainability, would be interesting to investi-
gate.

Domains. Further domains may be investigated to further assess the gen-
eralizability of the AT method, e.g., the automotive domain.

AT reuse. Reusing ATs both within already investigated domains and in
di�erent domains needs further investigation.

Additional and improved ATs. Further ATs should be provided and existing
ATs should be matured, e.g., the Hadoop MapReduce AT.

Reusemechanism. Additional reuse scenarios for ATs should be investi-
gated for further evaluating the reuse mechanism of the AT method.

Optimizationmechanism. The optimization mechanism requires further
evaluation, especially for multi-parameter and multi-objective opti-
mizations.

Controlled experiments. The controlled experiment was conducted as a
pre-study with a few software architects. Lessons from this pre-study
should be taken into account to conduct a full-�edged controlled
experiment with more software architects. Moreover, future work
may design and conduct a controlled experiment on the e�ectivity
and e�ciency of AT engineers as well.

Documentation variants. It should be evaluated whether strictly follow-
ing POSA’s template (cf. Section 6.3.1.1) for documenting ATs helps
software architects in applying ATs. The impact of using representa-
tive images of the captured knowledge in AT documentation like in
ADDSS (cf. Section 6.1.1) should also be evaluated.

304

7.3. Future Work

7.3.4. Missing Features Within Architectural Analyses

Because the AT method extends existing architectural analyses, analysis
e�ectivity and e�ciency is restricted by these analyses. Therefore, a res-
olution of issues in and with these analyses is required to unfold the full
potential of the AT method.

For example, for extending Palladio with the AT method, several issues
within Palladio’s tooling should be resolved. Examples include SimuLizar’s
missing support for asynchronous communication, SimuLizar’s missing
support for debugging recon�guration rules, and a missing user interface
for intuitively con�guring the Experiment Automation Framework (cf. Sec-
tion 5.6).

An interesting future work direction is the composition of analysis re-
sults [LB15a]. In a composition approach, software components are as-
sumed to be black boxes that only expose QoS-relevant information, e.g.,
gained from internally conducted analyses. For systems composed out of
such components, compositional analyses can derive overall QoS proper-
ties only based on these information. The bene�t of this approach is that
components do not have to be reanalyzed internally. This saving reduces
analysis time and allows component providers to hide component internals,
which is important for software-as-a-service providers and in microservice
architectures, for example. Therefore, future works should particularly
investigate to capture such architectures within ATs, including exposed
QoS-relevant information.

305

A. Feature Models

Feature models are models to describe and analyze domains by means of a
hierarchy of variable and common features of the domain [CH06]. Feature
models were introduced by Kang et al. [KCH+90] and later extended and
described in detail by Czarnecki and Eisenecker [CE00, Chap. 4]. Further,
Kim and Czarnecki [CHE04] proposed the “cardinality-based feature mod-
eling notation” which extends feature models by cardinalities for features.
Czarnecki et al. [CHE05] formalized these concepts afterwards and applied
the cardinality-based feature modeling in several of their papers (e.g., in
[KC05] and [CH06]).

This thesis uses the cardinality-based feature modeling notations as applied
by Kim and Czarnecki [KC05] and Czarnecki and Helsen [CH06] for two
reasons: (1) this thesis refers to the work of Czarnecki and Helsen [CH06]
and reuses their feature models that, in particular, include cardinalities, and
(2) the feature models introduced within this thesis require cardinalities.

Table A.1 describes the applied elements for visualizing feature models,
i.e., their concrete syntax. This thesis makes use of eight distinct feature
elements: (1) root, (2) mandatory, (3) optional, (4) mandatory clonable, and
(5) grouped features, (6) XOR-feature-groups and (7) OR-feature-groups, as
well as (8) feature model references. A diagram that applies these elements
for feature models is referred to as feature diagram.

The root feature is the only feature that has no parent features. The root and
the other features can contain children features that can be either solitary
or grouped.

Firstly, solitary features include the mandatory feature that is always a
feature of the parent feature, the optional feature that can be a feature of
the parent feature, and the mandatory clonable feature that occurs at least
once as a child feature of the parent.

307

A. Feature Models

Table A.1.:Cardinality-based feature modeling notation (derived from [CH06])
Element Description

F Root feature F

F
Mandatory feature F (cardinality [1..1])

F
Optional feature F (cardinality [0..1])

F

[m..n] Mandatory clonable feature F (cardinality [m ..n]; 0 ≤ m ≤ n; n > 1)

F
Grouped feature F (cardinality [0..1])

XOR-feature-group (cardinality 〈1 − 1〉)

OR-feature-group (cardinality 〈1 − k 〉 where k is the group size)

F Feature model reference F

Secondly, grouped features are optional features of a group of features.
Groups of features are either speci�ed via an XOR-feature-group that allows
exactly one feature to be part of the parent, or via an OR-feature-group that
allows multiple features to be part of the parent. Table A.1 also shows the
cardinalities induced by these descriptions.

A feature model reference allows to link to sub-feature models: if it is used as
a leaf feature, it links to another feature model representing its sub-features.
This feature model is identi�ed via a feature model reference used as the
root of the feature model.

308

B. AT Tooling: Reference
Implementation

This appendix provides details on AT tooling as brie�y overviewed in
Section 4.3. AT tooling covers tool support for software architects to apply
ATs (Section B.1), for engineers of analysis tools to integrate support for AT
completions (Section B.2), and for AT engineers and AT testers to specify
ATs (Section B.3).

B.1. AT Application Support

For applying ATs as described in Section 4.1.1, software architects need a
tooling that is integrated with the editors for their architectural models.
Palladio’s editors have been built with the Graphical Modeling Framework
(GMF) [Gro09, Sec. 4.2]. However, GMF’s mixture of model-driven code
generation and complex manual adjustments make it hard to maintain and
extend these editors [SL13], e.g., with an AT support.

In the context of the AT method, we have therefore investigated migration
options to more promising editor frameworks. In detail, we have investi-
gated Graphiti [SL13] and Sirius [SJR+16] as alternatives. We have decided
for a migration to the Sirius framework because of several advantages such
as the layer-based hiding and unhiding of diagram content, improved lay-
outing, an easy customization of graphical nodes, support for extensions,
and a lively community [SJR+16].

Our novel Sirius-based editors for Palladio models are publicly available
[Pala] and particularly support ATs. The remainder of this section describes
the two AT-related features within these editors: initializing architectural

309

B. AT Tooling: Reference Implementation

models with ATs (Section B.1.1) and applying ATs to architectural models
(Section B.1.2).

B.1.1. Initializing Palladio Projects with ATs

As described in Section 4.1.1, software architects can use ATs as initiator
templates, i.e., to create initial architectural models. For this creation, ATs
are required to provide a default AT instance (cf. Section 4.2.5.3). A template
engine—the AT initiator—can then copy the default AT instance to a new
project, thus providing an initial architectural model.

In the context of this thesis, the realization of an AT initiator is illustrated
with a novel wizard for initializing Palladio projects with ATs.1 This section
describes this wizard.

Figure B.1 shows an excerpt of Eclipse’s New Project dialog. The dialog
provides various wizards to create new projects. In the Palladio Modeling
category, the new and highlighted wizard New Palladio Project - Sirius supports
the AT-based initialization of Palladio projects.

After selecting the New Palladio Project - Sirius wizard, the wizard asks for a
name of the project to be initialized and the location to store the project.
In the example in Figure B.2, the Palladio project is named “MyBookShop”
and stored at the default location, i.e., at the current Eclipse workspace.

On the next wizard page, the AT to be used as initiator template can be
selected. The wizard only lists ATs that provide a default AT instance. The
example in Figure B.3 shows that nine of such ATs (e.g., the Static Resource
Container Loadbalancing AT) are currently available. When software architects
select an AT from this list, a corresponding description is shown on the
right side of the dialog. In the example in Figure B.3, the Book Shop AT (an
AT that resembles the book shop example from Chapter 3) is selected.

After software architects have selected an AT, software architects can press
the Finish button to start an AT-based initialization. By copying the contents
of the default AT instance to the newly de�ned project location, the AT
initiator �lls the new project with contents. Figure B.4 shows the resulting

1 The old Palladio project wizard [Palb] was the basis for the novel wizard; the AT-based
initialization is new.

310

B.1. AT Application Support

Figure B.1.: In Eclipse’s new project dialog, a novel wizard for creating Palladio
projects based on ATs is available (highlighted).

project �les for the example of the Book Shop AT. Typical Palladio mod-
els (cf. Section 2.5.3) are created, e.g., the �le BookShop.resourceenvironment
provides a model for a Palladio resource environment. Moreover, the AT
initiator creates diagrams for each model, e.g., a diagram for the resource
environment model as highlighted in Figure B.4.

Figure B.5 illustrates the resource environment diagram for the book shop
opened in the Palladio editor with support for ATs. The illustrated initial
architectural model includes three resource containers (Web & Application
Server, Database Server, and Image Server) with CPUs that are interconnected
via the LAN network. The Static Resource Container Loadbalancing AT (a realiza-
tion of the loadbalancing AT exempli�ed in Section 3.2.4) has been applied

311

B. AT Tooling: Reference Implementation

Figure B.2.: The wizard allows to set a custom name for the Palladio project.

Figure B.3.: The wizard lists each AT that provides a default AT instance, e.g., the
Book Shop AT (highlighted).

312

B.1. AT Application Support

Figure B.4.: The wizard creates an initial Palladio project from the selected AT.
Diagrams are also created, e.g., for resource environments (highlighted).

to the resource environment as shown at the top of Figure B.5. Moreover,
the Static Loadbalanced Resource Container role of this AT (corresponding to the
Loadbalanced Container role of the loadbalancing AT) has been applied to the
Web & Application Server. The role parameter numberOfReplicas has been set to
2, which models that the Web & Application Server (including components allo-
cated on this server) is replicated two times while a loadbalancer distributes
workload over these replicas. Overall, the automatically initialized resource
environment, thus, re�ects the book shop example from Section 3.2.4.

Given this starting point, software architects may adapt speci�cations of
resource containers, exchange components, apply further ATs, etc. to create
custom book shops. The advantage of specifying a book shop model based
on a default AT instance is that parts of the AT instance can be reused,
e.g., the bound AT role for introducing the loadbalancing architectural
pattern.

313

B. AT Tooling: Reference Implementation

Web & Application Server

CPU

Scheduling: ProcessorSharing
Number of Replicas: 1
Processing Rate: 1000
MTTR: 0.0
MTTF: 0.0

StaticLoadbalancedResourceContainer

numberOfReplicas=2

Database Server

CPU

Scheduling: ProcessorSharing
Number of Replicas: 1
Processing Rate: 1000
MTTR: 0.0
MTTF: 0.0

Image Server

CPU

Scheduling: ProcessorSharing
Number of Replicas: 1
Processing Rate: 1000
MTTR: 0.0
MTTF: 0.0

LAN

LAN

Latency: 0
Throughput: 100000
Failure Probability: 0.0

StaticResourceContainerLoadbalancingProfile

Figure B.5.:A Palladio resource environment diagram automatically initialized from
a default instance of the Book Shop AT.

B.1.2. Applying ATs to Palladio Models

Besides initializing architectural models from ATs, software architects can
also manually apply ATs to architectural models (cf. Section 4.1.1). In
the context of this thesis, AT tooling provides novel Sirius-based Palladio
editors with support for such AT applications. This section describes these
editors.

Palladio projects can include various diagrams to view and edit models.
These diagrams are stored in a project’s representations.aird �le. For example,
Figure B.4 shows an expanded view on the book shop’s representations.aird �le
where a diagram for the book shop’s resource environment is selected.

314

B.1. AT Application Support

Figure B.6 shows the view of the Sirius-based Palladio editor for resource
environments when software architects open this diagram. The top of the
view provides a tool bar for con�guring and rearranging the view. The left
side of the view shows the resource environment diagram from Figure B.5.
The right side of the view provides a palette with elements that software
architects can use to edit the resource environment model.

Figure B.6.:A view on the resource environment of the book shop example within
the corresponding Sirius-based Palladio editor.

In addition to common Palladio elements, the palette particularly includes
the novel Architectural Templates category. This category allows software
architects to apply ATs and to bind roles of ATs.

Figure B.7 shows the dialog that opens when software architects select
the Apply Architectural Template action from the palette and then click on the
resource environment diagram. The dialog lists the available ATs that
software architects can apply to their architectural model. For example,
the highlighted Static Resource Container Loadbalancing AT has already been
applied to the model illustrated in Figure B.6.

Figure B.8 shows the dialog that opens when software architects select the
Bind Role action from the palette and then click on an architectural element.

315

B. AT Tooling: Reference Implementation

Figure B.7.: The dialog for selecting and applying an AT.

The dialog lists only those roles that belong to already applied ATs and
that can be bound to the selected architectural element. For example, the
highlighted StaticLoadbalanceResourceContainer role in Figure B.6 belongs to
the already applied Static Resource Container Loadbalancing AT and the selected
element is a resource container, i.e., an element for which this role can
legally be bound.

Figure B.8.: The dialog for selecting and binding roles of ATs.

Once software architects have applied ATs and bound AT roles to a resource
environment model, the corresponding elements of AT instances are shown
within the resource environment diagram of the editor. For example, the
diagram in Figure B.6 shows the applied Static Resource Container Loadbalancing
AT and the bound Static Loadbalancing Resource Container role.

316

B.1. AT Application Support

Figure B.9 shows the view of the Sirius-based Palladio editor for systems.
In the example in Figure B.9, a software architect opened the diagram of
the book shop’s system model. As shown, the editor is structured like the
editor for resource environments (with a tool bar at the top, the diagram
on the left, and a palette on the right). The editor’s palette particularly
includes the novel Architectural Templates category. Using the actions of this
category, software architects can apply ATs and bind AT roles as analogously
described for the resource environment editor. The excerpt of the system
diagram of Figure B.9 shows that the Three Layer AT has been applied to the
book shop system and that AT roles have been assigned to the system’s
assembly contexts, e.g., the Presentation Layer AT role to the assembly context
of the Book Shop Web Pages component.

Figure B.9.:A view on the system of the book shop example within the correspond-
ing Sirius-based Palladio editor.

As described in Section 4.1.1, software architects apply ATs to system mod-
els. Moreover, software architects integrate information from resource
environment and allocation models to create complete architectural models.
As part of this integration, software architects have to assign appropriate
AT roles to non-system elements, e.g., to resource containers of resource
environments like shown in Figure B.6. The described Sirius-based editors

317

B. AT Tooling: Reference Implementation

for system and resource environment models enable software architects to
realize these tasks. The Sirius-based editors for the other models have cur-
rently no support for applying ATs because these models are not speci�ed
by software architects, thus, out of this thesis’ focus. Section 4.5 discusses
this limitation.

B.2. AT Integration Support

As described in Section 4.1.2, AT-induced elements have to be integrated
into architectural models prior to the transformation to analysis models.
Here, tool support can ensure that completions of ATs are executed, which
integrates AT-induced elements automatically. This section describes this
tool support for Palladio.

In Palladio, a work�ow engine [Palc] takes care of transforming PCM mod-
els into analysis models and of evaluating QoS properties. The work�ow
engine structures this work�ow in consecutive jobs. Because each of Palla-
dio’s analysis tools (cf. Section 2.5.3.1) requires a di�erent analysis model
and is started di�erently, each tool provides di�erent jobs for these tasks.
Given the requirement that all of these tools shall support ATs, one option
is thus to integrate an additional job for executing completions in each of
these tools.

Alternatively, Palladio’s Experiment Automation Framework (described in
[Leh16, Chap. 9]) can be extended. The Experiment Automation Framework
provides a generic work�ow for transforming to analysis models, con�gur-
ing and running analysis tools, and for storing measurements. Concrete
analysis tools can provide adapters between the framework and their tool-
speci�c jobs [Leh16, Sec. 9.2]. For example, the analysis tools SimuCom and
SimuLizar provide such adapters [Leh16, Sec. 9.2]. Subsequently, software
architects can use the Experiment Automation Framework to con�gure and
run work�ows for adapter-providing analysis tools.

In the context of the AT method, an additional job for executing completions
can directly be integrated into the generic work�ow of the Experiment
Automation Framework. The Experiment Automation Framework provides
a dedicated extension point for hooking-in such additional jobs [Leh16,

318

B.3. AT Speci�cation Support

Sec. 9.3]. This integration option requires only a single extension of the
Experiment Automation Framework while the requirement that all analysis
tools shall support ATs is ful�lled (as long as these tools provide a suitable
adapter).

For this reason, AT tooling follows the integration option to extend the
Experiment Automation Framework. AT tooling provides a further job
that additionally takes care of executing completions. For robustness, the
job also validates all constraints of ATs prior to completion execution. AT
tooling registers this job before the job that transforms PCM models to
analysis models.

Listing B.1 and Listing B.2 exemplify the work�ow’s console output of the
integrated AT job using the book shop example. Listing B.1 reports results
on validated constraints. For example, line 24 shows that the number of
replicas constraint (as described in the context of Figure B.12) validated
successfully. Listing B.2 reports the successful execution of the StaticRe-
sourceContainerLoadbalancing completion. Only after these tasks have been
executed successfully, the work�ow continues to transform the architec-
tural model, into which AT-induced elements have been integrated, to
analysis models.

B.3. AT Specification Support

For specifying ATs as described in Section 4.1.3, AT engineers need tool
support that is compliant with the tooling for AT application. AT tooling
provides such a tool support as described in this section. With the provided
tool support, AT engineers can integrate new metrics into QoS analyses
(Section B.3.1) and create AT catalogs (Section B.3.2), pro�les (Section B.3.3),
and completions (Section B.3.4). Moreover, AT testers are provided with
tools for testing completions (Section B.3.5).

B.3.1. Integrating NewMetrics

In action (1) of the AT speci�cation process (Section 4.1.3.2), AT engineers
may be required to extend or implement an analysis approach with a novel

319

B. AT Tooling: Reference Implementation

Listing B.1:Console output of the integrated AT job: validated constraints.
1 . . .
2 INFO : Validating AT Constraints .
3 INFO : Constraint : Middle Layer Assemblies do not require ←↩

functionality from Presentation Layer Assemblies succeeded .
4 INFO : Constraint : Three Layer System has at least one Data ←↩

Layer Assembly succeeded .
5 INFO : Constraint : Data Layer Assemblies do not require ←↩

functionality from Presentation Layer Assemblies succeeded .
6 INFO : Constraint : No Provided Infrastructure Delegation ←↩

Connectors to Middle Layer Assemblies succeeded .
7 INFO : Constraint : Three Layer System has at least one ←↩

Presentation Layer Assembly succeeded .
8 INFO : Constraint : All Assemblies are stereotyped as ←↩

Presentation Layer Assembly , Middle Layer Assembly , or Data←↩
Layer Assembly succeeded .

9 INFO : Constraint : Presentation Layer Assemblies do not require ←↩
functionality from Data Layer Assemblies succeeded .

10 INFO : Constraint : Three Layer System has at least one Middle ←↩
Layer Assembly succeeded .

11 INFO : Constraint : No Provided Delegation Connectors to Middle ←↩
Layer Assemblies succeeded .

12 INFO : Constraint : No Provided Infrastructure Delegation ←↩
Connectors to Data Layer Assemblies succeeded .

13 INFO : Constraint : No Provided Delegation Connectors to Data ←↩
Layer Assemblies succeeded .

14 INFO : Constraint : Three Layer System has at least 3 Assemblies ←↩
succeeded .

15 INFO : Constraint : Data Layer Assemblies do not require ←↩
functionality from Middle Layer Assemblies succeeded .

16 INFO : Constraint : System is Three Layer System succeeded .
17 INFO : Constraint : Resource Environment has exactly one Static ←↩

Loadbalanced Resource Container succeeded .
18 INFO : Constraint : Static Loadbalanced Resource Container has ←↩

Assembly Contexts succeeded .
19 INFO : Constraint : System is Static Resource Container ←↩

Loadbalancing System succeeded .
20 INFO : Constraint : Presentation Layer Assembly is not another ←↩

Layer Assembly succeeded .
21 INFO : Constraint : Presentation Layer Assembly is not another ←↩

Layer Assembly succeeded .
22 INFO : Constraint : Middle Layer Assembly is not another Layer ←↩

Assembly succeeded .
23 INFO : Constraint : Data Layer Assembly is not another Layer ←↩

Assembly succeeded .
24 INFO : Constraint : Number of Replicas greater 0 succeeded .
25 . . .

320

B.3. AT Speci�cation Support

Listing B.2:Console output of the integrated AT job: completion execution.
1 . . .
2 INFO : Executing QVTO Transformation . . .
3 INFO : AT Completion " StaticResourceContainerLoadbalancing " ←↩

started

4 INFO : AT Completion " StaticResourceContainerLoadbalancing " ←↩
finished

5 INFO : Transformation executed successfully

6 INFO : Task Sequential Job Execution completed in 1 . 1 2 4 E−6 ←↩
seconds

7 . . .

QoS metric. In this case, AT engineers pro�t from analysis frameworks that
allow for an easy integration of new metrics.

Unfortunately, Palladio did not provide an extensible analysis framework;
supported metrics were hard-coded. The AT method’s requirement to
extend analysis approaches with additional metrics therefore motivated
the development of such a framework. The developed framework—the
Quality Analysis Lab (QuAL) [Leh16]—is now integrated into Palladio. AT
engineers can use this framework for extending Palladio with new metrics
or as a framework for new analysis tools. QuAL’s developer guide [Leh16]
describes the necessary steps for integrating new metrics.

B.3.2. Creating AT Catalogs

AT engineers specify ATs as described in action (3) of the AT speci�cation
process in Section 4.1.3.2. For practically realizing such speci�cations, AT
tooling provides a simple tree-based editor [ATt]; generated via EMF from
the AT metamodel (cf. [SBPM09, Sec. 3.2]). Figure B.10 exempli�es an AT
catalog opened within this editor.

The upper part of Figure B.10 shows the editor’s tree view while the lower
part shows a properties view. In the tree view, AT engineers can select, add
new, and remove existing elements. In the properties view, AT engineers
can edit attributes of selected elements.

321

B. AT Tooling: Reference Implementation

Figure B.10.: The tree-based editor for AT catalogs.

The tree view in Figure B.10 shows an expanded AT catalog (Default ATCatalog)
that includes several ATs (Dynamic Three Layer Three Tier, Dynamic Horizontal
Scaling Assembly Context, etc.). Because the Static Resource Container Loadbalancing
AT is selected, the properties view in Figure B.10 shows the attributes of
this AT. For example, the AT has a default instance pointing to the (project-
relative) URI MinimumStaticResourceContainerLoadbalancing/.

Moreover, the AT Static Resource Container Loadbalancing is expanded, which
instructs the tree view to show its contained roles. The AT includes the roles
Static Resource Container Loadbalancing System and Static Loadbalanced Resource
Container. When, for instance, selecting the second role in the tree viewer,
the properties view adapts as shown in Figure B.11. Besides attributes for
a unique identi�cation (ID), an entity name, and a list of included roles,

322

B.3. AT Speci�cation Support

the view shows the stereotype referenced by the selected role. In the
example in Figure B.11, the stereotype StaticLoadbalancedResourceContainer is
referenced.

Figure B.11.: The properties view when selecting an AT role.

For both roles, contained elements are shown, i.e., completions and con-
straints. The �rst role contains a completion speci�ed as a QVT-O model
transformation (linking to the project-relative URI StaticResourceContainer-
Loadbalancing.qvto) and three constraints formulated via OCL. The second
role contains only one OCL constraint.

When, for instance, selecting this OCL constraint in the tree viewer, the
properties view adapts as shown in Figure B.12. The Entity Name provides a
description of the constraint in natural language while the Expression spec-
i�es the constraint in correct OCL syntax. In the example in Figure B.12,
the constraint demands that the actual value for the number of replicas
parameter of the constraint’s role is strictly greater than zero. The evalu-
ation context for this constraint is the stereotype referenced by the role
of the constraint. Because this stereotype de�nes the formal parameter
numberOfReplicas, the OCL expression self.numberOfReplicas>0 accordingly for-
malizes the constraint in OCL.

Figure B.12.: The properties view when selecting an OCL constraint.

323

B. AT Tooling: Reference Implementation

The tree editor allows AT engineers to specify elements of AT catalogs
by opening an element’s context menu and then adding appropriate child
nodes. Figure B.13 exempli�es this context menu for the AT catalog element
(i.e., the root element). As shown, the New Child entry allows to add a new
AT to the catalog.

Figure B.13.:Context menu for adding an AT to an AT catalog.

Besides the tree-based speci�cation of AT catalogs, AT engineers need to
create suitable pro�les and completions that can be referenced from such
catalogs. The following sections detail the creation of these artifacts.

B.3.3. Creating Profiles

As described in Section 4.2.4, ATs extend architectural models via pro�les.
Accordingly, AT engineers have to create a dedicated pro�le for an AT
where each of the AT’s roles references its corresponding stereotype within
the pro�le (e.g., shown in Figure B.11). Because AT tooling is based on EMF
pro�les [KDH+12], AT engineers can also reuse EMF pro�les’ editor for
creating suitable pro�les. Figure B.14 exempli�es a pro�le opened within
this editor; this section brie�y describes the editor along this �gure. Further
details on the speci�cation of EMF pro�les are provided by the original
authors [KDH+12].

The upper part of Figure B.14 shows the editor’s graphical speci�cation view
while the lower part shows a properties view. In the graphical speci�cation
view, AT engineers can select, add new, and remove existing elements. For
additions, AT engineers have to select the appropriate element from the
palette on the right. In the properties view, AT engineers can edit attributes
of selected elements.

The graphical speci�cation view illustrates the pro�le used for applying the
loadbalancingAT in Section B.1.2. As shown in the properties view, the pro�le
is named Static Resource Container Loadbalancing Profile. Moreover, the graphical
speci�cation view shows that the pro�le includes two stereotypes: Static

324

B.3. AT Speci�cation Support

Figure B.14.: The graphical editor for creating pro�les.

Resource Container Loadbalancing System and Static Loadbalanced Resource Container.
These stereotypes extend Palladio’s System and ResourceContainermetaclasses,
i.e., the stereotypes can be bound to instances of these metaclasses. The
cardinality denoted along with the extension arrow states that a correct
pro�le application requires that the Static Resource Container Loadbalancing
System stereotype needs to be bound to exactly one Palladio System instance
and that the Static Loadbalanced Resource Container stereotype can be bound to
an arbitrary number of Palladio Resource Container instances.

Figure B.6 exempli�es a correct pro�le application for the book shop ex-
ample. The roles of the applied AT—the loadbalancing variant called Static
Resource Container Loadbalancing—particularly reference the stereotypes of the
applied pro�le. For instance, Figure B.11 shows that the Static Loadbalanced
Resource Container role references its corresponding and equally named Static
Loadbalanced Resource Container stereotype.

325

B. AT Tooling: Reference Implementation

B.3.4. Creating Completions

AT tooling supports completions speci�ed in QVT-O (cf. Section 2.3.2): if
speci�ed in QVT-O, AT tooling ensures that the completions of AT roles
are executed prior to architectural analyses of architectural models with
bound roles. AT engineers can create completions in QVT-O using the QVT
Operational tooling provided by the Eclipse Modeling Project [Ecl16]. This
section brie�y describes AT-speci�c speci�cation aspects when creating
such completions. Further details on the editor of QVT Operational are
provided by the Eclipse Modeling Project [Ecl16].

Listing B.3 shows an excerpt of the QVT-O transformation that de�nes the
completion for the Static ResourceContainer LoadbalancingAT from Section B.3.2.
Lines 1 to 6 in Listing B.3 provide imports and declarations; lines 7 to 27
de�ne the transformation itself.

The import in line 1 loads a reusable library provided by the AT tooling.
The library provides operations for working with pro�les and stereotypes
within QVT-O transformations. These operations allow to check for pro�le
and stereotype applications, to apply and unapply pro�les and stereotypes,
and to read and write tagged values. For example, the hasAppliedStereotype
operation (line 21 in Listing B.3) stems from this library and allows to check
whether a given model element has a speci�c stereotype applied.

The declarations of model types (lines 3 and 4 in Listing B.3) specify which
metamodels can be accessed by the transformation. Besides others, the
transformation in Listing B.3 can access Palladio’s metaclasses for allocation
models (line 3) and resource environments (line 4). The name of the model
type, e.g., PCM_ALLOC (line 3), can then be used as type of models within
transformation parameters.

The transformation signature (line 7 in Listing B.3) indeed uses the allo-
cation’s model type (PCM_ALLOC) as parameter of the StaticResourceContainer-
Loadbalancing transformation. The parameter is marked as inout because the
completion is de�ned as an in-place transformation, i.e., the transformation
can read and write pcmAllocation’s actual parameter.

Figure B.15 shows the declarative speci�cation of the completion within the
corresponding AT catalog. For the Static ResourceContainer Loadbalancing System
role, the QVT-O completion is linked via a project-relative URI (see the

326

B.3. AT Speci�cation Support

Listing B.3: Example completion speci�ed as QVT-O transformation (excerpt).
1 import org . palladiosimulator . architecturaltemplates . catalog .←↩

black . ProfilesLibrary ;
2
3 modeltype PCM_ALLOC uses " h t t p : / / p a l l a d i o s i m u l a t o r . org /←↩

Pal lad ioComponentModel / A l l o c a t i o n / 5 . 1 " ;
4 modeltype PCM_RES_ENV uses " h t t p : / / p a l l a d i o s i m u l a t o r . org /←↩

Pal lad ioComponentModel / ResourceEnvi ronment / 5 . 1 " ;
5 . . .
6
7 transformation StaticResourceContainerLoadbalancing (inout ←↩

pcmAllocation : PCM_ALLOC) {
8
9 property allocation : Allocation = pcmAllocation . rootObjects () ! [←↩

Allocation] ;
10 property resourceEnvironment : ResourceEnvironment = allocation .←↩

targetResourceEnvironment_Allocation ;
11 . . .
12
13 main () {
14 log ("AT Complet ion s t a r t e d ") ;
15 . . .
16 / / Get r e s o u r c e c o n t a i n e r s t h a t s h a l l be l o a d b a l a n c e d
17 var originalResourceContainers : Set (ResourceContainer) : =
18 resourceEnvironment

19 . resourceContainer_ResourceEnvironment
20 −>select (container : ResourceContainer |
21 hasAppliedStereotype (container , "←↩

S t a t i c L o a d b a l a n c e d R e s o u r c e C o n t a i n e r ")
22) ;
23 . . .
24 log ("AT Complet ion f i n i s h e d ") ;
25 }
26 . . .
27 }

properties view in Figure B.15). Moreover, the expanded QVT-O completion
element in Figure B.15 shows that the completion’s parameters conform to
the declaration from line 7 in Listing B.3. That is, the only parameter is a
PCM blackbox parameter of type allocation. As de�ned in Section 4.2.5.6,
PCM blackbox parameter particularly allow completions to read and write,
thus, complying to the transformation parameter’s inout characterization.

The properties of the transformation (lines 9 and 10 in Listing B.3) store
model elements within global variables. In line 9, the variable allocation
holds a model element of the Allocation metaclass. The model element is

327

B. AT Tooling: Reference Implementation

Figure B.15.:Con�guration of a completion with an allocation PCM blackbox
parameter.

Lines 13 to 25 in Listing B.3 specify the main operation, i.e., the transforma-
tion’s entry point. The log operations in lines 14 and 24 generate messages
informing about the start respectively the end of the completion. The QVT
Operational transformation engine prints these messages to a console.

Between those logging operations, the completion logic is speci�ed. An
example for such a logic is given in lines 17 to 22 where the resource
containers that shall be loadbalanced are queried. As speci�ed in line 17,
these containers are stored inside the originalResourceContainer variable that
can hold a set of resource containers (Set(ResourceContainer)). The query
starts from the globally stored resource environment model element (line
18). From the resource environment, each contained resource container is
received (line 19). From these containers, only those are selected (line 20)
that have the Static Loadbalanced Resource Container stereotype applied (line 21).
This stereotype corresponds to the AT’s Static Loadbalanced Resource Container
role, thus, marking resource containers that shall be loadbalanced.

While Listing B.3 outlines the completion for the Static Loadbalanced Resource
Loadbalancing AT, AT engineers can similarly specify other completions. For
example, the import in line 1, the model type declarations in lines 3 and

328

received from the allocation model (pcmAllocation) by requesting exactly one
(denoted by the exclamation point in line 9) root object of type Allocation. In
line 10, the variable resourceEnvironment analogously holds a model element
of the ResourceEnvironment metaclass. Because the allocation references a
target resource environment, this environment can directly be requested
via metamodel navigation (allocation.targetResourceEnvironment_Allocation).

B.3. AT Speci�cation Support

4, and the declaration of global variables in lines 9 and 10 can be reused
for each Palladio-related completion. Particularly the library imported in
line 1 helps AT engineers to access AT-related information via pro�les and
stereotypes.

B.3.5. Testing Completions

The speci�cation of ATs involves AT testers that ensure that ATs are of high
quality. As described in Section 4.1.3.3, AT testers specify oracle functions
via QVT-O transformations and run these transformations against the in-
and output models of completions. Transformation outputs subsequently
report test results. AT tooling supports AT testers in this task by an option
to store relevant models in a temporary project. These models can then
be tested against oracle functions. This section exempli�es these tooling
aspects.

Palladio provides a dialog for starting architectural analyses. As shown
in Figure B.16, AT tooling enriches this dialog with a dedicated tab for
ATs. This tab allows AT testers to enable the Store completedmodels option,
which ensures that in- and output models of completions are stored at the
speci�ed location when running an analysis.

Figure B.16.: Palladio’s run dialog for conducting architectural analyses includes an
AT tab to con�gure the storage of a completion’s in- and output models.

329

B. AT Tooling: Reference Implementation

For example, when running an architectural analysis for the book shop
example, AT tooling creates the temporary project illustrated in Figure B.17.
Inside the project’s model-gen folder, the highlighted folders beforeCompletion
and a�erCompletion store in- respectively output models of the executed
completion.

Figure B.17.:AT tooling creates a temporary project where a completion’s in- and
output models are stored.

Next, AT testers check the completion contract’s source-target-conditions
by using these models as input to dedicated QVT-O transformations. Such
QVT-O transformations are structured as exempli�ed in Listing B.4 (cf.
[Gia16, Sec. 5.3.3]).

AT testers can specify imports and model types (lines 1 to 4 in Listing B.4)
as well as global properties (lines 9 to 12) analogously to completions

330

B.3. AT Speci�cation Support

Listing B.4: Example for using QVT-O transformations as oracle functions (excerpt).
1 import org . palladiosimulator . architecturaltemplates . catalog .←↩

black . ProfilesLibrary ;
2
3 modeltype PCM_ALLOC uses " h t t p : / / p a l l a d i o s i m u l a t o r . org /←↩

Pal lad ioComponentModel / A l l o c a t i o n / 5 . 1 " ;
4 modeltype PCM_RES_ENV uses " h t t p : / / p a l l a d i o s i m u l a t o r . org /←↩

Pal lad ioComponentModel / ResourceEnvi ronment / 5 . 1 " ;
5 . . .
6
7 transformation StaticResourceContainerLoadbalancingTest (in ←↩

allocationBeforeCompletion : PCM_ALLOC , in ←↩
allocationAfterCompletion : PCM_ALLOC) ;

8
9 property oldAllocation : Allocation = allocationBeforeCompletion←↩

. rootObjects () ! [Allocation] ;
10 property newAllocation : Allocation = allocationAfterCompletion .←↩

rootObjects () ! [Allocation] ;
11 property oldResourceEnvironment : = oldAllocation .←↩

targetResourceEnvironment_Allocation ;
12 property newResourceEnvironment : = newAllocation .←↩

targetResourceEnvironment_Allocation ;
13 . . .
14
15 main () {
16 log (" T e s t s t a r t e d ") ;
17 . . .
18 testCorrectNumberOfLoadbalancerResourceContainers () ;
19 . . .
20 log (" T e s t f i n i s h e d ") ;
21 }
22 . . .
23 }

(cf. Section B.3.4). The transformation signature (line 7), however, has
to request both models before (allocationBeforeCompletion) and models after
the completion (allocationA�erCompletion). The global properties (lines 9
to 12) store model elements belonging to models before the completion
(oldAllocation and oldResourceEnvironment) respectively after the completion
(newAllocation and newResourceEnvironment).

The main operation (lines 15 to 21 in Listing B.4) de�nes the test by calling
various test queries, e.g., testCorrectNumberOfLoadbalancerResourceContainers in
line 18. Test queries are de�ned separately from the main operation in a
dedicated QVT-O query as illustrated in Listing B.5.

331

B. AT Tooling: Reference Implementation

Listing B.5: Example test query in QVT-O.
1 / / T e s t whether the number o f r e s o u r c e c o n t a i n e r s with bound ←↩

l o a d b a l a n c e r r o l e s e q u a l s the number o f c r e a t e d ←↩
l o a d b a l a n c e r r e s o u r c e c o n t a i n e r s

2 query testCorrectNumberOfLoadbalancerResourceContainers () {
3 var loadbalancedResourceContainers : Set (ResourceContainer) ←↩

: =
4 oldResEnvironment

5 . resourceContainer_ResourceEnvironment
6 −>select (container |
7 hasAppliedStereotype (container , "←↩

S t a t i c L o a d b a l a n c e d R e s o u r c e C o n t a i n e r ")
8) ;
9

10 var loadbalancerResourceContainers : Set (ResourceContainer) ←↩
: =

11 newResEnvironment

12 . resourceContainer_ResourceEnvironment
13 −>select (container |
14 hasAppliedStereotype (container , "←↩

L o a d b a l a n c e r R e s o u r c e C o n t a i n e r ")
15) ;
16
17 assert error (loadbalancedResourceContainers −>size () = ←↩

loadbalancerResourceContainers −>size ())
18 with log (" The number o f r e s o u r c e c o n t a i n e r s with bound ←↩

l o a d b a l a n c e r r o l e s (" + loadbalancedResourceContainers←↩
−>size () . toString () + ") does not e q u a l the number o f ←↩
c r e a t e d l o a d b a l a n c e r r e s o u r c e c o n t a i n e r s (" +←↩
loadbalancerResourceContainers −>size () . toString () + ") !←↩
") ;

19 }

The testCorrectNumberOfLoadbalancerResourceContainers query is exempli�ed
in lines 2 to 19 in Listing B.5. First, the resource containers to be load-
balanced are collected in the loadbalancedResourceContainers variable (line 3).
These containers are queried from the original resource environment (line
4) that provides all resource containers (line 5) that have the StaticLoadbal-
ancedResourceContainer stereotype applied (lines 6 to 8). Second, the resource
containers that act as loadbalancer server are collected in the loadbalancer-
ResourceContainers variable (line 10). These containers are queried from the
newly created resource environment (line 11) that provides all resource
containers (line 12) that have the LoadbalancerResourceContainer stereotype
applied (lines 13 to 15). The latter stereotype application is created by

332

B.3. AT Speci�cation Support

the completion under test in order to explicitly mark created loadbalancer
servers. Third and �nally, the number of resource containers hold by the
two variables are asserted for equality (line 17). In case this assertion fails,
an appropriate error message is logged (line 18).

Once the QVT-O transformation is speci�ed, AT testers only have to specify
a normal QVT Operational run for this transformation (cf. [Ecl16]). As input
models, AT testers select appropriate models from the temporary project
that was created by AT tooling. For the transformation in Listing B.4,
AT testers can, for instance, select the BookShop.allocation models from the
beforeCompletions/PCM and a�erCompletion/PCM folders shown in Figure B.17.
If the test is successful, the transformation only outputs “Test started” and
“Test ended” according to lines 16 and 20 in Listing B.4. If a test query failed,
the transformation outputs the corresponding error message, e.g., the one
speci�ed in line 18 in Listing B.5.

333

C. Case Study Reports

This appendix provides detailed reports of the case studies conducted on
the AT method. Section C.1 reports the CloudStore case study, Section C.2
the WordCount case study, and Section C.3 the Znn.com case study.

C.1. Case Study Report: CloudStore

CloudStore [LSB+17] represents a distributed, CPU-bound online book shop
where customers can search and order books, similar to (but more complex
than) the book shop example from Chapter 3. CloudStore’s implementation
is based on a legacy implementation of the TPC-W benchmark [Tra02]. In
our previous e�orts [LB16, LSB+17], we have conducted a case study to
migrate this legacy version to a version that operates in a cloud computing
environment. We have applied the AT method for planning this migration,
e.g., to analyze whether CloudStore would bene�t from the loadbalancing
architectural pattern inside the cloud computing environment. Accordingly,
CloudStore has two main advantages: (1) it refers to the well-speci�ed TPC-
W benchmark [Tra02] that is popular both in academia and industry and
(2) it represents a typical distributed legacy system for which a migration
needs to be planned, thus, �tting to one purpose of architectural analyses.

This section reports this case study on CloudStore. The CloudStore case
study re�nes the overall evaluation goal by focusing on planning a mi-
gration within the distributed and cloud computing domains. Therefore,
the AT method’s e�ectivity and e�ciency is evaluated in these domains
and their typical QoS properties (performance, scalability, elasticity, and
cost-e�ciency). By including this re�nement into the GQM template for
the overall evaluation goal, the particular goal of the CloudStore case study
is to:

335

C. Case Study Reports

Analyze: the AT method

For the purpose of: conducting architectural analyses for planning migra-
tions

With respect to: e�ectivity and e�ciency

From the viewpoint of: software architects and AT engineers

In the context of: realistic distributed and cloud computing systems.

To achieve this goal, CloudStore’s software architect requests a set of suit-
able ATs from an AT engineer. In this request scenario, the software archi-
tect’s request is of the broadest kind (cf. Section 4.1.3.1): the software archi-
tect requests ATs for a whole application domain (cloud computing) and
is interested in several QoS properties (performance, scalability, elasticity,
and cost-e�ciency). Therefore, the AT engineer is required to extensively
work on each action of the AT speci�cation process (cf. Section 4.1.3).

The remainder of this section is organized according to the reporting guide-
lines for case studies by Runeson and Höst [RH09]. After Section C.1.1
details the CloudStore application, Section C.1.2 describes the background
on cloud computing. Section C.1.3 describes the design of the case study
as a re�nement of the generic evaluation design from Section 5.2. After-
wards, Section C.1.4 provides the results of the case study, including an
interpretation and discussion of threats to validity.

C.1.1. CloudStore

This section details CloudStore based on its architectural model. We have
speci�ed this architectural model as PCM instance [LB16] by analyzing
the source code of the CloudStore implementation [Jav03]. The model’s
speci�cation has required us a total e�ort of approximately 214 hours for
its creation (83 hours e�ort), calibration (121 hours e�ort), and evaluation
(10 hours e�ort) [LB16].

Figure C.1 illustrates CloudStore’s model as a re�nement of the previously
described model of the online book shop from Chapter 3. Figure C.1 uses
the same syntax as the overview of the example book shop in Figure 3.4
by illustrating: (1) the static system structure of the CloudStore system

336

C.1. Case Study Report: CloudStore

via connected component instances, (2) the allocation of these instantiated
components to system resources (Web&ApplicationServer, ImageServer, Database
Server, and externally hosted External Services), and (3) the system entry point
for customers (interfaces for accessing web pages for books, home page,
shopping carts, and orders). Moreover, we modeled the dynamic behavior
as described next.

Web & Application Server

Image Server

Customer

Image
Loading

IImage

Image
Server
Connection

Shopping
Cart
PagesICart

Web &
Application Server
Connection

Order
Pages

IOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

DatabaseIDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

Legend:
compo-
nent

resource
containerrequests

provided
interface

required
interface

provided
infrastructure
interface

required
infrastructure
interface

infras-
structure
component

Figure C.1.: PCM model of the CloudStore online book shop.

Customers enter the system via the web pages provided by the Book Pages,
Home Page, Shopping Cart Pages, and Order Pages components allocated on the

337

C. Case Study Reports

Web & Application Server. Book Pages provides operations regarding books (e.g.,
to query book details or search for books). The Home Page component shows
CloudStore’s home page, which welcomes its customers and displays book
categories for browsing. Shopping Cart Pages allows customers to register, add
books to a shopping cart, and to check-out the shopping cart. Afterwards,
Order Pages allows to follow up on the order. Order pages can particularly
request payment services from the externally hosted Payment Gateway.

The aforementioned components require operations of the Database compo-
nent as allocated on the Database Server. CloudStore’s database stores entries
for books, customers, shopping carts, and orders. Moreover, if a returned
web page references images (e.g., book covers), a customer’s browser sub-
sequently fetches these references via the Image Loading component that is
allocated on the dedicated Image Server.

Requests to the Database are intercepted by a Database Access component
that manages database connections. Database Access receives [returns] such
connections from [to] the Database Connection Pool component. Also Web
& Application, Image, and Database Server use pools for handling customer
requests (Web & Application Server Connection, Image Server Connection, Database
Server Connection). These pools (white-colored infrastructure components
in Figure C.1) are typical performance factors as their pool-size limits the
number of requests that can be processed in parallel.

The PCM supports acquiring and releasing connections from these resource
pools within service e�ect speci�cations (SEFFs; cf. Section 2.5.3.1). In the
CloudStore model, every interaction requires the acquisition of connections
and its release once the interaction ends.

Figure C.2 illustrates this schema for SEFFs of web page component op-
erations that interact with database and image components. Actions (1)
to (3) model the performance impact of creating an HTML page, while
action (4) models the performance impact of subsequently resolving image
references. These two phases—receiving an HTML page and subsequently
its references—re�ect the typical behavior of web browsers [JW04].

CloudStore uses transactions for write operations when creating new cus-
tomers, books, and orders. Such transactions typically have a major perfor-
mance impact [JW04]. The CloudStore model again employs the concept
of connection pools (with pool-size one) to model these transactions.

338

C.1. Case Study Report: CloudStore

(4) Interact with
Image Loading

(2) Interact with
Database Access &
Create HTML Page

Component: Database Access

Component: Image Loading

(1) Acquire Web &
Application Server

Connection

(3) Release Web &
Application Server

Connection

(2.1) Acquire
Database

Connection

(2.2) Access
Database

(2.3) Release
Database

Connection

(4.1) Acquire
Image Server
Connection

(4.2) Load
Image

(4.3) Release
Image Server
Connection

Component: Database

(2.2.1) Acquire
Database Server

Connection

(2.2.2) Use
Database

(2.2.3) Release
Database Server

Connection

Figure C.2.: Behavior of web page components interacting with database and image
components.

Besides modeling the static structure and the behavior of CloudStore, we
also modeled the “Browsing Mix” customer workload according to the
TPC-W speci�cation [Tra02]. “Browsing Mix” is a workload where cus-
tomers browse through the book catalog and occasionally order books. We
speci�ed the probabilities with which 400 concurrent customers call the 14
CloudStore operations provided by the system interfaces IBook, IHome, ICart,
and IOrder. Operations are realized within respective components (each
operation is modeled as SEFF according to Figure C.2). For example, the
home page is requested in 29.00 % while orders are placed in only 0.69 % of
all cases [Tra02].

CloudStore’s complete architectural model, documentation, deployment
scripts, source code, and raw measurement data are available online at
[Clo16a]. Moreover, we have documented the model creation process via
online screencasts [Clo16b].

C.1.2. Background: Cloud Computing

Cloud Computing systems extend the distributed computing domain where
systems interact over networks [BHS07a, p. 558]. Systems in the cloud
computing domain additionally utilize elasticity mechanisms [EPM13], i.e.,
mechanisms that allow systems to autonomously (de)allocate computing
services on demand and in a pay-per-use fashion [MG11].

339

C. Case Study Reports

This section details these concepts and their consequences on software
quality in the following. Section C.1.2.1 brie�y introduces cloud providers
and cloud consumers as main roles in cloud computing. Afterwards, Sec-
tion C.1.2.2 describes essential cloud computing characteristics. These char-
acteristics induce novel quality properties as described in Section C.1.2.3.
To quantify these properties, Section C.1.2.4 describes suitable metrics.

C.1.2.1. Cloud Computing Roles

In the cloud computing domain, cloud providers o�er computing services
to cloud consumers [LTM+12]. In the CloudStore case study, the com-
pany behind CloudStore acts both as cloud provider (by providing services
for browsing and ordering books) and as cloud consumer (by consuming
computing services of the targeted cloud computing environment).

C.1.2.2. Cloud Computing Characteristics

For engineering applications of cloud providers, software architects have to
consider the essential characteristics of the cloud computing domain. The
well-accepted and standardized NIST de�nition of cloud computing [MG11]
states that the following characteristics are essential:

On-demand self-service: A cloud consumer can request additional services
on demand, that is, without requiring human interaction on the
cloud provider side.

Broad network access: Cloud providers provide access to services through
standardized network interfaces, thus supporting both thin and thick
clients on the cloud consumer side.

Resource pooling: Cloud providers can group services, e.g., for storage,
processing, and memory resources, into pools from which multiple
cloud consumers can be served. In such a setup, each cloud consumer
is unaware of the activities of other cloud consumers and actual
physical resources, so that the number of available services appears
to be unlimited.

340

C.1. Case Study Report: CloudStore

Rapid elasticity: Services of cloud providers can autonomously scale-in
and scale-out, depending on cloud consumer demand, through an
elasticity management.

Measured service: Cloud providers measure the usage of services by the
cloud consumers. Cloud consumers typically only pay for the ser-
vices they have used or reserved (pay-per-use).

C.1.2.3. Cloud Computing Properties

Scalability, elasticity, and cost-e�ciency are quality properties that cloud
providers have to consider to minimize operation costs while ful�lling SLOs
as best as possible. These properties are the focus of the CloudStore case
study and can be de�ned based on the concept of capacity. As described in
De�nition C.1, the capacity of a service de�nes the amount of workload
caused by cloud consumers the service can withstand before violating its
SLOs.

De�nition C.1 (Capacity) “Capacity is the maximum workload a service
can handle as bound by its SLOs.” [LEB15]

For example, CloudStore may have a capacity of 100 consumers per second
with a constant work. The limiting factor that determines this capacity may
be a CPU with a too low processing rate or a too strict SLO. Therefore, both
increasing the CPU’s processing rate and agreeing on less restrictive SLOs
can be options to increase capacity.

Based on capacity, the quality properties scalability, elasticity, and cost-
e�ciency can be de�ned as follows:

Scalability: As stated in De�nition C.2, scalability is a quality property
that tells whether a service can increase its capacity by consuming
more services provided by cloud providers, i.e., of underlying service
layers. Here, only this ability is important—not the degree to which
a service can increase capacity.

De�nition C.2 (Scalability) “Scalability is the ability of a service to
increase its capacity by expanding its quantity of consumed lower-layer
services.” [LEB15]

341

C. Case Study Reports

Examples for underlying services are third-party services (e.g., a
payment service for web shops) and directly consumed resources
(e.g., servers, CPUs, and hard disk drives). Given a service that
consumes all of these lower-level services, it is scalable if an increased
consumption of at least one underlying service leads to an increased
capacity. That is, consuming either more third-party services (e.g.,
by issuing more parallel requests to the payment service) or more
direct resources (e.g., by using more servers) leads to an increased
capacity.

An example of an unscalable service is a service where many con-
sumers share items of the same database and, whenever a change
of a single item is made by a consumer, this part of the database
is locked. Changes made by other consumers on this item cannot
be processed until the �rst consumer is �nished. The capacity of
such a service stays at 1 customer per request, independent of the
number of additional database servers, CPUs, etc. To make such a
service scalable, alternative means to manage database items have
to be found, e.g., by using alternative databases with less restrictive
constraints on data consistency or by assigning database items to
dedicated consumers only.

Elasticity: As stated in De�nition C.3, elasticity describes to which extend a
service can adapt its capacity to changes in workload. Elasticity needs
to be considered over time for changing workloads, e.g., for sudden
workload peaks that require an adaptation of capacity. Such an
adaptation needs to be timely, i.e., such that potential SLO violations
are minimized. Timeliness entails an adaptation process that is
autonomous, i.e., is either automated or is guaranteed to be manually
realized in time.

De�nition C.3 (Elasticity) “Elasticity is the degree a service au-
tonomously adapts capacity to workload over time.” [LEB15]

Based on this de�nition, a service needs to be able to adapt its ca-
pacity to be elastic. Because exactly this property is captured in
scalability, scalability is a prerequisite of elasticity. For example, a
service is elastic that dynamically boots a dedicated virtual machine

342

C.1. Case Study Report: CloudStore

that copes with work-intensive requests (and shuts these machines
down once the request has been served).

The bene�t of an elastic service is that at each point in time, only
the minimal amount of underlying services is used (in the example
above: a minimal number of virtual machines). This minimization
improves the cost-e�ciency of the service.

Cost-E�iciency: As stated in De�nition C.4, cost-e�ciency measures how
many lower-layer services a service consumes to serve the capacity
demanded by cloud consumers over time. A cost-e�cient service
minimizes its service consumption without becoming unable to pro-
vide the demanded capacity.

De�nition C.4 (Cost-E�ciency) “Cost-e�ciency is a measure re-
lating demanded capacity to consumed services over time.” [LEB15]

For example, CloudStore’s application server may provide a capacity
of 100 consumers per second. Adding an additional application server
for loadbalancing requests is cost-ine�cient as long as less than 100
consumers per second arrive.

C.1.2.4. Cloud Computing Metrics

In our previous work [BLB15], we have followed the GQM method to sys-
tematically derive metrics for capacity, scalability, elasticity, and e�ciency.
This section brie�y describes these metrics using the book shop example
from Chapter 3. In the CloudStore case study, we employ these metrics to
specify and analyze SLOs.

Capacity Metrics The following metrics allow to quantify capacity:

ClosedWorkload Capacity (CWC) quanti�es, for a �xed amount of lower-
layer services, the maximum closed workload a service can handle as
bound by its SLOs. The closed workload is quanti�ed by its number
of concurrent users.

For example, a perfectly scalable book shop A can scale up to an
in�nite number of customers, i.e., providesCWCA = ∞ customers . A

343

C. Case Study Reports

less scalable book shop B, for example, may scale up to a concurrent
number of 100 customers , i.e., CWCB = 100 customers .

OpenWorkload Capacity (OWC) quanti�es, for a �xed amount of lower-
layer services, the maximum open workload a service can handle as
bound by its SLOs. The open workload is quanti�ed by its request
rate.

For example, a perfectly scalable book shop A can scale up to an in�-
nite request rate, i.e., provides OWCA = ∞ requests/minute . A less
scalable book shop B, for example, may scale up to a concurrent num-
ber of 100 requests per minute, i.e., OWCB = 100 requests/minute .

Scalability Metrics The following metrics allow to quantify scalability:

ClosedWorkload Scalability Range (CWSR) quanti�es a service’s increase
in capacity if adding lower-layer services. The metric reuses CWC
to quantify capacity.

For example, a book shopAmay be able to deal with an additional 100
concurrent customers when distributing workload over an additional
application server, i.e., CWSRA = 100 customers . A non-scalable
book shop B will have CWSRB = 0 customers .

OpenWorkload Scalability Range (OWSR) quanti�es a service’s increase
in capacity if adding lower-layer services. The metric reuses OWC
to quantify capacity.

For example, a book shopAmay be able to deal with an additional 100
customers per minute when distributing workload over an additional
application server, i.e.,OWSRA = 100 customers/minute . In contrast,
a non-scalable book shop B will haveOWSRB = 0 customers/minute .

Elasticity Metrics The following metrics allow to quantify elasticity:

Number of SLO violations (NSLOV) counts a service’s number of SLO vio-
lations over a de�ned time interval. Over time, a service may adapt
to workload changes to minimize such violations.

344

C.1. Case Study Report: CloudStore

For example, over the whole time an in-elastic book shop A is
observed, a total of NSLOV = 100 SLO violations may be mea-
sured. After a modi�cation to an elastic book shop B, the measure-
ment may result in NSLOV = 10 SLO violations . A more proac-
tive con�guration of book shop B may achieve the optimum, i.e.,
NSLOV = 0 SLO violations . However, more proactivity may come
at the cost of higher operation costs (thus, motivating trade-o�s with
cost-e�ciency metrics).

Mean Time To Quality Repair (MTTQR) quanti�es the mean time a service
needs to re-establish its SLOs when the workload increases/decreases
for a de�ned workload delta (the increase/decrease between two
workloads; speci�ed as factor). Because it de�nes a mean time,
MTTQR is speci�c for a speci�ed time frame in which the mean is
calculated.

For example, with a workload increase factor of 1.2 requests/minute ,
a perfectly elastic book shopAwill adapt itself to the increasing work-
load within zero time. That is, MTTQRA,1d (1.2 requests/minute) =
0minutes (calculated over one day). A less elastic book shop B may
need a mean time of 10minutes to adapt itself to increasing work-
load after it detects the workload increase. In this case, it holds that
MTTQRB,1d (1.2 requests/minute) = 10minutes .

Cost-E�iciency Metrics The following metrics quantify cost-e�ciency:

Resource Provisioning E�iciency (RPE) quanti�es the match (in percent-
age) between a service’s resource demand and actual resource uti-
lization while the workload is changing. The baseline for minimal
resource utilization for a given demand is derived from dedicated
capacity metrics, e.g., the CWC-based number of users that can be
served with a given set of resources.

A perfectly cost-e�cient book shopA will adapt its resource demand
exactly to the resource demand at all times. For example, if the
workload increases with factor 1.2, the book shop will provision
exactly that amount of additional resources required to cope with
this additional workload, i.e., RPEA(1.2 requests/minute) = 1.0.

345

C. Case Study Reports

Operation costs (OC) quantify a service’s operation costs over a de�ned
time interval.

For example, over the whole time a book shop A is observed, a total
of OC = $100.00 may be measured.

Marginal costs (MC) quantify a service’s operation costs to serve an addi-
tional workload unit.

For example, the operation costs to serve 20% additional requests per
second (factor 1.2) can be $1.00 for a book shop A, i.e., MCA(1.2) =
$1.00.

C.1.3. CloudStore: Case Study Design

This section covers the design of the CloudStore case study. Section C.1.3.1
brie�y points to relevant research questions and procedures for data col-
lection, analysis, and validation. Afterwards, Section C.1.3.2 describes the
CloudStore case as a migration scenario for CloudStore. Suitable human
subjects for the case study are selected in Section C.1.3.3.

C.1.3.1. CloudStore: Research Questions and Procedures

In the CloudStore case study, we employ the complete evaluation design
introduced in Section 5.2, i.e., we reuse its research questions and the
procedures for data collection, analysis, and validity.

C.1.3.2. CloudStore: Case

The CloudStore case—as introduced in this section—describes a scenario
where CloudStore is migrated from the distributed computing domain to
the cloud computing domain (cf. Section C.1.2).

In the following, we describe this case from the perspective of CloudStore’s
main software architect. The software architect proceeds in three phases:
�rst, the software architect initiates a collaboration with an AT engineer
to identify a suitable architectural analysis approach (Palladio is �nally

346

C.1. Case Study Report: CloudStore

selected); second, the software architect modernizes the legacy version
of CloudStore to make it scalable; third, the software architect migrates
the modernized CloudStore version to a cloud computing environment to
make it more cost-e�cient. In phases two and three, the software architect
particularly requests and applies suitable ATs from the AT engineer (ATs
capturing the three-layer architectural style, the loadbalancing architectural
pattern, and knowledge speci�c to the cloud computing domain).

Figure C.3 provides an overview of these three phases by annotating each
phase to the development process with architectural analyses (cf. Sec-
tion 2.5.1) extended by processes of the AT method (cf. Section 4.1). Each
of these phases is detailed in the following.

(1) engineer
require-
ments

(2) specify architectural model
(3) conduct
architectural

analysis

SLOs

Legend: action flow of artifactchange of action

analysis
results

usage
models

architectural
model

request:
analysis approach for
scalability, elasticity,

cost-efficiency

?

…

three-layer AT &
loadbalancing AT

suitable definitions,
metrics, and analysis
approach (Palladio)

(2*) specify ATs

AT
engineer

request:
three-layer AT &
loadbalancing AT

?
request:

ATs for elasticity &
cost-efficiency

?

AT catalog for
cloud computing

software
architect

phase

phase 1:
architectural analysis
approach identification

phase 2:
CloudStore
modernization

phase 3:
CloudStore
migration

Figure C.3.:Overview of the three phases in the CloudStore case.

347

C. Case Study Reports

Phase 1: Architectural Analysis Approach Identification The goal of Cloud-
Store’s software architect is to migrate CloudStore to the cloud computing
domain, with a focus on the QoS properties scalability, elasticity, and cost-
e�ciency. For planning this migration, the software architect wants to
apply the AT method and starts a cooperation with an AT engineer.

In the �rst phase of their cooperation, they want to agree on common
de�nitions of scalability, elasticity, and cost-e�ciency and identify a suitable
analysis approach for these properties. Table C.1 summarizes this request
according to the classi�cation from Section 4.1.3.1.

Table C.1.: Request for a suitable architectural analysis approach

• Requested architectural analysis approach (QoS properties): scalabil-
ity, elasticity, cost-e�ciency

The CloudScale project [BSL+13, LB14b] has indeed requested to analyze
the QoS properties scalability, elasticity, and cost-e�ciency, which triggered
the CloudStore case study. The �nal result were the de�nitions given in
Section C.1.2.3, corresponding metrics described in Section C.1.2.4, and the
integration of these metrics into Palladio [LB14a]. Palladio was selected
because of its support of QoS properties related to scalability, elasticity, and
cost-e�ciency (cf. Section 2.5.3). The results section of the CloudStore case
study (Section C.1.4) reports further details; the remaining phases assume
that Palladio is the �nally identi�ed and employed architectural analysis
approach.

Phase 2: CloudStore Modernization CloudStore’s software architect has
created the architectural model of CloudStore illustrated in Figure C.1—a
legacy model without applied ATs. This architectural model is the starting
point for CloudStore’s modernization in the second phase.

As described in Section C.1.1, the software architect knows that customers
behave according to the “BrowsingMix” workload; a workload where cus-
tomers mainly browse and occasionally order books. A maximum of 400
concurrent customers initially use CloudStore; however, a domain analysis

348

C.1. Case Study Report: CloudStore

has revealed that this number is expected to increase to 500 customers in 1
year.

The software architect therefore wants to analyze whether modi�cations to
CloudStore are needed to cope with the increased workload. To maintain
the three-layer structure of the current architectural model during these
modi�cations, the software architect �rst requests an AT with appropri-
ate constraints from an AT engineer. The software architect particularly
requests an AT suitable for Palladio, i.e., the previously identi�ed and em-
ployed architectural analysis approach. Table C.2 summarizes this request
according to the classi�cation from Section 4.1.3.1.

Table C.2.: Request for AT capturing the three-layer architectural style

• Requested architectural knowledge (direct request): three-layer ar-
chitectural style

• Requested architectural analysis approach (direct request): Palladio

To improve scalability, the software architect further requests an AT to
investigate the option to integrate a loadbalancer and replicated components
into CloudStore. As before, the software architect plans to use the AT in
conjunction with Palladio. Table C.3 summarizes this request according to
the classi�cation from Section 4.1.3.1.

Table C.3.: Request for AT capturing the loadbalancing architectural pattern

• Requested architectural knowledge (direct request): loadbalancer
architectural pattern

• Requested architectural analysis approach (direct request): Palladio

After having applied the requested ATs, the software architect �nally
wants to analyze whether CloudStore has bene�ted from this application.
Therefore, the software architect speci�es the SLOs stated in Table C.4.
SLOPerformance refers to a classical performance metric (response time)
while SLOCapacity and SLOScalability refer to cloud computing metrics from

349

C. Case Study Reports

Section C.1.2.4 (CWC and CWSR, respectively). Moreover, SLOCapacity and
SLOScalability relate to number of replicas as the number of loadbalanced
entities; an expected parameter of the requested loadbalancing AT.

Table C.4.:CloudStore’s SLOs for phase 2 (modernization)

SLOPerformance: 90% of CloudStore’s responses for browsing and ordering
books shall have a maximum response time of 1 second.

SLOCapacity: CloudStore shall handle up to 400 concurrent customers with-
out violating SLOPerformance for number of replicas = 1.

SLOScalability: CloudStore’s capacity shall increase to 500 concurrent cus-
tomers for number of replicas = 2.

Phase 3: CloudStore Migration In the third and �nal phase, the software
architect wants to analyze whether CloudStore can bene�t from a migration
to a cloud computing environment. The software architect expects that the
environment’s elasticity mechanisms help to increase CloudStore’s capacity
in peak workloads while lowering operation costs during periods of lower
workloads.

Therefore, the software architect requests ATs that capture reusable archi-
tectural knowledge to foster typical cloud computing properties (cf. Sec-
tion C.1.2.3). The software architect again wants to use resulting ATs in
conjunction with Palladio. Table C.5 summarizes this request according to
the classi�cation from Section 4.1.3.1.

Table C.5.: Request for ATs capturing reusable architectural knowledge that fosters
cloud computing properties

• Requested architectural knowledge (application domain): cloud com-
puting

• Requested architectural analysis approach (direct request): Palladio

350

C.1. Case Study Report: CloudStore

To analyze whether CloudStore has bene�ted from the application of the
resulting ATs, the software architect speci�es the additional SLOs stated
in Table C.6. SLOElasticity and SLOCost-E�ciency refer to cloud computing
metrics from Section C.1.2.4 (NSLOV and OC , respectively).

Table C.6.:CloudStore’s additional SLOs for phase 3 (migration)

SLOElasticity: At most 1 violation of SLOPerformance occurs per 100 requests.

SLOCost-E�iciency: Over a period of one year, the migrated CloudStore version
has lower operation costs than the modernized CloudStore version
from phase 2.

C.1.3.3. CloudStore: Subjects

In the CloudStore case study, subjects acting as software architects, AT
engineers, and AT testers are required. Several subjects have participated.

I acted both as software architect and as lead AT engineer. Because I
introduced the AT method, I am expected to have deep knowledge about
the AT method and minimal learning e�orts.

A student worker, Daria Giacinto, cooperated with me in creating ATs as
additional AT engineer during an overall timeframe of one year. Moreover,
she acted as AT tester for all ATs in the CloudStore case study. She has
introduced testing as quality assurance approach to the AT method in her
Master’s thesis [Gia16] and is therefore expected to have deep knowledge
especially in this area.

Another student worker, Hendrik Eikerling, has cooperated with me in
identifying QoS properties as part of the �rst action of the AT speci�cation
process (cf. Section 4.1.3.2), He conducted a systematic literature review
to identify de�nitions and metrics for the QoS properties scalability, elas-
ticity, and cost-e�ciency in his Bachelor’s thesis [Eik14]. We particularly
published the systematic literature review at a conference on software archi-
tecture [LEB15] and received a distinguished paper award. The publication
and the award are indicators for a successful conduction of the �rst action
of the AT speci�cation process.

351

C. Case Study Reports

A colleague and PhD student, Matthias Becker, has cooperated with me
in deriving further metrics for scalability, elasticity, and cost-e�ciency.
We used a GQM plan for this derivation and published our results at a
conference on software architecture [BLB15]. This publication is an addi-
tional indicator for a successful conduction of the �rst action of the AT
speci�cation process.

A colleague and senior researcher, Ste�en Becker, has participated in ex-
tending tools and in discussions, coauthored papers on our �ndings [LEB15,
BLB15], and reviewed several results. He therefore conducted quality as-
surance steps throughout the CloudStore case study; related to actions of
both software architects and AT engineers.

C.1.4. CloudStore: Results

This section reports the results of the CloudStore case study. The report
starts in Section C.1.4.1 to Section C.1.4.3 with the execution of each of the
three phases of the CloudStore case. The empirical data created during this
execution is analyzed in Section C.1.4.4 and interpreted in Section C.1.4.5.
Both analysis and interpretation follow the GQM plan from Section 5.2,
which eventually allows to answer the GQM plan’s research questions and
to assess the case study’s goal attainment. Potential threats to validity of
the CloudStore case study are �nally discussed in Section C.1.4.6.

C.1.4.1. CloudStore: Execution of Phase 1

In phase 1 of the CloudStore case (cf. Section C.1.3.2), the software architect’s
request for an architectural analysis approach for scalability, elasticity, and
cost-e�ciency has triggered the �rst action of the AT speci�cation process
from Section 4.1.3: identify QoS properties and suitable analysis approaches.
This action ensures that an architectural analysis approach is selected that
can analyze the QoS properties of interest.

Acting as AT engineers, we have started by inspecting the support of ex-
isting approaches for scalability, elasticity, and cost-e�ciency [LEB15].
Because no approach su�ciently provided support for these properties, we
decided to integrate such a support into Palladio [LB14a]. We have selected

352

C.1. Case Study Report: CloudStore

Palladio as basis for this integration because Palladio is the only architec-
tural analysis approach supporting elastic environments (cf. Section 2.5.3.2)
and because we have previous experience with Palladio.

We have integrated support for scalability, elasticity, and cost-e�ciency
as follows. First, we conducted a systematic literature review to identify
suitable de�nitions [LEB15], which has resulted in the de�nitions described
in Section C.1.2.3. From these de�nitions, we elaborated a goal-question-
metric plan [BLB15], which has resulted in the metrics described in Sec-
tion C.1.2.4. Next, we integrated these metrics in Palladio [LB14a] via the
QuAL framework (cf. Appendix B.3.1). This integration �nally enabled
analyses of scalability, elasticity, and cost-e�ciency in Palladio.

C.1.4.2. CloudStore: Execution of Phase 2

In phase 2 of the CloudStore case (cf. Section C.1.3.2), we modernize Cloud-
Store based on ATs for the three-layer architectural style and the loadbal-
ancing architectural pattern. This section �rst describes our speci�cation
of these ATs, second our application of the resulting ATs to modernize
CloudStore, and third our conduction of an architectural analysis to check
whether these ATs have helped to satisfy the SLOs of phase 2.

Specifying the three-layer and loadbalancingATs The software architect’s
request for ATs has triggered two iterations through the AT speci�cation
process from Section 4.1.3: the �rst iteration for capturing the three-layer
architectural style and the second iteration for capturing the loadbalancing
architectural pattern. We have executed these two iterations as follows.

Iteration I: Three-Layer AT. Acting as AT engineers, we have executed
the actions of the AT speci�cation process from Section 4.1.3 to specify the
three-layer AT. After �nishing with action (1) in phase 1, we have continued
with the subsequent actions of this process:

(2) select reusable architectural knowledge. In cooperation with the soft-
ware architect, we agreed on a common understanding of the three-
layer architectural style. We have agreed on the description previ-
ously given in Section 2.2.4.1: the three-layer architectural style is a
common style to structure a system into three logical layers [BHS07a]

353

C. Case Study Reports

(a presentation layer, an application layer, and a data access layer).
Each of these layers can only access the respective lower-level layer.
Because of this restriction, a three-layer system becomes loosely
coupled and therefore more maintainable.

(3) specify ATs (with parametrizable roles, constraints, completions).
In the three-layer AT, we have captured each layer of the three-layer
architectural style via dedicated roles. Another dedicated role for
a three-layer system captures system-wide constraints (opposed to
layer-speci�c constraints). Because architectural styles involve no
decisions about the existence of elements, we only had to formalize
such constraints of AT roles—and no completions—to de�ne role
semantics. Figure C.4 illustrates the three-layer AT with its roles
and constraints using the graphical concrete syntax for ATs (cf. Sec-
tion 4.2.5.3).

@three-layer

@presentation layer

inv Applied to assembly context:
 self.appliedTo.oclIsType(
 pcm::core::composition::AssemblyContext)
 …

@three-layer system

inv Applied to system:
 self.appliedTo.oclIsType(
 pcm::system::System)
inv No direct connectors from presentation to data access layer assembly contexts:
 self.appliedTo.connectors->forAll(c |
 c.requiring(hasAppliedStereotype('presentation layer') implies
 c.providing(not(hasAppliedStereotype('data access layer'))
inv Every assembly context must be bound to a layer role:
 self.appliedTo.assemblyContexts->forAll(a |
 a.hasAppliedStereotype('presentation layer') or
 a.hasAppliedStereotype('application layer') or
 a.hasAppliedStereotype('data access layer'))
…

@application layer

…

@data access layer

…

Figure C.4.: The three-layer AT (excerpt).

Figure C.4 depicts several AT constraints formulated via OCL. Each
role includes a constraint to ensure that it is bound to the correct
architectural element. For example, the presentation layer AT role
can only be bound to PCM assembly contexts (“Applied to assembly

354

C.1. Case Study Report: CloudStore

context” invariant in Figure C.4) and the three-layer system AT role
can only be bound to PCM systems (“Applied to system” invariant in
Figure C.4). As prescribed by the three-layer architectural style, the
three-layer system AT role further includes a constraint to ensure
that presentation layer assembly contexts are not directly connected
to data access layer assembly contexts (“No direct connectors from
presentation to data access layer assembly contexts” invariant in
Figure C.4). An additional constraint ensures that each assembly
context within a three-layer system is bound to a dedicated layer
(“Every assembly context must be bound to a layer role” invariant in
Figure C.4).

In sum, we have formulated 17 OCL constraints. Figure C.4 omits the
remaining constraints for brevity; the AT catalog coming with AT
tooling [ATt] includes all OCL constraints. Moreover, the CloudScale
Wiki [Clob] provides a detailed description of the three-layer AT
using POSA’s initiator template for describing reusable architectural
knowledge (cf. Section 6.3.1.1).

(4) assure the quality of the specified ATs, e.g., by testing. We formulated
38 test cases as reported by Giacinto [Gia16, Sec. 6.2], e.g., a test
case where presentation layer components directly communicate
with data layer components. Thereby, we assured correctness (are
constraint violations detected?) and completeness of constraints.
We unveiled and added the “Every assembly context must be bound
to a layer role” constraint (as illustrated in Figure C.4) only after a
corresponding test case has failed.

Iteration II: Loadbalancing AT. Continuing our work as AT engineers,
we have reiterated through the actions of the AT speci�cation process
from Section 4.1.3 to specify the loadbalancing AT. Analogously to the �rst
iteration, as we have �nished with action (1) already in phase 1, we only
had to continue with subsequent actions:

(2) select reusable architectural knowledge. In cooperation with the soft-
ware architect, we agreed on a common understanding of the load-
balancing architectural pattern. We have agreed on the description
previously given in Section 2.2.4.2: the loadbalancing architectural
pattern [BHS07a] requires the existence of a loadbalancer that dis-
tributes workload. Variation points include the architectural element

355

C. Case Study Reports

to be loadbalanced (e.g., a resource container with all deployed as-
sembly contexts or only a single assembly context), the number of
replicas, and the loadbalancing strategy (e.g., round-robin).

(3) specify ATs (with parametrizable roles, constraints, completions).
Subsequently, we have formalized two variants of the loadbalancing
AT, depending on the architectural element to be loadbalanced. We
have formalized a variant for whole resource containers and a variant
for single assembly contexts to be loadbalanced.

For resource containers, the loadbalancing AT introduces the role
of a “loadbalanced container” with a formal parameter “number
of replicas”. Figure C.5 illustrates this variant using the graphical
concrete syntax for ATs (cf. Section 4.2.5.3). For assembly context, the
loadbalancing AT analogously introduces a “loadbalanced assembly
context” role.

@loadbalancing

@loadbalanced container (
 number of replicas : Integer
)

inv Applied to resource container:
 self.appliedTo.oclIsType(
 pcm::resourceenvironment::ResourceContainer)
 inv At least one replica:
 self.number of replicas > 0
…

 LoadbalancedContainer.qvto

Figure C.5.: The loadbalancing AT for resource containers (excerpt).

Figure C.5 depicts two AT constraints within the “loadbalanced con-
tainer” role. The �rst constraint ensures the role can only be bound
to resource containers (“Applied to resource container” invariant in
Figure C.5). The second constraint ensures that loadbalancers are
always con�gured with a positive “number of replicas” (“At least
one replica” invariant in Figure C.5).

Furthermore, we have formalized the semantics to attach a loadbal-
ancer to elements bound to the “loadbalanced container” role. For
our formalization, we have speci�ed an appropriate AT completion

356

C.1. Case Study Report: CloudStore

in QVT-O (one for each variant). For example, Figure C.5 depicts
that the resource container variant refers to a completion speci�ed
in the “LoadbalancedContainer.qvto” �le.

For each variant, the completion identi�es the bound element and
creates a loadbalancer assembly context on a dedicated loadbalanc-
ing server to which all of the element’s incoming connectors are
reconnected. Next, the completion generates replicas of the bound
element according to the actual parameter of “number of replicas”.
Then, the completion creates connectors from loadbalancer to each
of these replicas. Finally, the completion con�gures the loadbal-
ancer to distribute workload over these connectors in a round-robin
manner. Before an analysis is started, the AT engine executes this
completion, thus, forcing the existence of the loadbalancer. Using the
book shop example, Figure 4.4 exempli�es the result after executing
the completion for the resource container variant.

In sum, we have formulated 4 OCL constraints. Figure C.5 omits
the remaining constraints for brevity; the AT catalog coming with
AT tooling [ATt] includes all OCL constraints and all completions.
Moreover, the CloudScale Wiki [Clob] provides a detailed descrip-
tion of both variants of the loadbalancing AT using POSA’s initiator
template for describing reusable architectural knowledge (cf. Sec-
tion 6.3.1.1).

(4) assure the quality of the specified ATs, e.g., by testing. With a total of
54 tests (38 tests for the resource container variant and 26 tests
for the assembly context variant) [Gia16, Sec. 6.2], we assured that
both completions maintain the conceptual integrity to the captured
architectural knowledge.

The �rst iteration has resulted in 39% (15 of 38) failed tests for re-
source containers and 27% (7 of 26) for assembly contexts. The
failed tests provided 22 errors, which we pin-pointed to the typi-
cal root causes for violations of conceptual integrity described in
Section 4.1.3.3. For example, our completion for containers su�ered
from the “uncovered metamodel elements in completions” root cause
when creating replicas. Palladio supports nesting virtual machines
(VMs) into resource containers; however, our completion missed to
copy VMs from the original container. We successfully unveiled such

357

C. Case Study Reports

bugs with the help of tailored test cases, e.g., by testing the border
case “if the original resource container includes VMs, are there VMs
in its replicas after completion execution?”.

We accordingly �xed each detected error, e.g., by integrating the
missing functionality into the completion speci�cation. Afterwards,
we re-executed all tests in a second iteration, which resulted in 100 %
passed tests. This result shows that we removed all identi�ed causes
without introducing new errors and, thus, improved conceptual
integrity.

Applying the three-layer and loadbalancing ATs Now acting as software
architects, we applied the three-layer and the loadbalancing AT for resource
containers to the CloudStore model. We have followed the AT application
process from Section 4.1.1 as follows.

We bound the roles of the three-layer AT to assembly contexts as illustrated
in Figure C.6. Moreover, to distribute workload over the whole Web &
Application Server, we bound the loadbalanced container role of the loadbalancing
AT for resource containers to this server.

Figure C.6 shows that a validation of AT constraints reveals that we missed
to bind a logical layer to the Image Loading assembly context. This is an issue
because the three-layer AT requires an assignment for every component
(cf. the “Every assembly context must be bound to a layer role” constraint
speci�ed in Section C.1.4.2).

As illustrated in Figure C.7, we bound the presentation layer role to Image
Loading to �x the constraint violation. This binding is appropriate because
Image Loading presents images directly to customers. At this point, the three-
layer AT has helped us to maintain a model conforming to the three-layer
architectural style, i.e., it has improved maintainability of the modeled
system.

Conducting an architectural analysis for themodernized CloudStore Con-
tinuing to act as software architects, we analyzed the ful�llment of the
pre-speci�ed SLOs. We have followed the AT-based architectural analysis
process from Section 4.1.2 as follows.

358

C.1. Case Study Report: CloudStore

Web & Application Server

Image Server

Customer

Image
Loading

IImage

Image
Server
Connection

Shopping Cart
PagesICart

Web &
Application Server
Connection

Order
PagesIOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

Database

IDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

 loadbalancing
@loadbalanced container (
 number of replicas = 1
)

@pres. layer

@pres. layer

@pres. layer

@pres. layer

@appl. layer

@data acc.
 layer

X
A role of the
three-layer AT
needs to be bound.

 three-layer@three-layer system

Legend:

compo-
nent

resource
containerrequests

provided
interface

required
interface

provided
infrastructure
interface

required
infrastructure
interface

infras-
structure
component

applied AT
@role (
 parameter
 = value)

role binding
(external)

X constraint
violation

role binding
(internal/joint)

compo-
nent

@role

Figure C.6.: The three-layer and loadbalancing ATs applied to the CloudStore model
(with constraint violation).

The applied loadbalancing AT allows to analyze CloudStore’s SLOs by
varying the parameter number of replicas of the loadbalanced container role.
First, we con�gured a capacity analysis with Palladio for number of replicas
= 1 to calculate the maximum number of concurrent customers CloudStore
can handle without violating SLOPerformance. The result from Palladio
was 400 concurrent customers, thus, SLOPerformance and SLOCapacity were
ful�lled.

359

C. Case Study Reports

Web & Application Server

Image Server

Customer

Image
LoadingIImage

Image
Server
Connection

Shopping Cart
PagesICart

Web &
Application Server
Connection

Order
PagesIOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

Database

IDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

 loadbalancing
@loadbalanced container (
 number of replicas = 1
)

@pres. layer

@pres. layer

@pres. layer

@pres. layer

@appl. layer

@data acc.
 layer

 three-layer@three-layer system

Legend:

compo-
nent

resource
containerrequests

provided
interface

required
interface

provided
infrastructure
interface

required
infrastructure
interface

infras-
structure
component

applied AT
@role (
 parameter
 = value)

role binding
(external)

role binding
(internal/joint)

compo-
nent

@role

@pres. layer

Figure C.7.: The three-layer and loadbalancing ATs applied to the CloudStore model
(�xed version).

The capacity analysis particularly reports how response times are dis-
tributed. Figure C.8 illustrates these response times as a cumulative dis-
tribution function. For 400 customers, Figure C.8 shows that indeed 90%
(y-axis) of the response times are under the 1 second mark (x-axis).

We have repeated this analysis for number of replicas = 2. Interestingly, this
analysis resulted in a capacity of only 180 concurrent customers, thus, point-

360

C.1. Case Study Report: CloudStore

Cumulative Distribution Function (CDF)

1: 400 Customers; 1 Replica 2: 180 Customers; 2 Replicas

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Response Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
S
u
m

m
e
d
 P

ro
b
a
b
ili

ty
 [

%
] SLO

Performance

fulfilled:

90% response times  1 second

400 customers

180 customers

Figure C.8.:Cumulative distribution function of response times for di�erent work-
loads and con�gurations of the modernized CloudStore (phase 2).

ing to a violation of SLOScalability. Figure C.8 illustrates the corresponding
response time distribution for 180 customers.

To explain this capacity degradation, we additionally investigated the num-
ber of jobs waiting at the Database Server: for 400 customers and number
of replicas = 1, approximately 50 jobs wait at the Database Server; for 180
customers and number of replicas = 2, this number increased to 90. This
observation points to the Database Server as a reason for the capacity degrada-
tion. Because of the replicated Web & Application Server, an increased number
of concurrent jobs arrived at the Database Server. The increased workload
at the Database Server made this server CloudStore’s bottleneck. In the next
phase, we therefore investigate the option to use cloud computing knowl-
edge (i.e., the vertical scaling architectural pattern on the Database Server) to
increase capacity further.

361

C. Case Study Reports

C.1.4.3. CloudStore: Execution of Phase 3

After identifying the capacity degradation in the previous phase, we next
analyze whether elasticity mechanisms help to increase capacity while
lowering operation costs. Therefore, in phase 3 of the CloudStore case
(cf. Section C.1.3.2), we migrate CloudStore to a cloud computing environ-
ment. For this migration, we employ ATs that capture reusable architectural
knowledge to foster elasticity and cost-e�ciency: a stateless variant of the
three-layer architectural style and architectural patterns for horizontal and
vertical scaling. This section �rst describes our speci�cation of these ATs,
second our application of the resulting ATs to migrate CloudStore, and
third our conduction of an architectural analysis to con�rm that these ATs
have helped to satisfy the SLOs of phase 2 and phase 3.

Specifying the stateless three-layer, horizontal scaling, and vertical scal-
ing ATs The software architect’s request for ATs for elasticity and cost-
e�ciency has resulted in three iterations through the AT speci�cation
process from Section 4.1.3: the �rst iteration for capturing the stateless
three-layer architectural style, the second iteration for capturing the hori-
zontal scaling architectural pattern, and the third iteration for capturing the
vertical scaling architectural pattern. Each resulting AT is provided by the
AT catalog coming with AT tooling [ATt] and documented in the Cloud-
Scale Wiki [Clob] using POSA’s initiator template for describing reusable
architectural knowledge (cf. Section 6.3.1.1).

We have executed the three iterations as follows.

Iteration I: Stateless Three-Layer AT. Acting as AT engineers, we have
iterated through the actions of the AT speci�cation process from Sec-
tion 4.1.3 to specify the stateless three-layer AT. Because we �nished with
action (1) in phase 1, we directly continue with action (2):

(2) select reusable architectural knowledge. In cooperation with the soft-
ware architect, we agreed on a common understanding of the stateless
three-layer architectural style. Applications can follow the stateless
three-layer architectural style [Koz11b] to become elastic. Stateless
three-layer extends the three-layer style by additionally requiring
stateless assembly contexts on presentation and application layers.

362

C.1. Case Study Report: CloudStore

Because they are stateless, these assembly contexts (and resource
containers where they are deployed on) can safely be replicated.

(3) specify ATs (with parametrizable roles, constraints, completions).
In the next action, we have formalized the stateless three-layer AT
analogously to the three-layer AT but with an additional OCL con-
straint to check that components bound to presentation and appli-
cation layer are stateless: self.appliedTo.hasAppliedStereotype(’stateless’).
This constraint therefore ensures that software architects directly
get warnings when trying to bind stateful assembly context to these
layers.

Moreover, as indicated in the constraint speci�cation, we have de-
�ned a pro�le for PCM models that allows to annotate assembly
contexts with stereotypes “stateless” or “stateful”. Specifying such a
pro�le was necessary because the PCM lacks dedicated constructs
for such annotations. ATs that share this constraint (loadbalancing
AT and horizontal scaling AT) can safely be applied in the stateless
three-layer architectural style.

(4) assure the quality of the specified ATs, e.g., by testing. Giacinto tested
the stateless three-layer AT analogously to the three-layer AT but
with additional test cases for triggering violations and ful�llments
of the additional constraint [Gia16, Sec. 6.2].

Iteration II: Horizontal Scaling AT. Continuing our work as AT engi-
neers, we have reiterated through the actions of the AT speci�cation process
from Section 4.1.3 to specify the horizontal scaling AT. As before, because
we �nished with action (1) in phase 1, we directly proceed with action (2):

(2) select reusable architectural knowledge. In cooperation with the soft-
ware architect, we agreed on a common understanding of the horizon-
tal scaling architectural pattern. The horizontal scaling architectural
pattern [EPM13, FLR+14] extends the loadbalancing pattern such
that the loadbalancer dynamically adapts the required number of
replicas of containers or components to the current workload. While
the loadbalancing architectural pattern improves scalability only, the
horizontal scaling architectural pattern therefore improves elasticity
as well.

363

C. Case Study Reports

(3) specify ATs (with parametrizable roles, constraints, completions).
Subsequently, we have formalized two variants of a horizontal scaling
AT, a variant for resource containers and a variant for assembly
contexts. These ATs extend the corresponding loadbalancing ATs
with parameters that determine their dynamic adaptation behavior
with respect to current workload. Instead of a �xed number of
replicas, their AT roles therefore include parameters for the initial
number of replicas, a scale-in threshold, a scale-out threshold, and a
QoS monitor ID as illustrated in Figure C.9 for the resource container
variant.

@horizontal scaling

@horizontal scaling container (
 number of initial replicas : Integer,
 scale-in threshold : Double,
 scale-out threshold : Double,
 QoS monitor ID : String
)

inv …
…

 HorizontalScalingContainer.qvto

HorizontalScalingContainerAdaptationRules

Figure C.9.: The horizontal scaling AT for resource containers (excerpt).

We have formalized completions in QVT-O to de�ne the semantics of
these parameters. The completions create loadbalancers that initially
distribute workload over the given number of initial replicas of the
bound element.

Whenever a given threshold with respect to a QoS monitor identi�ed
by QoS monitor ID is exceeded, the number of these replicas is dy-
namically adapted. We have formalized this adaptation behavior via
QVT-O transformations, e.g., residing in the HorizontalScalingContainer-
AdaptationRules folder for the resource container variant (as illustrated
in Figure C.9). Palladio adapts the architectural model by executing
these transformations during analysis (cf. Section 2.5.3.2).

For example, a QoS monitor may measure the utilization of the CPU
of CloudStore’s Web & Application Server. Thresholds can then be set
to a maximum utilization of 80 % and a minimum utilization of 5 %

364

C.1. Case Study Report: CloudStore

like shown in Figure C.10. Whenever the Web & Application Server is
over-utilized, additional replicas are added and whenever the Web &
Application Server is under-utilized, existing replicas are removed.

Web & Application Server

Image Server

Customer

Image
LoadingIImage

Image
Server
Connection

Shopping Cart
PagesICart

Web &
Application Server
Connection

Order
PagesIOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

Database

IDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

@pres. layer

@pres. layer

@pres. layer

@pres. layer

@appl. layer

@data acc.
 layer

Legend:

compo-
nent

resource
containerrequests

provided
interface

required
interface

provided
infrastructure
interface

required
infrastructure
interface

infras-
structure
component

applied AT
@role (
 parameter
 = value)

role binding
(external)

@pres. layer

horizontal scaling
@horizontal scaling container (
 number of initial replicas = 1,
 scale-in threshold = 5%,
 scale-out threshold = 80%,
 QoS monitor ID = "_OU5…"
)

Figure C.10.: The horizontal scaling AT applied to the CloudStore model.

(4) assure the quality of the specified ATs, e.g., by testing. Via 64 tests (38
tests for the resource container variant and 26 tests for the assem-
bly context variant), we have assured the quality of the comple-
tions [Gia16, Sec. 6.2]. We proceeded analogously to the tests for the
loadbalancing ATs (cf. Section C.1.4.2).

365

C. Case Study Reports

Iteration III: Vertical Scaling AT. Continuing our work as AT engineers,
we have reiterated through the actions of the AT speci�cation process
from Section 4.1.3 to specify the vertical scaling AT. As before, because we
�nished with action (1) in phase 1, we directly proceed with action (2):

(2) select reusable architectural knowledge. In cooperation with the soft-
ware architect, we agreed on a common understanding of the vertical
scaling architectural pattern. The vertical scaling architectural pat-
tern [EPM13, FLR+14] requires that computing resources of a single
resource container can dynamically be (de-)provisioned. For ex-
ample, when a VM is employed as resource container, higher CPU
processing rates can be dynamically provisioned. Vertical scaling
therefore improves elasticity without requiring stateless components.
However, this pattern can only be applied if su�cient computing
resources are available. For example, a virtual CPU cannot provision
a higher processing rate than supported by the actual (physical) CPU
of the VM’s host.

(3) specify ATs (with parametrizable roles, constraints, completions).
Subsequently, we have formalized the vertical scaling AT via a verti-
cal scaling container role that can be bound to virtualized resource
containers. The parameters of this role enrich containers with self-
adaptive behavior for vertical scaling: a scale-up threshold and a
scale-down threshold for a QoS monitor (analogously to the horizontal
scaling AT) to trigger self-adaptations. Self-adaptations vertically
scale by in- or decreases the processing rate of the container’s pro-
cessing resources (e.g., CPUs) according to a rate step size parameter.
Moreover, this self-adaptation respects minimum and maximum
processing rates as speci�ed by the minimal rate and maximal rate
parameters. Figure C.11 illustrates the vertical scaling AT for resource
containers and its parameters.

We have formalized this adaptation behavior via QVT-O transforma-
tions, e.g., residing in the VerticalScalingContainerAdaptationRules folder
for the resource container variant (as illustrated in Figure C.11).
Palladio adapts the architectural model by executing these transfor-
mations during analysis (cf. Section 2.5.3.2).

(4) assure the quality of the specified ATs, e.g., by testing. Analogously to
previous ATs, we have assured the quality of this AT and its adapta-

366

C.1. Case Study Report: CloudStore

@vertical scaling

@vertical scaling container (
 scale-up threshold : Double,
 scale-down threshold : Double,
 rate step size : Double,
 minimal rate : Double,
 maximal rate : Double,
 QoS monitor ID : String
)

inv …
…

 VerticalScalingContainerAdaptationRules

Figure C.11.: The vertical scaling AT for resource containers (excerpt).

tion rules via 22 tests. Giacinto describes these tests in detail [Gia16,
Sec. 6.2].

Applying the stateless three-layer, horizontal scaling, and vertical scaling
ATs Acting again as software architects, we next applied the stateless
three-layer, horizontal scaling (for resource containers), and vertical scaling
ATs to the CloudStore model. We have followed the AT application process
from Section 4.1.1 as follows.

We bound the roles of the ATs to the CloudStore like illustrated in Fig-
ure C.12. We bound the roles of the stateless three-layer AT like we pre-
viously bound the three-layer AT. To automatically adapt the number of
replicas to workload, we bound the horizontal scaling container role of the
horizontal scaling AT for containers to the Web & Application Server (instead
of sticking to the previously applied loadbalancing AT). To cope with the
capacity degradation, we bound the vertical scaling container role of the
vertical scaling AT to the Database Server.

Conducting an architectural analysis for themigrated CloudStore Contin-
uing to act as software architects, we next analyzed the ful�llment of the
pre-speci�ed SLOs both for phase 2 and phase 3. We have followed the
AT-based architectural analysis process from Section 4.1.2 as follows.

367

C. Case Study Reports

Web & Application Server

Image Server

Customer

Image
LoadingIImage

Image
Server
Connection

Shopping Cart
PagesICart

Web &
Application Server
Connection

Order
PagesIOrder

Book
Pages

IBook

IConnect

IConnect

External Services

Payment
Gateway

IPay

Database
Connection
Pool

IConnect

Database Server

Database

IDB

Database
Server
Connection

IConnect

IBookDB

ICustomerDB

ICartDB

IOrderDB

Database
Access

Home
Page

IHome

@pres. layer

@pres. layer

@pres. layer

@pres. layer

@appl. layer

@data acc.
 layer

stateless three-layer@stateless three-layer system

Legend:

compo-
nent

resource
containerrequests

provided
interface

required
interface

provided
infrastructure
interface

required
infrastructure
interface

infras-
structure
component

applied AT
@role (
 parameter
 = value)

role binding
(external)

role binding
(internal/joint)

compo-
nent

@role

@pres. layer

horizontal scaling
@horizontal scaling container (
 number of initial replicas = 1,
 scale-in threshold = 5%,
 scale-out threshold = 80%,
 QoS monitor ID = "_OU…")

vertical scaling
@vertical scaling container (
 scale-down threshold: 5%,
 scale-up threshold: 80%,
 rate step size: 1 GHz,
 minimum rate: 1 GHz,
 maximum rate: 2 GHz,
 QoS monitor ID = "_S7…“)

Figure C.12.:ATs for elasticity and cost-e�ciency applied to the CloudStore model.

We have repeated the capacity analysis we executed during phase 2. The
application of the horizontal scaling AT has resulted in the same ful�llment
of SLOPerformance and SLOCapacity as the loadbalancing AT for number of
replicas = 1. The reason is that the AT’s self-adaptation rules decrease
the number of replicas from initially 2 to 1. Therefore, the application of

368

C.1. Case Study Report: CloudStore

this AT results in an elastic system that is more cost-e�cient than a static
con�guration of number of replicas = 2 for the loadbalancing AT; it saves 1
unnecessary replica and its operation costs, as con�rmed by a run of our
cost-e�ciency analysis with Palladio [LE15]. SLOCost-E�ciency is therefore
also ful�lled.

The application of the vertical scaling AT has additionally increased Cloud-
Store’s capacity to over 1, 000 concurrent customers (the maximum number
we considered for our analysis). Because the CPU of the Database Server
scaled-up to 2GHz, it serviced jobs twice as fast and evidently removed
the capacity degradation: even for 1, 000 concurrent customers, response
times were below the 0.2 seconds mark as we highlight in Figure C.13. In
Figure C.13, we particularly see that SLOElasticity is ful�lled because 100 %
of response times were below the 1 second mark.

Being con�dent that CloudStore will ful�ll all speci�ed SLOs, we (as soft-
ware architect) can continue now to implement, deploy, and operate Cloud-
Store according to its architectural model.

C.1.4.4. CloudStore: Analysis

The empirical data collected during the execution of the CloudStore case
study (previous sections) serves as input to the analysis conducted in this
section.

Table C.7 provides an overview of this data; depicted measurements directly
correspond to the metrics of our GQM plan (cf. Table 5.1 in Section 5.2). The
�rst column speci�es the metric of interest while the remaining columns
provide the measurements per phase and AT. Rows are grouped via hor-
izontal lines according to the research questions from Section 5.2. For
example, the �rst research question is covered by the �rst �ve rows of
metric measurements.

Table C.7.:Metric measurements collected in the CloudStore case study
phase 2 (modernization) phase 3 (migration)

369

C. Case Study Reports

th
re

e-
la

ye
r

lo
ad

ba
la

nc
er

(re
so

ur
ce

co
nt

ai
ne

r)

lo
ad

ba
la

nc
er

(a
ss

em
bl

y
co

nt
ex

t)

st
at

el
es

st
hr

ee
-la

ye
r

ho
riz

on
ta

ls
ca

lin
g

(re
so

ur
ce

co
nt

ai
ne

r)

ho
riz

on
ta

ls
ca

lin
g

(a
ss

em
bl

y
co

nt
ex

t)

ve
rti

ca
ls

ca
lin

g

Mtime: AT selection 1m . 2m . - 1m . 3m . - 4m .
Mtime: AT application 4m . 1m . - 2m . 3m . - 3m .
M#ATs 3 7
M#AT roles 4 1 1 4 1 1 1
M#AT parameters 0 1 1 0 4 4 6

M∆time - - - - - - -
M∆components 0 1 1 0 1 1 0
M∆assembly ctx.

∗ 0 1 + 7 ·
(r -1)

r 0 1 + 7 ·
(r -1)

r 0

M∆operations 0 0 0 0 0 0 0
M∆self-adapt. 0 0 0 0 803 697 150

M#detected violations 1 0 0 0 0 0 0
M#resolved violations 1 0 0 0 0 0 0

Mbene�ts “detected constraint violations helped to correctly apply the three-layer AT”,
“as an expert, AT application is a matter of a few minutes”, “the architectural
analysis showed that the application of the loadbalancing AT was not bene-
�cial in the given context; without analysis, this issue would have been hard
to show”

Mlimitations “creating ATs is cumbersome especially because of the error-prone speci�-
cation of EMF pro�les and complicated debugging mechanisms”, “creating
only slightly di�erent ATs requires high e�ort”, “specifying OCL constraints
is complicated because there is no statical analysis for a correct syntax”, “al-
tering the behavior of self-adaptation rules requires an adaptation of the AT;
such adaptations should be easier”, “conceptually, the three-layer AT does
not completely �t to CloudStore”

Mtime: identi�cation ∼ 2.5personmonths (executed in phase 1 for all ATs)
Mtime: selection ∼ 1h . ∼ 1h . ∼ 1h . ∼ 3h . ∼ 1h . ∼ 1h . ∼ 1h .
Mtime: speci�cation ∼ 3h . ∼ 4h . ∼ 4h . ∼ 1h . ∼ 6h . ∼ 6h . ∼ 2h .
Mtime: quality assur. ∼ 3h . ∼ 3h . ∼ 3h . ∼ 3h . ∼ 3h . ∼ 3h . ∼ 3h .
M#AT roles 4 1 1 4 1 1 1
M#AT constraints 17 4 4 19 7 7 10
M#completion LOC 0 714 693 0 857 752 150

M#detected errors 1 15 7 10 19 11 12
M#resolved errors 1 15 7 10 19 11 12
∗ r denotes the number of (initial) replicas with r ≥ 1.

Structured along these research questions, the corresponding measurements
depicted in Table C.7 are analyzed in the following. The analysis covers a
brief description of the measurements and the test of hypotheses associated
to each research question. The interpretation of the analysis is left to a
dedicated interpretation section (Section C.1.4.5).

370

C.1. Case Study Report: CloudStore

Cumulative Distribution Function (CDF)

1: 400 Customers; 1 Replica 2: 180 Customers; 2 Replicas

3: 1,000 Customers; 2 Replicas; Vertical Scaling Database Server

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Response Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
u

m
m

e
d
 P

ro
b
a
b
ili

ty
 [

%
] SLO

Performance

fulfilled:

90% response times  1 second

SLO
Performance

fulfilled:

100% response times  1 second

400 customers

180 customers

1,000 customers

Figure C.13.:Cumulative distribution function of response times for di�erent work-
loads and con�gurations of the modernized and migrated CloudStore (phase 2 and
phase 3 of the CloudStore case study).

Analysis: Howmuch e�ort do so�ware architects require to apply ATs?
The measurement on the e�ort of software architects (Qapplication e�ort) are
depicted in the �rst measurement group in Table C.7.

Measurement description. We have measured the time for AT selection
and application (Mtime for AT selection andMtime for AT application) only for the
actually applied ATs (i.e., not for the loadbalancing and horizontal scaling
ATs for assembly contexts). The time for selection ranges from 1 to 4
minutes; with an average of approximately 2 minutes per AT. The time
for application also ranges from 1 to 4 minutes but with an average of
approximately 3 minutes per AT.

371

C. Case Study Reports

We measured the number of ATs within the AT catalog (M#ATs) only once
per phase in which we had to select ATs because this selection was always
based on the complete AT catalog of the respective phase. As shown in
Table C.7, we had 3 ATs available in phase 2 and 7 ATs in phase 3.

For all created ATs, we have measured their number of roles and parameters
(M#AT roles and M#AT parameters). The number of roles ranges from 1 to 4;
with an average of approximately 2 roles per AT. The number of parameters
ranges from 0 to 6; with an average of approximately 2 parameters per
AT.

Hypothesis testing. These measurements allow accepting hypotheses
Htime-size correlation and He�ort is low, as described in the following.

Calculating the Pearson correlation coe�cient [WRH+00, Sec. 10.1] over
the selected and applied ATs yields:

• 0.49 between Mtime for AT selection and M#ATs,

• 0.32 between Mtime for AT application and M#AT roles, and

• 0.20 between Mtime for AT application and M#AT parameters.

Since each calculated correlation coe�cient is positive, Htime-size correlation
is accepted.

The maximum sum of Mtime for AT selection and Mtime for AT application ag-
gregates to 7minutes (for the vertical scaling AT). On average, the sum is
4.8minutes (over all selected and applied ATs). In any case,He�ort is low is ac-
cepted because these values are below the de�ned threshold of 40minutes .

Analysis: How much creation e�ort can so�ware architects save when ap-
plying ATs? The measurement on e�ort savings for software architects
(Qe�ort saving) are depicted in the second measurement group in Table C.7.

Measurement description. We were unable to measure M∆time because
we did not let a control group (that would have manually integrated reusable
architectural knowledge) redundantly execute the CloudStore case study.
However, we were able to take measurements for the remaining di�erence
metrics (M∆components, M∆assembly ctx., M∆operations, M∆self-adapt.).

372

C.1. Case Study Report: CloudStore

Measurements for M∆components yielded either 0 or 1. The only additional
component integrated into the CloudStore’s repository model (that caused
the 1 values) was a component acting as loadbalancer for the loadbalancing
and horizontal scaling ATs.

Measurements for M∆assembly ctx. yield 0 for the three-layer, stateless three-
layer, and vertical scaling ATs, which do not create new assembly contexts.
The loadbalancing and horizontal scaling ATs for resource containers create
a loadbalancer and as many replicas of the 7 assembly contexts from the Web
& Application Server as speci�ed by the number of (initial) replicas parameter
of these ATs. It therefore holds that always 1 + 7(r − 1) additional assembly
contexts are created where r denotes the actual value of the number of
(initial) replicas parameter. For example, if r = 1, only a loadbalancer is
attached in front of the Web & Application Server but no additional assembly
contexts have to be created. For r = 2, the 7 assembly contexts allocated to
the Web & Application Server are replicated once. In contrast, the loadbalancing
and horizontal scaling ATs for assembly contexts create a loadbalancer and
replicas for the bound assembly context. It therefore holds that always r
additional assembly contexts are created, e.g., only the loadbalancer for
r = 1 and one additional assembly context for r = 2.

Our measurements for M∆operations all yielded 0 values. We therefore have
not provided an AT that extends an architectural model with additional
operations.

The measurements for M∆self.-adapt. point to the only self-adaptive ATs (i.e.,
the ATs for horizontal and vertical scaling) because these are the only ATs
with non-zero measurement values. For these ATs, values range from 150
to 803 lines of code; with an average of 550 lines of code.

Hypothesis testing. These measurements allow to accept He�ort is lowered.
In contrast, H∆time-∆size correlation cannot be tested because of the missing
measurements for M∆time. We leave the testing of this hypothesis therefore
to future empirical investigations and describe the test of He�ort is lowered
in the following.

No measurement for the metrics M∆components, M∆assembly ctx., M∆operations,
and M∆self-adapt. is negative. Therefore, He�ort is lowered can directly be
accepted.

373

C. Case Study Reports

Analysis: Do so�ware architects e�ectively benefit from checking whether
their architectural models violate conformance to applied ATs? The mea-
surement on conformance checking (Qconformance) are depicted in the third
measurement group in Table C.7.

Measurement description. The measurements for M#detected violations
show that we detected a violation of 1 AT constraint for the three-layer AT.
For all other ATs, we did not violate AT constraints.

Our measurement of M#resolved violations shows that we were successful in
resolving the detected violation.

Hypothesis testing. We accept both hypothesis Hviolations are detected and
hypothesis Hviolations are resolved because we detected 1 violation that we
were able to resolve.

Analysis: What are e�ective benefits of the ATmethod? The measurement
on bene�ts (Qbene�ts) are depicted in the fourth measurement group in
Table C.7.

Measurement description. The measurement of Mbene�ts has resulted in
the 3 collected bene�ts given in Table C.7. We, acting as software architects,
explicitly observed these bene�ts during the conduction of the CloudStore
case study.

Hypothesis testing. We can directly accept Hbene�ts exist because we iden-
ti�ed bene�ts during the case study.

Analysis: What are e�ective limitations of the AT method? The measure-
ment on limitations (Qlimitations) are depicted in the �fth measurement
group in Table C.7.

Measurement description. The measurement of Mlimitations has resulted
in the 5 collected limitations given in Table C.7. We observed the �rst 4
limitations—related to AT tooling—when we acted as AT engineers. We
observed the last limitation—a conceptually problematic application of the
three-layer AT to CloudStore—when we acted as software architects.

Hypothesis testing. We can directly accept Hlimitations exist because we
identi�ed limitations during the case study. These limitations are uncritical

374

C.1. Case Study Report: CloudStore

because they point to tooling improvements and no conceptual �aws of the
AT method.

Analysis: Howmuche�ortdoATengineers require for specifyingATs? The
measurement on the e�ort of AT engineers (Qspeci�cation e�ort) are depicted
in the sixth measurement group in Table C.7.

Measurement description. We structured the measurements for the met-
ricMtime for AT speci�cation along the four main AT speci�cation actions from
Section 4.1.3: the identi�cation of QoS properties and a suitable analysis ap-
proach (Mtime for identi�cation), the selection of reusable architectural knowl-
edge (Mtime for selection), the speci�cation of ATs (Mtime for speci�cation), and
the assurance of the quality of the speci�ed ATs (Mtime for quality assur.).
Moreover, similar to Koziolek et al.’s e�ort estimates [KSBH12], our time
measurements are post-mortem estimates because we did not use a con-
trolled environment to take these measurements.

In phase 1, we have executed the �rst action of the AT speci�cation process,
which has resulted in the identi�cation of QoS properties (de�nitions and
metrics for scalability, elasticity, and cost-e�ciency) and a suitable archi-
tectural analysis approach (Palladio extended with support for these QoS
properties). Phases 2 and 3 reuse these insights, thus, Mtime for identi�cation
was only measured once in phase 1. We estimate the time we spend on the
�rst action to be approximately 2.5 person months. This estimate is based on
the time that Hendrik Eikerling has spent on conducting the systematic liter-
ature review in his Bachelor’s thesis [Eik14]. At his university, a Bachelor’s
thesis is account for 15ECTS (credit points in Europe), which corresponds
to 2.5 person months of work on average (1ECTS ∼ 27.5person hours1, i.e.,
15ECTS ∼ 2.5personmonths).

Our time estimates for Mtime for selection range from 1 hour to 3 hours; with
an average of approximately 1.3 hours. We already had prior experience on
most reusable architectural knowledge to be captured, thus, requiring us to
spend only 1 hour to agree on a common understanding and its selection.
Only for the stateless three-layer architectural style, we �rst had to deeply

1 See: http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2003/2003_10_
10-Laendergemeinsame-Strukturvorgaben.pdf

375

http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2003/2003_10_10-Laendergemeinsame-Strukturvorgaben.pdf
http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2003/2003_10_10-Laendergemeinsame-Strukturvorgaben.pdf

C. Case Study Reports

investigate its description [Koz11b] for achieving an agreement, which has
required us approximately 3 hours of time.

Our time estimates for Mtime for speci�cation range from 1 hour to 6 hours;
with an average of approximately 3.7 hours. Moreover, we have estimated
the time for Mtime for quality assur. to be 3 hours per AT. Giacinto provides
these estimates in her Master’s thesis [Gia16, Sec. 7.1.5].

Being the same metric, the number of AT roles (M#AT roles) yields the same
measurements as for the �rst research question. The number of AT con-
straints (M#AT constraints) ranges from 4 to 19 constraints; with an average
of approximately 10 constraints per AT. The lines of code of an AT’s comple-
tions (M#completion LOC) range from 0 to 857 lines of code; with an average
of 452 lines of code per AT. The horizontal scaling ATs and the vertical
scaling AT include completions with self-adaptations. We included the lines
of code of these self-adaptations in our measurement as well.

Hypothesis testing. These measurements require rejecting hypothesis
Htime-size correlation but to accept hypothesis He�ort is high as described in
the following.

Calculating the Pearson correlation coe�cient [WRH+00, Sec. 10.1] over
the speci�ed ATs yields:

• −0.44 between Mtime for AT speci�cation and M#AT roles,

• −0.51 between Mtime for AT speci�cation and M#AT constraints, and

• 0.83 between Mtime for AT speci�cation and M#completion LOC.

Since the �rst two correlation coe�cients are negative, Htime-size correlation
must be rejected in general. The third correlation coe�cient, however,
allows to accept Htime-size correlation for the special case of the relation be-
tween speci�cation time and lines of code of completions.

We have further divided the measurement of Mtime for AT speci�cation into
four more detailed measurements: Mtime for identi�cation, Mtime for selection,
Mtime for speci�cation, and Mtime for quality assur.. The sum over these mea-
surements is, for all ATs, greater than the de�ned threshold of 6.5hours .
He�ort is high is therefore accepted. Even if not taking Mtime for identi�cation
into account, the sum of the remaining metrics remains above the 6.5hours
threshold; only for the vertical scaling AT we required less time (6hours).

376

C.1. Case Study Report: CloudStore

Analysis: Does quality assurance e�ectively help AT engineers to improve
the conceptual integrity of specified ATs? The measurement on the e�ec-
tivity of the AT method’s quality assurance (Qquality assurance) are depicted
in the seventh measurement group in Table C.7.

Measurement description. The measurements for M#detected errors show
that we detected 75 errors in total. The number of detected errors ranges
from 1 to 19 errors; with an average of approximately 11 errors per AT.

Our measurement of M#resolved errors shows that we were successful in
resolving all detected errors.

Hypothesis testing. We accept both hypothesis Herrors are detected and
hypothesis Herrors are resolved because we detected 75 errors that we were
able to resolve.

C.1.4.5. CloudStore: Interpretation

Based on the data analysis in the previous section, this section proceeds with
answering the questions of our GQM plan (cf. Table 5.1 in Section 5.2).

AnsweringQapplication e�ort: Howmuch e�ort do so�ware architects require
to apply ATs? The acceptance of He�ort is low indicates that software ar-
chitects have only low e�ort for applying ATs (compared to the overall
e�orts for specifying architectural models). Indeed, on average, we have
required only about 5minutes to apply ATs. This result is in line with the
AT method’s goal to make software architects more e�cient because only
low e�ort is introduced for bene�ting from the exploitation of reusable
architectural knowledge (cf. Section 1.2).

The acceptance of Htime-size correlation indicates that e�ort for software
architects varies depending on the number of ATs in the employed AT
catalog and the number of roles and parameters of the applied AT. When
we applied the three-layer AT, we additionally noted that e�ort is caused
by the number of applied roles: the three-layer AT includes only 4 roles but
we have bound these roles to total of 8 architectural elements. Therefore, a
metric for the number of applied roles may be applied for future empirical
investigations.

377

C. Case Study Reports

According to Evans’ classi�cation [Eva96], the correlation of AT selection
time to the number of ATs in AT catalogs is “moderate”; the correlations
from AT application time to the number of roles and parameters are “weak”.
Therefore, predicting the time for selecting and applying ATs solely based
on the identi�ed correlation will result in inaccurate estimates. Future work
may investigate whether metrics with stronger correlations can be de�ned,
e.g., similar to the complexity metrics by Martens et al. [MKPR11].

Answering Qe�ort saving: How much creation e�ort can so�ware architects
savewhen applying ATs? The acceptance of He�ort is lowered indicates that
e�ort can e�ectively be lowered by applying ATs. In terms of saved cre-
ation e�orts of architectural elements, the loadbalancing and horizontal
scaling ATs save creation e�orts for assembly contexts. Moreover, ATs
can save e�orts for specifying self-adaptive behavior by providing generic
self-adaptation rules like the horizontal and vertical scaling ATs.

As we were unable to measure M∆time and to test H∆time-∆size correlation, we
cannot, based on our empirical data, provide estimates of the saved time
when applying ATs. Future empirical investigations may systematically
quantify this time with the help of control groups not following the AT
method. The controlled experiment outlined in Section 5.4 exempli�es such
an investigation.

AnsweringQconform.: Do so�ware architects e�ectively benefit from check-
ingwhether their architecturalmodels violate conformance to applied ATs?
The acceptance of Hviolations are detected and Hviolations are resolved indicates
that software architects can e�ectively bene�t from the AT method’s con-
formance checks. Our results for Mbene�ts particularly indicate that confor-
mance checks help to apply ATs correctly.

However, during the CloudStore case study, we only detected one con-
formance violation. Therefore, no conclusive insights have been gained—
especially regarding the long-term bene�ts of conformance checks (e.g.,
regarding maintainability) and regarding software architects that have not
participated in creating the applied ATs. Future investigations may focus
on these aspects.

378

C.1. Case Study Report: CloudStore

AnsweringQbenefits: What are e�ective benefits of the AT method? The 3
bene�ts collected during the case study (Mbene�ts) have con�rmed expected
and revealed unexpected bene�ts of the AT method.

The �rst bene�t (“detected constraint violations helped to correctly apply
the three-layer AT”) shows that conformance checks not only maintain and
ensure conformance but also help software architects to apply ATs. We
expect that such a help will be most bene�cial for software architects not
involved in AT speci�cation and, especially, novice software architects.

The second bene�t (“as an expert, AT application is a matter of a few
minutes”) con�rms that AT application can come with low e�orts (cf. the
answer to Qapplication e�ort). It would, however, be interesting to inspect
whether such bene�ts are observed by non-experts on the AT method as
well.

The third bene�t (“the architectural analysis showed that the application of
the loadbalancing AT was not bene�cial in the given context; without anal-
ysis, this issue would have been hard to show”) empirically con�rms that
architectural analyses help in making context-aware informed decisions.
During the case study, we were actually surprised that an increased number
of loadbalanced replicas can degrade capacity. This degradation is in con-
trast to what the loadbalancing architectural pattern promises. However,
the architectural analysis has revealed that CloudStore’s Database Server—a
context factor for the loadbalancer—actually becomes overloaded when
too many replica exist. Here, the combination of reusable architectural
knowledge with architectural analyses was bene�cial.

AnsweringQlimitations: What are e�ective limitations of the ATmethod?
The 5 limitations collected during the case study (Mlimitations) point to
technical issues in AT tooling (�rst 4 limitations) and an issue in selecting
suitable ATs (last limitation).

AT tooling issues relate to EMF pro�les and debugging mechanisms (�rst
limitation), missing reuse mechanisms for ATs (second limitation), lack of
in-editor syntax checks when specifying OCL constraints (third limitation),
and customizability of self-adaptations (fourth limitation). Fortunately, all
of these issues are of technical nature and do not render the AT method
infeasible. However, for making the AT method more practically relevant,

379

C. Case Study Reports

these issues should be resolved. Openkowski has—meanwhile—already
resolved the second limitation by introducing reuse mechanisms for the
speci�cation of ATs (see the extension described in Section 4.4.1). Resolving
the remaining limitations remains as a future work.

The �fth and last limitation (“conceptually, the three-layer AT does not
completely �t to CloudStore”) is not of technical nature but relates to a
conceptual mismatch between the selected AT and the targeted system. In
CloudStore, assembly contexts for web pages, e.g., Home Page, communicate
over a dedicated Database Access assembly context to CloudStore’s Database.
Because this structure de�nes three logical layer, we have applied the three-
layer AT to CloudStore as illustrated in Figure C.7. While all constraints
of the captured knowledge are ful�lled, the role names of the three-layer
AT do not perfectly �t to CloudStore: the application layer role is applied
to CloudStore’s Database Access assembly context and the data access layer
role is applied to CloudStore’s Database assembly context. We may argue
that Database Access also includes application layer logic and that Database
models the access to CloudStore’s database. However, the alternative (and
common) role names “presentation layer”, “middle layer”, and “data layer”
of the three-layer architectural style may be more intuitive in the context
of CloudStore. A next step in the CloudStore case would therefore be
to let software architects and AT engineers re-agree on this terminology.
We conclude that, in general, software architects and AT engineers must
steadily cooperate to avoid confusion due to unsuitable role names.

Answering Qspecification e�ort: How much e�ort do AT engineers require for
specifying ATs? The acceptance of He�ort is high indicates that AT engi-
neers have high e�orts for specifying ATs (compared to the overall e�orts
for specifying architectural models). The identi�cation of suitable QoS
properties and their integration into Palladio has caused the most e�ort, i.e.,
approximately 2.5personmonths . We had high e�orts in this step because
neither established metrics for scalability, elasticity, and cost-e�ciency nor
a suitable architectural analysis have existed when we started with the case
study. However, we expect that only little e�ort is required in domains with
well-established metrics and analysis approaches; for the cloud computing
domain, our work has contributed such metrics and analysis approaches.

380

C.1. Case Study Report: CloudStore

Once we had �nished with our integration into Palladio, on average, we
have required about 8hours to select, specify, and quality-assure a single AT.
Given the potential e�ort that software architects save when applying the
AT method, we believe that 8hours are a�ordable. Moreover, as indicated by
the answer toQlimitations, resolving some limitations in AT tooling promises
to lower AT speci�cation e�orts.

The rejection of Htime-size correlation indicates that not all suspected e�ort-
causing factors indeed cause e�ort. The negative correlation between
speci�cation time and the number of AT roles and constraints even sug-
gests that “the more roles and constraints an AT needs to capture, the less
time is required for its speci�cation”. Because such a statement makes
no causal sense, we suggest a more controlled inspection of these factors.
Furthermore, the positive correlation between speci�cation time and com-
pletion lines of code indicates that the size of completions indeed in�uences
the e�ort for specifying ATs. According to Evans’ classi�cation [Eva96],
this correlation (of 0.83) is even “very strong”; thus, making completions a
primary factor for speci�cation e�orts.

Answering Qquality assurance: Does quality assurance e�ectively help AT en-
gineers to improve the conceptual integrity of specified ATs? The accep-
tance of both Herrors are detected and Herrors are resolved indicates that the AT
method’s quality assurance helps in e�ectively improving conceptual in-
tegrity of speci�ed ATs: testing has revealed faults in the speci�cation
of several ATs. This testing is a lightweight quality assurance technique
because it requires little e�ort compared to a full-blown formal veri�ca-
tion. The typical root causes for AT faults (cf. Section 4.1.3.3) particularly
have helped to e�ciently detect the actual faults. Once detected, we have
shown that faults can be removed, thus, leading to an improved conceptual
integrity. We therefore suggest to always include the proposed quality
assurance steps in any AT speci�cation e�orts.

Given its importance, future work should target a more extensive support
for quality assurance. For example, an automated generation of test cases
that cover the typical root causes for AT faults is a promising future work
direction.

381

C. Case Study Reports

C.1.4.6. CloudStore: Evaluation of Validity

This section evaluates the most important threats to validity of the Cloud-
Store case study. The section focuses on the four types of validity described
by Wohlin et al. [WRH+00, Sec. 8.7]: (1) conclusion validity, (2) internal
validity, (3) construct validity, and (4) external validity.

Wohlin et al. [WRH+00, Sec. 8.7] apply the terminology illustrated in Fig-
ure C.14 to describe the four types of validity. Firstly, they generally distin-
guish between the theory (i.e., the posed hypotheses) and the observation
(i.e., the collected empirical data) of an empirical study. For the evaluation
of the AT method, the theory (upper half in Figure C.14) are the hypotheses
stated in Section 5.2.3. Each hypothesis is related to the experiment objective
(de�ned via a GQM goal) and describes a relationship between a cause and
an e�ect construct. For instance, the hypothesis He�ort is low states that the
application of ATs (cause) causes only low e�ort for software architects
(e�ect).

cause construct
(e.g., "AT application")

effect construct
(e.g., "effort is low“)

treatment
(e.g., "AT application of

the three-layer AT to
CloudStore")

outcome
(e.g., "1 minute"
for AT selection)

observation

theory cause-effect construct
(hypothesis)

treatment-outcome
construct

independent variables:
- concrete AT ("three-layer", …)
- case ("CloudStore", …)
…

dependent variables:
- time for AT selection
- time for AT application
…

experiment operation
(data collection)

experiment objectives
(GQM goal)

1 2

33

4

Legend:
1: conclusion validity
2: internal validity
3: construct validity
4: external validity

Figure C.14.: Experiment principles and threats to validity (based on [WRH+00,
p. 103]).

The observation (lower half in Figure C.14) describes the experiment to test
these hypotheses. The experiment consists of treatments and outcomes. A
treatment selects the concrete independent variables of the study. Examples

382

C.1. Case Study Report: CloudStore

for independent variables are the concrete AT (e.g., the three-layer AT) and
the concrete case (e.g., CloudStore) investigated during the experiment.
Executing an “AT application of the three-layer AT to CloudStore” is a pos-
sible treatment. The outcomes are the values that the dependent variables
can take. For the evaluation of the AT method, dependent variables are
speci�ed by the metrics from Section 5.2.2 and their measurements corre-
spond to above outcomes. For instance, the metric “time for AT selection”
(Mtime for AT selection) is an example for a dependent variable and the con-
crete measurement result “1 minute” is the corresponding outcome for the
execution of the “AT application of the three-layer AT to CloudStore”.

The arrows in Figure C.14 depict relationships between causes, e�ects,
treatments, and outcomes. These relationships have an in�uence on the
validity of the experiment. Therefore, Figure C.14 additionally illustrates
which types of validity need to be considered for the respective relationship:
each number within a circle corresponds to exactly one type of validity (“1”
for conclusion validity, “2” for internal validity, “3” for construct validity,
and “4” for external validity). Each validity type is applied to CloudStore in
the following.

(1) Conclusion Validity Conclusion validity is the degree to which con-
clusions relating treatments to outcomes are correct. For example, when
measuring the time it takes subjects (e.g., software architects) to execute a
task (e.g., applying ATs), variations because of the individual performance
form such a threat. Circle “1” in Figure C.14 annotates the corresponding
relationship that is a�ected by conclusion validity.

Wohlin et al. [WRH+00, Sec. 8.8.1] provide a list of threats to conclusion
validity. In the following, the most important items of this list with respect
to CloudStore are discussed:

Low statistical power: Being typical for case studies, our main threat to
conclusion validity is “low statistical power” [WRH+00, Sec. 8.8.1]—
we were only a few subjects that executed the CloudStore case study.
This threat is especially relevant for time-based e�ort metrics like
Mtime for speci�cation—other subjects may need signi�cantly more or
less time for the tasks we conducted. As we are software architects
with an average of ten year’s experience, we expect that our e�ort

383

C. Case Study Reports

measurements can serve as �rst base line for software architects with
similar experience. Additional studies and controlled experiments
are needed to con�rm this hypothesis.

Similarly, we have so far only investigated the CloudStore case—
whether our results can be generalized to other cases remains to
be shown. Still, we expect that web applications and applications
deployed in cloud computing environments are comparable to Cloud-
Store.

Reliability of measures: Measurements should optimally be reproducible;
otherwise, derived conclusions can be unreliable random observa-
tions. Naturally, this threat especially concerns experiments that
involve human subjects.

Given that we have measured the time of human subjects executing
actions of the AT method (e.g., Mtime for speci�cation), our results po-
tentially su�er from reproducibility issues. We have however tried to
conquer these issues by closely following the described AT processes.

Measurements of artifacts, on the other hand, provide a better re-
producibility and, thus, su�er less from this threat. For example, the
measurement of an AT’s number of roles (M#AT roles) can easily be
reproduced.

Random irrelevancies in experimental setting: For our case study, we have
not used a controlled environment. Therefore, during the execution
of our measurements, random factors can have occurred that have
disturbed the measurements. For example, AT engineers may have
been interrupted by phone calls or lunch and co�ee breaks. Our
results on human-based measurements provide therefore only a �rst
base line for further empirical investigations, e.g., employing a more
controlled environment.

Random heterogeneity of subjects: We had di�erent knowledge about the
AT method, architectural analyses, research methods like systematic
literature reviews, and software engineering in general. This hetero-
geneity is particular evident from our context—our team includes
student workers at the Bachelor’s and Master’s levels, PhD students,
and a senior researcher. On the other hand, the fact that I have

384

C.1. Case Study Report: CloudStore

closely cooperated with all members of our team over longer periods
of time lowers their heterogeneity.

While factors that indicate a high heterogeneity potentially have a
negative e�ect on conclusion validity, they generally have a positive
e�ect on external validity (see below). It is therefore important
to characterize the subjects involved in the study; Section C.1.3.3
provides such a characterization for CloudStore. Further experiments
can then set a di�erent focus, e.g., by conducting a study with a more
heterogeneous team.

(2) Internal Validity Internal validity is the degree to which conclusions
relating treatments to outcomes are causal (given a correctly observed
relationship; cf. conclusion validity). For example, experiments without
control group (like in our case) are threatened by the possibility that external
factors (e.g., not the AT method) have caused the observed outcome. Circle
“2” in Figure C.14 annotates the corresponding relationship that is a�ected
by internal validity.

Wohlin et al. [WRH+00, Sec. 8.8.2] provide a list of threats to internal
validity. In the following, the most important items of this list with respect
to CloudStore are discussed:

History: We conducted the CloudStore case study over a period of one year.
During this time, (“historic”) events like public holidays and longer
business trips have intervened with our e�orts. These interrupts can
have in�uenced our performance and, thus, the outcomes of our case
study. Again, future work can alleviate such threats by replicating
our case study and by conducting studies in more controlled settings.

Maturation: As time has passed during the case study, our behavior ma-
tured. Our maturation can have both positively and negatively in�u-
enced our e�ort and our time-based measurements in particular.

For example, we performed repetitive tasks for sighting 418 sources
during our systematic literature review (cf. [LEB15]). We countered
tiring e�ects for such repetitive tasks by limiting the amount of
continuous work on these tasks to 3hours ; however, we acknowledge
that such tasks are indeed tiring.

385

C. Case Study Reports

On the other hand, we have also observed a learning e�ect when
specifying ATs. For example, compared to the ATs we speci�ed
in phase 2, we have required less time in phase 3 for the initial
con�guration steps of ATs (e.g., creating role stubs and attaching
pro�les).

Selection: As described in Section C.1.3.3, we have selected all involved
subjects from an academic context. Moreover, our team had a gen-
eral research interest in common and was motivated to apply and
mature the AT method. Because the high motivation will generally
not represent the whole population of software architects and AT
engineers, outcomes can have been impacted by our selection.

(3) Construct Validity Construct validity is the degree to which conclu-
sions relating theory to observations are correct. Correctness includes
that (1) the treatment su�ciently re�ects the cause construct, and (2) the
outcome su�ciently re�ects the e�ect construct. For example, the number
of AT roles (M#AT roles) may be a poor measure for AT speci�cation e�ort
while the time for AT speci�cation (Mtime for AT speci�cation) may be a better
measure. The two circles “3” in Figure C.14 annotate the corresponding
relationships that are a�ected by construct validity.

Wohlin et al. [WRH+00, Sec. 8.8.3] provide a list of threats to construct
validity. In the following, the most important items of this list with respect
to CloudStore are discussed:

Inadequate preoperational explication of constructs: Some metrics (for ex-
ample, the size-based metrics in Section 5.2.2) have not been applied
before. Therefore, these metrics can su�er from unclear de�nitions
or are inadequate to measure the e�ect construct of interest. For
example, our rejection of Htime-size correlation even indicates that both
M#AT roles and M#AT constraints are inadequate metrics to measure AT
speci�cation e�ort (cf. Section C.1.4.5).

Fortunately, we have identi�ed strong correlations as well, for ex-
ample, between the measurements for Mtime for AT speci�cation and
M#completion LOC. These strong correlations provide evidence for the
adequacy of introduced metrics. Future empirical investigations can
extend and externally validate these initial insights.

386

C.1. Case Study Report: CloudStore

Mono-operation bias: Like most case studies, we face the risk that sticking
only to a single case may under-represent the derived theory. In our
case study, we only investigated the CloudStore case as a migration
scenario. Based on our results, we derived that, in such scenarios,
architectural models can e�ectively and e�ciently be created by
following the AT method. Whether the CloudStore case was under-
representative to draw such conclusions needs to be clari�ed in
further empirical studies.

Interaction of testing and treatment: Because I have participated in the
case study on my own, I knew the particular testing goals of applying
the AT method—testing the AT method’s e�ectivity and e�ciency.
This knowledge has potentially led me to avoid AT application errors,
e.g., by applying ATs more carefully than other software architects
would have applied ATs. Further studies should therefore be con-
ducted with external subjects that are unaware of the tested goals.

(4) External Validity External validity is the degree to which internally
valid results can be generalized to industrial practice. For instance, if the
results of the CloudStore case study have a high external validity, they
will also hold for other cases like di�erent kinds of online shops and non-
migration scenarios. Circle “4” in Figure C.14 annotates the corresponding
relationship that is a�ected by external validity.

Wohlin et al. [WRH+00, Sec. 8.8.4] provide a list of threats to external
validity. In the following, the most important items of this list with respect
to CloudStore are discussed:

Interaction of selection and treatment: Our selection of subjects is based
on their availability at our university and on the fact that they had
previous experience on model-driven technologies and architectural
analyses. For software architects with di�erent contexts that want
to learn the AT method, our results can therefore be biased (e.g.,
regarding e�ort).

Interaction of setting and treatment: The total number of ATs within the
CloudStore case can be seen as small. Therefore, it is unclear whether
gained outcomes also hold for more AT applications, especially
within an industrial context. Moreover, as mentioned above, the

387

C. Case Study Reports

generalizability to di�erent kinds of online shops and non-migration
scenarios has not been investigated.

Discussion of Threats to Validity The preceding descriptions show that
most validity threats result from the explorative nature of case studies.
In summary, our main threats are caused by the focus on a single case,
involved human subjects (especially regarding time-based measurements),
and the novelty of the introduced metrics.

We have conquered threats related to the novelty of our metrics by tak-
ing care of avoiding the “mono-method bias” threat [WRH+00, Section
8.8.3]. The mono-method bias describes the threat of using only a sin-
gle type of metric, which involves the risk of misleading experimentation
results. By generally employing several metrics, we were able to cross-
check results against each other and to detect inconsistencies. For example,
for quantifying AT speci�cation e�ort (Qspeci�cation e�ort), we employed
both time-based metrics (e.g., Mtime for selection) and size-based metrics (e.g.,
M#AT roles and M#completion LOC). On the one hand, the lack of positive cor-
relation between our measurements for Qspeci�cation e�ort and M#AT roles
enabled us to reject M#AT roles as a good indicator for AT speci�cation
e�ort. On the other hand, the positive correlation between our measure-
ments for Qspeci�cation e�ort and M#completion LOC enabled us to identify
M#completion LOC as a good indicator for AT speci�cation e�ort.

To conquer the remaining threats, we have suggested to focus on these
threats in further empirical investigations. Concretely, we have suggested
further case studies and the conduction of controlled experiments. Moti-
vated by this suggestion, the subsequent sections describe our initial work
on such studies and experiments.

C.2. Case Study Report: WordCount

This section describes a case study that we have conducted in the big data
domain; a domain concerned with processing large data sets [Whi09]. In
our case study, we have created and analyzed an architectural model for
WordCount [Whi09]; a commonly used example application that is able to

388

C.2. Case Study Report: WordCount

count the number of word occurrences over a huge set of input texts. We
have created this model based on an AT that captures a typical reference
architecture for big data applications. The reference architecture is based
on Apache’s Hadoop framework [Whi09] that implements the MapReduce
architectural style [DG08]. Compared to the ATs speci�ed during the
CloudStore case study, the unique feature of the Hadoop MapReduce AT is
that it provides a default AT instance (cf. Section 4.2.5.3), i.e., can be used
as initiator template.

Accordingly, the goal of the WordCount case study was to:

Analyze: the AT method

For the purpose of: conducting architectural analyses based on initiator
templates

With respect to: e�ectivity and e�ciency

From the viewpoint of: software architects and AT engineers

In the context of: realistic big data systems.

We have achieved this goal in three consecutive steps. First, in the context of
his Master’s thesis [Sax15], Manoveg Saxena has acted as software architect
to create a reference model for Hadoop applications—with full support for
Palladio-based analyses. Second, I have acted as AT engineer to extract the
Hadoop MapReduce AT from this reference model. Third, I have acted as
software architect to showcase the application of this AT to the WordCount
case. The third and last step has required only minor e�ort (less than 1hour)
compared to setting up, running, and analyzing the WordCount application
on an actual computing cluster. Therefore, our results point to an improved
e�ciency when using ATs as initiator templates.

The remainder of this section describes the WordCount case study in detail.
Analogously to the CloudStore case study, the section follows the reporting
guidelines for case studies by Runeson and Höst [RH09]. After Section C.2.1
details the WordCount application and Hadoop, Section C.2.2 describes
the design of the case study as a re�nement of the generic evaluation
design from Section 5.2. Section C.2.3 provides the results of the case study,
including an interpretation and discussion of threats to validity.

389

C. Case Study Reports

C.2.1. WordCount and Hadoop MapReduce

As previously described, WordCount [Whi09] is a commonly used example
application in the big data domain. The WordCount application counts the
number occurrences of each word over a set of input texts. For example,
the texts “software architects apply an AT” and “AT engineers create an AT”
may be processed. WordCount then outputs a count of 3 for the word “AT”,
a count of 2 for the word “an”, and a count of 1 for the remaining words.

In big data, a huge amount of such texts is processed. The MapReduce
architectural style is commonly applied to make such a processing per-
formant and scalable [Whi09]. MapReduce requires that data sets can be
processed independently from each other within so-called mapper and
reducer functions. Mapper functions �lter and sort such data and reducer
functions summarize collected data. Based on data independence, multiple
of these functions can run in parallel, thus, improving performance and
scalability.

A common open-source framework that implements this architectural style
is Hadoop MapReduce [Whi09]; developed by the Apache Software Founda-
tion. Hadoop MapReduce can particularly be seen as a reference architecture
for similar implementations. As a reference architecture, it essentially de-
scribes a processing pipeline for the control and data �ow of the MapReduce
style.

Figure C.15 illustrates the control and data �ow of Hadoop’s MapReduce
processing pipeline using the WordCount example. The seven actions
(depicted as rounded rectangles) of the pipeline are consecutively executed
from left to right according to the thick, �lled arrows in Figure C.15. The
�rst four actions are associated to the mapper function while the remaining
three actions are associated to the reducer function of the MapReduce
architectural style. Underneath these actions, associated artifacts (denoted
as rectangles) are exempli�ed based on WordCount. Artifact �ow is denoted
via straight lines and can involve access to hard disk drives (denoted as
cylinder).

In Figure C.15, the focus is on the actions that impact performance as
identi�ed by Zhang et al. [ZCL14]:

390

C.2. Case Study Report: WordCount

(1) read (2) map (3) spill (4) combine (5) shuffle (6) reduce

Legend: action flow of artifactchange of action

(7) write

mapper function reducer function

software
architects
apply an

AT

AT
engineers
create an

AT

software, 1
architects, 1

apply, 1
an, 1
AT, 1

AT, 1
engineers, 1

create, 1
an, 1
AT, 1

software, 1
architects, 1

apply, 1
an, 1
AT, 1

AT, 2
engineers, 1

create, 1
an, 1

an, 1
an, 1

apply, 1

architects, 1

AT, 1
AT, 2

create, 1

engineers, 1

software, 1

apply, 1

architects, 1

create, 1

engineers, 1

software, 1

an, 2

AT, 3

an, 2
apply, 1

architects, 1
AT, 3

create, 1
engineers, 1
software, 1

hard disk driveartifact

application-specific

Figure C.15.: Performance-impacting actions of Hadoop’s MapReduce processing
pipeline exempli�ed for the WordCount application (based on [ZCL14]).

(1) read: Receives an input stream from which input data is read. For
example, the previously described texts (“software architects apply
an AT” and “AT engineers create an AT”) may be read.

(2) map: Extracts keys and values from the input data. In WordCount, the
map action creates a new key for each word of the input data and
associates a 1 as value; denoting that the word was found once. For
example, the key-value pair (“so�ware”, 1) is the �rst pair found for
the �rst input text in Figure C.15.

(3) spill: Stores intermediate data on a hard disk drive in case an internal
bu�er gets too full.

(4) combine: Executes the reduce action (see below) for key-value pairs
within one artifact. In consequence, the number of key-value pairs to
be passed to the next action is lowered. In the example in Figure C.15,
the two occurrences of the (“AT”, 1) key-value pair are combined into
a single pair (“AT”, 2); denoting that—in the lower artifact—the word
“AT” has occurred twice.

(5) shu�le: Merge-sorts the input key-value pairs by key and transfers
all output belonging to the same key to the subsequent reducer

391

C. Case Study Reports

action. For example, the key “an” occurs twice over the whole input
data in Figure C.15, thus, the corresponding two key-value pairs are
transferred together to the next action.

(6) reduce: Calls for each unique key a reduce function that can produce
zero or more key-value pairs. In the WordCount example, the reduce
function sums up all values belonging to a key, e.g., resulting in the
key-value pairs (“AT”, 3) and (“an”, 2).

(7) write: Stores the output from the reduce action, e.g., on a hard disk
drive.

In the context of the WordCount case study, it is important to note that
only the map and the reduce actions are application-speci�c (the combine
action generically reuses information from the reduce action). Therefore,
the remaining actions are generically recurring in architectural models
of Hadoop MapReduce applications. The Hadoop MapReduce AT captures
exactly these recurring actions (in dedicated components) and only requires
software architects to supply custom map and reduce components.

C.2.2. WordCount: Case Study Design

In this section, I describe the design of the WordCount case study. Sec-
tion C.2.2.1 brie�y points to relevant research questions and procedures
for data collection, analysis, and validation. Afterwards, Section C.2.2.2
describes the WordCount case as a scenario for initiator templates. Involved
human subjects (i.e., Saxena and I) are characterized in Section C.2.2.3.

C.2.2.1. WordCount: Research Questions and Procedures

In the WordCount case study, we employ the complete evaluation design
introduced in Section 5.2, i.e., we reuse its research questions and the
procedures for data collection, analysis, and validity.

392

C.2. Case Study Report: WordCount

C.2.2.2. WordCount: Case

For statistical analyses, a company that is hosting an online book shop
needs to count the number of occurrences of each word in its database
of digitalized books (“WordCount”; cf. Section C.2.1). The texts of these
books sum up to 2GB in total. Because the company often wants to run
WordCount, the company limits the total execution time of WordCount to
10minutes. The SLO in Table C.8 covers these requirements.

Table C.8.:WordCount’s SLO

SLOPerformance: The total execution time of WordCount for 2GB of text is
at most 10minutes.

The responsible software architect for WordCount plans its realization from
scratch. Being popular in the big data domain, the software architect wants
to assess the option to use Apache’s Hadoop framework [Whi09]. For this
assessment, the software architect requests an AT from an AT engineer
that re�ects the performance impact of Hadoop—the architect only wants
to customize the AT with the special characteristics of WordCount.

C.2.2.3. WordCount: Subjects

In the WordCount case study, both Saxena and I have acted as software
architects. Furthermore, I have acted as AT engineer.

In the role of a software architect, Saxena has created a reference model for
Hadoop applications—with full support for Palladio-based analyses. He has
created this model as the main contribution of his Master’s thesis [Sax15].
Saxena’s knowledge on architectural modeling and conducting architectural
analyses was based on previous experience in our software engineering
group (a half-year seminar) and based on papers on Palladio [BKR09] and
SimuLizar [BBM13]. In the mentioned seminar, he particularly investigated
Hadoop and WordCount in detail, thus, is expected to have good knowledge
about the targeted domain.

393

C. Case Study Reports

In my role as AT engineer, I have extracted the Hadoop MapReduce AT from
Saxena’s reference model. In my role as software architect, I have applied
the Hadoop MapReduce AT to the WordCount case. As for the CloudStore
case study, I am expected to have deep knowledge about the AT method
and minimal learning e�orts.

C.2.3. WordCount: Results

This section reports the results of the WordCount case study. The report
starts in Section C.2.3.1 with the execution the WordCount case. The em-
pirical data created during this execution is analyzed in Section C.2.3.2 and
interpreted in Section C.2.3.3. Potential threats to validity of the WordCount
case study are �nally discussed in Section C.2.3.4.

C.2.3.1. WordCount: Execution

In the WordCount case study, we have speci�ed an AT capturing Hadoop
MapReduce as a reference architecture and subsequently used this AT as
initiator template to model and analyze the WordCount application. This
section �rst describes our speci�cation of the HadoopMapReduce AT, second
our application of this AT to model WordCount, and third our conduction
of an architectural analysis to check WordCount’s SLO (cf. Table C.8).

Specifying the Hadoop MapReduce ATs The software architect’s request
for an AT capturing Hadoop MapReduce has triggered an iteration through
the AT speci�cation process from Section 4.1.3. We have executed this
iteration as follows:

(1) identify QoS properties and suitable analysis approaches. We have se-
lected Palladio for this case study because Palladio fully supports
performance analyses like required for analyzing SLOPerformance.
Further QoS properties were not required to be identi�ed.

(2) select reusable architectural knowledge. The software architect, as de-
scribed in the WordCount case, has directly requested an AT for

394

C.2. Case Study Report: WordCount

capturing Hadoop MapReduce. Therefore, we only had to under-
stand Hadoop’s processing pipeline (see Section C.2.1).

(3) specify ATs (with parametrizable roles, constraints, completions).
Next, we have speci�ed the Hadoop MapReduce AT (available at
[ATt]) to capture Hadoop’s processing pipeline as a reference archi-
tecture. The AT introduces a default AT instance (cf. Section 4.2.5.3)
along with the roles map assembly context, reduce assembly context,
and Hadoop MapReduce system. Figure C.16 illustrates the AT.

@Hadoop MapReduce
[default instance URI: "HadoopMapReduce/"]

@map assembly context

inv …
…

@Hadoop MapReduce system

inv …
…

@reduce assembly context

inv …
…

 HadoopMapReduce.qvto

Figure C.16.: The Hadoop MapReduce AT (excerpt).

The default AT instance provides an architectural model that includes
a system with map and reduce assembly contexts bound to the re-
spective roles; Figure C.17 shows the corresponding PCM system
diagram. After an AT-based initialization, this default AT instance
serves as a starting point for software architects. Architects only
have to adapt the instance to their concrete scenario. For example,
they can easily modify the behavior speci�cation of map and reduce
components and the characterization of their resource containers,
e.g., the processing rates of CPUs.

Moreover, as shown in Figure C.16 (bottom), the Hadoop MapReduce
system role includes a completion HadoopMapReduce.qvto that we have
formalized in QVT-O. The completion weaves the bound map and
reduce assembly contexts into a pre-speci�ed architectural model of
Hadoop’s processing pipeline (cf. Section C.2.1). To give an impres-
sion of the resulting model, Figure C.18 outlines the resulting system

395

C. Case Study Reports

Hadoop MapReduce System

Assembly_Map <Map>

MapAssemblyContext

Provided_IMap_Map

Assembly_Reduce <Reduce>

ReduceAssemblyContext
Provided_IReduce_Reduce

HadoopMapReduceSystem

Provided_JobContext

Figure C.17.: PCM system created by the default AT instance of the Hadoop MapRe-
duce AT.

(4) assure the quality of the specified ATs, e.g., by testing. Based on 2 tests
[ATt], we assured that custom map and reduce components are cor-
rectly integrated; similar to our quality assurance in the CloudStore
case study. For each test, we manually inspected the architectural
model after executing the mapping. We discovered faults in the im-
plementation of the AT’s completion: we failed to correctly connect
the map and reduce assembly contexts in the targeted reference archi-

396

with a PCM system diagram. Light-grey assembly contexts are two
replicas of the bound map assembly context and the dark-grey assem-
bly context is a replica of the bound reduce assembly context. In the
current version of the AT, these numbers are �xed; future work may
introduce appropriate AT parameters similar to the loadbalancing
AT. The remaining assembly context are generic parts of Hadoop’s
processing pipeline. Saxena has created this reference model—with
full support for Palladio analyses—in his Master’s thesis [Sax15];
details are described there.

C.2. Case Study Report: WordCount

<<CompositeStructure>>

MapReduce

Assembly_Job <Job>

Provided_JobContext_Job
Required_Mapper_Job1

Required_Reducer_Job

Required_Mapper_Job2

Assembly_FileSplit <File...

Provided_FileSplit

Assembly_RecordReader...

Provided_RecordReader

Assembly_FileInputForm...

Provided_FileInputFormat Required_RecordReader

Required_InputSplit

Assembly_CustomMapp...

Provided_Mapper
Required_OutputCollector

Required_SpillThread

Required_InputFormat

Required_IMap_CustomMapper

Assembly_CustomOutpu...

Provided_OutputCollector

Assembly_sortAndSpill <...

Provided_SortandSpill

Required_Partitioner

Required_Combiner

Assembly_HashPartition...

Provided_Partitioner

Assembly_Combiner <C...

Provided_Combiner

Assembly_Shuffle <Shuff...

Provided_Shuffle

Assembly_CustomReduc...

Provided_Reducer
Required_Shuffle

Required_OutputFormat

Required_IReduce_CustomReducer

Assembly_FileOutputFor...

Provided_OutputFormat
Required_RecordWriter

Assembly_CustomRecor...

Provided_RecordWriter

Assembly_FileSplit2

Provided_FileSplit

Assembly_RecordReader2

Provided_RecordReader

Assembly_FileInputForm...

Provided_FileInputFormat

Required_RecordReader

Required_InputSplit

Assembly_CustomMapp...

Provided_Mapper Required_OutputCollector

Required_SpillThread

Required_InputFormat

Required_IMap_CustomMapper

Assembly_CustomOutpu...

Provided_OutputCollector

Assembly_sortAndSpill2

Provided_SortandSpill

Required_Partitioner

Required_Combiner

Assembly_Combiner2
Provided_Combiner

Assembly_HashPartitioner2

Provided_Partitioner

Assembly_MapCompon...

Provided_IMap_MapComponentType

Assembly_MapCompon...

Provided_IMap_MapComponentType

Assembly_ReduceCom...

Provided_IReduce_ReduceComponentType

Provided_JobContext

Figure C.18.: System after execution of the Hadoop MapReduce AT’s completion.

tectural model. However, after discovery, we successfully removed
these faults.

Applying the Hadoop MapReduce AT Acting as architects, we have used
the Hadoop MapReduce AT as an initiator template to start modeling the
WordCount system (action (1∗) of AT application described in Section 4.1.1).
After instantiation, we have customized the architectural model with a map
and reduce component that accurately re�ect the behavior of WordCount
(cf. [Sax15]). As described in the previous paragraph, the AT’s completion
takes care of weaving these components into an architectural model of
Hadoop’s MapReduce processing pipeline. Subsequently, we were therefore
able to analyze this architectural model with Palladio.

Conducting an architectural analysis for WordCount Finally, we have an-
alyzed the ful�llment of the pre-speci�ed SLO (SLOPerformance). We have
followed the AT-based architectural analysis process from Section 4.1.2 as
follows.

397

C. Case Study Reports

For analyzing the SLO, we have con�gured a performance analysis with
Palladio. Palladio has reported a total execution time of approximately
9.2minutes for WordCount. Therefore, we concluded that SLOPerformance
(de�ning an upper bound of 10minutes) is ful�lled, thus, successfully �n-
ished with the analysis conduction.

C.2.3.2. WordCount: Analysis

In this section, I analyze the empirical data that we have collected during
the WordCount case study. Table C.9 provides an overview of this data;
depicted measurements directly correspond to the metrics of the GQM plan
(cf. Table 5.1 in Section 5.2). The �rst column speci�es the metric of interest
while the second column provides the measurements for the application of
the Hadoop MapReduce AT to WordCount. Rows are grouped via horizontal
lines according to the research questions from Section 5.2, e.g., the �rst
research question is covered by the �rst �ve rows of metric measurements.
Structured along these research questions, the corresponding measurements
depicted in Table C.9 are analyzed in the following. The analysis covers a
brief description of the measurements and the test of hypotheses associated
to each research question. The interpretation of the analysis is left to a
dedicated interpretation section (Section C.2.3.3).

Table C.9.:Metric measurements collected in the WordCount case study
Hadoop MapReduce

Mtime for AT selection 1min .
Mtime for AT application 1min .
M#ATs 8
M#AT roles 2
M#AT parameters 0

M∆time -
M∆components 13
M∆assembly ctx. 22
M∆operations 29
M∆self-adapt. 0

M#detected violations 0
M#resolved violations 0

Mbene�ts “we had very little e�ort with the AT-based instantiation of the ar-
chitectural model”, “the bound AT heavily reduces the complexity
of the underlying Hadoop infrastructure”

398

C.2. Case Study Report: WordCount

Mlimitations “the AT is currently in�exible and misses parameters, e.g., for
con�guring the number of map and reduce replicas”, “the AT-
annotated architectural model appears incomplete because map and
reduce assembly context are unconnected”, “the applied analysis
tool (SimuLizar) lacks support for asynchronous map and reduce
tasks, which can generally lead to inaccurate analysis results”

Mtime for identi�cation ∼ 1h .
Mtime for selection ∼ 2h .
Mtime for speci�cation ∼ 2.5person months
Mtime for quality assur. ∼ 4h .
M#AT roles 2
M#AT constraints 2
M#completion LOC 244

M#detected errors 2
M#resolved errors 2

Analysis: Howmuch e�ort do so�ware architects require to apply ATs?
The measurement on the e�ort of software architects (Qapplication e�ort) are
depicted in the �rst measurement group in Table C.9.

Measurement description. Given that the software architect in the Word-
Count case directly requests an AT for Hadoop MapReduce (Section C.2.2.2),
we directly knew which AT to select from the available options. Therefore,
we have spent at most 1minute for this selection (Mtime for AT selection).

According to the measurement for Mtime for AT application, also the AT-based
initialization has only required at most 1minute . The initialization required
us to use the wizard for initializing Palladio projects with ATs (cf. Ap-
pendix B.1.1). We simply had to select the Hadoop MapReduce AT and start
the initialization process.

As shown in Table C.7, we have selected the Hadoop MapReduce AT from
the catalog of 8 ATs (M#ATs) that we have created during the CloudStore
case study plus the novel Hadoop MapReduce AT. The Hadoop MapReduce
AT contains 2 roles and 0 parameters (M#AT roles and M#AT parameters).

Hypothesis testing. These measurements alone make it impossible to test
hypothesis Htime-size correlation. To test Htime-size correlation, more time and
size samples are needed to calculate the Pearson correlation coe�cient.

The sum of Mtime for AT selection andMtime for AT application is 2minutes . This
value is below the de�ned threshold of 40minutes , thus, He�ort is low is
accepted.

399

C. Case Study Reports

Analysis: How much creation e�ort can so�ware architects save when ap-
plying ATs? The measurement on e�ort savings for software architects
(Qe�ort saving) are depicted in the second measurement group in Table C.9.

Measurement description. As in the CloudStore case study, M∆time was
not measured because of a missing control group. However, we have
taken measurements for the remaining di�erence metrics (M∆components,
M∆assembly ctx., M∆operations, M∆self-adapt.).

The measurement of M∆components has yielded 13 components to acknowl-
edge for the additional components of Hadoop’s processing pipeline. Simi-
larly, the measurement of M∆assembly ctx. has yielded 22 assembly contexts
(21 assembly contexts for Hadoop’s processing pipeline and 1 assembly
context for an additional replica of the map assembly context). More-
over, the measurement of M∆operations has yielded 29 operations because
of additional operations used by the processing pipeline. Because we mod-
eled a static pipeline, i.e., a non-self-adaptive system, the measurement of
M∆self.-adapt. has yielded 0 lines of code.

Hypothesis testing. These measurements allow to accept He�ort is lowered.
In contrast, H∆time-∆size correlation cannot be tested because of the missing
measurements for M∆time—analogously to the CloudStore case study.

No measurement for the metrics M∆components, M∆assembly ctx., M∆operations,
and M∆self-adapt. is negative. Therefore, He�ort is lowered can directly be
accepted.

Analysis: Do so�ware architects e�ectively benefit from checking whether
their architectural models violate conformance to applied ATs? The mea-
surement on conformance checking (Qconformance) are depicted in the third
measurement group in Table C.9.

Measurement description. We did not detect conformance violations,
thus, the measurement of M#detected violations is 0. Consequently, the mea-
surement for M#resolved violations must be 0 as well.

Hypothesis testing. Because no violations were detected, hypothesis
Hviolations are detected is rejected. Testing Hviolations are resolved is useless for
the case of 0 detected violations.

400

C.2. Case Study Report: WordCount

Analysis: What are e�ective benefits of the ATmethod? The measurement
on bene�ts (Qbene�ts) are depicted in the fourth measurement group in
Table C.9.

Measurement description. The measurement of Mbene�ts has resulted
in the 2 collected bene�ts given in Table C.7.

Hypothesis testing. Because bene�ts were identi�ed, Hbene�ts exist is
accepted.

Analysis: What are e�ective limitations of the AT method? The measure-
ment on limitations (Qlimitations) are depicted in the �fth measurement
group in Table C.9.

Measurement description. The measurement of Mlimitations has resulted
in the 3 collected limitations given in Table C.7.

Hypothesis testing. Because limitations were identi�ed, Hlimitations exist
is accepted.

Analysis: Howmuche�ortdoATengineers require for specifyingATs? The
measurement on the e�ort of AT engineers (Qspeci�cation e�ort) are depicted
in the sixth measurement group in Table C.9.

Measurement description. Like in the CloudStore case study, we have
structured the measurements forMtime for AT speci�cation along the four main
AT speci�cation actions from Section 4.1.3: (1) the identi�cation of QoS
properties and a suitable analysis approach (Mtime for identi�cation), (2) the
selection of reusable knowledge (Mtime for selection), (3) the speci�cation
of ATs (Mtime for speci�cation), and (4) the assurance of the quality of the
speci�ed ATs (Mtime for quality assur.). Again, our time measurements are
post-mortem estimates because we did not use a controlled environment to
take these measurements.

The QoS property of interest (performance) was given in the WordCount
case, which allowed us to quickly agree on using Palladio as a suitable
architectural analysis approach. The time we spend on the �rst action was
therefore only approximately 1hour .

401

C. Case Study Reports

We already had prior experience with Apache’s Hadoop MapReduce, which
required us to spend only 2hours to agree on a common understanding
and its selection (Mtime for selection). We have mainly spent the time to
understand the generic and custom parts of Hadoop’s processing pipeline
as described in Section C.2.1.

Moreover, we have estimated the time for Mtime for speci�cation to be ap-
proximately 2.5personmonths . This estimate is based on the time that
Saxena was expected to have spent in this Master’s thesis [Sax15] on cre-
ating a reference architectural model. My work of creating an AT that
utilizes this reference architectural model as initiator template sums up to
approximately 4hours , which are included in the given estimate.

Moreover, I have spent approximately 4hours on quality assurance (metric
Mtime for quality assur.). After the initial speci�cation of the AT, I had to �x 2
detected faults in the completion of the AT; other elements were correct.

Being the same metric, the number of AT roles (M#AT roles) yields the same
as for the �rst research question (i.e., 2 roles). Moreover, the AT includes
2 constraints that ensure that the map and reduce roles can only be ap-
plied to assembly contexts (M#AT constraints). The lines of code of the AT’s
completions (M#completion LOC) are 244 lines of code.

Hypothesis testing. These measurements allow to accept He�ort is high.
Htime-size correlation cannot be tested because more time and size samples
are needed to calculate the Pearson correlation coe�cient.

We have further divided the measurement of Mtime for AT speci�cation into
four more detailed measurements: Mtime for identi�cation, Mtime for selection,
Mtime for speci�cation, andMtime for quality assur.. With over 2.5personmonths ,
the sum over these measurements is greater than the de�ned threshold of
6.5hours . He�ort is high is therefore accepted.

Analysis: Does quality assurance e�ectively help AT engineers to improve
the conceptual integrity of specified ATs? The measurement on the e�ec-
tivity of the AT method’s quality assurance (Qquality assurance) are depicted
in the seventh measurement group in Table C.9.

402

C.2. Case Study Report: WordCount

Measurement description. The measurements for M#detected errors show
that we detected 2 errors in total. Our measurement of M#resolved errors
shows that we were successful in resolving these errors.

Hypothesis testing. We accept both hypothesis Herrors are detected and
hypothesis Herrors are resolved because we detected 2 errors that we were
able to resolve.

C.2.3.3. WordCount: Interpretation

Based on the data analysis in the previous section, this section proceeds
with answering the associated questions of the GQM plan (cf. Table 5.1 in
Section 5.2).

AnsweringQapplication e�ort: Howmuch e�ort do so�ware architects require
to apply ATs? The acceptance of He�ort is low shows that the application of
the HadoopMapReduce AT involves minor e�ort for software architects—the
AT-based initialization of WordCount’s architectural model took us less than
2minutes . We expect that this result can be generalized to other AT-based
initializations because the initialization wizard requires no complicated
con�guration and automates most creation tasks; selecting a default AT
instance is enough.

Answering Qe�ort saving: How much creation e�ort can so�ware architects
savewhen applying ATs? The acceptance of He�ort is lowered indicates that
e�ort can e�ectively be lowered by applying ATs. An interesting obser-
vation is that, compared to the size-based metric measurements in the
CloudStore case study, the measurements of size-based metrics are signif-
icantly higher for the Hadoop MapReduce AT. Furthermore, the Hadoop
MapReduce AT is the �rst inspected AT for which M∆operations is positive.

We account both of these observations to the fact that we captured a ref-
erence architecture within the AT; opposed to the architectural styles and
architectural patterns captured during the CloudStore case study. As de-
scribed in Section 2.2.4.3, reference architectures can provide additional
component interfaces with additional operations, de�ne an architectural

403

C. Case Study Reports

style, and group sets of architectural patterns. Based on this de�nition, the
higher values for the taken metric measurements can be explained.

We conclude that ATs of reference architectures can save software architects
more e�ort than ATs that capture di�erent kinds of architectural knowledge.
However, we note that reference architectures have the downside of being
domain-speci�c (cf. Section 2.2.4.3), thus, being not as universally applicable
as architectural styles and architectural patterns.

AnsweringQconform.: Do so�ware architects e�ectively benefit from check-
ingwhether their architecturalmodels violate conformance to applied ATs?
The rejection of Hviolations are detected indicates that—at least for WordCount
and the Hadoop MapReduce AT—no bene�ts were gained from automated
conformance checks. However, that such bene�ts generally exist has been
shown during the CloudStore case study.

Two factors about the Hadoop MapReduce AT make it hard to cause con-
formance violations at all. First, the AT contains only two constraints;
each checking that roles are bound to the correct architectural element
(i.e., to assembly contexts). However, AT tooling allows only to bind roles
to the correct elements; the tool does not allow binding roles to wrong
target elements. Second, the AT-based initialization also prevents software
architects from violating conformance compared to a completely manually
created architectural model.

In such situations, software architects do not necessarily require confor-
mance checks. Fortunately, software architects then face situations where
conformance violations are unlikely—grounded in the capabilities of applied
ATs and AT tooling.

AnsweringQbenefits: What are e�ective benefits of the AT method? The 2
bene�ts collected during the case study (Mbene�ts) con�rm the answers
that we have given for Qapplication e�ort and Qe�ort saving: we were clearly
impressed by the little e�ort we have spent to model a complex Hadoop-
based system.

The �rst bene�t (“we had very little e�ort with the AT-based instantiation
of the architectural model”) covers the e�ort aspect. As our measurements

404

C.2. Case Study Report: WordCount

show, we only required 2minutes for the instantiation of the model, which
con�rms our impression.

The second bene�t (“the bound AT heavily reduces the complexity of the
underlying Hadoop infrastructure”) covers the complexity aspect. Indeed,
we had minor analyzing e�ort using our architectural model; compared
to setting up, running, and analyzing the Apache Hadoop application on
actual hardware.

We conclude that we were able to con�rm the main promise of the AT
method, i.e., to make software architects more e�cient.

AnsweringQlimitations: What are e�ective limitations of the ATmethod?
The 3 limitations collected during the case study (Mlimitations) point to
current drawbacks of the Hadoop MapReduce AT and in SimuLizar.

The �rst limitation (“the AT is currently in�exible and misses parameters,
e.g., for con�guring the number of map and reduce replicas”) shows that
the AT is only a �rst proof-of-concept for an AT-based initialization. Future
work is needed to make the AT more �exible, however, the proof-of-concept
of an AT-based initialization was successful.

The second limitation (“the AT-annotated architectural model appears in-
complete because map and reduce assembly context are unconnected”)
points to a potential visualization issue of AT-based architectural models.
Due to the fact that missing elements are created by AT completions, AT-
based architectural models potentially appear incomplete as, e.g., shown
in Figure C.17. A possible solution to this issue is to provide software ar-
chitects with a view on the architectural model that previews the elements
to be generated, e.g., by depicting missing elements in a greyed-out form
along with the remaining elements. Future work may inspect this issue
further.

The third limitation (“the applied analysis tool (SimuLizar) lacks support for
asynchronous map and reduce tasks, which can generally lead to inaccurate
analysis results”) relates to a tooling issue in SimuLizar; i.e., a tool on which
AT tooling depends. Saxena [Sax15, Sec. 7] has identi�ed this issue in his
Master’s thesis and reports on it in detail. Because the issue in�uences
prediction accuracy, Saxena suggests improving SimuLizar with support for

405

C. Case Study Reports

asynchronous communication. Rathfelder [Rat13] provides a good starting
point for such an improvement because he describes such an improvement
for other Palladio analysis tools, e.g., for SimuCom.

Answering Qspecification e�ort: How much e�ort do AT engineers require for
specifying ATs? The acceptance of He�ort is high again con�rms that AT
engineers have high e�orts for specifying ATs (compared to the overall
e�orts for specifying architectural models). In contrast to the CloudStore
case study, the speci�cation of the AT itself has caused the most e�ort, i.e.,
approximately 2.5personmonths .

We had high e�orts in this step because Saxena’s reference model has
required extensive investigations of and experimentation with Hadoop’s
processing pipeline. We suspect that such an amount of e�ort can even
be generalized to most reference architectures, given their typically high
amount of (domain-speci�c) design decisions. However, we expect that
such e�orts pay-o� when captured in ATs that are reused often.

Our inability to test Htime-size correlation suggests more experiments that
can provide the required data. In the CloudStore case study, we have
established �rst results in this direction, however, not with focus on an
AT-based initialization of architectural models. Future work may continue
with investigations in this direction.

Answering Qquality assurance: Does quality assurance e�ectively help AT en-
gineers to improve the conceptual integrity of specified ATs? The accep-
tance of hypothesis Herrors are detected and hypothesis Herrors are resolved in-
dicates that the AT method’s quality assurance helps in e�ectively improv-
ing conceptual integrity of speci�ed ATs. The discussion of this result is
analogous to the CloudStore case study in Section C.1.4.5.

C.2.3.4. WordCount: Evaluation of Validity

Compared to the CloudStore case study, we conducted the WordCount case
study with an AT that can be used as initiator template. The WordCount
case study therefore provides an additional view on the AT method, thus,
reducing threats of uncovered properties of the AT method.

406

C.3. Case Study Report: Znn.com

Threats in this case study mainly relate to the fact that only a single AT is
investigated. For example, the “low statistical power” threat as described
in Section C.1.4.6 is even more crucial in the WordCount case study and
motivates the conduction of further experiments on ATs with default AT
instances. Also other threats are similar to the threats described for the
CloudStore case study; these threats are therefore not discussed again in
this section.

C.3. Case Study Report: Znn.com

In this section, we outline a case study where a student, Igor Rogic [Rog16],
has applied ATs to analyzing the elastic news service Znn.com [CGS09].
The Znn.com case study serves as an external validation of AT application;
I only interacted with the student via mail in case of concrete questions.

In summary, the goal of the Znn.com case study was to:

Analyze: the AT method

For the purpose of: conducting architectural analyses for determining suit-
able parameters for elasticity mechanisms

With respect to: e�ectivity and e�ciency

From the viewpoint of: external software architects

In the context of: realistic distributed and cloud computing systems.

The context of the goal particularly shows that the goal’s context has not
changed compared to the CloudStore case study (Section C.1). Therefore,
the expectation is that ATs that we have speci�ed during the CloudStore
case study can be reused for Znn.com. Rogic has indeed applied the hori-
zontal scaling AT for resource containers to model and analyze Znn.com’s
elasticity mechanism [Rog16, Sec. 4.2], thus, meeting this expectation. How-
ever, he was only partially successful in interpreting architectural analysis
results, which points to learnability problems of architectural analysis ap-
proaches.

To summarize and detail these results, the remainder of this section de-
scribes the Znn.com case study. Analogously to the preceding case studies,

407

C. Case Study Reports

the section follows the reporting guidelines for case studies by Runeson and
Höst [RH09]. After Section C.3.1 details the Znn.com service, Section C.3.2
describes the design of the case study as a re�nement of the generic evalua-
tion design from Section 5.2. Section C.3.3 provides the results of the case
study, including an interpretation and discussion of threats to validity.

C.3.1. Znn.com

Znn.com [CGS09] represents a typical news service with the goal of provid-
ing news content to customers within reasonable response time. Figure C.19
illustrates Znn.com via an architectural model. The model contains two
assembly contexts: News Service and News Database Access. Each assembly con-
text is allocated to a dedicated resource container, i.e., to Application Server
and Database Server, respectively. News customers can request news via the
INews interface. To answer such requests, News Service requests appropriate
news items via the IDB interface from News Database Access.

Application Server

Customer

News
Service

INews

Database Server

News
Database
Access

IDB

Legend:

compo-
nent

resource
container requests

provided
interface

required
interface

Figure C.19.: PCM model of the Znn.com news service (based on [Rog16, Sec. 4.2.7]).

C.3.2. Znn.com: Case Study Design

This section describes the design of the Znn.com case study. Section C.3.2.1
brie�y points to relevant research questions and procedures for data col-
lection, analysis, and validation. Afterwards, Section C.3.2.2 describes the
Znn.com case as a parametrization problem of Znn.com’s elasticity mech-
anism. Involved human subjects (i.e., Rogic and I) are characterized in
Section C.3.2.3.

408

C.3. Case Study Report: Znn.com

C.3.2.1. Znn.com: Research Questions and Procedures

The Znn.com case study provides data to answer the research questions of
Section 5.2 related to AT application: Qapplication e�ort (How much e�ort do
software architects require to apply ATs?),Qe�ort saving (How much creation
e�ort can software architects save when applying ATs?), Qconformance (Do
software architects e�ectively bene�t from checking whether their archi-
tectural models violate conformance to applied ATs?), Qbene�ts (What are
e�ective bene�ts of the AT method?), and Qlimitations (What are e�ective
limitations of the AT method?). The procedures for data collection, analysis,
and validity from Section 5.2 are used to gather, analyze, and validate this
data.

C.3.2.2. Znn.com: Case

Due to the nature of news, Znn.com is expected to face varying workloads
(cf. [CGS09]), e.g., peak workloads in the event of breaking news. To cope
with these varying workloads cost-e�ciently, the provider of Znn.com
requires that the Znn.com service shall employ elasticity mechanisms. The
elasticity mechanisms shall be able to dynamically adapt the number of
Znn.com’s load-balanced server replicas and Znn.com’s content mode (mul-
timedia vs. textual).

Therefore, in the Znn.com case, a software architect has to determine
suitable parameters for Znn.com’s elasticity mechanisms. Parameters to
be determined can relate to the dynamic load-balancing strategy (e.g., the
determination of a threshold when a scale-out should be triggered) and the
selection strategy of the content mode (e.g., determining a peak workload
when content mode should optimally be switched to textual).

Parameters are suitable if Znn.com’s SLO—as stated in Table C.10—is ful-
�lled. The SLO SLOPerformance refers to a classical performance metric (re-
sponse time). In the SLO, Rogic has de�ned a hard threshold of 0.3 seconds
for this metric [Rog16, Sec. 4.2.8]. Moreover, Rogic investigates the ful-
�llment of this SLO for a workload of 300 concurrent customers [Rog16,
Sec. 4.2.6].

409

C. Case Study Reports

Table C.10.: Znn.com’s SLO (from [Rog16, Sec. 4.2.8])

SLOPerformance: Znn.com responds with a maximum response time of
0.3 seconds.

C.3.2.3. Znn.com: Subjects

The case study on Znn.com was externally conducted by Rogic in the context
of his Master’s thesis [Rog16]. In the case study, Rogic has acted as software
architect following the AT method to determine a suitable con�guration
of Znn.com’s elasticity mechanism. For making the validation external,
Rogic and I just agreed on evaluation goals and, subsequently, restricted
our interaction to emails (in case of issues with applying the AT method).

Rogic has started the case study with prior experience on Palladio because he
worked over half a year on Palladio-related source code as a student worker.
His knowledge on conducting architectural analyses was based on papers
on Palladio [BKR09], SimuLizar [BBM13], and the AT method [Leh14a].
However, Rogic has not conducted architectural analyses before, thus, can
be seen as a novice software architect in this thesis’ context.

C.3.3. Znn.com: Results

This section reports the results of the Znn.com case study. The report starts
in Section C.3.3.1 with the execution the Znn.com case. The empirical data
created during this execution is analyzed in Section C.3.3.2 and interpreted
in Section C.3.3.3. Potential threats to validity of the Znn.com case study
are �nally discussed in Section C.3.3.4.

C.3.3.1. Znn.com: Execution

Acting as software architect, Rogic has applied the horizontal scaling AT to
the Znn.com model. For this application, he has bound the AT’s horizontal
scaling container role to the Application Server as shown in Figure C.20.

410

C.3. Case Study Report: Znn.com

Application Server

Customer

News
Service

INews

Database Server

News
Database
Access

IDB Legend:

compo-
nent

resource
container requests

provided
interface

required
interface

applied AT
@role (
 parameter
 = value)

role binding
(external)

horizontal scaling
@horizontal scaling container (
 number of initial replicas = 3,
 scale-in threshold = 0.01 sec.,
 scale-out threshold = 0.30 sec.,
 QoS monitor ID = "_N4q…"
)

Figure C.20.: The horizontal scaling AT applied to the Znn.com model (based on
[Rog16, Sec. 4.2.7]).

In Figure C.20, the actual AT parameter number of initial replicas speci�es
that Znn.com starts with 3 replicas of the Application Server. This number is
dynamically aligned to the response times of the News Service as speci�ed by
the QoS monitor ID parameter. Replicas are scaled-in if average response
times drop below 0.01 seconds and scaled-out if they increase beyond the
0.30 seconds mark. Therefore, Rogic has de�ned the 0.30 seconds mark
according to Znn.com’s performance SLO.

Figure C.21 and Figure C.22 show Rogic’s results from an architectural anal-
ysis of the Znn.com model for a closed workload of 300 customers . Over sim-
ulation time (X-axis), the Y-axis of Figure C.21 depicts Znn.com’s response
times while the Y-axis of Figure C.22 depicts the number of Znn.com’s
resource containers.

Figure C.21 shows that Znn.com’s performance SLO is repeatedly violated:
most response times are above the 0.30 seconds mark. Nonetheless, Fig-
ure C.22 shows that, over simulation time, more and more resource contain-
ers are added to Znn.com, thus, indicating that the replication mechanism of
the applied AT works correctly. At this point, Rogic has however concluded
that the applied AT does not behave as expected [Rog16, Sec. 5.1.3] and has
stopped his investigation.

411

C.
Case

Study
Reports

Figure C.21.: Znn.com’s response times over simulation time for 300 concurrent customers (from [Rog16, Sec. 5.1.3]).

412

C.3.
Case

Study
Report:Znn.com

Figure C.22.: Znn.com’s number of resource containers over simulation time (from [Rog16, Sec. 5.1.3]).413

C. Case Study Reports

C.3.3.2. Znn.com: Analysis

In this section, I analyze the empirical data that Rogic has collected during
the Znn.com case study. Table C.11 provides an overview of this data;
depicted measurements directly correspond to the metrics of the GQM plan
(cf. Table 5.1 in Section 5.2). The �rst column speci�es the metric of interest
while the second column provides the measurements for the application
of the horizontal scaling AT to Znn.com. Rows are grouped via horizontal
lines according to the research questions from Section 5.2, e.g., the �rst
research question is covered by the �rst four rows of metric measurements.
Structured along these research questions, the corresponding measurements
depicted in Table C.11 are analyzed in the following. The analysis covers a
brief description of the measurements and the test of hypotheses associated
to each research question. The interpretation of the analysis is left to a
dedicated interpretation section (Section C.3.3.3).

Table C.11.:Metric measurements collected in the Znn.com case study
horizontal scaling (resource container)

Mtime for modeling and analysis 46hours
M#ATs 7
M#AT roles 1
M#AT parameters 4

M∆time -
M∆components 1
M∆assembly ctx.

∗ r
M∆operations 0
M∆self-adapt. 803

M#detected violations 0
M#resolved violations 0

Mbene�ts “the horizontal scaling AT—speci�ed in the context of the Cloud-
Store case study—has been reused during the Znn.com case study”,
“a novice software architect was able to correctly apply an AT and
to conduct an AT-based architectural analysis”

Mlimitations “the software architect has suspected the AT to be faulty based on
unsatisfying analysis results; however, the unsatisfying results were
caused by a performance bottleneck unrelated to the applied AT”,
“mail support was required pointing to the Experimentation Au-
tomation Framework for conducting AT-based analyses”

∗ r denotes the number of initial replicas with r ≥ 1.

414

C.3. Case Study Report: Znn.com

Analysis: Howmuch e�ort do so�ware architects require to apply ATs?
The measurement on the e�ort of software architects (Qapplication e�ort) are
depicted in the �rst measurement group in Table C.11.

Measurement description. For specifying the complete architectural
model, Rogic reports an e�ort of approximately 46hours [Rog16, Sec. 5.2].
However, he provides no per-action information about the consumed time
for AT selection and application. Therefore, Table C.11 only reports the
total of 46hours that Rogic required for modeling and analyzing Znn.com
(Mtime for modeling and analysis).

As shown in Table C.7, Rogic selected the horizontal scaling AT from the
catalog of 7 ATs (M#ATs) that we have created during the CloudStore case
study. As before, the horizontal scaling AT contains 1 role and 4 parameters
(M#AT roles and M#AT parameters).

Hypothesis testing. These measurements alone make it impossible to test
hypotheses Htime-size correlation and He�ort is low. To test Htime-size correlation,
more time and size samples are needed to calculate the Pearson correlation
coe�cient. To test He�ort is low, per-action information about the consumed
time for AT selection and application are needed.

Analysis: Howmuch creation e�ort can architects save when applying ATs?
The measurement on e�ort savings for software architects (Qe�ort saving)
are depicted in the second measurement group in Table C.11.

Measurement description. As in the CloudStore case study, M∆time was
not measured because of a missing control group. However, Rogic [Rog16,
Sec. 5.2] has taken measurements for the remaining di�erence metrics
(M∆components, M∆assembly ctx., M∆operations, M∆self-adapt.).

The measurement of M∆components has yielded 1 component to acknowledge
for the additional component acting as loadbalancer. The horizontal scaling
ATs for resource containers create a loadbalancer and as many replicas of the
News Service assembly contexts as speci�ed by the number of (initial) replicas
parameter of these ATs. Therefore, the measurement of M∆assembly ctx. has
yielded r assembly contexts. For example, if r = 1, only a loadbalancer is
attached in front of the Application Server but no additional assembly contexts
have to be created. For r = 2, an additional instance of the News Service

415

C. Case Study Reports

assembly context is allocated to the Application Server. The measurement
of M∆operations has yielded 0 operations because no additional operations
were introduced in the AT. The measurement of M∆self.-adapt. has yielded
803 lines of code; the same value as was measured during the CloudStore
case study.

Hypothesis testing. These measurements allow to accept He�ort is lowered.
In contrast, H∆time-∆size correlation cannot be tested because of the missing
measurements for M∆time—analogously to the CloudStore case study.

No measurement for the metrics M∆components, M∆assembly ctx., M∆operations,
and M∆self-adapt. is negative. Therefore, He�ort is lowered can directly be
accepted.

Analysis: Do so�ware architects e�ectively benefit from checking whether
their architectural models violate conformance to applied ATs? The mea-
surement on conformance checking (Qconformance) are depicted in the third
measurement group in Table C.11.

Measurement description. Rogic does not report on detected confor-
mance violations, thus, the measurement of M#detected violations is 0. Conse-
quently, M#resolved violations must be 0 as well.

Hypothesis testing. Because no violations were detected, hypothesis
Hviolations are detected is rejected. Testing hypothesis Hviolations are resolved is
useless for the case of 0 detected violations.

Analysis: What are e�ective benefits of the ATmethod? The measurement
on bene�ts (Qbene�ts) are depicted in the fourth measurement group in
Table C.11.

Measurement description. The measurement of Mbene�ts has resulted
in the 2 collected bene�ts given in Table C.7. Because Rogic has not ex-
plicitly collected bene�ts on his own, I derived these bene�ts from Rogic’s
conduction of the case study.

Hypothesis testing. Because bene�ts were identi�ed, Hbene�ts exist is
accepted.

416

C.3. Case Study Report: Znn.com

Analysis: What are e�ective limitations of the AT method? The measure-
ment on limitations (Qlimitations) are depicted in the �fth measurement
group in Table C.11.

Measurement description. The measurement of Mlimitations has resulted
in the 2 collected limitations given in Table C.7. Similar to bene�ts, I derived
these limitations from Rogic’s conduction of the case study.

Hypothesis testing. Because limitations were identi�ed, Hlimitations exist
is accepted.

C.3.3.3. Znn.com: Interpretation

Based on the data analysis in the previous section, this section proceeds
with answering the associated questions of the GQM plan (cf. Table 5.1 in
Section 5.2).

AnsweringQapplication e�ort: Howmuch e�ort do so�ware architects require
to apply ATs? The data provided by Rogic unfortunately does not allow
an interpretation based on the posed hypotheses, especially since Rogic
has only measured the total time for creating and analyzing Znn.com’s
architectural model and not the exclusive time for AT-related actions.

However, Rogic’s total time of 46hours can be compared to the total time
of 214hours for the creation of the CloudStore model (cf. Section C.1.1).
Because we required approximately 4.5 times more time to create the Cloud-
Store model, CloudStore can be considered signi�cantly more complex than
Znn.com.

A lowered complexity of Znn.com (compared to CloudStore) implies dif-
ferent expectations for its evaluation. For example, it is less likely that
conformance to applied reusable architectural knowledge is violated and
less bene�ts and limitations may be observed during the conduction of
the case study. When answering the subsequent questions, the lowered
complexity of Znn.com is therefore taken into account.

417

C. Case Study Reports

Answering Qe�ort saving: How much creation e�ort can so�ware architects
savewhen applying ATs? The acceptance of He�ort is lowered indicates that
e�ort can e�ectively be lowered by applying ATs. The interpretation of
this result is analogous to the CloudStore case study because the horizontal
scaling AT was applied there as well.

AnsweringQconform.: Do so�ware architects e�ectively benefit from check-
ingwhether their architecturalmodels violate conformance to applied ATs?
The rejection of Hviolations are detected indicates that—at least for Znn.com
and the horizontal scaling AT—no bene�ts were gained from automated con-
formance checks. That such bene�ts generally exist has been shown during
the CloudStore case study, however, even in the CloudStore case study,
only other ATs than the horizontal scaling AT have triggered conformance
violations.

A possible explanation for these observations is that software architects
apply the horizontal scaling AT correctly because it involves no complex
constraints. Indeed, the constraints of this AT mainly check that actual
parameters are set correctly, e.g., that the number of initial replicas is positive.
Software architects potentially do not violate such constraints as parameter
names often suggest valid values intuitively. Future investigations may
provide more conclusive answers for this question.

AnsweringQbenefits: What are e�ective benefits of the AT method? The 2
bene�ts collected during the case study (Mbene�ts) indicate that even novice
software architects can reuse pre-speci�ed ATs and correctly apply these
ATs to architectural models.

The �rst bene�t (“the horizontal scaling AT—speci�ed in the context of the
CloudStore case study—has been reused during the Znn.com case study”)
covers the reuse aspect. Because Rogic was able to reuse the previously
speci�ed horizontal scaling AT within another case study, reuse of ATs is
possible. This result holds at least for intra-domain reuse: both CloudStore
and Znn.com are located in the context of distributed and cloud computing
systems. The horizontal scaling AT particularly captures a typical cloud
computing architectural pattern [EPM13, FLR+14]. More general ATs like

418

C.3. Case Study Report: Znn.com

the three-layer AT potentially allow for an inter-domain reuse; however,
this expectation requires con�rmation in future empirical studies.

The second bene�t (“a novice software architect was able to correctly apply
an AT and to conduct an AT-based architectural analysis”) points to a main
bene�t of the AT method—an increased e�ciency of software architects.
As the bene�t shows, an increased e�ciency (due to the time-e�cient
application of reusable architectural knowledge) is not only achieved for
expert software architects. An increase e�ciency is particularly achieved for
novice software architects without deep architectural knowledge—because
the required architectural knowledge is correctly captured within ATs.

AnsweringQlimitations: What are e�ective limitations of the ATmethod?
The 2 limitations collected during the case study (Mlimitations) show that
software architects may distrust ATs and that the tooling extended by the
AT method requires improvement.

The �rst limitation (“the software architect has suspected the AT to be
faulty based on unsatisfying analysis results; however, the unsatisfying
results were caused by a performance bottleneck unrelated to the applied
AT”) covers the distrust aspect. An inspection of Znn.com’s Database Server
after re-analyzing the Znn.com model shows that this server is over-utilized
and cannot cope with the number of requests. Therefore, Znn.com is unable
to scale by adding additional Application Servers—a similar results as we have
observed during the CloudStore case study (Section C.1). To resolve this
issue Rogic could have, for example, increased the processing rate of the
Database Server’s CPU. The interesting observation, however, is that Rogic
did not resolve the issue at all but suspected a faulty AT.

A solution to lower such distrust in ATs is to train software architects more
in interpreting analysis results and inspecting the causes of quality issues
such as performance bottlenecks. Software architects can also be supported
by an automated detection of quality anti-patterns (cf. [BBL17, Chap. 7])
and hotspot detections (cf. [Str13, Sec. 4.3]). Again, further empirical inves-
tigations are needed to analyze the impact of these solutions on the trust in
ATs of (novice) software architects.

The second limitation (“mail support was required pointing to the Exper-
imentation Automation Framework for conducting AT-based analyses”)

419

C. Case Study Reports

relates to a tooling issue in the Experimentation Automation Framework as
extended by AT tooling (cf. Appendix B.2). In its current form, the Experi-
mentation Automation Framework provides the required functionality to
extend architectural analyses with AT support. However, the Experiment
Automation Framework lacks an intuitive user interface for con�guring
architectural analyses. Due to this lack, Rogic has particularly ran into
problems to create a correct con�guration and, consequently, has requested
my support via mail. Upon having received this request, I have pointed
Rogic to an example con�guration. Based on this example, Rogic �nally
managed to create a correct con�guration to run architectural analyses
with the Experimentation Automation Framework.

Given the observed issue, future work should target improving the usability
of the Experiment Automation Framework. A promising direction for such
an improvement is provided by the CloudScale Environment [Cloa]: the
CloudScale Environment also extends the Experiment Automation Frame-
work but enriches it with a dedicated and intuitive user interface. An
integration of this user interface into the Experiment Automation Frame-
work itself is, however, missing at the moment.

C.3.3.4. Znn.com: Evaluation of Validity

Compared to the CloudStore case study, the Znn.com case was conducted
by an external subject. Therefore, threats related to biases caused by my
involvement are less crucial in the Znn.com case study. For example, the
“interaction of testing and treatment” threat as described in Section C.1.4.6
is less relevant for the Znn.com case study.

However, most other threats are similar to the threats described for the
CloudStore case study. Most prominently, threats related to the fact that
only a single subject has executed the case study are relevant. For example,
it remains unknown whether other subjects would face the same, di�erent,
or no issues when executing the Znn.com case. Given that this threat
remains a main threat to the evaluations conducted so far, Section 5.4 pays
special attention on this threat by outlining a controlled experiment for
evaluating the AT method.

420

D. Controlled Experiment:
Material

This appendix provides the experiment material for a controlled experiment
for the AT method as introduced by Nützel [N1̈5, Sec. 3.3]: installation
guides for AT tooling and SimuLizar, workshop document, CloudStore
description, and task descriptions for the treatment and the control group.
In the following, each of these materials is provided in a dedicated section;
the materials are described in Section 5.4.1.2

421

1

CloudStore Experiment: Installation Guide
1. Download and install the current »Eclipse Modeling Tools« edition available at

http://www.eclipse.org/downloads/ (last tested with Eclipse 4.5.1/Mars.1 Release).

2. Start your newly installed Eclipse and go to your update sites (Help -> Install New

Software...).

3. Click »Add...« and Enter »Palladio« as »Name« and

»https://sdqweb.ipd.kit.edu/eclipse/palladiosimulator/releases/latest/« as »Location«.

4. Click »Select All«, hit »Next >« (2 times), accept the licencse agreement, and click »Finish«.

5. After restart, add another update site (Help -> Install New Software...) with »Architectural

Templates« as »Name« and »https://github.com/PalladioSimulator/Architectural-

Templates« as »Location«.

6. Click »Select All«, hit »Next >« (2 times), accept the licencse agreement, and click »Finish«.

7. After a successful installation, switch to the »Palladio« perspective for executing the next

steps (Window -> Open Perspective -> Other... -> Palladio).

8. Import the CloudStore model from the zip-file we provided to you (File -> Import... -> Existing

Projects into Workspace -> Next > -> Select archive file: CloudStoreWithATs.zip -> Finish)

D. Controlled Experiment: Material

D.1. Installation Guide for AT Tooling

422

1

CloudStore Experiment: Installation Guide
1. Download and install the current »Eclipse Modeling Tools« edition available at

http://www.eclipse.org/downloads/ (last tested with Eclipse 4.5.1/Mars.1 Release).

2. Start your newly installed Eclipse and go to your update sites (Help -> Install New

Software...).

3. Click »Add...« and Enter »Palladio« as »Name« and

»https://sdqweb.ipd.kit.edu/eclipse/palladiosimulator/releases/latest/« as »Location«.

4. Click »Select All«, hit »Next >« (2 times), accept the licencse agreement, and click »Finish«.

5. After restart, add another update site (Help -> Install New Software...) with »Architectural

Templates« as »Name« and »https://github.com/PalladioSimulator/Architectural-

Templates« as »Location«.

6. Click »Select All«, hit »Next >« (2 times), accept the licencse agreement, and click »Finish«.

7. After a successful installation, switch to the »Palladio« perspective for executing the next

steps (Window -> Open Perspective -> Other... -> Palladio).

8. Import the CloudStore model from the zip-file we provided to you (File -> Import... -> Existing

Projects into Workspace -> Next > -> Select archive file: CloudStoreWithSimuLizar.zip ->

Finish)

Screencapture
Finally, we'd like you to capture your screen for all tasks you conduct within the controlled

experiment. The experiment description explicitely states the point in time when you need to

activate the capture tool. (If you are unwilling to capture, please provide a brief rationale.)

Use the capture tool of your preferenece. On Windows, we suggest the free capture tool

»CamStudio« (http://sourceforge.net/projects/camstudio/). On Mac, we suggest the

commercial capture tool »Camtasia« (ask Sebastian for a license).

D.2. Installation Guide for SimuLizar

D.2. Installation Guide for SimuLizar

423

Palladio	Workshop	
	

1	
	

Engineering	a	Web	Application	with	Palladio	(Version	2.0)	
The	goal	of	this	workshop	is	to	engineer	a	
web	application	with	Palladio.	For	this	
workshop,	a	web	application	consists	of	a	
web	interface	allowing	users	to	submit	their	
fore-	and	surname	into	a	database.	

The	workshop	presents	the	tasks	of	
modeling	the	web	application	and	
performing	performance	analyses	step-by-
step.	It	is	based	on	the	Palladio	screencast	
series	available	at	http://www.palladio-
simulator.com/tools/screencasts/	.	

1.	Installation	[Estimated	Time:	20	–	40	min.]	
1. Download	and	install	the	current	»Eclipse	Modeling	Tools«	edition	available	at	

http://www.eclipse.org/downloads/	(last	tested	with	Eclipse	4.5.1/Mars.1	Release).	
2. Start	your	newly	installed	Eclipse	and	go	to	your	update	sites	(Help	->	Install	New	

Software...).	
3. Click	»Add...«	and	Enter	»Palladio«	as	»Name«	and	

»https://sdqweb.ipd.kit.edu/eclipse/palladiosimulator/releases/latest/«	as	»Location«.	
4. Click	»Select	All«,	hit	»Next	>«	(2	times),	accept	the	licencse	agreement,	and	click	»Finish«.	
5. After	restart,	add	another	update	site	(Help	->	Install	New	Software...)	with	»Architectural	

Teamplates«	as	»Name«	and	
»http://cloudscale.xlab.si/cse/updatesites/architecturaltemplates/nightly/«	as	»Location«.	

6. Click	»Select	All«,	hit	»Next	>«	(2	times),	accept	the	licencse	agreement,	and	click	»Finish«.	
7. After	a	successful	installation,	switch	to	the	»Palladio«	perspective	for	executing	the	next	

steps	(Window	->	Open	Perspective	->	Other...	->	Palladio).	

General	Information	can	also	be	found	here:	http://sdqweb.ipd.kit.edu/wiki/PCM_Installation	

2.	Buttons	[Estimated	Time:	1	min.]	
This	workshop	will	refer	to	these	buttons	available	in	a	Palladio	installation:	

	

From	left	to	right,	these	buttons	are	named	as	follows:	

1. New	Repository	Model	Diagram	()	
2. New	System	Model	Diagram	()	
3. New	Resource	Model	Diagram	()	
4. New	Allocation	Model	Diagram	()	
5. New	Usage	Model	Diagram	()	

D. Controlled Experiment: Material

D.3. Workshop Document

424

Palladio	Workshop	
	

2	
	

	

3.	Repository	Model	[Estimated	Time:	15	min.]	
A	component	developer	uses	the	repository	model	to	specify	a	set	of	components	that	can	later	be	
deployed	within	a	system.	Let	us	model	a	database	component	for	storing	fore-	and	surnames	as	well	
as	a	web	component	allowing	to	access	the	database	via	a	web	interface.	

1. Create	a	new	general	project	»PalladioProject«	(Right-click	at	the	Project	Explorer	view	->	
New	->	Project...	->	General	->	Project	->	Project	Name:	»PalladioProject«	->	Finish).	

2. Select	the	newly	created	project	and	click	the	»New	Repository	Model	Diagram«	()	button.	
3. Select	the	newly	created	project	folder	and	click	»Next«	(this	determines	the	place	to	store	

the	repository	diagram).	You	may	leave	the	name	(»default.repository_diagram«)	as	it	is.		
4. Select	the	newly	created	project	folder	and	click	»Finish«	(this	determines	the	place	to	store	

the	repository	model).	You	may	leave	the	name	(»default.repository«)	as	it	is.	The	diagram	
should	open;	on	its	right	is	a	palette	allowing	to	add	elements	to	the	diagram.	

5. Add	an	»Interface«	to	the	diagram	and	name	it	»IWeb«.	Add	a	»Signature«	from	the	palette	
to	this	interface.	Go	to	the	Properties	view	and	set	the	signature	to	»void		submit(string	
name,	string	forename)«.	This	models	the	interface	to	the	web	component.	

6. Repeat	step	5	for	the	»IWeb«	interface	providing	a	service	with	the	signature	»void	
store(string	name,	string	forename)«.	This	models	the	database	interface	providing	a	service	
to	store	a	fore-	and	a	surname	within	a	database.	

7. Next,	we	will	add	the	components	providing	and	requiring	these	interfaces.	Add	a	
»BasicComponent«	to	the	diagram.	Name	it	»Web«.	

8. Add	another	»BasicComponent«	to	the	diagram.	Name	it	»Database«.	
9. Connect	the	Database	component	to	the	IDatabase	interface	via	a	»ProvidedRole«	from	the	

palette.	Connect	Web	and	IWeb	similarly.	
10. As	the	Web	component	needs	to	write	into	a	database,	connect	the	Web	component	with	

IDatabase	via	a	»RequiredRole«	from	the	palette.	Your	diagram	should	look	like	shown	
below.	

11. Next,	we	need	to	specify	the	behavior	of	the	services	our	components	provide.	Therefore,	
we	specify	»Service	Effect	Specifications«	(SEFFs)	that	model	the	performance-relevant	
behavior	of	our	services.	They	are	similar	to	activity	diagrams.	

D.3. Workshop Document

425

Palladio	Workshop	
	

3	
	

- Double	click	the	»SEFF	<store>«	entry	of	the	Database	component.	A	SEFF	diagram	editor	
with	a	predefined	start	and	stop	action	opens.	Remove	the	link	between	these	two	
actions.	Next,	add	an	»InternalAction«	from	the	palette	to	the	diagram	and	name	it	
»storeInternally«.	

- Add	a	»ResourceDemand«	from	the	palette	to	this	action.	Select	»CPU«	and	press	»OK«.	
As	a	stochastic	expression,	enter	»DoublePMF[(10;0.3)(20;0.4)(30;0.3)]«.	
This	models	that	our	database	needs	10	CPU	workunits	in	30%	of	the	cases	to	store	a	
name.	In	40%	of	the	cases,	it	needs	20	CPU	workunits	and	in	30%	of	the	cases,	it	needs	
30	CPU	workunits.	You	may	use	the	»Help«	button	as	an	online	help	within	the	stochastic	
expression	editor	to	look	up	the	meaning	of	these	stochastic	expressions.	

- Add	another	»Resource	Demand«	to	the	action.	This	time,	select	»HDD«	and	enter	
»100«	as	a	stochastic	expression.	This	models	that	the	database	also	needs	100	HDD	
workunits	(constantly,	in	all	of	the	cases).	

- Connect	the	start	action	with	the	»storeInternally«	action	via	a	»Control	Flow«	link	from	
the	palette.	Analogously,	connect	»storeInternally«	with	the	end	action.	Your	diagram	
should	look	like	shown	below.	You	can	save	and	close	the	diagram	now	to	get	back	to	the	
repository	diagram.	

	
12. Let	us	also	specify	the	SEFF	of	the	Web	component's	»submit«	service.	

- Double	click	the	»SEFF	<submit>«	entry	of	the	Web	component.	
- Add	an	»ExternalCallAction«	from	the	palette	to	the	diagram	and	select	the	»store«	

OperationSignature	from	the	dialog	that	opens.	Confirm	with	»OK«.	By	this,	we	model	
the	call	to	the	database	from	our	Web	component.	

- Connect	the	Actions	appropriately	via	»Control	Flow«	such	that	you	get	a	diagram	like	
shown	below.	Save	and	close	the	diagram.	

	
	

D. Controlled Experiment: Material

426

Palladio	Workshop	
	

4	
	

13. Save	and	close	the	repository	diagram.		

4.	System	Model	[Estimated	Time:	5	min.]	
A	system	architect	uses	the	available	components	in	component	repositories	(cf.	Step	3	–	Repository	
Model)	to	compose	a	concrete	component-based	software	system.	Let	us	build	such	a	system	for	the	
the	components	we	just	created.	

1. Click	the	»New	System	Model	Diagram«	()	button.	
2. Create	a	new	system	diagram	and	model	within	the	»PalladioProject«	project	folder.	The	

diagram	opens	with	a	»defaultSystem«	allowing	to	specify	our	web	application	system.	
3. Add	an	»AssemblyContext«	from	the	palette	to	the	»defaultSystem«.	Load	the	repository	we	

created	before	(Load	Repository	->	Browse	Workspace...	->	PalladioProject	/	
default.repository	->	OK	->	OK).	Select	the	»Database«	component	and	confirm	with	»OK«.	

4. Analogously	repeat	3.	to	add	the	»Web«	component.	
5. Connect	the	two	assemblies	by	using	an	»AssemblyConnector«	from	the	palette:	connect	the	

required	interface	of	»Assembly_Web«	with	the	provided	interface	of	
»Assembly_Database«.	We	now	assembled	our	components	within	the	system.	

6. Finally,	we	need	to	provide	an	interface	to	our	system	such	that	it	gets	accessible	by	users.	
Add	a	»SystemOperationProvidedRole«	from	the	palette	to	the	»defaultSystem«	and	select	
the	»IWeb«	interface.	Use	an	»OperationProvidedDelegationConnector«	from	the	palette	to	
connect	the	system's	provided	role	to	the	providing	role	of	the	Web	assembly.	
You	should	get	a	system	like	shown	below.	You	can	save	and	close	the	system	diagram	now.	

	

5.	Resource	Environment	[Estimated	Time:	5	min.]	
A	system	deployer	uses	the	resource	environment	to	model	CPUs,	hard	disk	drives,	networks,	etc.	Let	
us	first	consider	a	single	server	for	our	simple	web	application	where	we	will	deploy	both,	the	web	
and	the	database	components.	

1. Click	the	»New	Resource	Model	Diagram«	()	button.	
2. Create	a	new	resource	environment	diagram	and	model	within	the	»PalladioProject«	project	

folder.	The	diagram	opens	automatically.	

D.3. Workshop Document

427

Palladio	Workshop	
	

5	
	

3. Add	a	»ResourceContainer«	from	the	palette	to	the	diagram	and	name	it	»WebServer«.	
4. Next	we	add	a	CPU	specification	to	the	latter	container.	

- Add	a	»ProcessingResourceSpecification«	to	the	newly	created	resource	container.	Select	
»CPU«	as	processing	resource	type	and	confirm	with	»OK«.	

- A	stochastic	expression	editor	pops	up	in	which	you	specify	a	processing	rate	of	»10«.	
This	models	that	our	CPU	can	handle	10	CPU	workload	units	per	second.	Confirm	with	
»OK«.	

- A	new	dialog	pops	up	enabling	us	to	select	a	scheduling	policy	for	our	CPU.	Select	
»Processor	Sharing«	which	is	a	round-robin	strategy.	This	models	the	scheduler	behavior	
of	operating	systems	in	a	simplified	form.	Confirm	with	»OK«.	

5. Analogously	repeat	4.	for	adding	a	hard	disk	drive	to	the	WebServer:	Select	»HDD«,	specify	a	
processing	rate	of	»10«	modeling	that	our	hard	disk	drive	can	handle	10	HDD	workload	units	
per	second,	and	select	»First-Come-First-Serve«	as	scheduling	policy	which	models	a	typical	
behavior	of	hard	disk	drives.	
You	should	get	a	resource	environment	like	shown	below.	You	can	save	and	close	the	
resource	environment	diagram	now.	

	

6.	Allocation	Model	[Estimated	Time:	5	min.]	
Another	task	for	the	system	deployer	is	to	allocate	the	components	assembled	within	the	system	to	
the	resource	environment.	Let	us	allocate	the	system's	components	to	our	WebServer.	

1. Click	the	»New	Allocation	Model	Diagram«	()	button.	
2. Create	a	new	allocation	diagram	and	model	within	the	»PalladioProject«	project	folder.	You	

also	have	to	select	the	resource	environment	(»default.resourceenvironment«)	and	system	
(»default.system«)	from	our	workspace.	The	diagram	opens	automatically	after	pressing	
»Finish«.	It	already	includes	the	WebServer	we	specified	before.	

3. Add	an	»AllocationContext«	from	the	palette	to	the	WebServer.	Select	the	
»Assembly_Database«	component	and	confirm	with	»OK«	to	allocate	it	to	the	WebServer.	

4. Proceed	analogously	with	adding	the	»Assembly_Web«	component.	
You	should	get	an	allocation	like	shown	below.	You	can	save	and	close	the	allocation	diagram	
now.	

D. Controlled Experiment: Material

428

Palladio	Workshop	
	

6	
	

	

7.	Usage	Model	[Estimated	Time:	5	min.]	
A	domain	expert	specifies	the	behavior	of	users	that	will	use	our	system.	Let	us	specify	that	one	user	
repeats	submitting	fore-	and	surenames	to	our	web	application.	After	each	submit,	the	user	pauses	
for	10	seconds.	

1. Click	the	»New	Usage	Model	Diagram«	()	button.	
2. Create	a	new	usage	diagram	and	model	within	the	»PalladioProject«	project	folder.	The	

diagram	opens	automatically.	The	diagram	already	includes	a	default	usage	scenario	that	we	
will	extend.	

3. Resize	the	diagram	to	your	needs.	Then	add	an	»EntryLevelSystemCall«	from	the	palette	to	
the	diagram.	Select	the	system	we	specified	from	your	workspace	(»default.system«).	Then,	
select	the	»Provided_IWeb«	provided	interface	of	our	system	and	click	»OK«.	In	the	next	
dialog,	choose	the	»submit«	operation	and	confirm	with	»OK«.	This	models	the	call	to	our	
system	via	its	provided	submit	service.	

4. Connect	the	actions	appropriately	by	using	the	»Usage	Flow«	links	from	the	palette.	
5. Add	a	»ClosedWorkload«	from	the	palette	to	our	»defaultUsageScenario«.	Specify	a	

population	of	»1«	user	and	a	think	time	of	»10«	seconds.	This	models	that	one	user	is	within	
our	system,	calls	the	submit	service	of	our	system,	waits	for	10	seconds,	and	finally	repeats	
this	process.	
You	should	get	a	usage	model	like	shown	below.	You	can	save	and	close	the	usage	diagram	
now.	

	

D.3. Workshop Document

429

Palladio	Workshop	
	

7	
	

8.	Performance	Predictions	[Estimated	Time:	30	min.]	
We	are	now	prepared	to	execute	performance	predictions	of	the	web	application	we	modeled.	This	
task	is	usually	performed	by	system	architects	such	that	they	can	evaluate	different	design	
alternatives.	

1. Open	the	»Run	Configurations«	dialog	(Run	->	Run	Configurations...).	
2. Doubleclick	the	»SimuBench«	configuration	category	to	create	a	new	run	configuration	for	

the	SimuCom	solver,	an	often	applied	solver	in	Palladio.	
3. Name	the	configuration	»SimuCom-WebApplication«.	
4. In	the	»Architecture	Model(s)«	tab,	select	the	allocation	(»default.allocation«)	and	usage	

(»default.usagemodel«)	models	we	created	from	the	workspace.	
5. In	the	»Simulation«	tab,	set	the	»Experiment	Name«	to	»SimuCom-WebApplication«	and	set	

the	»Maximum	measurement	count«	to	»1000«	for	shorter	simulation	times.	Finally,	browse	
available	»Data	sources«	for	the	»Experiment	Data	Persistency	&	Presentation	(EDP2)«	by	
pressing	the	»Browse...«	button.	Press	»Add...«,	select	»In-Memory	data	source«,	and	press	
»Finish«.	Select	the	new	»LocalMemoryRepository«	for	storing	our	measurement	results	in	
main	memory.	

6. Apply	your	changes	and	press	the	»Run«	button.	The	simulation	may	take	a	short	while.	You	
can	follow	the	simulation	status	in	the	»Console«	and	the	»Simulation	Dock	Status«	views.	

7. After	the	simulation,	go	to	the	»Experiments«	view.	Expand	your	datasource	completely	if	
not	already	expanded.	You	should	be	able	to	see	different	entries	with	measurements	taken	
by	different	monitors.	

8. Let's	investigate	some	of	these	measurements.	
a. Doubleclick	the	»Usage	Scenario:	defaultUsageScenario«	entry.	Doubleclick	the	»XY	

Plot«	entry	in	the	dialog	that	pops	up.	You	will	get	a	diagram	similar	to	the	one	
shown	below.	

	
On	the	x-axis	you	see	the	time	when	the	measurement	was	taken	and	on	the	y-axis	
the	response	time	as	measured	for	the	usage	scenario.	In	our	scenario,	the	response	
time	of	one	measurement	is	the	time	that	is	needed	for	getting	the	result	of	
»IWeb.submit«	when	calling	it.	The	three	horizontal	lines	result	from	our	
specification	of	the	demanded	CPU	workunits	as	a	PMF	(10	in	30%,	20	in	40%,	and	30	
in	30%	of	the	cases).	With	a	CPU	processing	rate	of	10	workunits	per	second,	the	CPU	
can	cause	1,	2,	or	3	seconds	response	time.	The	remaining	10	seconds	are	caused	by	

D. Controlled Experiment: Material

430

Palladio	Workshop	
	

8	
	

the	hard	disk	drive	demand	(we	demanded	100	workunits	and	have	a	hard	disc	
processing	rate	of	10	workunits	per	second).	

b. Let's	open	a	different	diagram	to	see	an	alternative	to	an	XY	Plot.	Doubleclick	the	
»Usage	Scenario:	defaultUsageScenario«	entry,	again.	This	time,	doubleclick	the	
»Histogram«	entry	next.	You	will	get	a	diagram	similar	to	the	one	shown	below.	

	
On	the	x-axis	you	see	response	times	and	on	the	y-axis	the	measured	probability	of	a	
given	response	time.	Here,	we	clearly	see	the	correspondence	of	the	probabilities	we	
set	in	the	CPU's	PMF	and	the	actual	measurements	(they	closely	lie	around	the	30%,	
40%,	and	30%	marks).	

c. Let	us	now	have	a	closer	look	on	the	utilization	of	the	CPU.	Doubleclick	the	»CPU	[0]	
in	WebServer	(State	of	Active	Resource	Tuple)«	entry	for	this.	Doubleclick	the	»Pie	
Chart«	entry	next.	You	should	get	a	diagram	similar	to	the	one	shown	below.	

	
In	approximately	9%	of	the	time,	the	CPU	handles	1	job	and	in	90%	of	the	time,	the	
CPU	is	idle.	Therefore,	we	do	not	observe	an	overload	situation	here.	

d. Now	we	will	similarly	investigate	the	hard	disc's	utilization.	Doubleclick	the	»HDD	[0]	
in	WebServer	(State	of	Active	Resource	Tuple)«	entry	for	this.	Again,	doubleclick	the	
»Pie	Chart«	entry	next.	You	should	get	a	diagram	similar	to	the	one	shown	below.	

D.3. Workshop Document

431

Palladio	Workshop	
	

9	
	

	
In	approximately	45%	of	the	time,	the	hard	disk	drive	handles	1	job	and	in	55%	of	the	
time,	the	hard	disk	drive	is	idle.	Therefore,	we	also	do	not	observe	an	overload	
situation	here.	

9. At	least	for	one	user	within	our	system,	the	system	is	predicted	to	be	stable.	We	may	think	
about	using	a	cheaper	CPU	as	it	is	in	90%	of	the	time	idle.	
However,	let's	consider	another	scenario	instead:	What	happens,	if	the	system	is	used	by	
three	users	instead	of	only	one?	To	investigate	this	issue,	change	the	»Population«	of	the	
ClosedWorkload	in	the	usage	model	from	»1«	to	»3«	and	rerun	the	simulation.	In	the	
»Experiments«	view,	navigate	to	the	newly	created	experiment	run.	Doubleclick	the	»HDD	
[0]	in	WebServer	(State	of	Active	Resource	Tuple)«	entry	and	doubleclick	the	»Pie	Chart«	
entry	afterwards.	You	should	get	a	diagram	similar	to	the	one	shown	below.	

	
This	time,	the	hard	disk	drive	is	hardly	idle	but	needs	to	handle	1	job	in	approximately	20%	of	
the	time	and	2	jobs	in	80%	of	the	time.	This	means	that	we	have	an	overload	situation	here	
because	the	hard	disk	drive	is	inable	to	handle	the	amount	of	jobs	fast	enough.	An	
investigation	of	the	response	times	of	the	defaultUsageScenario	confirms	this	as	the	
response	times	increased	to	approximately	20	seconds	per	measurement.	

10. A	straight-forward	idea	to	cope	with	the	overload	situation	is	to	use	a	faster	hard	disk	drive	
within	our	WebServer,	i.e.,	to	scale	the	hard	disk	drive	up.	Therefore,	change	the	processing	
rate	of	the	hard	disk	drive	from	»10«	workunits	to	»100«	workunits	within	the	resource	

D. Controlled Experiment: Material

432

Palladio	Workshop	
	

10	
	

environment	and	rerun	the	simulation.	The	resulting	utilization	pie	chart	for	the	hard	disk	
drive	should	look	like	the	one	below.	

	
We	see	that	our	faster	hard	disk	drive	can	handle	a	situation	with	three	users	as	it	is	idle	for	
78%	of	the	time.	

11. As	a	side-remark:	we	could	optimize	the	processing	rate	of	the	hard	disk	drive	to	perfectly	fit	
a	situation	with	three	users.	We	could,	for	instance,	aim	at	having	the	hard	disk	drive	idle	for	
only	10%	of	the	time	such	that	no	over-provisioning	occurs.		
To	automate	this,	Palladio	provides	a	sensitivity	analysis	within	a	SimuCom	run	configuration.	
Within	a	SimuCom	run	configuration,	go	to	the	»Analysis	Configuration«	tab	and	enter	
appropriate	values	to	the	»Sensitivity	Analysis	Parameters«	edit	fields.	For	instance,	select	
the	»ProcessingRate«	PCM	Random	Variable	of	the	hard	disc	as	»Variable«	and	enter	»10«	
into	the	»Minimum«	field,	»100«	into	the	»Maximum«	field,	and	»10«	into	the	»Step	Width«	
field.	By	this,	the	simulation	run	performs		ten	measurements	with	hard	disc	processing	rates	
of	10,	20,	...,	90,	and	100	workunits.		
The	results	can	nicely	be	compared	via	a	histogram-based	cumulative	distribution	function	
(CDF)	as	follows.	Doubleclick	the	»Response	Time	of	defaultUsageScenario«	entry	of	the	first	
experiment	run	(with	a	hard	disc	processing	rate	of	»10«	workunits).	Afterwards,	doubleclick	
the	»JFreeChart	Response	Time	Histogram-based	CDF«.	Next,	drag	and	drop	each	the	
»Response	Time	of	defaultUsageScenario«	of	the	other	nine	experiments	into	the	opened	
CDF	diagram.	You	will	get	a	diagram	similar	to	the	one	below.	

D.3. Workshop Document

433

Palladio	Workshop	
	

11	
	

	

	
From	left	to	right,	the	illustrated	measurement	belong	to	hard	disk	drive	processing	rates	of	
100,	90,	...,	and	10	workunits.	Here,	we	see	that	a	hard	disc	processing	rate	of	20	workunits	
(dark	blue	values)	already	improves	the	response	times	to	a	great	extend.	The	corresponding	
pie	chart	diagram	of	the	hard	disc	utilization	is	shown	below.	

		
We	see	that	we	are	close	to	our	goal	of	having	the	hard	disk	drive	idle	for	approximately	10%	
of	the	time.	Next	steps	could	be	to	further	investigate	the	relation	between	the	number	of	
users	and	the	hard	disc.	Alternatively,	we	may	take	also	the	CPU	into	these	considerations	as	
there	will	also	be	a	point	where	the	CPU	becomes	the	bottleneck	of	the	system.	Feel	free	to	
experiment	on	your	own	regarding	these	issues.		

D. Controlled Experiment: Material

434

Palladio	Workshop	
	

12	
	

9.	Adding	a	Loadbalancer	[Estimated	Time:	20	min.]	
Besides	scaling	available	processing	resources	like	CPU	and	hard	disk	drives	up	(vertical	scaling),	we	
could	also	try	to	scale	out	via	additional	servers	within	our	system	(horizontal	scaling).	For	achieving	
this,	we	will	outsource	our	database	component	to	two	dedicated	database	servers.	A	load	balancer	
on	our	webserver	then	assigns	50%	of	the	requests	to	the	first	database	server	and	50%	of	the	
requests	the	second	database	server.	

1. Modify	the	repository	by	adding	a	»Loadbalancer«	BasicComponent	to	it	that	provides	the	
IDatabase	interface	once	and	requires	the	interface	twice.		

	
Specify	the	SEFF	for	the	»store«	service	of	the	»Loadbalancer«	component	as	follows.	First,	
add	a	»BranchAction«	from	the	palette	to	the	SEFF	diagram	and	name	it	»balance«.		
Secondly,	add	two	»ProbabilisticBranchTransitions«	to	the	newly	created	branch	action.	
Name	them	»dbserver1«	and	»dbserver2«,	respectively.	Assign	each	branch	transition	a	
probability	of	»0.5«.	Thirdly,	add	to	each	branch	transition	an	»ExternalCallAction«.	For	the	
»dbserver1«	transition,	select	the	»store«	service	of	the	first	required	role	and	for	the	
»dbserver2«	transition,	select	the	»store«	service	of	the	second	required	role.	Finally,	
connect	the	added	elements	appropriately	by	»Control	Flow«	links.	Your	SEFF	should	look	
like	the	one	below.	

	

D.3. Workshop Document

435

Palladio	Workshop	
	

13	
	

2. Next,	we	compose	a	new	system	by	including	the	load	balancer.	For	this,	add	the	
loadbalancer	to	the	system	diagram	via	a	new	»AssemblyContext«.	As	we	have	two	
databases	now,	we	also	add	a	database	component	via	another	new	»AssemblyContext«	and	
expand	the	assemblies	name	as	well	as	the	name	of	the	second	provided	role	of	the	load	
balancer	by	a	»2«	to	ensure	a	unique	naming.	We	connect	the	assemblies	via	»Aseembly	
Connectors«	such	that	we	get	a	system	diagram	like	shown	below.	

	
3. In	the	resource	model	diagram,	we	create	two	new	resource	containers	»DBServer1«	and	

»DBServer2«.	Each	server	gets	(1)	a	CPU	with	a	processing	rate	of	10	workunits	and	with	a	
processor	sharing	strategy	as	well	as	(2)	a	hard	disk	drive	with	a	processing	rate	of	10	
workunits	and	with	a	first-come-first-server	strategy.	
To	connect	the	three	servers,	we	also	add	a	»LinkingResource«	from	the	palette	to	the	
diagram.	We	set	the	latency	to	»0«	and	the	throughput	to	»1000000«,	thus,	allowing	to	
neglect	network	performance	influence	for	the	time	being.	We	therefore	name	it	
»fastNetwork«.	We	connect	the	servers	to	our	network	via	»Connection«	links	from	the	
palette.	Your	diagram	should	look	like	the	one	shown	below.	

		

D. Controlled Experiment: Material

436

Palladio	Workshop	
	

14	
	

4. In	the	allocation	model	diagram,	allocate	the	respective	components	as	planned.	You	will	get	
an	allocation	diagram	like	shown	below.	Note:	you	have	to	delete	the	»Database«	allocation	
from	the	»WebServer«	and	add	the	»Loadbalancer«	component	instead.	

	
5. We	can	leave	the	usage	model	diagram	as	it	is	–	our	changes	were	transparent	to	the	users.	

Therefore,	we	can	run	a	simulation	and	investigate	the	results	next.	
After	doing	so,	compare	the	two	pie	charts	illustrating	the	hard	disk	drive	utilization	of	
DBServer1	and	DBServer2,	respectively.	Both	pie	charts	should	be	similarly	to	the	one	shown	
below.	

	
We	see	that	scaling	out	to	two	servers,	each	having	a	hard	disk	drive	with	a	processing	rate	
of	10	workunits,	has	a	similar	effect	than	scaling	up	a	single	server’s	hard	disk	drive	to	a	
processing	rate	of	20	workunits.	Therefore,	we	found	an	alternative	way	of	coping	with	the	
discovered	overload	situation.	
Note	that	there	are	several	other	ways	to	improve	our	modeling	or	to	test	design	
alternatives.	For	instance,	we	could	model	a	“real	round-robin”	instead	of	using	50%	
probabilities	within	our	loadbalancer,	which	could	cause	different	results.	Another	possibility	
would	be	to	extend	our	model	by	caches	for	database	accesses.	Feel	free	to	experiment	on	
your	own	with	the	system.	

10.	Using	New	Sirius	Editors	[Estimated	Time:	15	min.]	
The	so-far	discussed	graphical	Palladio	editors	were	implemented	using	legacy	technologies	(the	
GMF	framework).	Recently,	we	reimplemented	these	editors	using	a	modern	technology	(the	Sirius	
framework).	Owed	to	this	new	technology,	the	usage	of	editors	has	changed	slightly.	In	this	section,	
we	exemplify	this	usage	based	on	the	new	system	and	resource	environment	editors.	(Note:	you	

D.3. Workshop Document

437

Palladio	Workshop	
	

15	
	

already	installed	these	editors	from	the	Architectural	Template	repository.	Also	note	that	we	
exemplify	these	steps	in	the	model	without	loadbalancer.)	

To	start	System	model	editing,	execute	the	following	steps:	

1. Switch	to	the	»Modeling«	perspective	(or	open	the	»Model	Explorer«	view	manually).		
2. In	the	»Model	Explorer«	view,	right-click	on	your	Palladio	project		and	choose	»Configure«	->	

»Convert	to	Modeling	Project«	to	make	your	project	compatible	with	the	new	framework.	
3. Next,	right-click	on	your	project	and	choose	»Viewpoints	Selection«.	Check	»System	Design«	

in	the	popup.	
4. Expand	your	System	model	as	shown	below,	right-click	the	»System«	model	element	and	

choose	»New	Representation«	->	»new	ComposedProvidingRequiringEntity	Diagram«.	

	
5. Enter	any	name	as	diagram	(i.e.,	representation)	title,	e.g.,	»new	

ComposedProvidingRequiringEntity	Diagram«.	The	editor	will	open	with	your	System	loaded.	

	
6. Try	using	the	editor	as	you	used	the	editors	before.	Generally,	the	editor	should	behave	the	

same.	Note	that	some	elements	of	the	palette	have	been	reordered	and/or	grouped	
together.	For	example,	providing	entities	roles	have	now	a	dedicated	group:	

	
Also	note	that	some	elements	are	new,	e.g.,	the	»Architectural	Templates«	group	which	is	
explained	in	the	next	section.	

Editing	resource	environments	works	analogously:	

1. Right-click	on	your	project	and	choose	»Viewpoints	Selection«.	Check	»Resource	
Environment	Design«	in	the	popup.	

2. Expand	your	Resource	Environment	model,	right-click	the	»Resource	Environment«	model	
element	and	choose	»New	Representation«	->	»new	Resourceenvironment	Diagram«.	

D. Controlled Experiment: Material

438

Palladio	Workshop	
	

16	
	

3. Enter	any	name	as	diagram	(i.e.,	representation)	title,	e.g.,	»new	Resourceenvironment	
Diagram«.	The	editor	will	open	with	your	Resource	Environment	loaded.	

	
4. Try	using	the	editor	as	you	used	the	editors	before.	

Sirius-based	editors	for	the	other	Palladio	models	will	appear	soon;	their	usage	will	be	similar.	

11.	Applying	Architectural	Templates	[Estimated	Time:	15	min.]	
Architectural	Templates	allow	software	architects	to	apply	reusable	patterns	to	their	Palladio	
models.	For	example,	instead	of	manually	modeling	the	load	balancer	like	we	did	in	Sec.	9,	we	can	
also	apply	the	Architectural	Template	for	load	balancers.	As	this	application	consists	only	of	a	few	
small	steps,	architects	can	save	a	lot	of	modeling	effort.	

Execute	the	following	steps	on	the	System	model	opened	with	the	Sirius-based	System	model	editor:	

1. Choose	»Add	Architectural	Template«	from	the	palette	and	click	on	the	»defaultSystem«	to	
apply	a	template	on	your	system.	

2. In	the	popup,	choose	the	»AT	Static	Assembly	Context	Loadbalancing«	Architectural	
Template	to	apply	the	template	for	a	load	balancer.	Confirm	with	»OK«.	

	
3. The	system	is	now	enabled	for	the	load	balancer	Architectural	Template.	Whenever	we	want	

to	work	with	an	Architectural	Template,	enabling	it	for	the	system	is	the	first	step.	The	editor	

D.3. Workshop Document

439

Palladio	Workshop	
	

17	
	

for	the	system	illustrates	the	Architectural	Template	application	with	a	grey	box.	

	
4. Finally,	we	need	to	mark	the	Assembly	Context	that	has	to	be	load-balanced.	To	do	so,	

choose	»Add	Role«	from	the	palette	and	click	on	the	»Assembly_Database	<Database>«	
Assembly	Context.	In	the	popup,	choose	the	»StaticLoadbalancedAssemblyContext«	role	and	
confirm	with	»OK«.	

	
5. The	Assembly	Context	will	now	be	load-balanced	during	simulation	(note:	you	need	to	start	

the	simulation	using	Experiment	Automation;	see	Sec.	13).	The	editor	for	the	system	
illustrates	this	added	Role	with	a	grey	box	within	the	Assembly	Context.	

	
6. The	grey	box	of	the	added	Role	allows	to	set	the	»Number	of	Replicas«	of	the	load	balancer,	

i.e.,	the	number	of	Assembly	Context	for	our	database	that	will	be	load-balanced.	Set	it	to	
»2«	(by	doubleclicking	the	parameter)	to	model	semantically	the	same	system	as	we	did	in	
Sec.	9	with	our	manually	modeled	load	balancer.	

	
7. Use	Experiment	Automation	(Section	14)	to	run	analyzes	based	on	Architectural	Templates.	

The	complete	catalogue	of	existing	Architectural	Templates	is	explained	at:	
http://wiki.cloudscale-project.eu/index.php/HowTos	
As	a	final	task,	use	this	Wiki:	

1. Go	to	http://wiki.cloudscale-project.eu/index.php/HowTos	
2. Click	on	»Loadbalancing«	and	read	the	page.		
3. Answer	this	question:	What	is	the	difference	between	»Loadbalanced	Resource	Container«	

and	»Loadbalanced	Assembly	Context«?	

D. Controlled Experiment: Material

440

Palladio	Workshop	
	

18	
	

12.	Specifying	Usage	Evolutions	[Estimated	Time:	15	min.]	
Screencast:	https://www.youtube.com/watch?v=k6EKqPyl2Jg	

So	far,	we	only	modeled	static	usage	scenarios.	That	is,	our	usage	scenarios	may	used	probabilistic	
characterisations,	however,	these	did	not	vary	over	time	(thus,	the	»static«).	In	contrast,	a	dynamic	
usage	scenario	would	be	characterized	as	a	function	of	(simulated)	time.	

We	recently	filled	this	gap	by	introducing	so-called	Usage	Evolution	models,	i.e.,	models	that	allow	to	
vary	usage	scenario	parameters	like	arrival	rates,	number	of	concurrent	users,	operation	parameters,	
etc.	over	time.	To	create	such	models,	a	normal	usage	scenario	model,	a	Descartes	Load	Intensity	
Model	(DLIM)	model	to	characterize	time-depending	variations,	and	a	Usage	Evolution	model	that	
links	the	former	two	are	needed:	

1. Create	a	new	DLIM	model	(Right-click	at	your	project	->	New	->	Other...	->	Descartes	Load	
Intensity	Model	->	Descartes	Load	Intensity	Model	->	Next	->	File	Name:	»default.dlim«	->	
Next	->	Only	mark	»Modify	Seasonal	Part«	->	Next	->	Only	modify	»Number	of	Peaks«	to	
»1«,	»Base	Arrival	Rate	Level«	to	»1.0«,	and	»Select	Seasonal	Shape«	to	»SinTrend«	as	
shown	in	the	screenshot	below	->	Finish).	

	
2. You	now	created	a	DLIM	model	where	you	vary	»load	intensity«	over	»time«.	You	can	

vizualize	the	your	function	by	opening	the	»Load	Intensity	Plot«	(Window	->	Show	View	->	
Other...	->	Descartes	Load	Intensity	Model	->	Load	Intensity	Plot)	and	by	opening	your	model	
in	the	default	editor	(double-click	on	your	model	if	the	editor	is	not	already	opened).	

D.3. Workshop Document

441

Palladio	Workshop	
	

19	
	

	
Note	that	the	»9.100«	appears	to	be	a	bug	in	the	visualization;	it	should	rather	be	a	»10«.	

3. Next,	let	us	link	this	DLIM	model	to	our	existing	usage	model	such	that	we	vary	the	number	
of	users	from	1	to	10	until	half	of	the	simulation	time	is	over	and	from	10	to	1	until	
simulation	finishes.	
Create	a	new	Usage	Evolution	model	(Right-click	at	your	project	->	New	->	Other...	->	
CloudScale	Diagrams	->	ScaleDL	Usage	Evolution	->	Next	->	File	Name:	
»default.usageevolution«	->	Next	->	Browse...	and	select	your	pre-specified	usage	model	
(»/PalladioProject/default.usagemodel«)	->	Next	->	Browse...	and	select	your	pre-specified	
DLIM	model	»/PalladioProject/default.dlim«)	->	Finish).	

4. An	editor	opens	that	has	everything	needed	pre-configured	(see	screenshot	below).	You	
may	investigate	the	properties	of	the	»Usage	Initial«	node	to	see	how	we	linked	DLIM	and	
usage	models.	Per	default,	we	created	a	»Load	Evolution«	for	the	»defaultUsageScenario«	
based	on	the	»Sequence	default«	DLIM	model,	i.e.,	we	vary	the	number	of	users	within	our	
open	workload	(our	wizard	creates	such	a	configuration	by	default).		

	
5. Use	Experiment	Automation	(Section	14)	to	run	analyzes	based	on	Usage	Evolutions.	

D. Controlled Experiment: Material

442

Palladio	Workshop	
	

20	
	

13.	Specifying	Monitor	Repositories	[Estimated	Time:	20	min.]	
Ever	wondered	how	we	determine	what	comes	out	of	your	simulation?	Typically,	we	use	some	
defaults	like	usage	scenario	response	times.	However,	if	you	need	special	measurements	or	do	not	
want	to	see	some	default	measurements,	you	can	also	take	full	control	about	that	via	Monitor	
Repository	models!	That	is,	such	models	allow	you	to	specify	what	you	are	interested	in	and	what	
should	then	be	measured.	

For	specifying	monitor	repositories,	you	first	have	to	specify	a	measuring	points	model,	which	
specifies	where	you	want	to	take	measurements	(e.g.,	at	the	usage	scenario).	Afterwards,	we	can	
specify	a	monitor	repository	model	that	states	what	we	want	to	measure	(e.g.,	response	times)	at	
such	measuring	points:	

1. Create	a	new	Measuring	Point	model	(Right-click	at	your	project	->	New	->	Other...	->	
Example	EMF	Model	Creation	Wizards	->	Measuringpoint	Model	->	Next	->	File	Name:	
»My.measuringpoint«	->	Next	->	Model	Object:	»Measuring	Point	Repository«	->	Finish).	

2. In	the	now	opened	tree	editor,	add	a	new	measuring	point	for	our	usage	scenario	(right	click	
the	»Measuring	Point	Repository«	node	->	New	Child	->	Usage	Scenario	Measuring	Point).	

	
3. Next,	configure	our	usage	scenario	as	»Usage	Scenario«	for	this	Usage	Scenario	Measuring	

Point	(drag	&	drop	our	usage	model	into	the	editor	to	load	the	model	
(»platform://resource/PalladioProject/default.usagemodel«	will	appear	at	the	bottom	of	the	
editor)	->		select	»Usage	Scenario	defaultUsageScenario«	as	»Usage	Scenario«	within	the	
properties	view)	

	
4. Save	&	close.	

D.3. Workshop Document

443

Palladio	Workshop	
	

21	
	

5. Create	a	new	Monitor	Repository	model	(Right-click	at	your	project	->	New	->	Other...	->	
Example	EMF	Model	Creation	Wizards	->	MonitorRepository	Model	->	Next	->	File	Name:	
»My.monitorrepository«	->	Next	->	Model	Object:	»Monitor	Repository«	->	Finish).	

6. In	the	now	opened	tree	editor,	add	a	new	monitor	for	our	usage	scenario	(right	click	the	
»Monitor	Repository«	node	->	New	Child	->	Monitor).	

	
7. Next,	configure	our	usage	scenario	measuring	point	as	»Measuring	Point«	for	this	Monitor	

(drag	&	drop	our	measuring	point	model	into	the	editor	to	load	the	model	
(»platform://resource/PalladioProject/My.measuringpoint«	will	appear	at	the	bottom	of	the	
editor)	->	select	»Usage	Scenario	Measuring	Point	Usage	Scenario:	defaultUsageScenario«	as	
»Measuring	Point«	and	»Usage	Scenario	Response	Times«	as	»Entity	Name«	within	the	
properties	view)	

	
8. Add	a	new	measurement	specification	for	response	times	to	our	monitor	(right	click	the	

»Monitor«	node	->	New	Child	->	Measurement	Specification).	

	
9. Next,	configure	Response	Times	as	metrics	we	are	interested	in	(right-click	on	the	editor	->	

Load	Resource...	->	enter	
»pathmap://METRIC_SPEC_MODELS/models/commonMetrics.metricspec«	as	»Resource	
URI«	->	OK	(»pathmap://METRIC_SPEC_MODELS/models/commonMetrics.metricspec«	will	
appear	at	the	bottom	of	the	editor)	->	select	»Numerical	Base	Metric	Description	Response	
Time«	as	»Metric	Description«	within	the	properties	view)	

D. Controlled Experiment: Material

444

Palladio	Workshop	
	

22	
	

	

	

	
10. Use	Experiment	Automation	(Section	14)	to	run	analyzes	based	on	Monitor	Repositories.	

14.	Using	Experiment	Automation	[Estimated	Time:	20	min.]	
Screencast:	https://www.youtube.com/watch?v=sJSqil9Pwz4	

Prerequisite:	You	specified	a	monitor	repository	model	(Section	13).	

Optional:	Experiment	Automation	optionally	supports	models	with	applied	Architectural	Templates	
(Section	11)	and	Usage	Evolutions	(Section	12).	

So	far,	we	always	used	a	»SimuBench«	run	configuration	to	start	a	Palladio-based	analysis.	Such	
analyses	use	Palladio's	SimuCom	simulator	for	measuring	performance	metrics.	However,	SimuCom	
run	configurations	lack	support	for	Architectural	Templates,	Usage	Evolutions,	and	Monitor	
Repositories.	A	dedicated	model	for	runconfigurations	–	Experiment	Automation	models	–	solve	this	
problem.	

1. Create	a	new	Experiment	Automation	model	(Right-click	at	your	project	->	New	->	Other...	->	
Example	EMF	Model	Creation	Wizards	->	Experiements	Model	->	Next	->	File	Name:	
»My.experiments«	->	Next	->	Model	Object:	»Experiment	Repository«	->	Finish).	

D.3. Workshop Document

445

Palladio	Workshop	
	

23	
	

2. In	the	now	opened	tree	editor,	add	a	Experiment	for	our	Experiment	Repository	(right	click	
the	»Experiment	Repository«	node	->	New	Child	->	Experiment).	

	
3. Next,	configure	our	Experiment	(select	»My	Experiment«	as	»Description«,	»someId«	as	

»Id«,	»Usage	Scenario	Response	Times	Experiment«	as	»Name«	and	»1«	as	»Repetitions«	
within	the	properties	view).	

	
4. In	this	way,	we	also	have	to	configure	some	more	child	nodes	and	the	»Tool	Configuration«	

to	configure	an	experiment	run.	As	especially	the	»Tool	Configuration«	is	quite	tricky,	we	
stop	with	our	description	for	manual	configuration	here.	

5. Instead,	we	now	copy	an	existing	Experiment	model	into	our	project	and	only	adapt	it	where	
we	need	it.	Please	do	so	with	a	Text	Editor	(!!)	using	this	experiment	model:	
https://github.com/CloudScale-
Project/ArchitecturalTemplates/blob/master/plugins/org.scaledl.architecturaltemplates.exa
mples.dynscalingcontainer/Experiments/Elasticity.experiments	

6. Run	the	experiment	(open	your	run	configurations	->	double-click	»Experiment	Automation«	
->	choose	your	Experiments	model	as	input	->	Run)			

15.	Adding	Variables	[Estimated	Time:	30	min.]	
With	Palladio,	it	is	also	possible	to	specify	variables	to	characterize	method	input	parameters	as	well	
as	their	return	values.	For	such	specifications,	Palladio	allows	to	also	model	dataflow	(besides	control	
flow).	See	the	corresponding	screencast	at	http://www.palladio-simulator.com/tools/screencasts/	
for	a	tutorial	on	this.	This	workshop	may	be	extended	by	a	detailed	explanation	in	future	versions.	

Versions	
- V2.1	(2015/11/12;	Palladio	4.0;	Eclipse	4.5.1/Mars.1):	Added	new	Sirius	editors,	Architectural	

Templates,	Usage	Evolution,	Monitor	Repository,	and	Experiment	Automation;	Sebastian	
Lehrig	(sebastian.lehrig@informatik.tu-chemnitz.de)	

- V2.0	(2015/10/08;	Palladio	4.0;	Eclipse	4.5.1/Mars.1):	Revised	complete	guide	to	provide	up-
to-date	version;	added	time	estimates;	moved	from	Sensor	Framework	to	EDP2	descriptions;	
Sebastian	Lehrig	(sebastian.lehrig@informatik.tu-chemnitz.de)	

- V1.3	(2015/09/17;	Palladio	4.0;	Eclipse	4.5/Mars):	Updated	to	recent	Palladio	version;	
Sebastian	Lehrig	(sebastian.lehrig@informatik.tu-chemnitz.de)	

D. Controlled Experiment: Material

446

Palladio	Workshop	
	

24	
	

- V1.2	(2013/08/14;	Palladio	3.4;	Eclipse	4.2/Juno):	Corrected	typos;	Sebastian	Lehrig	
(sebastian.lehrig@uni-paderborn.de)	

- V1.1	(2013/01/07;	Palladio	3.4;	Eclipse	4.2/Juno):	Exchanged	introduction	image	to	a	default	
Palladio	image	from	website;	Sebastian	Lehrig	(sebastian.lehrig@uni-paderborn.de)	

- V1.0	(2012/11/16;	Palladio	3.4;	Eclipse	4.2/Juno):	Initial	version;	Sebastian	Lehrig	
(sebastian.lehrig@uni-paderborn.de)	

	

D.3. Workshop Document

447

CloudStore Description
CloudStore describes a legacy bookshop to be migrated to cloud computing environments. Figure 1
gives a simplified overview of a Palladio model we created for CloudStore. To understand the model, a
short description follows.

Figure 1: System Overview of CloudStore (Simplified)

D. Controlled Experiment: Material

D.4. CloudStore Description

448

Customers enter the CloudStore system via the web pages provided by front-end components. These
front-end components are BookPages, HomePage, ShoppingCartPages, and OrderPages allocated
on the Web & Application Server. BookPages provides operations regarding books (e.g., to query
book details or to search for books). The HomePage component shows CloudStore's home page, which
welcomes its customers and displays possible book categories for browsing. ShoppingCartPages
allows customers to register, add books to a shopping cart, and to check-out the shopping cart.
Afterwards, OrderPages allows to follow-up on the order. BookPages, HomePage, and
ShoppingCartPages additionally require the PromotionalProcessing component to receive an
advertisement area for related books.

These front-end components require operations of the ImageLoading and Database components as
allocated on the Image and Database Server, respectively. ImageLoading provides access to image
files, e.g., needed for book covers. CloudStore's Database stores entries for books, customers,
shopping carts, and orders.

Calls to the Database are intercepted by the DatabaseAccess component that manages database
connections. DatabaseAccess receives [returns] such connections from [to] the DBConnectionPool
component. Also Web & Application, Image, and Database Server use pools for handling customer
requests (WebServerConnection, ImageServerConnection, DBServer-Connection). All of these
pools (gray-colored components in Fig. 1) are typical factors that influence an application's
performance as their pool-size limits the amount of requests that can be processed in parallel.

Palladio supports acquiring and releasing connections from these resource pools in service effect
specifications (SEFFs). SEFFs specify the behavior (control and data flow) of component operations.
In our model, every interaction requires the acquisition of connections and a subsequent release once
the interaction ends. Figure 2 illustrates this pattern for SEFFs of front-end component operations that
interact with database and image components. Actions (1) to (3) model the performance impact of
creating an HTML page for customers while action (4) models the performance impact of subsequently
resolving image references. These two phases—receiving an HTML page and subsequently its
references—reflect the typical behavior of web browsers.

Figure 2: Behavior of front-end components interacting with database and image components

D.4. CloudStore Description

449

In Figure 3, the load to CloudStore is illustrated. At the x-axis, the simulation time is depicted. At the y-
axis, the number of concurrent customers within the system is depicted. Accordingly, at simulation
start, there is only one customer within the system. Afterwards, the number of customers linearly
increases over time. At the end of the simulation time (200 seconds), there are 1000 customers within
the system. The distribution of the customers within CloudStore is defined in the specified usagemodel
(UsageScenarios/controlledExperiment.usagemodel).

Figure 3: Number of customer over time

0 50 100 150 200
0

200

400

600

800

1000

1200

time in seconds

nu
m

be
r

of
 c

us
to

m
er

s

D. Controlled Experiment: Material

450

Task Description
The goal of this experiment is to detect and resolve a performance problem in a given Palladio model.
For detection, we provide a detailed model description and describe the steps to identify the
performance problem. For resolving, your task is to apply Architectural Templates and to show based
on simulations that you resolved the performance problem.

 0 Background Questions
1. For the next steps, use this print for filling it out.

2. Please enter your name

3. Please enter your e-mail address. We might use this to contact you with regard to your answers

to the open questions.

4. How would you rate your knowledge of Architectural Templates?

none low medium high expert

5. How many month of experience do you have with Architectural Templates?

6. How would you rate your knowledge of Eclipse?

none low medium high expert

7. How many month of experience do you have with Eclipse?

D.5. Task description for the Treatment Group

D.5. Task description for the Treatment Group
(So�ware Architects Following the AT
Method)

451

 1 Performance Problem Detection
Please execute the following tasks:

1. Install Palladio (latest release), Architectural Templates (latest release), and configure a new
workspace as described in the attached “ATInstallationGuide.pdf”. Afterwards, you will have
the CloudStore model in your workspace. If you already installed Palladio and Architectural
Templates, you have to >>Check for Updates<< and only have to Import the CloudStore model
as described into a clean workspace.
Reminder:
You can find the Wiki describing available Architectural Templates here:
http://wiki.cloudscale-project.eu/index.php/Wiki/

2. Please note the starting time.

 :hh :mm

3. Read the “CloudStoreDescription.pdf” as attached.
4. Please answer the following questions:

1. How many Assembly Contexts are described in the “CloudStore Description”?

2. How many Assembly Contexts are specified in the system of the CloudStore model?

3. How many Resource Containers are described in the “CloudStore Description”?

4. How many Resource Containers are specified in the resource environment of the

CloudStore model?

5. How many actions are modeled for the “getHome” Operation of the “Homepage”

Component of the CloudStore model?

6. What is the purpose of the “getWorker” and the “returnWorker” Actions in the “getHome”

Operation of the CloudStore model?

7. Why is the “returnWorker” Action not executed as last?

D. Controlled Experiment: Material

452

5. Run the “AT-CloudStore.launch” run configuration (right-click → Run As.. → AT-CloudStore)
that is part of the imported CloudStore project and investigate the analysis result in the Palladio
perspective.

6. Please answer the following questions:
1. When is the first time that the response time for the usage scenario is above two seconds?

2. How many CloudStore customers are within the system at that point in time? (note: inspect

the DLIM model (see Palladio workshop) for determining an estimate.)

3. Which system operation call(s) have response times over two seconds?

4. What is the bottleneck resource causing response time over two seconds?

5. Given that response times should stay below two seconds, which options do you see to

resolve the situation?

7. Please note the current time when you finished all the tasks above.

 :hh :mm

 2 Resolving the Performance Problem
We have the following requirements defined:

• Performance: Response times shall stay below two seconds. Violations are allowed in the

limits given in the “Elasticity” requirement.

D.5. Task description for the Treatment Group

453

• Elasticity: When violations of the performance requirement are detected, CloudStore shall

return to a stable state within 20 seconds.

• Cost-Efficiency: The operation costs for operating CloudStore shall be minimized.

Next, your task is to resolve the detected performance problem to meet above requirements. You have
to investigate two options for resolving: vertically scaling the CPU of the database and horizontally
scaling the database.

 2.1 Vertical Scaling
In vertical scaling, a fixed server can dynamically
speed-up its processing resources over time. Figure 1
illustrates such a scaling for a server.

In your case, you have to scale-up the CPU of
CloudStore's database server. For this task, execute
the following steps:

1. Please note the starting time.

 :hh :mm

2. Apply an appropriate Architectural Template
for vertical scaling:

◦ Note that the monitor repository (see Palladio workshop) of CloudStore includes a monitor

(named: “Response Times – Browsing Mix”) that calculates the mean response times for the
overall usage scenario in an interval of 5.0 seconds. This calculated value is used by default
to determine whether scaling needs to be triggered. Use the values of the following table
during your modeling tasks, if feasible:

Scale-Down Threshold 0,1

Scale-Up Threshold 0,8

Step Size 13.350.000.000

Min Rate 13.350.000.000

Max Rate 133.500.000.000

Here, the “Scale-Down Threshold” specifies that the current CPU processing rate should be
reduced if the calculated mean response times are lower than 0.1 seconds. Likewise, the
“Scale-Up Threshold” specifies that the current CPU processing rate should be increased if
the calculated mean response times are higher than 0.8 seconds. The “Step Size” is the rate
by which scaling adapts the processing rate. “Min Rate” and “Max Rate” specify lower and
upper bounds for this rate, respectively.

Figure 1: A server scales its processing resources
up (from left to right)

D. Controlled Experiment: Material

454

◦ You have a maximum of 1 hour (starting from the time you noted in step 1) to apply the AT.

If you do not manage to provide model with a suitable AT applied in the given time, skip to
step 5.

3. Note the current time.

 :hh :mm

4. Run a CloudStore simulation with your applied AT and inspect the results.

5. Make a screenshot of the “XY Plot” of the “Response Times – Browsing Mix” and store it for
later use.

6. Note the current time.

 :hh :mm

7. Please answer the following questions:

1. Did you manage to apply a suitable AT? (If yes, name it here; if no, skip to question 5.)

2. Is the performance requirement always met?

3. In case of a violation of the performance requirement, does the system return to a stable

state within 20 seconds?

4. Note the current time.

 :hh :mm

5. Please list any issues during your task:

D.5. Task description for the Treatment Group

455

 2.2 Horizontal Scaling
In horizontal scaling, a given server is dynamically
replicated. Each replica is added to an according
loadbalancer that distributes workload among them.
Figure 2 illustrates such a horizontally-scaled server
with three replica.

In your case, you have to scale-out CloudStore's
database server. This represents an alternative to
vertical scaling and allows you to assess whether it is
more cost-efficient. For this task, execute the
following steps:

1. Please note the starting time.

 :hh :mm

2. Apply an appropriate Architectural Template
for vertical scaling:

◦ Note that the monitor repository (see Palladio workshop) of CloudStore includes a monitor

(named: “Response Times – Browsing Mix”) that calculates the mean response times for the
overall usage scenario in an interval of 5.0 seconds. This calculated value is used by default
to determine whether scaling needs to be triggered. Use the values of the following table
during your modeling tasks, if feasible:

Scale-In Threshold 0,1

Scale-Out Threshold 0,4

Number of Initial Replica 1

Here, the “Scale-In Threshold” specifies that the current number of replica should be
reduced by 1 if the calculated mean response times are lower than 0.1 seconds. Likewise,
the “Scale-Out Threshold” specifies that the number of replica should be increased by 1 if
the calculated mean response times are higher than 0.4 seconds. The “Number of Initial
Replica” gives the number of database servers at simulation start.

◦ The loadbalancer shall work as follows: It forwards workload to a given replica with a

probability of 1/(number of current replica).

◦ You have a maximum of 2 hours (starting from the time you noted in step 1) to apply the

AT. If you do not manage to provide model with a suitable AT applied in the given time,
skip to step 5.

3. Note the current time.

Figure 2: A server is replicated and load-
balanced (scale-out)

D. Controlled Experiment: Material

456

 :hh :mm

4. Run a CloudStore simulation with your reconfiguration rule and inspect the results.

5. Make a screenshot of the “XY Plot” of the “Response Times – Browsing Mix” and store it for
later use.

6. Note the current time.

 :hh :mm

7. Please answer the following questions:

1. Did you manage to apply a suitable AT? (If yes, name it here; if no, skip to question 5.)

2. Is the performance requirement always met?

3. In case of a violation of the performance requirement, does the system return to a stable

state within 20 seconds?

4. Note the current time.

 :hh :mm

5. Please list any issues during your task:

 3 Finalization
In order to finalize this experiment, you have to execute these last tasks:

• Name your above taken screenshots (forename_lastname_vertical.png and

forename_lastname_horizontal.png)

• If you have any remarks, feel free to add them here:

D.5. Task description for the Treatment Group

457

• Hand-in this paper and send the screenshots to Christoph Nützel

<christoph.nuetzel@s2011.tu-chemnitz.de>. Add Sebastian Lehrig
<sebastian.lehrig@informatik.tu-chemnitz.de> as CC in your e-mail.

THANK YOU! :)

D. Controlled Experiment: Material

458

Task Description
The goal of this experiment is to detect and resolve a performance problem in a given Palladio model.
For detection, we provide a detailed model description and describe the steps to identify the
performance problem. For resolving, your task is to implement suitable self-adaptation rules and to
show based on SimuLizar simulations that you resolved the performance problem.

 0 Background Questions
1. Print this paper. For the next steps, use your print for filling it out.

2. Please enter your name

3. Please enter your e-mail address. We might use this to contact you with regard to your answers

to the open questions.

4. How would you rate your knowledge of SimuLizar?

none low medium high expert

5. How many years of experience do you have with SimuLizar?

6. How do you prefer to specify reconfiguration rules? (Note: You will have to use your selection
for such a specification; if you do not know yet, answer this question after the experiment.)

1. QVT-O

2. Storydiagrams

3. Henshin

7. How would rate your knowledge in the technology you selected in question 6?

none low medium high expert

D.6. Task description for the Control Group

D.6. Task description for the Control Group
(So�ware Architects Only Using SimuLizar)

459

8. How many years of experience do you have with the technology you selected in question 6?

 1 Performance Problem Detection
Please execute the following tasks:

1. Install Palladio (latest release) and configure a new workspace as described in the attached
“SimuLizarInstallationGuide.pdf”. Afterwards, you will have the CloudStore model in your
workspace and a screen capture tool installed.

2. Start recording your actions with the previously installed capture tool.
3. Please note the starting time.

 :hh :mm

4. Read the “CloudStoreDescription.pdf” as attached.
5. Please answer the following questions:

1. How many Assembly Contexts are described in the “CloudStore Description”?

2. How many Assembly Contexts are specified in the system of the CloudStore model?

3. How many Resource Containers are described in the “CloudStore Description”?

4. How many Resource Containers are specified in the resource environment of the

CloudStore model?

5. How many actions are modeled for the “getHome” Operation of the “Homepage”

Component of the CloudStore model?

6. What is the purpose of the “getWorker” and the “returnWorker” Actions in the “getHome”

Operation of the CloudStore model?

7. Why is the “returnWorker” Action not executed as last?

D. Controlled Experiment: Material

460

6. Run the “SimuLizar-CloudStore.launch” run configuration that is part of the imported
CloudStore project and investigate the analysis result in the EDP2 perspective.

7. Please answer the following questions:
1. When is the first time that the response time for the usage scenario is above two seconds?

2. How many CloudStore customers are within the system at that point in time? (note: inspect

the LIMBO model for determining an estimate.)

3. Which system operation call(s) have response times over two seconds?

4. What is the bottleneck resource causing response time over two seconds?

5. Given that response times should stay below two seconds, which options do you see to

resolve the situation?

8. Please note the current time when you finished all the tasks above.

 :hh :mm

 2 Resolving the Performance Problem
We have the following requirements defined:

• Performance: Response times shall stay below two seconds. Violations are allowed in the
limits given in the “Elasticity” requirement.

• Elasticity: When violations of the performance requirement are detected, CloudStore shall

D.6. Task description for the Control Group

461

return to a stable state within 20 seconds.

• Cost-Efficiency: The operation costs for operating CloudStore shall be minimized.

Next, your task is to resolve the detected performance problem to meet above requirements. You have
to investigate two options for resolving: vertically scaling the CPU of the database and horizontally
scaling the database.

 2.1 Vertical Scaling
In vertical scaling, a fixed server can dynamically
speed-up its processing resources over time. Figure 1
illustrates such a scaling for a server.

In your case, you have to scale-up the CPU of
CloudStore's database server. For this task, execute
the following steps:

1. Please note the starting time.

 :hh :mm

2. Implement appropriate reconfiguration rules
for SimuLizar for vertical scaling:

◦ You may copy transformation code from existing reconfigurations or completely reuse an
existing transformation, if you know any.

◦ You have to use your preferred transformation language (that is, the one you selected in
question 6 in section 0).

◦ Note that the monitor repository of CloudStore includes a monitor (named: “Response
Times – Browsing Mix”) that calculates the mean response times for the overall usage
scenario in an interval of 5.0 seconds. Use the calculated value to determine whether a
reconfiguration needs to be triggered. Use the values of the following table for your
reconfiguration:

Scale-Down Threshold 0.1

Scale-Up Threshold 0.8

Step Size 13,350,000,000

Min Rate 13,350,000,000

Max Rate 133,500,000,000

Here, the “Scale-Down Threshold” specifies that the current CPU processing rate should be
reduced if the calculated mean response times are lower than 0.1 seconds. Likewise, the

Figure 1: A server scales its processing resources
up (from left to right)

D. Controlled Experiment: Material

462

“Scale-Up Threshold” specifies that the current CPU processing rate should be increased if
the calculated mean response times are higher than 0.8 seconds. The “Step Size” is the rate
by which scaling adapts the processing rate. “Min Rate” and “Max Rate” specify lower and
upper bounds for this rate, respectively.

◦ You have a maximum of 1 hour (starting from the time you noted in step 1) to implement
the reconfiguration. If you do not manage to provide a working reconfiguration in the given
time, skip to step 6.

3. Note the current time.

 :hh :mm

4. Run a CloudStore simulation with your reconfiguration rule and inspect the results.

5. Make a screenshot of the “XY Plot” of the “Response Times – Browsing Mix” and store it for
later use.

6. Note the current time.

 :hh :mm

7. Please answer the following questions:

1. Did you manage to implement the reconfiguration? (If not, directly skip to question 5.)

2. Is the performance requirement always met?

3. In case of a violation of the performance requirement, does the system return to a stable

state within 20 seconds?

4. Note the current time.

 :hh :mm

5. In case you copied or reused an existing reconfiguration, which one?

6. Please list any issues during your task:

D.6. Task description for the Control Group

463

 2.2 Horizontal Scaling
In horizontal scaling, a given server is dynamically
replicated. Each replica is added to an according
loadbalancer that distributes workload among them.
Figure 2 illustrates such a horizontally-scaled server
with three replica.

In your case, you have to scale-out CloudStore's
database server. This represents an alternative to
vertical scaling and allows you to assess whether it is
more cost-efficient. For this task, execute the
following steps:

1. Please note the starting time.

 :hh :mm

2. Implement appropriate reconfiguration rules
for SimuLizar for horizontal scaling:

◦ You may copy transformation code from existing reconfigurations or completely reuse an
existing transformation, if you know any.

◦ You have to use your preferred transformation language (that is, the one you selected in
question 6 in section 0).

◦ Note that the monitor repository of CloudStore includes a monitor (named: “Response
Times – Browsing Mix”) that calculates the mean response times for the overall usage
scenario in an interval of 5.0 seconds. Use the calculated value to determine whether a
reconfiguration needs to be triggered. Use the values of the following table for your
reconfiguration:

Scale-In Threshold 0.1

Scale-Out Threshold 0.4

Number of Initial Replica 1

Here, the “Scale-In Threshold” specifies that the current number of replica should be
reduced by 1 if the calculated mean response times are lower than 0.1 seconds. Likewise,
the “Scale-Out Threshold” specifies that the number of replica should be increased by 1 if
the calculated mean response times are higher than 0.4 seconds. The “Number of Initial
Replica” gives the number of database servers at simulation start.

Figure 2: A server is replicated and load-
balanced (scale-out)

D. Controlled Experiment: Material

464

◦ The loadbalancer shall work as follows: It forwards workload to a given replica with a
probability of 1/(number of current replica).

◦ You have a maximum of 2 hours (starting from the time you noted in step 1) to implement
the reconfiguration. If you do not manage to provide a working reconfiguration in the given
time, skip to step 5.

3. Note the current time.

 :hh :mm

4. Run a CloudStore simulation with your reconfiguration rule and inspect the results.

5. Make a screenshot of the “XY Plot” of the “Response Times – Browsing Mix” and store it for
later use.

6. Note the current time.

 :hh :mm

7. Please answer the following questions:

1. Did you manage to implement the reconfiguration? (If not, directly skip to question 5.)

2. Is the performance requirement always met?

3. In case of a violation of the performance requirement, does the system return to a stable

state within 20 seconds?

4. Note the current time.

 :hh :mm

5. In case you copied or reused an existing reconfiguration, which one?

6. Please list any issues during your task:

D.6. Task description for the Control Group

465

 3 Finalization
In order to finalize this experiment, you have to execute these last tasks:

• Please ensure that you answered question 6 in section 0.

• Name your above taken screenshots (forename_lastname_vertical.png and
forename_lastname_horizontal.png)

• If you have any remarks, feel free to add them here:

• Scan this paper and send it along with the screenshots to Christoph Nützel
<christoph.nuetzel@s2011.tu-chemnitz.de>. Add Sebastian Lehrig
<sebastian.lehrig@informatik.tu-chemnitz.de> as CC in your e-mail.

Send the recorded screen captures to Sebastian via Skype (sebastian.lehrig)

THANK YOU! :)

D. Controlled Experiment: Material

466

E. Controlled Experiment:
Report of Preliminary
Conduction and Results

This appendix reports the preliminary results of Nützel’s controlled experi-
ment [N1̈5, Chap. 4–6]. The report starts in Section E.1 with the execution
the controlled experiment. The empirical data created during this execution
is analyzed in Section E.2 and interpreted in Section E.3. Potential threats to
validity of the controlled experiment are �nally discussed in Section E.4.

E.1. Controlled Experiment: Execution

The workshop for the treatment group was mainly executed as planned.
The only deviation was that the workshop was not executed within one
day but split up in two separate workshops, each lasting for 3 hours and 1
week apart from each other. The experiment was conducted another week
later.

The controlled experiment was also mainly executed as planned. How-
ever, we have required and observed the following deviations (cf. [N1̈5,
Sec. 4.2]):

• For logistical reasons, we were only physically present in the ex-
periment of the treatment group. To make the experiment of the
control group more controlled, we have asked the control group to
record their task execution via a screen capturing tool (see the task
description Appendix D.6). Unfortunately, 1 subject had technical
problems with this tool and did not record the execution.

467

E. Controlled Experiment: Report

• Because of other business, 1 subject of the control group was only
able to conduct the knowledge application task of the vertical scaling
architectural pattern. A result for the horizontal scaling architectural
pattern is therefore missing for this subject.

• During the experiment with the treatment group, we have intervened
�ve times:

– We have informed the subjects that there are some di�erences
between the CloudStore description (Appendix D.4) and the
CloudStore model (available at [ATt]); due to the simpli�ca-
tions made for the description. For example, the description
does not inform about infrastructure components.

We informed all subjects about these di�erences because they
have expressed to be confused about these di�erences. The
description in Appendix C.1.1 provides a description of Cloud-
Store that more accurately conforms to the model; future exper-
iments therefore may use this description to avoid confusion.

– Nützel has observed that some subjects had problems in in-
vestigating analysis results [N1̈5, Sec. 4.2]. We have therefore
pointed all subjects to the respective section in the workshop
document (Section 8 of the document given in Appendix D.3)
that explains such investigations.

– Nützel has observed that some subjects had problems in speci-
fying usage evolution models [N1̈5, Sec. 4.2]. We have there-
fore pointed all subjects to the respective section in the work-
shop document (Section 12 of the document given in Ap-
pendix D.3) that explains such speci�cations.

– All subjects had to pause the experiment because of a technical
problem with AT tooling. The problem hindered subjects to
apply the vertical scaling AT. I provided a quick �x for this
problem such that, after 10minutes , each subject was able to
continue with the experiment. Moreover, after the controlled
experiment, I have released a new version of AT tooling in
which the problem is resolved completely.

468

E.2. Controlled Experiment: Analysis

– When applying the vertical scaling AT, subjects were confused
where to apply the vertical scaling container AT role; despite
of a precise description in the AT’s documentation at [Clob]
to which the task description points (task 1.1 of the document
given in Appendix D.5). After again pointing to this descrip-
tion, each subject was able to apply the AT correctly. In the
subsequent application of the horizontal scaling AT, the prob-
lem did not occur anymore.

• Close to the end of the controlled experiment with the treatment
group, 1 subject had to leave earlier than expected. The subject has
acknowledged to have selected the wrong AT for applying the hori-
zontal scaling architectural pattern before leaving (i.e., the horizontal
scaling AT for assembly contexts instead of the AT for resource con-
tainers). However, the subject did not manage to �x this issue due
to time pressure.

E.2. Controlled Experiment: Analysis

In this section, I analyze the empirical data that Nützel has collected during
the pre-study of the controlled experiment. Table E.1 provides an overview
of this data; depicted measurements directly correspond to the metrics of
the GQM plan (cf. Table 5.1 in Section 5.2). The �rst column speci�es the
metric of interest while the second and third column provides the measure-
ments for the application of the vertical scaling AT and horizontal scaling
AT, respectively. Rows are grouped via horizontal lines according to the
research questions from Section 5.2, e.g., the �rst research question is cov-
ered by the �rst four rows of metric measurements. Structured along these
research questions, the corresponding measurements depicted in Table E.1
are analyzed in the following. The analysis covers a brief description of the
measurements and the test of hypotheses associated to each research ques-
tion. The interpretation of the analysis is left to a dedicated interpretation
section (Section E.3).

469

E. Controlled Experiment: Report

Table E.1.:Metric measurements collected in the controlled experiment
vertical scaling horizontal scaling (res. container)

Mtime: modeling & analysis 20.0min . (avg.; upper bound) 9.4min . (avg.)
M#ATs 7
M#AT roles 1 1
M#AT parameters 6 4

M∆time 36.7min . (avg.; lower bound) 110.6min . (avg.; lower bound)
M∆components 0 1
M∆assembly ctx.

∗ 0 1 + 7(r -1)
M∆operations 0 0
M∆self-adapt. 150 803

M#detected violations 0 0
M#resolved violations 0 0

Mbene�ts “the instructions for the experiment were good” [subject of control
group], “based on an AT’s documentation, AT application is straight-
forward” [subject of treatment group]

Mlimitations “the main issue is with compilation errors produced when something is
wrong with the QVT-O �le and with debugging support” [subject of con-
trol group], “the recon�guration engine does not work correctly” [sub-
ject of control group], “tooling problems still exist” [our observation]

∗ r denotes the number of initial replicas with r ≥ 1.

Analysis: Howmuch e�ort do so�ware architects require to apply ATs?
The measurement on the e�ort of software architects (Qapplication e�ort) are
depicted in the �rst measurement group in Table E.1.

Measurement description. For modeling and analysis of the architec-
tural model, subjects of the treatment group have required, on average,
20.0minutes for the vertical scaling AT and 9.4minutes for the horizontal
scaling AT (Mtime for modeling and analysis).

Unfortunately, Nützel has not measured the time for the vertical scaling
AT because of the required interventions. I have therefore assigned each
participant a pessimistic upper bound of 20.0minutes in retrospect; based
on the subject that �nished with the task on the vertical scaling AT at last
(excluding the time spend for interventions).

For the horizontal scaling AT, Nützel has measured 6, 8, 12, 10, and 11
minutes for each respective subject regarding Mtime for modeling and analysis.
These values result in the given average of 9.4minutes with a standard
deviation of 2.4minutes

470

E.2. Controlled Experiment: Analysis

As shown in Table C.7, subjects have selected ATs from the catalog of 7
ATs (M#ATs) that we have created during the CloudStore case study. As
before, the horizontal scaling and horizontal scaling AT both contain 1 role
(M#AT roles). Moreover, the vertical scaling AT contains 6 parameters and
the horizontal scaling AT contains 4 parameters (M#AT parameters).

Hypothesis testing. These measurements make it hard to reliably test
Htime-size correlation but allow to accept He�ort is low, as described in the fol-
lowing.

Calculating the Pearson correlation coe�cient [WRH+00, Sec. 10.1] over
the selected and applied ATs yields:

• no value betweenMtime for modeling and analysis andM#AT roles because
each measurement for M#AT roles is the same (which does not allow
to calculate the Pearson correlation coe�cient; however, is an indi-
cation for no correlation), and

• 1 between Mtime for modeling and analysis and M#AT parameters (which
is, however, based only on two ATs).

Because of this low amount of data, Htime-size correlation cannot be tested
reliably.

In contrast, hypothesis He�ort is low is accepted because each value for
Mtime for modeling and analysis is below the de�ned threshold of 40minutes .
Here, Mtime for modeling and analysis includes all e�orts spend on AT actions
plus succeeding analysis actions. The hypothesis can therefore be accepted
reliably.

Analysis: How much creation e�ort can so�ware architects save when ap-
plying ATs? The measurement on e�ort savings for software architects
(Qe�ort saving) are depicted in the second measurement group in Table E.1.

Measurement description. In contrast to the previously described case
studies, the controlled experiment involves a control group that allows to
measure M∆time.

For tasks on the vertical scaling architectural pattern, the subjects of the con-
trol group required 60, 60, and 50minutes . These values result in an average
of 56.7minutes with a standard deviation of 5.8minutes . Thus, the resulting

471

E. Controlled Experiment: Report

value for M∆time is 36.7minutes . This value is an upper bound because of
the pessimistically estimated upper bound for Mtime for modeling and analysis
and the fact that only one of three subjects of the control group was able to
provide correct analysis results (cf. [N1̈5, Sec. 5.1]).

For tasks on the vertical scaling architectural pattern, both remaining
subjects of the control group required the complete allocated time of
120minutes without succeeding. Therefore, the M∆time has resulted in
an average of 110.6minutes as a lower bound.

The measurements of the remaining di�erence metrics (i.e., M∆components,
M∆assembly ctx., M∆operations, M∆self-adapt.) result in the same values as taken
during the CloudStore case study (cf. Appendix C.1.4.4). Values must be
the same because corresponding measurements are only depending on the
applied ATs.

Hypothesis testing. These measurements allow to accept both hypothesis
H∆time-∆size correlation and hypothesis He�ort is lowered as described in the
following.

As for the previously described research question, testing the hypothesis
H∆time-∆size correlation is hard because of too few data (only on two di�erent
ATs). However, the correlation between M∆time and M∆self-adapt. is likely
to be causal, as discussed in the next section.

Regarding He�ort is lowered, none of the measurements for M∆components,
M∆assembly ctx., M∆operations, and M∆self-adapt. is negative. Therefore, hy-
pothesis He�ort is lowered can directly be accepted.

Analysis: Do so�ware architects e�ectively benefit from checking whether
their architectural models violate conformance to applied ATs? The mea-
surement on conformance checking (Qconformance) are depicted in the third
measurement group in Table E.1.

Measurement description. Nützel does not report on detected confor-
mance violations, thus, the measurement of M#detected violations is 0. Conse-
quently, M#resolved violations must be 0 as well.

472

E.3. Controlled Experiment: Interpretation

Hypothesis testing. Because no violations were detected, hypothesis
Hviolations are detected is rejected. Testing hypothesis Hviolations are resolved is
useless for the case of 0 detected violations.

Analysis: What are e�ective benefits of the ATmethod? The measurement
on bene�ts (Qbene�ts) are depicted in the fourth measurement group in
Table E.1.

Measurement description. The measurement of Mbene�ts has resulted in
the 2 collected bene�ts given in Table E.1. The given statements are citations
of answers by involved subjects to questions of the task descriptions as
given in Appendix D.5 and Appendix D.6.

Hypothesis testing. Because bene�ts were identi�ed, Hbene�ts exist is
accepted.

Analysis: What are e�ective limitations of the AT method? The measure-
ment on limitations (Qlimitations) are depicted in the �fth measurement
group in Table E.1.

Measurement description. The measurement of Mlimitations has resulted
in the 3 collected limitations given in Table E.1. Analogously to bene�ts,
the �rst 2 of these limitations were directly collected from subjects involves
in the experiment. The third limitation is an observation we made during
the experiment.

Hypothesis testing. Because limitations were identi�ed, Hlimitations exist
is accepted.

E.3. Controlled Experiment: Interpretation

Based on the data analysis in the previous section, this section proceeds
with answering the associated questions of the GQM plan (cf. Table 5.1 in
Section 5.2).

473

E. Controlled Experiment: Report

AnsweringQapplication e�ort: Howmuch e�ort do so�ware architects require
to apply ATs? The acceptance of He�ort is low indicates that software ar-
chitects have low e�ort in using ATs for architectural analyses (compared
to the overall e�orts for specifying architectural models). Indeed, with an
average of 9.4minutes for the horizontal scaling AT, subjects of the con-
trolled experiment were close to our e�orts of 6minutes to apply this AT
during the CloudStore case study (cf. Appendix C.1.4.4). Given that inex-
perienced software architects were selected as subjects, our results from
Appendix C.3.3.3 are therefore con�rmed: the AT method indeed achieves
an increase e�ciency for novice software architects.

Answering Qe�ort saving: How much creation e�ort can so�ware architects
savewhenapplyingATs? The acceptance of H∆time-∆size correlation is based
on the positive correlation between M∆time and M∆self-adapt.. Indeed, we
can con�rm that we had signi�cant e�orts for specifying the self-adaptation
rules of the investigated ATs (cf. Appendix C.1.4.4) and, thus, reusing these
rules saves signi�cant amount of e�ort. The two investigated ATs indi-
cate that the faced time can range from half an hour to more than two
hours. Compared to the typical time for applying ATs (3minutes on aver-
age; cf. Mtime for AT application in the CloudStore case study), the saved time
of 36.7minutes (vertical scaling AT) and 110.6minutes (horizontal scaling
AT) is signi�cant because these values range from approximately 92% to
approximately 97 % saved time.

Moreover, the data for these adaptation-intensive ATs shows that rule reuse
can render other e�ort-saving factors less signi�cant. For example, the
di�erence metric for components (M∆components) is a bad indicator for saved
e�ort of the investigated ATs. The data therefore indicates that combining
di�erence metrics (e.g., via a linear combination) potentially yields a better
predictor for e�ort saving than considering each metric in separation.

The acceptance of He�ort is lowered indicates that e�ort can e�ectively be
lowered by applying ATs. The interpretation of this result is analogous
to the CloudStore case study because both the vertical scaling AT and the
horizontal scaling AT were applied there as well.

474

E.3. Controlled Experiment: Interpretation

AnsweringQconform.: Do so�ware architects e�ectively benefit from check-
ingwhether their architecturalmodels violate conformance to applied ATs?
The rejection of Hviolations are detected indicates that (at least for this setup
of the controlled experiment where the vertical scaling AT and horizontal
scaling AT are applied to CloudStore) no bene�ts were gained from auto-
mated conformance checks. Appendix C.3.3.3 discusses this observation in
detail.

AnsweringQbenefits: What are e�ective benefits of the AT method? The 2
bene�ts collected during the experiment (Mbene�ts) indicate that experiment
tasks were clear and that AT application is manageable in the context of
controlled experiments.

The �rst bene�t (“the instructions for the experiment were good”) covers
the clarity of experiment tasks. A subject of the control group explicitly
wrote this statement in a free text �eld of the task description. The fact
that the subject did so without being asked explicitly about the quality of
the instructions is an indication that the task description is indeed com-
prehensible. Another indication for comprehensibility is that we received
no clari�cation questions regarding the task description. We conclude that
experiments in future work can reuse our task description or create similar
ones.

The second bene�t (“based on an AT’s documentation, AT application is
straight-forward”) points to the suitability of AT applications within con-
trolled experiments and a good usability of ATs in general. However, for
the vertical scaling AT, we observed confusion about how to apply the AT.
Only after we have again pointed to the Wiki with the AT’s documenta-
tion [Clob], participants were able to correctly apply the AT. Afterwards,
for the horizontal scaling AT, participants had no problems to apply the AT.
We conclude that AT documentation is essential. While the Wiki [Clob]
has the advantage that it is easily accessible, its disadvantage is that it is not
tightly integrated into AT tooling—software architects currently have to
manually access the Wiki. Future versions of AT tooling should therefore
strive for a tight integration of AT documentation in addition to the Wiki,
e.g., by o�ering a context help during AT application.

475

E. Controlled Experiment: Report

AnsweringQlimitations: What are e�ective limitations of the ATmethod?
The 3 limitations collected during the experiment (Mlimitations) mainly point
to technical issues in AT tooling and in tools extended by AT tooling.

The �rst limitation (“the main issue is with compilation errors produced
when something is wrong with the QVT-O �le and with debugging sup-
port”) was reported by a subject of the control group and relates to di�-
culties when specifying recon�guration rules for SimuLizar. The subject
notes that debugging is di�cult when using QVT-O in conjunction with
SimuLizar. SimuLizar indeed lacks support for a debugging mode in which
breakpoints in the QVT-O �le are considered; debugging is purely based on
logging. Furthermore, we have experienced the same issue when we acted
as AT engineers to specify ATs that include reusable self-adaptation rules.
While this is only a technical issue and no conceptual one, future work
on SimuLizar on improving debugging support can increase SimuLizar’s
practical relevance.

The second limitation (“the recon�guration engine does not work correctly”)
describes an issue observed by a subject of the control group. Instead
of using QVT-O, the subject tried to use Story Diagrams [vDHP+12] as
an alternative M2M transformation language to specify recon�guration
rules (cf. Section 2.5.3.2). Unfortunately, SimuLizar’s engine for executing
recon�guration rules for Story Diagrams su�ers from bugs causing a wrong
recon�guration behavior. Because of this technical issue, the subject was
unable to provide correct analysis result. This issue should be �xed in
future works, despite not a�ecting the utility of ATs as long as QVT-O
recon�guration rules are used.

The third limitation (“tooling problems still exist”) is an observation we
made during the controlled experiment with the treatment group. As
described in Section E.1, we had to intervene because of problems in AT
tooling. However, at the time of writing, the reported problem has been
already resolved in AT tooling.

This example shows that Nützel’s pre-study has helped in improving the
AT method. Moreover, despite conceptually unimportant, tooling issues
bias subjects in empirical evaluations. These biases can lead to question-
able conclusions that, most notably, may not re�ect the properties of the
concepts under investigation. We therefore conclude that future empirical

476

E.4. Controlled Experiment: Evaluation of Validity

investigations should optimally �rst resolve currently known tooling issues
or explicitly explain subjects how to handle such issues.

E.4. Controlled Experiment: Evaluation of Validity

Compared to all previously conducted case studies, Nützel’s pre-study for a
controlled experiment investigates the AT method with multiple software
architects executing the same tasks in a between-subjects design, i.e., with a
treatment and a control group. Therefore, threats related to internal validity
and statistical power are less crucial; due to the fact that insights were not
solely based on the performance of a single subject. The more controlled
environment has improved internal validity further and has reduced the
“random irrelevancies in experimental setting” threat (cf. conclusion validity
threats in Appendix C.1.4.6).

However, a main issue still threatens the validity of gained insights: despite
more controlled than the cases studies, several random factors occurred
during the experiment that have disturbed measurements. These factors
are listed in Section E.1, e.g., the intervention due to tooling issues. The
occurrence of these factors shows the value of a pre-study—for conducting a
controlled experiment in future works, experimenters can plan for suitable
countermeasures, e.g., by resolving all known tooling issues before starting
the experiment.

Moreover, especially the number of participants in the control group can be
considered as low, thus, contributing to the “low statistical power” threat
of conclusion validity (cf. Appendix C.1.4.6). Given that only few experts
on Palladio and SimuLizar exist, it would even in future experiments be
hard to �nd enough subjects for gaining conclusive results. A potential
countermeasure is to let subjects of the control group undergo a preceding
training, similar to the treatment group.

Another option is to depart from the between-subjects design in favor
of a design with a treatment group only. As the pre-study has shown,
insights about the AT method can be gained even when not comparing
the treatment group with the control group, e.g., about the time it takes
software architects to apply ATs. Such a design has the advantage that less

477

E. Controlled Experiment: Report

experimentation e�ort is required for a separate experiment with a control
group. The disadvantage is that such a design makes it impossible to directly
compare the AT method against conventional approaches. Therefore, the
two discussed designs are orthogonal to each other and both point to
potential experiments in future works.

478

Bibliography

The references of this bibliography are structured along my own publication
(cited and uncited), theses I have supervised and cited, and externally cited
literature.

Own Publications (Cited)

[BBB+16] Ste�en Becker, Fabian Brosig, Erik Burger, Axel Busch, Zoya
Durdik, Jens Happe, Lucia Happe, Christoph Heger, Robert
Heinrich, Jörg Henss, Nikolaus Huber, Oliver Hummel, Ben-
jamin Klatt, Anne Koziolek, Heiko Koziolek, Max Kramer,
Klaus Krogmann, Martin Küster, Michael Langhammer, Sebas-
tian Lehrig, Philipp Merkle, Florian Meyerer, Qais Noorshams,
Ralf H. Reussner, Kiana Rostami, Simon Spinner, Christian Stier,
Misha Strittmatter, and Alexander Wert. Modeling and Sim-
ulating Software Architectures – The Palladio Approach. MIT
Press, Cambridge, MA, October 2016. Contributed to chap-
ters 3, 4, 8, 11, and 15. URL: http://mitpress.mit.edu/books/
modeling-and-simulating-software-architectures.

[BBL17] Ste�en Becker, Gunnar Brataas, and Sebastian Lehrig, editors.
Engineering Scalable, Elastic, and Cost-E�cient Cloud Computing
Applications: The CloudScale Method. Springer, Berlin, Heidel-
berg, 2017. doi:10.1007/978-3-319-54286-7.

[BLB15] Matthias Becker, Sebastian Lehrig, and Ste�en Becker. System-
atically Deriving Quality Metrics for Cloud Computing Systems.
In Proceedings of the 6th ACM/SPEC International Conference on
Performance Engineering, ICPE ’15, pages 169–174, New York,
NY, USA, 2015. ACM. doi:10.1145/2668930.2688043.

479

http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://dx.doi.org/10.1007/978-3-319-54286-7
http://dx.doi.org/10.1145/2668930.2688043

[BSL+13] Gunnar Brataas, Erlend Stav, Sebastian Lehrig, Ste�en Becker,
Goran Kopčak, and Darko Huljenic. CloudScale: Scalability
Management for Cloud Systems. In Proceedings of the 4th
ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’13, pages 335–338, New York, NY, USA, 2013. ACM.
doi:10.1145/2479871.2479920.

[BSL16] Gunnar Brataas, Erlend Stav, and Sebastian Lehrig. Analysing
Evolution of Work and Load. In 12th International ACM SIGSOFT
Conference on Quality of Software Architectures (QoSA), pages
90–95, April 2016. doi:10.1109/QoSA.2016.18.

[GL13] Daria Giacinto and Sebastian Lehrig. Towards Integrating Java
EE into ProtoCom. In Ste�en Becker, Wilhelm Hasselbring,
André van Hoorn, and Ralf H. Reussner, editors, Proceedings of
the Symposium on Software Performance: Joint Kieker/Palladio
Days 2013, Karlsruhe, Germany, November 27-29, 2013., volume
1083 ofCEURWorkshop Proceedings, pages 69–78. CEUR-WS.org,
2013. URL: http://ceur-ws.org/Vol-1083/paper8.pdf.

[HFL16] Marcus Hilbrich, Markus Frank, and Sebastian Lehrig. Security
Modeling with Palladio – Di�erent Approaches. In Proceedings
of the Symposium on Software Performance 2016, 8-9 November
2016, Kiel, Germany, 2016.

[KHK+17] Jóakim Von Kistowski, Nikolas Herbst, Samuel Kounev, Hen-
ning Groenda, Christian Stier, and Sebastian Lehrig. Modeling
and Extracting Load Intensity Pro�les. ACMTrans. Auton. Adapt.
Syst., 11(4):23:1–23:28, January 2017. doi:10.1145/3019596.

[KL14] Christian Klaussner and Sebastian Lehrig. Using Java EE Proto-
Com for SAP HANA Cloud. In Proceedings of the Symposium
on Software Performance 2014, 26-28 November 2014, Stuttgart,
Germany, 2014.

[LB14a] Sebastian Lehrig and Matthias Becker. Approaching the Cloud:
Using Palladio for Scalability, Elasticity, and E�ciency Analyses.
In Proceedings of the Symposium on Software Performance 2014,
26-28 November 2014, Stuttgart, Germany, 2014.

480

Bibliography

http://dx.doi.org/10.1145/2479871.2479920
http://dx.doi.org/10.1109/QoSA.2016.18
http://ceur-ws.org/Vol-1083/paper8.pdf
http://dx.doi.org/10.1145/3019596

[LB14b] Sebastian Lehrig and Ste�en Becker. CloudScale – Skalierbarkeit
für die Cloud. ForschungsForum Paderborn, 17:20–23, February
2014.

[LB15a] Sebastian Lehrig and Ste�en Becker. Beyond Simulation: Com-
posing Scalability, Elasticity, and E�ciency Analyses from Pre-
existing Analysis Results. In Proceedings of the 2015 Workshop
on Challenges in Performance Methods for Software Develop-
ment, WOSP ’15, pages 29–34, New York, NY, USA, 2015. ACM.
doi:10.1145/2693561.2693568.

[LB15b] Sebastian Lehrig and Ste�en Becker. The CloudScale Method
for Software Scalability, Elasticity, and E�ciency Engineering:
A Tutorial. In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering, ICPE ’15, pages 329–
331, New York, NY, USA, 2015. ACM. doi:10.1145/2668930.

2688818.

[LB15c] Sebastian Lehrig and Ste�en Becker. Software Architecture
Design Assistants Need Controlled E�ciency Experiments:
Lessons Learned from a Survey. In Proceedings of the 1st In-
ternational Workshop on Future of Software Architecture Design
Assistants, FoSADA ’15, pages 19–24, New York, NY, USA, 2015.
ACM. doi:10.1145/2751491.2751492.

[LB16] Sebastian Lehrig and Ste�en Becker. Using Performance Models
for Planning the Redeployment to Infrastructure-as-a-Service
Environments: A Case Study. In 2016 12th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA),
pages 11–20, April 2016. doi:10.1109/QoSA.2016.17.

[LE15] Sebastian Lehrig and Hendrik Eikerling. Analyzing Cost-
E�ciency of Cloud Computing Applications with SimuLizar.
In Proceedings of the Symposium on Software Performance 2015,
4-6 November 2015, Munich, Germany, 2015. URL: http://pi.
informatik.uni-siegen.de/stt/35_3/index.html.

[LEB15] Sebastian Lehrig, Hendrik Eikerling, and Ste�en Becker. Scala-
bility, Elasticity, and E�ciency in Cloud Computing: A System-
atic Literature Review of De�nitions and Metrics. In Proceedings
of the 11th International ACM SIGSOFT Conference on Quality of

481

Bibliography

http://dx.doi.org/10.1145/2693561.2693568
http://dx.doi.org/10.1145/2668930.2688818
http://dx.doi.org/10.1145/2668930.2688818
http://dx.doi.org/10.1145/2751491.2751492
http://dx.doi.org/10.1109/QoSA.2016.17
http://pi.informatik.uni-siegen.de/stt/35_3/index.html
http://pi.informatik.uni-siegen.de/stt/35_3/index.html

Software Architectures, QoSA ’15, pages 83–92, New York, NY,
USA, 2015. ACM. Received distinguished paper award (out
of 14 papers in total). doi:10.1145/2737182.2737185.

[Leh12] Sebastian Lehrig. Assessing the Quality of Model-to-Model
Transformations Based on Scenarios. Master’s thesis, Software
Engineering Group, Heinz Nixdorf Institute, Paderborn Univer-
sity, October 2012.

[Leh13] Sebastian Lehrig. Architectural Templates: Engineering Scal-
able SaaS Applications Based on Architectural Styles. In Martin
Gogolla, editor, Proceedings of the MODELS 2013 Doctoral Sympo-
sium co-located with the 16th International ACM/IEEE Conference
on Model Driven Engineering Languages and Systems (MOD-
ELS 2013), Miami, USA, October 1, 2013., volume 1071 of CEUR
Workshop Proceedings, pages 48–55. CEUR-WS.org, 2013. URL:
http://ceur-ws.org/Vol-1071/lehrig.pdf.

[Leh14a] Sebastian Lehrig. Applying Architectural Templates for Design-
Time Scalability and Elasticity Analyses of SaaS Applications.
In Proceedings of the 2nd International Workshop on Hot Topics
in Cloud Service Scalability, HotTopiCS ’14, pages 2:1–2:8, New
York, NY, USA, 2014. ACM. doi:10.1145/2649563.2649573.

[Leh14b] Sebastian Lehrig. The Architectural Template Method: Design-
Time Engineering of SaaS Applications. In Dimka Karastoy-
anova, editor, PhD Session at the Advanced School on Service
Oriented Computing 2014 (Summer SOC 2014), At Hersonissos,
Crete, Greece, July 1, 2014., 2014. doi:10.13140/2.1.1281.1040.

[Leh16] Sebastian Lehrig. Quality Analysis Lab (QuAL): Software Design
Description and Developer Guide Version 1.0. Technical report,
May 2016. URL: https://sdqweb.ipd.kit.edu/wiki/QuAL.

[LHB17] Sebastian Lehrig, Marcus Hilbrich, and Ste�en Becker. The Ar-
chitectural Template Method: Templating Architectural Knowl-
edge to E�ciently Conduct Quality-of-Service Analyses. Soft-
ware: Practice and Experience, 2017. Journal paper summa-
rizing this thesis. doi:10.1002/spe.2517.

482

Bibliography

http://dx.doi.org/10.1145/2737182.2737185
http://ceur-ws.org/Vol-1071/lehrig.pdf
http://dx.doi.org/10.1145/2649563.2649573
http://dx.doi.org/10.13140/2.1.1281.1040
https://sdqweb.ipd.kit.edu/wiki/QuAL
http://dx.doi.org/10.1002/spe.2517

[LLK13] Michael Langhammer, Sebastian Lehrig, and Max E. Kramer.
Reuse and Con�guration for Code Generating Architectural
Re�nement Transformations. In Proceedings of the 1st Workshop
on View-Based, Aspect-Oriented and Orthographic Software Mod-
elling, VAO ’13, pages 6:1–6:5, New York, NY, USA, 2013. ACM.
doi:10.1145/2489861.2489866.

[LSB+17] Sebastian Lehrig, Richard Sanders, Gunnar Brataas, Mariano
Cecowski, Simon Ivanšekc, and Jure Polutnik. CloudStore -
Towards Scalability, Elasticity, and E�ciency Benchmarking
and Analysis in Cloud Computing. Future Generation Computer
Systems, 2017. doi:10.1016/j.future.2017.04.018.

[LZ11] Sebastian Lehrig and Thomas Zolynski. Performance Prototyp-
ing with ProtoCom in a Virtualised Environment: A Case Study.
In Proceedings to Palladio Days 2011, 17-18 November 2011, FZI
Forschungszentrum Informatik, Karlsruhe, Germany, 2011.

[SJR+16] Misha Strittmatter, Michael Junker, Kiana Rostami, Sebastian
Lehrig, Amine Kechaou, Bo Liu, and Robert Heinrich. Extensible
Graphical Editors for Palladio. In Proceedings of the Symposium
on Software Performance 2016, 8-9 November 2016, Kiel, Germany,
November 2016.

[SL13] Christian Stritzke and Sebastian Lehrig. Why and How We
Should Use Graphiti to Implement PCM Editors. In Ste�en
Becker, Wilhelm Hasselbring, André van Hoorn, and Ralf H.
Reussner, editors, Proceedings of the Symposium on Software
Performance: Joint Kieker/Palladio Days 2013, Karlsruhe, Ger-
many, November 27-29, 2013., volume 1083 of CEUR Work-
shop Proceedings, pages 1–10. CEUR-WS.org, 2013. URL: http:
//ceur-ws.org/Vol-1083/paper1.pdf.

[vL13] Markus von Detten and Sebastian Lehrig. Reengineering of
Component-Based Systems in the Presence of Design De�-
ciencies – An Overview. In Proceedings of the 15th Workshop
Software-Reengineering, page 2. Gesellschaft für Informatik, May
2013.

483

Bibliography

http://dx.doi.org/10.1145/2489861.2489866
http://dx.doi.org/10.1016/j.future.2017.04.018
http://ceur-ws.org/Vol-1083/paper1.pdf
http://ceur-ws.org/Vol-1083/paper1.pdf

Own Publications (Uncited)

[FHL15] Markus Frank, Marcus Hilbrich, and Sebastian Lehrig. Improved
Scalability for Job-centric Monitoring in Distributed Infrastruc-
tures. In Marian Bubak, Michał Turala, and Kazimierz Wiatr, edi-
tors, CGWWorkshop ’15 Proceedings, pages 79–80. ACC Cyfronet
AGH, October 2015. ISBN 978-83-61433-14-9.

[HLF16] Marcus Hilbrich, Sebastian Lehrig, and Markus Frank. Measured
Values Lost in Time—or How I rose from a User to a Developer
of Palladio. Technical report, November 2016. Published as
technical report. URL: http://nbn-resolving.de/urn:nbn:de:
bsz:ch1-qucosa-213813.

[Leh15a] Sebastian Lehrig. The Architectural Template Method – Engineer-
ing of Software-as-a-Service Cloud Applications, February 2015.
Peer-reviewed conference poster presented at the 6th ACM/SPEC
International Conference on Performance Engineering (ICPE ’15),
Austin, Texas, USA. Received best poster award (out of 15
posters in total). doi:10.13140/2.1.1952.8480.

[Leh15b] Sebastian Lehrig. CloudScale – Scalability Management for Cloud
Computing, May 2015. Peer-reviewed conference poster pre-
sented at the 11th International ACM SIGSOFT Conference on
Quality of Software Architectures (QoSA ’15), Montréal, QC,
Canada. doi:10.13140/RG.2.1.4081.8088.

Supervised Theses (Cited)

[Abd14] Mohammed Abdulkarim. Performance Engineering for SAP
HANA Cloud Applications with Palladio. Master’s thesis, Soft-
ware Engineering Group, Heinz Nixdorf Institute, Paderborn Uni-
versity, February 2014.

[Eik14] Hendrik Eikerling. Scalability, Elasticity, and E�ciency in Cloud
Computing – a Systematic Literature Review. Bachelor’s thesis,
Software Engineering Group, Heinz Nixdorf Institute, Paderborn
University, July 2014.

484

Bibliography

http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-213813
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-213813
http://dx.doi.org/10.13140/2.1.1952.8480
http://dx.doi.org/10.13140/RG.2.1.4081.8088

[Gia16] Daria Loana Giacinto. Assuring the Conceptual Integrity of Archi-
tectural Pattern and Style Applications for Design-Time Analyses.
Master’s thesis, s-lab – Software Quality Lab, Paderborn Univer-
sity, February 2016.

[Gop14] Vinay Akkasetty Gopal. Dynamic Environment Model for Per-
formance Analysis of Self-Adaptive Systems. Master’s thesis,
Software Engineering Group, Heinz Nixdorf Institute, Paderborn
University, December 2014. (supervised together with Matthias
Becker).

[Kla14] Christian Klaussner. Extensible Performance Prototype Trans-
formations for Multiple Platforms. Bachelor’s thesis, Software
Engineering Group, Heinz Nixdorf Institute, Paderborn University,
July 2014.

[N1̈5] Christoph Nützel. An E�ciency Comparison Between Architec-
tural Templates and SimuLizar: A Controlled Experiment. Bache-
lor’s thesis, Software Engineering Chair, Chemnitz University of
Technology, December 2015.

[Ope17] Alexander Openkowski. Integrating Reuse Principles in the En-
gineering of Architectural Templates. Master’s thesis, Software
Engineering Chair, Chemnitz University of Technology, January
2017.

[Sax15] Manoveg Saxena. Analyzing the Accuracy of Palladio for Dynamic
MapReduce Environments. Master’s thesis, Software Engineering
Group, Heinz Nixdorf Institute, Paderborn University, March 2015.

Cited Literature

[ABGJ05] Muhammad Ali Babar, Ian Gorton, and Ross Je�ery. Cap-
turing and Using Software Architecture Knowledge for
Architecture-Based Software Development. In Proceedings of
the Fifth International Conference on Quality Software, QSIC
’05, pages 169–176, Washington, DC, USA, 2005. IEEE Com-
puter Society. doi:10.1109/QSIC.2005.17.

485

Bibliography

http://dx.doi.org/10.1109/QSIC.2005.17

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Chris-
tian Krause, and Gabriele Taentzer. Henshin: Advanced
Concepts and Tools for In-place EMF Model Transforma-
tions. In Proceedings of the 13th International Conference
on Model Driven Engineering Languages and Systems: Part
I, MODELS ’10, pages 121–135, Berlin, Heidelberg, 2010.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
id=1926458.1926471.

[Abr96] J.-R. Abrial. The B-book: Assigning Programs to Meanings.
Cambridge University Press, New York, NY, USA, 1996.

[Ale77] Christopher Alexander. APattern Language: Towns, Buildings,
Construction. Oxford University Press, 1977.

[All97] Robert Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon, School of Computer Science,
January 1997. Issued as CMU Technical Report CMU-CS-97-
144.

[Ame11] American Heritage Dictionary. “Template” De�nition.
The American Heritage Dictionary of the English Lan-
guage. Houghton Mi�in Harcourt, 5th edition, November
2011. URL: https://ahdictionary.com/word/search.html?
q=template [Visited on 30/07/17].

[APS07] Nuno Amálio, Fiona Polack, and Susan Stepney. Frameworks
Based on Templates for Rigorous Model-Driven Develop-
ment. Electron. Notes Theor. Comput. Sci., 191:3–23, October
2007. doi:10.1016/j.entcs.2007.09.002.

[ASB10] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. Or-
thographic Software Modeling: A Practical Approach to
View-Based Development, pages 206–219. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. doi:10.1007/

978-3-642-14819-4_15.

[ATt] AT Tooling. https://github.com/PalladioSimulator/

Architectural-Templates [Visited on 30/07/17].

[AWS16] AWS Architecture Center, 2016. https://aws.amazon.com/
architecture/ [Visited on 30/07/17].

486

Bibliography

http://dl.acm.org/citation.cfm?id=1926458.1926471
http://dl.acm.org/citation.cfm?id=1926458.1926471
https://ahdictionary.com/word/search.html?q=template
https://ahdictionary.com/word/search.html?q=template
http://dx.doi.org/10.1016/j.entcs.2007.09.002
http://dx.doi.org/10.1007/978-3-642-14819-4_15
http://dx.doi.org/10.1007/978-3-642-14819-4_15
https://github.com/PalladioSimulator/Architectural-Templates
https://github.com/PalladioSimulator/Architectural-Templates
https://aws.amazon.com/architecture/
https://aws.amazon.com/architecture/

[Bas07] Victor R. Basili. The Role of Controlled Experiments in Soft-
ware Engineering Research. In Victor R. Basili, Dieter Rom-
bach, Kurt Schneider, Barbara Kitchenham, Dietmar Pfahl,
and Richard W. Selby, editors, Empirical Software Engineering
Issues. Critical Assessment and Future Directions, volume 4336
of Lecture Notes in Computer Science, pages 33–37. Springer
Berlin Heidelberg, 2007. doi:10.1007/978-3-540-71301-2_
10.

[BBJ+08] Achim Baier, Ste�en Becker, Martin Jung, Klaus Krogmann,
Carsten Röttgers, Niels Streekmann, Karsten Thoms, and
Ste�en Zschaler. Handbuch der Software-Architektur, chap-
ter Modellgetriebene Software-Entwicklung, pages 93–122.
dPunkt.verlag Heidelberg, 2nd edition, December 2008.

[BBM13] Matthias Becker, Ste�en Becker, and Joachim Meyer.
SimuLizar: Design-Time Modeling and Performance Anal-
ysis of Self-Adaptive Systems. In Stefan Kowalewski and
Bernhard Rumpe, editors, Software Engineering 2013: Fach-
tagung des GI-Fachbereichs Softwaretechnik, 26. Februar -
2. März 2013 in Aachen, volume 213 of LNI, pages 71–84.
GI, 2013. URL: http://subs.emis.de/LNI/Proceedings/

Proceedings213/article35.html.

[BC87] Kent Beck and Ward Cunningham. Using Pattern Languages
for Object-Oriented Programs. Technical Report CR-87-43,
Apple Computer, Inc. and Tektronix, Inc., 1987. URL: http:
//c2.com/doc/oopsla87.html.

[BCH+96] Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith
Playford, and P. Tucker Withington. A Monotonic Superclass
Linearization for Dylan. SIGPLANNot., 31(10):69–82, October
1996. doi:10.1145/236338.236343.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Archi-
tecture in Practice. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

[BCR02] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.
The Goal Question Metric Approach. In John. J. Marciniak,

487

Bibliography

http://dx.doi.org/10.1007/978-3-540-71301-2_10
http://dx.doi.org/10.1007/978-3-540-71301-2_10
http://subs.emis.de/LNI/Proceedings/Proceedings213/article35.html
http://subs.emis.de/LNI/Proceedings/Proceedings213/article35.html
http://c2.com/doc/oopsla87.html
http://c2.com/doc/oopsla87.html
http://dx.doi.org/10.1145/236338.236343

editor, Encyclopedia of Software Engineering, pages 578–583.
John Wiley & Sons, 2nd edition, 2002.

[Bec08] Ste�en Becker. Coupled Model Transformations for QoS En-
abled Component-Based Software Design. PhD thesis, Univer-
sity of Oldenburg, Germany, January 2008.

[Bel57] Richard Bellman. A Markovian Decision Process. Indiana
Univ. Math. J., 6:679–684, 1957.

[BF08] Rainer Böhme and Felix C. Freiling. On Metrics and Measure-
ments. In Irene Eusgeld, Felix C. Freiling, and Ralf Reussner,
editors, Dependability Metrics, volume 4909 of Lecture Notes
in Computer Science, pages 7–13. Springer Berlin Heidelberg,
2008. doi:10.1007/978-3-540-68947-8_2.

[BG07a] Muhammad Ali Babar and Ian Gorton. A Tool for Man-
aging Software Architecture Knowledge. In Proceedings of
the Second Workshop on SHAring and Reusing Architectural
Knowledge Architecture, Rationale, and Design Intent, SHARK-
ADI ’07, pages 11–11, Washington, DC, USA, 2007. IEEE
Computer Society. doi:10.1109/SHARK-ADI.2007.1.

[BG07b] Muhammad Ali Babar and Ian Gorton. A Tool for Man-
aging Software Architecture Knowledge. In Proceedings of
the Second Workshop on SHAring and Reusing Architectural
Knowledge Architecture, Rationale, and Design Intent, SHARK-
ADI ’07, pages 11–18, Washington, DC, USA, 2007. IEEE
Computer Society. doi:10.1109/SHARK-ADI.2007.1.

[BGK06] Muhammad Ali Babar, Ian Gorton, and Barbara Kitchen-
ham. A Framework for Supporting Architecture Knowl-
edge and Rationale Management, pages 237–254. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006. doi:10.1007/

978-3-540-30998-7_11.

[BGMO06] Ste�en Becker, Lars Grunske, Ra�aela Mirandola, and Sven
Overhage. Performance Prediction of Component-Based
Systems: A Survey from an Engineering Perspective. In Ralf
Reussner, Judith Sta�ord, and Clemens Szyperski, editors,

488

Bibliography

http://dx.doi.org/10.1007/978-3-540-68947-8_2
http://dx.doi.org/10.1109/SHARK-ADI.2007.1
http://dx.doi.org/10.1109/SHARK-ADI.2007.1
http://dx.doi.org/10.1007/978-3-540-30998-7_11
http://dx.doi.org/10.1007/978-3-540-30998-7_11

Architecting Systems with Trustworthy Components, volume
3938, pages 169–192, 2006.

[BHS07a] Frank Buschmann, Kevlin Henney, and Douglas Schmidt.
Pattern-Oriented Software Architecture: A Pattern Language
for Distributed Computing. John Wiley & Sons, Inc., 2007.

[BHS07b] Frank Buschmann, Kevlin Henney, and Douglas Schmidt.
Pattern-Oriented Software Architecture: On Patterns and Pat-
tern Languages. John Wiley & Sons, Inc., 2007.

[BJPW99] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and
Damien Watkins. Making Components Contract Aware.
Computer, 32(7):38–45, July 1999. doi:10.1109/2.774917.

[BK98] Falko Bause and Pieter S. Kritzinger. Stochastic Petri Nets:
An Introduction to the Theory. SIGMETRICS Perform. Eval.
Rev., 26(2):2–3, August 1998. doi:10.1145/288197.581194.

[BKBR12] Franz Brosch, Heiko Koziolek, Barbora Buhnova, and Ralf
Reussner. Architecture-Based Reliability Prediction with the
Palladio Component Model. IEEE Transactions on Software
Engineering, 38(6):1319–1339, November 2012. doi:10.1109/
TSE.2011.94.

[BKR09] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. The
Palladio Component Model for Model-Driven Performance
Prediction. J. Syst. Softw., 82(1):3–22, January 2009. doi:

10.1016/j.jss.2008.03.066.

[BM04] Antonia Bertolino and Ra�aela Mirandola. CB-SPE Tool:
Putting Component-Based Performance Engineering into Prac-
tice, pages 233–248. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2004. doi:10.1007/978-3-540-24774-6_21.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, Inc.,
New York, NY, USA, 1996.

[Boe78] Barry W. Boehm. Characteristics of Software Quality. TRW
series of software technology. North-Holland Pub. Co., 1978.

489

Bibliography

http://dx.doi.org/10.1109/2.774917
http://dx.doi.org/10.1145/288197.581194
http://dx.doi.org/10.1109/TSE.2011.94
http://dx.doi.org/10.1109/TSE.2011.94
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1007/978-3-540-24774-6_21

[Bri96] Sjaak Brinkkemper. Method Engineering: Engineering of
Information Systems Development Methods and Tools. In-
formation & Software Technology, 38(4):275–280, 1996. doi:
10.1016/0950-5849(95)01059-9.

[BT03] Barry Boehm and Richard Turner. Balancing Agility and Dis-
cipline: A Guide for the Perplexed. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[BTN+14] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel
Wimmer, and Gerti Kappel. UML-Based Cloud Applica-
tion Modeling with Libraries, Pro�les, and Templates. In
Richard F. Paige, Jordi Cabot, Marco Brambilla, Louis M.
Rose, and James H. Hill, editors, Proceedings of the 2nd Inter-
national Workshop on Model-Driven Engineering on and for
the Cloud co-located with the 17th International Conference
on Model Driven Engineering Languages and Systems, Cloud-
MDE@MoDELS 2014, Valencia, Spain, September 30, 2014, vol-
ume 1242 of CEURWorkshop Proceedings, pages 56–65. CEUR-
WS.org, 2014. URL: http://ceur-ws.org/Vol-1242/paper7.
pdf.

[Bur14] Erik Burger. Flexible Views for View-Based Model-Driven
Development. PhD thesis, Karlsruhe Institute of Technol-
ogy, Karlsruhe, Germany, July 2014. doi:10.5445/KSP/

1000043437.

[BW84] Victor R. Basili and David M. Weiss. A Methodology for
Collecting Valid Software Engineering Data. Software Engi-
neering, IEEE Transactions on, SE-10(6):728–738, November
1984. doi:10.1109/TSE.1984.5010301.

[BZJ04] Muhammad Ali Babar, Liming Zhu, and Ross Je�ery. A
Framework for Classifying and Comparing Software Archi-
tecture Evaluation Methods. In Proceedings of the 2004 Aus-
tralian Software Engineering Conference, ASWEC ’04, pages
309–318, Washington, DC, USA, 2004. IEEE Computer Soci-
ety. doi:10.1109/ASWEC.2004.1290484.

490

Bibliography

http://dx.doi.org/10.1016/0950-5849(95)01059-9
http://dx.doi.org/10.1016/0950-5849(95)01059-9
http://ceur-ws.org/Vol-1242/paper7.pdf
http://ceur-ws.org/Vol-1242/paper7.pdf
http://dx.doi.org/10.5445/KSP/1000043437
http://dx.doi.org/10.5445/KSP/1000043437
http://dx.doi.org/10.1109/TSE.1984.5010301
http://dx.doi.org/10.1109/ASWEC.2004.1290484

[CA05] Krzysztof Czarnecki and Michał Antkiewicz. Mapping Fea-
tures to Models: A Template Approach Based on Superim-
posed Variants. In Proceedings of the 4th International Confer-
ence on Generative Programming and Component Engineering,
GPCE ’05, pages 422–437, Berlin, Heidelberg, 2005. Springer-
Verlag. doi:10.1007/11561347_28.

[Car88] Rudolf Carnap. Meaning and Necessity: A Study in Semantics
and Modal Logic. Midway reprints. University of Chicago
Press, 1988.

[CB05] Siobhàn Clarke and Elisa Baniassad. Aspect-Oriented Analysis
and Design: The Theme Approach. Addison-Wesley Profes-
sional, 2005.

[CBBD09] Eric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Dje-
mam. OCL contracts for the veri�cation of model trans-
formations. ECEASST, 24, 2009. URL: http://journal.ub.
tu-berlin.de/index.php/eceasst/article/view/326.

[CD00] John Cheesman and John Daniels. UML Components: A Sim-
ple Process for Specifying Component-Based Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Genera-
tive Programming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

[CG02] Vittorio Cortellessa and Vincenzo Grassi. A Performance-
Based Methodology to Early Evaluate the E�ectiveness of
Mobile Software Architectures. The Journal of Logic and
Algebraic Programming, 51(1):77–100, 2002. doi:10.1016/

S1567-8326(01)00016-9.

[CGS09] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Eval-
uating the E�ectiveness of the Rainbow Self-Adaptive System.
In Proceedings of the 2009 ICSE Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’09,

491

Bibliography

http://dx.doi.org/10.1007/11561347_28
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/326
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/326
http://dx.doi.org/10.1016/S1567-8326(01)00016-9
http://dx.doi.org/10.1016/S1567-8326(01)00016-9

pages 132–141, Washington, DC, USA, 2009. IEEE Computer
Society. doi:10.1109/SEAMS.2009.5069082.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-Based Sur-
vey of Model Transformation Approaches. IBM Syst. J.,
45(3):621–645, July 2006. doi:10.1147/sj.453.0621.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eise-
necker. Staged Con�guration Using Feature Models, pages
266–283. Springer Berlin Heidelberg, 2004. doi:10.1007/

978-3-540-28630-1_17.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eise-
necker. Formalizing Cardinality-Based Feature Models and
their Specialization. Software Process: Improvement and Prac-
tice, 10(1):7–29, 2005.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating
Software Architectures: Methods and Case Studies. SEI series in
software engineering. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[Cloa] CloudScale Environment. http://www.cloudscale-project.
eu/results/tools [Visited on 30/07/17].

[Clob] CloudScale Wiki: HowTos. http://wiki.

cloudscale-project.eu/wiki/index.php/HowTos [Vis-
ited on 30/07/17].

[Clo14] Cloud Select Industry Group on Service Level Agreements
Subgroup (C-SIG SLA). Cloud Service Level Agreement Stan-
dardisation Guidelines. Technical report, Cloud Select Indus-
try Group (C-SIG), 2014.

[Clo16a] CloudStore Case Study Material: CloudStore Docu-
mentation, Source Code, Deployment Scripts, Archi-
tectural Model, and Raw Measurement Data, 2016.
https://github.com/CloudScale-Project/CloudStore

and https://github.com/CloudScale-Project/Examples/

tree/master/CloudStore/analyser.

492

Bibliography

http://dx.doi.org/10.1109/SEAMS.2009.5069082
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://dx.doi.org/10.1007/978-3-540-28630-1_17
http://www.cloudscale-project.eu/results/tools
http://www.cloudscale-project.eu/results/tools
http://wiki.cloudscale-project.eu/wiki/index.php/HowTos
http://wiki.cloudscale-project.eu/wiki/index.php/HowTos
https://github.com/CloudScale-Project/CloudStore
https://github.com/CloudScale-Project/Examples/tree/master/CloudStore/analyser
https://github.com/CloudScale-Project/Examples/tree/master/CloudStore/analyser

[Clo16b] CloudStore Screencasts, 2016. http://www.

cloudscale-project.eu/results/screencasts/.

[CMSD04] Eric Cariou, Raphaël Marvie, Lionel Seinturier, and Laurence
Duchien. OCL for the Speci�cation of Model Transformation
Contracts. In Octavian Patrascoiu, editor, OCL and Model
Driven Engineering, UML 2004 Conference Workshop, October
12, 2004, Lisbon, Portugal, pages 69–83. University of Kent,
2004.

[CNPDn06] Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C.
Dueñas. A Web-Based Tool for Managing Architectural De-
sign Decisions. SIGSOFT Softw. Eng. Notes, 31(5), September
2006. doi:10.1145/1163514.1178644.

[CS13] Daniel Calegari and Nora Szasz. Veri�cation of Model Trans-
formations. Electron. Notes Theor. Comput. Sci., 292:5–25,
March 2013. doi:10.1016/j.entcs.2013.02.002.

[Cza98] Krzysztof Czarnecki. Generative Programming: Principles
and Techniques of Software Engineering Based on Automated
Con�guration and Fragment-Based Component Models. PhD
thesis, 1998.

[DG08] Je�rey Dean and Sanjay Ghemawat. MapReduce: Simpli�ed
Data Processing on Large Clusters. Commun. ACM, 51(1):107–
113, January 2008. doi:10.1145/1327452.1327492.

[dGJKK12] Thijmen de Gooijer, Anton Jansen, Heiko Koziolek, and Anne
Koziolek. An Industrial Case Study of Performance and Cost
Design Space Exploration. ICPE ’12, pages 205–216, New
York, NY, USA, 2012. ACM. doi:10.1145/2188286.2188319.

[Dij82] Edsger W. Dijkstra. On the Role of Scienti�c Thought, pages
60–66. Springer New York, New York, NY, 1982. doi:10.

1007/978-1-4612-5695-3_12.

[DK01] Kalyanmoy Deb and Deb Kalyanmoy. Multi-Objective Opti-
mization Using Evolutionary Algorithms. John Wiley & Sons,
Inc., New York, NY, USA, 2001.

493

Bibliography

http://www.cloudscale-project.eu/results/screencasts/
http://www.cloudscale-project.eu/results/screencasts/
http://dx.doi.org/10.1145/1163514.1178644
http://dx.doi.org/10.1016/j.entcs.2013.02.002
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/2188286.2188319
http://dx.doi.org/10.1007/978-1-4612-5695-3_12
http://dx.doi.org/10.1007/978-1-4612-5695-3_12

[DLS05] G. Dobson, R. Lock, and I. Sommerville. QoSOnt: A QoS
Ontology for Service-Centric Systems. In 31st EUROMICRO
Conference on Software Engineering and Advanced Applica-
tions, pages 80–87, August 2005. doi:10.1109/EUROMICRO.

2005.49.

[DN02] Liliana Dobrica and Eila Niemelä. A Survey on Software
Architecture Analysis Methods. IEEE Trans. Softw. Eng.,
28(7):638–653, July 2002. doi:10.1109/TSE.2002.1019479.

[DR12] Zoya Durdik and Ralf Reussner. Position Paper: Approach
for Architectural Design and Modelling with Documented
Design Decisions (ADMD3). In Proceedings of the 8th Inter-
national ACM SIGSOFT Conference on Quality of Software
Architectures, QoSA ’12, pages 49–54, New York, NY, USA,
2012. ACM. doi:10.1145/2304696.2304706.

[Dry07] David Drysdale. High-Quality Software Engineering.
Lulu.com, 2007.

[Dur16] Zoya Durdik. Architectural Design Decision Documentation
through Reuse of Design Patterns. PhD thesis, KIT Scienti�c
Publishing, Karlsruhe, 2016. doi:10.5445/KSP/1000043807.

[EBL06] Maged Elaasar, Lionel C. Briand, and Yvan Labiche. A Meta-
modeling Approach to Pattern Speci�cation. In Proceed-
ings of the 9th International Conference on Model Driven
Engineering Languages and Systems, MoDELS ’06, pages
484–498, Berlin, Heidelberg, 2006. Springer-Verlag. doi:

10.1007/11880240_34.

[Ecl16] Eclipse Modeling Project. Operational QVT (Version 3.6.0).
http://www.eclipse.org/mmt/qvto [Visited on 30/07/17],
2016.

[EPM13] Thomas Erl, Ricardo Puttini, and Zaigham Mahmood. Cloud
Computing: Concepts, Technology & Architecture. Prentice
Hall Press, Upper Saddle River, NJ, USA, 1st edition, 2013.

[Eva96] James D. Evans. Straightforward Statistics for the Behavioral
Sciences. Brooks/Cole, 1996.

494

Bibliography

http://dx.doi.org/10.1109/EUROMICRO.2005.49
http://dx.doi.org/10.1109/EUROMICRO.2005.49
http://dx.doi.org/10.1109/TSE.2002.1019479
http://dx.doi.org/10.1145/2304696.2304706
http://dx.doi.org/10.5445/KSP/1000043807
http://dx.doi.org/10.1007/11880240_34
http://dx.doi.org/10.1007/11880240_34
http://www.eclipse.org/mmt/qvto

[FH86] Gillian D. Frewin and Barbara J. Hatton. Quality management
- procedures and practices. Software Engineering Journal,
1(1):29–38, January 1986. doi:10.1049/sej:19860006.

[FLR+14] Christoph Fehling, Frank Leymann, Ralph Retter, Walter
Schupeck, and Peter Arbitter. Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applica-
tions. Springer Publishing Company, Incorporated, 2014.

[GAO94] David Garlan, Robert Allen, and John Ockerbloom. Ex-
ploiting Style in Architectural Design Environments. SIG-
SOFT Softw. Eng. Notes, 19(5):175–188, December 1994. doi:
10.1145/195274.195404.

[Gar03] Gartner, Inc. and/or its A�liates. The Gartner Glossary of
Information Technology Acronyms and Terms. Technical
report, Gartner Inc., 2003.

[Gar14] David Garlan. Software Architecture: A Travelogue. In
Proceedings of the on Future of Software Engineering, FOSE
2014, pages 29–39, New York, NY, USA, 2014. ACM. doi:

10.1145/2593882.2593886.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[GHK+10] Hassan Gomaa, Koji Hashimoto, Minseong Kim, Sam Malek,
and Daniel A. Menascé. Software Adaptation Patterns for
Service-Oriented Architectures. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 462–
469, New York, NY, USA, 2010. ACM. doi:10.1145/1774088.
1774185.

[Gie08] Simon Giesecke. Architectural Styles for Early Goal-
Driven Middleware Platform Selection. PhD thesis, Carl
von Ossietzky University of Oldenburg, 2008. URL:
http://oops.uni-oldenburg.de/volltexte/2008/796/

pdf/dissertation_final.pdf.

495

Bibliography

http://dx.doi.org/10.1049/sej:19860006
http://dx.doi.org/10.1145/195274.195404
http://dx.doi.org/10.1145/195274.195404
http://dx.doi.org/10.1145/2593882.2593886
http://dx.doi.org/10.1145/2593882.2593886
http://dx.doi.org/10.1145/1774088.1774185
http://dx.doi.org/10.1145/1774088.1774185
http://oops.uni-oldenburg.de/volltexte/2008/796/pdf/dissertation_final.pdf
http://oops.uni-oldenburg.de/volltexte/2008/796/pdf/dissertation_final.pdf

[GMW00] David Garlan, Robert Thomas Monroe, and David Wile. Foun-
dations of Component-Based Systems. chapter Acme: Ar-
chitectural Description of Component-Based Systems, pages
47–67. Cambridge University Press, New York, NY, USA,
2000. URL: http://dl.acm.org/citation.cfm?id=336431.
336437.

[Gro09] Richard C. Gronback. Eclipse Modeling Project: A Domain-
Speci�c Language (DSL) Toolkit. The Eclipse Series. Addison-
Wesley Professional, 1st edition, 2009.

[GTWJ03] Jerry Zayu Gao, Jacob Tsao, Ye Wu, and Taso H.-S. Jacob.
Testing and Quality Assurance for Component-Based Software.
Artech House, Inc., Norwood, MA, USA, 2003.

[Hap09] Jens Happe. Predicting Software Performance in Symmetric
Multi-Core and Multiprocessor Environments. PhD thesis,
Carl von Ossietzky University of Oldenburg, 2009. URL:
http://oops.uni-oldenburg.de/volltexte/2009/882/.

[Hap11] Lucia Happe. Con�gurable Software Performance Comple-
tions through Higher-Order Model Transformations. PhD
thesis, Karlsruhe Institute of Technology, Karlsruhe, Ger-
many, 2011. URL: http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000031034.

[Har97] Frank A. Harmsen. Situational Method Engineering. PhD
thesis, University of Twente, Utrecht, January 1997.

[HAZ07] Neil B. Harrison, Paris Avgeriou, and Uwe Zdun. Using
Patterns to Capture Architectural Decisions. IEEE Softw.,
24(4):38–45, July 2007. doi:10.1109/MS.2007.124.

[HBR+10a] Jens Happe, Ste�en Becker, Christoph Rathfelder, Holger
Friedrich, and Ralf H. Reussner. Parametric Performance
Completions for Model-Driven Performance Prediction. Per-
formance Evaluation, 67(8):694 – 716, 2010. Special Issue
on Software and Performance. doi:http://dx.doi.org/10.
1016/j.peva.2009.07.006.

496

Bibliography

http://dl.acm.org/citation.cfm?id=336431.336437
http://dl.acm.org/citation.cfm?id=336431.336437
http://oops.uni-oldenburg.de/volltexte/2009/882/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000031034
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000031034
http://dx.doi.org/10.1109/MS.2007.124
http://dx.doi.org/http://dx.doi.org/10.1016/j.peva.2009.07.006
http://dx.doi.org/http://dx.doi.org/10.1016/j.peva.2009.07.006

[HBR+10b] Nikolaus Huber, Ste�en Becker, Christoph Rathfelder, Jochen
Schwe�inghaus, and Ralf H. Reussner. Performance Mod-
eling in Industry: A Case Study on Storage Virtualization.
In SE ’10, volume 2, pages 1–10, May 2010. doi:10.1145/

1810295.1810297.

[HFBR08] Jens Happe, Holger Friedrich, Ste�en Becker, and Ralf H.
Reussner. A Pattern-Based Performance Completion for
Message-Oriented Middleware. In Proceedings of the 7th
International Workshop on Software and Performance, WOSP
’08, pages 165–176, New York, NY, USA, 2008. ACM. doi:

10.1145/1383559.1383581.

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Ka-
toen. Process Algebra for Performance Evaluation. Theor.
Comput. Sci., 274(1-2):43–87, March 2002. doi:10.1016/

S0304-3975(00)00305-4.

[HJS+09] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, Chris-
tian Wende, and Marcel Böhme. Generating Safe Template
Languages. In Proceedings of the Eighth International Confer-
ence on Generative Programming and Component Engineering,
GPCE ’09, pages 99–108, New York, NY, USA, 2009. ACM.
doi:10.1145/1621607.1621624.

[HK05] Alan Hartman and David Kreische, editors. Model Driven
Architecture - Foundations and Applications, First European
Conference, ECMDA-FA 2005, Nuremberg, Germany, Novem-
ber 7-10, 2005, Proceedings, volume 3748 of Lecture Notes in
Computer Science. Springer, 2005.

[HNS99] Christine Hofmeister, Robert L. Nord, and Dilip Soni. De-
scribing Software Architecture with UML. In Proceedings
of the TC2 First Working IFIP Conference on Software Archi-
tecture (WICSA1), WICSA1, pages 145–160, Deventer, The
Netherlands, The Netherlands, 1999. Kluwer, B.V. URL:
http://dl.acm.org/citation.cfm?id=646545.696368.

[Hoa78] Charles A. R. Hoare. Communicating Sequential Processes.
Commun. ACM, 21(8):666–677, August 1978. doi:10.1145/
359576.359585.

497

Bibliography

http://dx.doi.org/10.1145/1810295.1810297
http://dx.doi.org/10.1145/1810295.1810297
http://dx.doi.org/10.1145/1383559.1383581
http://dx.doi.org/10.1145/1383559.1383581
http://dx.doi.org/10.1016/S0304-3975(00)00305-4
http://dx.doi.org/10.1016/S0304-3975(00)00305-4
http://dx.doi.org/10.1145/1621607.1621624
http://dl.acm.org/citation.cfm?id=646545.696368
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/359576.359585

[IEE10] Systems and Software Engineering – Vocabulary.
ISO/IEC/IEEE 24765:2010(E), pages 1–418, December
2010. doi:10.1109/IEEESTD.2010.5733835.

[ISO01] ISO/IEC Standard. Software Engineering – Product Quality
– Part 1: Quality Model. ISO/IEC Standard 9126-1, ISO/IEC,
2001.

[ISO03b] ISO/IEC Standard. Software Engineering – Product Quality
– Part 3: Internal Metrics. ISO/IEC Standard 9126-3, ISO/IEC,
2003.

[ISO07] ISO/IEC Standard for Systems and Software Engineering
- Recommended Practice for Architectural Description of
Software-Intensive Systems. ISO/IEC 42010 IEEE Std 1471-
2000 First edition 2007-07-15, pages c1–24, July 2007. doi:

10.1109/IEEESTD.2007.386501.

[ISO11] ISO/IEC Standard. Systems and Software Engineering – Sys-
tems and Software Quality Requirements and Evaluation
(SQuaRE) – System and Software Quality Models. ISO/IEC
Standard 25010:2011, ISO/IEC, 2011.

[ISO14] ISO/IEC Standard. Systems and Software Engineering – Sys-
tems and Software Quality Requirements and Evaluation
(SQuaRE) – Guide to SQuaRE. ISO/IEC Standard 25000:2014,
ISO/IEC, 2014.

[ISO16b] ISO/IEC Standard. Systems and Software Engineering – Sys-
tems and Software Quality Requirements and Evaluation
(SQuaRE) – Measurement of System and Software Product
Quality. ISO/IEC Standard 25023:2016, ISO/IEC, 2016.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan
Kurtev. ATL: A Model Transformation Tool. Science of Com-
puter Programming, 72(1-2):31–39, 2008. Special Issue on
Second issue of experimental software and toolkits (EST).
doi:10.1016/j.scico.2007.08.002.

[Jac12] Daniel Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, 2012.

498

Bibliography

http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://dx.doi.org/10.1109/IEEESTD.2007.386501
http://dx.doi.org/10.1109/IEEESTD.2007.386501
http://dx.doi.org/10.1016/j.scico.2007.08.002

[Jav03] Java Middleware Open Benchmarking (JMOB). TPC-W
Benchmark: Java Servlets/MySQL Implementation, August
2003. http://jmob.ow2.org/tpcw.html.

[JB05] Anton Jansen and Jan Bosch. Software Architecture As a
Set of Architectural Design Decisions. In Proceedings of the
5th Working IEEE/IFIP Conference on Software Architecture,
WICSA ’05, pages 109–120, Washington, DC, USA, 2005. IEEE
Computer Society. doi:10.1109/WICSA.2005.61.

[JCP08] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl.
Reporting Experiments in Software Engineering. In Forrest
Shull, Janice Singer, and DagI.K. Sjøberg, editors, Guide to
Advanced Empirical Software Engineering, pages 201–228.
Springer London, 2008. doi:10.1007/978-1-84800-044-5_
8.

[Jon90] Cli� B. Jones. Systematic Software Development Using VDM
(2nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1990.

[JP05] Andreas Jedlitschka and Dietmar Pfahl. Reporting Guide-
lines for Controlled Experiments in Software Engineering.
In International Symposium on Empirical Software Engineer-
ing, 2005, pages 10–pp, November 2005. doi:10.1109/ISESE.
2005.1541818.

[JvdVAH07] Anton Jansen, Jan van der Ven, Paris Avgeriou, and Dieter K.
Hammer. Tool Support for Architectural Decisions. In Pro-
ceedings of the SixthWorking IEEE/IFIP Conference on Software
Architecture, WICSA ’07, pages 4–4, Washington, DC, USA,
2007. IEEE Computer Society. doi:10.1109/WICSA.2007.47.

[JW04] Ian Jacobs and Norman Walsh, editors. Architecture of the
World Wide Web, Volume One. The World Wide Web Consor-
tium (W3C), December 2004. URL: http://www.w3.org/TR/
webarch/.

[KBK+99] Rick Kazman, Mario Barbacci, Mark Klein, S. Jeromy Car-
rière, and Steven G. Woods. Experience with Perform-
ing Architecture Tradeo� Analysis. In Proceedings of the

499

Bibliography

http://jmob.ow2.org/tpcw.html
http://dx.doi.org/10.1109/WICSA.2005.61
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1109/ISESE.2005.1541818
http://dx.doi.org/10.1109/ISESE.2005.1541818
http://dx.doi.org/10.1109/WICSA.2007.47
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/

21st International Conference on Software Engineering, ICSE
’99, pages 54–63, New York, NY, USA, 1999. ACM. doi:

10.1145/302405.302452.

[KBK+05] Rick Kazman, Len Bass, Mark Klein, Tony Lattanze, and
Linda Northrop. A Basis for Analyzing Software Architecture
Analysis Methods. Software Quality Journal, 13(4):329–355,
December 2005. doi:10.1007/s11219-005-4250-1.

[KBWA94] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd.
SAAM: A Method for Analyzing the Properties of Software
Architectures. In Proceedings of the 16th International Con-
ference on Software Engineering, ICSE ’94, pages 81–90, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[KC05] Chang Hwan Peter Kim and Krzysztof Czarnecki. Synchro-
nizing Cardinality-Based Feature Models and Their Special-
izations. In Hartman and Kreische [HK05], pages 331–348.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for
performing Systematic Literature Reviews in Software Engi-
neering. Technical Report EBSE 2007-001, Keele University
and Durham University Joint Report, 2007.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E.
Nowak, and A. Spencer Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical report,
Carnegie-Mellon University Software Engineering Institute,
November 1990.

[KCSS02] Mohamed M. Kandé, Valentin Crettaz, Alfred Strohmeier,
and Shane Sendall. Bridging the Gap Between IEEE 1471,
an Architecture Description Language, and UML. Software
and Systems Modeling, 1(2):113–129, 2002. doi:10.1007/

s10270-002-0010-x.

[KDH+12] Max E. Kramer, Zoya Durdik, Michael Hauck, Jörg Henss,
Martin Küster, Philipp Merkle, and Andreas Rentschler. Ex-
tending the Palladio Component Model using Pro�les and
Stereotypes. In Ste�en Becker, Jens Happe, Anne Koziolek,
and Ralf Reussner, editors, Palladio Days 2012 Proceedings

500

Bibliography

http://dx.doi.org/10.1145/302405.302452
http://dx.doi.org/10.1145/302405.302452
http://dx.doi.org/10.1007/s11219-005-4250-1
http://dx.doi.org/10.1007/s10270-002-0010-x
http://dx.doi.org/10.1007/s10270-002-0010-x

(appeared as technical report), Karlsruhe Reports in Informat-
ics; 2012,21, pages 7–15, Karlsruhe, 2012. KIT, Faculty of
Informatics. URL: http://nbn-resolving.org/urn:nbn:de:
swb:90-308043.

[KFGS03] Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee
Song. A Role-Based Metamodeling Approach to Specifying
Design Patterns. In Proceedings 27th Annual International
Computer Software and Applications Conference. COMPAC
2003, pages 452–457, November 2003. doi:10.1109/CMPSAC.
2003.1245379.

[KG10] Jung Soo Kim and David Garlan. Analyzing Architectural
Styles. J. Syst. Softw., 83(7):1216–1235, July 2010. doi:10.

1016/j.jss.2010.01.049.

[KH06] Heiko Koziolek and Jens Happe. A QoS Driven Development
Process Model for Component-Based Software Systems. In
Proceedings of the 9th International Conference on Component-
Based Software Engineering, CBSE ’06, pages 336–343, Berlin,
Heidelberg, 2006. Springer-Verlag. doi:10.1007/11783565_
25.

[KJ04] Michael Kircher and Prashant Jain. Pattern-Oriented Software
Architecture: Patterns for Resource Management. John Wiley
& Sons, Inc., 2004.

[KKR11] Anne Koziolek, Heiko Koziolek, and Ralf Reussner. Per-
Opteryx: Automated Application of Tactics in Multi-
Objective Software Architecture Optimization. In Proceed-
ings of the Joint ACM SIGSOFT Conference – QoSA and ACM
SIGSOFT Symposium – ISARCS on Quality of Software Archi-
tectures – QoSA and Architecting Critical Systems – ISARCS,
QoSA-ISARCS ’11, pages 33–42, New York, NY, USA, 2011.
ACM. doi:10.1145/2000259.2000267.

[Kle08] Anneke Kleppe. Software Language Engineering: Creating
Domain-Speci�c Languages Using Metamodels. Addison-
Wesley Professional, 1st edition, 2008.

501

Bibliography

http://nbn-resolving.org/urn:nbn:de:swb:90-308043
http://nbn-resolving.org/urn:nbn:de:swb:90-308043
http://dx.doi.org/10.1109/CMPSAC.2003.1245379
http://dx.doi.org/10.1109/CMPSAC.2003.1245379
http://dx.doi.org/10.1016/j.jss.2010.01.049
http://dx.doi.org/10.1016/j.jss.2010.01.049
http://dx.doi.org/10.1007/11783565_25
http://dx.doi.org/10.1007/11783565_25
http://dx.doi.org/10.1145/2000259.2000267

[KLvV06] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Build-
ing Up and Reasoning About Architectural Knowledge. In
Proceedings of the Second International Conference on Quality
of Software Architectures, QoSA ’06, pages 43–58, Berlin, Hei-
delberg, 2006. Springer-Verlag. doi:10.1007/11921998_8.

[KM98] Je� Kramer and Je� Magee. Analysing Dynamic Change in
Software Architectures: A Case study. In Proceedings of the
Fourth International Conference on Con�gurable Distributed
Systems, 1998, pages 91–100, May 1998. doi:10.1109/CDS.

1998.675762.

[Kom98] Andrew Kompanek. Modeling a System with Acme.
School of Computer Science, Carnegie Mellon Univer-
sity, http://acme.able.cs.cmu.edu/html/WORKING-%

20Modeling%20a%20System%20with%20Acme.html [Visited
on 30/07/17], 1998.

[Koz08] Heiko Koziolek. Parameter Dependencies for Reusable Per-
formance Speci�cations of Software Components. PhD thesis,
University of Oldenburg, Germany, March 2008.

[Koz10] Heiko Koziolek. Performance Evaluation of Component-
Based Software Systems: A Survey. Performance Evaluation,
67(8):634–658, 2010. Special Issue on Software and Perfor-
mance. doi:10.1016/j.peva.2009.07.007.

[Koz11a] Anne Koziolek. Automated Improvement of Software Architec-
tureModels for Performance and Other Quality Attributes. PhD
thesis, Institut für Programmstrukturen und Datenorgani-
sation (IPD), Karlsruher Institut für Technologie, Karlsruhe,
Germany, 2011. URL: http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000024955.

[Koz11b] Heiko Koziolek. The SPOSAD Architectural Style for Multi-
Tenant Software Applications. In Proceedings of the 2011
Ninth Working IEEE/IFIP Conference on Software Architecture,
WICSA ’11, pages 320–327, Washington, DC, USA, 2011. IEEE
Computer Society. doi:10.1109/WICSA.2011.50.

502

Bibliography

http://dx.doi.org/10.1007/11921998_8
http://dx.doi.org/10.1109/CDS.1998.675762
http://dx.doi.org/10.1109/CDS.1998.675762
http://acme.able.cs.cmu.edu/html/WORKING-%20Modeling%20a%20System%20with%20Acme.html
http://acme.able.cs.cmu.edu/html/WORKING-%20Modeling%20a%20System%20with%20Acme.html
http://dx.doi.org/10.1016/j.peva.2009.07.007
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000024955
http://dx.doi.org/10.1109/WICSA.2011.50

[KPP06] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack.
Model Comparison: A Foundation for Model Composition
and Model Transformation Testing. In Proceedings of the 2006
International Workshop on Global Integrated Model Manage-
ment, GaMMa ’06, pages 13–20, New York, NY, USA, 2006.
ACM. doi:10.1145/1138304.1138308.

[Kri98] Anders Kristensen. Template Resolution in XML/HTML.
Comput. Netw. ISDN Syst., 30(1-7):239–249, April 1998. doi:
10.1016/S0169-7552(98)00023-3.

[Kru95] Philippe Kruchten. Mommy, Where do Software Architec-
tures Come From? In Proceedings of the 1st International
Workshop on Architectures for Software Systems, IWASS1,
1995.

[KSBH12] Heiko Koziolek, Bastian Schlich, Ste�en Becker, and
Michael Hauck. Performance and Reliability Prediction
for Evolving Service-Oriented Software Systems. Empiri-
cal Software Engineering, pages 1–45, 2012. doi:10.1007/

s10664-012-9213-0.

[Küh06] Thomas Kühne. Matters of (Meta-)Modeling. Software
and System Modeling, 5(4):369–385, 2006. doi:10.1007/

s10270-006-0017-9.

[LCM06] Christian Lange, Michel Chaudron, and Johan Muskens. In
Practice: UML Software Architecture and Design Description.
IEEE Softw., 23(2):40–46, March 2006. doi:10.1109/MS.2006.
50.

[LK15] Michael Langhammer and Klaus Krogmann. A Co-
evolution Approach for Source Code and Component-
Based Architecture Models. In Proceedings of the 17th
Workshop of Software-Reengineering and -Evolution, vol-
ume 4. Gesellschaft für Informatik, May 2015. URL:
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/

wsre2015/WSRE2015-Proceeedings-preliminary.pdf#

page=40.

503

Bibliography

http://dx.doi.org/10.1145/1138304.1138308
http://dx.doi.org/10.1016/S0169-7552(98)00023-3
http://dx.doi.org/10.1016/S0169-7552(98)00023-3
http://dx.doi.org/10.1007/s10664-012-9213-0
http://dx.doi.org/10.1007/s10664-012-9213-0
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1109/MS.2006.50
http://dx.doi.org/10.1109/MS.2006.50
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeedings-preliminary.pdf#page=40
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeedings-preliminary.pdf#page=40
http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsre2015/WSRE2015-Proceeedings-preliminary.pdf#page=40

[LKA+95] David C. Luckham, John J. Kenney, Larry M. Augustin, James
Vera, Doug Bryan, and Walter Mann. Speci�cation and Anal-
ysis of System Architecture Using Rapide. IEEE Trans. Softw.
Eng., 21(4):336–355, April 1995. doi:10.1109/32.385971.

[Loa] Minimal Example for the Loadbalancing
AT. https://github.com/PalladioSimulator/

Architectural-Templates/tree/master/org.

palladiosimulator.architecturaltemplates.examples.

staticresourcecontainer [Visited on 30/07/17].

[LR10] Kung-Kiu Lau and Tauseef Rana. A Taxonomy of Software
Composition Mechanisms. In Proceedings of the 2010 36th
EUROMICRO Conference on Software Engineering and Ad-
vanced Applications, SEAA ’10, pages 102–110, Washington,
DC, USA, 2010. IEEE Computer Society. doi:10.1109/SEAA.
2010.36.

[LTM+12] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina,
Lee Badger, and Dawn Leaf. NIST Cloud Computing Refer-
ence Architecture: Recommendations of the National Institute
of Standards and Technology (Special Publication 500-292).
CreateSpace Independent Publishing Platform, USA, 2012.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi
Cabot. EMF Pro�les: A Lightweight Extension Approach
for EMF Models. Journal of Object Technology, 11(1):8:1–29,
April 2012. doi:10.5381/jot.2012.11.1.a8.

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham,
and Kenneth C. Sevcik. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[Mar04] Moreno Marzolla. Simulation-Based Performance Modeling
of UML Software Architectures. PhD thesis, Università Ca’
Foscari di Venezia, February 2004.

[Mar07] Anne Martens. Empirical Validation of the Model-
Driven Performance Prediction Approach Palladio. Mas-
ter’s thesis, Carl-von-Ossietzky Universität Oldenburg,

504

Bibliography

http://dx.doi.org/10.1109/32.385971
https://github.com/PalladioSimulator/Architectural-Templates/tree/master/org.palladiosimulator.architecturaltemplates.examples.staticresourcecontainer
https://github.com/PalladioSimulator/Architectural-Templates/tree/master/org.palladiosimulator.architecturaltemplates.examples.staticresourcecontainer
https://github.com/PalladioSimulator/Architectural-Templates/tree/master/org.palladiosimulator.architecturaltemplates.examples.staticresourcecontainer
https://github.com/PalladioSimulator/Architectural-Templates/tree/master/org.palladiosimulator.architecturaltemplates.examples.staticresourcecontainer
http://dx.doi.org/10.1109/SEAA.2010.36
http://dx.doi.org/10.1109/SEAA.2010.36
http://dx.doi.org/10.5381/jot.2012.11.1.a8

2007. URL: http://sdqweb.ipd.kit.edu/publications/

pdfs/martens2007a-complete.pdf.

[MCF+95] Richard J. Mayer, John W. Crump, Ronald Fernandes, Arthur
Keen, and Michael K. Painter. Information Integration for
Concurrent Engineering (IICE) Compendium of Methods
Report. Technical report, DTIC Document, 1995.

[MDA04] Daniel Menascé, Lawrence W. Dowdy, and Virgilio Almeida.
Performance by Design: Computer Capacity Planning By Ex-
ample. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction (2nd
Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[MG11] Peter Mell and Timothy Grance. The NIST De�nition of
Cloud Computing. NIST Special Publication, 145(6):7–7, 2011.

[MGMS11] Daniel Menascé, Hassan Gomaa, Sam Malek, and João Sousa.
SASSY: A Framework for Self-Architecting Service-Oriented
Systems. IEEE Software, 28(6):78–85, November 2011. doi:
10.1109/MS.2011.22.

[MHC00] Richard Monson-Haefel and David Chappell. Java Message
Service. O’Reilly & Associates, Inc., Sebastopol, CA, USA,
2000.

[MHG01] David Maplesden, John Hosking, and John Grundy. A Visual
Language for Design Pattern Modelling and Instantiation.
In Proceedings IEEE Symposia on Human-Centric Computing
Languages and Environments (Cat. No.01TH8587), pages 338–
339, 2001. doi:10.1109/HCC.2001.995285.

[MHG02] David Maplesden, John Hosking, and John Grundy. Design
Pattern Modelling and Instantiation Using DPML. In Proceed-
ings of the Fortieth International Conference on Tools Paci�c:
Objects for Internet, Mobile and Embedded Applications, CR-
PIT ’02, pages 3–11, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

505

Bibliography

http://sdqweb.ipd.kit.edu/publications/pdfs/martens2007a-complete.pdf
http://sdqweb.ipd.kit.edu/publications/pdfs/martens2007a-complete.pdf
http://dx.doi.org/10.1109/MS.2011.22
http://dx.doi.org/10.1109/MS.2011.22
http://dx.doi.org/10.1109/HCC.2001.995285

[MKBJ08] Brice Morin, Jacques Klein, Olivier Barais, and Jean-Marc
Jézéquel. A Generic Weaver for Supporting Product Lines.
In Proceedings of the 13th International Workshop on Early
Aspects, EA ’08, pages 11–18, New York, NY, USA, 2008. ACM.
doi:10.1145/1370828.1370832.

[MKPR11] Anne Martens, Heiko Koziolek, Lutz Prechelt, and Ralf
Reussner. From Monolithic to Component-Based Perfor-
mance Evaluation of Software Architectures. Empirical
Softw. Eng., 16(5):587–622, October 2011. doi:10.1007/

s10664-010-9142-8.

[Moh12] Farmeena Khan Mohd Ehmer Khan. A Comparative Study
of White Box, Black Box and Grey Box Testing Techniques.
International Journal of Advanced Computer Science and Ap-
plications (IJACSA), 3(6), 2012. URL: http://ijacsa.thesai.
org/.

[Mon99] Robert Thomas Monroe. Rapid Development of Custom Soft-
ware Architecture Design Environments. PhD thesis, Pitts-
burgh, PA, USA, 1999.

[MPW15] Nariman Mani, Dorina C. Petriu, and C. Murray Woodside.
Exploring SOA Pattern Performance using Coupled Trans-
formations and Performance Models. In Haiping Xu, editor,
The 27th International Conference on Software Engineering
and Knowledge Engineering, SEKE 2015, Wyndham Pittsburgh
University Center, Pittsburgh, PA, USA, July 6-8, 2015, pages
552–557. KSI Research Inc. and Knowledge Systems Institute
Graduate School, 2015. URL: http://dx.doi.org/10.18293/
SEKE2015-140, doi:10.18293/SEKE2015-140.

[MR97] Mark Moriconi and Robert A. Riemenschneider. Introduction
to SADL 1.0: A Language for Specifying Software Architec-
ture Hierarchies. Technical Report SRI-CSL-97-01, Computer
Science Laboratory, SRI International, March 1997.

[MRW77] Jim A. Mccall, Paul K. Richards, and Gene F. Walters. Factors
in Software Quality, volume I, II, III. Rome Air Development
Center Reports, 1977.

506

Bibliography

http://dx.doi.org/10.1145/1370828.1370832
http://dx.doi.org/10.1007/s10664-010-9142-8
http://dx.doi.org/10.1007/s10664-010-9142-8
http://ijacsa.thesai.org/
http://ijacsa.thesai.org/
http://dx.doi.org/10.18293/SEKE2015-140
http://dx.doi.org/10.18293/SEKE2015-140
http://dx.doi.org/10.18293/SEKE2015-140

[MSMG10] Daniel A. Menascé, João P. Sousa, Sam Malek, and Hassan
Gomaa. QoS Architectural Patterns for Self-architecting
Software Systems. In Proceedings of the 7th International
Conference on Autonomic Computing, ICAC ’10, pages 195–
204, New York, NY, USA, 2010. ACM. doi:10.1145/1809049.
1809084.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classi�cation
and Comparison Framework for Software Architecture De-
scription Languages. IEEE Trans. Softw. Eng., 26(1):70–93,
January 2000. doi:10.1109/32.825767.

[MWR14] Connie Morrison, Dolores Wells, and Lisa Ru�olo. Computer
Literacy BASICS: A Comprehensive Guide to IC3. Cengage
Learning, 5th edition, 2014.

[New15] Sam Newman. Building Microservices. O’Reilly Media, Inc.,
1st edition, 2015.

[Obj11] Object Management Group (OMG). OMG Uni�ed Mod-
eling Language (OMG UML), Superstructure Speci�cation
(Version 2.4.1). Technical Report OMG Document Number:
formal/2011-08-06, Object Management Group, August 2011.

[Obj12] Object Management Group (OMG). Common Object Request
Broker Architecture (Version 3.3). Technical report, Object
Management Group, http://www.omg.org/spec/CORBA/3.3/,
November 2012.

[Obj14] Object Management Group (OMG). Object Constraint Lan-
guage (OCL) Speci�cation (Version 2.4). Technical Report
OMG Document Number: formal/2014-02-03, Object Man-
agement Group, February 2014. URL: http://www.omg.org/
spec/OCL/2.4.

[Obj15] Object Management Group (OMG). OMG Meta Object Facil-
ity (MOF) Core Speci�cation (Version 2.5). Technical Report
OMG Document Number: formal/2015-06-05, Object Man-
agement Group, http://www.omg.org/spec/MOF/2.5/, June
2015.

507

Bibliography

http://dx.doi.org/10.1145/1809049.1809084
http://dx.doi.org/10.1145/1809049.1809084
http://dx.doi.org/10.1109/32.825767
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4

[Obj16] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Query/View/Transformation Speci�cation – Version
1.3. June 2016. URL: http://www.omg.org/spec/QVT/1.3.

[OGW+14] Per-Olov Östberg, Henning Groenda, Stefan Wesner, James
Byrne, Dimitrios S. Nikolopoulos, Craig Sheridan, Jakub
Krzywda, Ahmed Ali-Eldin, Johan Tordsson, Erik Elmroth,
Christian Stier, Klaus Krogmann, Jorg Domaschka, Christo-
pher B. Hauser, Peter J. Byrne, Sergej Svorobej, Barry Mccol-
lum, Zafeirios Papazachos, Darren Whigham, Stephan Rüth,
and Dragana Paurevic. The CACTOS Vision of Context-
Aware Cloud Topology Optimization and Simulation. In 6th
IEEE International Conference on Cloud Computing Technol-
ogy and Science (CloudCom), 2014, pages 26–31, December
2014. doi:10.1109/CloudCom.2014.62.

[OVDPB01a] James Odell, H. Van Dyke Parunak, and Bernhard Bauer.
Representing Agent Interaction Protocols in UML. In First
International Workshop, AOSE 2000 on Agent-Oriented Soft-
ware Engineering, pages 121–140, Secaucus, NJ, USA, 2001.
Springer-Verlag New York, Inc. URL: http://dl.acm.org/
citation.cfm?id=370834.370852.

[OVDPB01b] James Odell, H. Van Dyke Parunak, and Bernhard Bauer.
Representing Agent Interaction Protocols in UML. In First
International Workshop, AOSE 2000 on Agent-Oriented Soft-
ware Engineering, pages 121–140, Secaucus, NJ, USA, 2001.
Springer-Verlag New York, Inc. URL: http://dl.acm.org/
citation.cfm?id=370834.370852.

[Oxf16a] Oxford Dictionaries. “Blueprint” De�nition. Oxford Uni-
versity Press, 2016. URL: http://www.oxforddictionaries.
com/definition/blueprint [Visited on 30/07/17].

[Oxf16b] Oxford Dictionaries. “Template” De�nition. Oxford Uni-
versity Press, 2016. URL: http://www.oxforddictionaries.
com/definition/template [Visited on 30/07/17].

[Pala] Sirius-Based Editors for Models of the Palladio Component
Model (PCM). https://github.com/PalladioSimulator/

Palladio-Editors-Sirius [Visited on 30/07/17].

508

Bibliography

http://www.omg.org/spec/QVT/1.3
http://dx.doi.org/10.1109/CloudCom.2014.62
http://dl.acm.org/citation.cfm?id=370834.370852
http://dl.acm.org/citation.cfm?id=370834.370852
http://dl.acm.org/citation.cfm?id=370834.370852
http://dl.acm.org/citation.cfm?id=370834.370852
http://www.oxforddictionaries.com/definition/blueprint
http://www.oxforddictionaries.com/definition/blueprint
http://www.oxforddictionaries.com/definition/template
http://www.oxforddictionaries.com/definition/template
https://github.com/PalladioSimulator/Palladio-Editors-Sirius
https://github.com/PalladioSimulator/Palladio-Editors-Sirius

[Palb] Palladio—The Software Quality People. Palladio Project
Wizard. https://sdqweb.ipd.kit.edu/wiki/Palladio_

Project_Wizard [Visited on 30/07/17].

[Palc] Palladio—The Software Quality People. Palladio Work-
�ow Engine. http://sdqweb.ipd.kit.edu/wiki/Palladio_
Workflow_Engine [Visited on 30/07/17].

[Pan10] Rajesh K. Pandey. Architectural Description Languages
(ADLs) vs UML: A Review. SIGSOFT Softw. Eng. Notes, 35(3):1–
5, May 2010. doi:10.1145/1764810.1764828.

[Par04] Terence John Parr. Enforcing Strict Model-View Separa-
tion in Template Engines. In Proceedings of the 13th Inter-
national Conference on World Wide Web, WWW ’04, pages
224–233, New York, NY, USA, 2004. ACM. doi:10.1145/

988672.988703.

[Pera] PerOpteryx Integration: Actual AT Parameters.
https://svnserver.informatik.kit.edu/i43/svn/code/

Palladio/Addons/PerOpteryx/trunk/de.uka.ipd.sdq.pcm.

designdecision/; user: anonymous; password: anonymous
[Visited on 30/07/17].

[Perb] PerOpteryx Integration: Experiment Automa-
tion. https://svnserver.informatik.kit.edu/i43/

svn/code/Palladio/Addons/PerOpteryx/branches/

simulizarAnalysisDSE/de.uka.ipd.sdq.dsexplore.

analysis.experimentautomation/; user: anonymous;
password: anonymous [Visited on 30/07/17].

[PGH07] Claus Pahl, Simon Giesecke, and Wilhelm Hasselbring.
An Ontology-Based Approach for Modelling Architectural
Styles. In Flávio Oquendo, editor, First European Confer-
ence on Software Architecture, ECSA 2007, Aranjuez, Spain,
September 24-26, 2007, Proceedings, volume 4758 of Lec-
ture Notes in Computer Science, pages 60–75. Springer, 2007.
doi:10.1007/978-3-540-75132-8_6.

[Pre01] Lutz Prechelt. Kontrollierte Experimente in Der Softwaretech-
nik: Potenzial Und Methodik. Springer, 2001.

509

Bibliography

https://sdqweb.ipd.kit.edu/wiki/Palladio_Project_Wizard
https://sdqweb.ipd.kit.edu/wiki/Palladio_Project_Wizard
http://sdqweb.ipd.kit.edu/wiki/Palladio_Workflow_Engine
http://sdqweb.ipd.kit.edu/wiki/Palladio_Workflow_Engine
http://dx.doi.org/10.1145/1764810.1764828
http://dx.doi.org/10.1145/988672.988703
http://dx.doi.org/10.1145/988672.988703
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/trunk/de.uka.ipd.sdq.pcm.designdecision/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/trunk/de.uka.ipd.sdq.pcm.designdecision/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/trunk/de.uka.ipd.sdq.pcm.designdecision/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/branches/simulizarAnalysisDSE/de.uka.ipd.sdq.dsexplore.analysis.experimentautomation/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/branches/simulizarAnalysisDSE/de.uka.ipd.sdq.dsexplore.analysis.experimentautomation/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/branches/simulizarAnalysisDSE/de.uka.ipd.sdq.dsexplore.analysis.experimentautomation/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Addons/PerOpteryx/branches/simulizarAnalysisDSE/de.uka.ipd.sdq.dsexplore.analysis.experimentautomation/
http://dx.doi.org/10.1007/978-3-540-75132-8_6

[PW00] Dorina C. Petriu and Xin Wang. Deriving Software Perfor-
mance Models from Architectural Patterns by Graph Transfor-
mations, pages 475–488. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2000. doi:10.1007/978-3-540-46464-8_33.

[Rat13] Christoph Rathfelder. Modelling Event-Based Interactions
in Component-Based Architectures for Quantitative System
Evaluation. PhD thesis, Karlsruhe Institute of Technology,
Karlsruhe, Germany, 2013. URL: http://www.ksp.kit.edu/
shop/isbn2shopid.php?isbn=978-3-86644-969-5.

[RBKR12] Christoph Rathfelder, Stefan Becker, Klaus Krogmann, and
Ralf Reussner. Workload-Aware System Monitoring Using
Performance Predictions Applied to a Large-Scale E-Mail
System. In WICSA/ECSA ’12, pages 31–40, August 2012.
doi:10.1109/WICSA-ECSA.212.11.

[RH09] Per Runeson and Martin Höst. Guidelines for Conducting
and Reporting Case Study Research in Software Engineering.
Empirical Softw. Eng., 14(2):131–164, April 2009. doi:10.

1007/s10664-008-9102-8.

[RH11] John Rhoton and Risto Haukioja. Cloud Computing Archi-
tected: Solution Design Handbook. Recursive Press, 2011.

[Rie03] Dirk Riehle. The Perfection of Informality: Tools, Templates,
and Patterns. Cutter IT Journal, 16(9):22–26, 2003.

[Rog16] Igor Rogic. Scalability and Elasticity Prediction of Self-
Adaptive Systems Using SimuLizar and Architectural Tem-
plates: Industrial Case Study. Master’s thesis, Software Engi-
neering Group, Heinz Nixdorf Institute, Paderborn Univer-
sity, August 2016.

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and
Ed Merks. EMF: Eclipse Modeling Framework 2.0. Addison-
Wesley Professional, 2nd edition, 2009.

[SCD12] Gehan M. K. Selim, James R. Cordy, and Juergen Dingel.
Model Transformation Testing: The State of the Art. In
Proceedings of the First Workshop on the Analysis of Model

510

Bibliography

http://dx.doi.org/10.1007/978-3-540-46464-8_33
http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn=978-3-86644-969-5
http://www.ksp.kit.edu/shop/isbn2shopid.php?isbn=978-3-86644-969-5
http://dx.doi.org/10.1109/WICSA-ECSA.212.11
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8

Transformations, AMT ’12, pages 21–26, New York, NY, USA,
2012. ACM. doi:10.1145/2432497.2432502.

[SDAH08] Dag I. K. Sjøberg, Tore Dybå, Bente C. D. Anda, and Jo E.
Hannay. Building Theories in Software Engineering. InGuide
to Advanced Empirical Software Engineering, pages 312–336.
Springer London, 2008. doi:10.1007/978-1-84800-044-5_
12.

[Sea99] Carolyn B. Seaman. Qualitative Methods in Empirical Studies
of Software Engineering. IEEE Trans. Softw. Eng., 25(4):557–
572, July 1999. doi:10.1109/32.799955.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley
Publishing Company, USA, 9th edition, 2010.

[Spi92] John Michael Spivey. The Z Notation: A Reference Manual.
Prentice Hall International (UK) Ltd., Hertfordshire, UK, UK,
1992.

[SS12] Priya Shanmuga and Rajesh M. Suresh. Software Archi-
tecture Evaluation Methods - A Survey. International Jour-
nal of Computer Applications, 49(16):19–26, July 2012. doi:
10.5120/7711-1107.

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture: Patterns
for Concurrent and Networked Objects. John Wiley & Sons,
Inc., New York, NY, USA, 2nd edition, 2000.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer
Verlag, Wien, 1973.

[Str13] Misha Strittmatter. Feedback-Driven Concurrency Improve-
ment and Re�nement of Performance Models. Diploma the-
sis, Karlsruhe Institute of Technology (KIT), Germany, March
2013.

[SW02] Connie U. Smith and Lloyd G. Williams. Performance So-
lutions: A Practical Guide to Creating Responsive, Scalable
Software. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA, 2002.

511

Bibliography

http://dx.doi.org/10.1145/2432497.2432502
http://dx.doi.org/10.1007/978-1-84800-044-5_12
http://dx.doi.org/10.1007/978-1-84800-044-5_12
http://dx.doi.org/10.1109/32.799955
http://dx.doi.org/10.5120/7711-1107
http://dx.doi.org/10.5120/7711-1107

[Szy02] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[TA05b] Je� Tyree and Art Akerman. Architecture Decisions: Demys-
tifying Architecture. IEEE Softw., 22(2):19–27, March 2005.
doi:10.1109/MS.2005.27.

[Tai07] Tou�k Taibi. Design Pattern Formalization Techniques. IGI
Global, Hershey, PA, USA, 2007.

[TAJ+10] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla,
and Muhammad Ali Babar. A Comparative Study of Architec-
ture Knowledge Management Tools. J. Syst. Softw., 83(3):352–
370, March 2010. doi:10.1016/j.jss.2009.08.032.

[TFS10a] Chouki Tibermacine, Régis Fleurquin, and Salah Sadou.
A Family of Languages for Architecture Constraint Spec-
i�cation. J. Syst. Softw., 83(5):815–831, May 2010. doi:

10.1016/j.jss.2009.11.736.

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy.
Software Architecture: Foundations, Theory, and Practice. Wi-
ley Publishing, 2009.

[Tra02] Transaction Processing Performance Council (TPC). TPC-
W Benchmark (Web Commerce) Speci�cation Version 1.8,
February 2002.

[Tri82] Kishar Shridharbhai Trivedi. Probability and Statistics with
Reliability, Queuing and Computer Science Applications. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1982.

[TSO12] Minh Tu Ton That, Salah Sadou, and Flavio Oquendo. Us-
ing Architectural Patterns to De�ne Architectural Deci-
sions. In Proceedings of the 2012 Joint Working IEEE/IFIP
Conference on Software Architecture and European Confer-
ence on Software Architecture, WICSA-ECSA ’12, pages 196–
200, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/WICSA-ECSA.212.28.

512

Bibliography

http://dx.doi.org/10.1109/MS.2005.27
http://dx.doi.org/10.1016/j.jss.2009.08.032
http://dx.doi.org/10.1016/j.jss.2009.11.736
http://dx.doi.org/10.1016/j.jss.2009.11.736
http://dx.doi.org/10.1109/WICSA-ECSA.212.28

[TSOB15] M.T.T. That, S. Sadou, F. Oquendo, and I. Borne. Preserv-
ing Architectural Pattern Composition Information Through
Explicit Merging Operators. Future Gener. Comput. Syst.,
47(C):97–112, June 2015. doi:10.1016/j.future.2014.09.

002.

[TTSOF16] Minh Tu Ton That, Salah Sadou, Flavio Oquendo, and
Régis Fleurquin. Preserving Architectural Decisions
Through Architectural Patterns. Automated Software En-
gineering, 23(3):427–467, September 2016. doi:10.1007/

s10515-014-0172-0.

[VCC15] Gilles Vanwormhoudt, Olivier Caron, and Bernard Carré.
Aspectual templates in UML. Software & Systems Modeling,
pages 1–29, 2015. doi:10.1007/s10270-015-0463-3.

[VDGD05] Tom Verdickt, Bart Dhoedt, Frank Gielen, and Piet Demeester.
Automatic Inclusion of Middleware Performance Attributes
into Architectural UML Software Models. IEEE Trans. Softw.
Eng., 31(8):695–711, August 2005. doi:10.1109/TSE.2005.

88.

[vDHP+12] Markus von Detten, Christian Heinzemann, Marie C. Plate-
nius, Jan Rieke, Dietrich Travkin, and Stephan Hildebrandt.
Story Diagrams - Syntax and Semantics. Technical report,
Software Engineering Group, Heinz Nixdorf Institute, Uni-
versity of Paderborn, 2012.

[VJ02] David Vandevoorde and Nicolai M. Josuttis. C++ Templates.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

[Vli98] John Vlissides. Pattern Hatching: Design Patterns Applied.
Addison-Wesley Longman Ltd., Essex, UK, UK, 1998.

[vSB99] Rini van Solingen and Egon Berghout. The Goal/Question/-
Metric Method: A Practical Guide for Quality Improvement of
Software Development. McGraw-Hill, 1999.

[VSC06] Markus Völter, Thomas Stahl, and Krzysztof Czarnecki.
Model-Driven Software Development: Technology, Engineering,
Management. John Wiley & Sons, 2006.

513

Bibliography

http://dx.doi.org/10.1016/j.future.2014.09.002
http://dx.doi.org/10.1016/j.future.2014.09.002
http://dx.doi.org/10.1007/s10515-014-0172-0
http://dx.doi.org/10.1007/s10515-014-0172-0
http://dx.doi.org/10.1007/s10270-015-0463-3
http://dx.doi.org/10.1109/TSE.2005.88
http://dx.doi.org/10.1109/TSE.2005.88

[Whi09] Tom White. Hadoop: The De�nitive Guide. O’Reilly Media,
Inc., 1st edition, 2009.

[Wie13] Springer Automotive Media Wiesbaden. AUTOSAR —
The Worldwide Automotive Standard for E/E Systems.
ATZextra worldwide, 18(9):5–12, 2013. doi:10.1007/

s40111-013-0003-5.

[Wil12] Bill Wilder. Cloud Architecture Patterns: UsingMicrosoft Azure.
O’Reilly Media, 2012.

[WPS02] Murray Woodside, Dorina Petriu, and Khalid Siddiqui.
Performance-related Completions for Software Speci�ca-
tions. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 22–32, New York,
NY, USA, 2002. ACM. doi:10.1145/581339.581346.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Bjöorn Regnell, and Anders Wesslén. Experimentation in
Software Engineering: An Introduction. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

[WS03] Lloyd G. Williams and Connie U. Smith. Making the Business
Case for Software Performance Engineering. In CMG ’03,
December 7-12, 2003, Dallas, Texas, USA, pages 349–358, 2003.

[WSK+11] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel,
Werner Retschitzegger, Wieland Schwinger, and Elizabeth
Kapsammer. A Survey on UML-Based Aspect-Oriented De-
sign Modeling. ACMComput. Surv., 43(4):28:1–28:33, October
2011. doi:10.1145/1978802.1978807.

[ZCL14] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo.
Parameterizable Benchmarking Framework for Designing a
MapReduce Performance Model. Concurr. Comput. : Pract.
Exper., 26(12):2005–2026, August 2014. doi:10.1002/cpe.

3229.

514

Bibliography

http://dx.doi.org/10.1007/s40111-013-0003-5
http://dx.doi.org/10.1007/s40111-013-0003-5
http://dx.doi.org/10.1145/581339.581346
http://dx.doi.org/10.1145/1978802.1978807
http://dx.doi.org/10.1002/cpe.3229
http://dx.doi.org/10.1002/cpe.3229

Band 1	 Steffen Becker
	� Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
	 ISBN 978-3-86644-271-9

Band 2	 Heiko Koziolek
	� Parameter Dependencies for Reusable Performance

Specifications of Software Components.
	 ISBN 978-3-86644-272-6

Band 3	 Jens Happe
	� Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
	 ISBN 978-3-86644-381-5

Band 4	 Klaus Krogmann
	� Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
	 ISBN 978-3-86644-804-9

Band 5	 Michael Kuperberg
	� Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
	 ISBN 978-3-86644-741-7

Band 6	 Thomas Goldschmidt
	 View-Based Textual Modelling.
	 ISBN 978-3-86644-642-7

Band 7	 Anne Koziolek
	� Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
	 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner // ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8	 Lucia Happe
	� Configurable Software Performance Completions through

Higher-Order Model Transformations.
	 ISBN 978-3-86644-990-9

Band 9	 Franz Brosch
	� Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
	 ISBN 978-3-86644-859-9

Band 10	 Christoph Rathfelder
	� Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
	 ISBN 978-3-86644-969-5

Band 11	 Henning Groenda
	� Certifying Software Component

Performance Specifications.
	 ISBN 978-3-7315-0080-3

Band 12	 Dennis Westermann
	� Deriving Goal-oriented Performance Models

by Systematic Experimentation.
	 ISBN 978-3-7315-0165-7

Band 13	 Michael Hauck
	� Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
	 ISBN 978-3-7315-0138-1

Band 14	 Zoya Durdik
	� Architectural Design Decision Documentation through

Reuse of Design Patterns.
	 ISBN 978-3-7315-0292-0

Band 15	 Erik Burger
	� Flexible Views for View-based Model-driven Development.
	 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16	 Benjamin Klatt
	 Consolidation of Customized Product Copies
	 into Software Product Lines.
	 ISBN 978-3-7315-0368-2

Band 17	 Andreas Rentschler
	� Model Transformation Languages with

Modular Information Hiding.
	 ISBN 978-3-7315-0346-0

Band 18	 Omar-Qais Noorshams
	� Modeling and Prediction of I/O Performance

in Virtualized Environments.
	 ISBN 978-3-7315-0359-0

Band 19	 Johannes Josef Stammel
	� Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 	 ISBN 978-3-7315-0524-2

Band 20	 Alexander Wert
	 Performance Problem Diagnostics by Systematic Experimentation.
 	 ISBN 978-3-7315-0677-5

Band 21	 Christoph Heger
	� An Approach for Guiding Developers to

Performance and Scalability Solutions.
 	 ISBN 978-3-7315-0698-0

Band 22	 Fouad ben Nasr Omri
	� Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 	 ISBN 978-3-7315-0472-6

Band 23	 Michael Langhammer
	� Automated Coevolution of Source Code and

Software Architecture Models.
 	 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24	 Max Emanuel Kramer
	� Specification Languages for Preserving Consistency between

Models of Different Languages.
 	 ISBN 978-3-7315-0784-0

Band 25	 Sebastian Michael Lehrig
	� Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 	 ISBN 978-3-7315-0756-7

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Software architects plan the realization of software systems by assessing design
decisions on the basis of architectural models. Using these models as input, archi-
tectural analyses assess the impact of architects’ decisions on quality-of-service
properties. While the creation of suitable architectural models requires software
architects to apply complex architectural knowledge, for example, in the form
of established architectural styles and patterns, current architectural analyses
lack support for directly reusing such knowledge. This lack points to an unused
potential to make the work of software architects more effective and effi cient.

To use this potential, this work introduces the architectural template (AT)
method, an engineering method that makes design-time analyses of quality-
of-service properties of software systems more effective and effi cient. The AT
method allows to quantify quality-of-service properties on the basis of reus-
able modeling templates that capture recurring architectural knowledge. In
an extensive evaluation, this work extends the architectural analysis approach
Palladio with the AT method and successfully applies the AT method to three
case studies and a preliminary controlled experiment.

ISSN 1867-0067
ISBN 978-3-7315-0756-7
Gedruckt auf FSC-zertifi ziertem Papier

9 783731 507567

ISBN 978-3-7315-0756-7

	Abstract
	Abstract (in German)
	Acknowledgements
	1 Introduction
	1.1 Analyzing Quality-of-Service
	1.2 Exploiting Reusable Architectural Knowledge
	1.3 Requirements for Supporting Reusable Architectural Knowledge
	1.4 Problem Statement
	1.5 Solution Overview
	1.6 Scientific Contributions
	1.7 Thesis Structure

	2 Foundations
	2.1 Evaluation and Research Methods
	2.1.1 Goal/Question/Metric (GQM) Method
	2.1.2 Software Quality Models
	2.1.3 Data Collection Procedures
	2.1.4 Systematically Engineering Methods

	2.2 Software Architecture
	2.2.1 Software Components and their Types
	2.2.2 Service Level Objectives
	2.2.3 Design Decisions
	2.2.4 Reusable Architectural Knowledge

	2.3 Model-Driven Software Engineering
	2.3.1 Metamodeling
	2.3.2 Model Transformations
	2.3.3 Quality Assurance of Model Transformations via Testing
	2.3.4 Profiles and Stereotypes
	2.3.5 Ways to Describe Semantics of Metamodels
	2.3.6 Standards and Technologies

	2.4 Templates
	2.4.1 Template Terms
	2.4.2 Template Examples
	2.4.3 Template Categories
	2.4.4 Template Characteristics

	2.5 Architectural Analyses of Quality-of-Service Properties
	2.5.1 Integration of Architectural Analyses in Development Processes
	2.5.2 Architectural Models with Quality-of-Service Attributes
	2.5.3 Palladio

	3 Example System: An Online Book Shop
	3.1 Engineer Requirements of the Book Shop
	3.1.1 The Book Shop's Usage Model
	3.1.2 The Book Shop's Service Level Objectives

	3.2 Specify Architectural Model of the Book Shop
	3.2.1 The Book Shop's Repository Model
	3.2.2 The Book Shop's System Model
	3.2.3 The Book Shop's Architectural Model
	3.2.4 The Book Shop's Applications of Architectural Templates
	3.2.5 The Book Shop's Validation of Architectural Template Constraints

	3.3 Conduct Architectural Analysis of the Book Shop
	3.4 Discussion of the Book Shop Example

	4 The Architectural Template Method
	4.1 Architectural Template Processes
	4.1.1 Architectural Template Application
	4.1.2 Architectural Template Analysis Integration
	4.1.3 Architectural Template Specification

	4.2 Architectural Template Language
	4.2.1 Classification of Architectural Templates
	4.2.2 Formalization of Types and Instances
	4.2.3 Intension of the Architectural Template Language
	4.2.4 Technical Realization of Types and Instances
	4.2.5 The Architectural Template Metamodel

	4.3 Architectural Template Tooling
	4.4 Extensions of the Architectural Template Method
	4.4.1 Reuse Mechanism for AT Specification
	4.4.2 Optimization of Actual AT Parameters

	4.5 Assumptions and Limitations of the Architectural Template Method

	5 Evaluation
	5.1 Related Studies
	5.1.1 Related Case Studies
	5.1.2 Related Controlled Experiments

	5.2 Evaluation Design
	5.2.1 Research Questions
	5.2.2 Data Collection Procedure(s)
	5.2.3 Analysis Procedure(s)
	5.2.4 Validity Procedure(s)

	5.3 Case Studies
	5.3.1 Case Study: CloudStore
	5.3.2 Case Study: WordCount
	5.3.3 Case Study: Znn.com
	5.3.4 Further Case Studies

	5.4 Controlled Experiment
	5.4.1 Controlled Experiment Design
	5.4.2 Summary of Preliminary Lessons Learned

	5.5 Evaluation of AT Method Extensions
	5.5.1 Evaluation of the Reuse Mechanism for AT Specification
	5.5.2 Evaluation of the Optimization of Actual AT Parameters

	5.6 Lessons Learned
	5.6.1 Summary of Answers to Research Questions
	5.6.2 Summary of Threats to Validity
	5.6.3 Discussion of Generalizability

	6 Related Work
	6.1 Architectural Knowledge Management
	6.1.1 ADDSS
	6.1.2 Archium
	6.1.3 PAKME
	6.1.4 ADMD3
	6.1.5 Discussion of Architectural Knowledge Management

	6.2 Architectural Knowledge in Architectural Description Languages
	6.2.1 Acme
	6.2.2 Aesop
	6.2.3 Rapide
	6.2.4 SADL
	6.2.5 Wright
	6.2.6 UML
	6.2.7 Discussion of Architectural Description Languages

	6.3 Architectural Knowledge in the Pattern Community
	6.3.1 POSA
	6.3.2 DPML
	6.3.3 RBML
	6.3.4 COMLAN
	6.3.5 PMF
	6.3.6 Discussion of Approaches in the Pattern Community

	6.4 Architectural Knowledge in Architectural Analyses
	6.4.1 Knowledge-Specific Generation of Analysis Models
	6.4.2 Knowledge Captured via Completions
	6.4.3 SASSY
	6.4.4 Discussion of Architectural Analyses

	6.5 Feature Model Compiled from Related Works
	6.5.1 Features of Selection Mechanisms
	6.5.2 Features of Capturing Mechanisms
	6.5.3 Features of Application Mechanisms

	6.6 Classification of Related Works
	6.7 Discussion of Related Works

	7 Conclusion
	7.1 Summary
	7.1.1 Summary: The AT Method
	7.1.2 Summary: Evaluation of the AT Method
	7.1.3 Summary: Extensions of the AT Method
	7.1.4 Summary: Classification Schema and Related Works

	7.2 Assumptions and Limitations
	7.3 Future Work
	7.3.1 Additional Features for Software Architects
	7.3.2 Additional Features for AT Engineers
	7.3.3 Further Empirical Evaluations
	7.3.4 Missing Features Within Architectural Analyses

	A Feature Models
	B AT Tooling: Reference Implementation
	B.1 AT Application Support
	B.1.1 Initializing Palladio Projects with ATs
	B.1.2 Applying ATs to Palladio Models

	B.2 AT Integration Support
	B.3 AT Specification Support
	B.3.1 Integrating New Metrics
	B.3.2 Creating AT Catalogs
	B.3.3 Creating Profiles
	B.3.4 Creating Completions
	B.3.5 Testing Completions

	C Case Study Reports
	C.1 Case Study Report: CloudStore
	C.1.1 CloudStore
	C.1.2 Background: Cloud Computing
	C.1.3 CloudStore: Case Study Design
	C.1.4 CloudStore: Results

	C.2 Case Study Report: WordCount
	C.2.1 WordCount and Hadoop MapReduce
	C.2.2 WordCount: Case Study Design
	C.2.3 WordCount: Results

	C.3 Case Study Report: Znn.com
	C.3.1 Znn.com
	C.3.2 Znn.com: Case Study Design
	C.3.3 Znn.com: Results

	D Controlled Experiment: Material
	D.1 Installation Guide for AT Tooling
	D.2 Installation Guide for SimuLizar
	D.3 Workshop Document
	D.4 CloudStore Description
	D.5 Task description for the Treatment Group
	D.6 Task description for the Control Group

	E Controlled Experiment: Report
	E.1 Controlled Experiment: Execution
	E.2 Controlled Experiment: Analysis
	E.3 Controlled Experiment: Interpretation
	E.4 Controlled Experiment: Evaluation of Validity

	Bibliography
	Own Publications (Cited)
	Own Publications (Uncited)
	Supervised Theses (Cited)
	Cited Literature

