KIT | KIT-Bibliothek | Impressum | Datenschutz

Individual Human Behavior Identification Using an Inverse Reinforcement Learning Method

Inga, Jairo; Köpf, Florian; Flad, Michael; Hohmann, Sören

Abstract (englisch):

Shared control techniques have a great potential to create synergies in human-machine interaction for efficient and safe applications. However, an optimal interaction requires the machine to consider the individual behavior of the human partner. A widespread approach for modeling human behavior is given by optimal control theory, where the movement trajectories of a human arise from an optimized cost function. The aim of the identification is thus to determine parameters of a cost function which explains observed human motion. The central thesis of this paper is that individual cost function parameters which describe specific behavior can be determined by means of Inverse Reinforcement Learning. We show the applicability of the approach with a tracking control task example. The experiment consists in following a reference trajectory by means of a steering wheel. The study confirms that optimal control is suitable for modeling individual human behavior and demonstrates the suitability of Inverse Reinforcement Learning in order to determine the cost function parameters which explain measured data.


Postprint §
DOI: 10.5445/IR/1000079779
Veröffentlicht am 28.03.2019
Originalveröffentlichung
DOI: 10.1109/SMC.2017.8122585
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Regelungs- und Steuerungssysteme (IRS)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 10.2017
Sprache Englisch
Identifikator ISBN: 978-1-5386-1645-1
urn:nbn:de:swb:90-797799
KITopen-ID: 1000079779
Erschienen in IEEE International Conference on Systems, Man and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 99–104
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page