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We study a boundary value problem for (3 + 1)-D weakly hyperbolic equations of Keldysh type (problem PK). The Keldysh-type
equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not
well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter
in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly
defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It
is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the
equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point.
There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence
of a generalized solution with fixed order of singularity.

In memory of Professor Cathleen Morawetz (1923–2017)

1. Statement of the Problem

For 𝑚 ∈ R, 0 < 𝑚 < 2, we consider the equation
𝐿𝑚 [𝑢] ≡ 𝑢𝑥1𝑥1

+ 𝑢𝑥2𝑥2
+ 𝑢𝑥3𝑥3

− (𝑡𝑚𝑢𝑡)𝑡 = 𝑓 (𝑥, 𝑡) (1)

in the domain

Ω𝑚 fl {(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, 22 − 𝑚𝑡(2−𝑚)/2 < |𝑥| < 1
− 22 − 𝑚𝑡(2−𝑚)/2} ,

(2)

where (𝑥, 𝑡) fl (𝑥1, 𝑥2, 𝑥3, 𝑡) ∈ R4, |𝑥| = √𝑥2
1 + 𝑥2

2 + 𝑥2
3 and𝑡0 = ((2 − 𝑚)/4)2/(2−𝑚).

The region Ω𝑚 (see Figure 1) is bounded by the ball Σ0 fl{(𝑥, 𝑡): 𝑡 = 0, |𝑥| < 1} centered at the origin 𝑂 = (0, 0, 0, 0)
and by two characteristic surfaces of (1):

Σ𝑚
1 fl {(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, |𝑥| = 1 − 22 − 𝑚𝑡(2−𝑚)/2} ,

Σ𝑚
2 fl {(𝑥, 𝑡) : 0 < 𝑡 < 𝑡0, |𝑥| = 22 − 𝑚𝑡(2−𝑚)/2} .

(3)

In our case (0 < 𝑚 < 2), the hyperplane {𝑡 = 0} is
tangential to the characteristics Σ𝑚

1 and Σ𝑚
2 .

In the given domain, (1) is hyperbolic, with parabolic
power-type degeneration at Σ0 ⊂ {𝑡 = 0}; that is, we have
a weakly hyperbolic equation of Keldysh type.

We study the following boundary value problem.
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Figure 1: Region Ω𝑚.

Problem 𝑃𝐾. Find a solution to (1) in Ω𝑚 which satisfies the
boundary conditions:

𝑢|Σ𝑚1 = 0,
𝑡𝑚𝑢𝑡 󳨀→ 0 as 𝑡 󳨀→ +0. (4)

The adjoint problem to PK is as follows.

Problem 𝑃𝐾∗. Find a solution to the self-adjoint equation (1)
in Ω𝑚 which satisfies the boundary conditions:

𝑢|Σ𝑚2 = 0,
𝑡𝑚𝑢𝑡 󳨀→ 0 as 𝑡 󳨀→ +0. (5)

2. The Main Results

Problem PK is not well-posed. Actually, the adjoint homoge-
neous problem PK∗ has infinitely many classical solutions.

In order to give their exact representation, for 𝑘, 𝑛 ∈ N ∪{0}, let us introduce the following functions:
𝐸𝑛
𝑘,𝑚 (|𝑥| , 𝑡) fl 𝑘∑

𝑖=0

𝐴𝑘
𝑖 |𝑥|−𝑛+2𝑖−1

⋅ (|𝑥|2 − 4
(2 − 𝑚)2 𝑡2−𝑚)𝑛−𝑘−𝑖−𝑚/(4−2𝑚) ,

(6)

where

𝐴𝑘
𝑖

fl (−1)𝑖 (𝑘 − 𝑖 + 1)𝑖 (𝑛 − 𝑘 − 𝑖 + (4 − 3𝑚) / (4 − 2𝑚))𝑖𝑖! (𝑛 + 1/2 − 𝑖)𝑖
(7)

with (𝑎)𝑖 fl Γ(𝑎 + 𝑖)/Γ(𝑎), which gives (𝑎)𝑖 = 𝑎(𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 +𝑖 − 1), for 𝑖 ∈ N, and (𝑎)0 = 1.
Further, let us denote by 𝑌𝑠

𝑛(𝑥), 𝑛 ∈ N ∪ {0}, 𝑠 = 1, 2, . . . ,2𝑛 + 1 the three-dimensional spherical functions. They are
usually defined on the unit sphere 𝑆2 fl {𝑥 ∈ R3: |𝑥| = 1},
but for convenience of our discussions we extend them out

of 𝑆2 radially, keeping the same notation for the extended
functions:

𝑌𝑠
𝑛 (𝑥) fl 𝑌𝑠

𝑛 ( 𝑥|𝑥|) , 𝑥 ∈ R
3 \ {0} . (8)

In this paper, we prove the following lemma.

Lemma 1. For all 𝑚 ∈ R, 0 < 𝑚 < 2, 𝑘, 𝑛 ∈ N ∪ {0}, 𝑛 ≥𝑁(𝑚, 𝑘) and 𝑠 = 1, 2, . . . , 2𝑛 + 1, the functions
V𝑛,𝑠𝑘,𝑚 (𝑥, 𝑡) fl {{{

𝐸𝑛
𝑘,𝑚 (|𝑥| , 𝑡) 𝑌𝑠

𝑛 (𝑥) , (𝑥, 𝑡) ̸= 𝑂,
0, (𝑥, 𝑡) = 𝑂 (9)

are classical solutions of the homogeneous problem 𝑃𝐾∗.

It is easy to see that a necessary condition for the existence
of a classical solution of problem PK is the orthogonality
of the right-hand side function 𝑓(𝑥, 𝑡) to all these functions
V𝑛,𝑠𝑘,𝑚(𝑥, 𝑡). Indeed,

∫
Ω𝑚

V𝑛,𝑠𝑘,𝑚 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= ∫

Ω𝑚

V𝑛,𝑠𝑘,𝑚 (𝑥, 𝑡) 𝐿𝑚 [𝑢] (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= ∫

Ω𝑚

𝐿𝑚 [V𝑛,𝑠𝑘,𝑚] (𝑥, 𝑡) 𝑢 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0.
(10)

This means that an infinite number of orthogonality condi-
tions 𝜇𝑛,𝑠

𝑘,𝑚 = 0 with

𝜇𝑛,𝑠
𝑘,𝑚 fl ∫

Ω𝑚

V𝑛,𝑠𝑘,𝑚 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 (11)

must be fulfilled.
To avoid this we consider solutions to this problem in a

generalized sense. In the present paper we study the case 0 <
m < 4/3 and we use the following definition of a generalized
solution of problem PK.

Definition 2 (see [1]). We call a function 𝑢(𝑥, 𝑡) a generalized
solution of problem PK in Ω𝑚, 0 < 𝑚 < 4/3, for (1), if

(1) 𝑢, 𝑢𝑥𝑗
∈ 𝐶(Ω𝑚 \ 𝑂), 𝑗 = 1, 2, 3, 𝑢𝑡 ∈ 𝐶(Ω𝑚 \ Σ0);

(2) 𝑢|Σ𝑚1 = 0;
(3) for each 𝜀 ∈ (0, 1) there exists a constant 𝐶(𝜀) > 0,

such that
󵄨󵄨󵄨󵄨𝑢𝑡 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 ≤ 𝐶 (𝜀) 𝑡−3𝑚/4 in Ω𝑚 ∩ {|𝑥| > 𝜀} ; (12)

(4) the identity

∫
Ω𝑚

{𝑡𝑚𝑢𝑡V𝑡 − 𝑢𝑥1
V𝑥1 − 𝑢𝑥2

V𝑥2 − 𝑢𝑥3
V𝑥3

− 𝑓V} 𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑡
= 0

(13)
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holds for all V from

𝑉𝑚 fl {V (𝑥, 𝑡) : V ∈ 𝐶2 (Ω𝑚) , V|Σ𝑚2 = 0, V

≡ 0 in a neighborhood of 𝑂} . (14)

We mention that the inequality (12) restricts the general-
ized solution’s function space to a class which is smaller than
it is allowed by the second boundary condition in (4).

Note that Definition 2 allows the generalized solution to
have some singularity at the point𝑂.The results of the present
paper show that indeed there exist such singular solutions to
this problem.

In our recent paper [1], we proved the following results
on the existence and uniqueness of a generalized solution of
problem PK.

Theorem 3 (see [1]). If 𝑚 ∈ (0, 4/3), then there exists at most
one generalized solution of problem PK in Ω𝑚.

Theorem 4 (see [1]). Let 𝑚 ∈ (0, 4/3). Suppose that the right-
hand side function 𝑓(𝑥, 𝑡) is fixed as a “harmonic polynomial”
of order 𝑙 with 𝑙 ∈ N ∪ {0}:

𝑓 (𝑥, 𝑡) = 𝑙∑
𝑛=0

2𝑛+1∑
𝑠=1

𝑓𝑠
𝑛 (|𝑥| , 𝑡) 𝑌𝑠

𝑛 (𝑥) (15)

and 𝑓 ∈ 𝐶1(Ω𝑚). Then there exists an unique generalized
solution 𝑢(𝑥, 𝑡) of problem PK in Ω𝑚 and it has the following
form:

𝑢 (𝑥, 𝑡) = 𝑙∑
𝑛=0

2𝑛+1∑
𝑠=1

𝑢𝑠
𝑛 (|𝑥| , 𝑡) 𝑌𝑠

𝑛 (𝑥) . (16)

In this paper, we derive an asymptotic formula concer-
ning the behavior of the singularities of the generalized
solution.

Theorem 5. Let 𝑚 ∈ (0, 4/3) and the right-hand side function𝑓 ∈ 𝐶1(Ω𝑚) has the form (15). Then the unique generalized
solution 𝑢(𝑥, 𝑡) of problem PK on the characteristic surface

Σ𝑚
2 = {(𝑥, 𝑡) : 0 < |𝑥| < 12 , 𝑡 = 𝜏 (|𝑥|)
fl (2−1 (2 − 𝑚) |𝑥|)2/(2−𝑚)}

(17)

has the following expansion at point 𝑂:

𝑢 (𝑥, 𝜏 (|𝑥|)) = 𝑙∑
𝑝=0

𝐺𝑝 (𝑥) |𝑥|−𝑝−1 + 𝐺 (𝑥) |𝑥|−𝑚/(4−2𝑚) , (18)

where

(i) the function 𝐺 ∈ 𝐶1(0 < |𝑥| < 1/2) and satisfies the a
priori estimate

|𝐺 (𝑥)| ≤ 𝐶max
Ω𝑚

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨 (19)

with a constant 𝐶 > 0 independent of 𝑓;

(ii) the functions 𝐺𝑝(𝑥) have the following structure:
𝐺𝑝 (𝑥) = [(𝑙−𝑝)/2]∑

𝑘=0

2𝑝+4𝑘+1∑
𝑠=1

𝑐𝑝+2𝑘,𝑠𝑘,𝑚 𝜇𝑝+2𝑘,𝑠

𝑘,𝑚 𝑌𝑠
𝑝+2𝑘 (𝑥) ,

𝑝 = 0, 1, . . . , 𝑙,
(20)

where 𝑐𝑝+2𝑘,𝑠𝑘,𝑚 ̸= 0 are constants independent of 𝑓(𝑥, 𝑡).
Corollary 6. Suppose that at least one of the constants 𝜇𝑝+2𝑘,𝑠

𝑘,𝑚

in (20) is different from zero. Then for the corresponding
function 𝐺𝑝(𝑥) there exists a vector 𝛼 ∈ R3, |𝛼| = 1, such
that 𝐺𝑝(𝛼󰜚) → 𝑐𝑝,𝛼 = const ̸= 0 as 󰜚 → +0. This means that
the order of singularity of 𝑢(𝑥, 𝑡) will be no smaller than 𝑝 + 1.
Corollary 7. Let the conditions of Theorem 5 be fulfilled and
in addition 𝑓(𝑥, 𝑡) satisfies the orthogonality conditions:

∫
Ω𝑚

V𝑛,𝑠𝑘,𝑚 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0 (21)

for all 𝑛 = 0, 1, . . . , 𝑙; 𝑘 = 0, 1, . . . , [𝑛/2] and 𝑠 = 1, 2, . . . , 2𝑛 +1. Then the unique generalized solution 𝑢(𝑥, 𝑡) of problem PK
fulfills the a priori estimate on Σ𝑚

2 :

|𝑢 (𝑥, 𝜏 (|𝑥|))| ≤ 𝐶 (max
Ω𝑚

󵄨󵄨󵄨󵄨𝑓󵄨󵄨󵄨󵄨) |𝑥|−𝑚/(4−2𝑚) , (22)

where 𝐶 is a positive constant independent of 𝑓(𝑥, 𝑡).
Actually, Theorem 5 gives the asymptotic behavior of

the singular solutions of problem PK on Σ𝑚
2 . It clarifies the

significance of the orthogonality conditions (21): for fixed
indexes (𝑛, 𝑘, 𝑠), the corresponding condition (21) “controls”
one power-type singularity. We mention here that some of
the orthogonality conditions (21) involve functions V𝑛,𝑠𝑘,𝑚(𝑥, 𝑡),
which are not classical solutions of problem PK∗ (see the
proof of Lemma 1).

3. History of the Problem and Motivation

It is well-known that different boundary value problems
(BVPs) formixed-type equations have important applications
in transonic gas dynamics (see Bers [2], Morawetz [3],
and Kuz’min [4]). After a space symmetry assumption, the
transonic potential flows in fluid dynamics are described
in the hodograph plane by two-dimensional BVPs for the
Chaplygin equation:

𝐾 (𝑡) 𝑢𝑥𝑥 − 𝑢𝑡𝑡 = 0, (23)

where 𝑡𝐾(𝑡) > 0 for 𝑡 ̸= 0. The Chaplygin equation (23) is
elliptic in the subsonic half-plane 𝑡 < 0 and hyperbolic in the
supersonic half-plane 𝑡 > 0.

In particular, certain flows around airfoils are modeled
by the Guderley-Morawetz plane problem for (23) (see the
monograph of Bers [2]).Thedomain is bounded in the elliptic
half-plane by a smooth arc 𝜎 and in the hyperbolic half-
plane by four characteristic segments that start from the
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Figure 2: (a) Guderley-Morawetz domain. (b) Protter-Morawetz domain Ω̃.

three points 𝐴1, 𝐴2, and 𝐵 on the sonic line; see Figure 2(a).
The values of the function are prescribed along 𝜎 and along
the characteristics 𝐴1𝐶1 and 𝐴2𝐶2. The Guderley-Morawetz
problem is well studied. The existence of weak solutions and
the uniqueness of a strong solution in weighted Sobolev
spaces were obtained by Morawetz [5]. Lax and Phillips [6]
proved that the weak solutions are strong.

Results on another BVP for the Chaplygin equation in
mixed-type domain can be found in the recent paper of Liu
et al. [7].

An interesting multidimensional generalization of
Guderley-Morawetz problem was proposed by Protter [8, 9]
for the multidimensional Chaplygin equation:

𝐾 (𝑡) Δ 𝑥𝑢 − 𝑢𝑡𝑡 = 𝐾 (𝑡) 𝑁∑
𝑗=1

𝑢𝑥𝑗𝑥𝑗
− 𝑢𝑡𝑡 = 𝑓 (𝑥, 𝑡) , (24)

where 𝑥 = (𝑥1, . . . , 𝑥𝑁), 𝑁 ≥ 2. Protter considered (24) in
the Protter-Morawetz domain Ω̃, which could be obtained
by rotating of a symmetrical Guderley-Morawetz domain
around the axis of symmetry (see Figure 2). The boundary
data are prescribed on Γ in the elliptic part and on the
outer characteristic surface Σ̃1. On the characteristic surfaceΣ̃2, data are not imposed. Aziz and Schneider [10] obtained
uniqueness result for this problem, but even now there is
not a single example of a nontrivial solution to the multi-
dimensional problem (as, for example, in Lemma 1 above),
neither a general existence result is known. Many difficulties
and differences in comparison with the planar problems can
be illustrated as well by the related problems in the hyperbolic
part of the domain, also formulated by Protter.

Protter Problems. Find a solution of (24) with𝐾(𝑡) = 𝑡𝑚, 𝑚 ∈
R, 𝑚 ≥ 0 in the domain Ω̃∩{𝑡 > 0}with one of the following
boundary conditions:

𝑃1: 𝑢|Σ0∪Σ̃1 = 0,
𝑃2: 𝑢|Σ̃1 = 0, 𝑢𝑡

󵄨󵄨󵄨󵄨Σ0 = 0. (25)

These BVPs are multidimensional analogues of the Darboux-
Goursat plane problems for the Gellerstedt equation (𝑚 > 0)
or for the wave equation (𝑚 = 0). Garabedian [11] proved
the uniqueness of a classical solution to problem 𝑃1 for the
wave equation in R4. Popivanov and Schneider [12] showed
that both problems𝑃1 and𝑃2 are not well-posed in the frame
of classical solvability, since they have infinite-dimensional
cokernels (see also Khe [13]). In [12], they suggested to study
the Protter problems in the frame of generalized solutions
with possible big singularities. Today it is well-known that the
Protter problems have singular generalized solutions, even
for smooth right-hand sides [12, 14–17]. Different aspects of
Protter problems and several their generalizations (including
some applications in the industrial explosion process) are
studied by many authors (see Aldashev and Kim [18], Choi
and Park [19], Aldashev [20], and references therein). For
different statements of other related problems for mixed-type
equations of the first kind, including nonlinear equations, see
[21–27].

The Keldysh-type equations are another kind of mixed-
type equations that also are known to play an important role
in fluid mechanics, for example,

𝑢𝑥𝑥 + 𝑡𝑚𝑢𝑡𝑡 + 𝑎𝑢𝑥 + 𝑏𝑢𝑡 + 𝑐𝑢 = 0 (26)

near the line 𝑡 = 0.
Otway [28, 29] and Lupo et al. [30] gave a statement of

some 2DBVPs for elliptic-hyperbolic Keldysh-type equations
with specific applications in plasma physics, including a
model for analyzing the possible heating in axisymmetric
cold plasmas. Čanić and Keyfitz [31] studied some plane
problems for a nonlinear degenerate elliptic equation, whose
solutions behave like those of a Keldysh-type equation. Such
an equation arises in the modeling of a weak shock reflection
at a wedge. A 2D mixed-type equation analogous in part to
the Tricomi-type and the Keldysh-type equations has also
been studied recently by Shuxing [32].

Keldysh [33] studied the regularity of the solutions of
2D elliptic equations of second order near the boundary, in
the case when the boundary contains a segment of the line
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𝑡 = 0. He showed that for degenerating elliptic equation
(26) the formulation of the Dirichlet problem may depend
on the lower order terms (the dependence is different for
different values of 𝑚). Fichera [34] generalized Keldysh’s
results for multidimensional linear second-order equations
with nonnegative characteristic form and now BVPs for them
are well understood in the sense that boundary conditions
should not be imposed on the whole boundary. A summary
of Fichera’s theory can be found in Radkevich [35, 36]. Keyfitz
[37] examined whether the Fichera’s classification could
be extended to quasilinear equations and mentioned that
contrasting behavior of the characteristics of the Tricomi and
Keldysh equation (see Figures 1 and 2)may have implications,
unexplored yet, for the solution of some free boundary
problems arising in the fluid dynamics models.

All these results and the fact that the solutions of the
Keldysh-type equation are not differentiable at the degenerate
boundary (see [38]) make it interesting to formulate and
study the multidimensional Protter-Morawetz problem for
Keldysh-type equations. In [39], using the exact Hardy-
Sobolev inequality, we proved the uniqueness of a quasireg-
ular solution to problem PK for equations involving lower
order terms. Let us mention here that, in problem PK, unlike
Tricomi case, a data on the degenerate boundary is not
prescribed (similar to the elliptic case) and derivative 𝑢𝑡

can have singularity on it, but up to the prescribed level.
On the other hand, the results in [1] and the results of the
present paper show some similarities between problem PK
and problems 𝑃1, 𝑃2: the infinite-dimensional cokernel of
the problem and the existence of generalized solutions with
isolated singularities.

There are still some open questions in this area that natu-
rally arise.

Open Problems

(1) In the case when the right-hand side function 𝑓(𝑥, 𝑡)
is a “harmonic polynomial” to find additional con-
ditions under which problem PK has a bounded
solution. According to Corollary 7, when all the
orthogonality conditions, which we prescribe in the
present paper, are fulfilled, the generalized solution𝑢(𝑥, 𝑡) is still allowed to have a singularity of order𝛽 ∈ (0, 1).

(2) To study the general case of problem PK when the
right-hand side function 𝑓(𝑥, 𝑡) is a smooth function
not only of the form of “harmonic polynomial” is an
open problem:
(i) Find appropriate conditions for the function𝑓(𝑥, 𝑡) under which there exists a generalized

solution.
(ii) What kind of singularity may have the general-

ized solution in this case? The a priori estimate,
obtained in [1], shows that when the function𝑓(𝑥, 𝑡) is a “harmonic polynomial” the gener-
alized solution may have at most a polynomial
growth. Are there exist singular solutions with
an exponential growth, as it is in the case of the
Protter problems for the usual wave equation?

(iii) To find some appropriate conditions for the
function 𝑓(𝑥, 𝑡) under which problem PK has
only regular, bounded, or even classical solu-
tion. Up to now such conditions for the exis-
tence of a bounded solution to Protter problems
are obtained only in the case of the wave equa-
tion.

(3) To study problem PK in the more general case when0 < 𝑚 < 2. Let us mention that the presentation of
the generalized solution 𝑢(𝑥, 𝑡) from [1], which we are
studying in the present paper, is valid only in the case
when 𝑚 ∈ (0, 4/3). Find appropriate techniques that
work for 4/3 ≤ 𝑚 < 2.

4. The Two-Dimensional Darboux-Goursat
Problems Corresponding to Problem PK

Problem PK in the case when the right-side function 𝑓(𝑥, 𝑡)
is of the form (15) can be reduced to a two-dimensional
problem.

More precisely, let us look for a solution to problem PK
of the form (16). Using the spherical coordinates (𝑟, 𝜃, 𝜑, 𝑡) ∈
R4, 0 ≤ 𝜃 < 𝜋, 0 ≤ 𝜑 < 2𝜋, 𝑟 > 0 with

𝑥1 = 𝑟 sin 𝜃 cos𝜑,
𝑥2 = 𝑟 sin 𝜃 sin𝜑,
𝑥3 = 𝑟 cos 𝜃,

(27)

and later in the characteristic coordinates

𝜉 = 1 − 𝑟 − 22 − 𝑚𝑡(2−𝑚)/2,
𝜂 = 1 − 𝑟 + 22 − 𝑚𝑡(2−𝑚)/2,

(28)

for the functions

𝑈 (𝜉, 𝜂) fl 𝑟 (𝜉, 𝜂) 𝑢𝑠
𝑛 (𝑟 (𝜉, 𝜂) , 𝑡 (𝜉, 𝜂)) (29)

we obtain (see [1]) the following Darboux-Goursat problem.

Problem 𝑃𝐾2. Find a solution of

𝑈𝜉𝜂 + 𝛽𝜂 − 𝜉 (𝑈𝜉 − 𝑈𝜂) − 𝑛 (𝑛 + 1)
(2 − 𝜉 − 𝜂)2 𝑈 = 𝐹 (𝜉, 𝜂)

in 𝐷,
(30)

satisfying the following boundary conditions:

𝑈 (0, 𝜂) = 0,
lim

𝜂−𝜉→+0
(𝜂 − 𝜉)2𝛽 (𝑈𝜉 − 𝑈𝜂) = 0, (31)

where

𝐷 fl {(𝜉, 𝜂) : 0 < 𝜉 < 𝜂 < 1} , (32)
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𝐹 (𝜉, 𝜂) fl 18 (2 − 𝜉 − 𝜂) 𝑓𝑠
𝑛 (𝑟 (𝜉, 𝜂) , 𝑡 (𝜉, 𝜂)) , (33)

𝛽 fl
𝑚2 (2 − 𝑚) . (34)

As far as we consider problem PK in the case when 𝑚 ∈(0, 4/3) for the parameter 𝛽 we have

0 < 𝛽 < 1. (35)

In conformity with Definition 2, a generalized solution of
problem PK2 is defined as follows.

Definition 8 (see [1]). We call a function𝑈(𝜉, 𝜂) a generalized
solution of problem PK2 in 𝐷, (0 < 𝛽 < 1), if

(1) 𝑈, 𝑈𝜉 + 𝑈𝜂 ∈ 𝐶(𝐷 \ (1, 1)), 𝑈𝜉 − 𝑈𝜂 ∈ 𝐶(𝐷 \ {𝜂 = 𝜉});
(2)

𝑈 (0, 𝜂) = 0; (36)

(3) for each 𝜀 ∈ (0, 1) there exists a constant 𝐶(𝜀) > 0,
such that

󵄨󵄨󵄨󵄨󵄨(𝑈𝜉 − 𝑈𝜂) (𝜉, 𝜂)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶 (𝜀) (𝜂 − 𝜉)−𝛽
in 𝐷 ∩ {𝜉 < 1 − 𝜀} ; (37)

(4) the identity

∫
𝐷

(𝜂 − 𝜉)2𝛽 {𝑈𝜉𝑉𝜂 + 𝑈𝜂𝑉𝜉 + 2𝑛 (𝑛 + 1)
(2 − 𝜉 − 𝜂)2 𝑈𝑉

+ 2𝐹𝑉} 𝑑𝜉 𝑑𝜂 = 0
(38)

holds for all

𝑉 ∈ 𝑉(2) fl {𝑉 (𝜉, 𝜂) : 𝑉 ∈ 𝐶2 (𝐷) , 𝑉 (𝜉, 1) = 0, 𝑉
≡ 0 in a neighborhood of (1, 1)} . (39)

Further, using the Riemann-Hadamard function Φ(𝜉, 𝜂;𝜉0, 𝜂0) associated with problem PK2, an explicit integral
representation of the generalized solution 𝑈(𝜉, 𝜂) was found.
A survey of the Riemann method can be found in [40].

Theorem 9 (see [1]). Let 0 < 𝛽 < 1 and 𝐹 ∈ 𝐶1(𝐷). Then
there exists one and only one generalized solution of problem𝑃𝐾2 in 𝐷, which has the following integral representation at a
point (𝜉0, 𝜂0) ∈ 𝐷:

𝑈 (𝜉0, 𝜂0) = ∫𝜉0

0
∫𝜂0

𝜉
𝐹 (𝜉, 𝜂) Φ (𝜉, 𝜂; 𝜉0, 𝜂0) 𝑑𝜂 𝑑𝜉, (40)

and it satisfies the following estimates:
󵄨󵄨󵄨󵄨𝑈 (𝜉, 𝜂)󵄨󵄨󵄨󵄨 ≤ 𝐾𝑀𝐹𝜉 (2 − 𝜉 − 𝜂)−𝑛

in 𝐷 \ (1, 1) ,
󵄨󵄨󵄨󵄨󵄨(𝑈𝜉 + 𝑈𝜂) (𝜉, 𝜂)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐾𝑀𝐹 (2 − 𝜉 − 𝜂)−𝑛−1

in 𝐷 \ (1, 1) ,
󵄨󵄨󵄨󵄨󵄨𝑈𝜂 (𝜉, 𝜂)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐾𝑀𝐹𝜉 (𝜂 − 𝜉)−𝛽 (2 − 𝜉 − 𝜂)−𝑛−1

in 𝐷 \ {𝜂 = 𝜉} ,

(41)

where 𝐾 is a positive constant and

𝑀𝐹 fl max{max
𝐷

|𝐹| ,max
𝐷

󵄨󵄨󵄨󵄨󵄨𝐹𝜉 + 𝐹𝜂

󵄨󵄨󵄨󵄨󵄨} . (42)

The Riemann-Hadamard function Φ(𝜉, 𝜂; 𝜉0, 𝜂0), (𝜉0,𝜂0) ∈ 𝐷, which we have found in [1], can be represented as
follows:

Φ (𝜉, 𝜂; 𝜉0, 𝜂0) = {{{
Φ+ (𝜉, 𝜂; 𝜉0, 𝜂0) , 𝜂 > 𝜉0,
Φ− (𝜉, 𝜂; 𝜉0, 𝜂0) , 𝜂 < 𝜉0, (43)

where

Φ+ (𝜉, 𝜂; 𝜉0, 𝜂0) fl ( 𝜂 − 𝜉𝜂0 − 𝜉0 )𝛽

⋅ 𝐹3 (𝛽, 𝑛 + 1, 1 − 𝛽, −𝑛, 1; 𝑋, 𝑌) ,
Φ− (𝜉, 𝜂; 𝜉0, 𝜂0) fl 𝛾 ( 𝜂 − 𝜉𝜂0 − 𝜉0 )𝛽

⋅ 𝑋−𝛽𝐻2 (𝛽, 𝛽, −𝑛, 𝑛 + 1, 2𝛽; 1𝑋, −𝑌) ,

(44)

𝑋 = 𝑋 (𝜉, 𝜂, 𝜉0, 𝜂0) fl (𝜉0 − 𝜉) (𝜂0 − 𝜂)
(𝜂 − 𝜉) (𝜂0 − 𝜉0) , (45)

𝑌 = 𝑌 (𝜉, 𝜂, 𝜉0, 𝜂0) fl − (𝜉0 − 𝜉) (𝜂0 − 𝜂)
(2 − 𝜉 − 𝜂) (2 − 𝜉0 − 𝜂0) , (46)

𝛾 = Γ (𝛽)
Γ (1 − 𝛽) Γ (2𝛽) . (47)

Here 𝐹3(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐; 𝑥, 𝑦) is the Appell series:
𝐹3 (𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐; 𝑥, 𝑦)

fl
∞∑
𝑖=0

∞∑
𝑗=0

(𝑎1)𝑗 (𝑎2)𝑖 (𝑏1)𝑗 (𝑏2)𝑖(𝑐)𝑖+𝑗 𝑖!𝑗! 𝑥𝑗𝑦𝑖, (48)

and 𝐻2(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐; 𝑥, 𝑦) is the Horn series:

𝐻2 (𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐; 𝑥, 𝑦)
fl

∞∑
𝑖=0

∞∑
𝑗=0

(𝑎1)𝑗−𝑖 (𝑎2)𝑗 (𝑏1)𝑖 (𝑏2)𝑖(𝑐)𝑗 𝑖!𝑗! 𝑥𝑗𝑦𝑖
(49)
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(for basic information on the Appell and the Horn series, see
[41], p. 222–228.)

According to Theorem 9, the generalized solution is
allowed to have a singularity of order no greater than 𝑛
at point (1, 1). But it is still not clear if such a singularity
really exists and how it depends on the right-hand side of
the equation. In the next section, we study more deeply
the function 𝑈(𝜉, 𝜂), given by (40), or, more precisely, its
restriction on the segment 𝜂 = 1, 0 ≤ 𝜉 < 1.
5. The Asymptotic Expansion of the Solution
of Problem PK2

Introduce the following functions:

𝐸𝑛
𝑘 (𝜉, 𝜂) fl 𝑟 (𝜉, 𝜂) 𝐸𝑛

𝑘,𝑚 (𝑟 (𝜉, 𝜂) , 𝑡 (𝜉, 𝜂))
= 𝑘∑

𝑖=0

𝐴𝑘
𝑖

(1 − 𝜉)𝑛−𝑘−𝑖−𝛽 (1 − 𝜂)𝑛−𝑘−𝑖−𝛽
22𝑖−𝑛 (2 − 𝜉 − 𝜂)𝑛−2𝑖 , (50)

where 𝐸𝑛
𝑘,𝑚(|𝑥|, 𝑡) are functions (6), closely connected with

the solutions of the homogeneous adjoint problemPK∗.Then
we prove the following lemma.

Lemma 10. For 𝑘 = 0, . . . , [𝑛/2] the following equalities hold
∫
𝐷

(𝜂 − 𝜉)2𝛽 𝐸𝑛
𝑘 (𝜉, 𝜂) 𝐹 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂 = 𝐶𝑚𝜇𝑛,𝑠

𝑘,𝑚,
𝐶𝑚 = 2(3𝑚−2)/(2−𝑚) (2 − 𝑚)−𝑚/(2−𝑚) ,

(51)

where 𝜇𝑛,𝑠
𝑘,𝑚 are the coefficients (11) and the relation between𝐹(𝜉, 𝜂) and the Fourier coefficient 𝑓𝑠

𝑛 from the expansion of𝑓(𝑥, 𝑡) is given by (33).

Proof. Denote

𝐺𝑚 fl {(𝑟, 𝑡) : 0 < 𝑡 < 𝑡0, 𝑚2 − 𝑚𝑡(2−𝑚)/𝑚 < 𝑟 < 1
− 𝑚2 − 𝑚𝑡(2−𝑚)/𝑚} .

(52)

Denote also by Y 𝑠
𝑛 the spherical functions expressed in the

spherical coordinates; that is, 𝑌𝑠
𝑛(𝑥) = Y 𝑠

𝑛(𝜃(𝑥), 𝜑(𝑥)). Then,
using the orthonormality of the spherical functions on the
unit sphere 𝑆2, a direct calculation gives

𝜇𝑛,𝑠
𝑘,𝑚 = ∫

Ω𝑚

V𝑛,𝑠𝑘,𝑚 (𝑥, 𝑡) 𝑓 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
= ∫𝜋

0
∫2𝜋

0
∫
𝐺𝑚

𝐸𝑛
𝑘,𝑚 (𝑟, 𝑡)Y 𝑠

𝑛 (𝜃, 𝜑)

⋅ ( 𝑙∑
𝑝=0

2𝑝+1∑
𝑞=1

𝑓𝑞
𝑝 (𝑟, 𝑡)Y 𝑞

𝑝 (𝜃, 𝜑)) sin 𝜃𝑟2𝑑𝑟 𝑑𝑡 𝑑𝜑 𝑑𝜃
= ∫

𝑆2
(Y 𝑠

𝑛)2 (𝜃, 𝜑) 𝑑𝑆 ∫
𝐺𝑚

(𝐸𝑛
𝑘,𝑚𝑓𝑠

𝑛) (𝑟, 𝑡) 𝑟2𝑑𝑟 𝑑𝑡

= 2(3𝑚−2)/(𝑚−2) (2 − 𝑚)𝑚/(2−𝑚) ∫
𝐷

(𝜂 − 𝜉)2𝛽 𝐸𝑛
𝑘 (𝜉, 𝜂)

⋅ 𝐹 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂.
(53)

The proof is complete.

Theorem 11. Suppose that 𝐹 ∈ 𝐶1(𝐷). Then the restriction𝑈(𝜉, 1) of the generalized solution of problem 𝑃𝐾2 has the
following expansion on the segment {0 ≤ 𝜉 < 1}:

𝑈 (𝜉, 1) = [𝑛/2]∑
𝑘=0

𝑏𝑛𝑘𝜇𝑛,𝑠
𝑘,𝑚 (1 − 𝜉)−𝑛+2𝑘 + (1 − 𝜉)1−𝛽 𝑔 (𝜉) , (54)

where 𝑔(𝜉) ∈ 𝐶1([0, 1)) and |𝑔(𝜉)| ≤ 𝐶‖𝐹‖𝐶(𝐷), with constants𝐶 > 0 and 𝑏𝑛𝑘 ̸= 0 independent of 𝐹.
Proof. According to Theorem 9 the condition 𝐹 ∈ 𝐶1(𝐷)
assures that there exists an unique generalized solution𝑈(𝜉, 𝜂) of problem PK2, given by (40). According to
Definition 8, we see that the restriction 𝑈(𝜉, 1) should belong
to 𝐶1([0, 1)).

Further, we set 𝜂0 = 1 in (40). Essential for the following
calculations is the decomposition of Φ−(𝜉, 𝜂; 𝜉0, 1) given in
Theorem A.3 which we prove in Appendix. Using (A.34) we
obtain

𝑈 (𝜉0, 1) = ∫𝜉0

0
∫1

𝜉
𝐹 (𝜉, 𝜂) Φ (𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂 𝑑𝜉

= ∫𝜉0

0
∫𝜉0

𝜉
𝐹 (𝜉, 𝜂) Φ−

1 (𝜉, 𝜂; 𝜉0) 𝑑𝜂 𝑑𝜉
+ ∫𝜉0

0
∫𝜉0

𝜉
𝐹 (𝜉, 𝜂) Φ−

2 (𝜉, 𝜂; 𝜉0) 𝑑𝜂 𝑑𝜉
+ ∫𝜉0

0
∫1

𝜉0

𝐹 (𝜉, 𝜂) Φ+ (𝜉, 𝜂; 𝜉0, 1) 𝑑𝜂 𝑑𝜉
š 𝐽1 + 𝐽2 + 𝐽3.

(55)

According to (A.35) and Lemma 10 we have

𝐽1 = [𝑛/2]∑
𝑘=0

𝑐𝑛𝑘 (1 − 𝜉0)−𝑛+2𝑘

⋅ ∫𝜉0

0
∫𝜉0

𝜉
(𝜂 − 𝜉)2𝛽 𝐹 (𝜉, 𝜂) 𝐸𝑛

𝑘,𝑚 (𝜉, 𝜂) 𝑑𝜂 𝑑𝜉

= [𝑛/2]∑
𝑘=0

𝑐𝑛𝑘 (1 − 𝜉0)−𝑛+2𝑘

⋅ {∫
𝐷

(𝜂 − 𝜉)2𝛽 𝐹 (𝜉, 𝜂) 𝐸𝑛
𝑘,𝑚 (𝜉, 𝜂) 𝑑𝜂 𝑑𝜉

− ∫1

𝜉0

∫𝜂

0
(𝜂 − 𝜉)2𝛽 𝐹 (𝜉, 𝜂) 𝐸𝑛

𝑘,𝑚 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂}
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= [𝑛/2]∑
𝑘=0

𝑐𝑛𝑘 (1 − 𝜉0)−𝑛+2𝑘 {𝐶𝑚𝜇𝑛
𝑘,𝑚

− ∫1

𝜉0

∫𝜂

0
(𝜂 − 𝜉)2𝛽 𝐹 (𝜉, 𝜂) 𝐸𝑛

𝑘,𝑚 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂}

= [𝑛/2]∑
𝑘=0

𝑏𝑛𝑘𝜇𝑛
𝑘,𝑚 (1 − 𝜉0)−𝑛+2𝑘 + 𝐽1,0,

(56)

with 𝑏𝑛𝑘 = 𝐶𝑚𝑐𝑛𝑘 ̸= 0.
The functions 𝐸𝑛

𝑘, given by (50), can be estimated in 𝐷 as
follows:󵄨󵄨󵄨󵄨󵄨𝐸𝑛

𝑘,𝑚 (𝜉, 𝜂)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑎𝑛
𝑘 (1 − 𝜉)−𝛽 (1 − 𝜂)𝑛−2𝑘−𝛽 ,

𝑎𝑛
𝑘 = const > 0. (57)

Then we have

󵄨󵄨󵄨󵄨𝐽1,0󵄨󵄨󵄨󵄨 ≤ [𝑛/2]∑
𝑘=0

𝑐𝑛𝑘 (1 − 𝜉0)−𝑛+2𝑘

⋅ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

𝜉0

∫𝜂

0
(𝜂 − 𝜉)2𝛽 𝐹 (𝜉, 𝜂) 𝐸𝑛

𝑘,𝑚 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖𝐹‖𝐶(𝐷)

[𝑛/2]∑
𝑘=0

𝑎𝑛
𝑘𝑐𝑛𝑘

⋅ ∫1

𝜉0

∫𝜂

0
(𝜂 − 𝜉)2𝛽 (1 − 𝜉)−𝛽 (1 − 𝜂)−𝛽 𝑑𝜉 𝑑𝜂

≤ 𝑘2 ‖𝐹‖𝐶(𝐷) (1 − 𝜉0)1−𝛽 , 𝑘2 = const > 0.

(58)

For 𝐽2, using the estimate (A.36) from Theorem A.3, we
obtain 󵄨󵄨󵄨󵄨𝐽2󵄨󵄨󵄨󵄨 ≤ 𝑘1 ‖𝐹‖𝐶(𝐷) (1 − 𝜉0)

⋅ ∫𝜉0

0
∫𝜉0

𝜉
(𝜉0 − 𝜂)−𝛽 (1 − 𝜂)−1 𝑑𝜂 𝑑𝜉. (59)

Making a substitution 𝜂 = 𝜉 + (𝜉0 − 𝜉)𝜎 we compute

∫𝜉0

𝜉
(𝜉0 − 𝜂)−𝛽 (1 − 𝜂)−1 𝑑𝜂

= (𝜉0 − 𝜉)1−𝛽
1 − 𝜉 ∫1

0
(1 − 𝜎)−𝛽 (1 − 𝑧𝜎)−1 𝑑𝜎

(60)

with

𝑧 fl
𝜉0 − 𝜉1 − 𝜉 . (61)

Formula (A.11) gives

∫1

0
(1 − 𝜎)−𝛽 (1 − 𝑧𝜎)−1 𝑑𝜎
= Γ (1 − 𝛽)

Γ (2 − 𝛽) 2𝐹1 (1, 1, 2 − 𝛽; 𝑧)
(62)

and with (A.13) we estimate

󵄨󵄨󵄨󵄨 2𝐹1 (1, 1, 2 − 𝛽; 𝑧)󵄨󵄨󵄨󵄨 ≤ 𝑘3

(1 − 𝜉)𝛽
(1 − 𝜉0)𝛽 , 𝑘3 = const > 0. (63)

Applying the results (60), (62), and (63) into (59) we obtain

󵄨󵄨󵄨󵄨𝐽2󵄨󵄨󵄨󵄨 ≤ 𝑘4 ‖𝐹‖𝐶(𝐷) (1 − 𝜉0)1−𝛽 , 𝑘4 = const > 0. (64)

According to the results from [1] (Lemmas A.1, A.2, and
A.3 therein), we have an estimate

󵄨󵄨󵄨󵄨Φ+ (𝜉, 𝜂; 𝜉0, 1)󵄨󵄨󵄨󵄨 ≤ 𝑘5 (𝜂 − 𝜉0)−𝛽 , 𝑘5 = const > 0. (65)

Then for 𝐽3 we have
󵄨󵄨󵄨󵄨𝐽3󵄨󵄨󵄨󵄨 ≤ 𝑘6 ‖𝐹‖𝐶(𝐷) (1 − 𝜉0)1−𝛽 , 𝑘6 = const > 0. (66)

Therefore (54) holds with 𝑔(𝜉) fl (1 − 𝜉)𝛽−1(𝐽1,0 + 𝐽2 + 𝐽3).
Obviously, 𝑔(𝜉) ∈ 𝐶1([0, 1)), because 𝐽1,0 + 𝐽2 + 𝐽3 = 𝑈(𝜉, 1) −
∑[𝑛/2]

𝑘=0 𝑏𝑛𝑘𝜇𝑛,𝑠
𝑘,𝑚(1 − 𝜉)−𝑛+2𝑘.

The proof is complete.

From this theorem, we see that the generalized solution
of problem PK2 may have a singularity of order 𝑛 and this
happens in the general case: a bounded solution, or a solution
with a smaller order of singularity, is possible only if some
of the coefficients 𝜇𝑛,𝑠

𝑘,𝑚 are equal to zero. This result exactly
corresponds to the estimate prescribed inTheorem 9.

6. Proof of the Main Results

Now, we are ready to prove the main results stated in Section
2.

Proof of Lemma 1. First, we have obviously V𝑛,𝑠𝑘,𝑚(𝑥, 𝑡) ∈𝐶∞(Ω𝑚).
For 𝑛 > 2𝑘 + 𝑚/(4 − 2𝑚) it is easy to check that V𝑛,𝑠𝑘,𝑚 ∈

𝐶(Ω𝑚 \ 𝑂) and V𝑛,𝑠𝑘,𝑚|Σ𝑚2 = 0.
For 𝑛 > 𝑁(𝑚, 𝑘) fl 2𝑘 + 1 + 𝑚/(2 − 𝑚) we see that𝐸𝑛

𝑘,𝑚(|𝑥|, 𝑡) → 0 as (𝑥, 𝑡) → 𝑂.
Therefore V𝑛,𝑠𝑘,𝑚(𝑥, 𝑡) ∈ 𝐶∞(Ω𝑚) ∩ 𝐶(Ω𝑚).
It is easy to check that for 𝑛 > 𝑁(𝑚, 𝑘) the boundary

conditions (5) are also satisfied.
Now, let us look for solutions of the homogeneous prob-

lem PK∗ of the form (9). Passing to the spherical coordinates
(27) in the homogeneous equation (1) and using that, the
spherical functions satisfy the differential equation:

1
sin 𝜃 𝜕𝜕𝜃 (sin 𝜃 𝜕𝜕𝜃𝑌𝑠

𝑛) + 1
sin2𝜃 𝜕2

𝜕𝜑2
𝑌𝑠
𝑛 + 𝑛 (𝑛 + 1) 𝑌𝑠

𝑛

= 0
(67)
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and we see that the functions 𝐸𝑛
𝑘,𝑚(𝑟, 𝑡) should be solutions of

V𝑟𝑟 + 2𝑟 V𝑟 − (𝑡𝑚V𝑡)𝑡 − 𝑛 (𝑛 + 1)𝑟2 V = 0 (68)

in 𝐺𝑚. A direct calculation of the derivatives of 𝐸𝑛
𝑘,𝑚(𝑟, 𝑡)

shows that these functions indeed satisfy (68).
The proof is complete.

Proof of Theorem 5. Let 𝑢(𝑥, 𝑡) be the unique generalized
solution of problem PK. Then it has the form (16) (see
Theorem 4)

As we saw, all the functions

𝑈𝑠
𝑛 (𝜉, 𝜂) fl 𝑟 (𝜉, 𝜂) 𝑢𝑠

𝑛 (𝑟 (𝜉, 𝜂) , 𝑡 (𝜉, 𝜂)) , (69)

𝑛 = 0, . . . , 𝑙, 𝑠 = 1, . . . , 2𝑛 + 1, are generalized solutions of
problem PK2 with right-hand sides 𝐹𝑠

𝑛(𝜉, 𝜂) given by

𝐹𝑠
𝑛 (𝜉, 𝜂) fl 18 (2 − 𝜉 − 𝜂) 𝑓𝑠

𝑛 (𝑟 (𝜉, 𝜂) , 𝑡 (𝜉, 𝜂)) . (70)

Now, Theorem 11 states that

𝑈𝑠
𝑛 (𝜉, 1)

= [𝑛/2]∑
𝑘=0

𝑏𝑛,𝑠𝑘 𝜇𝑛,𝑠
𝑘,𝑚 (1 − 𝜉)−𝑛+2𝑘 + (1 − 𝜉)1−𝛽 𝑔𝑠

𝑛 (𝜉) , (71)

where 𝑏𝑛,𝑠𝑘 are nonzero constant independent of 𝐹𝑠
𝑛, 𝑔𝑠

𝑛(𝜉) ∈𝐶1([0, 1)) and |𝑔𝑠
𝑛(𝜉)| ≤ 𝐶‖𝐹𝑠

𝑛‖𝐶(𝐷).
Now, using the relations (27)-(28), we make the inverse

transformation fromproblemPK2 to problemPK. In this way
we obtain the expansion (18), (20) with

𝐺 (𝑥)
= 21−𝛽 𝑙∑

𝑝=0

[(𝑙−𝑝)/2]∑
𝑘=0

2𝑝+4𝑘+1∑
𝑠=1

𝑌𝑠
𝑝+2𝑘 (𝑥) 𝑔𝑠

𝑝+2𝑘 (1 − 2 |𝑥|) (72)

and 𝑐𝑛,𝑠𝑘,𝑚 = 22𝑘−𝑛𝑏𝑛,𝑠𝑘 ̸= 0.
Theassertion (i) inTheorem 5 follows from the properties

of the functions𝑔𝑠
𝑛(𝜉) and the fact that the functions𝑌𝑠

𝑛(𝑥) are
bounded and belong to 𝐶1(0 < |𝑥| < 1/2).

The proof is complete.

Proof of Corollary 6. Let at least one of the constants 𝜇𝑝+2𝑘,𝑠
𝑘,𝑚

in (20)

𝐺𝑝 (𝑥) = [(𝑙−𝑝)/2]∑
𝑘=0

2𝑝+4𝑘+1∑
𝑠=1

𝑐𝑝+2𝑘,𝑠𝑘,𝑚 𝜇𝑝+2𝑘,𝑠
𝑘,𝑚 𝑌𝑠

𝑝+2𝑘 (𝑥) ,
𝑝 = 0, 1, . . . , 𝑙

(73)

be different from zero.Then by the linear independence of the
spherical functions 𝑌𝑠

𝑛 it follows that, for the corresponding
function𝐺𝑝(𝑥), there exists a vector𝛼 ∈ 𝑆2, such that𝐺𝑝(𝛼) ̸=
0. But, recalling that we extend functions𝑌𝑠

𝑛 out of 𝑆2 radially,
we have that 𝐺𝑝(𝛼) = 𝐺𝑝(𝛼󰜚) = const, 󰜚 > 0. Therefore𝐺𝑝(𝛼󰜚) → 𝑐𝑝,𝛼 = const ̸= 0 as 󰜚 → +0.

The proof is complete.

Appendix

For 𝑎 ∈ R in our calculations we use the following relations
(see [42]):

(𝑎)𝑖 = Γ (𝑎 + 𝑖)Γ (𝑎) , 𝑎, 𝑎 + 𝑖 ̸= 0, −1, −2, . . . , (A.1)

(𝑎)𝑖 = 𝑎 (𝑎 + 1) ⋅ ⋅ ⋅ (𝑎 + 𝑖 − 1) , 𝑖 ∈ N,
(𝑎)0 = 1, (A.2)

(𝑎)𝑖+𝑗 = (𝑎)𝑖 (𝑎 + 𝑖)𝑗 , (A.3)

(𝑎)2𝑖 = 22𝑖 (𝑎2)
𝑖
(𝑎 + 12 )

𝑖
, (A.4)

(𝑎)𝑗 = (−1)𝑗 (1 − 𝑎 − 𝑗)𝑗 . (A.5)

Further, we recall some well-known formulae, concern-
ing the Gauss hypergeometric series (see, e.g., [41–43]):

2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁) fl ∞∑
𝑖=0

(𝑎)𝑖 (𝑏)𝑖𝑖! (𝑐)𝑖 𝜁𝑖,
𝑎, 𝑏, 𝑐 ∈ R, 𝑐 ̸= 0, −1, −2, . . . ,

(A.6)

which are also used in the computations. For |𝜁| < 1 the series
is absolutely convergent.

The derivatives of 2𝐹1(𝑎, 𝑏, 𝑐; 𝜁) are given by

𝑑𝑠

𝑑𝜁𝑠 2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁)
= (𝑎)𝑠 (𝑏)𝑠(𝑐)𝑠 2𝐹1 (𝑎 + 𝑠, 𝑏 + 𝑠, 𝑐 + 𝑠; 𝜁) ,

𝑠 = 0, 1, 2, . . . .
(A.7)

In the special case when 𝑐 = (𝑎 + 𝑏 + 1)/2 ̸= 0, −1, −2, . . .
and 𝜁 = 1/2 we have

2𝐹1 (𝑎, 𝑏, 𝑎 + 𝑏 + 12 ; 12) = {{{{{
√𝜋Γ ((𝑎 + 𝑏 + 1) /2)Γ ((𝑎 + 1) /2) Γ ((𝑏 + 1) /2) , 𝑎, 𝑏 ̸= −1, −3, . . . ,

0, 𝑎 = −1, −3, . . . or 𝑏 = −1, −3, . . .
(A.8)
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In the case when 𝑏 = 0, −1, −2, . . . and 𝑎, 𝑏 − 𝑎 + 1, 𝑐 ̸=0, −1, −2, . . . the changing from 𝜁 to (1 − 𝜁)−1 is given by

2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁) = Γ (𝑐) Γ (𝑎 − 𝑏)Γ (𝑎) Γ (𝑐 − 𝑏) (1 − 𝜁)−𝑏

⋅ 2𝐹1 (𝑐 − 𝑎, 𝑏, 𝑏 − 𝑎 + 1; 11 − 𝜁) ,
𝜁 ̸= 1.

(A.9)

The binomial series is a particular case of the hypergeo-
metric series:

2𝐹1 (𝑎, 𝑏, 𝑎; 𝜁) = (1 − 𝜁)−𝑏 . (A.10)

For 0 < 𝑎 < 𝑐 in the special case when 𝑏 = 0, −1, −2, . . .,
the Euler integral representation

2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁)
= Γ (𝑐)Γ (𝑎) Γ (𝑐 − 𝑎) ∫1

0
𝑡𝑎−1 (1 − 𝑡)𝑐−𝑎−1 (1 − 𝜁𝑡)−𝑏 𝑑𝑡 (A.11)

is valid for each 𝜁 ∈ R.
In the present paper we use the following estimates:

(a) If 𝑐 − 𝑎 − 𝑏 = 0, then for each 𝛼 > 0 there exists a
constant 𝑐(𝛼) > 0 such that

󵄨󵄨󵄨󵄨 2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁)󵄨󵄨󵄨󵄨 ≤ 𝑐 (𝛼) (1 − 𝜁)−𝛼 . (A.12)

(b) For the case 𝑐 − 𝑎 − 𝑏 < 0 we have a constant 𝐾 > 0
such that

󵄨󵄨󵄨󵄨 2𝐹1 (𝑎, 𝑏, 𝑐; 𝜁)󵄨󵄨󵄨󵄨 ≤ 𝐾 (1 − 𝜁)𝑐−𝑎−𝑏 . (A.13)

Here we prove some auxiliary results which we use in our
calculations. First, we give two lemmas which we need for the
proof of Theorem A.3.

Lemma A.1. Let 𝑎 > 0 and 𝑘 ∈ N ∪ {0}. Then

2𝐹1 (𝑎, −𝑁, 2𝑎; 2) = {{{{{
0, 𝑁 = 2𝑘 + 1,

(1/2)𝑘(1/2 + 𝑎)𝑘 , 𝑁 = 2𝑘. (A.14)

Proof. According to the integral representation (A.11)we have

2𝐹1 (𝑎, −𝑁, 2𝑎; 2)
= Γ (2𝑎)Γ (𝑎) Γ (𝑎) ∫1

0
𝑡𝑎−1 (1 − 𝑡)𝑎−1 (1 − 2𝑡)𝑁 𝑑𝑡. (A.15)

Then for 𝑘 ∈ N ∪ {0} we have

2𝐹1 (𝑎, −2𝑘 − 1, 2𝑎; 2) = 0, (A.16)

because the function ℎ(𝑡) fl 𝑡𝑎−1(1 − 𝑡)𝑎−1(1 − 2𝑡)2𝑘+1 is
antisymmetric in respect to the point 𝑡 = 1/2, that is, ℎ(1/2 −𝑡) = −ℎ(1/2 + 𝑡).

In the case when 𝑁 is an even number we proceed by the
induction method. For 𝑘 = 0 (𝑁 = 0, resp.), (A.14) holds
obviously.

For 𝑁 = 2, 4, 6, . . . from (A.15) we get

Γ (𝑎) Γ (𝑎)Γ (2𝑎) 2𝐹1 (𝑎, −𝑁, 2𝑎; 2) = 1𝑎
⋅ ∫1

0
(1 − 2𝑡)𝑁−1 𝑑 (𝑡 − 𝑡2)𝑎 = 2 (𝑁 − 1)𝑎

⋅ ∫1

0
𝑡𝑎 (1 − 𝑡)𝑎 (1 − 2𝑡)𝑁−2 𝑑𝑡

= 2 (𝑁 − 1) Γ (𝑎 + 1) Γ (𝑎 + 1)𝑎Γ (2𝑎 + 2)
⋅ 2𝐹1 (𝑎 + 1, 2 − 𝑁, 2𝑎 + 2; 2) ,

(A.17)

or more simply

2𝐹1 (𝑎, −𝑁, 2𝑎; 2)
= (𝑁 − 1)(2𝑎 + 1) 2𝐹1 (𝑎 + 1, 2 − 𝑁, 2 (𝑎 + 1) ; 2) . (A.18)

Our induction hypothesis is that for some 𝑘 ∈ N ∪ {0} the
equality

2𝐹1 (𝑎, −2𝑘, 2𝑎; 2) = (1/2)𝑘(𝑎 + 1/2)𝑘 (A.19)

holds. But then for 𝑘 + 1 this equality will also hold, because
according to (A.18) we have

2𝐹1 (𝑎, −2𝑘 − 2, 2𝑎; 2) = (2𝑘 + 1) (1/2)𝑘(2𝑎 + 1) (𝑎 + 3/2)𝑘
= (1/2)𝑘+1(𝑎 + 1/2)𝑘+1 .

(A.20)

The proof is complete.
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Lemma A.2. Let 𝑛, 𝑝 ∈ N ∪ {0}, 𝑝 ≤ 𝑛, 0 < 𝛽 < 1 and
denote

𝑄𝑝
𝑛 (𝑧) fl 𝑛−𝑝∑

𝑗=0

𝑎𝑗𝑏𝑗𝑧𝑗 × 2𝐹1 (𝑛 + 𝑝 + 𝑗 + 1, 𝑝 − 𝑛

+ 𝑗, 𝑝 + 𝑗 + 1; 1 − 𝑧2 ) ,
(A.21)

where

𝑎𝑗 = (𝛽)𝑗(2𝛽)𝑗 𝑗! ,

𝑏𝑗 = (𝑛 + 𝑝 + 1)𝑗 (𝑝 − 𝑛)𝑗(𝑝 + 1)𝑗 .
(A.22)

Then

𝑄𝑝
𝑛 (𝑧) =

{{{{{{{{{

0, (𝑛 − 𝑝 + 1)
2 ∈ 𝑁,

𝑐𝑛,𝑝 2𝐹1 (𝑛 + 𝑝 + 12 , 𝑝 − 𝑛2 , 12 + 𝛽; 𝑧2) , (𝑛 − 𝑝 + 1)
2 ∉ 𝑁,

(A.23)

where

𝑐𝑛,𝑝 = √𝜋Γ (𝑝 + 1)
Γ ((𝑛 + 𝑝 + 2) /2) Γ ((𝑝 − 𝑛 + 1) /2) . (A.24)

Proof. First, we expand the function 2𝐹1 from (A.21) inTaylor
series in powers of 𝑧:

2𝐹1 (𝑛 + 𝑝 + 𝑗 + 1, 𝑝 − 𝑛 + 𝑗, 𝑝 + 𝑗 + 1; 1 − 𝑧2 )

= 𝑛−𝑝−𝑗∑
𝑠=0

(𝑛 + 𝑝 + 𝑗 + 1)𝑠 (𝑝 − 𝑛 + 𝑗)𝑠(𝑝 + 𝑗 + 1)𝑠 𝑠! (−𝑧2 )𝑠

× 2𝐹1 (𝑛 + 𝑝 + 𝑗 + 𝑠 + 1, 𝑝 − 𝑛 + 𝑠 + 𝑗, 𝑝 + 𝑗 + 𝑠
+ 1; 12) ,

(A.25)

where we use (A.7) to compute the corresponding derivatives
in the series. By formula (A.8) we have that for 𝑁 ≥ 0

2𝐹1 (𝑛 + 𝑝 + 𝑁 + 1, 𝑝 − 𝑛 + 𝑁, 𝑝 + 𝑁 + 1; 12) = 𝐴𝑁

fl
{{{{{

√𝜋Γ (𝑝 + 𝑁 + 1)
Γ ((𝑛 + 𝑝 + 𝑁 + 2) /2) Γ ((𝑝 − 𝑛 + 𝑁 + 1) /2) , 𝑝 − 𝑛 + 𝑁 ̸= −1, −3, . . . ,
0, 𝑝 − 𝑛 + 𝑁 = −1, −3, . . . .

(A.26)

Then 𝑄𝑝
𝑛 (𝑧), using also (A.3), becomes

𝑄𝑝
𝑛 (𝑧) = 𝑛−𝑝∑

𝑗=0

𝑛−𝑝−𝑗∑
𝑠=0

𝑎𝑗𝑏𝑗+𝑠𝐴𝑗+𝑠

(−1)𝑠2𝑠𝑠! 𝑧𝑗+𝑠. (A.27)

Now set 𝑁 = 𝑗 + 𝑠:
𝑄𝑝

𝑛 (𝑧) = 𝑛−𝑝∑
𝑁=0

𝑏𝑁𝐴𝑁𝑧𝑁
𝑁∑
𝑗=0

𝑎𝑗 (−1)𝑁−𝑗

2𝑁−𝑗 (𝑁 − 𝑗)! . (A.28)

Since (𝑁 − 𝑗)! = (−1)𝑗𝑁!/(−𝑁)𝑗, for 𝑄𝑝
𝑛 (𝑧), we obtain

𝑄𝑝
𝑛 (𝑧) = 𝑛−𝑝∑

𝑁=0
2𝐹1 (𝛽, −𝑁, 2𝛽; 2) 𝑏𝑁𝐴𝑁

(−𝑧)𝑁2𝑁𝑁! . (A.29)

There are two different cases.

(i) Let 𝑛 − 𝑝 Be an Odd Number. In this case (A.29) becomes

𝑄𝑝
𝑛 (𝑧) ≡ 0, (A.30)

because

(a) for even indexes𝑁 according to (A.26) we have𝐴𝑁 =0;
(b) for odd indexes𝑁 Lemma A.1 with 𝑎 = 𝛽 gives 2𝐹1(𝛽,−𝑁, 2𝛽; 2) = 0.

(ii) Let 𝑛 − 𝑝 Be an Even Number. In this case, according to
(A.26), we have nonzero coefficients 𝐴𝑁 in (A.29) only for
even indexes 𝑁. Then we set 𝑁 = 2𝑘 and by Lemma A.1 we
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have

2𝐹1 (𝛽, −2𝑘, 2𝛽; 2) = (1/2)𝑘(1/2 + 𝛽)𝑘 . (A.31)

Now with (A.4) we calculate

(𝑛 + 𝑝 + 1)2𝑘 = 22𝑘 (𝑛 + 𝑝 + 12 )
𝑘

(𝑛 + 𝑝 + 22 )
𝑘

,

(𝑝 − 𝑛)2𝑘 = 22𝑘 (𝑝 − 𝑛2 )
𝑘

(𝑝 − 𝑛 + 12 )
𝑘

,
(2𝑘)! = 22𝑘 (12)

𝑘
𝑘!.

(A.32)

Applying the equalities (A.31)-(A.32) into (A.29) with𝑁 = 2𝑘 and simplifying the derived expression with use of
(A.1), we obtain

𝑄𝑝
𝑛 (𝑧) = (𝑛−𝑝)/2∑

𝑘=0

(1/2)𝑘(1/2 + 𝛽)𝑘
𝑏2𝑘𝐴2𝑘22𝑘 (2𝑘)!𝑧2𝑘

= √𝜋Γ (𝑝 + 1) (𝑛−𝑝)/2∑
𝑘=0

(1/2)𝑘(1/2 + 𝛽)𝑘
(𝑛 + 𝑝 + 1)2𝑘 (𝑝 − 𝑛)2𝑘Γ ((𝑛 + 𝑝 + 2𝑘 + 2) /2) Γ ((𝑝 − 𝑛 + 2𝑘 + 1) /2) 𝑧2𝑘

22𝑘 (2𝑘)!
= 𝑐𝑛,𝑝 2𝐹1 (𝑛 + 𝑝 + 12 , 𝑝 − 𝑛2 , 12 + 𝛽; 𝑧2) .

(A.33)

The proof is complete.

Theorem A.3. The trace of the function Φ−(𝜉, 𝜂; 𝜉0, 𝜂0) on the
line {𝜂0 = 1} can be decomposed as follows:

Φ− (𝜉, 𝜂; 𝜉0, 1) = Φ−
1 (𝜉, 𝜂; 𝜉0) + Φ−

2 (𝜉, 𝜂; 𝜉0) , (A.34)

where
Φ−

1 (𝜉, 𝜂; 𝜉0)
= (𝜂 − 𝜉)2𝛽 [𝑛/2]∑

𝑘=0

𝑐𝑛𝑘 (1 − 𝜉0)−𝑛+2𝑘 𝐸𝑛
𝑘 (𝜉, 𝜂) , (A.35)

𝑐𝑛𝑘 are nonzero constants, and the function Φ−
2 (𝜉, 𝜂; 𝜉0) satisfies

in 𝐷 ∩ {𝜂 < 𝜉0} the following estimate:

󵄨󵄨󵄨󵄨Φ−
2 (𝜉, 𝜂; 𝜉0)󵄨󵄨󵄨󵄨 ≤ 𝑘1

1 − 𝜉0
(𝜉0 − 𝜂)𝛽 (1 − 𝜂) ,

𝑘1 = const > 0.
(A.36)

Proof. For Φ−(𝜉, 𝜂; 𝜉0, 1) from (44) and (49) we obtain

Φ−󵄨󵄨󵄨󵄨𝜂0=1 = 𝛾 (𝜂 − 𝜉)2𝛽
(𝜉0 − 𝜉)𝛽 (1 − 𝜂)𝛽

⋅ 𝑛∑
𝑖=0

∞∑
𝑗=0

(𝛽)𝑗−𝑖 (𝛽)𝑗 (−𝑛)𝑖 (𝑛 + 1)𝑖
(−1)𝑖 (2𝛽)𝑗 𝑖!𝑗!

× ( 𝑌𝑖

𝑋𝑗
) (𝜉, 𝜂; 𝜉0, 1) .

(A.37)

According to (A.3) and (A.5) we have

(𝛽 − 𝑖)𝑗 = (𝛽 − 𝑖)𝑖+(𝑗−𝑖) = (𝛽 − 𝑖)𝑖 (𝛽)𝑗−𝑖
= (−1)𝑖 (1 − 𝛽)𝑖 (𝛽)𝑗−𝑖 (A.38)

and, consequently,

Φ−󵄨󵄨󵄨󵄨𝜂0=1 = 𝛾 (𝜂 − 𝜉)2𝛽
(𝜉0 − 𝜉)𝛽 (1 − 𝜂)𝛽
⋅ 𝑛∑
𝑖=0

∞∑
𝑗=0

𝑑𝑖𝑏𝑖,𝑗 ( 𝑌𝑖

𝑋𝑗
) (𝜉, 𝜂; 𝜉0, 1) ,

(A.39)

where

𝑑𝑖 fl
(−𝑛)𝑖 (𝑛 + 1)𝑖(1 − 𝛽)𝑖 𝑖! ,

𝑏𝑖,𝑗 fl (𝛽 − 𝑖)𝑗 (𝛽)𝑗(2𝛽)𝑗 𝑗! .
(A.40)

Now we set

Φ−󵄨󵄨󵄨󵄨𝜂0=1
= 𝛾 (𝜂 − 𝜉)2𝛽

(1 − 𝜉)𝛽 (1 − 𝜂)𝛽 {Ψ1 (𝜉, 𝜂; 𝜉0) + Ψ2 (𝜉, 𝜂; 𝜉0)} , (A.41)

with

Ψ1 (𝜉, 𝜂; 𝜉0)
fl ( 1 − 𝜉𝜉0 − 𝜉)𝛽 𝑛∑

𝑖=0

𝑖∑
𝑗=0

𝑑𝑖𝑏𝑖,𝑗 ( 𝑌𝑖

𝑋𝑗
) (𝜉, 𝜂; 𝜉0, 1) ,

Ψ2 (𝜉, 𝜂; 𝜉0)
fl ( 1 − 𝜉𝜉0 − 𝜉)𝛽 𝑛∑

𝑖=0

∞∑
𝑗=𝑖+1

𝑑𝑖𝑏𝑖,𝑗 ( 𝑌𝑖

𝑋𝑗
) (𝜉, 𝜂; 𝜉0, 1) .

(A.42)
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For 0 < 𝜉 < 𝜉0 < 1, using (A.10), we have
(𝜉0 − 𝜉1 − 𝜉 )𝑖−𝑗−𝛽 = ∞∑

𝑞=0

(𝑗 − 𝑖 + 𝛽)𝑞𝑞! (1 − 𝜉01 − 𝜉 )𝑞 , (A.43)

and according to this we decompose Ψ1(𝜉, 𝜂; 𝜉0) as follows:
Ψ1 (𝜉, 𝜂; 𝜉0) = Ψ1,1 (𝜉, 𝜂; 𝜉0) + Ψ1,2 (𝜉, 𝜂; 𝜉0) , (A.44)

with

Ψ1,1 (𝜉, 𝜂; 𝜉0)
fl

𝑛∑
𝑖=0

𝑖∑
𝑗=0

𝑖−𝑗∑
𝑞=0

𝑑𝑖𝑏𝑖,𝑗 (𝑗 − 𝑖 + 𝛽)𝑞𝑞! 𝑍𝑖,𝑗,𝑞 (𝜉, 𝜂; 𝜉0) ,
Ψ1,2 (𝜉, 𝜂; 𝜉0)

fl
𝑛∑
𝑖=0

𝑖∑
𝑗=0

∞∑
𝑞=𝑖−𝑗+1

𝑑𝑖𝑏𝑖,𝑗 (𝑗 − 𝑖 + 𝛽)𝑞𝑞! 𝑍𝑖,𝑗,𝑞 (𝜉, 𝜂; 𝜉0) ,

(A.45)

where

𝑍𝑖,𝑗,𝑞 (𝜉, 𝜂; 𝜉0)
fl ( 1 − 𝜉𝜉0 − 𝜉)𝑖−𝑗 (1 − 𝜉01 − 𝜉 )𝑞 ( 𝑌𝑖

𝑋𝑗
) (𝜉, 𝜂; 𝜉0, 1) . (A.46)

(i) Expansion of the Function Ψ1,1(𝜉, 𝜂; 𝜉0) in Negative Powers
of 1 − 𝜉0. According to (45) and (46) we have

𝑍𝑖,𝑗,𝑞 (𝜉, 𝜂; 𝜉0)
= (−1)𝑖 (1 − 𝜉)𝑖−𝑗−𝑞 (1 − 𝜂)𝑖−𝑗 (𝜂 − 𝜉)𝑗

(2 − 𝜉 − 𝜂)𝑖 (1 − 𝜉0)𝑖−𝑗−𝑞
(A.47)

and, in order to extract the negative powers of 1 − 𝜉0, we
introduce the new index 𝑝 = 𝑖 − 𝑗 − 𝑞 instead of 𝑖. We obtain

Ψ1,1 (𝜉, 𝜂; 𝜉0) = 𝑛∑
𝑝=0

( (1 − 𝜉) (1 − 𝜂)
(2 − 𝜉 − 𝜂) (1 − 𝜉0))𝑝

× 𝑛−𝑝∑
𝑗=0

𝑛−𝑝−𝑗∑
𝑞=0

𝑑𝑝+𝑗+𝑞𝑏𝑝+𝑗+𝑞,𝑗

⋅ (𝛽 − 𝑝 − 𝑞)𝑞
(−1)𝑝+𝑗+𝑞 𝑞! ( 𝜂 − 𝜉2 − 𝜉 − 𝜂)𝑗 ( 1 − 𝜂2 − 𝜉 − 𝜂)𝑞 .

(A.48)

Using (A.3) and (A.5) we simplify

(𝛽 − 𝑝 − 𝑗 − 𝑞)𝑗 (𝛽 − 𝑝 − 𝑞)𝑞(1 − 𝛽)𝑝+𝑗+𝑞 = (−1)𝑗+𝑞(1 − 𝛽)𝑝 (A.49)

and we derive

Ψ1,1 (𝜉, 𝜂; 𝜉0) = 𝑛∑
𝑝=0

(−1)𝑝 𝑑𝑝 ( (1 − 𝜉) (1 − 𝜂)
(2 − 𝜉 − 𝜂) (1 − 𝜉0))𝑝

× 𝑛−𝑝∑
𝑗=0

(𝑝 − 𝑛)𝑗 (𝑛 + 𝑝 + 1)𝑗(𝑝 + 1)𝑗
(𝛽)𝑗(2𝛽)𝑗 𝑗! ( 𝜂 − 𝜉2 − 𝜉 − 𝜂)𝑗

× 𝑛−𝑝−𝑗∑
𝑞=0

(𝑝 − 𝑛 + 𝑗)𝑞 (𝑛 + 𝑝 + 𝑗 + 1)𝑞(𝑝 + 𝑗 + 1)𝑞 𝑞! ( 1 − 𝜂2 − 𝜉 − 𝜂)𝑞 ,

(A.50)

which actually gives
Ψ1,1 (𝜉, 𝜂; 𝜉0)
= 𝑛∑

𝑝=0

(−1)𝑝 𝑑𝑝 ( (1 − 𝜉) (1 − 𝜂)
(2 − 𝜉 − 𝜂) (1 − 𝜉0))𝑝 𝑄𝑝

𝑛 ( 𝜂 − 𝜉2 − 𝜉 − 𝜂) , (A.51)

where 𝑄𝑝
𝑛 (𝑧) is the function (A.21) from Lemma A.2.

Now, according to (A.23) we have nonzero terms in the
sum only for indexes 𝑝 of the same parity as 𝑛. For this
reason let us introduce the new index 𝑘 = (𝑛 − 𝑝)/2 and by
Lemma A.2 we obtain

Ψ1,1 (𝜉, 𝜂; 𝜉0)
= [𝑛/2]∑

𝑘=0

(−1)𝑛 𝑑𝑛−2𝑘 ( (1 − 𝜉) (1 − 𝜂)
(2 − 𝜉 − 𝜂) (1 − 𝜉0))𝑛−2𝑘

× 𝑐𝑛,𝑛−2𝑘 2𝐹1 (𝑛 − 𝑘 + 12 , −𝑘, 12 + 𝛽; ( 𝜂 − 𝜉2 − 𝜉 − 𝜂)2) .
(A.52)

Next, we transform the hypergeometric function in (A.52) by
formula (A.9):

2𝐹1 (𝑛 − 𝑘 + 12 , −𝑘, 12 + 𝛽; ( 𝜂 − 𝜉2 − 𝜉 − 𝜂)2)

= (−1)𝑘 (1/2 − 𝑛)𝑘(1/2 + 𝛽)𝑘 (4 (1 − 𝜉) (1 − 𝜂)
(2 − 𝜉 − 𝜂)2 )

𝑘

⋅ 2𝐹1 (𝑘 − 𝑛 + 𝛽, −𝑘, 12 − 𝑛; (2 − 𝜉 − 𝜂)2
4 (1 − 𝜉) (1 − 𝜂))

= (−1)𝑘 (1/2 − 𝑛)𝑘(1/2 + 𝛽)𝑘
⋅ 𝑘∑
𝑖=0

𝐴𝑘
𝑖 (4 (1 − 𝜉) (1 − 𝜂)

(2 − 𝜉 − 𝜂)2 )
𝑘−𝑖

.

(A.53)

Applying this into (A.52) and defining the following function:

Φ−
1 (𝜉, 𝜂; 𝜉0) fl 𝛾 (𝜂 − 𝜉)2𝛽

(1 − 𝜉)𝛽 (1 − 𝜂)𝛽 Ψ1,1 (𝜉, 𝜂; 𝜉0) , (A.54)

we obtain
Φ−

1 (𝜉, 𝜂; 𝜉0)
= (𝜂 − 𝜉)2𝛽 [𝑛/2]∑

𝑘=0

𝑐𝑛𝑘 (1 − 𝜉0)−𝑛+2𝑘 𝐸𝑛
𝑘 (𝜉, 𝜂) , (A.55)
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with

𝑐𝑛𝑘 fl
22𝑘−𝑛 (1/2 − 𝑛)𝑘(−1)𝑛+𝑘 (1/2 + 𝛽)𝑘 𝛾𝑐𝑛,𝑛−2𝑘𝑑𝑛−2𝑘 ̸= 0. (A.56)

This establishes the equality (A.35).

(ii) Estimation of the Function Ψ1,2(𝜉, 𝜂; 𝜉0) from (A.45). For
the function Ψ1,2(𝜉, 𝜂; 𝜉0) we have

Ψ1,2 (𝜉, 𝜂; 𝜉0) fl 𝑛∑
𝑖=0

𝑖∑
𝑗=0

𝑑𝑖𝑏𝑖,𝑗𝑃𝑖,𝑗 (𝜉, 𝜉0) ( 1 − 𝜉𝜉0 − 𝜉)𝑖−𝑗

⋅ ( 𝑌𝑖

𝑋𝑗
) (𝜉, 𝜂; 𝜉0, 1) ,

(A.57)

where

𝑃𝑖,𝑗 (𝜉, 𝜉0) fl ∞∑
𝑞=𝑖−𝑗+1

(𝑗 − 𝑖 + 𝛽)𝑞𝑞! (1 − 𝜉01 − 𝜉 )𝑞 . (A.58)

In 𝑃𝑖,𝑗(𝜉, 𝜉0) we set the new index 𝑁 = 𝑞 + 𝑗 − 𝑖 − 1 instead
of 𝑞 to obtain

𝑃𝑖,𝑗 (𝜉, 𝜉0) = (−1)𝑖−𝑗+1 (−𝛽)𝑖−𝑗+1
⋅ ∞∑
𝑁=0

(1 + 𝛽)𝑁(1 + 𝑁)𝑖−𝑗+1 𝑁! (1 − 𝜉01 − 𝜉 )𝑁+𝑖−𝑗+1

= (−1)𝑖−𝑗 (1 − 𝛽)𝑖−𝑗
⋅ ∞∑
𝑁=0

(𝛽 + 𝑁) (𝛽)𝑁(1 + 𝑁)𝑖−𝑗+1 𝑁! (1 − 𝜉01 − 𝜉 )𝑁+𝑖−𝑗+1 .

(A.59)

Since

𝛽 + 𝑁
(1 + 𝑁)𝑖−𝑗+1 < 1, 0 < 𝛽 < 1, 𝑗 = 0, 1, . . . , 𝑖, (A.60)

for the function 𝑃𝑖,𝑗(𝜉, 𝜉0), it follows the estimate

󵄨󵄨󵄨󵄨󵄨𝑃𝑖,𝑗 (𝜉, 𝜉0)󵄨󵄨󵄨󵄨󵄨
≤ (1 − 𝛽)𝑖−𝑗 (1 − 𝜉01 − 𝜉 )𝑖−𝑗+1 ∞∑

𝑁=0

(𝛽)𝑁𝑁! (1 − 𝜉01 − 𝜉 )𝑁

= (1 − 𝛽)𝑖−𝑗 (1 − 𝜉0)𝑖−𝑗+1
(1 − 𝜉)𝑖−𝑗+1−𝛽 (𝜉0 − 𝜉)𝛽 ,

(A.61)

in 𝐷 ∩ {𝜂 < 𝜉0}. For the last equality, we used (A.10).
Applying this estimate in (A.57) gives that, in𝐷∩{𝜂 < 𝜉0},

the following inequality holds:

󵄨󵄨󵄨󵄨Ψ1,2 (𝜉, 𝜂; 𝜉0)󵄨󵄨󵄨󵄨 ≤ 𝑘1,1

(1 − 𝜉0)
(𝜉0 − 𝜉)𝛽 (1 − 𝜉)1−𝛽 , (A.62)

where 𝑘1,1 is a positive constant.

(iii) Estimation of the Function Ψ2(𝜉, 𝜂; 𝜉0) from (A.42). For
this function we have

Ψ2 (𝜉, 𝜂; 𝜉0)
= ( 1 − 𝜉𝜉0 − 𝜉)𝛽 𝑛∑

𝑖=0

𝑑𝑖𝑌𝑖 (𝜉, 𝜂; 𝜉0, 1) 𝑄𝑖 (𝜉, 𝜂; 𝜉0) , (A.63)

where

𝑄𝑖 (𝜉, 𝜂; 𝜉0) fl ∞∑
𝑗=𝑖+1

𝑏𝑖,𝑗𝑋−𝑗 (𝜉, 𝜂; 𝜉0, 1) . (A.64)

Now, we set 𝑗 = 𝑁 + 𝑖 + 1 and using (A.3) compute

𝑄𝑖 (𝜉, 𝜂; 𝜉0) = (−1)𝑖 (1 − 𝛽)𝑖
× ∞∑

𝑁=0

(𝛽 + 𝑁) (𝛽)𝑁 (𝛽)𝑁 (𝛽 + 𝑁)𝑖+1(2𝛽)𝑁 (2𝛽 + 𝑁)𝑖+1 (1 + 𝑁)𝑖+1 𝑁!
× 𝑋−𝑁−𝑖−1 (𝜉, 𝜂; 𝜉0, 1) .

(A.65)

Since

(𝛽 + 𝑁) (𝛽 + 𝑁)𝑖+1(2𝛽 + 𝑁)𝑖+1 (1 + 𝑁)𝑖+1 < 1, 0 < 𝛽 < 1, (A.66)

from here it follows the estimate

󵄨󵄨󵄨󵄨𝑄𝑖
󵄨󵄨󵄨󵄨 ≤ (1 − 𝛽)𝑖 𝑋−𝑖−1 (𝜉, 𝜂; 𝜉0, 1)

⋅ 2𝐹1 (𝛽, 𝛽, 2𝛽; 1𝑋 (𝜉, 𝜂; 𝜉0, 1)) (A.67)

in 𝐷 ∩ {𝜂 < 𝜉0}. By (A.12) with 𝛼 = 𝛽 we estimate

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 2𝐹1 (𝛽, 𝛽, 2𝛽; 1𝑋 (𝜉, 𝜂; 𝜉0, 1))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐 (𝛽) (𝜉0 − 𝜉)𝛽 (1 − 𝜂)𝛽

(1 − 𝜉)𝛽 (𝜉0 − 𝜂)𝛽 .
(A.68)

Applying (A.67)-(A.68) in (A.63) and taking into account the
fact that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑌𝑋
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 1,

1𝑋 ≤ 1 − 𝜉01 − 𝜂 , 𝜂 < 𝜉0,
(A.69)

we derive that in 𝐷 ∩ {𝜂 < 𝜉0} the following inequality holds
󵄨󵄨󵄨󵄨Ψ2 (𝜉, 𝜂; 𝜉0)󵄨󵄨󵄨󵄨 ≤ 𝑘1,2

1 − 𝜉01 − 𝜂
(1 − 𝜂)𝛽
(𝜉0 − 𝜂)𝛽 , (A.70)

where 𝑘1,2 is a positive constant.
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Now, to complete the proof, we define

Φ−
2 (𝜉, 𝜂; 𝜉0)
fl

𝛾 (𝜂 − 𝜉)2𝛽
(1 − 𝜉)𝛽 (1 − 𝜂)𝛽 {Ψ1,2 (𝜉, 𝜂; 𝜉0) + Ψ2 (𝜉, 𝜂; 𝜉0)} ,

𝑘1 fl 2max {𝑘1,1, 𝑘1,2} .
(A.71)

Then from (A.62) and (A.70) we come to the inequality
(A.36). This, together with (A.55), gives the statement of the
theorem, because

Φ− (𝜉, 𝜂; 𝜉0, 1) = 𝛾 (𝜂 − 𝜉)2𝛽
(1 − 𝜉)𝛽 (1 − 𝜂)𝛽 {Ψ1,1 (𝜉, 𝜂; 𝜉0)

+ Ψ1,2 (𝜉, 𝜂; 𝜉0) + Ψ2 (𝜉, 𝜂; 𝜉0)} = Φ−
1 (𝜉, 𝜂; 𝜉0)

+ Φ−
2 (𝜉, 𝜂; 𝜉0) .

(A.72)

The proof is complete.
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