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Abstract
An airborne ultrasound imaging system (ABUS) was developed at KIT for reflection tomog-
raphy. The prototype system consists of sixteen ultrasonic transducers surrounding a region
of interest (ROI) of defined shape with a diameter of 50 cm. The transducers have a center
frequency of 200 kHz and a bandwidth of 20 kHz. The prototype aims to demonstrate possible
industrial applications for object classification and localization with airborne ultrasound. This
paper is a detailed version of the previous publication in IEEE Ultrasonics Symposium (IUS)
2017 [1].

Keywords: airborne ultrasound, reflection tomography, object classification, object localiza-
tion

1 Introduction

An airborne ultrasound imaging system (ABUS) was developed at KIT for reflection tomog-
raphy. The prototype system consists of sixteen ultrasonic transducers surrounding a region
of interest (ROI) of defined shape with a diameter of 50 cm. The transducers have a center
frequency of 200 kHz and a bandwidth of 20 kHz. The transducer distribution is optimized for
a maximum coverage of the custom ROI and an homogeneous distribution of image quality
using the optimization method described in [2]. In the current setup, each transducer sends
an ultrasound pulse and the received signals, i.e. A-scans, at all transducers are sampled. In
contrast to recent publications using linear ultrasound arrays [3, 4], this system is capable of
imaging multiple objects from multiple angles around the ROI in a single acquisition using
synthetic aperture focusing technique (SAFT)[5]. The reconstructed images allow recognition
and localization of multiple objects simultaneously. Figure 1 shows the current system setup.
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Figure 1: ABUS with sixteen ultrasonic transducers surrounding the ROI

In this work we aimed to automatically segment, classify and localize objects in the recon-
structed image. The resulting workflow is essential in demonstrating possible applications for
such airborne ultrasound imaging systems. For instance, ABUS can assist the localization of
transparent objects, or objects of different colors with the same shape, where a camera solution
faces difficulties. Figure 2 shows an example application of ABUS in industry, in which the
robot arm can pick the desired objects based on the results from the proposed workflow.

Figure 2: The figure shows a potential industrial application of ABUS for object recognition and localization.
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Figure 3: The images show the comparison between a camera image (left) and a reconstructed ultrasound image with
ABUS (right).

2 Challenges and Objectives

Figure 3 shows an example reconstruction of an object with an asymmetrical feature. In the
reconstructed image the object surfaces are depicted as edges with varying intensities. Be-
sides that, the reconstructed edges contain spiky artifacts as shown in the magnified image.
Due to the sparse transducer arrangement and the low bandwidth of our current setup, objects
positioned closely to each other might not always be separable in the reconstructed images.

At the same time, large acoustic impedance between air and solid objects limits the transmis-
sion of the ultrasound wave through the objects. This leads to acoustic shadowing that results
in incomplete reconstruction of objects despite multiple acquisition angles around the ROI.
These image characteristics restrict the direct application of state of the art pixel oriented, edge
and cluster based segmentation techniques, such as thresholding, active contours and region-
growing methods.

Our objective is to develop an automatic workflow, which can be applied for the varying in-
tensities of object edges to segment, classify and localize the objects. Our goal is to achieve
a classification accuracy higher than 90 % and a localization accuracy comparable to the full
width at half maximum (FWHM) of the point spread function (PSF) of 1.5 cm of the example
system.
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Figure 4: Workflow for automatic object segmentation and classification

3 Methods

Figure 4 shows the proposed workflow for automatic segmentation and object classification
with ABUS. The workflow is a sequential process consisting of image reconstruction, image
segmentation, post-processing of the segmentation results and classification and localization
of the segmented objects.

3.1 Multi-Parameter Image Reconstruction

Before the SAFT reconstruction, we applied echo detection to the sampled A-scans and re-
placed the detected echoes with a sinc pulse with an equivalent FWHM of 1.7 mm, which is
the wavelength of the ultrasound frequency used. Using SAFT, the intensity of each pixel is
a sum of the signal amplitude in the A-scans for each selected sender-receiver-combination
at the time equal to the time-of-flight for an ultrasound wave traveling from the sender to the
pixel and to the receiver. In order to reduce grating-lobe artifacts, we extended our SAFT
reconstruction algorithm with the sliding median filter introduced in [6].

According to this reconstruction method, the reconstructed image details and contrast can be
influenced by changing the sets of sender and receivers and the width of the sliding median
filter used. The two parameters are the angle φ , which limits the amount of receivers per
sender and the median width k. The optimal values of these parameters are dependent on the
size and surface curvature of the objects and their position and orientation in the ROI.

For example, a cylindrical object with a small radius reflects the ultrasound wave over a larger
angle compared to a plane surface. The echoes will be received by more receivers nearby the
sender, hence larger φ and k can be used. This settings are less suitable for reflection at plane
surface, as the reflection will be treated as outliers by the median filter. Figure 5 demonstrates
schematically the SAFT reconstruction with sliding median in ABUS.

The influence of φ and k on the image details is shown in Figure 6 with the same test object
as in Figure 3. With a larger angle φ = 80◦ and median width k = 5, the spiky artifacts of the
reconstructed object were reduced. However these parameters introduced an incomplete edge,
as compared to the reconstruction with φ = 40◦ and k = 3. Since we have full access to the
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sender, hence larger φ and k can be used. This settings are less suitable for reflection at plane
surface, as the reflection will be treated as outliers by the median filter. Figure 5 demonstrates
schematically the SAFT reconstruction with sliding median in ABUS.

The influence of φ and k on the image details is shown in Figure 6 with the same test object
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A-scans, we propose the reconstruction of multiple images using different parameters to obtain
better segmentation for objects with different sizes and surface curvatures.

3.2 Local Maxima based Segmentation

The varying intensity of the reconstructed objects limits the application of a global threshold
to segment the image. Hence, the object segmentation applies local maximum detection using
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Figure 7: The figure shows the steps of an example segmentation.
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a sliding Gaussian window. The width of the Gaussian window can be set according to the
measured point spread function (PSF) of the ultrasound imaging system.

In a separate matrix of the same size as the image, the frequency of a pixel being detected as
a local maximum is recorded. Local maxima with occurrence frequencies lower than 3 were
empirically found to be image artifacts and are discarded. Next, the remaining local maxima
with intensities higher than the 98th percentile are selected, resulting in the image in Figure
6(b). It is generally assumed that higher intensity pixels are more likely to be part of the object
edges and the object edges cover only a small amount of pixels in the images.

Local maxima extracted from the reconstructed images with different parameters are combined
and morphological closing is applied to turn these local maxima into connected regions as
shown in Figure 6(c). Lastly, the morphological skeletons of these regions are calculated to
obtain the segmented object in Figure 6(d).
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with intensities higher than the 98th percentile are selected, resulting in the image in Figure
6(b). It is generally assumed that higher intensity pixels are more likely to be part of the object
edges and the object edges cover only a small amount of pixels in the images.

Local maxima extracted from the reconstructed images with different parameters are combined
and morphological closing is applied to turn these local maxima into connected regions as
shown in Figure 6(c). Lastly, the morphological skeletons of these regions are calculated to
obtain the segmented object in Figure 6(d).
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3.3 Object Grouping or Separation

Due to the sparse transducer arrangement and shadowing effect of ultrasound at obstacles, an
object may be reconstructed incompletely and segmented as separate regions. Post-processing
of the segmentation results can be performed using prior knowledge about the imaging capa-
bility of the ultrasound system to join these regions to a single object.

In this work, we applied the Euclidean distance between pixels of each segmented region to
group regions belonging to the same object. The maximum distance, in which two regions are
grouped as a single object, can be set according to the PSF of the system or the minimum size
of objects to be imaged.

3.4 Feature Extraction and Classification

The classification of the segmented object is implemented with a neural network for pattern
recognition [7]. In this work, the following features are extracted from the segmented object
as input values for the classification:

• Area

• Convex area

• Major axis length

• Minor axis length

• Eccentricity

• Perimeter

• Roundness metric

• Squareness metric

• Within clusters sum of point-to-centroid distances from k-means clustering [8].

The roundness metric R is calculated with

R =
4 ·π ·Area
Perimeter2 . (1)

Whereas the squareness metric S is calculated as

S =
Area

16 ·Perimeter2 . (2)
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For a set of objects to be trained, we extract these features from reconstructions containing
only one object and train the neural network under supervised learning with Bayesian Regu-
larization Backpropagation, which prevents overfitting of the network [9].

3.5 Object Localization

The position and orientation of a segmented object can be determined by calculating the cen-
troid and the major axis of the segmented region. For more complex objects with known
geometry, template matching techniques such as Generalized Hough Transform (GHT) can be
applied [10]. In our work, each object in the data set is assigned with a customized template,
which is a binary image consisting of the outline of the object.

Figure 8 shows an example of the object localization with a template. The yellow area shows
the segmented region with its outer boundary in red. The template is rotated during the ap-
plication of GHT, in order to enable the detection of the object in different orientations. The
position and angle of the template with the largest maximum point in the Hough space indicate
the location and orientation of the object. In Figure 8, the fitted template is plotted with a green
line.
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For a set of objects to be trained, we extract these features from reconstructions containing
only one object and train the neural network under supervised learning with Bayesian Regu-
larization Backpropagation, which prevents overfitting of the network [9].

3.5 Object Localization

The position and orientation of a segmented object can be determined by calculating the cen-
troid and the major axis of the segmented region. For more complex objects with known
geometry, template matching techniques such as Generalized Hough Transform (GHT) can be
applied [10]. In our work, each object in the data set is assigned with a customized template,
which is a binary image consisting of the outline of the object.

Figure 8 shows an example of the object localization with a template. The yellow area shows
the segmented region with its outer boundary in red. The template is rotated during the ap-
plication of GHT, in order to enable the detection of the object in different orientations. The
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(a) Cylinder 1 (b) Asymmetrical cylinder (c) Cylinder 2

(d) Elliptic cylinder (e) Cuboid (f) Triangular prism

Figure 9: Test objects for evaluating the automatic segmentation, classification and localization of objects with ABUS

4 Evaluation

For the evaluation of the proposed workflow, six objects of different shapes and sizes were
designed. These objects have in general a diameter of 6 cm and a height of 12 cm except for
the smaller cylinder with a diameter of 1.5 cm (Cylinder 2 in Figure 9). The cross section of
the objects are primitive shapes, such as circles, ellipses, rectangles, triangles and circles with
an asymmetrical feature as shown in Figure 9. The shown CAD models were used for 3D
printing of the test objects.

The multi-parameter image reconstruction was performed with angles φ = {60◦,80◦,100◦}
and k = {5,6,7}. For each object, forty measurements were performed at discrete positions
and angles in the ROI. This data was divided into 70 % for the training of the neural network
and 15 % each for validation and testing. The neural network has a hidden layer with fifteen
neurons and an output layer with six neurons. The resulting overall confusion matrix after eigh-
teen iterations is shown in Figure 10. A classification accuracy of 98.8 % was achieved in the
training phase, 86.1 % in the validation phase and 88.9 % in the test. The overall classification
accuracy was 95.4 %.

The asymmetrical cylinder was used as the test object in evaluating the localization accuracy.
A total of sixty acquisitions was performed at discrete position and orientation and the ground
truth values were recorded. We used the template as shown in Figure 8 for the GHT and
obtained a positioning accuracy of 5 mm with a standard deviation of 2.7 mm and orientation
accuracy of 2.8◦ with a standard deviation of 5.4◦.
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Figure 10: Confusion matrix of the trained neural network for classifying the six test objects

5 Conclusion

In this work, we introduced an exemplary workflow for automatic object segmentation and
classification for an airborne ultrasound imaging system. The local maxima based segmenta-
tion provides good results despite varying intensity and PSF in the reconstructed images. In
combination with the multi-parameter SAFT, we were able to detect and classify objects of dif-
ferent sizes and surface curvature. Figure 11 shows the ability of the workflow in classifying
and localizing two objects simultaneously with ABUS.

The evaluation results showed a overall classification accuracy higher than the required 90 %
at 95.4 % with an accuracy of 88.9 % in the test phase. A localization accuracy of 5 mm was
achieved, which is smaller than the measured FHWM of PSF of 1.5 cm. These results fulfilled
the given objectives for our workflow.

Due to the sparse transducer arrangement and the limited bandwidth of the current prototype,
the segmentation results cannot differentiate object features smaller than approximately 2 cm.
This could be further improved with usage of more transducers or higher bandwidth of ultra-
sound transducers.
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5 Conclusion

In this work, we introduced an exemplary workflow for automatic object segmentation and
classification for an airborne ultrasound imaging system. The local maxima based segmenta-
tion provides good results despite varying intensity and PSF in the reconstructed images. In
combination with the multi-parameter SAFT, we were able to detect and classify objects of dif-
ferent sizes and surface curvature. Figure 11 shows the ability of the workflow in classifying
and localizing two objects simultaneously with ABUS.

The evaluation results showed a overall classification accuracy higher than the required 90 %
at 95.4 % with an accuracy of 88.9 % in the test phase. A localization accuracy of 5 mm was
achieved, which is smaller than the measured FHWM of PSF of 1.5 cm. These results fulfilled
the given objectives for our workflow.

Due to the sparse transducer arrangement and the limited bandwidth of the current prototype,
the segmentation results cannot differentiate object features smaller than approximately 2 cm.
This could be further improved with usage of more transducers or higher bandwidth of ultra-
sound transducers.
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Figure 11: The figure demonstrates the ability of the workflow to classify and localize two objects simultaneously with
ABUS.
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