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Abstract

A software system under development can be described by several models, which represent
di�erent concerns or abstractions of the system. These models can contain dependent or
even redundant information.

Whenever a software developer changes such models without considering their depen-
dencies, the models can get inconsistent. A developer can hardly maintain an overview
of all models involved in a development process and the dependencies between them.
Therefore, automated mechanisms for restoring the consistency after model changes are
necessary.

Existing approaches provide declarative constructs for specifying the model depen-
dencies and automatically derive consistency-restoring mechanisms from them. These
approaches have limited expressiveness and only allow restricted in�uence on the way
consistency is restored. They prescribe a certain way of restoring consistency although
di�erent possibilities exist.

In this thesis, we present the change-driven response language for the repair of model
consistency. It allows to specify the way of repair explicitly in imperative routines, which
are executed in reaction to speci�ed changes. Besides, the language provides constructs
that encapsulate recurring actions and make them reusable. We introduce a consistency
de�nition focused on comprehensibility and a categorization of possible changes within
models. The presented language re�ects a generic structure for change-driven consistency
repair, derived from our consistency de�nition.

We provide an evaluation of our approach in a case study realizing the consistency of
architecture descriptions and their implementation in object-oriented code. The evaluation
con�rms the applicability of the proposed language for preserving consistency in that
exemplary case and reveals bene�ts compared with a manual implementation.
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Zusammenfassung

Ein Software-System kann während der Entwicklung durch verschiedene Modelle beschrie-
ben werden, um unterschiedliche Teile oder Abstraktionen des Systems darzustellen. Diese
Modelle können voneinander abhängige oder sogar redundante Informationen enthalten.

Wenn ein Softwareentwickler an solchen Modellen Änderungen vornimmt ohne diese
Abhängigkeiten zu beachten, können die Modelle inkonsistent werden. Ein Entwickler ist
kaum in der Lage einen Überblick über alle Modelle eines Entwicklungsprozesses und deren
Abhängigkeiten zu behalten. Daher sind automatisierte Verfahren zur Wiederherstellung
von Konsistenz nach Modelländerungen notwendig.

Existierende Methoden erlauben die deklarative Spezi�kation von Abhängigkeiten zwi-
schen Modellen, aus denen automatisiert Mechanismen zur Konsistenzerhaltung abgeleitet
werden. Diese Ansätze sind in ihrer Ausdrucksmächtigkeit beschränkt und bieten nur ein-
geschränkten Ein�uss auf die Art und Weise in der Konsistenz wiederhergestellt wird.
Sie legen automatisiert eine Art der Wiederherstellung der Konsistenz fest, obwohl es
verschiedene Möglichkeiten dafür gäbe.

In dieser Arbeit stellen wir die änderungsgetriebene Response-Sprache für die Konsis-
tenzerhaltung von Modellen vor. Sie erlaubt es, die Art und Weise der Wiederherstellung
von Konsistenz explizit in imperativen Programmen festzulegen, welche als Reaktion auf
festgelegte Änderungen ausgeführt werden. Zusätzlich bietet sie Sprachkonstrukte an, die
wiederkehrende Reaktionen kapseln und wiederverwendbar machen. Wir führen einen
Konsistenzbegri� mit dem Fokus auf Verständlichkeit ein und stellen eine Kategorisierung
von möglichen Modelländerungen vor. Die Sprache ist entsprechend einer allgemeingülti-
gen Struktur für die änderungsgetriebene Wiederherstellung von Konsistenz aufgebaut,
welche wir aus unserem Konsistenzbegri� herleiten.

Wir stellen eine Evaluation unseres Ansatzes anhand einer Fallstudie zur Konsistenzer-
haltung von Architekturbeschreibungen und deren Implementierung in objektorientiertem
Code vor. Die Evaluation zeigt die Anwendbarkeit der vorgestellten Sprache für die Sicher-
stellung von Modellkonsistenz in diesem konkreten Fall und verdeutlicht einige Vorteile
gegenüber einer manuellen Implementierung der Mechanismen zur Konsistenzerhaltung.
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1 Introduction

Information about a software system is typically spread across several artifacts. In common
software development processes, those artifacts can be the documentation of requirements,
the design documentation and the implementation. An artifact contains information
that represents a certain aspect or abstraction of the system under development. This
information is also present within, or dependent from other artifacts.

The dependencies between di�erent artifacts are often not formally documented [9].
Problems arising from such redundant or dependent information can be recognized in
software development processes, in which a system is designed in UML diagrams and
implemented in program code. The tracing information, which speci�es the diagram
elements to which a code fragment corresponds, is not recorded explicitly. It is just
declared implicitly by equal naming. The absence of this tracing information can easily
lead to inconsistencies because the modi�cations during an evolution of one artifact may
not be propagated to the corresponding elements in other artifacts. A simple example is
the renaming of a class in program code, which is not propagated to a related UML class
diagram.

For certain cases of particular relevance, approaches for preserving consistency between
artifacts have been developed. For example, consistency preservation between design
documentation in form of UML diagrams and program code can be achieved with several
round-trip engineering approaches. Examples are UML Lab, which is based on Fujaba [70],
Borland Together [14] or the Enterprise Architect [87]. Such tools provide a consistency-
preserving mechanism for two certain kinds of artifacts. Nevertheless, a software system
usually consists of several artifacts, which all have to be kept consistent.

1.1 Describing So�ware Systems with Models

Models are used in several engineering disciplines for di�erent tasks. A model describes
an abstract representation of a real or an arti�cial object. Constructional engineers model
components of planned buildings by describing only some of their properties, such as
their dimensions and materials. These models can be used to compute or simulate the
behavior of the components regarding di�erent load situations to validate that they will
sustain realistic load scenarios. Other roles within the construction process of the building
potentially require models that represent other aspects of the same components. An
architect may require a surface model of the components to ensure that they �t into each
other and to discuss the building appearance with the building owner.

Model-driven software development brings these concepts to the domain of software
engineering and becomes a common approach in various domains. Software models
raise the abstraction of software to a higher level by omitting language-speci�c elements.
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Di�erent models of the same software system represent certain aspects of the system,
which are relevant for di�erent developer roles. For example, a software architect can
work on an architecture model that represents an abstraction of the program code, which
in turn software engineers works on.

While UML diagrams are commonly referred to as software models, requirements
documentation and even program code can also be treated and described as models. Apart
from these common models, in model-driven development environments several domain-
speci�c models can be used for the representation of di�erent aspects of the system.
For example, business processes can be modeled using the Business Process Model and
Notation (BPMN) [71], and software for the automotive domain is developed with models
like AUTOSAR [85], ASCET [31] or AMALTHEA [86]. Finally, in model-driven software
engineering, any artifact that is involved in the software development process is considered
as a model.

The relationships between models are of central interest in model-driven development.
Like described for UML diagrams and program code in the beginning, models contain
interrelated information. Especially the �nally delivered artifact, the program code or its
compilation, respectively, combines the information of all models that describe the system
and thus is related to most of the used models. To describe these interdependencies and
to derive models from others, model transformations are used. A model transformation
describes how one model can be transformed into another and thus implicitly de�nes the
relation between these two models. The speci�cation of model transformations is simpli�ed
through model transformation languages. They allow a speci�cation of transformations
that abstracts from technical requirements of transformations and generate executable
code from such a speci�cation.

1.2 Preserving Model Consistency

In general, the avoidance of inconsistencies due to interrelated information can be ad-
dressed in two ways. First, it can be attempted to avoid the existence of interrelated
information. Second, interrelated information can be explicitly kept consistent.

The avoidance of the existence of interrelated information can be achieved by the de�ni-
tion of a single model that contains all system-relevant information without redundancies.
Such a so called single underlying model was introduced by Atkinson, Stoll, and Bostan [6].
Nevertheless, in practice this approach is hardly applicable. Di�erent domains use di�erent
models that would all have to be integrated and representable in such a single model.

The Vitruvius approach [56] addresses the problem by de�ning a virtually single
underlying model that in turn consists of a set of models, which can only be modi�ed
through well-de�ned views. Internally, the redundant information of the models is kept
consistent by an explicit consistency mechanism. Therefore, the developer has to de�ne
the relations between di�erent models that have to be kept consistent by updating related
models whenever one gets changed.

Such model relations and their consistency preservation can be expressed through model
transformations. The Vitruvius approach proposes a transformation language family,
which provides di�erent transformation languages for preserving model consistency. One
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of these is the mapping language. It allows the speci�cation of relationships between mod-
els, which are automatically transformed into program code that ensures the satisfaction
of these relations. Another language is the response language, which is intended to de�ne
imperative repair routines for relations between models that get executed whenever a
model is changed.

1.3 The Response Language

Several model transformation languages already exist and can be used for preserving
model consistency. Nevertheless, transformation languages can be used for di�erent
purposes, such as model analysis, model validation or code generation, rather than only
for ensuring model consistency. Consequently, the specialization of a transformation
language for preserving consistency can take advantage of the characteristics of this special
domain. Apart from that, transformation languages mostly assume a completely automated
execution of the speci�ed transformations. However, model consistency preservation
sometimes requires further information or even actions from the model user.

Most existing approaches for specialized consistency preservation languages have two
characteristics. First, they rely on a formal de�nition of model consistency. This makes it
easier to provide appropriate language statements and to reason that they are su�cient
for ensuring consistency. Nevertheless, it complicates the speci�cation of consistency
constraints for a developer. Second, they provide a highly declarative transformation
speci�cation, which allows to describe the relations between two models from which
certain consistency-restoring transformations for both directions are automatically derived.
This restricts the possible in�uence of the developer on the consistency repair because he
can only specify constraints for consistency but not how they are restored.

In this thesis, we develop the structure and concepts for a language, called the response

language, which relaxes these characteristics of existing model consistency languages.
First, we propose a consistency de�nition that is more comprehensible for developers who
specify consistency relationships. Second, we de�ne the language constructs in a way
that they always allow the speci�cation of imperative Turing-complete code for providing
maximum expressiveness. At the same time, we tailor the language constructs to the needs
of consistency-restoring transformations. Based on the insight that models can only get
inconsistent if one of them gets changed, the developed language triggers transformations
in reaction to changes.

In addition to the concepts, we develop the integration of the concepts into an exemplary
language. We also provide a prototypical reference implementation of this language in the
context of the Vitruvius project.

This thesis answers the following research questions:

Q1. Which changes can occur within models and how can they be characterized and
categorized?

Q2. Which operation steps perform consistency-preserving, change-driven model trans-
formations and what is their purpose?

Q3. How can a transformation language be designed which
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(i) de�nes transformations that react to model changes,
(ii) provides language constructs for the steps identi�ed by Q2,
(iii) and remains maximum expressive in terms of being Turing-complete?

1.4 Structure of the Thesis

This thesis is subdivided into an introduction of foundations and a running example in
chapter 2 and 3, the presentation of our approach in chapter 4 and 5, its prototypical
implementation and evaluation in chapter 6 and 7, and �nally the comparison with related
work and a conclusion in chapter 8 and 9. In particular, the individual chapters present
the following:

Chapter 2 introduces the foundations of our approach and of its implementation. It gives
an overview of di�erent concepts of model-driven software development and its subtopic
of view-based software development, as well as a practical realization of the concepts in
the Eclipse Modeling Framework.

Chapter 3 de�nes our running example scenario, the consistency of software architecture
descriptions and code models.

In chapter 4, model changes and model consistency are introduced. We �rst provide
our de�nition of model consistency and model changes and explain the requirements to
a change-driven model transformation environment. Afterwards, change-driven model
consistency repair, the core concept of this thesis, and a structure for consistency-restoring
transformations are discussed.

Chapter 5 introduces the response language. It �rst derives a language structure from
the general structure of consistency-restoring transformations. Thereafter, the purpose of
each part and necessary language constructs for these parts are argued. We develop an
extension for the basic language structure, which improves the reusability of consistency-
restoring transformations. After considering further properties and responsibilities of the
language and its usage, possible language extensions are presented.

In chapter 6, the prototypical implementation of the response language structure and
concepts in the context of the Vitruvius approach is outlined. After an introduction to
some Vitruvius speci�cs, the runtime environment and structure of the �nal transfor-
mations is explained. Afterwards, some aspects of the language speci�cation and code
generation are discussed.

Chapter 7 explains the evaluation of our approach. First, the completeness of our ap-
proach in terms of ful�lling the requirements to its expressiveness, de�ned in research
question Q3, is validated. Subsequently, the applicability is shown in a case study, which
also compares the approach to manually written transformations. Finally, some considera-
tions regarding the evolvability of transformations are provided.

Chapter 8 gives an overview of related work and exposes the di�erences of our approach
compared to existing ones.

Finally, chapter 9 closes the thesis with a conclusion, which summarizes the results of
our work and gives an overview of possible future work.
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This chapter provides an overview of the foundations on which this thesis is based. Initially,
the idea of model-driven software-development and its terminology is introduced, before
model transformations, its properties and characteristics are discussed in more detail. After
giving the introduction to a concrete modeling framework in the Eclipse environment and
some important tools for it, the idea of view-based software development and di�erent
approaches in this context are explained. The chapter ends with an overview of change-
driven development techniques in general and their relation to model-driven development.

2.1 Model-Driven So�ware Development

Model-driven software development (MDSD) is a generic term for techniques that auto-
matically generate executable software from formal models [89, p. 11]. It is also referred
to as model-driven engineering (MDE) or short model-driven development (MDD). The
central idea is to raise the level of abstraction of software development from program code
to models, which are automatically transformed into executable programs. MDSD aims to
increase the per-developer productivity, as well as the quality and reusability of software
components [89].

Models are commonly used in software development to describe certain aspects of a
software system. While the �nal artifact of a software development process is usually the
program code or its compilation, many other models are used to describe, for example,
requirements or the architecture of a system. An example for commonly used models in
the development process are UML diagrams [75]. By abstracting from the implementation,
models reduce the complexity of the artifact to deal with because they only consider a
certain aspect or extract of the system instead of the whole one.

More precisely, a model is a representation of objects and their relations restricted
to the needs of a special use case. Several established model de�nitions have been pro-
posed, whereof the most suitable in the context of software development is given by
Stachowiak [88]. According to him, a model is characterized by at least three properties.
A model is a mapping of some kind of original, it is a reduction of the original, as it does
not provide each attribute of the original, and it has a pragmatism, as it is designed for a
certain context and cannot necessarily be used in other contexts. Furthermore, Stachowiak
distinguishes between descriptive and prescriptive models. While descriptive models
represent objects how they actually are and work, prescriptive ones prescribe how objects
are intended to be.

Because models provide di�erent abstractions of a system, they usually contain redun-
dant or dependent information. For example, the information of a UML class diagram is
almost completely contained in the program code as well. Consequently, the evolution of a
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model requires other models to updated consistently. The propagation of changes from one
model to another that contains redundant or dependent information and back is referred
to as round-trip engineering [46]. Without appropriate tools, the consistency has to be
ensured by the developer, who needs to have the knowledge about all redundancies and
dependencies between the di�erent models within a development process of a software
system.

In MDSD, metamodels are of special interest. They de�ne how valid models have to
be created [5] and are in turn models themselves. Models that are conform to di�erent
metamodels are referred to as heterogeneous models. In addition to models and metamodels,
a central artifact in MDSD are model transformations. While models completely describe
a certain aspect of a software system, transformations specify how these models can be
transformed into each other. Consequently, transformations de�ne the relations between
models and can be used to achieve consistency of di�erent models. Model transformations
are introduced in detail in section 2.2.

2.1.1 Metamodels

A metamodel speci�es how valid models, which are referred to as instances of the metamo-
del, have to look like. According to Stahl et al., a metamodel consists of four artifacts, which
are the abstract syntax, the static and dynamic semantics, and concrete syntaxes [89, pp.
28]. Atkinson and Kühne describe the static semantics as well-formedness requirements
and the dynamic semantics simply as semantics [5].

The most essential component of a metamodel is the abstract syntax, which represents
the available model elements and relations between them. It de�nes the structure of
documents that are written in that language and at the same time the structure in which
such a document is internally represented, analyzed and persisted. A parser creates the
representation of a document according to an abstract syntax, which is the basis for
machine processing of the contents, such as code generation.

The static semantics specify well-formedness constraints that a valid model must ful-
�ll [5]. Harel and Rumpe call these semantics context conditions, which are checkable
conditions that reduce the set of valid metamodel instances in addition to the restrictions
of the abstract syntax [42]. These constraints can, for example, be speci�ed using the
Object Constraint Language (OCL) [74].

One or more concrete syntaxes specify how a metamodel instance can be represented.
Examples for di�erent forms of concrete syntaxes are textual, graphical or tree-based
representations. These syntaxes are essential for the human interaction with the language
and for the persistence of models.

The last component of a metamodel is its dynamic semantics, which de�nes the mean-
ings of the language elements, their relationships and representations. The semantics of
a language can be de�ned in free text or in more formal ways. One example are trans-
formational semantics [78], which allow the de�nition of semantics by specifying the
transformation into another language that already has de�ned semantics. An example is
the speci�cation of a transformation from a developed language into Java code, which
already has a de�ned semantics. In this thesis, we describe the dynamic semantics of a
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metamodel in free text, whereas the implementation of our response language de�nes its
dynamic semantics through the transformation into executable Java code.

We refer to the elements of a metamodel as metaclasses. If it is clear that elements of a
metamodel instead of a model are meant, we also simply refer to them as model elements.

2.1.2 Meta-Levels

A concrete model is an instance of a metamodel, thus a set of objects and relations satisfying
the abstract syntax and semantics. In fact, each model has a metamodel it conforms to,
and because a metamodel has a metamodel itself, that model is called the meta-metamodel.
The arising cascade of metamodels can be bound by a metamodel that is self-de�ning,
which means that it is its own metamodel. These hierarchies can consists of a theoretically
arbitrary number of so called meta-levels or meta-layers.

An example for a self-describing metamodel is the Meta Object Facility (MOF) [73],
de�ned by the Object Management Group (OMG). The MOF is, for example, used for spec-
ifying the Uni�ed Modeling Language (UML) [75]. The UML uses a four-layer hierarchy
with the levels M3 to M0, in which the MOF is speci�ed in the upper level, called M3.
The next level, called M2, contains the UML speci�cation that relies on the MOF as its
metamodel. M1 contains instances of the UML speci�cation, thus concrete UML diagrams.
Finally, M0 covers the real objects, which are descried by the models on M1 level. The
MOF has a subset called Essential MOF (EMOF), which are introduced in subsection 2.3.1.

In a general four-layer hierarchy, models are placed on M1, their metamodels are located
on M2 and have a self-describing meta-metamodel on M3. Because the models that we use
in this thesis rely on the MOF and on a four-layer hierarchy of models, we always refer to
the self-describing metamodel of our model hierarchy as the meta-metamodel.

2.1.3 Domain-Specific Languages

A domain-speci�c language (DSL) is “a computer programming language of limited expres-
siveness focused on a particular domain” [35]. In contrast to a general-purpose language
(GPL), which is designed to implement arbitrary programs in any domain, a DSL is de-
signed for a special domain. Such a language provides constructs that provide a more
compact or convenient way to implement scenarios that occur recurrently in that domain.
However, it is possibly much more di�cult or even impossible to implement scenarios
that are not envisaged by the language.

Certainly, the given de�nition of a DSL does not provide a way of de�nitely classifying
a language as DSL or GPL. There is even no common understanding in literature of what a
DSL is. The main characteristic of a DSL is its purpose. According to Krahn [53], a language
can be considered as a DSL if it is based on the semantic aspects of a special domain, if
it allows to solve problems of the domain in a compact way, and if its expressiveness is
constrained to the needs of the domain.

In the end, a DSL can be considered as a metamodel because it consists of the same
components as a metamodel does. It comprises an abstract syntax, a static semantics, one
or sometimes more concrete syntaxes and a de�ned semantics. In literature, there is no
clear separation between those two terms. To distinguish them in this thesis, the term
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metamodel is used if the focus is the structural representation of data and its behavior with
little importance of the concrete syntax. It is called DSL if the focus is the speci�cation of
a new language for the convenient speci�cation of domain-speci�c concepts, where the
concrete syntax is very important due to user interaction. Thus, a DSL is tightly coupled
to its concrete syntax, whereas a metamodel focuses on the concepts and semantics.

DSLs can be separated into internal and external DSLs [35]. Internal DSLs are embedded
into another language and reuse concepts of that host language. They �nally provide a
“kind of API” [35, ch. 6]. Consequently, the implementation is generally easier in contrast
to an external DSL, but the language is constrained to the constructs the host language
provides. An example for an internal DSL are UML Pro�les, a mechanism of the UML [75]
that allows the de�nition and dynamic application of extensions to the UML language
core. The bene�t of an internal DSL, apart from the generally easier implementation, is
the easier testing and debugging because existing concepts and tools of the host language
can be reused. Additionally, complete language constructs of the host language can be
reused. For example, if a DSL requires the availability of an imperative Turing-complete
programming language, extending an existing programming language is potentially easier
than the reimplementation of such a language.

An external DSL is a completely independent language that has to de�ne its own abstract
syntax and semantics and thus potentially requires higher e�ort for its implementation.
External DSLs are usually more expressive and �exible than internal DSLs are. They
bene�t from their complete independence from any existing language and concept. This
independence allows to �t them precisely to the requirements of the language and makes
them independent of restrictions of a host language. Nevertheless, it cannot bene�t from
reusing concepts provided by a host language.

In this thesis, external as well as internal DSLs are used. While the developed language
generally de�nes an external DSL, it also reuses an existing programming language and
extends it with an internal DSL.

The development of DSLs is facilitated by language workbenches [35]. A language
workbench provides a set of tools for developing especially external DSLs. These tools can,
for example, cover the provision of parser generators for a speci�c grammar speci�cation
language or a generator for editors for the DSL with features such as code-completion and
syntax highlighting. Some language workbenches even supply automated code generators
that just need a speci�cation of the relation between constructs of the DSL and constructs
of the programming language they generate code for. The language workbench Xtext (see
subsection 2.3.2) allows this kind of code generation for Java.

2.2 Model Transformations

Model transformations specify how models can be converted into other models. In general,
a model transformation gets a set of models as its input and provides a set of models as
its output. Nonetheless, we only consider transformations with a single input and output
model. A formalization of model transformations is given in by Amelunxen and Schürr [1].

Transformations can be classi�ed as model-to-model or model-to-code transformations.
The former ones de�ne conversions of a model into another one, which can be an instance
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Figure 2.1: Basic concepts of model transformations, adapted from [21]

of a new or the same metamodel. The latter ones specify how a model can be transformed
into program code, such as Java. Because code can also be treated as a model and is treated
as such in this thesis, we do not distinguish between those types of transformations. We
consider model transformations always as being model-to-model.

The basic concepts of a model transformation are visualized in Figure 2.1. A transfor-
mation de�nition refers to a source and a target metamodel and speci�es how an instance
of the source metamodel shall be transformed into an instance of the target metamodel.
To execute a transformation, a transformation engine is required. It transforms the trans-
formation de�nition into executable code and runs this code on a pair of models that are
instances of the source and target metamodels of the transformation. In this basic concept,
a clear speci�cation of the source and target model is assumed, so that one model is only
read, while the other is written to.

Because model transformations are of central signi�cance in MDSD, several languages
and tools for specifying them have been developed. Such a language usually speci�es a
DSL to write transformations in and provides a transformation engine that interprets the
transformations written in the DSL and executes them. A popular example in the context
of the MOF is the Query/View/Transformation (QVT) standard [72], which is also de�ned
by the OMG. Based on it, several model transformation languages have been de�ned.
Examples are QVT-Operational (QVT-O), an imperative language, and QVT-Relations
(QVT-R), a descriptive, relational language. An example for a hybrid approach that allows
the speci�cation of transformation using imperative and declarative constructs is the Atlas
Transformation Language (ATL) [52].

In a survey about transformation approaches, Czarnecki and Helsen provide an overview
of the characteristics of model transformations [21]. Some of these characteristics, which
are relevant for this thesis, are introduced in the following.

2.2.1 General Properties of Transformations

One property of model transformations is the source-target relationship. While some ap-
proaches assume the target model to be di�erent from the source model, other approaches
use the same model as the source and target of a transformation. If the source and target
model of a transformation are the same, the transformation is characterized as in-place.
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Another important property of a transformation is the directionality. Model transfor-
mations between pairs of models can either be de�ned unidirectional or bidirectional. A
unidirectional transformation de�nes how in instance of one metamodel can be trans-
formed into an instance of the same or another metamodel. If instances of both metamodels
can be transformed into each other, transformations for both directions have to be de�ned
in a unidirectional approach. To avoid the duplicate speci�cation of mappings between
model elements, bidirectional approaches provide a way to specify the relationship be-
tween elements of di�erent models, from which transformations in both directions are
derived.

2.2.2 Transformation Execution Modes

The simplest execution mode of model transformations is the batch mode. Batch transfor-
mations take an input model and completely derive a new target model by applying the
transformation rules. The re-execution of a batch transformation delivers a completely new
model, which overrides information that was potentially added to a previously generated
model.

Incremental transformations reuse the model that was generated through a previous
transformation and updates it according to the transformation de�nitions. Therefore, the
transformation has to identify the modi�cations in the source model and add, remove or
modify elements according to the transformation rules.

Incrementality can furthermore be subdivided into source-incrementality and target-

incrementality [21]. The intuitive kind of incrementality is the target-incrementality, which
concerns about updating the target model elements instead of generating a new target
model whenever the source model changes. The source-incrementality of a transformation
states how much of the source model has to be re-investigated by a transformation
after a modi�cation. Source-incrementality can be improved by more information about
the modi�cation. Speci�c information about the concrete change, such as the modi�ed
elements, reduces the extract of the source model to be considered by the transformation.

To update elements that were created by a previous transformation execution, they must
be retrievable during a re-execution of the transformation. Therefore, some kind of trace
information has to be provided, from which the elements that a previous transformation
execution created can be retrieved. A common approach for providing such tracing
information is the creation of links between source and target elements of a transformation
rule and the assignment of these links to the transformation rule they were created in.
Languages like QVT-O [72] create these trace links automatically. Nevertheless, other
approaches, which even abstract from the transformation rules in which the elements
were created, are possible and are used in this thesis.

Incrementality is not a property that a transformation can have or not, but it is a
continuous property whose signi�cance depends on the amount of modi�cations that are
performed whenever the transformation is executed. Highly incremental transformations
only consider a small set of elements after a model change and, therefore, only re-execute
few transformations. The other extreme is the batch mode, which has no incrementality.

To achieve incrementality, the di�erences between the lastly transformed and the actual
state of the source model have to be identi�ed. This can be achieved by providing both
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Figure 2.2: Execution modes of model transformations

states to the transformation and let it compare them to identify the modi�ed parts. This
kind of change detection is called di�erence-based or state-based. If modi�cations to the
model are monitored and provided to the transformation in addition to the models, the
change detection is called delta-based. Transformations that rely on a delta-based change
detection are called change-driven [10] and inhibit a high degree of source-incrementality.

We distinguish between general transformations, incremental transformations and
change-driven transformations. The relations between these execution modes are shown
in Figure 2.2.

2.2.3 Transformation Specification Approaches

The most simple approach to write transformations is the direct model manipulation. In
this approach, only the models are provided, and transformation rules, the transformation
execution and tracing have to be implemented in imperative code manually. Transforma-
tion languages usually attempt to abstract from the di�erent facilities of transformations
and provide di�erent kinds of transformation speci�cations. They can either be de�ned
with imperative statements, with declarative rules or with a combination of both.

In imperative approaches, a transformation rule speci�es the steps that have to be
performed when it gets executed. For example, it speci�es which new values or references
have to be assigned and which elements are created or removed. Furthermore, the execution
order of the statements is usually speci�ed. Imperative transformation rules can be
executed without much further e�ort.

Declarative approaches abstract from the speci�cation of the control �ow and from
the speci�cation of concrete operations that have to be performed. A declarative trans-
formation rule does only de�ne constraints that have to hold after its execution instead
of specifying what has to be done during its execution. The transformation language
generates executable code from these constraints, which performs model modi�cations to
achieve the satisfaction of the speci�ed constraints. This process is referred to as opera-
tionalization. Consequently, declarative approaches reach a higher degree of abstraction
than imperative approaches usually do. Bidirectional transformations are usually realized
through declarative approaches because an imperative speci�cation always describes how
to come from one model to the other without considering the way back. Nevertheless, in
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contrast to Turing-complete, imperative statements, declarative rules have a limited ex-
pressiveness. For example, complex relationships between attributes cannot be expressed
as their calculation cannot be derived for both directions.

Czarnecki and Helsen further distinguish the approaches into, among others, relational,
graph-based and operational approaches [21]. Relational approaches, such as QVT-R [72],
require the speci�cation of relations between elements in the source and target metamodels,
which are automatically ensured in model instances by the transformation engine. Graph-
based approaches treat the models as graphs and de�ne graph patterns, which are used to
�nd relevant structures in the model graphs by matching a pattern and replacing it with
another one. Operational approaches are closest to direct manipulation approaches as
they still de�ne operation that have to be performed on the models, but usually provide no
imperative, Turing-complete language but a restricted query language, like in QVT-O [72].

In this thesis, we combine declarative statements to abstract from certain aspects of
model transformations and imperative statements to provide a maximum, Turing-complete
expressiveness.

2.3 The Eclipse Modeling Framework

Eclipse is a “community of tools, projects and collaborative working groups” [95]. It
consists of several projects in the context of software development, which rely on the
Eclipse framework. This framework provides a rudimentary core application that can
be extended by plugins according to the Hollywood principle “Don’t call us, we’ll call
you” [61]. A popular set of tools for the software development with Java is provided in
the Eclipse Integrated Development Environment (IDE) for Java Developers [94].

The Eclipse Modeling Framework (EMF) is a project extending the Eclipse platform with
modeling capabilities [90]. It provides concepts and tools for de�ning models based on a
meta-metamodel called Ecore, which is further explained in subsection 2.3.1. The purpose
of EMF is the uni�cation and integration of models into the software development process
as primary artifacts [90, p. 15].

EMF provides graphical tree-based editors for creating and modifying metamodels based
on Ecore. Based on these metamodels, Eclipse plugins that provide uni�ed graphical tree-
based editors for the instances of these metamodels can be generated. Furthermore, EMF
provides a code generation for Ecore based metamodels. This code generation transforms
the metamodels into Java code, which represents the metaclasses as Java classes and the
relations between metaclasses as object references. The generic model element interface,
which all available and generated model elements implement, is the EObject. Certainly, the
code generation is more elaborate and, for example, hides the model instantiation through
a factory implementation for a better exchangeability of the metamodel realization, but
those aspects are not relevant for this thesis.

Several tools have been developed for or based on EMF and especially the contained
Ecore meta-metamodel. They cover di�erent aspects of model-driven software develop-
ment, such as the comparison and validation of models. Several model transformation
languages are implemented for EMF, for example, QVT [72], ATL [52], and the more Java-
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aligned Xtend, which is explained in subsection 2.3.3. The development of DSLs and textual
editors for them can be conducted with Xtext, which is introduced in subsection 2.3.2.

2.3.1 Essential Meta-Object Facility and Ecore

The Essential Meta Object Facility (EMOF) is a self-describing meta-metamodel and is part
of the MOF [73], de�ned by the OMG. It is contained within the Complete MOF (CMOF),
which provides the full capability of the MOF standard. EMOF is “designed to match the
capabilities of object oriented programming languages” [73, p. 3] and thus provides a
reduced meta-metamodel in contrast to CMOF.

The EMOF meta-metamodel de�nes types, properties and operations. Types can in turn
be data types or classes, properties belong to classes and reference other classes or data
types, and operations belong to classes. Obviously, the EMOF elements are aligned with
object-oriented programming languages, which is due to the intended usage of EMOF in
that context.

Ecore is the meta-metamodel that ships with EMF. It is conform to EMOF, which means
that Ecore-based models can be converted into EMOF-based models without information
loss. One relevant di�erence between EMOF and Ecore is the distinction of properties into
attributes and references in Ecore. In contrast to EMOF, Ecore has a concrete implementa-
tion in EMF and can be seen as a reference implementation of EMOF.

The MOF, and as a result also EMOF, use the XML Metadata Interchange (XMI) for-
mat [76] for persisting model data. XMI speci�es a generic, XML-based format for persist-
ing and interchanging models. EMF uses XMI for persisting Ecore-based models as well,
which allows all EMF tools to rely on this persistence format.

2.3.2 Textual Domain-Specific Languages with Xtext

Xtext is an EMF-based framework that supports the implementation of textual DSLs [24]
and is developed by the itemis AG. The speci�cation of a DSL in Xtext consists of three
parts. The �rst part is the speci�cation of the abstract and concrete syntax of the language
in a special editor. Secondly, Xtext provides di�erent extension points, based on the
abstract syntax, for specifying the static semantics of the language. The third part is the
speci�cation of a transformation of the abstract syntax into another model with de�ned
semantics for determining the dynamic semantics of the language.

The Xtext framework provides an editor in which a concrete textual syntax for the
language can be speci�ed in an EBNF-like notation. From this speci�cation, it automatically
generates an EMF-based metamodel that represents the abstract syntax of the language, a
parser that extracts the abstract syntax from a textual model representation according to
the speci�ed concrete syntax, and an editor with syntax highlighting, code completion,
error checking and further features improving its usability. The editor also allows to
specify some static semantics of the language, for example, through references to other
elements of the language.

From the syntax speci�cation of the language, an Ecore-based metamodel and several
classes for de�ning the validation, scoping, linking and other semantics are generated.
These classes extend prede�ned implementations for the di�erent aspects that can be
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reused. As an example, namespace-aware scoping implementations are provided and ease
the access management to variables based on namespaces, like in the Java programming
language.

To de�ne the dynamic semantics of the speci�ed language, Xtext provides the possibility
to implement a generator that takes a model according to the speci�ed language and
transforms it into another model. The mechanism aims to transform the model into textual
program code that can be executed.

To ease the code generation for languages that are similar to Java code, Xtext also
provides a mechanism to convert the model into a Java code model instead of a textual
code representation. The transformation is automatically performed by Xtext and only
requires the speci�cation of mappings between the model elements and Java language
constructs. This also allows to reuse scoping and validation mechanisms of the Java
language. Mapping a language construct to a method in the Java code model automatically
provides access to the de�ned method parameters and to �elds of the containing class, and
requires the return type to �t to the speci�ed method return type.

All developed artifacts are automatically integrated by Xtext to a complete language
setup, which performs the validation and code generation for given models and also
the parsing for textual representations. Furthermore, Xtext generates an editor for the
language, which evaluates scoping and validation rules while editing the document and
performs the code generation whenever the document is saved. The language developer
can implement further extensions for this editor, such as an outline speci�cation that
represents the document structure.

DSLs that are de�ned with Xtext can be reused in other Xtext-based DSLs because
Xtext provides a mechanism for extending and using already existing languages. One
language that is shipped with Xtext and is predestined for being reused is Xbase. Xbase is
an expression language, related to Java, and thus can be used within a DSL for allowing
the de�nition of imperative code without having to implement a language with correct
syntax, validation and scoping. In the following, the Xbase language is explained in more
detail.

2.3.3 Reusable Programming Languages Xbase and Xtend

Xbase is an expression language that is shipped with Xtext [25]. It is tightly integrated
with the Java type system and can be inherited by Xtext-based DSLs to provide Java-like
expressions within a DSL. Xbase provides a parser for generating a model for textual nota-
tions in that language, validation speci�cations for the expression language and a compiler
that generates Java code for given Xbase expressions. The editors that are generated for
Xtext languages also inherit the scoping speci�cation from the Xbase language de�nition,
which provides a Java-like variable scoping within Xbase expressions.

In addition to the concepts of Java, Xbase also provides several extensions. A type
inference mechanism allows to declare a variable as var to make it changeable, or as val
if it shall be �nal, omitting the concrete variable type. Operator overloading allows to
rede�ne operators for speci�ed classes. A method can be declared as extension, which
attaches the method to the type of the �rst parameter of the method. Finally, a dynamic
dispatching mechanism allows to de�ne overloaded methods that are selected by the
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val aList = new ArrayList<String>();

aList += "A string";

aList += #["A second string", "Another string"];

Listing 2.1: Type inference and operator overloading in Xbase

dynamic, instead of the static types of their parameters. Dynamic dispatch provides a
simple way of implementing the visitor design pattern [36], but is realized through type
comparison instead of e�cient callbacks as proposed by the pattern. Finally, Xbase also
provides a short notation for initializing read-only collections.

Xbase and some of its extensions are used in the implementation of the language that
is developed in this thesis and thus in the given examples. Therefore, Listing 2.1 shows
an example code snippet written with Xbase. The type inference mechanism is used for
the variable aList, which gets an ArrayList assigned and is automatically typed correctly.
Instead of using a method call for adding an element to the list, like it has to be done
in Java code, Xbase overloads the += operator for the List interface and maps it to the
add method. In the last line, a read-only collection is initialized and automatically typed
correctly, based on the two strings that are de�ned in it.

Xtend [25, p. 7] is an application of the Xbase language and is developed with the
Xtext framework. It is an object-oriented, statically typed programming language for the
Java Virtual Machine (JVM) but claims to provide a more concise notation by omitting
redundant information that has to be written using Java. In additional to the more compact
syntax, Xtend provides some new features, for example, multi-methods that allow the
dynamic dispatch of method parameters, type inference and template expressions. Xtend
classes are automatically compiled to Java classes and thus can be used in a plain Java
project.

Xtend integrates the language Xpand [23], which was developed for model-to-code trans-
formations. Xpand allows to de�ne template expressions that consist of static and dynamic
text, whereas the dynamic text parts can be speci�ed using a Turing-complete expres-
sion set. With this mechanism, Xtend provides a way of easily specifying model-to-code
transformations. Therefore, we use Xtend as the programming and model transformation
language for the implementation of the response language in this thesis.

2.4 View-based So�ware Development

The term view-based software development describes an approach for developing software
based on views. This approach is of special interest in model-driven environments, which
describe a software system through one or more models. Instead of modifying these models
directly, a view-based approach allows the modi�cation of the models only through views,
which show the aspects of the system that are of interest for a certain developer role.

The terminology for view-based development approaches in software engineering ranges
from view-based development [6], over view-based model-driven software development [18]
to view-centric engineering [55]. Essentially, all cover the idea of modifying the di�erent
software artifacts or models through well-de�ned views.
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In contrast to conventional software development, which makes use of di�erent models
that are modi�ed directly, view-based development provides some advantages [18]. Views
can be tied to the needs and permissions of a certain developer role and consequently
allow to omit details that are not needed by or should not be visible for a certain developer
role. Furthermore, working with views can abstract from the concrete underlying artifacts,
so that is does not matter for the developer how the concrete artifacts look like. Views
can also hide redundancies in the models that can lead to inconsistencies when only one
part of the redundant information is modi�ed. A view can provide the information only
once and synchronize it with all redundant occurrences in the models.

2.4.1 Projective and Synthetic Views

According to the ISO 42010 standard [50], two approaches for the construction of views
exist. The �rst one is the projective approach, which derives views from existing models.
Those views are de�ned by describing how and which elements of existing models have
to be presented in a view. Therefore, a projective view can be created through a model
transformation from the models on which it is de�ned to the view.

The second approach for view construction is the synthetic approach. In that approach,
a developer de�nes views and relations between them, which together de�ne the system
model. For example, using existing models with their existing views, usually de�ned
through editors, and de�ning transformations between them describes a synthetic approach
for creating the system model from the single views.

An important aspect of views is the editability. Views can either be read-only and thus
only provide information of the models, or editable, providing the possibility to modify
the data. Synthetic approaches inherently require editable views as the views are also the
models that must be somehow modi�ed. Furthermore, views can provide di�erent degrees
of editability, depending on the kind of modi�cations they allow. Restricting the editability
of views can be used to in�uence the modi�cations that are possible for a certain developer
role [16].

The di�erence between synthetic and projective views in an exemplary system with
four views is shown in Figure 2.3. On the left side, a system model contains all information
about the software system, and di�erent projective views, such as the code, UML class
diagrams, the software architecture and requirements of the system, provide access to it.
On the right side, di�erent models for the di�erent aspects de�ne the complete system.
In the projective approach, all views are only related to the system model and thus four
relations have to be kept consistent. The synthetic approach potentially requires relations
between all models, which implies six relations to be kept consistent in the example. In
general, the number of relations that have to be kept consistent increases linearly in a
projective approach and quadratic in a synthetic approach.

2.4.2 Orthographic So�ware Modeling

Atkinson, Stoll, and Bostan have developed a view-based development approach called
Orthographic Software Modeling (OSM) [6]. The OSM approach relies on the idea of a
so called Single Underlying Model (SUM), which contains the whole information about a
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Figure 2.3: Example for a system of projective views and synthetic views

software system. Access to the SUM is only provided through views that show certain
aspects of the system.

The OSM realizes a projective approach for constructing views. Views are created on-
demand whenever they are needed, but they are not persisted as the shown information is
represented in the SUM. Each view must only be kept consistent with the SUM, but not
with other views. While the minimal number of relations between the SUM and the views
that have to be kept consistent leads to a low e�ort for ensuring consistency, the e�ort
for de�ning a SUM is high. All aspects of a software system have to be represented in the
SUM and must be provided by its metamodel, which can get quite complex.

The OSM approach de�nes two roles, the developer and the methodologist. While the de-
veloper uses views and manipulates the software system through them, the methodologist
de�nes the views for the system.

2.4.3 The VITRUVIUS Approach

Based on the OSM approach by Atkinson, Stoll, and Bostan, another view-based develop-
ment approach called Vitruvius was proposed by Kramer, Burger, and Langhammer [56].
Vitruvius reuses the idea of a SUM from which projective views are derived for providing
access to the di�erent aspects of the system.

A SUM can be hardly realized because of the complexity of a software system, which is
hard to represent by a single model, and because the reuse of existing tools for the di�erent
aspects, such as the code editor, is di�cult or even impossible. Therefore, Vitruvius
proposes the idea of a Virtual SUM (VSUM). A VSUM is used like a SUM in the OSM
approach but itself consists of di�erent models that are kept consistent. This approach
allows to reuse existing metamodels for the di�erent purposes and tools which are available
for them but also provides a consistent SUM rather than independent models.

Existing models and their views can be reused for modifying the di�erent aspects
of the software system. Furthermore, the language ModelJoin was designed to de�ne
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additional, so called �exible views on the heterogeneous models of which the VSUM
consists [18, 17]. This allows to de�ne views that represent information from di�erent
models within the VSUM. Particularly, information can be presented non-redundantly
and can be automatically kept consistent with all their occurrences in di�erent models
automatically.

The SUM in the OSM approach is inherently consistent because the metamodel can be
de�ned omitting redundancies and implicit dependencies that can lead to inconsistencies.
Because Vitruvius reuses existing metamodels whose instances usually contain redundant
or dependent information, the consistency of the models must be actively preserved.
Therefore, Vitruvius follows a change-driven approach. The framework monitors the
models contained in a VSUM for changes and uses these changes to trigger transformations
that restore consistency between the changed and other models. Transformations have
to be written for pairs of metamodels and have to provide a speci�c interface for being
executed by the framework.

To better separate the speci�cation of consistency constraints and consistency repair
from the understanding of model transformations, Vitruvius provides the Mappings,
Invariants and Responses (MIR) language family [54, 59, 58, 55]. The MIR language family
is a change-driven approach for ensuring and repairing consistency constraints of models.
Based on the constraints and operations de�ned with the languages, appropriate update
routines are executed when the framework reports a modi�cation of any model of the
VSUM. This separates the knowledge about model transformations, which are contributed
by transformation experts that develop the MIR languages, from the knowledge about
consistency of the speci�c models, which can be provided as speci�cations in the MIR
languages by domain experts.

The three languages of the MIR language family are referred to as the mapping lan-

guage, the invariant language and the response language, or short mappings, invariants
and responses. A single consistency speci�cation in these language is called a mapping, an
invariant or a response, respectively.

The mapping language of the MIR language family allows the de�nition of declarative
mappings between elements of di�erent models that constrain their relationship. The
routines that restore these constrains after a change are automatically generated from
the mappings. The invariant language allows the speci�cation of invariants that must
always hold. The developer can also enrich invariants with parameters that are bound to
concrete values that are causal for the violation of the constraint. If an invariant is violated,
it is the purpose of the response language to react to that in the future. It is supposed to
allow the speci�cation of imperative code routines that are executed whenever speci�ed
changes occur. In contrast to the mappings, which are supposed to provide a very compact
and comprehensive speci�cation of consistency relations, responses shall support the
speci�cation of Turing-complete logic to address possibly any consistency constraint. The
design of the response language is the topic of this thesis.

Like in the OSM approach, two roles can be distinguished that interact with an instance
of the Vitruvius framework, which are the methodologist and the developer. Their
interaction with the framework and the di�erent artifacts is shown in Figure 2.4. The
methodologist speci�es the consistency preservation through mappings, invariants and
responses for speci�ed metamodels. Afterwards, he runs the MIR code generator, which
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Figure 2.4: Di�erent roles and their interaction with languages and artifacts for consistency
preservation in the Vitruvius framework, adapted from [54]

produces executable change-driven transformations and registers them at the framework
to react to appropriate model changes. The developer uses views to interact with concrete
models in the VSUM of a Vitruvius instance. His interactions lead to changes that trigger
the execution of the provided transformations. Whenever a change is performed, an
instance of a change descriptions metamodel, which de�nes possible changes in the models,
is created to parametrize the transformations. The transformations restore consistency
constraints and update instances of a correspondence model, which describes the relations
between elements of di�erent models.

2.5 Change-Driven Development

Change-driven software development is a technique that focuses on the execution of
program code whenever a speci�c change of data value occurs. Breu describes this
principle in the context of changes in the development process [15]. Nevertheless, the
statements can be transferred to the developed software.

In change-driven development, the occurrence of a data modi�cation can trigger di�erent
kinds of reaction. In general, a particular piece of code is executed whenever a speci�c
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change happens. This procedure is similar to the observer design pattern [36], which
implements a noti�cation mechanism in object-oriented software development. Change-
driven development is more abstract than that because it does not specify a concrete
realization of the mechanism and is not restricted to object-oriented software design.

Change-driven development can use two di�erent evaluation mechanisms. Push-based
systems use noti�cation mechanisms that call other code whenever a change occurs.
Pull-based systems check for changes at speci�ed points of time and call the appropriate
routines if necessary [7]. Change-driven development techniques usually use a push-based
approach.

In object-oriented development, a similar approach called event-driven programming is
popular [77]. It is a paradigm that focuses on events and handlers that are called whenever
an event occurs. The actual di�erence to change-driven development is the application
context. Event-based programming is often used for graphical user interfaces, where the
interaction with the user interface produces events that lead to the execution of handlers.
In that context, event-based systems are mostly pull-based. Except for that, there is no
explicit distinction between change-driven and event-driven development. Finally, an
event is potentially more generic than a change because it only requires a change of some
kind of state, while a change is always also an event.

Reactive programming is another programming paradigm in this context [28]. Its
purpose is similar to the event-driven approach but addresses some of its drawbacks.
Reactive programming facilitates the declarative development of event-driven programs,
rather than the classical imperative approach [7]. Only data dependencies have to be
speci�ed declaratively and the environment decides when and in which order changes
have to be propagated. The advantage is that the developer must not explicitly ensure that
update routines are called when a change occurs because the propagation is automatically
generated from the data dependencies. Furthermore, event-driven programs often use
callback mechanisms with limited possibilities of parameter passing, which leads to side-
e�ects performed by the callback routines. These problems are tackled by the reactive
programming approach.

Reactive programming may not be mixed up with the term reactive system of the Reactive
Manifesto [13]. There, the term reactive focuses on the responsiveness of a system which
the user perceives, rather than the control �ow of the program execution, on which reactive
programming focuses.

The presented concepts can also be applied to the context of model-driven development.
Model modi�cations de�ne changes that can be used to initiate arbitrary reactions. The
reactions can reach from simple value changes to complete code routines and model
transformations [10]. Finally, model changes can be used to trigger model transformations,
similar to state changes triggering code routines in change-driven software development.
Reactive programming focuses on the declarative description of data dependencies, thus
knowledge from this topic can especially be transferred to declarative model transforma-
tions.
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So�ware Architecture and
Implementation

In this thesis, we develop the concepts for a change-driven transformation language for
restoring model consistency. The concepts are illustrated in example routines for restoring
consistency, which are written in an exemplary concrete syntax for the language.

The presented examples, as well as the �nal evaluation of the work, rely on a case study
of consistency between software architecture descriptions and the object-oriented code
model that describes their implementation. A software architecture and the implementing
code contain elements and features that are represented in both models and have to be
kept consistent whenever they are changed. Because the prototypical implementation
of the developed language relies on the Eclipse Modeling Framework, the architecture
descriptions and the code models are based on the Ecore meta-metamodel.

This chapter �rst introduces the Palladio Component Model (PCM), which is an archi-
tecture description language for software systems, and the Java Model Parser and Printer
(JaMoPP), which provides a metamodel for the Java programming language. Afterwards,
consistency relations between a PCM model and Java code are de�ned, which can be
restored with change-driven transformation languages such as the one developed in this
thesis.

3.1 A So�ware Architecture Description Metamodel

The Palladio Component Model (PCM) [8, 41] is a DSL for specifying component-based
software architectures and their deployment on physical resources. It targets the prediction
of certain quality aspects, especially the performance, of a software system before it
gets implemented. For this purpose, di�erent extensions are available, which allow the
simulation of di�erent design decisions to �nd a software architecture that ful�lls the
required quality constraints.

A PCM model of a software system can be used to automatically generate code stubs
for the implementation of the system and, furthermore, can be used as a more abstract
representation of the software system during its development. This allows to still analyze
quality aspects of the system when design decision may need to be changed during the
implementation. Consequently, the architecture model and the code have to be kept
consistent.

Apart from the advanced capabilities of the PCM for simulating the system behavior,
the core metamodel provides an architecture description language (ADL) that can be
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Figure 3.1: Simpli�ed extract of the PCM metamodel

used to describe the software architecture on a more abstract level than code. The PCM
relies on the Eclipse Modeling Framework and speci�es its metamodel based on the Ecore
meta-metamodel. The complete metamodel is discussed in [83]. For the evaluation of
this thesis, we use a real subset of the PCM and map it to Java code. The examples in
this these use a simpli�ed version that is not completely conform to the PCM to ease its
understanding. That metamodel is shown in Figure 3.1.

The diagram is split into two parts. The upper part shows the realization of the Entity
element. This element is implemented by all elements in the lower part, except for the
DataType and PrimitiveDataType. This implementation relation is not shown in the diagram
for reasons of clarity. The implementing elements provide a name and an id attribute.
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The important elements for the examples in this thesis are shown in the lower part of
the graphics. A Repository de�nes the root element of a PCM repository model, which
contains Components, Interfaces and DataTypes of which a software system can consist. A
DataType is again subdivided into three types. A CollectionDataType represents a collection
of elements of the type that it references, a PrimitiveDataType represents primitive values
such as numbers and strings, and a CompositeDataType consists of other data types.

Interfaces in the complete PCM consist of signatures and de�ne which functionality
is provided by anything that implements this interface. Components can provide and
require interfaces. They provide functionality that can be accessed through a provided
interface, and they require entities that provide the required interfaces and implement the
functionality which is expected from the signatures of the interfaces. These relations are
designed using the RequiredRole and ProvidedRole metaclasses. A component can contain
an arbitrary number of provided or required roles, which again reference the interfaces
that are provided or required.

As mentioned before, the presented metamodel is a highly simpli�ed version of the
PCM metamodel. For example, the original one distinguishes between di�erent kinds of
components and di�erent kinds of interfaces, supports more primitive types and encapsu-
lates the inner types of a CompositeDataType into further objects that attach names to the
inner types.

3.2 A Metamodel for the Java Programming Language

One of the most common object-oriented programming languages is Java. As the language
that is developed in this thesis is implemented using the Java-based Eclipse Modeling
Framework, we use Java as the example language for the object-oriented code model. Java
is supplied in a standard and an enterprise edition, whereof we only consider the standard
edition.

Object-oriented program code is traditionally written and represented in a textual syntax.
Nevertheless, program code follows an abstract syntax and has de�ned semantics that are
both speci�ed in the language speci�cation, as in [39] for the Java programming language.
Consequently, program code can also be considered as the textual representation of a
model that is conform to a metamodel which speci�es the programming language. Parsers
of compilers implicitly have to transform the textual representation of a program into an
abstract representation, the abstract syntax tree, which represents the program code in an
abstract syntax.

An Ecore-based metamodel for the Java programming language is supplied by the Java
Model Parser and Printer (JaMoPP) [44, 43]. The provided metamodel is conform to the
language speci�cation of Java in version 5. Additionally, JaMoPP provides a parser, which
takes a textual representation of Java code and returns the model representation according
to its metamodel, and a printer, which returns the textual representation of a Java code
model. Finally, JaMoPP allows us to treat a conventional textual Java code representation
just as any other Ecore-based model.

Because the JaMoPP metamodel speci�es the complete Java 5 language, the metamodel
is quite large. For the examples in this thesis, we only need a small extract, which is shown
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target

1

classifiers

*

subpackages

*

{incomplete}

Figure 3.2: Simpli�ed extract of the JaMoPP metamodel

in Figure 3.2. To simplify the examples, the extract is not fully conform to the JaMoPP
metamodel. Di�erent from our metamodel, a Package in JaMoPP contains compilation
units instead of classi�ers, which in turn contain classi�ers. We ignore this technically
necessary indirection and omit a CompilationUnit metaclass. Furthermore, the original
metamodel does not specify a reference of a package to the packages contained in it, which
we introduce with the subpackages reference to achieve transformations that are easier to
understand.

The most important elements of the Java metamodel are the Package, Class and Interface
metaclasses. A package contains classes and interfaces, summarized as ConcreteClassifers.
They all represent JavaRoot elements, which have a name and know their namespaces. The
namespaces attribute of a NamespaceAwareElement represents the hierarchy of package
names which a classi�er or package belongs to. In the JaMoPP metamodel, a package does
not reference the packages it contains or the one it is contained in, as well as classi�ers
do not know the package in which they are contained. This information can only be
extracted from the namespaces attribute, which makes code models di�cult to use because
information is spread across di�erent models. It is not possible to navigate from a class to
its package within a JaMoPP code model.

Additionally to classi�ers, the metamodel provides the PrimitiveTypes known from the
Java language speci�cation, exemplarily represented by Int and Boolean. The remaining
metaclasses, which are Type, TypeReference and ClassifierReference, are discussed later in a
scenario in which they are relevant.

24



3.3 Relations between Software Architecture Descriptions and Code Models

3.3 Relations between So�ware Architecture Descriptions
and Code Models

As stated in the beginning of this chapter, a software architecture description and the
implementing program code are artifacts of a software system that contain overlapping
information. This information has to be kept consistent. A concrete consistency concept is
�rst explained in section 4.1. Nevertheless, in this section we give an informal introduction
to the relations between elements of an architecture description and the implementing
Java code, which represent overlapping information and have to be kept consistent.

No natural mapping of architecture descriptions to program code of a software system
exists. The mapping of elements from one of the models to the other has to be prescribed,
which can be realized in di�erent ways. For example, components can be either mapped
to Java packages or to Eclipse plugins. Some of them are explained by Langhammer and
Krogmann [60].

An extract of the initial mappings proposed by Langhammer and Krogmann, which is
su�cient for the simple examples we provide, is introduced in the following. It is the basis
for the example transformations in this thesis.

3.3.1 Repository Mapping

A repository of a PCM model is mapped to three Java packages. One package represents
the repository itself and serves as the root package for anything in the PCM repository.
Two further packages are intended to contain the realization of the interfaces and data
types of the repository. A contracts package within the repository package contains the
interfaces of the repository. They de�ne the contracts between components that provide
or require them. A data types package inside the repository package contains the data
type realizations.

: Repository

name = “someRepository”

: Package

name = “someRepository”

: Package

name = “contracts”

: Package

name = “datatypes”

PCM Model Java Model

subpackage subpackage

corresponds to

corresponds to

corresponds to

corresponds to

Figure 3.3: Mapping of a PCM repository to Java packages
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The name of the repository package is the same as the name of the repository within
the PCM model. The names of the contracts and data types packages are intended to
be statically de�ned as contracts and datatypes. An example mapping for a repository is
shown in Figure 3.3. The repository called someRepository is mapped to a package with
the same name and the two mentioned sub-packages.

To achieve consistency between a repository and its representation in program code,
the modi�cation of any element that corresponds to another has to be monitored. If a
repository is created, deleted or if its name is changed, appropriate modi�cations in the
Java code are required. Vice versa, the deletion of any of the packages or the renaming of
the repository package require an update of the PCM repository.

3.3.2 Component Mapping

Components that are added to a repository are mapped to a package and a facade class in
the Java code. The component package is inserted into the package which the repository
was mapped to, and the facade class is added to that component package. Both the package
and the class have the same name as the component, except that the class name starts
with an upper case letter and the package name starts with a lower case latter, according
to the Java language constraints. From now on, the facade class of a component is simply
be referred to as the component class.

The component mapping is exempli�ed in Figure 3.4. A component named someCompo-
nent is mapped to a package and a class with the same names. This mapping relies on the

: Repository

name = “repository”

: Component

name = “someComponent”

: Package

name = “repository”

: Package

name = “someComponent”

: Class

name = “SomeComponent”

PCM Model Java Model

component subpackage

classifier

corresponds to

corresponds to

corresponds to

corresponds to

corresponds to

Figure 3.4: Mapping of a PCM component to a Java package and class

26
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mapping of the repository that contains the component because the component package
has to be inserted into the package which the repository is mapped to.

For preserving consistency between a component and its code representation, the
modi�cations of any element having correspondences have to be investigated, as described
for the repository mapping. Modi�cations in this mapping can require cascading updates.
Changing the class name in the Java code requires an update of the component name in
the PCM model, which in turn requires the adaption of the package name. Finally, the
name of the class implicitly corresponds to the name of its package as well. Nevertheless,
we only consider relations between the di�erent models, which implicitly also de�ne
correspondences within a model, as this example shows.

3.3.3 Interface Mapping

The mapping of an interface within a PCM repository is straightforward. It is mapped
to a Java interface with the same name, which is added to the contracts package of the
repository.

This interface mapping is exempli�ed in Figure 3.5, where an interface someInterface
within a PCM repository is mapped to a Java interface of the same name. It is placed in the
contracts package of the containing repository, which requires the repository mapping to
be existent.

: Repository

name = “repository”

: Interface

name = “someInterface”

: Package

name = “contracts”

: Interface

name = “someInterface”

PCM Model Java Model

interface classifier

corresponds to

corresponds to

corresponds to

Figure 3.5: Mapping of a PCM interface to a Java interface

3.3.4 Data Type Mapping

The mapping of a data type in a PCM model depends on its concrete type. Data types
are separated into collection data types, composite data types and primitive data types.
The latter ones represent a special case, which is discussed later, because a concrete
primitive type is represented in the Java metamodel instead of a Java model. Collection
and composite data types are mapped to simple Java classes with the same name, which
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3 Running Example: Consistency of Software Architecture and Implementation

are added to the data types package of the repository. Collection and composite data types
also contain inner types, which actually have to be mapped, but are not considered here.

In Figure 3.6, the mapping of a composite data type called someDataType to a Java class
is shown. Both have the same name, except that the class name has to start with an upper
case letter. For inserting the class into the correct data types package, which the repository
is mapped to, it has to be existing and must be retrieved through the repository mapping.

: Repository

name = “repository”

: CompositeDataType

name = “someDataType”

: Package

name = “datatypes”

: Class

name = “SomeDataType”

PCM Model Java Model

dataType classifier

corresponds to

corresponds to

corresponds to

Figure 3.6: Mapping of a PCM composite data type to a Java class
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In this chapter, we introduce the basic terminology and concepts in the context of model
changes and model consistency. After specifying the term model consistency, we explain
model changes and change descriptions. Based on the speci�cation of changes, the re-
quirements for change-driven model transformation environments are derived. Finally,
we join the di�erent topics to the concept of change-driven model consistency repair.

Several approaches give a more formal de�nition of changes and consistency [46, 98].
In contrast, our de�nitions focus on the comprehensibility by a methodologist who has to
specify the consistency between models, rather than on the theoretical provability of the
applicability of a consistency-preserving mechanism.

4.1 Model Consistency

The goal of the language that is developed in this thesis is to restore consistency be-
tween di�erent, especially heterogeneous models. To understand the rationale for design
decisions in the proposed language, a common understanding of model consistency is
necessary. In general, consistency can be required between sets of two or more models.
We do only consider consistency between two models because it is possible to keep a set
of models consistent by keeping all pairs of them consistent. Nevertheless, the statements
can be extended to arbitrary large sets of models as well.

4.1.1 Consistency Overlaps

Two models can be considered inconsistent if they contain contradictory information. If,
in contrast, models do not contain contradictory information, they are in a consistent state.
Models can only contain contradictory information if the information in the di�erent
models is interdependent or even redundant.

In the following, we de�ne a terminology for this information dependency and consis-
tency between di�erent models more precisely. To exemplify the terminology, we apply
it to relations between a UML class diagram and Java code, which both are models that
represent the same system. We consider the representation of two interfaces, Component

and DataType, in both artifacts, as shown in Figure 4.1.
The interfaces in the UML diagram and in the Java code represent the same object of

the software system in di�erent ways. Therefore, we refer to them as representations of
the same interface. Because they both abstract from the same object, they provide the
same information redundantly, which consequently has to be consistent. This is why we
de�ne the term consistency overlap for this kind of information overlap between models.
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public interface Component {

...

}

«interface»
Component

public interface DataType {

...

}

«interface»
DataType

Figure 4.1: Representation of two interfaces in Java code and a UML class diagram

De�nition 1 (Consistency overlap)
A consistency overlap is a relation between model elements that contain dependent informa-

tion.

A consistency overlap describes a relationship between model elements that represent
dependent information. The interfaces in the Java code and in the UML diagram represent
the same objects and thus contain dependent information. For example, the names and
methods of the interface representations depend on each other as they have to be the
same. The example contains two consistency overlaps, one for the Component interface
representations and one for those of the DataType. A consistency overlap can be described
by the set of the elements that are in the relationship it represents, along with a speci�cation
of the dependency of their information. We also say that the elements share a consistency
overlap.

The simplest form of a consistency overlap is redundancy. Two model elements that rep-
resent the same object are redundant and thus share a consistency overlap with dependent
properties, like the interface representations in UML diagrams and Java code. In general,
the information dependency of consistency overlaps can be more complicated. An example
is the representation of a required role of a PCM model in Java code. A required role
references a component and an interface and has the meaning that the component requires
access to an implementation of that interface. The relation to a possible representation of
the same information in Java code is shown in Figure 4.2. The component class has a �eld
of the type of the required interface, a constructor parameter for an implementation of
that interface and an assignment to the �eld. This relationship is not a simple redundancy
any more, but describes more complex relations between a PCM model and the Java code.

Consistency overlaps are relationships between elements of concrete models. The
dependency of the information provided by these elements can be described by constraints.
For example, the relationship between the Component interface representations can be
expressed by a constraint which speci�es that both must have the same name. Nevertheless,
this constraint is the same for the DataType interface and for all consistency overlaps that
describe the relation between the representations of the same interface in Java code and
UML class diagrams. Consequently, such a constraint can be speci�ed on the metaclasses
of the elements.
De�nition 2 (Consistency constraint)
A consistency constraint is a constraint that describes a dependency of information between

instances of two or more metaclasses.
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«component»
RequiringEntity

«interface»
RequiredInterface

«requires»

public class RequiringEntity {

private RequiredInterface requiredRole;

public RequiringEntity( RequiredInterface rRole ) {

this.requiredRole = rRole;

}

}

Figure 4.2: Representation of a PCM required role in the Java class implementation of the
requiring component

A consistency constraint allows the description of dependencies between elements of
a consistency overlap, but is not meant to hold for all instances of the metaclasses it is
de�ned for. How consistency overlaps between models are identi�ed is discussed in the
next subsection. A consistency constraint for our interface representations overlap can,
for example, de�ne that an instance of the Java interface metaclass and the UML interface
metaclass must have the same name. For two representations of the same interface sharing
a consistency overlap, such as the two Component representations, their information
dependency can be described with this constraint.

Consistency constraints describe constraints for certain types of actual relationships.
The interface constraint describes all relationships of two representations of the same
interface in Java code and UML diagrams. Consequently, we can describe the relations
that this constraint speci�es on the metamodel level as a relationship type, which we call
a consistency overlap type.

De�nition 3 (Consistency overlap type)
A consistency overlap type is a type of a possible relation between model elements described

by two or more metaclasses and a set of consistency constraints on them.

A consistency overlap type speci�es a type of relationship that can exist between model
elements. It is described by the metaclasses of the elements of a certain consistency overlap
and a set of consistency constraints that describes the dependency of the information
of the elements. The consistency overlap type for our interfaces example would consist
of the UML interface metaclass and the Java interface metaclass and the consistency
constraints that describe the dependency of instances of the metaclasses that share such an
a overlap, such as the equality of their names. While several interfaces can be represented
in both a UML class diagram and Java code, only one consistency overlap type is needed
to describe the information dependency in all these relationships. All consistency overlaps
that can be described by a certain consistency overlap type are referred to as instances of
the consistency overlap type.

Consistency overlaps are not independent of each other. The constraints of overlap
types also specify the required existence of further consistency overlaps. The consistency
constraints for the representation of an interface in a UML class diagram and Java code
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require all methods of the interface to be represented by both of them. Because both
interface representations are expected to provide representations of the same methods,
the existence of consistency overlaps of all methods in both interface representations is
expected. In turn, the di�erent representations of one method specify representations
of the same parameter list, which requires consistency overlaps between the parameter
representations in the methods of the UML diagram and the Java code as well.

Given a consistency overlap, its consistency constraints specify which other dependent
consistency overlaps are expected to exist. Consequently, a top-level consistency overlap
can specify all further consistency overlaps that are expected to exist between two models.
It does not consist of model elements but the models themselves and a top-level consistency
constraints for their elements. This concept of top-level constraints can be exemplarily
applied to the consistency overlap of a UML diagram and Java code representing the same
system. The constraints can specify that for all interfaces and classes of the UML diagram
a consistency overlap with a representation in Java code must exist.

With the de�nition of a consistency overlap type, a consistency overlap can be described
by its elements and the type it belongs to. If the elements of a consistency overlap ful�ll
the constraints of its type, they do not contain contradictory information and thus can be
considered consistent. In that case, we call a consistency overlap satis�ed.

De�nition 4 (Consistency overlap satisfaction)
A consistency overlap is satis�ed if its elements ful�ll the consistency constraints of its type.

Consequently, elements of two models are consistent if all their consistency overlaps
are satis�ed. With the speci�cation of consistency overlaps, we can de�ne consistency of
models more precisely.

De�nition 5 (Model consistency)
Two models are consistent if all the consistency overlaps their elements share are satis�ed.

For a pair of models, checking the constraints of all their consistency overlaps identi�es
whether the models are consistent or not. This validation requires the recognition and
precise speci�cation of all consistency overlaps of the models, which makes out the
di�culty of checking and achieving model consistency.

The consistency de�nition does not require that the models have to be di�erent. Thus,
model consistency can be de�ned for a single model, based on constraints its elements
have to ful�ll, as well. This is referred to as intra-model consistency, while consistency
between di�erent models is referred to as inter-model consistency. If not further speci�ed,
we talk about inter-model consistency in the following.

4.1.2 Identifying Consistency Overlaps

Checking and ensuring consistency between models requires the knowledge of all con-
sistency overlaps these models share and of all their consistency overlap types. While
the latter ones can, for example, be speci�ed in OCL, the identi�cation of all consistency
overlaps in two models is not that straightforward. We already mentioned that consistency
overlaps can be speci�ed by the elements of which they consist and the type they belong to,
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but not how this speci�cation is performed. Di�erent kinds of speci�cations are discussed
in the following.

With the de�nition of consistency overlaps and their types, we can validate if elements
sharing a certain consistency overlap ful�ll its constraints and are consistent. Nevertheless,
these de�nitions do not specify how to identify elements that actually share a consistency
overlap. For example, the consistency overlap type of interfaces in UML diagrams and
program code does not specify how to �nd concrete interfaces that share such a consistency
overlap. We distinguish between two kinds of speci�cations for the identi�cation of
consistency overlaps in models, which are implicit and explicit ones.

De�nition 6 (Implicit consistency overlap speci�cation)
A consistency overlap speci�cation is implicit if the identi�cation of model elements that

form it is performed using only the information available in the models.

Consistency overlaps often exist implicitly and thus the elements forming it can be
extracted from the models without requiring further information. Implicitly existing
consistency overlaps can be extracted from models by de�ning and checking constraints
that sets of elements have to ful�ll so that they are treated as sharing such a consistency
overlap. For example, interfaces within Java code and a UML diagram can be supposed to
share a consistency overlap if they have the same name. Such constraints should not be
mixed up with the consistency constraints that describe the dependency of information
in consistency overlaps. Especially in the UML and Java case, the constraints for identi-
fying elements that share a consistency overlap are rather similar to the ones specifying
their consistency. Nevertheless, in other domains it is possible that elements ful�ll the
constraints of a consistency overlap type although they do not share an overlap of that
type.

An implicit speci�cation of consistency overlaps can only be used if the models are in a
consistency state. For example, if two interfaces sharing a consistency overlap currently
have unequal names and are thus inconsistent, an implicit overlap speci�cation would
not identify them as sharing a consistency overlap. Furthermore, in some cases the
extraction of the information that a set of elements shares a consistency overlap is not
even unambiguously possible if the models are consistent. To circumvent the limitations
of implicit consistency overlap speci�cation, explicit ones can be used.

De�nition 7 (Explicit consistency overlap speci�cation)
A consistency overlap speci�cation is explicit if it is not implicit.

Consistency overlaps can be made explicit by saving the sets of elements they consist
of additionally to the models in a further model. This kind of speci�cation allows to
de�ne consistency overlap types whose instances cannot be unambiguously extracted
from the models. A Consistency overlap can also be speci�ed explicitly if it could be
speci�ed implicitly because the information in the models is su�cient for identifying
it. The drawback of an explicit speci�cation is that it has to be stored and maintained
externally.

Retrieving the elements of a consistency overlap with an explicit approach is simple
because they can be directly accessed. For a given interface method within a UML class
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diagram, the appropriate interface method in the implementing Java code can be retrieved
by just examining the explicitly saved consistency overlaps. Using implicit speci�cations,
this retrieval is far more complicated. First, the Java interface that shares a consistency
overlap with the interface of the UML method must be retrieved. Afterwards, the correct
method in the Java interface, which has the appropriate signature with equal name, return
type and parameter types, must be found. Therefore, the return and parameter types
must be also be matched correctly. Finally, the complete identi�cation using an implicit
approach is only possible if the models are consistent.

Both ways of identifying consistency overlaps can be combined. To allow the speci�-
cation of overlaps whose elements cannot be extracted from model information and to
ease the retrieval of related elements, parts of the elements of a consistency overlap can
be saved explicitly. We therefore introduce the term correspondence.
De�nition 8 (Correspondence)
A correspondence consists of two sets of elements of di�erent models that share a consistency

overlap.

A correspondence represents elements of a consistency overlap and separates them
into two sets that represent the elements of the di�erent models they belong to. We refer
to two elements of a correspondence, one from each of these sets, as corresponding. A
correspondence, which can even contain only a part of the elements of the overlap, can be
used to describe and save the elements of a consistency overlap. Such correspondences
provides a utility structure, which is the basis for specifying overlaps that can exist of
several explicit correspondences and implicitly identi�ed elements.

Many consistency overlaps consist of pairs of model elements instead of complex sets.
Thus, the speci�cation of correspondences can be reduced to pairs of elements in many
cases, which are enriched with implicit speci�cations if necessary. For example, if one
element contains an attribute that combines information of two other model elements,
this consistency overlap can be described by two correspondences, one for each combined
element with the combining one.

4.1.3 Dependency between Consistency Overlaps

We already discussed that consistency constraints specify which further consistency over-
laps are induced by a certain one. For example, the consistency overlap of an interface
representation in a UML diagram and Java code requires their methods to share consis-
tency overlaps as well. This describes that a certain consistency overlap requires further
consistency overlaps to exist for being satis�ed. In turn, consistency overlaps can also
depend on the existence of others to ever exist, which is simply the inverse relationship in
many cases. For example, a consistency overlap between an interface method in a UML
diagram and Java code requires their interfaces to share a consistency overlap.

This dependency relation is not always the simple inversion of the relationship de�ned
by the consistency constraints. Considering the consistency overlap type of PCM required
and provided roles and Java code, the consistency constraints of the overlaps between
the providing or requiring component and the Java class implementation require that its
roles in the PCM model have representations in the Java code that they share consistency
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PCM: Required Role

Java: Field, Parameter and Assignment

PCM: Provided Role

Java: Interface Implementation

PCM: Component

Java: Class

PCM: Interface
Java: Interface

depends on depends on

depends on depends on

Legend

Consistency overlap

type for speci�ed

metaclasses

Figure 4.3: Dependencies of the consistency overlap types for PCM required and provided
roles and their Java implementation

overlaps with. In turn, the consistency overlaps of the roles require at least two consistency
overlaps to exist. The component of the role has to share a consistency overlap with the
Java class that implements it. The PCM interface that is required or provided by the
component must share a consistency overlap with the Java interface that represents it.
These dependencies of the concerned consistency overlap types are shown in Figure 4.3.

As the example shows, consistency overlaps have a dependency hierarchy. This insight
is important for the preservation of model consistency. Modi�cations of elements of
consistency overlaps which other overlaps depend on can have cascading e�ects and
require them to be updated as well. Furthermore, it is used for reasoning about the
granularity of consistency overlaps in the following.

4.1.4 Granularity of Consistency Overlaps

A concrete speci�cation of consistency overlap types for a speci�c pair of metamodels is
not indisputable. Neither the de�nition of consistency overlaps or their types does restrict
their granularity nor is it restricted naturally. Considering the required roles example in
Figure 4.2, it is arguable if the required role shares one consistency overlap with each of
the three Java elements, or one with all of them.

Two extremes for the granularity of consistency overlaps can be considered. In a most
coarse-grained approach, two models only share one consistency overlap that potentially
consists of all their elements and rather complex constraints. In a very �ne-grained
approach, potentially all consistency overlaps do only consist of two elements and types
that de�ne more likely easy constraints.

We attempt the speci�cation of consistency overlaps that are as small as possible and
as big as necessary. With this approach, a minimal number of model elements must be
examined if a consistency overlap gets unsatis�ed and a most simple repair logic must
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Figure 4.4: Dependencies of minimal consistency overlap types for PCM required roles
and their Java implementation

be de�ned and executed to repair it. To determine if a consistency overlap is as small as
possible, we introduce the term minimal consistency overlap.

De�nition 9 (Minimal Consistency Overlap)
A consistency overlap is minimal if it cannot be split into two consistency overlaps that do

not depend on each other.

According to this de�nition, many consistency overlaps are only minimal if they do
just consists of two model elements. An example for a minimal consistency overlap that
contains more than two elements is the combination of attribute values of two model
elements in an attribute of another model element. The consistency constraint that de�nes
this relation has to validate if the attributes are correctly mapped to the combined value,
which is only possible if both combined attributes are known. If the consistency overlap
was split into two, each consisting of the combining element and one of the combined
ones, they would depend on each other.

The restriction to use only minimal consistency overlaps would be very strict and is
potentially too �ne-grained in practice. The consistency overlaps of the required roles
with Java code elements shown in Figure 4.2 would be structured on type level as shown in
Figure 4.4. Three consistency overlaps, each consisting of two model elements, would ful�ll
the de�nition of minimal consistency overlaps. The two consistency overlaps between
the role and both the �eld and the parameter require the component to share an overlap
with its implementing class. This overlap of the component is necessary because they are
placed in the class and its constructor. These consistency overlaps also expect the required
interface to share an overlap with the Java interface because it de�nes the type of the �eld
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and the parameter. The assignment of the required role parameter to the �eld obviously
depends on the �eld and parameter overlaps, as well as on the component overlap to place
the assignment inside the constructor of the component class.

It is disputable if one consistency overlap for all three Java elements would be a more
clear viewpoint in practice. In general, the discussion about the granularity of consis-
tency overlaps is not important for the correctness of a consistency speci�cation. It is
just motivated by the fact that our consistency repair approach relies on the repair of
consistency constraints and thus allows more simple speci�cations of consistency repair
if the considered overlaps are rather small. Nevertheless, the proposed language or its
constructs do not functionally rely on a certain granularity of consistency overlaps.

4.1.5 Prescriptive and Descriptive Consistency Overlaps

Consistency overlaps can exist for two di�erent reasons. They can exist naturally, for
example, because one model is an abstraction of the other one, or they are synthetic because
the relations between elements are de�ned manually, which is the case for PCM and Java.
Consequently, the speci�cation of consistency overlaps can follow a descriptive or a
prescriptive approach, analogously to the distinction of models as described in section 2.1
and natural language grammars [68].

In a descriptive approach, consistency overlaps are assumed to already exist. Considering
UML class diagrams and Java code, the overlaps exist naturally as both models describe the
same elements. This is always the case if models represent the same elements on di�erent
levels of abstraction. In these cases, the elements of both models are the same and so they
inherently share a consistency overlap.

In a prescriptive approach, consistency overlap types are de�ned manually and have no
natural reasoning. The relations between PCM models and Java code rely on a primarily
prescriptive speci�cation because di�erent mappings of PCM elements to code fragments
are possible, as described in section 3.3. Only by de�ning the consistency overlap types
explicitly, they can be applied to concrete models.

The classi�cation whether the speci�cation of consistency overlaps follows a descriptive
or a prescriptive approach is not strict. As the primary distinction, in a descriptive approach
existing relations between di�erent models are described by de�ning consistency overlap
types, whereas in a prescriptive approach no relations exist yet but are prescribed by the
speci�cation of consistency overlaps types.

4.1.6 Correspondence Models

The concept of correspondences was introduced in the context of the explicit speci�cation
of consistency overlaps in subsection 4.1.2. Explicit speci�cations of consistency overlaps
require the structure of correspondences to be precisely de�ned because they have to be
persisted. The correspondences of models form a model themselves and are an instance of
a correspondence metamodel.

Correspondence models can be seen as an approach for storing the tracing information
of transformations, as introduced in subsection 2.2.2. A common metamodel for such
tracing information is the trace model of QVT [72]. QVT de�nes trace classes, which have
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properties referring to model elements that are related. Trace instances de�ne concrete
relations between two models. They are generated by a transformation de�ned in QVT
and contain the elements that were mapped through the transformation rule. While a
trace instance in QVT is tied to the transformation rule that created it, correspondences in
our approach rely on consistency overlaps that can be potentially a�ected by di�erent
transformation rules.

In Vitruvius, an extensible correspondence metamodel is used. A correspondence
consist of two sets of model elements and can be enriched with further attributes. The
correspondences are contained within a correspondence model for each pair of metamodels.
As this correspondence model �ts our needs and as our approach contributes to the
Vitruvius framework, the concepts of this thesis relies on that correspondence metamodel.

4.1.7 Preserving Model Consistency

According to the de�nitions of model consistency, consistency overlaps, and correspon-
dences, the consistency of two models can be validated by checking the constraints of all
consistency overlaps that the two models share. This validation requires that all consis-
tency overlaps of the models are known and the constraints of their types are correctly
speci�ed.

Preserving consistency is a more complicated problem, which can be addressed in
di�erent ways. One solution is the inherent idea of the OSM approach, which was described
in subsection 2.4.2, to have a SUM that contains all needed information. Using a SUM, no
models must be kept consistent because there is only one model that ideally contains no
redundancies and non-explicit dependencies. The SUM is always consistent and thus no
consistency-preserving mechanisms are required in that scenario.

In general, there is no SUM and di�erent models have to be kept consistent. This
problem is addressed in the Vitruvius approach, which was introduced in subsection 2.4.3.
Approaches for preserving consistency of models that share consistency overlaps rely
on model transformations. The transformations between the models ensure that the
constraints which all consistency overlaps of the models have to ful�ll are restored and
satis�ed whenever they get violated. Because approaches that are based on transformations
repair an inconsistent state, even though its usually just temporary, we refer to them as
consistency-restoring or consistency-repairing rather than consistency-preserving.

One property of transformations is their degree of incrementality. Of special interest
for restoring model consistency are incremental transformations in general and their
subclass of change-driven transformations, as introduced in section 2.2. Because model
transformations can be used for di�erent purposes, we put the focus on change-driven
transformations for restoring model consistency, which are further discussed in section 4.4.

Another property of transformations is the kind in which they are speci�ed. Approaches
are either declarative or imperative. While declarative approaches specify only the con-
straints that have to be ful�lled but not how, imperative approaches specify how constraints
are ensured. Because declarative transformations have to be converted into imperative
code that restores the speci�ed constraints, they can just be as expressive as approaches
that directly allow this imperative speci�cation. Declarative approaches cannot achieve
any kind of model consistency, as the repair of consistency cannot be automatically gener-
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Model
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Imperative transformation speci�cationsDeclarative transformation speci�cations

Figure 4.5: Achievable model consistency with di�erent kinds of transformation speci�ca-
tion

ated for any kind of declared constraint. An example for such constraints are aggregated
attribute values. If a constraint speci�es that an attribute value is derived from two others,
it is unclear how to make them consistent if the aggregated one is modi�ed. This prob-
lem is addressed by current research [57] and exempli�es the limited expressiveness of
declarative approaches. The relationship between achievable consistency and the kind of
transformation speci�cation is visualized in Figure 4.5.

The MIR language family, described in subsection 2.4.3, provides di�erent languages for
restoring model consistency. These languages follow di�erent paradigms and implement
di�erent characteristics of transformation languages. This thesis proposes an imperative,
unidirectional language for restoring consistency that contributes to the MIR languages
as the response language. The mapping language provides a declarative, bidirectional
approach for preserving consistency and the invariant language allows the speci�cation
of constraints of consistency overlap types for checking consistency.

4.2 Model Changes

Models are typically no static artifacts, in fact they get changed when they are used. They
can be changed due to di�erent reasons, such as the �x of a bug, the implementation of
new, or the adaption to changed requirements. In the software evolution context, these
changes are called corrective, perfective and adaptive [49] and can be transferred to the
evolution of models. A model change can be de�ned as follows.

De�nition 10 (Model Change)
A model change is an action that performs modi�cations on model elements or properties of

them.

The de�nition speci�es that a model change performs modi�cations on model elements
or properties of them. As we assume models based on EMOF, such changes can be the
creation and deletion of model elements, modi�cations of their attributes and references
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Figure 4.6: Change description types and the directions they describe

to other model elements, or sets of such modi�cations. Changes can also be trivial, which
means that they modify the model in a way that its new state cannot be distinguished
from its old state. An example for such a trivial change is the replacement of an attribute
value with the same one.

4.2.1 Change Descriptions

A model change is abstractly de�ned as an action that modi�es a model. While this is
su�cient for identifying changes, they also need to be described. Such a description has
to provide information about the di�erences between the old and the new model state to
identify how a model was changed. Those descriptions can be provided in three di�erent
ways. We discuss them on an example change, the replacement of an attribute value of a
certain model element with a new one.

A forward change description contains information for transforming the model state
before the change into the state after the change. In the example, such a description has
to provide at least the modi�ed element, the modi�ed attribute and the new attribute
value. A backward change description contains information for transforming the model
state after the change back to the state before the change. For the attribute replacement,
such a description has to comprise the modi�ed element and attribute, as well as the old
attribute value. Finally, a forward-backward change description provides information to
navigate between both model states and thus is a combination of the other kinds of change
description. In the example, such a description has to contain the modi�ed element and
attribute, as well as both the old and the new value. The di�erent change description types
and the directions in which they can be applied are shown in Figure 4.6.

4.2.2 Atomic Model Changes

A general model change can a�ect an arbitrary large set of model elements and properties.
The descriptions for such changes have to provide information about all the modi�ed
elements and properties. We distinguish between atomic and composite changes, whereof
the �rst ones have to ful�ll some criteria of atomicity.

De�nition 11 (Atomic model change)
A model change is atomic if it can be unambiguously described by the old and new value of

a single model element or property.
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The smallest possible modi�cation in a model is the change of a property value or
the modi�cation of an element reference in terms of creating or deleting the referenced
element. Such changes cannot be subdivided into two changes, as they just a�ect a single
value of a model. These kinds of modi�cations are covered by the de�nition of atomic
changes, and thus atomic changes are the smallest possible modi�cations that can be
performed in a model. Consequently, atomic changes represent the partition of possible
model changes that cannot be divided into two changes, which justi�es the name atomic.

The de�nition of atomic changes implicitly proposes a forward-backward description of
them. The speci�cation of a modi�ed element reference or a property change with its old
and new value is required by the de�nition and allows to navigate from the old to the new
model state and vice versa. We therefore describe changes as forward-backward change in
the following.

Atomic changes can be categorized by the kind of property that was modi�ed. For
example, changes of element properties can be subdivided into inserting and deleting
changes if the property is multi-valued, whereas changes of single-valued properties are
replacing changes. The used meta-metamodel inherently de�nes the types of atomic
changes that are possible in models which are conform to that meta-metamodel. The
meta-metamodel de�nes which elements a metamodel can contain and thus also which
properties exist that can be modi�ed in model instances. The extraction of possible atomic
changes from a given meta-metamodel are discussed for EMOF in the following.

4.2.3 Atomic Model Changes in the Essential Meta-Object Facility

A meta-metamodel inherently de�nes possible types of atomic changes in model instances
which are based on that meta-metamodel. A common meta-metamodel is EMOF, which
was introduced in subsection 2.3.1. Figure 4.7 shows an extract of EMOF that contains the
parts of the meta-metamodel that are relevant for potential changes in the model instances.

The basic elements of EMOF models are classes that contain properties. Properties
have a type, which is a class or a data type, that in turn can be a primitive type or an
enumeration, and they have multiplicities that de�ne how many elements of their type
they can reference. Properties can be part of an association that links two properties of
two classes to indicate that they are opposites of each other. In such a case, the opposite
reference as well as the isComposite property are derived. The isComposite property
indicates if the referenced type is the container of the class that contains the property.
Further elements of the meta-metamodel, such as packages that de�ne namespaces for
types, comments that annotate elements, and operations that can be de�ned on classes,
are omitted because they are not relevant for changes in model instances.

Metamodels that are conform to EMOF de�ne Class and their Property instances. Models
that are conform to such a metamodel contain instances of these classes, which have
references to other classes according to the concrete properties. This model structure results
in two categories of possible changes. The �rst category of changes covers the creation
and deletion of class instances, the second one consists of modi�cation of properties.

The possible atomic changes within EMOF-based models are summarized in Table 4.1.
The creation and deletion of class instances is of special interest for root elements of
models. All other element creations and deletions come along with a property change
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EMOF model element Atomic change type

Class instance Creation, deletion
Multi-valued property Insertion, removal, permutation
Single-valued property Replacement

Table 4.1: Atomic change types in EMOF

because the created or deleted element has to be contained in some other model element.
Thus, they are inserted or removed from a property of another model element, which leads
to the change of that property.

Property changes can be subdivided into inserting, removing and permuting changes,
depending on whether the value of a property was added or removed from the list of
properties or moved to another index within the list. Furthermore, properties have multi-
plicities, which allows us to categorize them into single-valued and multi-valued properties,
depending on whether the upper multiplicity value is one or greater than one. Changes
of a single-valued property can be simpli�ed because it references a single element. This
element can only be replaced with another, which leads to only one possible type of change,
the replacement.

Although these basic atomic change types were extracted from the EMOF meta-meta-
model, they can be transferred to any meta-metamodel that has a similar structure. If it
consists of elements equal to classes and properties referencing types, the derived atomic
change types are suitable for that meta-metamodel as well. A similar categorization of

NamedElement
name : String

Type

Classifier

DataType Class

TypedElement

MultiplicityElement

lower : Integer
upper : UnlimitedNatural

StructuralFeature

Property

/isComposite : Boolean
Association

0..1

type

ownedAttribute

0..*

/opposite0..1

0..10..1 ownedEnd

0..12 memberEnd

Figure 4.7: Extract of the change-relevant elements of EMOF
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possible atomic changes, based on an abstract model de�nition, is provided by Hettel,
Lawley, and Raymond [46]. Nevertheless, their categorization requires properties for
data types, which they call attributes, to be single-valued and omits the direction and
containment of references as they only consider abstract relations between types.

4.2.4 Atomic Model Changes in Ecore

An implementation of EMOF is the Ecore meta-metamodel of the Eclipse Modeling Frame-
work, which was introduced in subsection 2.3.1. Because Ecore is used for the prototypical
implementation of the language developed in this thesis, the di�erences to EMOF are
explained in the following.

The Ecore meta-metamodel is an implementation of EMOF and as such its structure is
conform to EMOF, which leads to similar atomic change types. An extract of the Ecore
meta-metamodel with the elements that are relevant for atomic changes in model instances
is shown in Figure 4.8.

Two essential di�erences distinguish EMOF and the Ecore meta-metamodel. First, the
MultiplicityElement of EMOF is integrated into the ETypedElement in Ecore. Second, the
Property element of EMOF is subdivided into EReference and EAttribute in Ecore. The
important di�erence is that an EAttribute can only reference an EDataType, and an ERefer-
ence can only reference an EClass, whereas a Property in EMOF can reference any type.
Consequently, only an EReference element can de�ne containment relationships, wherefore
it has an attribute called containment. It has the semantics that the referenced elements

ENamedElement
name : EString

EClassifier

EClassEDataType

ETypedElement

lower : EInt
upper : Eint

EStructuralFeature

EReference
containment : EBoolean

EAttribute

0..1

eType
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0..*
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0..*

eReferenceType

1

eOpposite 0..1

eAttributeType1

Figure 4.8: Extract of the change-relevant elements of the Ecore meta-metamodel
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Ecore model element Atomic change type

Class instance Creation, deletion
Multi-valued attribute Insertion, removal, permutation
Single-valued attribute replacement
Multi-valued reference Insertion, removal, permutation
Single-valued reference Replacement

Table 4.2: Atomic change types in Ecore

are contained in the element that has the EReference. This semantics is the opposite of the
derived isComposite attribute of a Property in EMOF, which describes that the referenced
element is the container.

For the possible atomic changes, only one important di�erence arises. EMOF only
provides a Property element, which allows modi�cations of single- and multi-valued
properties in model instances. Ecore subdivides properties into EAttributes and EReferences,
which allows to distinguish between changes of single- and multi-valued instances of both
elements. This di�erentiation is summarized in Table 4.2. Nevertheless, modi�cations
of both kinds of properties in Ecore models could also be summarized into more generic
descriptions like in EMOF. Vice versa, changes in EMOF could be further specialized by
investigating if the changed property references a DataType or a Class. This investigation
would realize the implicit distinction that Ecore realizes through di�erent meta-metaclasses.

Like EMOF, the Ecore meta-metamodel de�nes several further elements. However, they
are not relevant for atomic changes that can be performed to Ecore models because their
instantiation in the metamodel does not provide any changeable properties in the models.
Examples are the type parameters of EClass instances, the super types of EClass instances
and EPackages. Furthermore, EOperations with EParameters are omitted because they are
also �xed on metamodel level and cannot be changed in concrete models.

4.2.5 Composite Model Changes

Atomic model changes form the partition of possible modi�cations in a model that do
only a�ect a single model element reference or model element property. Thus, they
are the smallest possible modi�cations that can be performed in a model, as stated in
subsection 4.2.2. According to its de�nition, a model change can be any modi�cation of
model elements or their properties. Consequently, changes can be more complex than
atomic changes are. We call these changes composite.

De�nition 12 (Composite model change)
A model change is composite if it is not atomic.

Because models consist of model elements and properties, each model change concerns
only elements and properties. As a result, any change can be described as a set of changed
element references and changed properties together with at least their old or new values
and therefore as a set of atomic changes. Finally, any model change that is more complex
than an atomic change can be composed of atomic changes.
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In general, composite model changes can be further distinguished by their cause. First,
a composite change can be composed of atomic changes that were triggered by a single
modi�cation. For example, changing the container of an object can be expressed by the
two atomic changes that describe the removal from the old container and the insertion
into the new container. These two atomic changes represent a composite change that
describes the movement of an element to a new container. Second, several atomic changes
can be performed within a model independently, which together de�ne a change as well.
Such a series of atomic changes can also be described by a composite change.

More relevant than the cause of changes is their ordering. In general, the atomic changes
of which a composite change consists have a speci�c order in which they were executed.
Applying the changes to the model in a di�erent order can lead to inconsistent intermediate
states of the model. Therefore, the description of a composite change generally has to
provide the ordering of the atomic changes of which it consists.

4.3 Change-Driven Model Transformation Environments

Change-driven model transformations are used in our approach to restore consistency
between models. The application of such an approach requires an environment that
recognizes changes in a model that shall be kept consistent with others and triggers
appropriate transformations based on the recorded changes. The generic structure of
such an environment is shown in Figure 4.9. We introduce the necessary components,
monitors that recognize changes in models, transformation execution engines and the
change-driven transformations, in the following.

4.3.1 Monitors for Model Changes

The monitoring of changes is an essential feature of a change-driven transformation envi-
ronment. A monitor has to recognize changes in a model of interest and to convert them
into change descriptions. As described in subsection 4.2.2 about atomic changes, a meta-
metamodel inherently de�nes the possible changes in model instances. In consequence, a
monitor that converts model modi�cations into change descriptions depends only on the
used meta-metamodel.

ChangeMonitor

Model

TransformationExecutionEngine

register( : ChangeType, : Transformation)

Transformation

execute(...)

monitors changes

1

informs about changes*

executes

*

Figure 4.9: Generic structure of a change-driven model transformation environment
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A change monitor needs to get informed about model modi�cations to generate the
appropriate change descriptions. For example, Ecore models provide a noti�cation mecha-
nism that is based on the observer design pattern [36]. A change monitor can register itself
for noti�cations at the Ecore-based model and react to noti�cations about modi�cations.

Whenever a modi�cation is performed, it must be converted into a change description of
a de�ned type. Depending on the way model modi�cations are recognized, this conversion
di�ers. For example, the simple noti�cation about any change would require the model
to be compared with its old state to �nd di�ering model properties. In the case of Ecore,
the noti�cation mechanism provides su�cient information about the modi�ed elements
to generate a change description from the provided information. Depending on the size
of the modi�cation that is recognized, it can be necessary to subdivide the change into
several atomic changes at this point.

The transformation environment used for the response language implementation relies
on the Vitruvius framework, which was introduced in subsection 2.4.3. It provides a
change monitor for Ecore-based models and change descriptions according to the change
description metamodel de�ned by Vitruvius [58].

Model changes can be performed by di�erent actors. Humans as well as the execution
of a program can change a model, the former through de�ned editors and the latter by
directly modifying elements. For monitoring changes, it is irrelevant who performs the
changes within the models. It is just important that the change monitor is registered at
the models and recognizes changes in any case a model can get potentially modi�ed.

4.3.2 Transformation Execution Engines

A change monitor provides change descriptions for modi�cations that are performed in
models which shall be kept consistent with others. The second part of a change-driven
transformation environment covers the execution of de�ned transformations based on
model changes. Its task is the execution of all transformations that react to a speci�ed
change type whenever a change of that type is recognized by the change monitor.

A transformation execution engine needs to de�ne two interfaces. One interface must
be implemented by transformations so that the transformation environment can accept
and execute transformations that are conform to that interface. In Figure 4.9, this interface
is represented by the Transformation. It must at least provide one method to execute the
transformation with relevant parameters. Another interface must be implemented by the
execution engine, which has to allow the registration of transformations that are conform
to the �rst interface to be executed whenever a certain change occurs. In the presented
generic structure, this interface is represented by the TransformationExecutionEngine. Such
an interface must at least provide a method that accepts a transformation conform to the
�rst interface and the speci�cation of a change type that transformation reacts to.

The execution engine in our approach allows to register transformations for a pair of
metamodels, so that a transformation is triggered by a change in an instance of one of
the metamodels. A transformation checks its responsibility for the actual change and
performs consistency-restoring modi�cations in an instance of the other metamodel.

The execution of transformations can be triggered in di�erent ways. One possibility
is to execute transformations whenever a change is recognized by the change monitor.
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Another possibility is to call the execution explicitly at some point of time and execute the
transformations for all recorded changes.

If at most one transformation is registered for a speci�c change, the execution environ-
ment can execute this transformation whenever such a change occurs. In general, several
transformations can be registered for the same change. Although these transformations
could be combined into one, a separation may be necessary for reusing a transformation
that is executed in response to di�erent changes. In this case, it can be necessary to specify
an ordering of transformations because the execution of one transformation may require
the completed execution of another one.

4.3.3 Change-Driven Model Transformations

Change-driven model transformations are small transformation rules that are executed in
response to a change of a model and perform modi�cations in other models. Therefore,
they investigate the change description of the actual change to decide if their operations
shall be performed and utilize the correspondence model to retrieve elements in other
models that they modify.

The creation and execution of change-driven transformations requires their registration
at the transformation execution engine, which executes the transformations whenever
an appropriate change is detected. Therefore, the transformations have to implement a
well-de�ned interface that is provided by the environment, such that they can be called by
it. In Figure 4.9, this interface is represented by the Transformation.

A change-driven transformation always represents a routine for restoring consistency
between models. It modi�es elements in reaction to a change, which inherently de�nes
constraints that have to be ful�lled between certain model elements and ensures them.
The speci�cation to which modi�cations to react and the selection of elements from the
correspondence model speci�es the elements that belong to a consistency overlap that
this transformations repairs. Therefore, change-driven transformations are a well-�tting
kind of transformations for restoring model consistency.

4.4 Change-Driven Consistency-Restoring Transformations

Consistency between models can be achieved in di�erent ways, which were introduced
in subsection 4.1.7 about preserving model consistency. The approach in this thesis
achieves consistency between two models through change-driven transformations between
them. In the following, we reason the applicability of change-driven transformations for
restoring consistency. Moreover, we derive responsibilities and a basic structure of change-
driven transformations for restoring consistency and give an introduction to languages
for specifying change-driven consistency-restoring transformations.

4.4.1 Atomic Changes as Triggers

Di�erent types of model transformations can be used for restoring consistency between
models. One possibility is to execute a batch transformation that transforms the modi�ed
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source model into a new and consistent target model. The drawback of this approach is
that further information that was added to the target model additionally to the elements
created by the transformation gets lost if the transformation is executed again. For example,
generating new Java code from a UML class diagram every time it is changed results in
losing at least the method implementations.

A second possibility is to use an incremental approach by checking models for consis-
tency at some point of time and restoring consistency by transformation rules based on the
potentially inconsistent states of the two models. This approach requires the transforma-
tions to be able to restore consistency of models from states in which inconsistencies can
be arbitrarily complex. Along with the complexity of inconsistencies, the complexity of
the needed transformations increases. Furthermore, the possibility of losing information
still exists. For example, if a method in a UML class diagram is moved from one class to
another, it is potentially not possible to identify that both methods are the same, especially
if further properties like the name are changed. The consequence is still the loss of the
method implementation in the Java code.

Another approach is to restore the consistency of models in the moment when they
get inconsistent. Assuming two consistent models, they can only get inconsistent if one
of them gets modi�ed. The modi�cation can be described as a model change and thus
consistency can be restored by reacting to a change. We broke consistency of models down
to the constraints satisfaction of the consistency overlaps that models share. Consequently,
models can only get inconsistent due to a change that leads to the violation of a constraint
of a consistency overlap. Only those consistency overlaps whose constraints depend on
the model elements that were a�ected by the change can get unsatis�ed. As a result,
the required transformations do only need to consider the consistency overlaps in which
the elements modi�ed by a certain change are contained. Because any change either is
atomic or can be subdivided into atomic changes, it is su�cient to de�ne transformations
that react to atomic model changes and repair inconsistencies that arise from such an
atomic change. We focus on this kind of change-driven transformations for restoring model
consistency.

The idea of change-driven model consistency repair based on atomic changes is visualized
in Figure 4.10. We assume two models A and B to be initially consistent. If a potentially
composite change ∆A is performed in model A, it transforms the model into a new model
An. The change can be subdivided into several atomic changes ∆A

1 to ∆A
n , which transform

the model into intermediate states A1 to An. To keep model B consistent withA, the atomic
changes ∆A

1 to ∆A
n are transformed into changes ∆B

1 to ∆B
n in model B, which keep the

intermediate states A1 to An consistent with B1 to Bn. The changes in model B do not need
to be atomic. Depending on the consistency overlaps that the elements modi�ed by the
atomic changes of A share with B, these changes can get arbitrarily complex. However,
they are restricted to the restoration of constraints of consistency overlaps that the element
modi�ed in A shares with B.

This approach keeps the complexity of the required transformations for restoring
model consistency low because they must only consider a small and well-de�ned set of
consistency overlaps. The approach requires one transformation for each atomic change
that can occur in a model A and may a�ect an existing consistency overlap into a change
in model B.
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Figure 4.10: Consistency-restoring transformations in a change-driven environment

The presented concept assumes that it is possible to generate a change in model B for
each possible atomic change in model A, so that both models are consistent after applying
both changes. Therefore, two further assumptions have to be made. First, a consistent
state of model B must exist for each consistent state of model A, so that both models
are consistent with each other. Second, an atomic change in a consistent model Ai must
transform it into a new consistent state Ai+1. If the model itself is not consistent after a
change, it is generally not possible to make it consistent with another model. The second
assumption is further discussed in the following.

4.4.2 Intra-Model Consistency a�er Atomic Changes

The previous subsection introduced the idea of using change-driven transformations for
restoring model consistency. Based on atomic changes, these transformations restore the
satisfaction of consistency overlaps between di�erent models. Therefore, the consistency
of the modi�ed model itself has to be assumed after an atomic change.

Usually, a model is syntactically correct after an atomic change, at least if it is based on
EMOF or Ecore. Nevertheless, a metamodel may de�ne additional static semantics that may
not be ful�lled after an atomic change. An editor can preserve intra-model consistency by
allowing only modi�cations that lead to a new model state that ful�lls the static semantics
of the metamodel. Such an editor can, for example, only allow composite changes that lead
to a consistent state. This is possible, although the atomic changes it consists of cannot be
ordered in such a way that the intermediate model states are consistent.

To provide only change descriptions that contain information about modi�cations of
the model that transform it into a new consistent state, the provided change descriptions
would have to be metamodel-speci�c. Moreover, the potential changes that are necessary
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to ful�ll consistency constraints can get arbitrarily complex as the constraints can be
that complex. In the end, metamodel-speci�c change descriptions would complicate the
speci�cation of a generic transformation language for change-driven transformations.

Consequently, consistency-restoring transformations have to deal with possibly in-
consistent model states. They must either refuse their execution, so that inter-model
consistency is only restored if the model is internally consistent again, or try to achieve
inter-model consistency although the models are not consistent themselves. Either way,
the transformations do only have to deal with the potential temporary violations of se-
mantic constraints that the changed model has to ful�ll, but usually not with violations of
its syntax.

Models should only be editable in a way that they are consistent after a change. Such a
change consists of atomic changes that may lead to inconsistent intermediate states of the
changed model. Although consistency-restoring transformations are based on these atomic
changes and consequently have to deal with inconsistent states of the changed model,
they can assume that a processed sequence of atomic changes always leads to a consistent
state in the end. If the methodologist knows about the possible modi�cations that �nally
achieve intra-model consistency, he can specify the inter-model consistency-restoring
transformations in a way that these sequences of atomic changes are handled correctly.

4.4.3 Responsibilities of Transformations

The purpose of a change-driven consistency-restoring transformation is to restore consis-
tency between models by repairing the consistency overlaps of these models after a speci�c
change. As introduced in subsection 4.4.1, we consider change-driven transformations
that specify a reaction to a certain atomic change. An atomic change a�ects a single model
element and thus can only make consistency overlaps in which the changed element is
contained unsatis�ed. Consequently, a transformation that reacts to a certain atomic
change must only restore these consistency constraints.

A consistency-restoring transformation does not depend on the concrete consistency
overlaps but is the same for all instances of the same consistency overlap types. As a
consequence, it does always de�ne the repair for certain types of consistency overlaps.
Furthermore, an individual transformation can be speci�ed for each a�ected consistency
overlap type. This is why we always consider a single transformation to be responsible
for one certain consistency overlap type in the following.

Additionally, di�erent changes can violate the constraints of the same consistency
overlap type in di�erent ways and thus also require di�erent transformations to repair
it. For example, the modi�cations of the name and the return type of a method in a
UML diagram both a�ect the consistency overlap of that method but require di�erent
transformations to restore consistency. One transformation has to update the name of the
method in Java code and one has to update its return type. Consequently, we consider a
consistency-restoring transformation to be responsible for one kind of repair for one type
of consistency overlap.

The actions for restoring consistency can be categorized into three di�erent kinds,
which are the update, the addition and the removal of consistency overlaps. The �rst kind
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of action is the consistency overlap update, which only updates properties of elements of
an existing consistency overlap to make it satis�ed again.

A second kind of action is the consistency overlap addition, which initiates a new consis-
tency overlap because the actual change makes a constraint of some existing consistency
overlap expect such a new overlap. For example, if a method is added to an interface in
a UML diagram, the constraints of the interface overlap with the Java code require the
method to share an overlap with the Java code as well. As a result, the consistency repair
has to create such a method in the Java code and create a correspondence to identify the
newly created overlap.

The last kind of action concerns the consistency overlap removal, which removes a
consistency overlap because of the actual change. If, for example, an interface in the
Java code is deleted, the representation in a UML diagram must also be removed if a
constraint requires each UML interface to share a consistency overlap with one in the
Java code. Consequently, the consistency overlap between the interfaces and also the
correspondences identifying it have to be removed after such a change.

The three discussed actions do only describe the general purposes of a consistency repair.
How the transformations achieve the repair of consistency constraints in detail depends
on individual needs. For example, deleting an interface in a UML diagram also removes
the consistency overlap with the corresponding interface in the Java code. Nevertheless, it
is up to the methodologist to de�ne if the transformation deletes the Java interface as well,
or if they only remove the consistency overlap. Both actions are su�cient for restoring
consistency between the models.

From now on, we talk about the general repair of consistency overlaps, no matter which
kinds of actions are required. If necessary, we distinguish between the di�erent kinds of
actions explicitly.

4.4.4 Structure of Transformations

As stated in the previous subsection, we assume a single change-driven consistency-
restoring transformation to de�ne one kind of repair for one type of consistency overlap.
The transformation has to decide if the actual change a�ects an instance of the consistency
overlap type it is responsible for and to perform modi�cations for restoring its constraints.
This procedure can always be separated into three steps that are visualized in Figure 4.11.
First, the transformation has to check if the actual change performed a modi�cation that
may a�ect a consistency overlap in a way that the transformation restores it. Second,
it has to identify if the modi�ed element actually shares a consistency overlap which
the transformation can restore. Third, the transformation has to repair the consistency
overlap.

The necessity of and di�erence between the three steps is clari�ed using the example
relation between components within a PCM model and the Java classes implementing them.
This consistency overlap type prescribes that each component must have a corresponding
class with the same name, while a class may have a corresponding component or not.
As an exemplary transformation, we assume the update of the name of the component
whenever the name of the corresponding class changes.
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Check if the actual change can a�ect
• an instance of the consistency overlap type
• in a way the transformation restores it

can a�ect?

Check if the modi�ed element shares an
instance of the consistency overlap type

part of overlap?

Execute consistency-restoring actions
for the consistency overlap

[yes]

[no]

[yes]

[no]

Figure 4.11: Structure of a change-driven consistency-restoring transformation

In a �rst step, the transformation has to decide if the actual change may describe a
modi�cation that leads to the violation of the constraints of an instance of the consistency
overlap type for which the transformation is responsible. Because a transformation only
describes one kind of repair for one type of consistency overlap, only modi�cations that
can lead to a state which requires this kind of repair have to be further investigated. The
transformation can decide this by considering only the information provided by the change,
such as the type of the change, the type of the modi�ed element and the actually modi�ed
property. Considering the exemplary Java to PCM transformation, in this �rst step the
transformation has to identify if the actual change is the modi�cation of the name of a
Java class, which can be decided just based on the information provided by the change.
Only if the change describes the replacement of the name attribute of a Java class, the
transformation may be responsible for the repair of the consistency overlap.

If the transformation identi�ed that the change performed a modi�cation that may a�ect
an instance of the consistency overlap type in a way that it can restore it in the �rst step,
it continues its execution. In a second step, it has to check if the changed element actually
is part of such a consistency overlap that is restored by the transformation. This check is
necessary because an element must not necessarily be part of a consistency overlap just
because it could be due to its type. Considering the exemplary Java to PCM transformation,
not each Java class has a corresponding component. It can also be a simple class sharing
no consistency overlap with a component. This information cannot be retrieved from

52



4.4 Change-Driven Consistency-Restoring Transformations

the change within the �rst step, but the correspondence model has to be investigated for
getting that information.

The last step of a transformation comprises the modi�cations it performs to restore
consistency. It is executed if the �rst two steps reveal that the modi�ed element is actually
part of a consistency overlap that was a�ected by a change in a way that this transformation
can restore it. Necessary modi�cations may be the creation and removal of elements, the
appropriate update of the correspondence model, and the modi�cation of the elements of
the consistency overlaps to achieve the satisfaction of the constraints of the consistency
overlap. These actions were discussed in more detail in the previous subsection 4.4.3.

These three proposed steps must be always performed by a change-driven consistency-
restoring transformation. The transformation cannot perform any modi�cations for
restoring consistency without checking if the change may have a�ected an instance of the
consistency overlap type that the transformation restores as nothing about the change
is known and even the modi�ed element is unknown. Without checking if the modi�ed
element shares a consistency overlap of the type that the transformation restores, it cannot
perform any modi�cations. The other elements of the consistency overlap that would have
to be modi�ed cannot be addressed. Finally, without any consistency repair description,
the transformation does nothing and is useless.

It is reasonable to clearly separate these three steps. The �rst step is necessary to
get to know if the transformation is responsible after the actual change and to get the
modi�ed element at hand. Consequently, it has to be performed before the second step.
The second and the third step have to be separated because the former one only retrieves
information from the models while the latter performs modi�cations on them. Because
the transformation can be aborted if the information retrieval reveals that there is no
consistency overlap to repair, no modi�cations should be already performed to avoid
the partial execution of the transformation. The clear separation of these steps can, for
example, be assured within special languages for specifying such transformations. Those
languages are discussed in the following.

4.4.5 Change-Driven Consistency Repair Languages

A change-driven model transformation can be de�ned by directly writing program code
that repairs inconsistencies and that is conform to the interface that is required by the
transformation environment as described in section 4.3. It can be registered at the execution
engine for a speci�c change type and gets executed whenever a change of that type occurs.
Further preconditions on the change, which restrict the cases in which modi�cation in the
models are performed, can be checked during the execution of the transformation and
possibly abort it.

Certainly, the speci�cation of model transformations can be simpli�ed using trans-
formation languages, which generate the �nal transformation code from more abstract
speci�cations. Transformation languages are specialized DSLs that provide constructs ab-
stracting from technical and recurring necessities. Such languages automatically integrate
the de�ned transformations into the execution environment. A specialized language for
change-driven consistency-restoring transformations can provide constructs for de�ning
their triggers, based on the actual change, for providing access to the correspondence
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model and for performing certain recurring actions for restoring consistency constraints.
Providing such language constructs, the methodologist does not have to know about the
internal realization of these concepts.

Additionally to the provision of appropriate language constructs, a consistency repair
language can enforce a reasonable structure for transformations. A clear separation of
necessary steps of a transformation can be achieved with the separation into three steps,
according to subsection 4.4.4. This structure can be prescribed by providing three appropri-
ate sections for a transformation speci�cation in a DSL, which can be only used according
to their purpose. Such a structure gives the methodologist a clearer understanding of the
di�erent actions that have to be performed in a transformation and of their dependencies.
It also avoids unexpected e�ects of a transformation, for example, by performing modi-
fying actions before completing all necessary checks and thus executing the repair logic
partially.
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In this thesis, we develop the concepts for a change-driven, unidirectional model transfor-
mation language for repairing model consistency. As the transformations de�ne responses
to the occurrence of speci�c model changes, the language is called the response language

or short responses. This chapter introduces the basic idea and structure of the language,
as well as the concepts of the three parts of which it consists. Finally, we discuss further
cross-cutting aspects of the language, before giving an overview of possible extensions.

5.1 Introduction to the Response Language

The response language contributes to the MIR language family of the Vitruvius frame-
work, which comprises two transformation languages. The mapping language aims to
provide the simple and highly declarative, but potentially functionally restricted de�ni-
tion of consistency overlap types and the preservation of their constraints, whereas the
response language focuses on expressiveness. Speci�cations in the mapping language are
bidirectional and are translated into transformations for restoring consistency in both
directions. The response language requires the speci�cation of unidirectional rules, which
provides a higher �exibility if consistency has to be restored di�erently in both directions.

The goal of the response language is to allow the convenient speci�cation of model
transformations that can restore any kind of model consistency constraint. Such transfor-
mations can be written manually in a Turing-complete programming language. Starting
with this insight, the response language abstracts from technical aspects of model trans-
formations and from recurring actions. A �rst simpli�cation in contrast to manually
written transformations is the integration of transformations into the transformation
environment, which is automated by the language. Furthermore, responses enforce a
three part structure of the consistency repair speci�cation to provide a clear separation of
concerns and to prevent unexpected behavior that can result from mixing up queries and
modi�cations. Finally, the access to the correspondence model, as well as the creation and
deletion of elements and correspondences are abstracted by the language. Nevertheless,
the language design maintains the topmost goal of providing maximum expressiveness in
the speci�cation of transformations.

5.1.1 Language Structure

In subsection 4.4.4, the separation of a change-driven transformation into three steps was
proposed. This separation is transferred to the basic structure of the response language,
which consists of three major parts. The �rst part are the triggers, which specify in response
to which change events consistency is restored. The second part are the matchers, which
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identify if the modi�ed element is actually part of a consistency overlap that is restored
by the transformation. The last part addresses the e�ects of responses, thus it provides a
way of specifying the actual transformation.

The trigger of a response speci�es in which cases a transformation shall be executed,
based on the information provided by the actual change. This information consists of
the change type, the type of the modi�ed element, the modi�ed feature and the type of
the feature value. Moreover, the user who modi�es the model can be asked for decisions
based on the information provided by the change. On the basis of that information, a
trigger checks if the modi�ed element may be part of a consistency overlap for which
type the response speci�es the consistency repair. This can, for example, be identi�ed by
checking if the metaclass of the modi�ed element is contained in the consistency overlap
type. Besides, it checks if the change violates the consistency overlap in a way that the
response speci�es the correct repair for. This check can, for example, be based on the
modi�ed feature and the change type. Finally, the trigger indicates whether the response
shall be executed further or not.

The matcher of a response does also de�ne a precondition for the execution of the
transformation. While the trigger makes a decision only based on the change, the matcher
investigates the actual model states. The trigger can only decide if the modi�ed element
may be part of a consistency overlap based on type information. In contrast, the matcher
especially investigates the correspondence model to identify if the modi�ed element is
actually part of a consistency overlap which the response repairs. Because the matcher
retrieves elements from the correspondence model for making its decision, we integrate
the retrieval of the elements of the repaired consistency overlaps or overlaps it depends on
from the correspondence into the matcher as well. To sum up, the matcher identi�es if the
changed element is part of a consistency overlap that the response repairs and provides
the existing elements of that consistency overlap to the e�ect of the response.

After the trigger and matcher have checked the preconditions for the execution of the
transformation, the e�ect of a response speci�es the actual modi�cations. We rely on
the assumption made in section 4.4 about change-driven consistency that consistency
between two models can be preserved by transforming atomic changes in one model
into changes within the other model. Consequently, the e�ects part must have access to
the elements of the consistency overlap that it repairs, and which were retrieved by the
matcher. To restore the satisfaction of the consistency overlap, it performs modi�cations
in the correspondence model and in the model elements of the consistency overlap for
restoring its constraints.

5.1.2 Basic Language Constructs

This chapter focuses on the introduction of the structure and concepts of the response lan-
guage, which are explained with examples to clarify their purpose and potential realization.
Therefore, an exemplary realization of the response language is developed along with the
concepts. This exemplary realization is aligned with the �nal language implementation
provided in chapter 6, but abstracts from technical restrictions and requirements that are
relevant within that implementation.
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According to subsection 2.1.3, a DSL consists of an abstract syntax, static and dynamic
semantics and one speci�c concrete syntax. The abstract syntax of our language is de-
scribed conceptually along with the rationale that leads to these concepts. The example
language provides a concrete syntax, which is speci�ed using a variant of the Extended
Backus-Naur Form (EBNF) [48]. Repetitions are indicated by curly braces, and optional
parts are enclosed in square brackets. Static and dynamic semantics of the language
constructs are explained textually. The �nal language implementation de�nes its dynamic
semantics by the operationalization of the transformations into Java code.

Some examples for the developed constructs given in the following sections specify
complete responses. Those examples require a speci�cation of the top-level structure
of the language. Furthermore, the provided language relies on the existence of several
language constructs that highly depend on the implementation of the language. They are
only explained in natural language, which is not conform to EBNF. An example for such
constructs is the referencing of metaclasses. The top-level language structure and assumed
constructs are sketched within the grammar in Listing 5.1.

The response rule speci�es the basic construct for de�ning a response. It has an identi�er
specifying its name and provides a trigger, a matcher, and an e�ect. The id element
allows the speci�cation of unique identi�ers, for which we use simple strings without
whitespaces in the examples. A code-block allows the speci�cation of program code in a
Turing-complete language. The static semantics have to specify to which elements the
code has access and what it returns. In our examples, we use Xtend code, introduced in
subsection 2.3.3, for the speci�cation of code blocks. Code blocks that consist of multiple
statements are enclosed in curly braces.

An element-reference de�nes the reference to an element, which can be realized by a
code block returning an element or through the speci�cation of an identi�er. We use code
blocks to de�ne element references. The elements that can be referenced in a code block
of a certain language construct have to be de�ned by its static semantics.

The element-type and element-feature rules specify the reference to a metaclass or a
feature of a metaclass of any involved metamodel, respectively. The element type is
assumed to be referenced by a metamodel identi�er and the metaclass name. In the
examples, the PCM metamodel is referenced by the identi�er pcm and the Java metamodel

〈response〉 = ’response:’ 〈response-name〉

〈trigger〉 〈matcher〉 〈e�ect〉

〈response-name〉 = 〈id〉
〈id〉 : unique identi�er for elements
〈code-block〉 : block of code in a Turing-complete language
〈element-reference〉 : reference to a model element
〈element-type〉 : reference to a metaclass of an involved metamodel
〈element-feature〉 : reference to a feature of a metaclass of an involved metamodel

Listing 5.1: Basic language constructs of the response language
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is referenced by the identi�er java. As an example, the PCM component metaclass is
referenced by pcm.Component. The referenceable elements have, again, to be restricted
through the static semantics when using the construct within the language.

The examples in the following section either specify complete or only partial responses,
in terms of syntactically missing parts of a response. Several examples provide speci�ca-
tions of parts of the PCM to Java relations introduced in chapter 3. Those examples may
be semantically incomplete and omit parts of the relation that they implement.

Keywords of the exemplary concrete syntax of the developed language are colored red
in the examples. Keywords of the Xtend language, which is used for the code blocks,
are colored blue, and the properties of the change that invoked the response are colored
green. In Listing 5.2, the coloring is demonstrated. The keyword response belongs to the
concrete syntax of the response language, newValue is assumed to be a property of the
change and instanceof is a keyword of the Xtend language.

response: ExampleResponse

code block example: newValue instanceof pcm.Repository

Listing 5.2: Demonstration of the keyword coloring in the examples

5.1.3 A Metamodel for Change Descriptions in Ecore

When considering changes within the trigger of a response, the type and properties of
this change are of special interest. The possible changes in a model are restricted by the
meta-metamodel as discussed in subsection 4.2.2. The example implementation in this
thesis is based on the Ecore meta-metamodel, for which reasonable atomic changes were
developed in subsection 4.2.4.

The distinguished atomic changes comprise the creation and deletion of class instances,
the insertion, removal and permutation of multi-valued attributes and references, and
the replacement of single-valued attributes and references. The �nal response language
implementation uses a complete metamodel for atomic changes in Ecore provided by
the Vitruvius framework. For our examples, we use a reduced metamodel as shown in
Figure 5.1.

The provided change descriptions metamodel de�nes one metaclass for each of the
possible change types in Ecore-based models, except for the permutation of multi-valued
properties as they are rarely needed. Attribute and reference changes each have an abstract
superclass, AttributeChange and ReferenceChange, which both contain only the feature that
was modi�ed by the change. They, in turn, have a superclass called FeatureChange, which
provides the object that contains the modi�ed feature. All change types inherit the generic
AtomicChange.

The presented change descriptions metamodel is a highly simpli�ed version of the
Vitruvius metamodel for change descriptions. The latter one provides recurring elements,
like the newValue and oldValue properties, by separate classes instead of specifying them
redundantly in the subclasses. Nevertheless, the presented metamodel is su�cient for
explaining the concepts of the developed language and providing examples.
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AtomicChange

InsertRootObject<T>

newValue : T

RemoveRootObject<T>

oldValue : T

FeatureChange<O>

a�ectedObject : O

AttributeChange<O>

a�ectedFeature : EAttribute

InsertAttributeValue<O, T>

newValue : T

RemoveAttributeValue<O, T>

oldValue : T

ReplaceAttributeValue<O, T>

newValue : T
oldValue : T

ReferenceChange<O>

a�ectedFeature: EReference

InsertReference<O, T>

newValue : T

RemoveReference<O, T>

oldValue : T

ReplaceReference<O, T>

newValue : T
oldValue : T

O : extends EObject
T : extends EObject

Figure 5.1: A metamodel for descriptions of atomic changes in Ecore

5.2 Triggers: Identifying Potential Inconsistencies

Triggers are the �rst of three parts of the response language. They represent the entry
point for the execution of transformations by determining if the occurrence of a change
may require the execution of the transformation just by considering the change, its type
and its properties.

We motivate the speci�cation of triggers with a continuous example from the PCM to
Java relations. As introduced in section 3.3, a PCM repository shares a consistency overlap
with three Java packages. Modi�cations of a repository element a�ect this consistency
overlap, which is why triggers for such modi�cations have to be speci�ed in consistency-
restoring transformations. A repository represents a root element of a PCM model, so the
InsertRootObject and RemoveRootObject changes of our change descriptions metamodel
are relevant for the example.

As a response de�nes a speci�c kind of repair for a speci�c type of consistency overlap,
its trigger has to check two kinds of preconditions. First, it has to identify if such an
overlap may got a�ected by the change. This identi�cation can be achieved by examining
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the change properties, for example, by checking if the modi�ed element can share such an
overlap because the overlap type contains the metaclass of the element. In our example,
the trigger must check if the modi�ed element is of type Repository. Second, it has to
determine if the consistency overlap was a�ected in such a way that the repair routine �ts
for its restoration. This is based on the type of the change and its properties. The insertion
and the removal of a repository, for example, require di�erent repair routines.

The change type, as one of the restrictions that a trigger has to specify, can only be
one of the metaclasses of the used change descriptions metamodel. Therefore, we initially
specify a trigger statement for the change type restriction. The preconditions on the
change properties can be more complex, which is why we introduce a general precondition
speci�cation approach for the change properties at �rst in the following. Some change
property restrictions are common and recurring, such as the type of the concrete modi�ed
element and potentially the changed feature. As a result, we develop compact statements
for them afterwards. With further property restrictions, a more simpli�ed speci�cation of
triggers is developed, which infers the concrete triggers to react to.

5.2.1 Specifying Change Type and General Preconditions

A response speci�es a routine for restoring consistency of a speci�c consistency overlap
type. Whenever a change is performed, consistency overlaps that contain the changed
element or rely on a speci�c property of the element can get inconsistent. Consistency
overlap types specify the metaclasses and the constraints for concrete consistency overlaps.
Therefore, information that is provided by the change, such as the metaclass of the modi�ed
element, can be used to decide whether a consistency overlap of a speci�c type may got
violated in consequence of the change. In our example, we consider modi�cations of a
PCM repository, thus the metaclass of the modi�ed element has to be Repository.

The change properties provide information about the actual modi�cation but not about
the model states. A change especially describes which type of element and potentially
which feature of the element was modi�ed. This identi�es if consistency overlaps of
the type that the response repairs can be a�ected. Dynamic model information, such as
property values of the modi�ed element or the correspondence model, are not considered
in the trigger. For example, a Java package may share a consistency overlap with a PCM
repository and thus require the execution of a speci�c response when it gets changed, but
not all Java packages correspond to a repository. This information cannot be retrieved
from the change, but from the correspondence model.

Furthermore, a response de�nes a speci�c kind of repair for a consistency overlap type.
The change type gives information about the kind of modi�cation and thus in�uences
the required operations to restore the constraints of the a�ected consistency overlap. In
our example, the insertion of a repository requires the three corresponding packages to
be created and to be initialized with correct values. After a removal of a package, the
corresponding packages have to be deleted. Both changes a�ect the same type of element,
but the di�erent change types require di�erent repair speci�cations.

Consequently, each response requires the speci�cation of the change type it reacts to.
The possible types are de�ned by the used change descriptions metamodel. As a result,
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the trigger must only provide the ability to specify one of those types for declaring the
restriction of the response execution to the occurrence of changes of that type.

The restriction of the change type of a trigger de�nes the accessible change properties,
which further preconditions can be based on. A completely tailored, declarative approach
for restricting the change properties can potentially not be applied in certain cases. To avoid
that non-applicability, we provide a Turing-complete, and as such maximum expressive
construct for specifying preconditions on the change properties. Therefore, we allow the
de�nition of a code block that returns a Boolean value. The return value indicates whether
the response shall be further executed or not. Expressions in the code block have access to
the change properties to de�ne preconditions based on their values.

A concrete syntax for the realization of the proposed trigger constructs is shown in
Listing 5.3. The element change-type speci�es the type of change to react to and can be any
change type that is speci�ed in the change descriptions metamodel. The precondition-block
allows to de�nition a general precondition. It has access to the actual change properties
and returns a Boolean value. The usable change properties are restricted by those available
in the speci�ed change type. To identify the precondition block, it is preceded by the
keyword check.

The operationalization of this trigger initially checks if a given change is of the speci�ed
type. Afterwards, it executes the de�ned statements of the precondition block, to which
the correctly typed change is provided.

〈trigger〉 = ’trigger:’ 〈change-type〉 〈precondition-block〉
〈precondition-block〉 = ’check’ 〈code-block〉
〈change-type〉 : change type from the used change descriptions metamodel

Listing 5.3: Language extension for triggers with change type speci�cation and general
preconditions

The realization of a trigger for the creation of a new PCM repository according to the
given syntax is de�ned in Listing 5.4. It speci�es the correct change type to react to and
restricts the execution to cases in which the modi�ed element of the change, provided by
the newValue element in our change descriptions metamodel, is a repository.

trigger: InsertRootObject

check newValue instanceof pcm.Repository

Listing 5.4: A trigger for reacting to the creation of a PCM repository

5.2.2 Restricting Change Properties

The proposed initial trigger speci�cation allows to de�ne all necessary types of restrictions
to the change type and its properties. Nevertheless, the property restrictions have to
be speci�ed in an imperative code block although most types of preconditions can be
provided in more compact, declarative statements.
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In general, the execution of a response depends on the modi�ed element, as it can be
seen in the repository creation example in Listing 5.4, which restricts the type of the
modi�ed element to Repository. Each atomic change speci�es the modi�cation of exactly
one element, as stated in the de�nition of atomic changes in subsection 4.2.2. In the case of
the insertion or removal of a root element, it is the element itself. In the case of a property
modi�cation, the element that holds the property is modi�ed. Therefore, a trigger can
provide a construct that allows the speci�cation of the type of the modi�ed element.

Atomic changes are either root element insertions or removals, or modi�cations of
features. Consequently, most changes are feature changes and as such provide information
about the modi�ed feature in addition to the modi�ed element. In our exemplary change
descriptions metamodel, the modi�ed feature is supplied by the a�ectedFeature property
of all FeatureChange instances. This information has to be restricted in the precondition of
most transformations because depending on the modi�ed feature, di�erent consistency
overlaps can be a�ected and require a di�erent kind of repair. For example, the insertion
of an interface into a PCM repository requires the creation of a Java interface, whereas
the insertion of a component requires the creation of a new Java class. Both changes are
described by an InsertReference change with the repository as the changed model element
and are only distinguishable by the modi�ed feature.

The restriction of the changed element and the modi�ed feature are realized in the
response language as shown in Listing 5.5. Additionally to the already added speci�cation
of the change type, the restriction is extended by the element type and feature. The
speci�cation of the modi�ed feature is optional as it depends on whether the change is a
feature change or not. This restriction cannot be expressed in the grammar but must be
ensured by further well-formedness constraints. The precondition block is declared as an
optional element because most preconditions can be expressed by the other constructs.

〈trigger〉 = ’trigger:’ 〈atomic-change〉 [〈precondition-block〉]
〈atomic-change〉 = 〈change-type〉 ’of’ 〈element-type〉 [ ’[’〈element-feature〉’]’ ]
〈precondition-block〉 = ’check’ 〈code-block〉
〈change-type〉 : change type from the used change descriptions metamodel

Listing 5.5: Language extension for triggers with change property restrictions

The operationalization of the new language constructs compares the type of the change
property that represents the modi�ed element with the expected type. Therefore, it selects
the correct change property in each case, which depends on the actual change type. Our
change descriptions metamodel provides the changed model element as the newValue in
the insertion, and as the oldValue in the removal of a root object. In a feature change, it
is provided as the a�ectedObject. In the case of a feature change, the modi�ed feature is
compared to the expected one after comparing the element type.

An example trigger using the new constructs is provided in Listing 5.6. It shows how
the restriction of a change to the insertion of a data type in a repository can be de�ned.
The trigger is speci�ed to react to changes of the type InsertReference with the changed
model element Repository and the modi�ed feature datatypes.
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trigger: InsertReference of pcm.Repository[datatypes]

Listing 5.6: A trigger for reacting to the insertion of a PCM datatype

Another bene�t of the proposed declarative statements is the possibility to let the
language implementation perform further consistency checks. Some combinations of
model elements or change types and features do not represent a meaningful trigger for a
response because they can never occur. First, only the speci�cation of a feature that is
provided by the expected model element is reasonable. Second, only a feature that may be
a�ected by a change of the speci�ed type should be speci�able. For example, an attribute
change of a reference property or vice versa can never occur.

Reacting to the creation and deletion of non-root elements has to be speci�ed through an
appropriate feature change of the container of the element. We do not provide a construct
to specify the creation or deletion of an element of a speci�ed type no matter where it is
contained. Although such a construct may appear useful, it is unnecessary according to
our de�nition of consistency. The existence of a consistency overlap is always induced by
the constraints of another one, which are de�ned on the properties of the elements of that
consistency overlap. Consequently, a modi�cation of a property may induce the creation
or removal of a consistency overlap, but not the simple creation or deletion of an element
no matter where it is contained. For example, the consistency overlap of a PCM interface
and its Java representation is induced by its insertion into the repository. The repository
consistency overlap requires its interfaces to share a consistency overlap with interface
representations in the Java code, but not by the creation of the interfaces themselves.

5.2.3 Change Type Generalization

The restriction of change types and properties as presented in the previous subsections
relies on our concrete change descriptions metamodel. However, the speci�cation of a
change type together with the modi�ed element and feature, like exemplarily shown in
Listing 5.6, can be further simpli�ed by generalizing from the given change descriptions.

Instead of allowing the speci�cation of concrete change types of our change descriptions
metamodel, we provide the speci�cation of more generic change types. Two reasons justify
this decision. First, fewer generic changes are needed because together with the speci�ed
element feature, di�erent concrete changes can be inferred. Second, we abstract from
the concrete realization and design decisions of the change descriptions metamodel. The
transformation developer must only consider the more generic types and their properties.
The generic changes inherently de�ne a new change descriptions metamodel that is
transformed into the underlying concrete one.

The possible reduction of the number of di�erent change types arises from the dupli-
cation of change types for reference and attribute changes in our change descriptions
metamodel. Their only di�erence is that the a�ected feature is once an EAttribute and
once an EReference. Nevertheless, a trigger requires the speci�cation of the feature that is
expected to be modi�ed, from which it is clear whether the modi�cation of an attribute or
a reference is expected. We combine the duplicate change types for attributes and refer-
ences into one type and infer the concrete change from the type of the speci�ed feature.
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Generic change type Feature property Inferred change type

Insert in list Is attribute InsertAttributeValue
Is reference InsertReference

Remove from list Is attribute RemoveAttributeValue
Is reference RemoveReference

Replace value Is attribute ReplaceAttributeValue
Is reference ReplaceReference

Insert root None InsertRootObject
Remove root None RemoveRootObject

Table 5.1: Inference of concrete change types from generic changes and feature properties

That combination reduces the number of speci�able change types without reducing the
expressiveness. Furthermore, the language must not explicitly prevent the speci�cation of
unful�llable combinations of change type and speci�ed feature any more, as they cannot
be speci�ed by design. The generic change types and their relation to concrete changes of
our change descriptions metamodel are shown in Table 5.1. The reduced set of change
descriptions is conform to the one proposed for EMOF in subsection 4.2.3.

The generic change types can be assigned to three categories with each having di�erent
demands on the speci�ed features. The �rst category are insertions and deletions of root
elements, which do not require the speci�cation of a modi�ed feature at all. The second
category are modi�cations of single-valued features, which can be addressed by the replace
value change type and require the speci�ed feature to be single-valued. Finally, the third
category comprises the insertion and removal of elements in a multi-valued feature and as
such these changes require the given feature to be multi-valued.

An integration of these generic change types into the triggers of the response language is
provided in Listing 5.7. In contrast to the previous realization of the change type de�nition,
the new grammar de�nes the more generic change types within the language and does not
refer to a change descriptions metamodel any more. The syntactical distinction between
root element changes and feature changes allows to condition the speci�cation of an
a�ected feature on the grammar rule.

〈trigger〉 = 〈atomic-change〉 ’check’ 〈precondition-block〉
〈atomic-change〉 = 〈root-change〉 | 〈feature-change〉
〈root-change〉 = (’insert root’ | ’remove root’) 〈element-type〉

〈feature-change〉 = (’insert in list’ | ’remove from list’ | ’replace value’)
〈element-type〉’[’〈element-feature〉’]’

〈precondition-block〉 = 〈code-block〉

Listing 5.7: Completed trigger grammar
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An example trigger according to the updated grammar is de�ned in Listing 5.8. The
trigger restricts the execution of the response to cases in which the change is the insertion
of a composite data type into a PCM repository. As the datatypes feature of the Repository
is multi-valued, the combination with the generic insert in list change type is valid. The
operationalization infers an InsertReference because the feature is a reference.

trigger: insert in list pcm.Repository[datatypes]

check newValue instanceof pcm.CompositeDataType

Listing 5.8: A trigger for the insertion of a composite data type into a repository

As the example shows, the restriction of the feature value type, in this case the data
type, has to be performed in the general precondition block. To simplify this restriction, a
language feature for restricting the expected feature value type could be added. However,
many transformations do not consider the type of the feature value because in cases in
which the type is relevant, the metamodel usually de�nes an individual reference for each
type. The remaining cases can be realized by a restriction within the general precondition
block.

5.3 Matchers: Retrieving Elements of Consistency Overlaps

The second of three parts of the response language are the matchers. The purpose of a
matcher is to decide if the e�ect of a response shall be executed based on the current
model states and correspondences.

Although triggers as well as matchers de�ne preconditions for the execution of the
e�ect of a response, they have distinct purposes. A trigger de�nes the preconditions
for the execution of a response based on the change properties. In contrast, a matcher
examines if the modi�ed element is actually part of a consistency overlap that is restored
by the response. Therefore, it investigates dynamic model information, such as property
values of the modi�ed element and the correspondence model. We identify if an element
is part of a consistency overlap by the existence of certain correspondences. For example,
checking if a Java class has a correspondence to a component identi�es if the class shares
a consistency overlap with a component.

The check if a certain element shares a consistency overlap requires to investigate the
correspondence model for the existence of certain correspondences. After that check, the
corresponding elements have to be retrieved for modifying the elements of the overlap to
restore consistency. To avoid a duplicate speci�cation of the correspondence retrieval for
checking its existence and retrieving the element, we combine both in the matcher.

A matcher speci�es how to retrieve the elements of consistency overlaps. If the retrieval
fails because the expected correspondences do not exist, this indicates that the element
does not share a consistency overlap of the expected type. The execution of a matcher
ensures that the unsuccessful retrieval of an element leads to the abortion of the response
execution because no consistency overlap that is repaired by the response exists.

The elements that are retrieved by a matcher are provided to the e�ect of the response,
which operates on them. A separation of matchers and e�ects is necessary because they
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have distinct responsibilities. The matcher of a response only accesses the correspondence
model for retrieving elements, thus it is free of side-e�ects. If a matcher detects that no
consistency overlap that can be repaired by the response is a�ected by the actual change,
it aborts the response without having any modi�cations performed yet. Modi�cations to
model elements are only performed by the e�ect.

In the following, the required statements for the matcher speci�cation are developed.
They simplify the access to the correspondence model and abstract from the mechanism
to pass the retrieved elements to the e�ect. Additionally to the basic retrieval of elements
from consistency overlaps, a check for the non-existence of corresponding elements is
necessary for detecting that a consistency overlap does not exist yet. In certain cases, the
existence of corresponding elements within a consistency overlap cannot be ensured and
requires an appropriate handling.

5.3.1 Retrieving Corresponding Elements

Correspondences, according to our de�nition, can exist between sets of elements of
arbitrary size. The correspondence model supports such kinds of correspondences. Never-
theless, correspondences between pairs of model elements are su�cient for describing
consistency overlaps. Several one-to-one correspondences used within one consistency
overlap implicitly de�ne a more complex correspondence. This matches the distinction of
explicit and implicit correspondence speci�cations described in subsection 4.1.2.

The restriction to one-to-one correspondences allows to provide simpler language
constructs because it only requires the speci�cation of one element to get a corresponding
element for. Otherwise, it would be necessary to allow the speci�cation of arbitrary large
sets of elements and to specify conditions on the arbitrary large sets of the expected
corresponding elements. As a consequence, the provided language constructs are limited
to the handling of one-to-one correspondences.

The retrieval of elements from the correspondence model requires the speci�cation
of the element whose corresponding elements shall be received. Furthermore, a model
element may have several corresponding elements. To distinguish the corresponding
elements by their type, we allow the speci�cation of a type by which the corresponding
elements are automatically �ltered. To make the retrieved element available in the e�ect of
the response for investigating or modifying its features, it has to be named. An extension
of our language syntax that realizes this retrieval action is presented in Listing 5.9.

The element-reference of the retrieve statement has to be speci�ed through a side-
e�ect free statement that allows to navigate the complete model starting from one of the
elements provided by the change or starting from any already retrieved element. The
latter ones are necessary because consistency overlaps can consists of elements that have

〈matcher〉 = { 〈retrieve-element〉 }
〈retrieve-element〉 = ’retrieve element:’ 〈element-type〉 ’as’ 〈id〉

’corresponding to’ 〈element-reference〉

Listing 5.9: Language extension for retrieving an element
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no correspondence to the modi�ed element but to another element that corresponds to
the changed one. We allow this speci�cation in a code block that has access to the change
properties and returns the model element.

The operationalization for such a statement �rst evaluates the speci�cation of the
element reference. It retrieves the corresponding elements of that element from the
correspondence model and �lters the retrieved elements by their type. The statements are
executed in the order in which they were de�ned because a retrieve statement allows the
access the previously retrieved elements.

An example that uses the retrieve statement is given in Listing 5.10. It shows a response
that reacts to the renaming of a component in a PCM model and retrieves the Java class to
update its name within the e�ect of the response.

trigger: replace value pcm.Component[name]

retrieve element: java.Class as javaClass corresponding to affectedObject

Listing 5.10: A matcher for retrieving the corresponding class of a component

Retrieve statements return corresponding elements of a speci�ed type, which can
potentially be an arbitrary number of elements. In our approach, we assume that the
corresponding element is unique to provide a clearly identi�ed element to the user instead
of an arbitrary large set. The statement evaluation fails if the speci�ed element has none or
more than one corresponding element of the speci�ed type. In some cases, this assumption
does not hold, which requires the further restriction of the corresponding elements to �nd
the unique searched element. These restrictions are discussed in the following.

5.3.2 Restricting Retrieved Elements by Filter Functions

Retrieving corresponding elements from the correspondence model can be simpli�ed for
the developer with the construct introduced in the previous subsection. It assumes that a
unique corresponding element is retrieved by the statement, which is not always possible
by �ltering the corresponding elements only by their type. For example, a repository in
a PCM model is mapped to three packages in the corresponding Java model, one for the
package itself and one each for the data types and the contracts. Retrieving one of them is
not possible with the proposed construct and requires further restrictions.

We allow the further restriction of corresponding elements by the speci�cation of a
code block that �lters the searched elements from the set of corresponding elements.
This restriction can be realized in at least two ways. One possibility is a code block that
gets the set of corresponding elements as an input and returns the unique element of
interest. Another approach is a code block that provides a �lter, which gets only one of
the corresponding elements and returns whether it is the searched element or not. That
function gets executed for each element and may only return true for the searched one.

We choose the latter approach because it allows the direct speci�cation of a constraint
that has to hold for a given element and does not force developers to repeat code for
iterating and modifying the set. This decision makes the speci�cation shorter and simpler.

An extension for the already introduced retrieve statement is presented in Listing 5.11.
It provides a code block for the restriction of the retrieved elements, which is introduced
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〈matcher〉 = { 〈retrieve-element〉 }
〈retrieve-element〉 = ’retrieve element:’ 〈element-type〉 ’as’ 〈id〉

’corresponding to’ 〈element-reference〉

[ 〈retrieve-�lter-block〉 ]
〈retrieve-�lter-block〉 = ’with’ 〈code-block〉

Listing 5.11: Language extension for �ltering retrieved elements

with the keyword with. The speci�cation of such a �ltering code block is optional because
in many cases the restriction by the element type is su�cient.

The operationalization of the speci�cation executes the code block for each correspond-
ing element of the speci�ed type. Thus, the actual element must be accessible within
the code block, which we realize by making the element accessible by the name that is
speci�ed within the retrieve statement. Furthermore, we ensure that the code block returns
a Boolean value.

With this �ltering mechanism, the unambiguous retrieval of a speci�c Java package
corresponding to a PCM repository is possible. Assuming that the data types and contracts
package have prede�ned names, they can be identi�ed in the retrieve statement by com-
paring the name of the actual package with the expected name. For example, the creation
of a new interface in a PCM repository requires the creation of a new Java interface within
the contracts package, which can be retrieved as shown in the example in Listing 5.12.

trigger: insert in list pcm.Repository[interfaces]

retrieve element: java.Package as contractsPackage corresponding to affectedObject

with contractsPackage.name.equals("contracts")

Listing 5.12: A matcher for retrieving an element with a user-de�ned �lter function

5.3.3 Restricting Retrieved Elements by Correspondence Tags

One approach for restricting the set of corresponding elements is the speci�cation of
a �lter function. That approach allows the speci�cation of arbitrary conditions based
on the current model states, which are accessible through the provided change and the
correspondence model. However, this restriction is not always su�cient.

For the retrieval of the correct corresponding Java package for a PCM repository, a
solution using a �lter function that checks the name of the actual package was presented
previously. The mechanism assumes that at least two of the three corresponding packages
can be uniquely identi�ed by their names. If, in contrast, the contracts and data types
packages have no prede�ned names but an arbitrary name that can be individually speci�ed
by the user, the mechanism is insu�cient.

Like in the given example, it is not always possible to select the correct correspond-
ing model element only by information provided by the models. In these cases, the
identi�cation of the correct element has to rely on the relation between the elements,
which is persisted through a correspondence. For example, the correspondences of a
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〈matcher〉 = { 〈retrieve-element〉 }
〈retrieve-element〉 = ’retrieve element:’ 〈element-type〉 ’as’ 〈id〉

’corresponding to’ 〈element-reference〉

[ 〈retrieve-�lter〉 ] [ ’tagged with’ 〈tag〉 ]
〈retrieve-�lter〉 = ’with’ 〈code-block〉

Listing 5.13: Language extension for restricting retrieved elements by correspondence tags

PCM repository to the di�erent Java packages have to provide the information which role
each corresponding package has. In consequence, a correspondence needs an identifying
property.

While many kinds of properties can be added to a correspondence for identifying
the relation, we propose a tagging mechanism that assigns an identifying tag to each
correspondence. This mechanism is similar to the one used in QVT [72], in which the
transformation rule is assigned to a trace on creation. Our approach relies on an extension
of the correspondence metamodel that adds a tag property to the correspondence metaclass.

Tags have to be assigned to correspondences when they get created and have to be
checked when corresponding elements are retrieved. Therefore, the creation of a corre-
spondence must allow the attachment of a tag to it, which is an objective of the e�ects and
is thus discussed in the next section. Furthermore, the provided retrieve statement has
to be extended by the speci�cation of tags that restrict the considered correspondences.
A concrete syntax for such an extended statement is shown in Listing 5.13. The tagging
construct is speci�ed as optional because it is only required if the corresponding element
cannot be unambiguously identi�ed by model properties, which is not always the case.

The value speci�cation of the tag can be realized in di�erent ways. One possibility
is the declaration of tags as external DSL constructs of the response language, which
could be realized as enumeration values. A more simple variant is the speci�cation of tags
as simple strings, which is the approach that we choose. During the execution of such
a retrieve statement, the retrieval of corresponding elements from the correspondence
model is extended to only investigate the correspondences that have the expected tag
value assigned.

The example for retrieving the contracts package when creating a new PCM interface,
which was already realized with a �lter function in Listing 5.12, is realized using the
tagging mechanism in Listing 5.14 again. We assume that another response attached the
speci�ed tag to the contracts package correspondence when creating it in reaction to the
creation of a PCM repository. When creating a new PCM interface, the contracts package
is retrieved using its tag to create a corresponding Java interface within that package.

trigger: insert in list pcm.Repository[interfaces]

retrieve element: java.Package as contractsPackage corresponding to affectedObject

tagged with "contracts"

Listing 5.14: A matcher for retrieving an element using a tagging mechanism
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5.3.4 Retrieving Optional Elements

The developed mechanisms for handling correspondences, restricting the retrieved ele-
ment set, and tagging correspondences target the retrieval of unambiguously identi�able
correspondences. The presented approaches should be su�cient for restricting the set of
elements that correspond to a given one to the unique expected model element.

The current construct assumes that there is always a set of corresponding elements
that contains the one of interest. Actually, there can be situations in which none of the
corresponding elements ful�lls the restrictions that are made in the retrieve statement.
Because the retrieve statement aborts the response execution if no expected corresponding
element exists, it has to be extended to allow the handling of such cases. Expected
correspondences can be missing due to di�erent reasons. An important reason is the
breaking of meta-levels, which is discussed in subsection 5.7.4.

We provide the possibility to declare a retrieve statement as optional. It speci�es that
the response execution is not aborted if no corresponding element can be retrieved and
just delivers a null reference. The already existing characteristic of the retrieve statement
is indicated by an additional required keyword, which clari�es that the successful element
retrieval is required for the continuation of the response execution. An extension of the
exemplary language is provided in Listing 5.15.

〈matcher〉 = { 〈retrieve-element〉 }
〈retrieve-element〉 = ’retrieve’ (’optional’ | ’required’) ’element:’

〈element-type〉 ’as’ 〈id〉
’corresponding to’ 〈element-reference〉

[ 〈retrieve-�lter-block〉 ] [ ’tagged with’ 〈tag〉 ]
〈retrieve-�lter-block〉 = ’with’ 〈code-block〉

Listing 5.15: Language extension for retrieving optional elements

A PCM data type shares a consistency overlap with a Java class if it is composite or a
collection. It has no corresponding Java model element if it is primitive. The reason is a
meta-level break, which is discussed in subsection 5.7.4. Consequently, the retrieval of the
corresponding Java class of a general PCM data type can fail, which can be avoided using
the optional keyword. An example that demonstrates this case is provided in Listing 5.16.
The response reacts to the replacement of the inner type of a collection data type within a
PCM model and is proposed to replace the old inner type in the Java implementation with

response: ChangedTypeOfCollectionDataType

trigger: replace value pcm.CollectionDataType[innerType]

retrieve optional element: java.Class as newInnerDataType

corresponding to newValue

// create a type reference that refers to the inner data type

// or an appropriate type reference instance for the primitive PCM type

Listing 5.16: A matcher for retrieving a potentially non-existent element
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the new one. In consequence, the inner type of the collection type must be retrieved by
resolving the correspondence of the inner type. Because this type can also be primitive
and then has no corresponding Java element, the retrieve statement is declared as optional.

5.3.5 Expecting the Non-Existence of Corresponding Elements

The last subsections dealt with the retrieval of elements from the correspondence model to
collect the elements of consistency overlaps. However, the creation of a new consistency
overlap can also depend on the non-existence of another one.

When creating a Java class within a package, it is possibly intended to be the implementa-
tion of a PCM component. Thus, no other class in the package may be the implementation
of a component yet. If another class already implements a component, the package has
a correspondence to a PCM component, which disallows the initiation of a new consis-
tency overlap of the created class with a component. Consequently, the continuation
of a response execution for the Java class creation depends on the non-existence of a
correspondence between the package of the newly created class and a component.

Non-existence checks for correspondences are achieved by reusing the already de�ned
retrieve statement with changed semantics. Instead of expecting the execution of the
retrieval to return exactly one corresponding element, it is assumed to return none. The
only di�erence to a retrieve statement is the omission of an identi�er speci�cation, as the
statement does not return an element that must be referenceable. Listing 5.17 shows the
realization in our example language, omitting the retrieve statement to stay short.

〈matcher〉 = { 〈retrieve-element〉 | 〈require-non-existence〉 }
〈require-non-existence〉 = ’require non-existent element:’ 〈element-type〉

’corresponding to’ 〈element-reference〉

[ 〈retrieve-�lter-block〉 ] [ ’tagged with’ 〈tag〉 ]
〈retrieve-�lter-block〉 = ’with’ 〈code-block〉

Listing 5.17: Language extension for requiring the non-existence of a correspondence

The example scenario that motivated the new language construct is realized in List-
ing 5.18. The matcher of the response checks that the package of the newly created class
has no corresponding PCM component.

trigger: insert in list java.Package[classifiers]

check newValue instanceof java.Class

required non-existent element: pcm.Component corresponding to affectedObject

Listing 5.18: A matcher expecting the non-existence of a correspondence

5.3.6 Specifying Further Conditions

The introduced constructs of a matcher investigate the correspondence model to decide
whether the response e�ects shall be executed or not. These conditions are essential as
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they check the necessary existence or non-existence of consistency overlaps. Nevertheless,
further conditions that are based on the model state, and thus belong to the matcher, may
need to be speci�ed.

An example for such a condition was implicitly introduced in the previous subsection.
If a user inserts a Java class into a package, it may be intended to be a component. This
intention has to be requested from the user. Although that request can be technically
realized within the code block of the trigger, it ought to be implemented within the matcher.
If the package already contains a class that implements a component, the developer should
not be asked if the created class realizes a component, as this is not possible. Consequently,
the user request should follow the successful non-existence check in the matcher.

Like in the general precondition block of the trigger, the checks in the matcher can
be implemented with code blocks, which can check arbitrary preconditions that depend
on the model state. Although such a block would be theoretically su�cient as the last
statement of a matcher, we allow the speci�cation of multiple code blocks anywhere in the
matcher. This realization avoids the unnecessary continuation of the execution of further
matcher statements if the evaluation of a user-de�ned check aborts it.

The completed matcher grammar of the example language is shown in Listing 5.19.
In addition to the retrieve and non-existence requiring statements, check blocks can be
de�ned within the matcher. Such a block has to return a Boolean value and has access to
the change properties, as well as the already retrieved elements. Furthermore, it has to be
free of side-e�ects as the whole matcher has to be side-e�ect free.

〈matcher〉 = { 〈retrieve-element〉 | 〈require-non-existence〉 |
〈matcher-check-block〉 }

〈retrieve-element〉 = ’retrieve’ (’optional’ | ’required’) ’element:’
〈element-type〉 ’as’ 〈id〉
’corresponding to’ 〈element-reference〉

[ 〈retrieve-�lter-block〉 ] [ ’tagged with’ 〈tag〉 ]
〈require-non-existence〉 = ’require non-existent element:’ 〈element-type〉

’corresponding to’ 〈element-reference〉

[ 〈retrieve-�lter-block〉 ] [ ’tagged with’ 〈tag〉 ]
〈retrieve-�lter-block〉 = ’with’ 〈code-block〉
〈matcher-check-block〉 = ’check’ 〈code-block〉

Listing 5.19: Completed matcher grammar

5.4 E�ects: Restoring Consistency

The third and last part of the response language are the e�ects. While triggers and matchers
restrict the cases in which a response is executed, the e�ects specify how consistency
overlaps are repaired. Therefore, an e�ect modi�es the elements of a consistency overlap
and the correspondence model to restore the satisfaction of the consistency overlap
constraints.
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An e�ect repairs a consistency overlap whose elements are provided by the previously
executed matcher. It is the only part of a response that performs side-e�ects by modifying
the involved models and the correspondence model. Therefore, an e�ect has to be executed
completely or not at all. Preconditions for the execution of an e�ect have to be checked
within the trigger or the matcher of the response. This separation of concerns avoids
inconsistencies by design because partially executed transformations are impossible.

The modi�cations that an e�ect performs a�ect the elements provided by the matcher,
the correspondence model, and potentially newly created elements. The e�ects could be
realized through an imperative code block that has access to the mentioned artifacts. We
develop the e�ects starting with this insight.

From that starting point, further language constructs, especially for simplifying modi�-
cations of the correspondence model, are derived. Because the correspondence model has
a simple and well-known structure, it is possible to embed potential modi�cations to it in
easily understood language constructs. The constraints that a consistency overlap has to
ful�ll can be far more complicated, thus they are hard to simplify by dedicated language
constructs and are therefore suggested to be repaired within imperative code.

5.4.1 Specifying General E�ects

An e�ect de�nes modi�cations of model elements with the purpose of restoring the
satisfaction of a consistency overlap they share. These model elements consist of those
retrieved by the matcher, those provided by the properties of the change and potentially
newly created elements.

The least restricted way of de�ning modi�cations within a model is possible in a Turing-
complete language. To provide a language with maximum expressiveness for restoring
model consistency to the developer, the response language provides an code block to
specify the e�ects of a response. We call this block the execution block. It is introduced by
the keyword execute, as the language grammar extension in Listing 5.20 shows.

〈e�ect〉 = 〈execution-block〉
〈execution-block〉 = ’execute:’ 〈code-block〉

Listing 5.20: Language extension for e�ects speci�ed in a code block

Within the execution block, the properties of the actual change, the elements retrieved by
the matcher, and the correspondence model are accessible to perform reasonable changes.
We make the properties of the actual change accessible by their names as speci�ed in
the change descriptions metamodel introduced in subsection 5.1.3. The model elements
retrieved in the matcher are accessible by their names de�ned in the retrieve statements.

The execution block is speci�ed and executed at the end of a response, after any further
language constructs that are introduced in the following. The execution block has no
return value that further language constructs can use. Consequently, the expressiveness of
the language would not increase if further statements could be speci�ed after the execution
block or if more than one execution block could be de�ned.
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According to subsection 4.4.3, three kinds of actions can be performed depending on the
actual change. First, an existing consistency overlap can be restored. Second, an existing
consistency overlap can be removed by removing its elements. Third, a new consistency
overlap can be initialized by creating new elements, adding correspondences between
them and making them consistent. It is up to the developer to de�ne by which concrete
actions the satisfaction of a consistency overlap is restored.

For any modi�cation of a consistency overlap, its own elements and possibly elements
of overlaps it depends on must be accessible. In our case, the existing elements are already
retrieved by the matcher and provided to the e�ect. Additionally, new elements may need
to be created, especially due to the induction of a new consistency overlap. While the
modi�cations of model elements that are required for restoring consistency deeply depend
on the actual constraints of a consistency overlap, the creation and deletion of elements
as well as the handling of correspondences is similar in all responses. This is why those
operations are addressed by language constructs in the following.

5.4.2 Creating Model Elements

A common action in consistency repair is the creation of new model elements. Especially if
a model change requires the initiation of a new consistency overlap, new model elements
have to be created and inserted into the models. For example, the insertion of a PCM
component into a repository requires a corresponding Java class to be created because
the consistency constraint of the consistency overlap of the repository requires each
component to share such a consistency overlap.

A create statement must only specify the type of the element to create along with an
identi�er to make it accessible. Only concrete metaclasses are allowed to be speci�ed, as
only non-abstract metaclasses can be instantiated. The realization of that statement in the
response language is shown in Listing 5.21.

〈e�ect〉 = { 〈create-element〉 }
〈execution-block〉

〈create-element〉 = ’create element:’ 〈element-type〉 ’as’ 〈id〉
〈execution-block〉 = ’execute:’ 〈code-block〉

Listing 5.21: Language extension for creating model elements

An example that makes use of the statement is presented in Listing 5.22. The response
in the example reacts to the creation of a component in the repository of a PCM model.
The create statement speci�es the creation of a Java class with which the component has
to share a consistency overlap.

trigger: insert in list pcm.Repository[components]

create element: java.Class as javaClass

// Initialize class and add correspondence to component

Listing 5.22: A response that creates a Java class after a PCM component creation
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5.4.3 Adding and Removing Correspondences

Accessing the correspondence model for creating new correspondences and removing
existing ones is an essential task of an e�ect. Especially if a new consistency overlap is
introduced due to the insertion of a new model element or if a consistency overlap shall be
removed because a model element is deleted, the correspondence model must be updated
to represent this modi�cation. As already proposed for the retrieval of elements within a
matcher, the handling of correspondences in the e�ects is realized through special language
constructs. They abstract from the access to the correspondence model and reduce the
required knowledge about the technical realization, the structure and the accessibility of
the correspondence model.

As already motivated for the retrieval of corresponding elements in subsection 5.3.1,
we do only support one-to-one correspondences. Therefore, only language constructs for
creating and removing correspondences between two elements are provided.

The addition and removal of a correspondence requires only the declaration of the ele-
ments between which a correspondence shall be established or removed. In subsection 5.3.3,
tags for correspondences were introduced for identifying corresponding elements not only
by their properties but also by the context in which they were created. A tag has to be
attached to a correspondence when it gets created, which is why they can be speci�ed
in the statement for the correspondence addition. The speci�cation of a tag is optional
because a tag is only needed in few cases in which the model state information is not
su�cient for unambiguously retrieving the expected element. A concrete syntax for the
correspondence handling is shown in Listing 5.23.

The referenceable elements in a correspondence addition or removal can be restricted to
the ones created in the e�ect and those provided by the change properties or the matcher.
The restriction is valid because the e�ects do only modify the consistency overlap that
consists of those elements. To provide maximum �exibility, we allow the speci�cation of a
code block that returns an element reference and has access to the mentioned elements.

Elements created in the e�ects potentially have to be added to new correspondences, but
the element creation does not rely on any modi�cations of the correspondence model. As

〈e�ect〉 = { 〈create-element〉 }
{ 〈add-correspondence〉 | 〈remove-correspondence〉 }
〈execution-block〉

〈create-element〉 = ’create element:’ 〈element-type〉 ’as’ 〈id〉
〈add-correspondence〉 = ’add correspondence between’

〈element-reference〉 ’and’ 〈element-reference〉

[ ’tag with’ 〈tag〉 ]
〈remove-correspondence〉 = ’remove correspondence between’

〈element-reference〉 ’and’ 〈element-reference〉

〈execution-block〉 = ’execute:’ 〈code-block〉

Listing 5.23: Language extension for creating and removing correspondences
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a result, the statements are ordered accordingly. The operationalization of these constructs
either creates a correspondence between the speci�ed elements and then adds it to the
correspondence model, or it removes the correspondence between the speci�ed elements
from the correspondence model, if existing.

In Listing 5.24, an example using the construct for adding correspondences with the
tagging mechanism is provided. It speci�es the creation of the contracts and data types
packages in the Java model corresponding to a newly created PCM repository, as well as
the addition of the required correspondences. To unambiguously di�erentiate these two
packages later, they are tagged with unique names. The example realizes the creation of
the tagged correspondences that were assumed in the example for retrieving elements
with tagged correspondences in subsection 5.3.3.

trigger: create root pcm.Repository

create element: java.Package as contractsPackage

create element: java.Package as datatypesPackage

add correspondence between contractsPackage and newRoot tag with "contracts"

add correspondence between datatypesPackage and newRoot tag with "datatypes"

Listing 5.24: A response for creating the contracts and data types package of a just created
PCM repository with tagged correspondences between them

5.4.4 Deleting Model Elements

The e�ect of a response de�nes the repair logic for speci�c consistency overlaps. Although
this repair usually means that a new consistency overlap is instantiated or an existing
overlap is repaired, it can also mean to remove a consistency overlap. Such a removal is
especially necessary if an element of the overlap is removed and the repair logic de�nes
the removal of the consistency overlap as the appropriate repair action.

When removing a consistency overlap and deleting elements contained in it, the deletion
also requires the removal of all its correspondences to other elements. In contrast, removing
a consistency overlap, and thus its correspondences, does not necessarily require the
deletion of all the associated elements. In consequence, a de�ned delete statement for
model elements should lead to the removal of its correspondences as well. The explicit
removal of correspondences is consequently only necessary if correspondences shall be
removed without the deletion of at least one of its elements.

Based on this insight, we de�ne a statement for specifying the deletion of an element.
A realization of the complete grammar for the e�ects is presented in Figure 5.2. The delete
statement does only require the speci�cation of the element to be deleted, which can be
any element that is referenceable because it is accessible through a change property or
because it was retrieved by the matcher.

Additionally to the deletion of the speci�ed element, the operationalization of the delete
statement also removes all correspondences of the element from the correspondence model.
Depending on the concrete implementation of the correspondence model, this removal
may be performed automatically if one of the corresponding elements is removed.
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〈e�ect〉 = { 〈create-element〉 | 〈delete-element〉 }
{ 〈add-correspondence〉 | 〈remove-correspondence〉 }
〈execution-block〉

〈create-element〉 = ’create element:’ 〈element-type〉 ’as’ 〈id〉
〈delete-element〉 = ’delete element:’ 〈element-reference〉

〈add-correspondence〉 = ’add correspondence between’
〈element-reference〉 ’and’ 〈element-reference〉

[ ’tag with’ 〈tag〉 ]
〈remove-correspondence〉 = ’remove correspondence between’

〈element-reference〉 ’and’ 〈element-reference〉

〈execution-block〉 = ’execute:’ 〈code-block〉

Figure 5.2: Completed e�ect grammar

A response written in the proposed concrete syntax, which exempli�es the deletion
of an element, is given in Listing 5.25. In the example, the Java class corresponding to a
PCM component is deleted in response to the removal of the component within the PCM
model. This deletion implicitly removes the correspondences between the Java class and
the component as well. The example is identical with the one given in subsection 5.4.3,
except that the Java class is also deleted and the correspondence is now removed implicitly.

trigger: remove from list pcm.Repository[components]

retrieve element: java.Class as javaClass corresponding to oldValue

delete element: javaClass

Listing 5.25: A response that deletes a Java class after removing the corresponding PCM
component

5.5 Separating Triggers from Repair Routines

The basic structure of the response language, as proposed in subsection 5.1.2, separates
a response into three parts with di�erent purposes. The requirements to, and possible
realizations of the di�erent parts were discussed in the previous sections. In this section,
the further development of the top-level language structure is discussed.

With the basic language structure, the speci�cation of independent change-driven
transformations is possible by writing single responses. In terms of reusability, which are
discussed in subsection 5.5.2, and other conceptual restrictions, which are discussed in
subsection 5.5.3, the tight coupling of all three parts of a response is not useful.

To resolve the tight coupling of triggers, matchers and e�ects, the following subsection
deals with the separation of the parts of a response. Afterwards, the consequences for
reusability and further actual restrictions of the language are presented in examples.
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5.5.1 Specifying Repair Routines with Matchers and E�ects

In general, all three parts of a response could be reused independently. They have well-
de�ned requirements to the data that they can access and get as their input, and to
the data that they provide. A trigger expects a change and the correspondence model.
Properties of the change and the correspondence model are passed to the matcher, which
additionally provides several elements of certain consistency overlaps. The e�ect again
expects the change properties and the correspondence model, as well as certain elements
of the consistency overlaps that it repairs and that are retrieved by an appropriate matcher.
Consequently, all parts could be speci�ed independently with each trigger de�ning which
concrete matcher it calls and each matcher specifying the e�ect it calls.

A matcher and an e�ect are coupled more tightly than a trigger and a matcher. Matcher
and e�ect both de�ne operations on a concrete instance of a consistency overlap type.
They rely on the change delivered by a trigger, which only decides whether a consistency
overlap can be a�ected due to type information of the change. The matcher and the e�ect
can also rely on other inputs than the change to identify a consistency overlap and still
de�ne a way of repairing it. Although a certain model change requires a certain way of
repairing the a�ected consistency overlap, the same repair can be applied in di�erent
scenarios. For example, the renaming of an interface or a data type in a PCM model both
require their corresponding Java class names to be updated. This update can be expressed
in the same matcher and an e�ect although the trigger has to be de�ned di�erently.

A matcher and an e�ect de�ne a repair routine for a speci�c consistency overlap. The
trigger does only decide if a repair routine is called due to a change. Therefore, we
separate the repair routine, de�ned by a matcher and e�ect, from the trigger of a response.
This separation also allows to make a repair routine independent from the actual change
because only the change properties that describe the a�ected elements have to be passed
to the repair routine. The input of arbitrary elements to a repair routine allows to further
modularize them and reuse repair routines within others.

An extension for the response language that supports the proposed separation is pro-
vided in Listing 5.26. The de�nitions of matcher and trigger are moved into a separate
repair-routine. We allow an implicit speci�cation of the repair routine right within the
response to still allow the compact speci�cation of a complete response. The implicit-

repair-routine expects the elements that were previously supplied to a matcher, which
are the correspondence model and the change properties. In contrast, the explicit-repair-

routine de�nes its input explicitly in the routine-input, while the correspondence model
is obviously still required. A dedicated root element responses-document de�nes a new
top-level element that illustrates the possibility of specifying responses and explicit repair
routine that can be called from responses.

An explicit repair routine should accept further element types than only elements
of instances of the considered metamodels. We also allow to pass primitive values and
strings to make a repair routine more generic and increase its reusability. We advise against
allowing the speci�cation of element collections as inputs because each consistency overlap
type consists of a static number of metaclasses, thus a repair routine that restores such an
overlap relies on a static number of elements and not arbitrary large collections of them.
The handling of element collections is further discussed in subsection 5.5.3.
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〈responses-document〉 = { 〈response〉 | 〈explicit-repair-routine〉 }
〈response〉 = ’response:’ 〈response-name〉

〈trigger〉 〈implicit-repair-routine〉

〈implicit-repair-routine〉 = 〈repair-routine〉
〈explicit-repair-routine〉 = ’repair routine:’ 〈repair-routine-name〉

〈routine-input〉 〈repair-routine〉

〈routine-input〉 = ’input:’ 〈element-type〉 ’as’ 〈id〉 { ’,’ 〈element-type〉 ’as’ 〈id〉 }
〈repair-routine〉 = 〈matcher〉 〈e�ect〉

〈response-name〉 = 〈id〉
〈repair-routine-name〉 = 〈id〉

Listing 5.26: Response language grammar with separated repair routines

The speci�ed repair routines must also be invoked. The external repair routines can be
made accessible through further language constructs within the e�ects of our external
DSL. The drawback of this approach is that a repair routine cannot be called by another
one at a speci�c point of its e�ect execution, but only before or after the execution block.
Therefore, we allow to call explicit repair routines through internal DSL constructs in the
execution block. We make them accessible through methods that have parameter lists
according to the expected input. Consequently, a repair routine can be externalized from
a response by specifying its name and input, and leaving the matcher and e�ect of the
response empty, except for the call of the repair routine within the execution block.

5.5.2 Reusing Repair Routines

One important motivation and use case for the separation of responses and repair routines
is reusability. A consistency overlap can get inconsistent due to di�erent modi�cations,
but it can be restored by the same routine that retrieves the right elements and performs
appropriate modi�cations. Especially the externalization of parts of a repair provides good
potential for reuse. It allows to compose a response of several repair routines.

An example for the useful externalization of a repair routine is the creation of Java
classes. Di�erent elements in a PCM model share consistency overlaps with Java classes.
Whenever such an element is created, a Java class has to be instantiated. Instead of
specifying this initialization in each case, it can be separated into an explicit repair routine.

An example for reusing a repair routine is given in Listing 5.27. The creation of a Java
class is externalized into an explicit repair routine. The routine expects the package, in
which the new class shall be placed, and a named element, to which the class corresponds
and which provides its name. This routine is used by responses that react to the creation of
a component and a data type for creating the corresponding classes. The routine is invoked
by a method that is available in the execution block, as described in the previous subsection.
In our example, these methods have the name of the repair routine pre�xed with call. An
implementation of the language has to ensure that the generated code has access to such
methods. The mechanism used in our implementation is discussed in chapter 6.
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response: CreatedComponent

trigger: insert in list pcm.Repository[components]

retrieve required element: java.Package as repositoryPackage

corresponding to affectedObject tagged with "rootPackage"

create element: java.Package as componentPackage

add correspondence between newValue and componentPackage

execute: {

val component = newValue;

componentPackage.name = component.name;

componentPackage.namespaces += repositoryPackage.name;

repositoryPackage.subpackages += componentPackage;

callCreateClass(interface, componentPackage);

}

response: CreatedCompositeDataType

trigger: insert in list pcm.Repository[dataTypes]

check newValue instanceof pcm.CompositeDataType

retrieve required element: java.Package as datatypesPackage

corresponding to affectedObject tagged with "datatypes"

execute: {

val compositeDataType = newValue;

callCreateClass(compositeDataType, datatypesPackage);

}

repair routine: CreateClass

input: pcm.NamedElement as sourceElement, java.Package as containingPackage

create element: java.Class as javaClass

add correspondence between javaClass and sourceElement

execute: {

javaClass.name = sourceElement.name;

javaClass.namespaces += containingPackage.namespaces;

javaClass.namespaces += containingPackage.name;

containingPackage.classifiers += javaClass;

}

Listing 5.27: Responses reusing repair routines for creating Java classes

5.5.3 Iterating Repair Routine Calls

Another problem that can be solved with the separation of repair routines is the repair
of dynamic numbers of consistency overlaps. If a repair routine is tightly coupled to a
complete response, the matcher and e�ect part do only provide language constructs for
dealing with a static number of elements. Each create or retrieve statement is assumed to
provide at most one element. The number of elements to operate on is thus bounded by
the number of statements.

Dealing with a dynamic number of elements could be realized in two ways. The opera-
tions on the correspondence model can be performed manually within the execution block
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or further language constructs can be provided to handle that requirement. Nevertheless,
the number of elements of which a consistency overlap consists is usually static. A problem
arises if a modi�cation requires the repair of an arbitrary number of consistency overlaps.
Although each of them consist of a static number of elements, all together consist of
an arbitrary number of elements. Because each consistency overlap consists of a static
number of elements, the repair of each of them can be realized in a repair routine.

With the separation of responses and repair routines, the repair for a single consistency
overlap, consisting of a static number of elements, can be de�ned in one repair routine. If
a modi�cation potentially a�ects an arbitrary number of consistency overlaps, a response
can call the repair routine for each of the a�ected consistency overlaps.

An example for such a scenario is the renaming of the repository in a PCM model. A
repository is mapped to a Java package that contains several other packages and classes.
Among others, it contains one package and one class for each component in the repository.
Each package and class in our Java metamodel contains its package hierarchy as strings in
the namespaces property. Renaming the repository and thus its Java package requires the
namespaces of all packages and classes that implement components to be updated. The
example is realized in Listing 5.28. It is reduced to the repair of the consistency overlaps
of the components and omits several other required modi�cations, such as updating the
contracts and data types implementations accordingly.

Cases like in the example usually arise from bad metamodel design. The namespace of
a class or a package is de�ned by the packages it is contained in and thus should not be
saved within a property redundantly. Nevertheless, we have to deal with such metamodel
designs in practice and thus need to support such setups in our language.

response: RenamedRepository

trigger: replace value pcm.Repository[name]

retrieve required element: java.Package as rootPackage

corresponding to affectedObject tagged with "rootPackage"

execute: {

rootPackage.name = newValue;

for (component : repository.components) {

callRenameComponentPackageAndClass(component);

}

}

repair routine: UpdateComponentNamespaces

input: pcm.Component as component

retrieve required element: java.Package as componentPckg corresponding to component

retrieve required element: java.Class as componentClass corresponding to component

execute: {

componentPckg.namespaces.clear();

componentPckg.namespaces += component.repository.name;

componentClass.namespaces = #[component.repository.name, component.name];

}

Listing 5.28: A response iterating repair routine calls
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5.6 Language Properties and Responsibilities

The last sections introduced the structure and constructs of the response language. In this
section, we discuss some further properties of the language concerning the target model
of a transformation, transitivity of change propagation and the visibility of model states.
We also explain responsibilities for model persistence that it has to ful�ll.

5.6.1 Target Models of Responses

Incremental transformations store the relations between elements of the transformed
models within trace models. These traces usually exist between a clear source and target
model. Consequently, a transformation has a clear source model that was changed and a
clear target model on which the transformation operates.

The response language relies on the Vitruvius framework, which de�nes one correspon-
dence model for each pair of metamodels. These correspondence models do not consider
the models of the corresponding elements. The elements can be contained in di�erent
models that are conform to the same metamodel. This is why the target of a transformation
is not that clear in this context as it is in classical source-to-target transformations.

A response operates on individual model elements, rather than on a dedicated target
model. Corresponding elements can be addressed no matter in which models they are
contained. Thus, elements of the consistency overlaps that are accessed in a response can
be spread across di�erent models. For preserving consistency of PCM and Java models, the
restriction to a single model would even be insu�cient because each class and package in
the Java model is represented as a single model. As a result, only a single class or package
could be addressed in a transformation if only one target model was allowed.

5.6.2 Transitivity of Consistency Repair Routines

Consistency-restoring transformations can use and provide di�erent kinds of transitivity.
On the one hand, transitivity of transformations can be required for repairing dependent
consistency overlaps between two models. On the other hand, a transformation performs
modi�cations that can again trigger new transformations for restoring consistency with
further models.

The �rst kind of transitivity was implicitly discussed in subsection 5.5.2 about separating
triggers and repair routines in the response language. The restoration of di�erent consis-
tency overlaps can be de�ned in individual repair routines. In case of the dependency of
one consistency overlap to another, the repair routine of the dependent one can be called
from the one it depends on. Calling a repair routine from another one can be considered as
an implicit trigger that is not provided by the transformation environment but by the repair
of another consistency overlap. In the case of element deletions, this kind of transitivity
is often implemented implicitly, without further repair routines. For example, deleting a
component in a PCM model triggers the deletion of the corresponding class in the Java
code and implicitly removes all dependent elements and thus consistency overlaps, such
as required or provided roles.
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The e�ect of a response performs modi�cations within models. Consequently, these
modi�cations can again trigger consistency-restoring transformations, even to preserve
consistency with further models. This second kind of transitive transformation execution
is currently not considered within our transformation environment provided by the Vit-
ruvius framework. Although reacting to modi�cations that are performed by the repair
routines is conceptually and technically simple, it leads to some problems, such as the
cyclic triggering of transformations. Nevertheless, this mechanism would ease the speci�-
cation of consistency-restoring transformations between three or more metamodels, as
they would not have to be de�ned between each metamodel pair. Several transformations
could be omitted because of the transitive execution of repair routines.

5.6.3 Visibility of Model States

A transformation environment can execute change-driven transformations at di�erent
points of time. In the best case, transformations are executed right after each atomic
change because then the actual model state is the one right after the change for which the
transformations are executed.

If the execution environment does not necessarily execute the transformations after
each atomic change, the model state that is visible when executing the transformation
is not obvious. The visible state can either be the state right after the change that the
transformation reacts to or the actual state after all the recorded changes. Both variants
have bene�ts and drawbacks, which are explained in the following.

Accessing the model state that was actual right after the currently processed change
allows to retrieve reasonable information from the whole model because it contains the
same information as if just the atomic change was performed. However, this model cannot
be modi�ed because it is not in the actual state. Performing modi�cation to the old state
of the changed model requires a merge with the model state after the further changes,
which is not possible in general.

If the model state after the already performed changes is accessible in the transformation,
generally no information can be retrieved from this model state. Arbitrary modi�cations
may have been performed to the model after the currently processed change. Imagine that
two model elements a1 and a2 in model A share a consistency overlap with an element b
in model B. If a1 is modi�ed and a2 is deleted afterwards, the transformation that repairs
the consistency overlap by modifying b in response to the modi�cation of a1 fails. The
element a2, which is part of the consistency overlap and is potentially required for restoring
consistency, is not contained in the visible model state any more. If arbitrary modi�cations
can be performed in the models before executing consistency-restoring transformations,
the transformations cannot rely on any model information.

To avoid the drawbacks of both approaches, the transformation environment would
consequently have to ensure that the appropriate transformations are executed right after
an atomic change occurs. Nevertheless, the model might not be in a consistent state
after each atomic change and can possibly not be saved, which could lead to the eventual
abortion of this and further changes in the source model. Because the changes would
have been transferred to other models already, a rollback of the transformations would be
required.
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As long as changes do only require modi�cations in another model to restore consistency,
as described in section 4.4, providing access to the model state right after the change is
the best alternative. In this case, consistency constraints have to be de�ned in a way that
the changed model must not be further modi�ed for restoring consistency. In addition,
the transformations must be able to deal with possibly inconsistent states of the changed
model, as some model constraints may not be ful�lled after each atomic change. Triggering
transformations due to changes of the satisfaction state of constraints can omit this problem.
Such triggers abstract from changes to more complex constraints de�ning the preconditions
for a transformation execution. Those triggers are further discussed in subsection 5.8.2.

5.6.4 Persistence of Logical and Physical Models

Up to now, we have only considered logical models. Logical models can be distinguished
from physical models that describe their persistence. This distinction is di�erent from the
data modeling domain, in which the logical representation of data in object-oriented entities
is separated from the persistence within a relational database [91]. In that separation,
logical and physical models are instances of di�erent metamodels. We distinguish logical
and physical models by the granularity in which they are persisted, which means that still
both conform to the same metamodel.

Logical models are the models that we want to consider when working with them in a
development environment and also deal with when restoring consistency through trans-
formations. Physical models describe the persistence of models and must not correspond
to the logical model description. For example, Java programs are persisted across di�erent
folders and �les based on the package and class structure of the program. Consequently,
each class represents an individual physical model. Nevertheless, the complete Java pro-
gram de�nes a coherent model that describes the implementation of the software system
and thus represents one logical model.

The distinction between logical and physical models must generally not be considered
when working with the models. However, models must eventually be persisted and
reloaded and therefore need a physical representation. While most logical models are
persisted completely, especially code models are persisted according to their established
structure of package folders and class �les. As the separation of logical models into physical
models does primarily depend on the metamodel, the required persistence rules should be
speci�ed generally for a metamodel rather than in each transformation.

The persistence speci�cation for a metamodel must be able to decide whether a certain
model element is the root element of a model or not. Primarily, this decision can be based
on the type of the element. For example, Java package elements are always persisted as
root elements. Nevertheless, further information may have to be examined. As an example,
a Java class is generally persisted as a physical model, but not if it is nested within another
class. The persistence speci�cation can also combine the decision if a certain element
shall be persisted with the actual persisting operation. Therefore, it has to determine the
persistence path. This path usually depends on the current project and consists of a default
path and a name that is extracted from the model, such as the name of the root element.
Some of the information may have to be requested from the user. An interface for such a
persistence speci�cation can be de�ned as shown in Listing 5.29.
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public interface PersistenceSpecification {

public boolean persistIfNecessary(ModelElement element, Project project);

}

Listing 5.29: Exemplary persistence speci�cation interface

In a transformation, a newly created model has to be persisted. Therefore, a response
calls the persistence speci�cation of the metamodel for each created or modi�ed element to
persist it if necessary. This operation is performed automatically and must not be speci�ed
by the methodologist, as the retrieve and especially the create statements specify which
elements are a�ected by the response and potentially have to be persisted.

5.7 Aspects of Restoring Consistency with Responses

This section summarizes some aspects that have to be considered when specifying re-
sponses for restoring model consistency. After shortly discussing the execution order
of responses, we present some considerations for the treatment of opposite references.
Finally, we introduce the necessity and realization of interaction with the model user
during the response execution and discuss the problem of meta-level breaks.

5.7.1 Response Execution Order

Responses are executed whenever the occurrence of an atomic change is processed. Con-
sequently, the order of change occurrences de�nes the order of response executions.
Nevertheless, di�erent responses can be written for the same change event.

The transformation environment can either consider a speci�c execution order for the
responses to one change or execute them in a random order. For a predetermined ordering,
the responses would usually have to specify their order explicitly. This could, for example,
be achieved by de�ning relations between responses that de�ne if a certain response
requires the execution of another. However, we assume that it is infeasible to both de�ne
a reasonable comparison metrics for responses and comprehend this mechanism as a
methodologist.

We do not consider an explicit mechanism for ordering responses, as they can be ordered
implicitly using the available language constructs. Considering a change that has to be
processed by two di�erent repair routines, one response can be de�ned that reacts to
this change and executes both explicitly de�ned repair routines. The ordering of their
execution is implicitly speci�ed by the ordering of repair routine calls within the response.

5.7.2 Modifications of Bidirectional References

In the response language, we currently only consider atomic changes, which are su�cient
for reacting to any model modi�cation that may a�ect consistency overlaps. Some atomic
changes do always occur together because semantic constraints of the model require them
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to occur together for achieving a consistent model state. An interesting example of such
modi�cations are changes of bidirectional references.

In EMOF- and Ecore-based models, references can be declared as opposite of another,
which means that two model elements share a bidirectional association. The creation or
removal of such an association leads to the modi�cation of both references. Consequently,
the transformation environment should generate two change descriptions for this modi-
�cation. Writing responses for the modi�cation of bidirectional references requires the
methodologist to be aware of the duplicate change that describes the same modi�cation
within a consistency overlap. Responses may not be written for both changes but only for
one of them to avoid a duplicated execution of the repair logic.

Depending on the transformation environment, the change monitor could also just
provide one of the changes, as usually only the reaction to one change is required. If it
is clearly speci�ed which of the two possible changes occurs, responses can be speci�ed
for that event. Nevertheless, the described change could also depend on the modi�cation
that was performed by the model user. Depending on which of the two references he
modi�es, di�erent change descriptions can get generated. This uncertainty requires to
de�ne responses for both changes.

5.7.3 Interaction with the Model User

In the previous sections, several examples for consistency repair routines between PCM
models and Java code models were discussed. All these examples were speci�ed fully
automated, depending on static decisions. However, sometimes repair routines can or
even must require decisions from the model user that specify how a consistency overlap
has to be repaired.

Interactions with the user can be necessary in di�erent situations. One example is
the selection of the Java collection type to map a newly created collection data type of
a PCM model to. Even though any collection type provided by Java could be statically
used, the user possibly wants to select from a set of possible collection types. As another
example, the decision whether the corresponding Java class shall be deleted after removing
a component can be made by the user. Although it is possible to avoid user interaction in
these scenarios, for example, by prescribing that the corresponding class is always deleted,
consistency repair cannot always be automated completely.

The examples show that user interaction can especially be the selection from a list of
possible options, which also covers yes-no questions. Therefore, responses have access to
a well-de�ned interface for performing user interactions. A simple exemplary interface is
provided in Listing 5.30. It de�nes only one method for the selection from a list of options

public interface UserInteracting {

public <T> T askUser(String message, Iterable<T> options);

}

Listing 5.30: Exemplary user interaction interface
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response: RemovedComponent

trigger: remove from list pcm.Repository[components]

retrieve required element: java.Package as javaPackage corresponding to oldValue

retrieve required element: java.Class as javaClass corresponding to oldValue

remove correspondence between javaPackage and oldValue

remove correspondence between javaClass and oldValue

execute: {

val answer = userInteracting.askUser("Component " + oldValue.name +

" was deleted. Delete corresponding class and package?", #["yes", "no"]);

if (answer == "yes") {

callDeleteClassAndPackage(javaPackage, javaClass);

}

}

repair routine: DeleteClassAndPackage

input: java.Package as javaPackage, java.Class as javaClass

delete element: javaPackage

delete element: javaClass

Listing 5.31: A response for a component removal with user interaction

that can be of any type. A reasonable string representation that can be presented to the
user must be derivable from the speci�ed options.

Assuming the accessibility of such an interface via userInteracting within the e�ect
of responses, the decision if the component class should be deleted together with the
deletion of the component can be passed to the user as shown in Listing 5.31. An extra
repair routine that just deletes the elements has to be speci�ed when performing the user
interaction within the execution block. As a result, it could be thought of further language
extensions for a better integration of the user interaction.

Generally, the user interaction should be possible at any point of time in the execution
of a response. A decision based on the change information can be performed within
the precondition block of the trigger. A decision based on the correspondence model
can be performed in a check block of the matcher. All other decisions, for example, the
selection of the type of a created element, can be performed within the execution block.
Nevertheless, a user interaction should be performed as late as possible. This avoids that a
user interaction gets obsolete because its result is used in a statement that is not executed
due to another decision that lead to the abortion of the response in between.

5.7.4 Meta-Level Breaks

Models are de�ned on di�erent meta-levels. As introduced in subsection 2.1.2, a model is
always an instance of a model that is de�ned on the next higher meta-level, its metamo-
del. Thus, model elements are instances of metaclasses de�ned in their metamodel and
usually only reference elements on the same meta-level but not from their metamodel.
Nevertheless, this boundary between meta-level is sometimes broken.
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Type TypeReference
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Figure 5.3: Extract of the Java metamodel de�ning types and type references

An example for broken meta-levels can be found in the Java metamodel. An extract
showing the relevant classes of the metamodel is presented in Figure 5.3. The metamodel
provides di�erent types and references to these types. Ordinary classes are instances of
the Class metaclass. A reference to a class, for example, in order to declare the type of a
variable, is represented by a ClassifierReference instance that has a reference to the class.
In contrast, concrete primitive types, which are references as well and are examplarily
represented by Int and Boolean, are already de�ned in the metamodel. Consequently,
references to concrete classes are de�ned on the model level, while references to concrete
primitive types are de�ned on the metamodel level.

In a PCM model, the repository contains data types that can be primitive, composite or
collections. While the last two are mapped to Java classes, the primitive types have no
correspondences in the Java model. They correspond to the primitives types de�ned in the
Java metamodel, thus on another meta-level. If a data type of the PCM repository is used,
for example, as the return type in a method signature, a reference to the data type has to
be established in the Java model. If the used data type is a collection or a composite type,
its corresponding Java class has to be retrieved and a ClassifierReference to this element
has to be created. Otherwise, the data type is primitive and has no corresponding Java
class, which requires the creation of a PrimitiveType that is a reference and a type at once.

The existence of a correspondence in a case of broken meta-levels depends on whether
the corresponding concept is de�ned in the model or in the metamodel, as the latter cannot
be referenced by a correspondence. In such cases, di�erent transformations have to be
written for both cases because otherwise the element retrieval fails if no corresponding
element exists. This necessary di�erentiation leads to the duplication of transformations,
which do only di�er in the way one element is addressed.

Listing 5.32 shows an example for responses that deal with the mentioned break of
meta-levels in the Java metamodel. The responses react to the modi�cation of an inner
type of a CollectionDataType. Di�erent responses are de�ned for the cases in which the
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response: ChangedNonPrimitiveTypeOfCollectionDataType

trigger: replace value pcm.CollectionDataType[innerType]

check !(newValue instanceof pcm.PrimitiveDataType)

retrieve required element: java.Class as newInnerDataType

corresponding to newValue

// create a type reference that refers to the inner data type

response: ChangedPrimitiveTypeOfCollectionDataType

trigger: replace value pcm.CollectionDataType[innerType]

check newValue instanceof pcm.PrimitiveDataType

// instantiate a type reference for the corresponding primitive Java type

Listing 5.32: Separate responses for primitive and class types in Java models

inner type is primitive or not. In the former case, an appropriate primitive type in the Java
model has to be instantiated, whereas in the latter case, the corresponding class has to be
retrieved and referenced.

A separation of transformations has to be applied each time a data type reference
must be established in a PCM to Java transformation. This duplication of transformation
speci�cations can be avoided by using the optional keyword introduced in subsection 5.3.4.
The retrieval is declared as optional and returns a null reference if the data type is primitive.
This reference has to be handled correctly in the e�ect.

Finally, the approach using the optional keyword does not solve the problem within the
retrieve statement completely. Further actions can also depend on whether a corresponding
element exists or not. For example, a distinction between classes and primitive types is
still necessary in the e�ect, as both require di�erent reference types to instantiated. Such
problems have to be handled within the e�ect part in any case.

5.8 Possible Extensions

This section closes the introduction of the response language with an overview of exten-
sions for increasing its usability and ease of applicability. After introducing further types
of triggers and an explicit speci�cation of consistency overlap types, we shortly discuss
the necessity of extending the user interaction mechanisms. Finally, the validation of code
blocks and the provision of further language constructs in the e�ects are discussed.

5.8.1 Composite Change Triggers

The response language allows the execution of transformations triggered by atomic
changes. An obvious extension of the available triggers are composite changes, which
describe compositions of atomic changes and were introduced in subsection 4.2.5.

The idea of using atomic changes as the triggering events for model consistency repair-
ing transformations relies on the assumption that any model change can be subdivided
into a sequence of atomic changes that transform the original model into consistent inter-
mediate states. Suppose that this assumption is wrong and the intermediate states are not
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necessarily consistent, the complete application of the original change does still transform
the model into a consistent state. Consequently, that change would be a reasonable trigger
for a transformation that restores consistency.

Any change that is performed in a model is either atomic or composite. Composite
changes can be subdivided into atomic changes, which allows to de�ne them as a sequence
of atomic changes. If the order of changes is irrelevant, a composite change can also be
de�ned by a set of atomic changes. Nevertheless, the order can be important. For example,
if a well-formedness constraint allows an element to have at most one container, the
composite change that describes the move of an element from one container to another
has to be speci�ed by an atomic remove before an atomic add. Ordering them the other
way round, the constraint would be violated meanwhile.

For using composite changes within responses, an adaption of the change descriptions
metamodel is not necessary, as the composite changes can be described as a sequence of
atomic changes. As a result, composite changes can be speci�ed as triggers by multiplying
the trigger speci�cation within a response. This multiplication allows to de�ne a sequence
of atomic changes, which are required to occur in the speci�ed order. Furthermore, the
transformation environment must be able to collect change events and execute a response
when a sequence of occurred changes matches its trigger.

5.8.2 Constraint Satisfaction Change Triggers

In addition to changes, further events that trigger the execution of a response are imagin-
able. Because the context is still a change-driven environment, those other types of events
must be triggered by changes instead.

One example for such an event type is the change of the satisfaction of constraints. A
trigger based on such an event would specify the execution of a response if a speci�c
constraint got satis�ed because of the last change or if it got unsatis�ed through the change.
Constraints can be de�ned on elements of a single model, referred to as intra-model
constraints, or for elements of di�erent models, referred to as inter-model constraints.

Considering an element that has to ful�ll some complex constraint for being transformed,
the satisfaction of this constraint can be achieved through di�erent kinds of changes. A
transformation must be written for each of these changes that can ful�ll the constraint to
transform the element when possible. If a transformation could react to the satisfaction of
the constraint, just one transformation would be su�cient to transform the element.

Providing a response trigger for constraint satisfaction changes requires an extension
of both the response language and the framework. The language must allow to reference a
constraint, which can be speci�ed in some existing constraint language like OCL or in the
MIR invariant language. It must also allow to specify whether to react to its satisfaction or
to its violation. Furthermore, the context element of the constraint must be provided to
the response, like the modi�ed element provided by a change event. Without having any
reference object, a�ected consistency overlaps cannot be identi�ed.

The framework has to provide some mechanism for detecting if the satisfaction state of a
constraint changed. This detection can, for example, be achieved by storing the satisfaction
state of all constraints for all model elements and update this state after each change by
checking them again. Because the reevaluation of all constraints after each change can be
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costly, the e�ort could be reduced by checking only those constraints that may be a�ected
by a change because they reference elements of the type of the modi�ed element.

When reacting to the violation of a constraint, the violating element can also be of
interest. An approach proposed by Fiss, Kramer, and Langhammer extracts the violating
element from a given constraint [32]. This approach allows the speci�cation of a variable
for a constraint, which gets the value of the violating element assigned.

The proposed mechanism is of special interest for intra-model constraints as they
describe when a model element reaches a state that can be transformed into corresponding
elements in another model. Nevertheless, constraints can also be used for describing inter-
model preconditions, as such constraints implicitly specify consistency overlaps. While
intra-model constraint can be especially used for identifying reasonable situations in which
a new consistency overlap can be established, the violation of inter-model constraints can
be used as an indicator for the corruption of consistency overlaps.

5.8.3 Explicit Consistency Overlap Type Specification

A response speci�es the repair for a certain consistency overlap type that is a�ected in a
speci�c way. Because a consistency overlap can be a�ected by the modi�cation of each
element property that is used in the constraints of its overlap type, a response must be
written for each possible modi�cation of these properties.

If the metaclasses of a consistency overlap type and their properties that are used in
the constraints of that type are clear, all changes for which responses have to be written
can be derived. Consequently, an explicit speci�cation of the metaclasses and relevant
properties of an overlap type can be used to derive necessary responses and assign them
to the consistency overlap type. This approach reduces the risk for the methodologist to
miss a possible modi�cation of elements of a consistency overlap. Furthermore, it reduces
the speci�cation e�ort as several responses are derived from one speci�cation.

A language extension can provide constructs for specifying this consistency overlap
types and connect them with responses. The type speci�cation can even be further
extended by simple relations between the elements that are automatically translated into
repair actions in the responses, similar to the mechanisms in declarative transformation
languages. That way, we can provide a compact speci�cation of simple consistency
relations and still allow to de�ne the repair completely imperative.

5.8.4 Extensions for User Interaction

The developed language constructs support the possibility to provide user interaction
in any code block, using a user interaction interface as proposed in subsection 5.7.3.
Nevertheless, the user interaction would also be useful in some of the other de�ned
language constructs. Furthermore, user interaction is currently limited to the user who
performed the change that triggered the response execution.

A further useful point for user interaction is the speci�cation of the element type in
statements for the creation of elements. The proposed construct assumes the speci�cation
of a static element type. Using the user interaction interface within this statement would
enable the user to select from di�erent types.
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Currently, we assume responses to be executed in the moment when the change occurs
and that, if necessary, the user who performed the change is asked for decisions. However,
decisions within the responses potentially concern models for which another user than the
one who performed the modi�cation is responsible and should be asked. Such a mechanism
requires further research about the point of time for the execution of a response. However,
that topic concerns the transformation environment that executes the responses, rather
than the responses themselves.

5.8.5 Imperative Code Validation

The response language uses imperative code blocks within several constructs to provide a
maximum expressive language. This approach ensures a high expressiveness, but it allows
the methodologist to write potentially undesired code within certain constructs.

The triggers and matchers are assumed to be free of side-e�ects. Nevertheless, they
provide code blocks in several constructs. Within a trigger, a general precondition block
can be de�ned, and a matcher allows the speci�cation of check blocks. Moreover, we
explained that code blocks can also be used for specifying element references within the
retrieve statements of a matcher. All these code blocks should be free of side-e�ects to
allow a safe abortion of the response execution if any precondition validates to false,
without having performed partial model modi�cations yet.

As we do not want to ensure side-e�ect freeness by restricting the expressiveness of
these statements, another approach is to validate the imperative code for the property of
side-e�ect freeness. Several approaches try to provide analyses of complete programming
languages for side-e�ects, such as for the Java programming language [84]. Whereas
integrating such an approach may be possible, the provision of a side-e�ect free API for
commonly required expressions, such as a query API like OCL, would represent an easier
approach that is su�cient in most cases. If only the provided API is used in a code block,
it can be proven as side-e�ect free. Otherwise, no statement about side-e�ect freeness
could be made and the responsibility would stay at the methodologist.

5.8.6 Language Constructs for Element Modifications

The execution block of a response e�ect speci�es operations for restoring consistency
between models. This operation comprise modi�cations that lead to a satisfaction of
constraints between elements of di�erent models, which mostly require the assignment of
new values to model element properties.

Language constructs for such assignments could be provided additionally to the impera-
tive execution block, like in QVT-O. Using OCL, the calculation of a value to be assigned
could be determined and assigned to a property of any referenceable model element.

The speci�cation of the e�ects with language speci�c statements instead of imperative
code has several advantages. Unwanted side-e�ects that may arise from statements in
imperative code can be avoided as an assignment de�nitely only performs this operation.
Furthermore, modi�cations of the changed model can be avoided, if necessary, by not
allowing assignments to elements of that model.
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In the last chapters, we de�ned model consistency and their restoration based on atomic
model changes and developed the change-driven response language for restoring con-
sistency constraints. Additionally to the language design, we developed a prototypical
implementation of the language in the context of the Vitruvius project for this thesis.

In this chapter, we �rst introduce some relevant aspects of the Vitruvius framework.
Afterwards, the structure and the �nal implementation of responses and repair routines,
as well as their integration into the execution environment are explained. Finally, the
language speci�cation and some of its aspects, as well as the code generation, which
produces the explained runtime structure, are discussed.

6.1 The VITRUVIUS Framework

The prototypical implementation of the response language contributes to the MIR language
family of the Vitruvius approach. These languages provide di�erent approaches for
de�ning change-driven consistency-restoring transformations. The response language
is responsible for providing a maximum expressive language that is capable of de�ning
the repair of preferably any consistency constraint, especially of those which are not
expressible in the mapping language.

The current implementation of the Vitruvius approach relies on the Eclipse plugin
mechanism, introduced in section 2.3. Di�erent plugins implement di�erent aspects of the
Vitruvius framework. The central artifact is the implementation of the Virtual Single
Underlying Model, which is �rst introduced in the following.

The response language relies on speci�c kinds of correspondence and change descrip-
tions metamodels. Concrete realizations of them are provided by the Vitruvius framework
and are also discussed in the following. The Vitruvius framework speci�es a model
synchronization mechanism, which is responsible for executing consistency-restoring
transformations and thus serves as the transformation environment for responses. This
section closes with the explanation of that mechanism.

6.1.1 Virtual Single Underlying Model

The essential component of the Vitruvius framework is the Virtual Single Underlying
Model (VSUM). Instances of this VSUM provide all necessary information about supported
metamodels, the currently managed models and correspondences between them.

To implement a software system using Vitruvius, the developer has to instantiate a
VSUM by specifying the used metamodels. He must also specify the pairs of metamodels
that have instances sharing consistency overlaps because they have to be managed in
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correspondence models, which the VSUM instantiates. A VSUM instance manages and
provides access to instances of the metamodels that it is responsible for. Such models can be
loaded into the VSUM through a well-de�ned interface. Furthermore, the correspondence
models for the metamodel pairs are managed by the VSUM and can be retrieved from it.

The MIR languages do especially rely on the correspondence models provided by the
VSUM because they are required to retrieve the elements of consistency overlaps. This is
why further details about the VSUM realization are omitted.

6.1.2 Correspondences, TUIDs and Changes

The response language relies on speci�c kinds of correspondence and change descriptions
metamodels, which are conform to the ones that Vitruvius provides. Therefore, we can
use the available metamodels without adapting ideas of the response language constructs.

Within correspondences, elements have to be uniquely identi�ed. This identi�cation
cannot be achieved using in-memory references. Correspondences are eventually persisted
and when reloading them from their persistence, the elements must be uniquely identi�ed
across di�erent models. Therefore, the identi�cation must rely on the properties of models
and model elements. In Vitruvius, an element is identi�ed by a so called temporary unique
identi�er (TUID). TUIDs combine information of model elements in a way that they can
be unambiguously identi�ed and retrieved across di�erent models. The calculation of
the TUID for a model element depends on its metamodel. For example, if the metamodel
prescribes a unique identi�er for each model element, it can be used to uniquely identify
an element inside the model. Otherwise, the container hierarchy of an element can be
utilized to identify an element uniquely. To make the element uniquely identi�able across
di�erent models, this identi�er has to be combined with a unique identi�er of the model.

To persist a Vitruvius correspondence model, the TUIDs of the model elements must
be persisted, and therefore they have to be computable. This requires an element to be
contained within a model and to have all its values that are used for the TUID to be set.
Otherwise, no model-spanning unique identi�er can be calculated for the element. Thus,
consistency-preserving transformations that a�ect correspondences and their elements
have to ensure that the TUIDs can be computed, so that the resolution of elements within
the correspondences is possible.

In our approach, we rely on the correspondence model provided by Vitruvius. It
consists of single Correspondence elements, that in turn consist of two sets of TUIDs that
identify the corresponding model elements. Correspondences can also be specialized for the
usage context. For example, the mapping language uses special MappingCorrespondences,
whereas we use ResponseCorrespondences in the response language. The latter ones de�ne
an additional string property called tag, which is used for the tagging mechanism.

A concrete correspondence model for a pair of metamodels is represented by a Corre-
spondenceModel instance. The correspondence model has a generic type parameter for the
correspondence type it handles. The VSUM manages correspondence models typed with
the general Correspondence type. To work only with the type of interest, a correspondence
model provides an operation for retrieving a view on the correspondence model that is
typed with the desired kind of correspondence. The generated response code retrieves
and operates on a view for ResponseCorrespondences.
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Vitruvius also provides a change descriptions metamodel, which is conform to the
one that we used for the response language development, introduced in subsection 5.1.3.
In contrast to the metamodel in this thesis, the one of Vitruvius provides a more �ne-
grained metaclass hierarchy, which reuses concepts instead of rede�ning properties in
di�erent change types like we did. It also provides some further change properties. The
most generic change type in this metamodel, which all other change types extend, is the
EChange.

6.1.3 Model Synchronization

The second artifact of the Vitruvius framework that is relevant for the response language
is the synchronization mechanism. It is responsible for executing transformations that keep
the models of a VSUM consistent. Therefore, it realizes a change-driven transformation
environment as described in section 4.3.

A Change2CommandTransformingProviding provides access to all available transforma-
tions. It consists of Change2CommandTransformings for each pair of metamodels and
provides an operation to retrieve this Change2CommandTransforming for a speci�ed pair of
metamodels, as shown in Figure 6.1. A metamodel, as well as a model instance, is identi�ed
through a so called Virtual Unique Resource Identi�er (VURI) in Vitruvius.

A Change2CommandTransforming provides several operations, of which the most im-
portant is the transformChanges2Commands method. This method expects a Blackboard
element, which especially contains the current and previous changes, as well as the cor-
respondence model for the currently processed metamodel pair. The method takes the
current changes from the blackboard, transforms them into Commands, which de�ne
the transformations to be executed, and puts them on the blackboard. In our case, this
operation generates commands that call the appropriate responses for the actual changes.

The synchronization mechanism of Vitruvius relies on change descriptions that are
recorded by change monitors. The monitors are registered for change noti�cations at
the model of the VSUM and convert them into instances of the used change descriptions
metamodel.

Change2CommandTransformingProviding

getChange2CommandTransforming(mmURI1 : VURI, mmURI2 : VURI ) : Change2CommandTransforming

Change2CommandTransforming

transformChanges2Commands(blackboard : Blackboard)

ChangeSynchronizing

synchronizeChanges(changes : List<Change>)

1..*

Figure 6.1: Interfaces of the Vitruvius synchronization environment
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At speci�c points of time, currently when saving a model, the transformation envi-
ronment processes the changes and calls transformations that react to them. This is the
responsibility of a ChangeSynchronizing implementation, which is shown in Figure 6.1. It
de�nes only one method, which is called by the framework and whose purpose is to call
appropriate transformations for the changes delivered by the change monitors.

An instance of a ChangeSynchronizing implementation has access to the current VSUM
and to the Change2CommandTransformingProviding. For each correspondence model of the
changed model’s metamodel in the VSUM, it retrieves the Change2CommandTransforming
for the appropriate metamodel pair from the Change2CommandTransformingProviding. Af-
terwards, it generates a Blackboard with the actual changes and the correspondence model
and calls the transformChanges2Comands method of the Change2CommandTransforming
with it. Finally, it executes the commands that were added to the Blackboard.

6.2 Runtime Environment and Transformation Structure

In this section, we introduce the structure of change-driven transformations that we
generate from a response speci�cation. We also explain the additional structures required
for the integration of single responses into Change2CommandTransformings, which we
refer to as the runtime environment. Responses are transformed into such an environment.

We �rst introduce the general structure of a runtime environment and explain the
purposes of special runtime data structures. Thereafter, we introduce the di�erent elements
of which the runtime environment consists and which are realizations of the response
language concepts.

6.2.1 Structure of the Runtime Environment

As introduced in subsection 6.1.3, Vitruvius provides a transformation environment that
relies on so called Change2CommandTransforming elements. They manage the transforma-
tions for a certain metamodel pair and transform given model changes into commands
that execute the appropriate transformations.

The runtime environment for a speci�c set of transformations between two metamodels
has to de�ne a Change2CommandTransforming as the entry point to the transformations.
The elements and the structure of a runtime environment are explained on the exemplary
environment shown in Figure 6.2.

A single transformation that is generated from a response speci�cation is de�ned by an
implementation of the Response interface, which provides a method for executing the trans-
formation. Such a concrete transformation is represented by the ConcreteResponse class in
our example. We separate repair routines from responses, as motivated in section 5.5. A
repair routine is represented by an implementation of the RepairRoutine interface, which
provides a method for its execution. The example contains two concrete repair routines,
which are the ConcreteExplicitRepairRoutine and the ConcreteImplicitRepairRoutine. A re-
sponse implicitly de�nes a repair routine, which it executes after checking the trigger. In
the example, the ConcreteImplicitRepairRoutine implements the implicit repair routine of
the ConcreteResponse.
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Change2CommandTransforming ResponseExecutor Response

applyResponse(...)

ConcreteResponseRepairRoutine

applyRoutine()

ConcreteExplicitRepairRoutine ConcreteImplicitRepairRoutine

RepairRoutinesFacade

callConcreteExplicitRepairRoutine(...)

1..* 1..*

1

Figure 6.2: Structure and dependencies in an exemplary runtime environment with one
response and two repair routines

In contrast to an implicit repair routine, which is de�ned by each response and is only
called by it, an explicit repair routine is supposed to be called by others. A facade class, in
the example the RepairRoutineFacade, de�nes one method for each of the speci�ed explicit
repair routines. Such a method expects the model elements required by the related repair
routine as parameters and delegates the call to a new instance of the repair routine by
calling its applyRoutine method. In the example, the facade class only de�nes one method
for the ConcreteExplicitRepairRoutine because the other concrete repair routine is implicitly
de�ned by the response and thus cannot be called by others.

For each set of transformations, later de�ned in one document of responses, the environ-
ment contains one package for the responses and one for the repair routines. The repair
routines package also provides a facade class for all of its repair routines. The responses
package contains a ResponseExecutor, which provides the access point to all responses.
The executor is responsible for executing appropriate responses for an atomic change. In
turn, a Change2CommandTransforming, the entry point of the transformation environment,
can consist of di�erent ResponseExecutors, which it calls for all processed changes. The
rationale for the separation of these two elements is explained later.

6.2.2 Runtime Data Structures

In addition to responses and repair routines, we use two further data structures in the
runtime environment, the ResponseExecutionState and the ResponseElementState. The
ResponseExecutionState encapsulates data for the execution of one response that is passed
between the response and the repair routines. It consists of the correspondence model, an
implementation of a user interaction interface as explained in subsection 5.7.3, and a so
called TransformationResult, which is required for de�ning the persistence of models.

The response language provides several constructs that de�ne di�erent modi�cations of
model elements and their correspondences. Instead of generating code for these operations
each time they are required, we encapsulate the functionality in ResponseElementStates.
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interface ResponseElementState {

void preprocess();

void postprocess();

void addCorrespondingElement(EObject newCorrespondingElement, String tag);

void removeCorrespondingElement(EObject oldCorrespondingElement);

void delete();

}

Listing 6.1: The interface of a ResponseElementState

Such a state is responsible for managing a single model element during the execution
of a transformation. It is initialized with a model element and provides the operations
for in�uencing its state according to the response language constructs, as shown in the
interface speci�cation in Listing 6.1.

A ResponseElementState provides methods for specifying the correspondence addition or
removal to another element and for marking the element to be deleted. The correspondence
addition or removal produces the same result, no matter on which of the two elements it is
performed. To perform these operations correctly, they are not executed immediately, but
by calling the preprocess and postprocess methods. The preprocessing has to be performed
before, and the post-processing must be executed after calling the execution block. For
example, correspondences have to be added after the operations of the execution blocks
because the correspondences require the element TUIDs to be computable, which is usually
not possible before setting the appropriate property values in the execution block.

All element states of a transformation are handled by a ResponseElementStatesHandler.
Its interface is presented in Listing 6.2. It provides methods for initializing the element
states for created or retrieved elements. The distinction between created and retrieved
elements is currently necessary because the modi�cation of retrieved elements can in-
�uence their TUIDs, which is automatically updated by the element state. The handler
provides methods for the same operations as an element state and delegates their calls
to the appropriate elements. Finally, pre- and post-processing methods are provided that
execute those operations on all states.

The element states are responsible for TUID updates, which are automatically performed
in the post-processing. Because of that update, the element states of all retrieved elements
have to be initialized explicitly, even if none of their state changing operations are called.

interface ResponseElementStatesHandler {

void addCorrespondenceBetween(EObject firstElem, EObject secondElem, String tag);

void removeCorrespondenceBetween(EObject firstElem, EObject secondElem);

void deleteObject(EObject element);

void initializeCreateElementState(EObject element);

void initializeRetrieveElementState(EObject element);

void preprocessElementStates();

void postprocessElementStates();

}

Listing 6.2: The interface of a ResponsElementStatesHandler
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6.2.3 Responses

A response de�nes a single transformation. It implements the trigger part of a response
and delegates the execution to its implicit repair routine. A concrete response is realized
as an implementation of the Response interface, which is shown in Listing 6.3.

interface Response {

TransformationResult applyResponse(EChange change,

CorrespondenceModel<Correspondence> correspondenceModel);

boolean checkPrecondition(EChange change);

}

Listing 6.3: The interface of a Response

The response interface does only provide two methods, which a concrete response
has to implement. The checkPrecondition method realizes the trigger of a response and
identi�es if the response is responsible for the given change. Its implementation �rst
checks the change type. After a positive check, the change is casted to the correct type and
its properties are validated. Finally, further preconditions are checked. They are de�ned
in a precondition block in the response language, which is realized through a dedicated
method in the response implementation. The applyResponse method can be called if the
checkPrecondition method validates the satisfaction of all preconditions. It instantiates the
appropriate implicit repair routine and calls its applyRoutine method.

Based on this interface, we provide an AbstractResponse implementation. It realizes the
initialization of the ResponseExecutionState in the applyResponse method and delegates the
execution to an executeResponse method, which a concrete response has to implement.

6.2.4 Response Executors

A ResponseExecutor de�nes the connector between a single transformation and the access
by the transformation environment through a Change2CommandTransforming. It is sup-
posed to provide appropriate access to a set of responses. In our case, such an executor is
generated for each responses document, while a Change2CommandTransforming combines
all executors for a pair of metamodels. This structure eases the separation of responses for
one metamodel pair into di�erent documents and even allows the usage of responses that
are generated from speci�cations in the mapping language because only one executor per
responses source must be integrated instead of all single responses.

The ResponseExecutor interface, which concrete executors have to implement, provides
only one method, as shown in Listing 6.4. The generateCommandsForEvent method accepts
a change and the correspondence model. Based on the change, a concrete executor checks

interface ResponseExecutor {

List<Command> generateCommandsForEvent(EChange change,

CorrespondenceModel<Correspondence> correspondenceModel);

}

Listing 6.4: The interface of a ResponseExecutor
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the triggers of all the responses managed by it and creates commands that execute the
responses with matching triggers.

Because all concrete executors only di�er in the responses that they manage, we ad-
ditionally provide an AbstractResponseExecutor, which implements the management of
responses and the required execution logic. It requires the implementation of a setup
method that just has to call an also provided addResponse method for all the responses it
is supposed to manage.

6.2.5 Repair Routines

Repair routines de�ne the transformation logic of responses. A concrete repair routine
has to implement the RepairRoutine interface, shown in Listing 6.5. It de�nes only an
applyRoutine method that executes the transformation. Concrete routines expect access to
certain model elements and the correspondence model, which we provide to them in the
particular constructor.

public interface RepairRoutine {

public void applyRoutine();

}

Listing 6.5: The interface of a RepairRoutine

Additionally to the generic interface, we provide an AbstractRepairRoutine realization,
which implements further recurring functionality. First, this abstract realization im-
plements the ResponseElementStatesHandler interface, which was introduced in subsec-
tion 6.2.2, and thus provides certain methods for modifying model elements. It expects
a ResponseExecutionState in the constructor to have access to the correspondence model
and the user interaction implementation.

The abstract implementation also provides a method for getting a corresponding element
from the correspondence model. It expects the source element, the element type, the tag and
a �lter method, according to the elements of the element retrieval construct in the response
language. Furthermore, it implements the applyRoutine method with error handling that
avoids exceptions during runtime and delegates the execution to an executeRoutinemethod.

A concrete repair routine extending the AbstractRepairRoutine must only implement
the executeRoutine method. The response language constructs are realized in code by
calling the appropriate ResponseElementStatesHandler methods and providing a method
that implements the execution block. This execution block method is called after pre- and
before post-processing the element states in the executeRoutine method.

6.2.6 Repair Routine Facades

The last artifact of the response runtime environment are repair routine facades. During
the introduction of the runtime environment structure in subsection 6.2.1, we already
stated that such a facade provides one method for each explicit repair routine. Just like the
response executors, we provide one of these facades per source of responses respectively
repair routines.
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Providing such a facade for each set of repair routines, a routine does not have to be
correctly instantiated and called everywhere it gets called. This logic is encapsulated in
the method provided by the facade class, which reduces the e�ort for executing the repair
routine to the call of this method. We use a naming for these methods that consists of the
pre�x call followed by the name of the repair routine. The parameter list corresponds to
the expected inputs of the repair routine.

Another bene�t of such a facade class arises from its usability as an internal DSL. In
section 5.5, we stated that providing the access to repair routines through an internal DSL
within the execution block of a response has some advantages over their realization within
the external response constructs. We proposed the accessibility through methods, whose
names correspond to the repair routine names with parameter lists according to the routine
inputs. These methods are provided by such a facade class and can be accessed through
it. Finally, Xbase provides an extension modi�er for �elds of classes, which makes the
methods of the type of the �eld accessible as if they were methods of the class that contains
the �eld. This can be used to make the plain method call available in the execution block,
which is further explained in the context of the code generation in subsection 6.3.3.

6.3 Response Language Specification and Code Generation

The last section introduced the structure and the elements of a runtime environment
that implements certain responses and repair routines and makes them available to the
transformation environment of Vitruvius. In this section, we explain the implementation
of the response language and the code generation, which generates an environment
according to the one introduced in the last section. We also discuss further aspects of the
language, like necessary scoping, validation and debugging.

For the language implementation, we use the Xtext framework, introduced in sub-
section 2.3.2. The necessary code blocks are reused from the Xbase language, which
ships with Xtext. Some constructs, which are reused across the di�erent languages of the
MIR language family, are generalized in a so called MIR base language, which is shortly
introduced in the following.

6.3.1 The MIR Base Language

The MIR base language provides a common basis language for the response, mapping and
invariant languages. It de�nes constructs that are required by all languages and restricts
them with necessary well-formedness constraints.

One essential mechanism, which the MIR base language provides, concerns the import
of metamodels. All languages de�ne constraints or transformations between metamodels
and thus need to allow the speci�cation of references to metamodels and their metaclasses.
The MIR base language provides an import construct, which allows to select from all
available metamodels and makes the imported one available in the language document.

The languages need to reference metaclasses of the imported metamodels as well as their
features. Therefore, constructs that realize the element-type and element-feature of the
responses grammar, speci�ed in subsection 5.1.2, are provided by the MIR base language.
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routine: AddRequiredRoleImplementation

input: pcm.RequiredRole as requiredRole

match:

retrieve required element: java.Interface as requiredInterface

corresponding to requiredRole.requiredInterface

retrieve required element: java.Class as javaClass

corresponding to requiredRole.requiringEntity

effect:

create element: java.ClassifierImport as requiredInterfaceImport

create element: java.Field as requiredInterfaceField

add correspondence: requiredInterfaceImport, requiredRole

add correspondence: requiredInterfaceField, requiredRole

execute: [...]

Listing 6.6: A repair routine for adding the implementation of a PCM required role to the
Java model in the implemented response language

6.3.2 Response Language Grammar

The Xtext grammar that speci�es the response language is based on the language structure
and constructs developed in chapter 5. Some deviations from this speci�cation are required
due to technical limitations and are discussed in the following.

Responses and repair routines describe transformations between instances of two spe-
ci�c metamodels. A response de�nes the source metamodel of the transformation implicitly
in its trigger. However, it must not necessarily contain any retrieve or create statements,
which identify the target metamodel of the response. To identify the target model, the
repair routines that are called by the response would have to be analyzed for the metamod-
els they a�ect. Therefore, we decided to require the explicit de�nition of the source and
target metamodel of responses within one responses document and register the de�ned
responses for this metamodel pair.

We also o�er the ability to de�ne responses that are executed after any change, de�ned
with a trigger on any change. The response executor triggers such a response whenever
any change occurs by registering the response for the occurrence of a generic EChange.
Consequently, most of the logic of this response will be de�ned in the execution block as
there are no change properties that can be used for specifying matcher or e�ect constructs.

Finally, we have to alter the syntax of some constructs to ensure that the documents
can be parsed by the parser generated by Xtext. The matcher and the e�ect of a response
have to be explicitly introduced with the keywords match and e�ect. Furthermore, the
element references in the addition and removal of correspondences cannot be separated
with an and, but have to be separated with a comma. An example repair routine that is
de�ned according to the syntax of the responses implementation is shown in Listing 6.6.

6.3.3 Code Generation

For the speci�cation of a language by its concrete syntax, Xtext generates a metamodel
that represents an appropriate abstract syntax of that language. Each parser rule of the
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language is mapped to a metaclass of that metamodel. This can be in�uenced by manually
de�ning the element that is created when parsing a rule, so that di�erent rules are parsed
to the same elements.

The automatically generated parser delivers instances of this metamodel from a re-
sponses document that is conform to the speci�ed syntax. Based on such a model, we
specify the generation of executable code.

Xtext provides two ways of de�ning a code generator. The �rst possibility is to specify
the generation of a textual code representation. This speci�cation requires high e�ort for
ensuring that the generated code is syntactically and semantically correct as it cannot be
automatically validated. A second option is to map the elements of the response model to
elements of a Java code model. Therefore, Xtext o�ers a Java metamodel, which can be
addressed by implementing a JvmModelInferrer. In such an implementation, we have to
de�ne which Java elements have to be created for the elements of a response model.

The declaration of such a mapping also applies scoping and validation rules of the Java
constructs to the response language constructs that are mapped to them. This mapping is
of special interest for the used code blocks, which is further explained in subsection 6.3.5.

When a responses document is open in the generated editor, this editor automatically
triggers and updates the mapping to Java constructs, which initially only exist in-memory.
The continuous update of these mappings ensures correct scoping and validation of the
mapped elements whenever the document is modi�ed. The �nal generation of Java code
according to the de�ned mappings is performed when the responses document is saved.

A summary of our mappings from the elements of the response language metamodel to
Java code elements is given in Table 6.1. We also map the repair routines to a facade class
with appropriate methods and the responses to an executor that consists of all de�ned
responses.

6.3.4 Scoping for Response Constructs

All language constructs that reference elements of a certain type require the de�nition of
a scoping mechanism that de�nes the selectable elements. Because most of our language
constructs are realized through code blocks, only two constructs remain for which the
scoping has to be de�ned. These constructs are the speci�cations of element types and of
features of them. Although both constructs are already de�ned in the MIR base language,
their scoping has to be adapted to the context in which they are used.

The speci�cation of element features is used within the trigger for a feature change.
It has to be restricted to the features of the speci�ed element type and to those that are
conform to the speci�ed change type. We syntactically separate triggers into root changes
as well as single-valued and multi-valued feature changes by representing them as di�erent
metaclasses. Consequently, the selectable features have to be restricted to those with an
upper bound of one if the metaclass of the trigger is a single-valued feature change and to
those with an upper bound of more than one if the trigger is an instance of a multi-valued
feature change.

For the speci�cation of an element type, all metaclasses of the imported metamodels are
valid in general. Only statements for the creation of elements must forbid the speci�cation
of abstract types as they cannot be instantiated.
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Response language element Elements in implementing Java code

Response Java class with name of the response in responses
package extending AbstractResponse, complete logic in
executeResponse method

Trigger change type Type comparison of the actual change with the expected one
and response abortion on fail

Trigger element (and feature) Call of a checkChangeProperties method that compares the
property values with the expected values and response abor-
tion on fail

Trigger precondition block Method with change properties as parameters and return type
boolean, call of that method and response abortion on fail

Repair routine Java class with name of the repair routine in repair routines
package extending AbstractRepairRoutine, complete logic
in executeRoutine method

Matcher required element Call of getCorrespondingElement with appropriate param-
eters, assignment to a variable with the speci�ed name
and routine abortion if the element does not exist, call of
initializeRetrieveElementState

Matcher optional element Call of getCorrespondingElement with appropriate parame-
ters and assignment to a variable with the speci�ed name, call
of initializeRetrieveElementState

Matcher non-existent element Call of getCorrespondingElement with appropriate parame-
ters and routine abortion if element exists

E�ect element creation Creation of an element of the speci�ed EClass, assign-
ment to a variable with the speci�ed name, call of
initializeCreateElementState

E�ect element deletion Call of delete method for the speci�ed element

E�ect correspondence addition Call of addCorrespondence method with the speci�ed ele-
ments as parameters

E�ect correspondence removal Call of removeCorrespondence method with the speci�ed ele-
ments as parameters

E�ect execution block Method in the repair routine class that expects all re-
trieved and created elements as parameters, call of the
preprocessElementStates method, the execution block
method and the postprocessElementStates method

Table 6.1: Representation of response language elements in the implementing Java code
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6.3.5 Scoping and Validation of Code Blocks

As stated in subsection 6.3.3 about code generation, we map the code blocks in the response
language to Java methods. This applies the scoping and validation rules for Java methods
and the contained expressions to the code blocks and their contents within the responses.

The methods to which the code blocks are mapped are added to the class to which the
containing repair routine is mapped. They get appropriate and unique method names
assigned. They expect the elements that are required in a certain code block as parameters
and de�ne an appropriate return type. For example, code blocks for specifying element
references are mapped to methods that have a return value of type EObject. This makes
the speci�ed parameters accessible within the response language code blocks, even in
terms of code completion and type checking.

This mapping mechanism allows the convenient implementation of an internal DSL for
repair routine calls, as described in subsection 6.2.5. The matcher and e�ect are mapped to
a class implementing the RepairRoutine interface and the execution block is mapped to a
method in that class. The class gets an extension �eld that references the repair routines
facade, which makes the methods of the facade available in the execution block as if they
were de�ned in the class.

6.3.6 Identifier Validity

The code that is generated for a speci�cation of responses uses several identi�ers, which
must be unambiguous. Di�erent from the development with an IDE that automatically
checks this uniqueness, the speci�cation of code generation rules is not capable of identi-
fying potentially ambiguous identi�ers in the generated code.

The retrieved and created elements in a response have to be referenced in the generated
code. They are made available in the code by the identi�ers that are de�ned in the responses.
The language ensures that they are unique within one response. All further identi�ers in
the generated code must be di�erent from them. We achieve this by starting the names
of generated variables with an underscore and disallowing identi�ers that start with an
underscore in the response language, whenever generated variables and variables de�ned
in language constructs are mixed up.

Furthermore, the names of all generated methods in one class must be di�erent. This is
simple for methods of constructs that have a unique name, such as those for the retrieval
of elements as they de�ne an identi�er for the element. However, some constructs that are
mapped to methods do not provide a unique identi�er. An example for such a construct is
the correspondence addition, which de�nes code blocks for retrieving the corresponding
elements and for de�ning the tag. These blocks must all be mapped to methods with
di�erent names. To ensure that their names are unique, we number these methods.

6.3.7 Runtime Environment Generation

As described in the code generation subsection, the Java code for a responses document is
generated when it gets saved. This step produces an implementation of responses, repair
routines, a repair routines facade class and an executor for the responses.
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This mechanism is insu�cient due to two reasons. First, transformation descriptions
in the mapping language are also transformed into responses that in turn have to be
transformed into Java code. Because these responses are not de�ned in a responses
document but just as an in-memory model, the code generation has to be performed for
them manually. Second, the entry point for the Vitruvius transformation environment is
a Change2CommandTransforming for each metamodel pair. Because the transformations for
a pair of metamodels can come from several responses documents and even speci�cations
in the mapping language, it cannot be generated from a single responses document.

We provide an environment generator, which runs the code generation for all given
sources of responses. It generates the Change2CommandTransformings, which reference all
ResponseExecutors of the di�erent sources. This generator can be triggered externally and
accepts responses documents and response models, which are, for example, produced by
mappings. The MIR language environment provides a mechanism that collects all relevant
artifacts from an Eclipse project and runs the generator with these artifacts. It can be run
from the context menu of an Eclipse project.

6.3.8 Constructs for Debugging Responses

Sometimes, a response does not produce the expected results because its speci�cation
contains errors. To debug the transformations for �nding the errors, debugging concepts
for Java code can be reused because the �nally executed transformations are de�ned in
Java code. Nevertheless, the developer does not know how the generated code works and
how it is structured, thus debugging that code will be di�cult for him.

To support debugging, the responses and repair routines generate a log about their
execution using the Apache log4j mechanism1. The logger access is de�ned in a Loggable
class, which the response and repair routine classes extend.

The information which repair routines get called from which responses due to which
changes is of certain interest for a developer. To provide information about that call
hierarchy of repair routines, we de�ne a CallHierarchyHaving class. It has a reference to
its caller and provides a getCalledByString method, which returns a string that represents
the call hierarchy by recursively calling this method on the calling object. The response
as well as the repair routine classes extend this class and log their call hierarchy when
executing a repair routine.

6.4 Possible Extensions

The prototypical implementation of the response language provides several possibilities
for extensions and improvements. The Xtext framework o�ers several possibilities to
improve the usability of the language, for example, by providing an automated formatting.
Furthermore, some possible extensions of the response language concept were presented
in section 5.8. They also represent possible extensions for the implementation as they
have to be implemented after developing the concept.

1https://logging.apache.org/log4j/2.x/
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In the following, we give a short overview of possible further extension for the language.
We introduce a possibility to reduce the cases in which responses that will never be
executed are speci�ed. Afterwards, we explain an important extension of the language
implementation regarding the modularization of responses speci�cations.

6.4.1 Restriction of Referenceable Metaclasses

Responses can de�ne constraints that are unsatis�able and so they will never be executed.
This problem cannot be completely avoided because several constraints depend on the
concrete consistency overlap types of metamodels. For example, it is impossible to identify
if a corresponding element can exist, thus if a retrieve statement can ever be executed
successfully. However, especially the trigger speci�cation can be further restricted to
reduce the cases in which responses that are never executed are de�ned.

As explained in subsection 6.3.2, a responses document requires the explicit speci�cation
of the source and target metamodel for which the responses are registered. The language
does currently not restrict the metaclasses that can be de�ned in the trigger of a response.
It is possible to de�ne a trigger for the modi�cation of instances of a metaclass that belongs
to another metamodel than the one the response gets registered for. This can be repaired
by restricting the element types that can be referenced in a trigger to the ones that are
contained in the speci�ed source metamodel.

A similar mechanism can be used for all speci�cations of element types. The pro-
vided correspondence model does only contain elements of the de�ned source and target
metamodels, thus the speci�cation of metaclasses from other metamodels is useless.

6.4.2 Modularization of Responses Specification

An important possible extension for the response language implementation is the modu-
larization of response speci�cations. Currently, responses for a pair of metamodels can be
split across di�erent documents and the environment generator produces an entry point
for the transformation environment that correctly executes all appropriate responses for a
given change. Nevertheless, these documents are completely independent from each other.

It is not possible to reference repair routines from other responses documents at the
moment. Thus, the responses for a pair of metamodels cannot be separated into mean-
ingful fragments to de�ne reused repair routines in only one responses document that is
referenced from the others, for example, for the creation of a Java class.

A mechanism that allows to reference one responses document from another would
allow to modularize the responses for a metamodel pair and to de�ne reused repair routines
in a central document. The code generation would have to embed the repair routines
facade from all imported responses documents into the classes of the repair routines of the
actual document. In this case, the extension mechanism used for the repair routines facade
cannot be reused because di�erent documents can de�ne repair routines with equal names,
which would lead to ambiguities. Consequently, the facade class should be made available
by an explicit �eld whose name must be assigned when importing it in the responses
document. With this mechanism, access to the repair routines of the imported documents
can be provided within the execution blocks of the current document.
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In this chapter, we present an evaluation of our approach, consisting of the designed
response language and its implementation. We evaluate the functionality, the applicability
and the bene�ts of the language.

The functionality evaluation considers two aspects. First, the language must be capable
of reacting to all possible changes, which is successfully evaluated with unit tests. Second,
it must be possible to specify arbitrary repair logic, which is inherently possible through
the possibility of specifying Turing-complete code.

For evaluating the applicability, we implemented a case study for the consistency
between architecture description models and code. We reused integration tests from an
existing implementation of that consistency repair. Except for one, all tests were executed
successfully with our implementation and demonstrate the applicability of our language.

The bene�ts evaluation shows the conciseness of speci�cations in the response language
compared with their direct implementation in code. Moreover, it reveals the relevance of
the provided language constructs based on an analysis of their usage in the applicability
case study.

After these evaluation steps, we �nally discuss the impact of the evolution of required
artifacts, which are the transformation environment, the metamodels and the consistency
overlap types de�ning their consistency. Because a support for these scenarios was not an
objective of the language, we do not evaluate this aspect, but only give a short overview
of potential bene�ts of the language for such evolution scenarios.

In the following section, we frequently compare our language or constructs of it with
an implementation in general-purpose programming languages. We refer to such transfor-
mation speci�cations as directly written transformations.

7.1 Functionality

The central design principle of the change-driven consistency repair language designed
in this thesis was its expressiveness. We aimed to develop a language that is capable of
specifying the repair of any model consistency constraint. The design of the complete
language and the provided constructs was based on that prerequisite.

Providing the possibility to de�ne any change-driven repair of consistency constraints
induces two requirements. It must be possible to react to any possible model change that
can lead to an inconsistency between models, and it must be possible to de�ne arbitrary
repair logic that is capable of restoring consistency. These two requirements were the basis
for the development of the triggers and the repair routines of responses. In this section,
we recapitulate the argumentations for the ful�llment of these requirements through the
provided language constructs.
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7.1.1 Reaction to Possible Changes

The �rst functional requirement to achieve the aimed expressiveness of the designed
language is the possibility to react to each change that can be performed in a model. The
language concept must consider this requirement and provide appropriate constructs to
ful�ll it. Furthermore, the prototypical implementation has to be realized correctly, so that
it ful�lls the conceptual ideas and proves their correctness.

The reaction to each possible model change is simple if the transformation environment
observes each modi�cation of a model and executes the transformations consequently.
Nevertheless, it is not su�cient to get the information that something changed, but
information about what changed is also necessary to execute appropriate repair logic. The
modi�cation that was performed and potentially lead to an inconsistency between the
changed and another model must describe the complete di�erence of the model state before
and after the change. This can be provided in a forward-backward change description.

As stated in subsection 4.2.2, the possible changes that can be performed in a model are
implicitly de�ned by the meta-metamodel on which it is based. They can be described by
a predetermined set of atomic changes, which only a�ect one model element or property,
and can be composed to composite changes. The underlying types of atomic changes can
be described in a change descriptions metamodel. This metamodel provides a metaclass
for each possible atomic change as a forward-backward change description.

For the Ecore meta-metamodel, we developed the types of possible atomic changes in
subsection 4.2.4 and used them to de�ne the exemplary change descriptions metamodel
for the response language in subsection 5.1.3. The response language provides the triggers
to de�ne the reaction to these changes. It expects the speci�cation of generic change
types that are based on that metamodel and that provide the same expressiveness as stated
in subsection 5.2.3. The response language implementation is based on the Vitruvius
transformation environment and the change descriptions metamodel provided by it, which
is conform to our change descriptions metamodel. The implementation assumes that
the transformation environment observes all changes and provides them as appropriate
change descriptions.

For showing the possibility to react to each possible change with our language, we
de�ned a minimal Ecore-based metamodel, which contains all kinds of model elements
and properties that can be modi�ed in the model instances. That metamodel is shown in
Figure 7.1. For this metamodel, we wrote responses for all possible changes that transfer
the modi�cations to another instance of the same metamodel and log the changes that
were processed. Based on these responses, we de�ned unit tests that perform all possible
modi�cations to the model elements and their properties of an example model. The tests
expect the processing of the appropriate changes to be logged and the other model, which
the responses keep consistent, to be equal to the modi�ed one. The operations that are
performed on the instance of the example metamodel for producing the di�erent kinds of
changes are summarized in Table 7.1.

We implemented responses and tests for the insertion and removal of root objects, the
replacement of single-valued attributes and references, and the insertion and removal of
multi-valued attributes and references. Regarding reference changes, we further distin-
guished between containment and non-containment references. These reference types
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Identified
id : EString

Root
singleValuedEAttribute : EIntegerObject
multiValuedEAttribute : List<EIntegerObject>

NonRootObjectsContainerHelper

NonRoot

nonRootObjectContainerHelper1

singleValuedContainment 0..1

singleValuedNonContainment 0..1

multiValuedContainment 0..*

multiValuedNonContainment 0..*

nonRootObjects 0..*

Figure 7.1: A minimal Ecore-based metamodel providing all kinds of elements that are
changeable in model instances

are conceptually not di�erent because both kinds of references provide the same types of
changes. However, the modi�cation of a containment reference usually arises together
with the creation or deletion of the contained object, whereas the modi�cation of a non-
containment reference requires the object to be contained somewhere else. To ensure that
these cases are handled correctly, we distinguish the cases in the tests.

Ecore supports two further kinds of property modi�cations, which are the explicit set
or unset of them. A property can be declared as unsettable and in that case provides a
further unset state, which is indicated by a special attribute. If the property is explicitly
unset, this attribute is set to true. This operation represents a possible model change that
can currently not be reacted to in our language, but is provided by the Vitruvius change
descriptions metamodel. The same applies to the permutation of elements in multi-valued
properties. Nevertheless, both kinds of changes are performed seldom and do usually not
require to be transformed. Because both types of changes are already detected by the
Vitruvius framework, they can easily be integrated into the response language by adding
them to the trigger speci�cation.

The missing support for certain kinds of changes reveals a general di�culty. Our tests
revealed that we support the reaction to all kinds of changes that we identi�ed. Although
we claim to consider and detect all kinds of modi�cations in Ecore-based models and
supply complete information about each change, we did not prove this claim. It is possible
that further, rarely performed changes are possible in Ecore-based models, which our
change descriptions do not cover.

With the presented tests, we evaluated two aspects of the response language. On the
one hand, we validated that the implemented mapping of generic change types in the
responses to concrete change types of the Vitruvius change descriptions metamodel
is correct. On the other hand, the tests revealed that the approach executes the correct
responses if the triggers are de�ned correctly.
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Change type Change producing operations

Root element
Insertion Create a new Root element as a new model
Removal Create a new Root element as a new model and remove it
Attribute feature
Single-valued replacement Overwrite Root.singleValuedEAttribute with a new value
Multi-valued insertion Add a new value to Root.multiValuedEAttribute
Multi-valued removal Add a new value to Root.multiValuedEAttribute and

remove it
Containment reference feature
Single-valued replacement Overwrite Root.singleValuedContainment with a new

NonRoot object
Multi-valued insertion Add a new NonRoot object to

Root.multiValuedContainment
Multi-valued removal Add a new NonRoot object to

Root.multiValuedContainment and remove it
Non-containment reference feature
Single-valued replacement Overwrite Root.singleValuedNonContainment with another

NonRoot object from
Root.nonRootObjectContainerHelper.nonRootObjects

Multi-valued insertion Add another NonRoot object from
Root.nonRootObjectContainerHelper.nonRootObjects to
Root.multiValuedNonContainment

Multi-valued removal Add another NonRoot object from
Root.nonRootObjectContainerHelper.nonRootObjects to
Root.multiValuedNonContainment and remove it

Table 7.1: Operations for producing atomic changes in the minimal example metamodel

7.1.2 Definition of Arbitrary Repair Logic

The second functional requirement to achieve the aimed expressiveness of the designed
language is the possibility to de�ne arbitrary repair logic in response to a change.

In general, such arbitrary repair logic can be de�ned with a Turing-complete program-
ming language. We provide code blocks that allow the speci�cation of Turing-complete
code in all parts of the language. The additional constructs that we provide in the matcher
and the e�ect of a response just provide an abstraction of actions that can also be speci�ed
in the execution block and thus do not in�uence the expressiveness of the language.

Especially the execution block of a response provides the possibility to de�ne arbitrary
repair logic according to our functional language requirements. Nevertheless, we also
wanted to provide access to the correspondence model through language constructs and
specify a three-part structure of the response speci�cation. These aspects does not a�ect
the functionality but the applicability of the language, which is discussed in the following.
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7.2 Applicability

In the last section, we have shown that our approach is capable of ful�lling functional
requirements regarding the aimed expressiveness of a consistency repair language. In this
section, we examine the applicability of the developed language in a case study. Therefore,
we implemented responses for the consistency of architecture description models and
code that implements them, which was already the basis for the examples in this thesis.

The realized consistency constraints for keeping a PCM model consistent with Java code
are explained in the following section. Afterwards, we summarize limitations regarding
the applicability of our approach that the case study revealed. Finally, we discuss threats
to validity of the case study.

7.2.1 Consistency of Architecture Description and Code

In our case study, we implemented the repair of the majority of the consistency overlap
types between architecture description models and code models as proposed by Lang-
hammer and Krogmann [60] in the response language. Our architecture descriptions
are instances of the PCM metamodel and the code is de�ned in the Java programming
language, represented as instances of the metamodel o�ered by JaMoPP. Both metamodels
and essential relations between them were already introduced in chapter 3.

The PCM elements whose consistency overlap types with Java code were implemented
in our case study are summarized in Table 7.2. The table shows the containment hierarchy
of the PCM elements as a tree structure in the left column and explains the mapping to Java
elements in the right one. These consistency overlap types have to be instantiated whenever
one of the PCM elements is created and inserted into its container. A consistency overlap
has to be removed whenever a PCM element is deleted. Furthermore, the consistency
overlaps rely on some property values of the PCM elements, which requires the update of
the corresponding Java elements to restore consistency whenever one of these properties
gets changed. These properties are implicitly speci�ed in the described mappings of the
PCM elements to Java elements and are summarized beneath each consistency overlap
type description.

Basic PCM elements are repositories, components, interfaces and data types. These
elements and their mappings to Java code were already described in detail in chapter 3.
Further elements, which were already discussed in section 4.1, are provided and required
roles, which describe the interfaces that a component provides and the ones to which
it requires access. In Java code, a provided role is represented by the implementation
of the provided interface through the providing component class. A required role is
represented by a �eld with the required interface type in the requiring component, a
constructor parameter that expects an object providing this interface, and an assignment
of the parameter to the �eld within the constructor.

Further PCM elements that were not yet discussed are signatures and their parameters.
They can be de�ned in PCM interfaces and are directly mapped to methods with appropriate
parameters in the interfaces they belong to. Service-e�ect speci�cations (SEFFs) describe
the implementation of an interface signature by a component and are thus represented by
the appropriate method implementation in the component class.
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PCM element Java elements and feature changes a�ecting the overlap

Repository Java package with repository name
Two sub-packages with names “contracts” and “datatypes”
A�ecting feature modi�cations: Name

Component Java package with component name inside main repository package
Java class with component name inside the package
A�ecting feature modi�cations: Name

Provided Role Interface Implementation of provided interface by providing
component class
A�ecting feature modi�cations: Interface, Component

Required Role Field of required interface type with role name inside requiring
component
Parameter of required interface type in each constructor of
requiring component class
Assignment of parameter to �eld in each constructor
A�ecting feature modi�cations: Name, Interface, Component

SEFF Class Method according to described service signature inside
providing component class
Modi�cations: Described Service (Signature)

Resource Demanding Class Method with behavior name and void return type inside
Internal Behavior providing component class

A�ecting feature modi�cations: Name
Interface Java interface with interface name in “contracts” package

A�ecting feature modi�cations: Name
Signature Interface method with signature name and return type inside

providing interface
A�ecting feature modi�cations: Name, Return Type

Parameter Method parameter with parameter type and name inside expecting
signature
A�ecting feature modi�cations: Name, Type

Collection Data Type Java class with data type name in “datatypes” package
Extension of class with user de�ned collection type with type
parameter according to inner type of collection data type
A�ecting feature modi�cations: Name

Composite Data Type Java class with data type name in “datatypes” package
A�ecting feature modi�cations: Name

Inner Declaration Field of inner data type with declaration name inside containing
composite data type class
Getter and setter methods for the �eld in containing composite data
type class
A�ecting feature modi�cations: Name, Type

Table 7.2: Consistency overlap types that were considered in the case study
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Modi�cation type Required responses Implemented responses

Element creation 12 12
Element deletion 12 12 (1 inaccurate)
Property modi�cation 18 18 (3 inaccurate)

Table 7.3: Number of required and implemented responses for the di�erent modi�cation
types of the consistency overlap types in Table 7.2

Inner declarations represent the inner types of composite data types. The original PCM
contains them as an indirection to assign a name to each inner type, whereas we introduced
the inner types as a direct containment in the reduced PCM model in section 3.1.

In our case study, we implemented responses for keeping Java code consistent with the
mentioned elements of PCM models. The responses de�ne the consistency repair in cases
of the insertion and removal of the speci�ed elements, as well as the modi�cation of the
speci�ed properties that in�uence the consistency overlaps to which the elements belong.
For these repairs, 42 responses are necessary, which consist of twelve responses for the
creation of PCM elements, 12 responses for the deletion of them and 18 responses to the
modi�cation of relevant properties. We implemented all these required responses but
with one inaccuracy in the responses for the deletion and the modi�cation of properties
of a required role, which expect the component class to de�ne only one constructor.
This assumption is usually su�cient but cannot be assumed and is further discussed in
subsection 7.2.2. The numbers of required and implemented responses for the di�erent
modi�cation types are summarized in Table 7.3.

We used integration tests that perform all described creations, deletions and prop-
erty modi�cations in exemplary PCM models and check the corresponding Java code
for containing the expected representations and ful�lling required constraints after the
modi�cations. These tests were not speci�cally written for the responses, but were reused
from previously implemented Java transformations that repair consistency between PCM
and Java models. 52 of the 53 speci�ed tests validate the correct realization of consistency
repair for the speci�ed consistency overlap types. Only the renaming of an inner dec-
laration produced an unexpected result. Nevertheless, this error was not caused by the
responses speci�cation but revealed a problem of the Vitruvius framework regarding the
update of TUIDs that makes the correspondences of an inner declaration unresolvable if it
is renamed. This shortcoming of the framework is currently getting �xed in the Vitruvius
project. The tests do not re�ect the limitation of our responses for required roles because
the tests do not consider the edge case that we do not support.

Most of the provided language constructs concern the interaction with the correspon-
dence model. All implemented responses completely rely on these provided language
constructs and do not have to specify manual manipulations of the correspondence model
in the execution blocks. Consequently, at least in this case study, the provided language
constructs are su�cient for the necessary interactions with the correspondence model.

The implementation of the consistency-restoring responses for PCM and Java shows that
our language can be applied in a realistic use case. The generalizability and signi�cance of
this result is discussed in the �nal threats to validity subsection.

115



7 Evaluation

7.2.2 Limitations

The evaluation of the response language in the introduced PCM to Java case study revealed
one limitation regarding the capabilities of the provided retrieve construct of the response
language. The limitation concerns the retrieval of dynamically sized consistency overlaps,
whose necessity was not assumed by our language. Nevertheless, it does not a�ect the
expressiveness of the language as a whole, which was already discussed in section 7.1
about functionality.

During the development of the response language, we assumed that a consistency
overlap always consists of a static number of elements. The case study revealed that
this assumption is not always ful�lled. The consistency constraints for PCM and Java
propose the mapping of a required role to a �eld in the requiring component class and a
parameter in each constructor whose value is assigned to the �eld. Because there can be an
arbitrary number of constructors, there can also be an arbitrary number of parameters and
assignments to which the required role corresponds. A repair routine for the creation of a
required role can call another one for each constructor that instantiates a correspondence
between the required role and the constructor. However, it is not possible to retrieve
these correspondences correctly with the provided language constructs. The mechanisms
for �ltering corresponding elements by a function or a tag are not su�cient as we do
not need to retrieve a speci�c element for which we know the condition but want to
process all corresponding elements. Consequently, the correspondences between the
role and the parameters would have to be managed manually at the moment, or explicit
correspondences have to be completely omitted and all parameters must be extracted
manually from the constructors each time they are needed. In the implementation of the
case study, we simply assumed the existence of only one constructor, which circumvents
the problem but makes the responses fail if there is more than one constructor.

It is disputable if the presented mapping of a required role to a constructor parameter is
reasonable. Instead of the proposed mapping, the required role could also be delivered
to the component through a simple setter method, which is simpler to keep consistent.
Nevertheless, a similar mapping could be necessary in practice, thus we have to support
its realization.

In the end, the matcher of the response language can be extended to support such a
scenario without much e�ort. The existing language constructs must not be replaced but
just expanded by the support for handling dynamic numbers of elements.

7.2.3 Threats to Validity

Concluding the applicability evaluation of the response language, we discuss the signi�-
cance of the results of our case study. The PCM to Java case study does only represent
one example for consistency relations between models. We have shown that the response
language can be applied to restore the consistency of Java code with a PCM model when-
ever a consistency constraint of the considered types gets modi�ed. Nevertheless, the
consistency overlap types always de�ne a mapping from a single PCM element to one or
more Java code elements. Thus, only the modi�cations of a single element in the PCM
model have to be considered for the consistency of each single consistency overlap type.
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Keeping the PCM model consistent with the Java code in the opposite direction, thus
whenever modi�cations are performed to the code, requires the reaction to modi�cations
of di�erent elements for one consistency overlap type.

Although it makes no di�erence for the responses if one or more elements in the
changed model belong to a consistency overlap, for example, the retrieval of elements gets
more complicated because not all necessary elements are corresponding to the changed
element or at least an element in the changed model. In completely di�erent domains than
architecture descriptions and code, further unexpected requirements can arise, which we
did not consider when designing the response language. Therefore, the response language
has to be evaluated with further case studies in the future, to evaluate whether it can be
applied in other scenarios as well.

Furthermore, the case study evaluated the applicability of the language in terms of
the capabilities and the correct realization of the language constructs and not in terms
of usability. We applied the language to the scenario on our own, but if the language
shall be used by domain experts for specifying the consistency repair between di�erent
metamodels, it is important to evaluate that the language can be applied by such a user
and that it supports him in his task. Therefore, an empirical study with test groups that
implement the repair of a given set of consistency overlap types, once with our approach
and once using directly written transformations could be performed. The average number
of errors and the average required implementation time can be traced and compared.

7.3 Benefits

In the previous sections, we evaluated the functionality and applicability of our approach.
Although those aspects are important, the approach must provide a bene�t in contrast
to other approaches so that it makes sense to apply it. Therefore, we discuss some of the
bene�ts of the response language in the following.

First, we consider the conciseness of the provided language constructs for specifying
triggers and handling correspondences and compare them with their implementation in
code. Afterwards, we evaluate the relevance of the language constructs by analyzing their
usage in the context of the PCM to Java case study. Finally, we discuss the relevance of
the reuse mechanism for repair routines and also analyze its usage in the context of the
case study.

7.3.1 Trigger Specifications

The response language provides a highly declarative construct for specifying the trigger
for the execution of a response. It usually just requires the declaration of the expected type
of the change and of the modi�ed element, and in case of a feature change the considered
feature. The complete logic for realizing that check is derived from the speci�cation.

A trigger that speci�es the reaction to the creation of a component within a repository is
realized in the response language as shown in Listing 7.1. The di�erent checks would have
to be declared explicitly in an Xtend implementation as shown in Listing 7.2. The Xtend
implementation requires higher e�ort to specify the condition for each repair routine and
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trigger: insert in list pcm.Repository[components]

Listing 7.1: Example trigger implementation in the response language

if (change instanceof InsertRootEObject) {

val typedChange = change as InsertRootEObject;

if (change.affectedEObject instanceof pcm.Repository &&

change.affectedFeature.name == "components") {

// Repair routine specification

}

}

Listing 7.2: Example trigger implementation in Xtend code

also increases the possibility to make mistakes. The correct change properties have to
be checked for their type and the right feature name has to be compared. The response
language performs automatic consistency checks and, for example, only allows to de�ne
features that are provided by the speci�ed element type and that can be a�ected by the
speci�ed change. In contrast, the Java implementation does not provide any validation for
the correctness of the trigger.

As the example shows, the speci�cation of triggers in the response language is usually
more concise and provides a better validation than a Java implementation. Moreover, the
abstraction from concrete change types of the change descriptions metamodel requires
less knowledge about the possible changes and their representations by model elements.

7.3.2 Correspondence Handling

The correspondence model is a central artifact for the consistency repair, and the access
to it is abstracted by several constructs in the response language. The matcher provides
constructs for de�ning di�erent retrieve operations on the correspondence model, whereas
the e�ects de�ne constructs for modifying it.

In the best case, the methodologist does not have to care about the implementation
of the correspondence model at all, but just has to know about the provided language
constructs. Furthermore, the access to the correspondence model with language constructs
is usually more concise and abstracts from several necessities. This bene�t is shown by an
exemplary comparison of the retrieval of a Java compilation unit that corresponds to a
PCM component. In Listing 7.3, this retrieval is de�ned in the provided response language
construct, which just requires the speci�cation of the expected type, the source element
and a name for making the retrieved element accessible. An implementation in Xtend
code is shown in Listing 7.4. It has to perform the required actions manually and must
�rst retrieve all corresponding elements of the component, �lter them for compilation
unit instances and assure that there is a corresponding element.

Apart from the conciseness, the example shows that a Java implementation has to
consider further requirements, such as the existence of a corresponding element, on its
own. Furthermore, is has to perform several operations that are automatically and correctly
realized through the response language construct.
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retrieve required element: java.CompilationUnit as compilationUnit

corresponding to component

Listing 7.3: Retrieving the compilation unit corresponding to a PCM component in the
response language

val correspondingEObjects = correspondenceModel.getCorrespondingEObjects(component)

val compilationUnits = affectedEObjects.filter(typeof(CompilationUnit))

if (!compilationUnits.isEmpty) {

val CompilationUnit compilationUnit = compilationUnits.get(0)

// Repair routine for compilation unit

}

Listing 7.4: Retrieving the compilation unit corresponding to a PCM component in Xtend
code

The response language constructs provide a more concise and less error-prone way
of specifying interactions with the correspondence model. However, the expressiveness
has some limitations, which were already discussed in subsection 7.2.2 and which require
the methodologist to know about the methods of the correspondence model and their
semantics to retrieve the appropriate elements. Even if the constructs are not su�cient in
each case, the case study indicates that such cases may be rare.

7.3.3 Relevance of Language Constructs

The language constructs of the response language primarily address the access to the
correspondence model. The bene�ts of these constructs regarding conciseness and error
prevention were discussed in the previous subsection. Nevertheless, to pro�t from the
bene�ts of the constructs, they must �rst of all be relevant for the speci�cation of many
responses.

We analyzed the usage of the o�ered language constructs in the PCM to Java case study
and summarize the results in Table 7.4. The consistency repair consists of 42 responses,
which use 23 additional external repair routines. The retrieve construct is used 59 times
and thus on average more than once per response, which meets the expectations as all
responses operate on the elements of consistency overlaps. The retrieve statement for
optional elements is required for PCM data types in the case study and is utilized �ve
times. The language construct for requiring the absence of a corresponding element is
only used once and in that case primarily to test its functionality. The case study does
not require the usage of this feature, but the implementation of consistency repair for
modi�cations in the Java code would require it, as discussed in subsection 5.3.5.

The remaining language constructs are provided in the e�ects. The creation of elements
and addition of correspondences is used half a time per response on average. In the case
study, the creation of elements and the addition of a correspondence were always performed
together. Although there are de�nitely cases in which one construct is used without the
other, it could be reasonable to provide a language construct that combines both operations
if further case studies show that they are used in only few cases independently from each
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Language construct Count

Response 42
External repair routine 23
Retrieve required element 59
Retrieve optional element 5
Require element absence 1
Create element 21
Delete element 13
Add correspondence 21
Remove correspondence 0

Table 7.4: Numbers of used response language constructs in the case study

other. The removal of a correspondence is only necessary if none of the corresponding
elements is deleted because otherwise it is removed automatically. That is the reason why
this language feature is not used in our case study.

The set of elements that is considered in a response consists of the retrieved and created
ones. Our case study uses 85 creating and retrieving constructs, which are used by a set
of 42 responses. Consequently, a response in the case study deals with two elements of
another model on average, which emphasizes the relevance of the provided language
constructs.

7.3.4 Reuse of Repair Routines

The response language allows the speci�cation of external repair routines, which can be
called by responses and other repair routines. The essential purpose of them is to provide
a reuse mechanism.

We analyzed the usage of repair routines in our PCM to Java case study to see how they
were used to implement the consistency repair and summarize the results in Table 7.5.
The complete repair speci�cation of 42 responses uses 23 external repair routines. These
routines are called 62 times, which means that each response or repair routine calls almost
one external repair routine on average. Each repair routine is called 2.7 times on average,
which shows that they are suitable for reusing repair speci�cations.

Furthermore, we distinguished the repair routine calls by their reason. Apart from
reuse, there are two further cases in which the speci�cation of external repair routines
is necessary. The iteration of calls for handling dynamic counts of consistency overlaps
was already discussed in subsection 5.5.3 and is necessary two times. First, we need it for
the removal of all constructor parameters of a require role, and second, it is required for
updating the method names of SEFFs whenever the name of the implemented interface
signature changes in all basic components that provide the interface.

Another case in which external repair routines are necessary is the chaining of repair
routines. If one repair routine requires an element that must �rst be created by another,
reused repair routine, the element requiring repair routine must be externalized because
it cannot retrieve the element in its matcher as it is not yet created. For example, the
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Language construct Count

Response 42
External repair routine 23

for reuse 19
for chaining 2
for iterating 2

Repair routine call 62
for reuse 58
for chaining 2
for iterating 2

Table 7.5: Numbers of responses, repair routines and repair routine calls in the case study

response for the creation of a collection data type reuses the repair routine for creating
the corresponding Java class. Because a collection class has to be added as its super class,
the newly created Java class must be retrieved, which is only possible in another repair
routine. This chaining is necessary twice in the case study.

Consequently, 19 of 23 repair routines are speci�ed for reasons of reuse and they are
called 58 times. Thus, each of these repair routines is called almost 3 times, which con�rms
the necessity of providing such a reuse mechanism in the response language.

7.4 Evolution Scenarios

The main goal of the response language was the provision of a consistency repair language
with certain requirements to its expressiveness. We also support the speci�cation of
responses with language constructs that abstract from the correspondence model handling.
We did not consider the impact on certain evolution scenarios during the language design.
Nonetheless, we shortly discuss the consequences of the language design for the evolu-
tion of di�erent artifacts in the following. The discussion only provides an overview of
qualitative evolution impacts to the responses and gives an overview of potential bene�ts
in contrast to directly written transformations.

We consider evolution scenarios of the artifacts on which the speci�cation of responses
is based. These artifacts are the transformation environment, the metamodels for which
the consistency repair is speci�ed, and the consistency overlap types considered in the
responses. If one of these artifacts changes, the adaption of the transformations is required.

7.4.1 Transformation Environment Evolution

The transformation environment can evolve in di�erent ways. First, the essential execution
mechanism can change, for example, due to a modi�cation of the interface that the
transformations have to implement. Second, the change descriptions metamodel can
evolve, and third, the correspondence metamodel can get changed.
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Because the response language abstracts from the integration of responses into the exe-
cution environment, the �rst evolution scenario only requires the environment generator
of the language to be updated and to be re-executed for existing response speci�cations.
Especially if consistency-restoring transformations for several metamodels in di�erent
projects are de�ned, only having to re-execute the generator once is a bene�t. For directly
written transformations, the implementation of the access point for the transformation
environment, in the Vitruvius implementation the Change2CommandTransforming, must
be updated manually in each case.

Modi�cations of the change descriptions metamodel can only in�uence the represen-
tation of certain changes but not the information they contain, as this is de�ned by the
meta-metamodel. As the response language abstracts from concrete types of the change
descriptions metamodel, only the change inference mechanism has to be adapted but
not the implementation of any response. Even the modi�cation of a change property
name does not require a modi�cation of already written responses because the property is
passed to the code blocks as a parameter that can keep its old names. In directly written
transformations, each modi�cation of the change descriptions metamodel requires the
adaption of all references to the elements of the metamodel that were changed.

Modi�cations of the correspondence model are also completely transparent to a method-
ologist because the language constructs abstract from the correspondence model imple-
mentation. Furthermore, most of the interaction logic with the correspondence model
is statically speci�ed in the runtime environment of the response language and is not
generated for each response. Consequently, most changes in the correspondence model
will not even require a re-execution of the code generation for the responses.

Even if an implementation of directly written transformations provides a good abstrac-
tion from these artifacts, only this concrete implementation bene�ts from the adaption to
an evolved artifact. Using the response language, only its code generation must be updated
and all users of the response language only need to re-execute the code generation, if at
all, and no further evolution e�ort is necessary.

7.4.2 Metamodel Evolution

The evolution of a metamodel for which consistency-restoring transformations are speci-
�ed can require their adaption. Most metamodel changes are backwards compatible to
keep existing instances usable. Nevertheless, if backwards compatibility is not required,
metamodels can evolve in ways that a�ect transformations speci�ed for them.

The structure of a metamodel depends on its context and is not generic the correspon-
dence and change descriptions metamodels. Therefore, it is di�cult to provide specialized
language constructs that abstract from certain aspects of concrete metamodels, which is
why the response language does not provide any related constructs. Even the abstraction
of usual model operation, such as the assignment of an attribute or reference, does not
provide any abstraction from a concrete metamodel.

As long as responses and directly written transformations reference metamodel elements
and properties using typed objects, which are checked by the language compiler, the
developer gets informed about errors due to a changed metamodel. However, assuming
a trigger implementation as shown in Listing 7.1 and Listing 7.2, the response language
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bene�ts from the validation mechanism that checks if the speci�ed feature belongs to the
expected element type. If this feature is changed, the response language validation reports
the error statically to the developer. The Java implementation will fail during its execution,
potentially even silently so that just unexpected results are produced because the feature
comparison fails every time.

A realistic metamodel change could, for example, be the improvement of the package
hierarchy representation in the Java metamodel of JaMoPP by explicit containment refer-
ences instead of the implicit namespaces list. Another possible change is the realization
of PCM provided roles as lists of provided interfaces within a component instead of a
dedicated metaclass. Both modi�cations require the responses of all consistency overlap
types in which these elements are contained to be updated. The bene�t of the response
language in these scenarios is its conciseness, which may reduce the number of references
to a modi�ed element. At least, the number of references will not exceed the one in directly
written transformations. Consequently, a fewer number of references must be adapted.

7.4.3 Consistency Overlap Type Evolution

The last evolution scenario is the modi�cation of consistency overlap types on which
responses are based. Such a modi�cation can have two reasons. Either an error in the
speci�cation of consistency constraints is found, or, if using a synthetic speci�cation, the
prescription of the consistency overlap types changes.

As consistency overlap types and their repair implementation can be rather di�erent, it
is hard to categorize possible modi�cations of them and discuss their impact on response
speci�cations. Nonetheless, we can at least make a statement about the number of a�ected
responses. If a single consistency overlap type is changed, only the responses that are
responsible for it possibly have to be updated. These are at most as many responses as fea-
tures of metaclasses are used in the consistency constraints because only the modi�cations
of those features require responses that update such an overlap.

An example for a consistency overlap type evolution in the context of our case study
would be the mapping of PCM components to a central components package instead of one
package for each component. This modi�cation requires the adaption of the consistency
overlap types of both the component and the repository because the component must
not have a corresponding package any more but the repository must be mapped to an
additional package. The responses for the insertion and removal of a component into or
from a repository, as well as for the creation, renaming and deletion of the repository have
to be updated. Directly written transformations must also implement reactions to all these
changes, thus at least as many code fragments have to be updated.

One bene�t of responses regarding the evolution of a consistency overlap type is that
the language design is based on the concept of these types and provides constructs for
accessing elements of a consistency overlap. Consequently, a modi�cation of a consistency
overlap type can potentially be easier transferred to responses than to directly written
transformations that do not have this explicit structure. However, this is just a hypothesis,
which has to be veri�ed in a controlled study. Di�erent test groups have to conduct
such evolution scenarios in responses as well as directly written transformations and are
compared regarding the required time and the performed errors.
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In this chapter, we give an overview of work that is related to our approach and discuss
the di�erences between them. After classifying our approach in the context of general
change-driven development, we consider di�erent topics of model consistency and its
repair, as this thesis contributes to them.

We �rst discuss di�erent de�nitions of consistency and relate them to our de�nition.
Then, we look at some general topics of consistency repair, often also referred to as
model synchronization, like its formalization, the relevance of changes and transformation
frameworks. After shortly discussing the relation to approaches for the problem-speci�c
consistency repair, we consider declarative approaches for restoring model consistency.
Finally, we compare our language to other approaches for imperative consistency repair,
which is the topic to which our approach is most closely related.

8.1 Change-Driven Development and Reactive Programming

We provide an approach for consistency repair that is based on atomic changes. The
concepts are similar to those in event-based or event-driven software development [77].
Events lead to the execution of some program logic as a reaction to that event. Event-driven
programs are often implemented manually using common imperative object-oriented
language constructs and possibly �tting design patterns, such as the observer pattern [36].
The mechanisms for noti�cations about events, such as the observer pattern, are the
concepts upon which a transformation environment relies.

In contrast to change-driven development, reactive programming focuses on language
constructs to de�ne data dependencies that are automatically updated [7]. The mechanism
of calling the reactions to events is not implemented manually but is provided by the
environment, which is what change-driven model consistency also aims for. The reactive
programming idea was initially described by Elliott [26] and was a concept of a virtual real-
ity modeling language. Later on, he used this idea for a reactive animation framework [28]
and recently in the context of general functional reactive programming [27]. Many reac-
tive programming frameworks have been developed, especially for functional languages.
Popular implementations for Haskell are Fran [26], NewFran [27] and Yampa [47]. Reactive
programming constructs for Scala have been introduced in Scala.React [66].

The relation of reactive programming to model consistency can be mainly seen in
declarative transformation languages. They describe relations between metamodels from
which mechanisms to preserve consistency of these relations are derived. Consequently,
they also describe data dependencies like reactive programs do, rather than control �ow
dependencies in imperative approaches.
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8.2 Consistency Specification and Validation

To reason about consistency repair, a de�nition or common understanding of consistency
is necessary. We presented our view on and de�nitions for model consistency in section 4.1.
The speci�cation of consistency is highly related to its validation, as the validation relies on
a consistency speci�cation and a speci�cation usually implies a way how to validate it. For
example, our de�nition of consistency is based on consistency overlaps and consistency
constraints, which implies the validation of consistency by checking those constraints.

Several approaches describe consistency in a similar way. One of them is the correspon-
dence speci�cation mechanism of Linington [63]. He provides a consistency speci�cation
that comprises correspondence rules and correspondence links. The correspondence rules
consist of constraints, thus they are similar to our consistency constraints. The correspon-
dence links can be seen as partial consistency overlaps, as they describe two sets of model
elements and reference one consistency rule, whereas we allow multiple constraints to be
de�ned on them. In contrast to our speci�cation, this one does not explicitly provide a
concept for the description of consistency overlap types on the metamodel level, which is
the basic concept for our consistency repair approach.

Diskin, Xiong, and Czarnecki provide a way of checking consistency between heteroge-
neous models [22]. They informally use the term overlap similarly to our de�nition and
also consider the explicit speci�cation of inter-metamodel constraints, which represents
the concept that we call consistency constraints. Nevertheless, they also omit the explicit
speci�cation of the type level of overlaps. Their consistency validation merges models
into views for certain aspects of the system, which allows to reduce the consistency check
to constraints on these views instead of complete models.

Another approach for the validation of model consistency is based on so called design
rules [82]. These rules de�ne conditions that are validated on a context, which can be
a model element or a metaclass. That concept of design rules is similar to that of our
consistency constraints but can be de�ned on both the metamodel and the model level. We
only consider constraints that have to hold level as they are su�cient for our consistency-
restoring transformations de�ned on them.

The discussed approaches, as well as ours, rely on some kind of correspondence model,
either explicitly provided or implicitly extracted from the models, which identi�es if
certain elements represent overlapping information. The correspondence models consist
of elements and dependency rules represented by some kind of constraints. A di�erent
speci�cation is provided in an approach for ensuring multi-model consistency [93], which
utilizes the entity-relationship model [19] for specifying correspondences between model
elements. The paper proposes to use QVT-R for specifying the rules that de�ne actions
for restoring consistency after such a relationship was a�ected by a change.

8.3 General Topics of Model Consistency Repair

The repair of model consistency always relies on model changes. Only a model modi�cation
can introduce an inconsistency if the models were consistent before. Consequently, all
discussed approaches have to deal with changes. Most approaches are di�erence-based,
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calculating the change from the di�erences of an old and new model state. In contrast,
our approach relies on an edit-based change detection, which gets the information about
model changes directly. The approaches using an edit-based change detection are what
we consider as change-driven.

A formalization for model consistency repair and changes is given by Hettel, Lawley, and
Raymond [46]. They de�ne round-trip engineering, which also concerns the preservation
of consistency between two models. Furthermore, they give a formal de�nition of so
called “change translation functions”, which represents our view on change-driven model
consistency proposed in subsection 4.4.1, relying on the transformations of a change in
one model into changes in the other model. While we only consider atomic changes in the
source model so far, they de�ne the mechanism on composite changes. However, their
de�nitions of changes and change translation rely on a speci�c model and metamodel
de�nition, which is not fully conform to EMOF. Moreover, they only formalize consistency
repair but do not provide concepts for a realization of it.

The granularity of changes to react to is also discussed by Wimmer, Moreno, and
Vallecillo [97]. They propose the usage of coarse-grained changes as they better �t to the
developer’s expectation of considering high-level evolution rather than low-level atomic
changes. We also want to support these scenarios by the integration of composite changes
and the changes of constraint satisfaction in future work. Nevertheless, an abstraction
from atomic changes as they propose is beyond our concept of consistency overlaps and
thus contrasts the concepts of our approach. Furthermore, their approach relies on a
di�erence-based detection of atomic changes, which is not capable of reconstructing each
change correctly, rather than the edit-based mechanism that we use.

Consistency repair requires a transformation framework like Vitruvius. Another
framework for the consistent evolution of models is CoWolf [37]. The approach builds
upon the speci�cation of transformations between pairs of metamodels and rules for
the detection of changes in the models. These rules have to be speci�ed in the Henshin
language [4], which relies on triple graph grammars, discussed in subsection 8.5.1. It
is integrated into the Eclipse environment and automatically executes the appropriate
consistency-restoring transformations after changes. However, the approach focuses on
the development of the transformation environment and does rarely consider how the
consistency repair mechanisms are speci�ed using Henshin rules.

8.4 Problem-Specific Model Consistency Repair

Several approaches have been proposed for the preservation of consistency in speci�c
domains, thus between instances of prede�ned metamodels. Especially for the consistency
between design models in UML and the implementation of a software system, for example,
written in Java, round-trip engineering approaches have been researched for a long time.
These approaches propagate changes between both models. Examples are the commercial
tools Borland Together [14] and Enterprise Architect [87], as well as the research project
Fujaba [70]. Nevertheless, these approaches are tied to the consistency between UML
diagrams and code, whereas our approach allows to de�ne consistency repair between
arbitrary metamodels.
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The DUALLY project [67] considers the consistency of architecture descriptions. The
developers claim that a variety of architecture description languages exist for di�erent
purposes of which often several are used within one software project. Consequently,
such descriptions have to be transformed into each other. The approach provides a core
metamodel that de�nes common concepts of architecture description languages to which
relations of all di�erent languages can be speci�ed. From these relations, transformations
between the languages are generated. Because only relations to the core metamodel have
to be speci�ed, the required e�ort for the integration of new languages is reduced in
contrast to general-purpose approaches for preserving consistency. They usually require
the de�nition of consistency between pairs of models as there is no common metamodel to
which all concepts can be mapped. The approach is also extended to support incremental
updates [29], rather than re-executing the transformations after modi�cations in batch
mode, which leads to the loss of information.

The realization of such problem-speci�c approaches is rather di�erent than general-
purpose approaches for restoring model consistency, such as the one we introduced in
this thesis. While we have to ensure problem-independence by allowing the speci�cation
of any kind of consistency and its repair, the problem-speci�c approaches can rely on
speci�cs of the domains.

8.5 Declarative Model Consistency Repair

In this section, we discuss declarative approaches for model consistency repair. They rely
on the speci�cation of consistency rules that describe constraints for consistent models,
from which the repair of consistency is automatically derived.

As we discussed in subsection 4.4.3, the repair of speci�ed consistency constraints
provides degrees of freedom, which can even require the determination by the user who
introduced the inconsistency. Because declarative approaches automatically derive the
repair of consistency, it is not possible to in�uence the possible way of repair to use.
Even approaches that let the user select from di�erent models that ful�ll the consistency
speci�cation after a change do not allow to specify the way of consistency repair within
the consistency speci�cation a-priori. They require this decision from the user every time.
This automatic derivation of consistency repair is already the essential di�erence to our
approach and imperative approaches in general, as they explicitly de�ne the repair actions.
However, most research about model consistency repair focuses on declarative approaches.

A simple declarative approach for consistency repair is presented in an early paper
about incremental model transformations [51]. It distinguishes create, update and delete
operations depending on whether a target element does exist and whether it should exist
due to a change. Nevertheless, this approach is limited as it does not allow to specify
consistency overlaps explicitly but relies on implicit overlap speci�cations that describe
the retrieval of its elements using model information. Moreover, it does only support
simple redundancy mappings.

The most important category of declarative approaches for consistency repair are
bidirectional transformation languages. Some other approaches are based on a consistency
speci�cation with logical expressions. Both categories are discussed in the following.
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8.5.1 Bidirectional Transformation Languages

Bidirectional transformation languages allow to specify relations between instances of
metamodels, from which transformations that keep these relations consistent in both direc-
tions are derived. As stated by Stevens [92], the purpose of bidirectional transformations
is to repair consistency between models.

A common approach for bidirectional transformations are Triple Graph Grammars
(TGGs) [62]. They allow the speci�cation of graph transformation rules based on three
graphs. Two graphs represent the patterns in the source and target graphs and a correspon-
dence graph links the elements of these two graphs. Because models can be considered as
graphs, TGGs can be used to de�ne model transformations [38, 2]. For model consistency
preservation, TGGs initially had some drawbacks, especially the lack of support for delete
operations and the limitation to equivalence relations between attributes. Although delete
operations are supported by recent TGG tools, the limitation of attribute relations is just
addressed in current research [3, 57]. TGGs were even extended to handle concurrent
modi�cations of di�erent models that have to be kept consistent [45], which our approach
is not capable of.

QVT-R [72] is the bidirectional transformation language of the QVT standard. It allows
the speci�cation of relations between model elements, which can be seen as the speci-
�cation of the consistency overlap types of two metamodels. QVT-R allows to execute
the transformation in a checkonly mode, which validates if the rules are ful�lled by the
models and thus are consistent, or in an enforce mode, which restores the consistency
relations speci�ed in the rules. Current implementations of QVT-R are not mature as they
do not support the complete standard. One implementation is Echo and is discussed later.

Tratt presents a change propagating language for keeping models consistent [96]. As
the change propagation is derived from de�ned relations instead of requiring their explicit
speci�cation, it is similar to QVT-R. The approach requires the speci�cation of relations
between elements and thus does also not provide a possibility to in�uence the derived repair
mechanism. Tratt works out several aspects of change propagation that we considered as
well. Especially what we de�ned as implicit and explicit consistency overlap speci�cations
is considered as a mechanism for relating source and target model elements. Nevertheless,
it omits a concept like consistency overlaps.

The discussed approaches depend on the speci�cation of relations between model
elements. They derive a �xed repair logic that predetermines how the repair of a certain
inconsistency is performed. As already mentioned, this lack of in�uenceability is the main
drawback in contrast to our approach. The following approaches relax this restriction as
they allow the user to select from di�erent possible repairs.

Echo is a model repair tool that relies on the de�nition of consistency constraints in OCL
and QVT-R [65]. It transform metamodels and the consistency speci�cation into a formal
speci�cation in the Alloy language [64]. This language uses a SAT solver to �nd instances
of the target metamodel after a change in an instance of the source metamodel that are
closest, depending on some metrics, to the actual one. It is also capable of proposing
several possible consistent target models to let the user select from.

Reder proposes an approach for repairing consistency based on the speci�cation of
design rules [81, 80]. From these design rules, repair trees, which are trees of actions
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that describe how such a violated rule can be repaired, are derived [82]. False and non-
minimal repairs are removed from this tree to let the developer select from the remaining,
reasonable alternatives. Although the realization is rather di�erent, the idea is similar to
the one of Echo, as both approaches try to derive minimal repair operations for consistency
rules and let the developer select from the most appropriate ones.

In contrast to the other approaches, the last two provide alternatives of restoring a
consistent state rather than predetermining the repair logic. In these approaches, the
user has to select a possible repair each time a change is performed, even if the expected
repair of a certain kind of modi�cation is always the same. Our approach allows to de�ne
the appropriate repair for a certain case within the transformation. As a consequence,
it reduces the cases in which the user has to be asked for a decision but still keeps the
possibility to involve him, if necessary, rather than completely automating the repair logic.

8.5.2 Logical Expression Approaches

Some approaches for consistency repair use logical languages to specify consistency and
derive its repair. One approach is the change propagation by answer set programming
(ASP). A model that was generated by a transformation can be changed so that the new
state can never be the result of a transformation. ASP allows to approximate a source model
that can be transformed in a model that is closest to the changed one [20]. Considering
models and metamodels as graphs of nodes, edges and properties, they can be represented
as rules in a logical program that performs that approximation.

Eramo et al. present a similar approach that focuses on the propagation of changes using
ASP [30]. As stated in that work, the approaches using ASP have limited expressiveness, for
example, because they only support scalar data types and weak abstraction. Especially the
limited expressiveness makes them hardly applicable in the context of model consistency
repair. Furthermore, the speci�cation of dependencies in logical programs requires a certain
understanding of logical expressions, whereas our approach allows the speci�cation of
constraints and their repair in imperative code, which developers are usually familiar with.

An early approach by Nentwich, Emmerich, and Finkelstein considered the consistency
of documents through repair actions [69]. They de�ne the consistency rules of documents
in a language based on �rst-order logic, from which they claim to derive a complete
set of necessary repair actions for changes that violate the rules. They require a repair
administrator who removes the generated actions that would ful�ll the constraints, but
are not reasonable. The idea of revising the transformations derived from a declarative
speci�cation is interesting, as this idea could be adapted by a further integration of the
mapping and response language of the MIR language family.

8.6 Imperative Model Consistency Repair

Most approaches for model consistency preservation focus on declarative speci�cations,
from which the consistency repair mechanism is derived. Some other approaches follow
an imperative approach, which requires the repair mechanism to be explicitly speci�ed.
Whereas the imperative approach usually requires higher e�ort, at least because both
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directions of transformations have to be de�ned separately, it provides higher �exibility
as the way in which consistency is restored in certain situations can be de�ned explicitly.
This possibility is useful, as the satisfaction of a single consistency speci�cation can be
achieved by di�erent kinds of repair implementation, as stated in subsection 4.4.3.

8.6.1 General Approaches

Xiong et al. proposed an approach that automatically deduces a backward transformation
from a forward transformation de�ned in the Atlas Transformation Language (ATL) [98].
Thus, it generates both directions of the consistency repair for a consistency overlap type
from the speci�cation of the transformation in one direction. The approach is based on a
formal speci�cation of the synchronization problem consisting of four properties that rely
on the lens laws [33, 34]. The authors specify the generation of reverse transformations for
certain model operations, more precisely the replacement, the deletion and the insertion
of model elements. The modi�cations that have to be performed by the transformation in
the target model must also rely on these supported modi�cations types. Furthermore, the
inversion of attribute value calculations and the parametrization of a transformation with
user decisions is not covered by the approach. These characteristics make it less expressive
than our approach regarding the speci�able relations between models. Nevertheless, it is
capable of handling concurrent modi�cations of both models, which we do currently not
support.

An explicitly change-driven approach for restoring model consistency are the so called
event-driven grammars [40]. They allow to specify the possible modifying actions in a
model and de�ne events in response to them as TGG rules. This approach even allows
to handle delete operations with TGGs. Although the change-driven concepts and the
triggered execution of events is comparable to our approach, they de�ne metamodel-
speci�c change events in the TGG rules rather than the metamodel-independent changes
we support. Moreover, we allow to de�ne the changes to react to and the repair routines
to execute imperatively. In contrast, their approach allows to de�ne the triggering of a
repair imperatively through the change it reacts to, but the repair itself is derived from a
declarative TGG rule.

8.6.2 Reactive Model Transformations with VIATRA

Bergmann et al. have developed the VIATRA framework [12]. It relies on a so called Event-

driven Virtual Machine (EVM), which can be used to execute reactive programs. In their
understanding, reactive programs execute code in reaction to an event, which is why such
a reactive program consist of two parts specifying the event and the reaction. This concept
is especially applied to the context of model transformations, in which transformations in
reaction to events can be speci�ed. The events are expressed by modi�cations of graph
structures, which can be expressed in their EMF-Inc�ery language [11]. This language
allows to de�ne queries on models, which are de�ned as graph patterns and are matched
with the model graph. A reactive program can de�ne the operations to perform when a
certain graph pattern was created, updated or deleted. Those operations are speci�ed in
imperative code that accesses the elements of the matched graph pattern.
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The current VIATRA project arose from VIATRA2 [10, 79]. Just like in the current
version, a trigger had to be de�ned by the appearance, update or disappearance of a graph
pattern. In contrast to the current VIATRA framework, the reaction had to be speci�ed as
a declarative graph rule rather than through imperative operation. Such a rule speci�ed
conditions that had to hold after a speci�ed event occurred.

The VIATRA approach is similar to ours, as it de�nes an explicitly change-driven
approach for restoring model consistency. The graph patterns describe the consistency
overlap types of the metamodels. It is even possible to de�ne more complex events than
the atomic changes, which we currently support, as more complex graph patterns can
be speci�ed for triggering transformations. This is what we want to support with the
constraint satisfaction change triggers proposed in subsection 5.8.2.

In contrast to our approach, the EMF-Inc�ery language, which is used to de�ne
the graph patterns, is less expressive as it is not Turing-complete. For example, cycles of
references cannot be detected with the query language, which is possible with our approach
due to the possibility to specify Turing-complete triggers and matchers. Correspondences
have to be managed in an explicit trace model that must be explicitly addressed by graph
patterns and from which is not abstracted such as in the response language. As the
transformation execution after an event relies on the EVM, the methodologist has to
understand parts of this additional layer of abstraction for debugging. Our responses are
transformed into plain Java code with only few API calls, which does not require further
knowledge by the methodologist. Finally, the concept of graph pattern matching is a
completely di�erent and highly declarative concept compared to the rather imperative
response language. Although the latter one may be more verbose, it is potentially easier
to learn as developers are usually familiar with the speci�cation of imperative code.
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In this last chapter, we conclude the thesis with a summary of its contributions and an
overview of possibilities for future work.

9.1 Conclusion

This thesis presented a change-driven transformation language for the repair of model
consistency, which relies on a de�nition of consistency that focuses on the comprehensi-
bility by users of such a language. We introduced an implementation of these concepts
based on the Eclipse Modeling Framework and presented an evaluation of the applicability
and the bene�ts of our approach. Finally, we compared our approach with related ones.

In the main part of the thesis, we �rst introduced our de�nitions of model consistency
and model changes. We proposed a de�nition for model consistency that breaks the speci-
�cation of consistency between two models down to the de�nition of smaller relations
between certain sets of elements, which we call consistency overlaps. Based on atomic
model changes, which can induce model inconsistencies, we de�ned our view on consis-
tency repair, which lead to the concept of change-driven consistency repair. Finally, we
derived an execution structure, consisting of three steps, that change-driven consistency
repair always possesses.

After introducing those theoretical foundations, we designed a change-driven language
for consistency repair, called the response language. It relies on the proposed consistency
de�nition and separates the repair description into three parts, according to the identi�ed
steps of change-driven consistency repair. Di�erent language constructs for restricting the
considered changes and managing the correspondence model, which provides information
about related elements, were developed. We ensured that it is still possible to de�ne
maximum expressive repair actions in terms of being Turing-complete. Afterwards, we
discussed further properties and responsibilities of the language and considerations for
writing responses. We �nally provided an overview of possible extensions to the approach.

The development of the language concepts was followed by an overview of a prototypi-
cal implementation of the response language. We proposed a structure for the runtime
environment of the �nal consistency-restoring code, which is generated from a speci�ca-
tion in the response language. The realization of the language speci�cation with the Xtext
framework and important aspects such as the reuse of a Turing-complete programming
language in certain language constructs were discussed.

In the evaluation, we demonstrated the applicability of the language in a realistic
use case, the consistency between architecture models and object-oriented code. We
�gured out the relevance of our language constructs and that the approach provides a
more concise speci�cation of consistency repair than without a specialized language.
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Nevertheless, further case studies have to be performed to verify the general applicability
of the approach in future work. In a �nal discussion of related work, we positioned our
approach in the �eld of research about model consistency repair.

To sum up, we revealed that it is possible to identify a general structure of change-driven
consistency repair speci�cations based on a certain de�nition of consistency. We developed
a language that is tailored to the repair of model consistency and provides constructs ac-
cording to the identi�ed structure while still providing maximum expressiveness. Because
we successfully applied our language to a realistic consistency scenario, we are con�dent
that the approach can be reasonably applied to further scenarios by other users.

9.2 Future Work

In future work, three important topics can be further investigated: the language can be
extended by further concepts, aspects of transitivity of consistency repair can be researched
and applied to the response language, and further evaluation can be performed to verify
the applicability and usability of our approach.

Several possible extensions for the language concepts were discussed in the thesis.
New types of triggers can extend the available preconditions for a response execution
to composite changes and even more complex conditions on modi�cations of the model
state. An important extension is the further integration of user interaction to increase
the in�uence of the user to the way in which consistency is restored. In the evaluation,
we revealed a limitation of our language regarding consistency overlaps that consist of a
dynamic number of elements, which has to be addressed by a language extension.

Currently, several responses have to be written for the repair of the same type of
consistency overlap, as it can be a�ected in di�erent ways. The metaclasses of a consistency
overlap type and the properties that are relevant for the constraints can be made explicit.
From that speci�cation, the changes that can a�ect such an overlap can be derived, just
as in approaches for declarative consistency repair. Consequently, necessary responses
for a certain overlap type could be automatically derived from such an explicit overlap
speci�cation to reduce the speci�cation e�ort and error-proneness.

A second research area of interest is the preservation of consistency between more
than two models. Rather than specifying consistency between all pairs of models, it is
preferable to de�ne consistency repair transitively. Such transitivity reduces the e�ort for
specifying consistency but also induces new di�culties, such as the cyclic propagation of
changes. Research results about de�ning transitive consistency repair mechanisms can
be transferred to the response language and potentially also require an adaption of its
constructs.

The applicability of our approach was initially evaluated in a single case study. In future
work, the approach should be applied to further domains to verify the general applicability
of the language. Furthermore, we did not analyze the usability of our approach. Although
we assume that our concepts support the speci�cation of consistency repair by providing
reasonable abstractions from recurring and underlying technical aspects, this expectation
has to be veri�ed in controlled studies.
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