

| Outline                                                                     | $\bigcirc$ |
|-----------------------------------------------------------------------------|------------|
| • What is fusion ?                                                          |            |
| • EU fusion roadmap                                                         |            |
| <ul> <li>Neutronics simulations in fusion technology</li> </ul>             |            |
| <ul> <li>Nuclear data for fusion applications</li> </ul>                    |            |
| <ul> <li>Transport simulations</li> </ul>                                   |            |
| <ul> <li>Activation &amp; transmutation</li> </ul>                          |            |
| <ul> <li>Nuclear data in the PPPT programme</li> </ul>                      |            |
| • Summary                                                                   |            |
| Addendum:                                                                   |            |
| <ul> <li>DEMO nuclear analyses - examples</li> </ul>                        |            |
| U. Fischer   Fusion & Nucl. Data   n_TOF WS, Zermatt, CH   Jan. 18, 2018  I | Page 2     |















| EU Fusion Roadmap – once again                                                                                                                                 |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| European Fusion Roadmap                                                                                                                                        |    |  |
| <ul> <li>Realization of fusion as energy source for electricity by 2050</li> </ul>                                                                             |    |  |
| $\Rightarrow$ Fusion Power Plant (FPP) providing electricity to the grid                                                                                       |    |  |
| "Horizon 2020" research framework programme                                                                                                                    |    |  |
| <ul> <li>Conceptual design of a fusion power demonstration plant (DEMO)</li> </ul>                                                                             |    |  |
| <ul> <li>Power Plant Physics and Technology (PPPT) programme conducted by<br/>EUROfusion Consortium for the Development of Fusion Energy</li> </ul>            |    |  |
| DEMO power plant                                                                                                                                               |    |  |
| <ul> <li>Conceived as single step between ITER and commercial FPP</li> </ul>                                                                                   |    |  |
| <ul> <li>Demonstrate tritium breeding capability, production of net electricity, a<br/>technologies required for the construction of commercial FPP</li> </ul> | 11 |  |
| D-Li neutron source IFMIF-DONES                                                                                                                                |    |  |
| <ul> <li>Provide material irradiation data required for the construction of DEMO</li> </ul>                                                                    | I  |  |
| $\Rightarrow$ Implemented in PPPT projects including design activities & supporting R&                                                                         | D  |  |
| U. Fischer   Fusion & Nucl. Data   n_TOF WS, Zermatt, CH   Jan. 18, 2018  Page 1                                                                               | 0  |  |

## PPPT projects PMI –System Engineering, Design and Physics Integration BB – Breeder Blanket SAE – Safety and Environment MAT – Materials DC – Diagnostic and Control DIV – Divertor RM – Remote Handling ENS – Early Neutron Source ("IFMIF – DONES") S2 – Stellarator Engineering Neutronics serves all these projects: Provides data required for nuclear design of plant, systems & components Evaluate & proof nuclear performance incl. licensing & safety related issues

U. Fischer | Fusion & Nucl. Data | n\_TOF WS, Zermatt, CH | Jan. 18, 2018| Page 11

| DEMO 2015 Baseline                    |                                                                  | $\bigcirc$      |
|---------------------------------------|------------------------------------------------------------------|-----------------|
|                                       | "EU DEMO1 2015"                                                  |                 |
|                                       | Main reactor parameters                                          |                 |
|                                       | No. of TF coils                                                  | 18              |
|                                       | Major radius [m]                                                 | 9.072           |
|                                       | Minor radius [m]                                                 | 2.927           |
|                                       | Aspect ratio                                                     | 3.1             |
|                                       | Plasma elongation, $\kappa_{95}$                                 | 1.59            |
|                                       | Plasma triangularitry, $\delta_{\rm 95}$                         | 0.33            |
|                                       | Average neutron wall loading $\left[\text{MW}/\text{m}^2\right]$ | 1.05            |
|                                       | Fusion power [MW]                                                | 2037            |
|                                       | Net electric power [MW]                                          | 500             |
| CAD Configuration<br>Management Model | $\Rightarrow$ New DEMO design unde                               | erway !         |
| U. Fischer   Fusion & Nu              | ıcl. Data   n_TOF WS, Zermatt, CH   Jan. 18                      | , 2018  Page 12 |





## 7



| <b>IFMIF-DONES Neutron Source</b>                                                                                                                                                                                     | $\bigcirc$         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Major neutronics issues/tasks                                                                                                                                                                                         |                    |
| • D-Li neutron source producing neutrons up to 55 MeV – McDeLicious                                                                                                                                                   | approach           |
| Nuclear performance of HFTM irradiation module                                                                                                                                                                        |                    |
| <ul> <li>Neutron/photon flux distribution &amp; spectra</li> </ul>                                                                                                                                                    |                    |
| <ul> <li>Nuclear heating in HFTM container &amp; specimens (Eurofer steel)</li> </ul>                                                                                                                                 |                    |
| <ul> <li>Radiation damage &amp; gas production in specimens</li> </ul>                                                                                                                                                |                    |
| Target & Test Cell                                                                                                                                                                                                    |                    |
| <ul> <li>Nuclear design of Li target assembly, Li loop with quench tank, Te<br/>steel liner, concrete walls &amp; plugs</li> </ul>                                                                                    | st Cell with       |
| <ul> <li>Issues: nuclear heating (cooling), activation, radiation doses in/an<br/>loop during operation &amp; maintenance ⇒ radiation maps</li> </ul>                                                                 | round TTC & Li     |
| Accelerator Facility (AF)                                                                                                                                                                                             |                    |
| <ul> <li>Radiation during operation due to deuteron beam losses and sub<br/>activation of AF components ⇒ deuteron transport (MCUNED co<br/>interaction with AF materials (activation, neutron generation)</li> </ul> | sequent<br>ode) &  |
| <ul> <li>Back streaming neutron radiation, shield design &amp; optimization, l</li> </ul>                                                                                                                             | beam dump          |
| II Fischer   Eusion & Nucl Data   n TOE WS Zermatt CH   ./                                                                                                                                                            | an 18 2018 Page 16 |



















## Coupled radiation transport and activation calculation schemes

- Required for calculations of activation, decay heat and radiation fields post-irradiation (shut-down dose rates, SDR)
- Two approaches:
  - Direct 2-Step approach ("R2S") developed by KIT, CCFE & UNED by coupling of MCNP transport calculations (neutrons, decay photons) and FISPACT/ACAB nuclide inventory calculations.
  - Direct 1-Step approximation method ("D1S") developed by ENEA & IO assuming prompt photons can be replaced by decay gammas in MCNP transport calculation.
    - $\Rightarrow$  No inventory calculations required, just one single MC transport calculation.
- $\Rightarrow$  R&D task in PPPT project SAE on development of joint European R2S code system ("cR2S") from scratch.
- $\Rightarrow$  Further development of D1S system for application to DEMO

U. Fischer | Fusion & Nucl. Data | n\_TOF WS, Zermatt, CH | Jan. 18, 2018| Page 26

 $\bigcirc$ 























U. Fischer | Fusion & Nucl. Data | n\_TOF WS, Zermatt, CH | Jan. 18, 2018| Page 37



























| Tritium breeding potential                                                                                                                                                                                                               |                           |                            |                                                               |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|---------------------------------------------------------------|--|--|
| <ul> <li>DEMO requires <u>Tritium self-sufficiency:</u><br/>⇒Net Tritium Breeding Ratio (TBR) &gt; 1.0</li> <li><u>DEMO design target:</u> TBR ≥ 1.10<br/>(To be proven by 3D Monte Carlo calculation without blanket ports).</li> </ul> |                           |                            |                                                               |  |  |
| Blanket                                                                                                                                                                                                                                  | TBR<br>(reference design) | TBR<br>(design variations) | Remarks                                                       |  |  |
| НСРВ                                                                                                                                                                                                                                     | 1.20                      | 1.17 – 1.37                | DEMO 2015 baseline, a variety of design variations considered |  |  |
| HCLL                                                                                                                                                                                                                                     | 1.15                      | 1.15 – 1.22                | DEMO 2015 baseline, some design variations considered         |  |  |
| DCLL                                                                                                                                                                                                                                     | 1.10                      | -                          | DEMO 2014 baseline                                            |  |  |
| WCLL                                                                                                                                                                                                                                     | 1.13                      | -                          | DEMO 2015 baseline with<br>homogeneous breeder mixture        |  |  |
| ⇒ All blanket concepts show sufficient tritium breeding capability for DEMO<br>U. Fischer   Fusion & Nucl. Data   n_TOF WS, Zermatt, CH   Jan. 18, 2018  Page 51                                                                         |                           |                            |                                                               |  |  |















