KfK 4491 Februar 1989

TEGENA: Detaillierte experimentelle Untersuchungen der Temperatur- und Geschwindigkeitsverteilungen in Stabbündel-Geometrien mit turbulenter Natriumströmung

R. Möller Institut für Reaktorbauelemente Projekt Schneller Brüter

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE INSTITUT FÜR REAKTORBAUELEMENTE PROJEKT SCHNELLER BRÜTER

KfK 4491

TEGENA: Detaillierte experimentelle Untersuchungen der Temperatur- und Geschwindigkeitsverteilungen in Stabbündel-Geometrien mit turbulenter Natriumströmung

R. Möller

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

KURZFASSUNG

Für die Auslegung von Brennelementen (längsdurchströmte Stabbündel) ist die genaue Kenntnis der Geschwindigkeits- und Temperaturverteilungen notwendig. Die zur Feinanalyse von ungleichmäßig gekühlten Bündelzonen erforderlichen Detail-Codes befinden sich in der Entwicklung. Zur Verifikation solcher Rechenprogramme wurden in einem beheizten, reihenförmigen 4-Stabbündel TEGENA (P/D = W/D = 1.147) mit Natriumkühlung (Pr \approx 0.005) mittlere Fluidtemperaturen und die zugehörigen RMS-Werte der Temperaturfluktuationen gemessen. Die Temperaturverteilung in den Strukturen wurde als notwendige Randbedingung für die Temperaturprofile im Fluid ermittelt. Die Experimente wurden mit unterschiedlicher Beheizung (Gleichlast und Schieflast) durchgeführt, die Strömungszustände wurden in den Bereichen 4000 \leq Re \leq 76000, 20 \leq Pe \leq 400 variiert.

Ι

Die wesentlichen thermischen Einlaufvorgänge erfolgen bei Gleichlast innerhalb einer beheizten Bündellänge von rund 100 hydraulischen Durchmessern. In der Hauptmeßebene am Ende der beheizten Zone nach 200 hydraulischen Durchmessern kann die Strömung als weitgehend thermisch eingelaufen bezeichnet werden. Die gemessenen Temperaturprofile im Fluid zeigen hier ausgeprägte Maxima in den engsten Spalten der Unterkanäle und ausgeprägte Minima in den Unterkanalmitten an der unbeheizten Wand. In Bereichen mit den größten Temperaturgradienten erreichen die Temperaturfluktuationen jeweils Maximalwerte und Minimalwerte dort, wo die Temperaturgradienten verschwinden. Bei allen untersuchten Schieflastfällen ist die Strömung am Ende der beheizten Zone thermisch nicht eingelaufen.

Durch Kontrolle sämtlicher Thermoelemente in regelmäßigen isothermen Versuchen, durch redundante Anordnung der beweglichen Meßsonden-Thermoelemente und durch den Nachweis reproduzierbarer Meßergebnisse konnten die Experimente gut abgesichert werden. Parallel zu den Temperaturmessungen wurden Laufzeitmessungen zur Ermittlung der Geschwindigkeitsverteilungen durchgeführt; hierzu ist die Auswertung noch nicht abgeschlossen. **TEGENA:** Detailed Experimental Investigations of Temperature and Velocity Distributions in Rod Bundle Geometries with Turbulent Sodium Flow

ABSTRACT

Precise knowledge of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle TEGENA, containing 4 rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr \approx 0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and load tilting) and the flow conditions were varied in the range from 4000 \leq Re \leq 76.000, 20 \leq Pe \leq 400.

The essential process of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of load tilting investigated the flow at the end of the heated zone had not yet developed thermally.

By inspection of all thermocouples in isothermal experiments performed at regular intervals, by redundant arrangement of the mobile probe thermocouples and by demonstration of the reproducibility of results of measurement the experiments have been validated satisfactorily. Parallel to the temperature measurements the transit times were measured in order to determine the velocity distributions; the evaluation has not yet been terminated. INHALT

ı

INHALT		
1.	EINLEITUNG	1
1.1	Problemstellung	1
1.2	Ziel dieser Arbeit	2
1.3	Lösungsweg	3
2.	VERSUCHSPROGRAMM	4
3.	TESTSTRECKE	5
3.1	Geometrie	5
3.2	Instrumentierung	6
3.2.1	Temperatur-Meßsonden	6
3.2.2	Geschwindigkeits-Meßsonden	8
3.2.3	Wand-Thermoelemente	9
3.2.4	Referenz-Thermometer	9
3.2.5	Eintrittstemperatur (Fluid/Wand)	10
3.2.6	Temperatur-Vergleichsstelle	10
3.2.7	Leistung der Heizstäbe	11
3.2.8	Volumenstrom	11
3.2.9	Datenerfassungssystem	11
3.2.10	Sicherheitssystem	13
4.	GESCHWINDIGKEITSMESSUNGEN IM RECHTECKKANAL	14
4.1	Strömungsverteilung in der Einlaufstrecke	14
4.2	Natriumgeschwindigkeiten im Rechteckkanal	15
5.	VERSUCHSDURCHFÜHRUNG UND MESSWERTVERARBEITUNG	17
6.	VERSUCHSERGEBNISSE	19
6.1	Allgemeines	19
6.2	Isotherme Versuche	19
6.2.1	Isotherme Versuche - Wandtemperaturen	19
6.2.2	Isotherme Versuche - Fluidtemperaturen	21
6.3	Wandtemperaturverteilungen bei Gleichlast	24
6.4	Fluidtemperatur- und RMS-Profile bei Gleichlast	28
6.4.1	TEGENA 1, Profile auf X/Y-Traversen, Gleichlast	28
6.4.2	TEGENA 2, Profile auf X/Y-Traversen, Gleichlast	30

6.5	Wandtemperaturverteilung bei Schieflast	35
6.6	Fluidtemperatur- und RMS-Profile bei Schieflast	37
6.6.1	TEGENA 1, Profile auf X/Y-Traversen, Stab H4 beheizt	37
6.6.2	TEGENA 1, Profile auf Radial-Traversen, Stab H4 beheizt	39
6.6.3	TEGENA 1, Azimutale Profile, Stab H4 beheizt	39
6.6.4	TEGENA 2, Profile auf X-Traversen, 2/3/4 Stäbe beheizt	40
6.7	Zweidimensionale Felder der Fluidtemperaturen und	
	Temperaturfluktuationen in Wandkanälen, TEGENA 2	42
7.	BESCHREIBUNG DER BÜNDELGEOMETRIE	44
8.	MESSGENAUIGKEITEN	45
9.	ANWENDUNG DER VERSUCHSERGEBNISSE	46
10.	ZUSAMMENFASSUNG	47
11.	DANKSAGUNG	49
12.	NOMENKLATUR	50
13.	REFERENZEN	52
	Tabellen 1-6	56-60
	Abbildungen 1-78	61-108
ANHA	ANG	
A1	VERSUCHSEINRICHTUNG	109-114
A2	VORVERSUCHE	115-116
	Abbildungen	117-121
	Tabellen	122-180

.

VERZEICHNIS DER TABELLEN

- TAB. 1 Technical data of the TEGENA test section.
- TAB. 2 Linear equations used for correction of probe thermocouple signals
- TAB. 3 Wall temperatures at different Re-numbers TEGENA 1, main parameters
- TAB. 4 Wall temperatures at different Re-numbers, TEGENA 2, main parameters
- TAB. 5 Fluid temperature- and RMS-profiles, main parameters of retests
- TAB. 6Wall temperatures with different heating,TEGENA 1/2, main parameters

VERZEICHNIS DER ABBILDUNGEN

FIG. 1	TEGENA - test section
FIG. 2	Photos of the TEGENA-test section
FIG. 3	TEGENA 1, temperature measuring probes and measuring cross section
FIG. 4	TEGENA 2, temperature measuring probes and measuring cross section
FIG. 5	Photos of the measuring probes
FIG. 6	Permanent magnetic velocity probe
FIG. 7	Cross sections for wall temperature measurement
FIG. 8	Pitot probe measurements in water flow, X-traverses
FIG. 9	Pitot probe measurements in water flow, Y-traverses
FIG. 10	Measuring fields of the velocity probes
FIG. 11	Sodium velocity profiles on central X-traverses
FIG. 12	Sodium velocity profiles on different X-traverses
FIG. 13	Sodium velocity profiles on different Y-traverses
FIG. 14	lsothermal experiment at 300 °C, wall temperatures
FIG. 15	Isothermal experiment at 300 °C, different Re-numbers
FIG. 16	Isothermal experiment at 300 °C, 350 and 400 °C, UB = 0.5 m/s
FIG. 17	lsothermal experiment at 300 °C, UB = 0.5/1/2/4 m/s
FIG. 18	Isothermal measurements, deviations of temperature probe sensors
FIG. 19	Wall temperatures with uniform load (TEGENA 1)
FIG. 20-22	Wall temperature differences versus heated length (TEGENA 1)
FIG. 23	Wall temperatures with uniform load (TEGENA 2)
FIG. 24	Thermal development of the flow, central wall region (TEGENA 2)

V

- FIG. 25 Thermal development of the flow, wall/corner region (TEGENA 2)
- FIG. 26 Norm. local temperature differences versus Re-number (TEGENA 2)
- FIG. 27 Fluid temperatures, Y-traverses, DIR A (TEGENA 1)
- FIG. 28 Fluid temperatures, Y-traverses, DIR B (TEGENA 1)
- FIG. 29 Fluid temperatures, X-traverses, DIR A (TEGENA 1)
- FIG. 30 Fluid temperatures, X-traverses, DIR B (TEGENA 1)
- FIG. 31-34 Fluid temperatures and temperature fluctuations on Y-traverses (TEGENA 1)
 - FIG. 31: Probe P1, DIR A
 - FIG. 32: Probe P1, DIR B
 - FIG. 33: Probe P2, DIR A
 - FIG. 34: Probe P2, DIR B
- FIG. 35-36 Fluid temperatures and temperature fluctuations on X-traverses (TEGENA 2)
 - FIG. 35: Probe P1
 - FIG. 36: Probe P2
- FIG. 37-40 Fluid temperatures and temperature fluctuations at small Reynolds numbers (TEGENA 2)
 - FIG. 37: Y-traverse, probe P1, Re = 16300
 - FIG. 38: Y-traverse, probe P2, Re = 16300
 - FIG. 39: X-traverse, probe P1, Re = 16000
 - FIG. 40: X-traverse, probe P2, Re = 16000
- FIG. 41 Fluid temperatures and temperature fluctuations on Y-traverses at different Reynolds numbers (TEGENA 2)
- FIG. 42-45 Fluid temperatures and temperature fluctuations on X-traverses from three different experiments (TEGENA 2) FIG. 42: Probe P1, thermocouple TC12
 - FIG. 43: Probe P1, thermocouple TC13
 - FIG. 44: Probe P2, thermocouple TC22
 - FIG. 45: Probe P2, thermocouple TC23
- FIG. 46-49 Wall temperatures with different heating (TEGENA 1)
 - FIG. 46: rods H1 and H4 heated, Re = 61000
 - FIG. 47: rod H1 heated, Re = 61000
 - FIG. 48: rod H1 heated, Re = 30000
 - FIG. 49: rod H1 heated, Re = 15000

FIG. 50-53	Wall temperatures with different heating, (TEGENA 2)			
	FIG. 50: reference experiment, all rods heated, Re = 32000			
	FIG. 51: rods H1, H3, H4 heated, Re = 33000			
	FIG. 52: rods H1, H4 heated, Re = 33000			
	FIG. 53: rods H2, H3 heated, Re = 33000			
FIG. 54-59	Fluid temperature and RMS-profiles, one rod heated, (TEGENA 1)			
	$RE \approx 30000$, X/Y-traverses			
	FIG. 54: Y-traverses between rod H3 and rod H4			
	FIG. 55: Y-traverses between rod H4 and short wall			
	FIG. 56: Y-traverses in the small gap and long wall			
	FIG. 57: X-traverses between rods and long wall			
	FIG. 58: X-traverses between rod H3 and rod H4			
	FIG. 59: X-traverses between rod H4 and short wall			
FIG. 60-63	Fluid temperature- and RMS-profiles, one rod heated, TEGENA 1,			
	$RE \approx 30000$, radial traverses			
	FIG. 60: radial traverses, wall channel, DIR A			
	FIG. 61: radial traverses, wall channel, DIR B			
	FIG. 62: radial traverses, corner channel, DIR A			
	FIG. 63: radial traverses, corner channel, DIR B			
FIG. 64-66	Fluid temperature- and RMS-profiles, one rod heated, TEGENA 1,			
	RE \approx 30000, profiles on circular curves			
FIG. 64: circular curve, wall and corner channel, R = 13.0 mm				
	FIG. 65: circular curve, wall and corner channel, R = 13.5 mm			
	FIG. 66: circular curve, wall and corner channel, R = 13.0/13.5 mm			
FIG. 67-70	TEGENA 2, profiles on X-traverses, different heating			
	Fig. 67: all rods heated, Re = 32000			
	Fig. 68: rods H1, H3, H4 heated, Re = 33000			
	Fig. 69: rods H1, H4 heated, $Re = 33000$			
	Fig. 70: rods H2, H3 heated, Re = 33000			
FIG. 71	Indication of subchannels for 2D-measurements			
FIG. 72	2D-fields of fluid temperatures and RMS-values, TC11			
FIG. 73	2D-fields of fluid temperatures and RMS-values, TC21			
FIG. 74	Isotherms in the subchannel SC5, TC11			
FIG. 75	Isotherms in the subchannel SC6, TC21			
FIG. 76	Lines of constant RMS-values, SC5, RMS11			
FIG. 77	Lines of constant RMS-values, SC6, RMS21			
FIG. 78	Calculated subchannel temperatures at eccentric bundle positions			

.

·

1. EINLEITUNG

1.1 Problemstellung

Für die Festigkeitsanalyse von Brennelementen (längsdurchströmte Stabbündel) ist die genaue Temperaturverteilung in den verschiedenen Bauelementen (Hüllrohre, Bündelkasten, Abstandshalter) erforderlich. Die thermohydraulische Berechnung solcher Stabbündel erfolgt in der Regel mit Hilfe der Unterkanal-Analyse(subchannel analysis). Dabei werden jedem Unterkanal des Bündels Mittelwerte von Geschwindigkeit und Temperatur zugeordnet, wobei der Massen- und Energieaustausch zwischen den Unterkanälen durch globale Austauschkoeffizienten beschrieben wird. Die Grenzen dieser globalen Berechnungsmethode werden bei größeren Geometrieunterschieden zwischen den Bündelunterkanälen sehr schnell deutlich. Solche Geometrieunterschiede liegen im Randbereich des Stabbündels, sie treten bei betriebsbedingten Verbiegungen der Bauelemente auf und schließlich bewirken Abstandshalter örtliche Umverteilungen der Strömung mit entsprechenden Auswirkungen auf die Temperaturverteilungen. Diese Problematik und die besonderen Bedingungen bei Flüssigmetallkühlung wurden u.a. behandelt im Zusammenhang mit den experimentellen Untersuchungen eines beheizten 19-Stabbündels mit Natriumkühlung. Wesentliche Ergebnisse davon sind in /1,2,3,4/ dargestellt. Es zeigte sich auch hier, daß die komplizierten thermohydraulischen Verhältnisse in einer Stabbündelgeometrie mit der Unterkanalanalyse nicht ausreichend genau beschrieben werden können.

Deshalb wurden an verschiedenen Stellen Rechenprogramme entwickelt, die eine detailliertere Berechnung der Geschwindigkeits- und Temperaturverteilung der turbulenten Strömung durch Stabbündel ermöglichen (Feinanalyse). Nachrechnungen der oben erwähnten 19-Stabbündel Experimente mit solchen Detail-Codes sind in /5/ und /6/ beschrieben. Diese ersten Versuche zur Beschreibung der detaillierten Temperaturverteilungen in Stabbündeln zeigten zum Teil deutliche Abweichungen von den experimentellen Ergebnissen. Hierfür gibt es verschiedene Erklärungen:

a) Die Modelle beschreiben die Physik der turbulenten Strömung in Stabbündeln nur unzureichend.

b) Die in den Modellen verwendeten Kenngrößen zur Beschreibung der turbulenten Stabbündelströmung sind nicht bekannt.

c) Die im Experiment existierenden Unsicherheiten können nur zum Teil ausreichend quantifiziert werden. So können zum Beispiel die Abweichungen der Bündelgeometrie unter Betriebsbedingungen von der Idealgeometrie nur abgeschätzt werden.

Zur Weiterentwicklung und Verifizierung der Detail-Codes wurden im KfK-INR verfeinerte Experimente durchgeführt. Hydraulische Experimente an einer 4-Stabbündel Teststrecke mit Luftströmung lieferten die Verteilung der zeitlich gemittelten Strömungsgeschwindigkeiten, der Wandschubspannungen, der turbulenten Schubspannungen senkrecht und parallel zu den Wänden und der Turbulenzintensitäten für verschiedene Bündelquerschnittsgeometrien. Der neueste Stand dieser umfangreichen Untersuchungen ist in /7/ dargestellt.

Als Ergänzung hierzu wurden thermohydraulische Experimente an einer ähnlichen 4-Stabbündel Geometrie durchgeführt, um die charakteristischen Verhältnisse bei Flüssigmetallkühlung zu untersuchen. Es wurden zwei Versuchsserien (TEGENA 1 und TEGENA 2)* gefahren. Wesentliche Teilergebnisse wurden bereits vorgestellt /8,9,10,11/. Der Versuchsaufbau, die Meßeinrichtung, Vorversuche und Teil 1 der Meßergebnisse aus der Versuchsserie TEGENA 1 sind ausführlich in /12/ dargestellt. Die TEGENA-Experimente wurden 1987 beendet. In diesem Bericht soll das gesamte Vorhaben zusammenfassend beschrieben werden.

1.2 Ziel dieser Arbeit

Die Zielsetzung des Vorhabens wurde 1979 in einer Durchführbarkeitsstudie beschrieben /13/. Zur Abstützung, Weiterentwicklung und Kalibrierung von thermohydraulischen Detail-Codes sollten lokale Temperaturverteilungen in charakteristischen Unterkanälen von beheizten Stabbündelanordnungen mit Flüssigmetallkühlung gemessen werden. Gleichzeitig sollten Wandtemperaturen in den Strukturen sowie die azimutale Wärmestromverteilung in den Hüllen der Heizstäbe gemessen werden. Zur Trennung der verschiedenen Einflußgrößen auf die Temperaturverteilung und zur Schaffung von jeweils klar definierten experimentellen Randbedingungen sollte das Vorhaben in mehrere Stufen untergliedert werden:

- 1. Symmetrische Stabanordnung ohne Abstandshalter, hydraulisch und thermisch eingelaufene Strömung.
- 11. Asymmetrische Beheizung zur Erzeugung starker Temperaturgradienten zwischen den Unterkanälen.

*TEGENA = Temperaturen und Geschwindigkeiten in Natriumströmung

- III. Asymmetrische Stabanordnung.
- IV. Experimente mit Abstandshaltern und Blockaden.

Die Punkte I und II wurden erfüllt, sie sind Gegenstand dieser Arbeit. Die Punkte II und IV wurden aus Zeitgründen zurückgestellt.

1.3 Lösungsweg

Im Unterschied zur Bündelkernzone treten in der Bündelrandzone am Umfang der Brennstab-Hüllrohre erhebliche Temperaturvariationen auf, wodurch die Zeitstandfestigkeiten und damit die Lebensdauer dieser wichtigen Bauteile vermindert werden. Deshalb erfolgten die experimentellen Untersuchungen in typischen Unterkanälen der Bündelrandzone (Wandkanäle, Eckkanäle).

Für umfangreiche isotherme fluiddynamische Experimente wurden in /14,15/ Wand- und Eckkanäle mit vier in Reihe angeordneten Stäben nachgebildet. In Anlehnung an diese hydraulischen Experimente und zu deren Ergänzung wurde für die hier zu beschreibenden thermischen Experimente ebenfalls eine reihenförmige 4-Stabanordnung gewählt. Für die Querschnittsgeometrie wurde ein für fortgeschrittene Reaktorkonzepte angestrebtes Stabteilungsverhältnis P/D \approx 1.15 festgelegt.

Als Flüssigmetall-Kühlmittel wurde Natrium gewählt, weil hierfür ein geeigneter Prüfstand und praktische Erfahrungen zur Verfügung standen.

Die absoluten Abmessungen des Bündelquerschnittes ergaben sich aus der Herstellbarkeit größtmöglicher Heizstäbe sowie kleinstmöglicher Meßsonden mit ausreichender Meßgenauigkeit. Machbar schien aus damaliger Sicht ein Heizstabdurchmesser von 25 mm und eine kleinstmögliche Sondenabmessung von 2 mm. Sowohl die übergroßen Heizstäbe wie auch die Miniatur-Meßsonden sowie zugehörige Verstelleinrichtungen für den Betrieb im heißen Natrium mußten entwickelt, gebaut und erprobt werden.

2. VERSUCHSPROGRAMM

Das Versuchsprogramm bestand aus drei Teilen.

In einer Reihe von Vorversuchen wurden folgende Punkte abgearbeitet:

- Messung der Strömungsverteilung in der Einlaufstrecke vor dem Bündel
- Heizstaberprobung in ruhender Luft und in strömendem Natrium
- Erprobung der Sonden-Verstelleinrichtungen in der Meßkammer unter strömendem Natrium
- Messung von Natriumgeschwindigkeiten im Rechteckkanal ohne Heizstäbe

Die Versuchsserie <u>TEGENA 1</u> (1985) beinhaltet:

- Isotherme Versuche (Meßfühlerkontrolle und Eichung)
- Messung der Wandtemperaturen (3D)
- Messung der Fluidtemperaturen (2D) bei mittleren und großen Re-Zahlen
- Versuche bei Gleichlast und bei zwei Schieflastfällen
- Messung der Temperaturfluktuationen (teilweise)

Die Versuchsserie TEGENA 2 (1987) beinhaltet:

- Isotherme Versuche (Meßfühlerkontrolle und Eichung)
- Messung der Wandtemperaturen (3D)
- Messung der Fluidtemperaturen (2D) von kleinen bis zu großen Re-Zahlen
- Versuche bei Gleichlast und bei vier Schieflastfällen
- Messung der Temperaturfluktuationen
- Messung von Laufzeiten zur Ermittlung der Strömungsgeschwindigkeiten*

* Über diese Messungen soll an anderer Stelle berichtet werden /16/.

3. TESTSTRECKE

An dieser Stelle wird nur das Prinzip der Teststrecke beschrieben, wie es zum Verständnis der Meßergebnisse notwendig ist. Eine detailliertere Beschreibung der Versuchseinrichtung mit den verschiedenen Komponenten sowie Ausführungen zu wesentlichen Vorversuchen erfolgen im Anhang.

3.1 Geometrie

Die Teststrecke ist schematisch in Fig. 1 dargestellt. Sie besteht aus vier senkrecht in einem Rechteckkanal aufgehängten Heizstäben mit einer zylindrischen Meßkammer am Kopfende.

Die Heizstäbe haben einen Durchmesser von 25 mm und eine Länge von ca. 4 m, wovon 2,5 m beheizt sind. In dem ca. 6 m langen Rechteckkanal mit einer lichten Weite von 118,5x32,4 mm sind die Heizstäbe in axialen Abständen von 550 mm mit jeweils vier kleinen Stiften am Umfang so positioniert, daß ihre Abstände zur Kanalwand und untereinander 3,7 mm betragen. Die Geometrieparameter des 4-Stabbündels ergeben sich damit zu P/D = W/D = 1.147. Diese Geometrie entspricht der mittleren von drei verschiedenen Bündelgeometrien, an denen Rehme /7/ hydraulische Messungen durchgeführt hat. Die Natriumströmung gelangt von einer Einlaufstrecke (s. Anhang A1.2) aus dem offenen Rechteckkanal in das 4-Stabbündel. Sie passiert zunächst eine unbeheizte Bündelzone von 1288 mm Länge, wird dann in der beheizten Zone bis zu maximal 100 K aufgeheizt und verläßt die zylindrische Meßkammer durch einen seitlichen Stutzen. Die unbeheizte Bündellänge von 1288 mm entspricht 105 hydraulischen Durchmessern DH; dabei handelt es sich um den mittleren hydraulischen Durchmesser DH = 4·F/U, wobei F der freie Strömungsguerschnitt im Bündel ist und U der gesamte durch das Fluid benetzte Umfang im Strömungsguerschnitt. Die maximal an den Staboberflächen erzeugten Wärmestromdichten betrugen 60 W/cm². Die gewählte beheizte Länge von 2456 mm (= 201 hydraulischen Durchmessern DH) bis zur Hauptmeßebene ME6 wurde als ausreichend angesehen, um bei gleichmäßiger Beheizung des Stabbündels eine thermisch eingelaufene Strömung zu erhalten /13/. Zur Überprüfung dieser Forderung wurde der Rechteckkanal am äußeren Umfang in fünf axial versetzten Meßebenen (ME1 bis ME5) mit jeweils 24 Thermoelementen bestückt. In der Meßebene MEO wurde mit sechs am Umfang verteilten Thermoelementen die Gleichmäßigkeit der Natriumzulauftemperatur in der unbeheizten Bündelzone überprüft. Bei den TEGENA 1-Experimenten wurden die Meßebenen mit ME bezeichnet, bei den TEGENA 2-Experimenten mit MP. Die axialen Positionen der Meßebenen waren in beiden Versuchsserien gleich, in den Querschnittsgeometrien sind durch die Verwendung anderer Heizstäbe geringe Abweichungen zwischen beiden Versuchsserien vorhanden.

Die detaillierte Temperaturmessung in der Natriumströmung durch die Bündelunterkanäle erfolgt in der horizontalen Hauptmeßebene ME6 (TEGENA 1) 29 mm vor dem Ende des Rechteckkanals noch in der beheizten Bündelzone. Bei den TEGENA 2-Versuchen beträgt das entsprechende Maß in der Hauptmeßebene (MP6) 31.5 mm. In der zylindrischen Meßkammer sind parallel zu den langen Seiten des Rechteckkanals zwei Kreuzschlitten installiert. Auf diesen von außen verstellbaren Meßschlitten ist jeweils eine 70 mm lange Meßsonde so befestigt, daß sie in X- und Y-Richtung innerhalb der Bündelunterkanäle bewegt werden kann. Die maximale Weglänge der Sondenspitzen beträgt in X-Richtung 75 mm und in Y-Richtung 25 mm. Mit dem Thermoelement TEN wird die Natriumeintrittstemperatur im Rechteckkanal vor der unbeheizten Bündelzone gemessen. Mit dem Thermoelement TAS wird die Natriumaustrittstemperatur im seitlichen Stutzen der Meßkammer gemessen.

Die wesentlichen technischen Daten der Teststrecke sind in Tabelle 1 zusammengefaßt. Teilansichten der Teststrecke zeigt die Fig. 2.

3.2 Instrumentierung

3.2.1 Temperatur-Meßsonden

Die Temperatur-Meßsonden (Fig. 3 u. 4) sind rechtwinklig gebogene Kapillarröhrchen mit maximal 2 mm ø, deren horizontaler Teil mit einer Verstärkungshülse in die Meßschlitten eingespannt ist. Der vertikale Teil der Sonden ist 70 mm lang und ragt rund 30 mm gegen die Strömungsrichtung in die Unterkanäle des Rechteckkanals hinein. Aus den freien Enden der vertikalen Sondenschäfte ragen jeweils vier oder fünf Miniaturthermoelemente heraus. Im Hauptmeßquerschnitt (ME6 bzw. MP6) sind in allen Fällen vier Thermoelemente quadratisch in X/Y-Richtung mit einem Mittenabstand von rund 2 mm angeordnet. Die Achsen dieses für die Ergebnisdarstellung verwendeten Koordinatensystems werden von den Innenkonturen der langen Wand (X-Achse) und der kurzen Wand (Y-Achse) des Rechteckkanals gebildet (Fig. 3b und 4b). Vier Thermoelemente wurden verwendet, weil - so nahe wie möglich an den beheizten Wänden gemessen werden sollte;

- lokale Temperaturgradienten zwischen jeweils zwei Thermoelementen mit großer Genauigkeit erfaßt werden sollten;

- die Messungen redundant sein sollten.

Der maximale Verschiebeweg der Sonden beträgt in X-Richtung 75 mm und in Y-Richtung 25 mm.

Bei der Sonde S1 (TEGENA 1) sind die vier Thermoelemente im Sondenschaft (1.6 x 0.1 mm) geführt und in einem durchbohrten Stopfen mit dem Sondenschaft verlötet, Fig. 3. Der Thermoelement-Durchmesser beträgt 0.24 mm und der Mittenabstand 1.96 mm. Die Meßspitzen sind mit verdichtetem Bornitrid-Pulver elektrisch isoliert. Die Thermoelemente sind mit TE11, TE12, TE13 und TE14 bezeichnet.

Die Sonde S2 (TEGENA 1) ist wie die Sonde S1 aufgebaut. Der Thermoelement-Durchmesser beträgt hier jedoch 0.38 mm und der Mittenabstand 1.83 mm. Die Meßspitzen sind ebenfalls mit verdichtetem Bornitrid-Pulver elektrisch vom Mantel isoliert. Die Thermoelemente sind mit TE21, TE22, TE23 und TE24 bezeichnet.

Bei der Sonde P1 (TEGENA2) sind alle fünf Thermoelemente im Sondenschaft (1.8 x 0.12 mm) geführt und in einem durchbohrten Stopfen mit dem Sondenschaft verlötet. Der Durchmesser beträgt einheitlich 0.36 mm und die Meßspitzen sind mit verdichtetem Bornitrid-Pulver elektrisch isoliert. Der Mittenabstand der vier quadratisch angeordneten Thermoelemente (TC11, TC12, TC13, TC14) beträgt 2.05 mm. Das axial in Strömungsrichtung um 8.1 mm versetzte Zentralthermoelement TC15 dient in Kombination mit einem der vier quadratisch angeordneten zur Laufzeitmessung. Die Laufzeiten werden mit Hilfe der Kreuzkorrelations-Analyse bestimmt. Das Verhältnis des axialen Abstandes der Thermoelemente und der an jedem Ort ermittelten Laufzeit ergibt dann die Geschwindigkeit an diesem Ort; siehe hierzu /16/.

Bei der Sonde P2 (TEGENA 2) ist am Ende des Sondenschaftes (2.0 x 0.2 mm) zusätzlich ein Miniatur-Permanentmagnet (1.65 mm Durchmesser, 1.5 mm lang) installiert, Fig. 4. Das in die Natriumströmung ragende Zentral-Thermoelement TC25 ist mit Bornitridpulver elektrisch isoliert, es hat einen Durchmesser von nur 0.24 mm, es ist zentrisch durch den Magneten geführt und in einem Stopfen am Schaftende verschweißt. In dem Magneten wird durch die Natriumströmung eine Spannung induziert, die ein direktes Maß für die Strömungsgeschwindigkeit darstellt. Befindet sich der Magnet jedoch in einem Feld mit Temperaturgradienten, so muß die zusätzlich entstehende überlagerte Spannung kompensiert werden. Dies geschieht meßtechnisch mit Hilfe von zwei zusätzlichen Thermoelementen, die in der Nähe der Magnetpole installiert sind. Das Prinzip dieser neu entwickelten temperaturkompensierten Magnet-Sonde und Meßergebnisse sind in /17/ beschrieben. Die beiden Magnetthermoelemente und das Zentralthermoelement TC25 der Sonde P2 sind innerhalb des Sondenschaftes geführt. Aus konstruktiven Gründen mußten die vier guadratisch angeordneten Thermoelemente (TC21, TC22, TC23, TC24) deshalb außen am Sondenschaft mit Bandagen befestigt werden. Diese Thermoelemente haben einen Durchmesser von 0.37 mm und einen Mittenabstand von 2.65 mm; ihre Meßspitzen sind mit dem Thermoelementmantel verschweißt. Der axiale Abstand dieser Thermoelemente zum Zentralthermoelement TC25 beträgt 8.0 mm. Die durch Laufzeitmessungen zwischen den axial versetzten Thermoelementen ermittelten Geschwindigkeiten (wie bei der Sonde P1) sollten durch die mit dem Permanentmagneten ermittelten Geschwindigkeiten ergänzt und verglichen werden. Der Magnet hat im Experiment aber nicht funktioniert, so daß dieser Vergleich nicht durchgeführt werden konnte.

Ansichten der eingesetzten Temperatur-Meßsonden zeigt Fig. 5.

3.2.2 Geschwindigkeits-Meßsonden

Die Meßkammer mit den beiden Meßsonden-Verstelleinrichtungen wurde im Natriumprüfstand WÜP II ohne Heizstäbe unter echten Betriebsbedingungen bei Natriumtemperaturen bis zu 500 °C erprobt /18/. Anstelle der im späteren Hauptversuche verwendeten Temperatur-Meßsonden wurden in diesem Vorversuch zwei Geschwindigkeits-Meßsonden eingesetzt; das Funktionsprinzip ähnlicher Sonden ist in /19/ beschrieben und entspricht der Geschwindigkeitsmessung mit Sonde P2 (Fig. 4).

Es wurden zwei Sonden GS1 und GS2 mit einer axialen Länge von 71 mm und einem Außendurchmesser von 2.0 mm hergestellt (Fig. 6). Die in der Sondenspitze installierten Permanentmagnete mit einem Durchmesser von 1.5 mm und einer Länge von 1 mm erzeugen in Flüssigmetallströmung sehr kleine Induktionsspannungen, die der Strömungsgeschwindigkeit proportional sind. Die Empfindlichkeit des Sondensignals betrug bei diesen Miniatur-Magneten ca. $12 \,\mu$ Vm⁻¹s.

3.2.3 Wand-Thermoelemente

I

Zur Beurteilung der thermischen Einlaufverhältnisse in der beheizten Bündelzone wurde der rechteckige Strömungskanal mit insgesamt 126 Thermoelementen ausgestattet. In fünf axial versetzten Meßebenen (ME1 bis ME5 bei TEGENA 1, MP1 bis MP5 bei TEGENA 2) sind am äußeren Umfang des Rechteckkanals jeweils 24 Wand-Thermoelemente installiert; die Meßebene ME0 bzw. MP0 in der unbeheizten Bündelzone ist mit 6 Wand-Thermoelementen bestückt (Fig.7, Fig. 1). Die 1 mm dicken Thermoelemente sind an ihrem Ende über eine Länge von 15 mm auf einen Durchmesser von 0.5 mm verjüngt; die Meßspitze ist mit Magnesiumoxyd isoliert. Die verjüngten Thermoelementspitzen sind in schräg auslaufenden Nuten (0.5 mm breit; 0.7 mm tief) in der äußeren Kanalwand eingebettet und verstemmt (Fig. 7). Die Meßpositionen liegen jeweils 100 mm stromaufwärts von den Abstandshaltern (Mitten der Kanalflansche) und am Kanalumfang an den engsten Spalten zwischen den Heizstäben und der Kanalwand bzw. zwischen den engsten Spalten.

3.2.4 Referenz-Thermometer

Zwei Platinwiderstands-Thermometer (Typ Pt 100) sind mit ihrer Meßspitze in der Hauptmeßebene (ME6 bzw. MP6) auf folgenden X/Y-Positionen angeordnet:

Ortskoordinaten	X [mm]	Y [mm]
Widerstands-Thermometer PT3:	5	29
Widerstands-Thermometer PT2:	113	3

Der wendelförmige Meßwiderstand von 20 mm Länge befindet sich in einem Schutzrohr von 2 mm Außendurchmesser, welches 35 mm parallel zur Stabachse verläuft und dann senkrecht zur Stabachse über dem Meßkammerboden nach außen geführt ist. Die effektive mittlere Temperatur dieser Referenz-Thermometer wird also in einer Bündelquerschnittsebene gemessen, die ca. 10 mm stromabwärts von Meßebene ME6 (MP6) liegt. Die Genauigkeit der Kalibrierung der Referenz-Thermometer bis zu Temperaturen von 500 °C beträgt nach Angaben des Herstellers ± 0.2 K.

Mit den Referenz-Thermometern wurden die Signalabweichungen der Thermoelemente in Abhängigkeit von dem Temperaturniveau und von der Zeit erfaßt.

3.2.5 Eintrittstemperatur (Fluid/Wand)

In der Versuchsserie TEGENA 1 wurde die Eintrittstemperatur des Natriums (TEN) in dem Rechteckkanal vor der unbeheizten Zone des 4-Stabbündels mit einem Thermoelement (NiCr-Ni, Außendurchmesser 1.5 mm) gemessen. Die Temperatur des Rechteckkanals in der unbeheizten Bündelzone wurde mit sechs Wand-Thermoelementen in der Meßebene MEO gemessen; diese Meßebene befindet sich 365 mm stromaufwärts vor der beheizten Zone. Die Wand-Thermoelemente waren am Umfang des Rechteckkanals in Nuten eingebettet, wie in Abschnitt 3.2.3 beschrieben und in Fig. 7 dargestellt.

In der Versuchsserie TEGENA 2 wurde der Mittelwert aus den in der Meßebene MPO gemessenen Signalen der sechs Wandthermoelemente als Eintrittstemperatur des Natriums in das Bündel (TBI) definiert.

3.2.6 Temperatur-Vergleichsstelle

Als Temperatur-Vergleichsstelle für sämtliche Thermoelemente der Teststrecke dient eine neben der Teststrecke senkrecht stehende Kupferplatte, deren Temperatur sich mit der Raumtemperatur ändern kann (60 x 40 cm, 2.5 cm dick). Die Kupferplatte ist von einem thermisch isolierenden Gehäuse umgeben, um eine gleichmäßige Temperaturverteilung auf der Platte zu gewährleisten. Sie ist als Steckbrett mit 225 Anschlüssen ausgeführt, in das neben den Thermoelementsteckern auch alle übrigen Meßleitungen gesteckt werden. Zur Bestimmung der als Referenztemperatur verwendeten mittleren Plattentemperatur wird der Temperaturmittelwert von fünf über die Kupferplatte verteilten Thermoelementen gebildet, deren Bezugstemperatur 0° ein Peltier-Element liefert.

3.2.7 Leistung der Heizstäbe

ł

Die Heizstäbe werden mit Gleichstrom eines Quecksilberdampf-Gleichrichters $(I_{max} = 10000 \text{ A}, V_{max} = 100 \text{ V})$ beheizt. Den Pluspol bilden die Stromleiteranschlußenden der Heizstäbe oberhalb der Meßkammer, der Minuspol ist über versilberte Kupferplatten mit dem oberen Boden des Einlaufbehälters in der Einlaufstrecke (vgl. Fig. A2 im Anhang) verbunden.

Die Ströme der vier Stäbe wurden als Spannungsabfall an vier Meßwiderständen gemessen. Die Shunts waren zuvor mit einem Präzisions-Shunt (Klasse 0,1) geeicht worden; die dabei ermittelten Abweichungen wurden durch Korrekturfaktoren bei der Auswertung berücksichtigt. Die Spannung U wurde zwischen Pluspol und Minuspol an der Teststrecke abgegriffen und über einen Spannungsteiler (100:1) auf das Steckbrett geführt. Der gemessene Spannungsabfall im Rechteckkanal vom Minuspol bis zum Beginn der beheizten Zone beträgt 0,2 % der Gesamtspannung, er wurde ebenfalls bei der Auswertung berücksichtigt.

3.2.8 Volumenstrom

Der durch das Bündel strömende Natrium-Volumenstrom wurde mit einem geeichten induktiven Durchflußmesser (MSAR Magnetic Flowmeter) als induzierte Spannung [mV] gemessen. Die vorhandene geringe Temperaturabhängigkeit wurde berücksichtigt. Die Meßgenauigkeit wird vom Hersteller mit ± 2 % angegeben. Zur Berechnung des Massenstromes MS (TEGENA 1) bzw. MFR (TEGENA 2) wurde die auf die Natrium-Eintrittstemperatur bezogene Dichte des Natriums verwendet.

3.2.9 Datenerfassungssystem

Die Messung der Temperatursignale, der RMS-Werte, der X/Y-Koordinaten der beweglichen Meßsonden, der Stabströme und Stabspannung sowie des Volumenstromes erfolgte mit einer Datenerfassungsanlage ACUREX (Autodata ten/10). Das ACUREX-Gerät besteht aus einem Meßstellenschalter mit Verstärker, einem Voltmeter mit Analog/Digital-Umsetzer und einer Recheneinheit. Der Auflösefehler beträgt bei hoher Auflösung (10 Meßwerte pro Sekunde) $\pm 1 \,\mu$ V (± 0.025 K). Mit Ausnahme der X/Y-Koordinaten und der ReferenzthermometerSignale wurden alle Meßwerte original aufgezeichnet und erst bei der späteren Auswertung in physikalische Daten umgerechnet.

Das Temperatursignal T(t) eines Thermoelements kann in zwei Teile aufgespalten werden, nämlich in den zeitlichen Mittelwert der Temperatur T und in das Fluktuationssignal $\delta(t)$, welches der mittleren Temperatur immer überlagert ist:

$$T(t) = T + \delta(t)$$

In zahlreichen Fällen genügt es, den Mittelwert der Temperatur und den die Temperaturschwankungen charakterisierenden RMS-Wert anstelle des zeitlichen Verlaufs des Temperatursignals aufzuzeichnen und zu analysieren.

Der Mittelwert der Temperatur und der RMS-Wert der Temperaturfluktuationen wird auf folgende Weise bestimmt:

Mittelwert:

$$T = \frac{1}{2 \cdot t_{M}} \cdot \int_{-t_{M}}^{+t_{M}} T(t) dt$$

$$RMS = \sqrt{\frac{1}{2 \cdot t_{M}}} \cdot \int_{-t_{M}}^{+t_{M}} d^{-2}(t) dt$$

RMS-Wert:

dabei ist 2 t_M die Mittelungszeit, die zur Berechnung der beiden Temperaturwerte mit einer entsprechenden Genauigkeit benötigt wird. Eine Mittelungszeit von 20 Sekunden genügte, um eine Genauigkeit der RMS-Werte von besser als 2 % zu erzielen.

Die RMS-Werte der Sondensignale wurden bereits während der Experimente berechnet und aufgezeichnet. Entsprechend der in /9/ angegebenen Vorgehensweise wird dabei jedes der acht (zehn) Temperatursignale von Sonde S1 und S2 (von Sonde P1 und P2) verstärkt. Dann wird der mittlere Wert automatisch unterdrückt und schließlich wird das resultierende Fluktuationssignal ein zweites Mal verstärkt. In einem RMS-Meßgerät wird der RMS-Wert aus dem Fluktuationssignal berechnet und an die ACUREX-Anlage übergeben.

Die X/Y-Koordinaten der verstellbaren Sonden werden als Spannungen zwischen 0 und 5 V an den Potentiometern abgegriffen und mit der ACUREX-Recheneinheit nach linearen Gleichungen in Millimeter umgerechnet und aufgezeichnet. Die Gleichungen werden aus jeweils acht Meßpunkten (Meßspannung an der ACUREX-Einheit in Volt als Funktion der Sondenstellung in Millimetern) nach der Methode der kleinsten Fehlerquadrate ermittelt.

Die Referenz-Widerstandsthermometer sind über eine Vierleiter-Schaltung an die ACUREX-Anlage angeschlossen. Die durch Temperaturänderung bewirkten Änderungen des Meßwiderstandes werden als Spannungsänderungen erfaßt, in Grad Celsius umgerechnet und registriert.

Einige für den Versuchsbetrieb wichtige Daten wurden während der Experimente aus den Meßwerten unmittelbar mit der ACUREX-Anlage berechnet und nach Vorwahl auf einem Bildschirm angezeigt. Außerdem wurden sämtliche Meßdaten der Versuchsserie TEGENA 1 von einer mit der ACUREX-Anlage verbundenen Kassettenstation auf Kassetten aufgezeichnet. Bei der Versuchsserie TEGENA 2 wurden die Meßdaten anstelle auf Kassetten direkt auf die Festplatte eines Personal Computers (IBM-PC AT) übertragen.

3.2.10 Sicherheitssystem

Zur Minimierung von Folgeschäden bei Heizstabdefekten oder Heizstabversagen diente ein elektronisches Sicherheitssystem. Mit dieser Schutzeinrichtung werden die Ströme der Heizstäbe kontinuierlich erfaßt. Bei Auftreten von unzulässigen Stromspitzen in wählbaren Grenzen (max. und min.) wird innerhalb von ca. 12 ms eine Leistungsabschaltung ausgelöst.

4. GESCHWINDIGKEITSMESSUNGEN IM RECHTECKKANAL

4.1 Strömungsverteilung in der Einlaufstrecke

Der eigentlichen Bündel-Teststrecke ist eine Einlaufstrecke zur Erzeugung definierter Strömungsbedingungen am Teststreckeneintritt vorgeschaltet. Die für den Natriumkreislauf WÜP II erstellte Einlaufstrecke wurde mit einer Nachbildung der Zulaufleitung in einen Wasserkreislauf eingebaut (vgl. Anhang A1.2 und Fig. A2). Zur Messung von Geschwindigkeitsprofilen befindet sich am oberen Ende des rechteckigen Einlaufkanals eine Plexiglas-Meßkammer mit einer verstellbaren Pitot-Sonde. Die Sonde mit 0.6 mm Durchmesser kann im Strömungsquerschnitt auf Längstraversen in X-Richtung und auf Quertraversen in Y-Richtung mit einem Fehler von ± 0.1 mm verstellt werden. Der Meßbereich ist: $0 \leq X[mm] \leq 118.5$; $6 \leq Y[mm] \leq 26$.

Die Geschwindigkeitsprofile in der Meßebene (ME) wurden zunächst im offenen Kanal gemessen. Darüber hinaus wurde versucht, durch Einbau von Lochplatten bzw. Sieben kastenförmige Geschwindigkeitsprofile zu erzeugen, damit der Ausgleich der Unterkanalmassenströme im Bündel auf einem kürzeren Weg erfolgen kann.

Die im offenen rechteckigen Einlaufkanal (die Einlauflänge ist 1600 mm, das entspricht rund 31 hydraulischen Durchmessern DC) gemessenen Geschwindigkeitsverteilungen bei RE = 58000 sind symmetrisch zu den Mittelachsen des Kanalquerschnitts (Fig. 8 und 9). Die maximalen Geschwindigkeiten liegen 20 % über der mittleren Kanalgeschwindigkeit UC. Die größten Variationen der lokalen Geschwindigkeiten (± 2 %) liegen auf der Linie maximaler Geschwindigkeiten. Damit können die Zuströmbedingungen in das 4-Stabbündel als gut bezeichnet werden.

Durch unterschiedliche Einbauten im rechteckigen Einlaufkanal (Lochplatten bzw. Siebe) gelang es nicht, die Geschwindigkeitsprofile deutlich in Richtung auf ein Kolbenprofil hin abzuflachen. Zudem zeigte sich, daß alle mit Einbauten gemessenen Geschwindigkeitsprofile unsymmetrischer und ungleichmäßiger waren als die im offenen Kanal gemessenen. Eine Verbesserung der Bündel-Anströmbedingungen konnte mit den untersuchten Einbauten also nicht erreicht werden /20/. Deshalb wurde für die TEGENA-Experimente der offene Einlaufkanal verwendet.

4.2 Natriumgeschwindigkeiten im Rechteckkanal

Zur Erprobung der Meßsonden-Verstelleinrichtungen wurden reproduzierbare Geschwindigkeitsprofile der Natriumströmung bei verschiedenen Temperaturniveaus gemessen /21/. Zu diesem Zweck wurden anstelle der Temperatursonden Geschwindigkeits-Meßsonden (vgl. Abschnitt 3.2.2) in die Kreuzschlitten-Anordnungen eingespannt. Die Meßfelder der beiden Geschwindigkeits-Sonden GS1 und GS2 in der Hauptmeßebene ME6 sind in Fig. 10 dargestellt.

Es wurden Geschwindigkeitsprofile in der Meßebene ME6 auf Längs- und Quertraversen in dem folgenden Parameter-Bereich gemessen:

 115000 ≤ RE
 ≤ 420000

 0.85 ≤ U[m/s] ≤ 3.52

 300 ≤ TN[°C] ≤ 410

Einige Beispiele zeigen die folgenden Diagramme:

Fig. 11 zeigt die an verschiedenen Tagen gemessenen U-Profile auf mittleren X-Traversen (Y = 16.35 mm). Die U-Profile der Sonden GS1 (o und + Symbole) und GS2 (\diamond und x Symbole) decken sich und zeigen zusammen einen symmetrischen Verlauf über die Kanalbreite, womit die Reproduzierbarkeit der Messungen demonstriert wird. Die maximalen Geschwindigkeitsschwankungen der bei der zweiten Meßreihe nicht bewegten Sonde GS1 (X = 38.50 mm; Y = 16.35 mm) zeigen die Dreieck-Symbole, die Schwankungsbreite beträgt ±2 %. Die Maximalgeschwindigkeiten liegen bei 1.25·UC, die Minimalgeschwindigkeiten in Wandnähe (Wandabstand X = 1.5 mm) bei 0.77 ·UC.

Neben den U-Profilen auf der mittleren Längstraverse sind auch U-Profile auf jeweils zwei seitlichen X-Traversen mit einem Wandabstand von 13 bzw. 26 % der Kanaltiefe in Fig. 12 dargestellt. Die gemessene Geschwindigkeitsverteilung belegt die symmetrischen Strömungsverhältnisse im Rechteckkanal, auch in den wandnahen Zonen der langen Kanalwände. Die Geschwindigkeitsprofile auf Quertraversen (Y-Traversen) sind in Fig. 13 dargestellt. In der Nähe der kurzen Kanalwände (Wandabstand X = 3.53 mm) beträgt die Schwankungsbreite der U-Profile in Y-Richtung etwa ± 5 %.

Zusammenfassend kann festgestellt werden, daß die in isothermer Natriumströmung bis zu Temperaturen von 410 °C eingesetzten Permanentmagnet-

.

Miniatursonden Geschwindigkeitsprofile von guter Qualität liefern. Das Potential der Meßgenauigkeit dieser Meßfühler ist vergleichbar mit dem von konventionellen Pitot-Sonden.

-

5. VERSUCHSDURCHFÜHRUNG UND MESSWERTVERARBEITUNG

Die Versuchsdurchführung der Hauptversuche und die Darstellung der Meßergebnisse gliedert sich in drei Gruppen:

- a) isotherme Versuche
 - (Kontrolle und Kalibrierung der Thermoelemente)
- b) Wandtemperaturen (3D) des Rechteckkanals (Parameter: Reynolds-(Péclet-)Zahlen, Wärmestromdichte, Gleichlast, vier Schieflastfälle)
- c) Natriumtemperaturen und Temperaturfluktuationen (2D) in den Unterkanälen

(Parameter: Reynolds-(Péclet-)Zahlen, Wärmestromdichte, Gleichlast, vier Schieflastfälle)

Das vorgesehene Versuchsprogramm der Versuchsserie TEGENA 1 wurde eingeschränkt durch Defekte an den Heizstäben H2 und H3 nach einer Versuchszeit von 9 Tagen. Eine Veränderung der äußeren Stabgeometrie erfolgte nicht, so daß die Versuche mit der Beheizung der Stäbe H1 und H4 (Schieflastversuche) fortgesetzt werden konnten. Das vorgesehene Versuchsprogramm der Versuchsserie TEGENA 2 konnte in vollem Umfang durchgeführt werden.

Detailliert sind sämtliche Meßgrößen der Versuchsserie TEGENA 1 und deren Verarbeitung in /12/ beschrieben. Hier sollen einige zum Verständnis der Meßergebnisse wesentliche Punkte angesprochen werden. Im Experiment wurden alle mit den beweglichen Sonden angefahrenen Meßpunkte in sondenspezifischen, lokalen Koordinatensystemen eingestellt. Die Umrechnung der Ortskoordinaten aller Sondenthermoelemente erfolgte einheitlich in ein X/Y-Hauptkoordinatensystem (Fig. 3 und 4), d.h. für eine vorgegebene Meßposition wird der Ort jedes Thermoelementes der Sonde in den Koordinaten des X,Y-Koordinatensystems angegeben.

Die in den Diagrammen und Tabellen verwendeten Ortsbezeichnungen für die Thermoelementpositionen bestehen aus jeweils drei Zeichen, z.B. X23; darin bedeutet "X" die Koordinate, "2" die Sonde 2 und "3" die Thermoelementnummer 3 der Sonde 2 (TE23).

Für die Meßwertverarbeitung der Versuchsserie TEGENA 1 wurden die BASIC-Rechenprogramme TEGEK1.BAS und TGP1.BAS /21/ verwendet. Mit dem Programm TEGEK1.BAS erfolgt die Umrechnung der Meßdaten in physikalische Daten und die Berechnung von Kennzahlen. Mit dem Programm TGP1.BAS erfolgt das Sortieren der berechneten Werte sowie das Tabellieren und Plotten der Ergebnisse. Als Bezugstemperatur für die Berechnung der dimensionslosen Kennzahlen (Re,Pr) wurde eine mittlere Bündeltemperatur TNM benutzt; TNM ist der arithmetrische Mittelwert aus der gemessenen Eintrittstemperatur TEN und der in der Meßebene ME6 berechneten mittleren Natriumtemperatur TNO.

Für die Meßwertverarbeitung der Versuchsserie TEGENA 2 wurden die FOR-TRAN-Rechenprogramme THEO.FOR, DISDRU.FOR, PLOTHP.FOR, FINT.FOR und FINTEX.FOR /22/ verwendet. Mit dem Programm THEO.FOR erfolgt die Umrechnung der Meßdaten in physikalische Daten und die Berechnung von Kennzahlen. Mit dem Programm DISDRU.FOR erfolgt das Sortieren und Tabellieren der berechneten Werte. Mit den Programmen PLOTHP.FOR, FINT.FOR und FINTEX.FOR erfolgt das Sortieren und Plotten der berechneten Werte. Als Bezugstemperaturen für die Berechnung der dimensionslosen Kennzahlen (Re, Pr) wurde ebenfalls die mittlere Bündeltemperatur TBM = 0.5 (TBO + TBI) benutzt.

Die Signale sämtlicher 126 Wandthermoelemente wurden in regelmäßigen isothermen Versuchen kontrolliert; eine Meßwertkorrektur erfolgte jedoch nicht, weil die sehr kleinen relativen Meßwertabweichungen als unbedeutend in Bezug auf die Aussagenfähigkeit der Ergebnisse angesehen wurde.

Die Signale sämtlicher Sondenthermoelemente wurden auf der Basis der isothermen Versuche kontrolliert und mit Hilfe der Referenzthermoelemente korrigiert (Tab. 2).

Die während der Datenerfassung berechneten RMS-Werte der Temperaturfluktuationen wurden nicht korrigiert.

6. VERSUCHSERGEBNISSE

6.1 Allgemeines

Die Darstellungen der wesentlichen Versuchsergebnisse aus beiden Versuchsserien TEGENA 1 und TEGENA 2 erfolgen in diesem Bericht grafisch; tabellarisch sind die Meßwerte mit den Versuchsparametern im Anhang zusammengestellt. Die vollständige Darstellung sämtlicher Versuchsergebnisse (grafisch und tabellarisch) soll in detaillierten Datenberichten erfolgen. Der Teil 1 der Versuchsserie TEGENA 1 ist in /12/ dokumentiert.

6.2 Isotherme Versuche

Die isothermen Versuche sind die Basisversuche für alle Experimente mit beheizten Stäben. Sie dienen zur Meßfühler-Kontrolle und beschreiben mögliche Abweichungen von den idealen isothermen Bedingungen. In beiden Versuchsserien wurden isotherme Versuche in regelmäßigen Abständen während der gesamten Versuchsperiode durchgeführt. Zu diesem Zweck wurde die Teststrecke mit der Begleitheizung des Kreislaufsystems sowie mit einem regelbaren 120 kW-Erhitzer auf das jeweils gewünschte Temperaturniveau erwärmt. Die Messungen erfolgten bei vier verschiedenen Temperaturniveaus (250, 300, 350 und 400 °C) und in der Versuchsserie TEGENA 2 auch bei vier verschiedenen Strömungsgeschwindigkeiten des Natriums (0.5, 1, 2 und 4 m/s).

Die Gleichmäßigkeit der aufgezeichneten Temperatursignale hängt hauptsächlich ab von:

- der Güte der isothermen Bedingungen in der Teststrecke, räumlich wie auch zeitlich;
- der Qualität der Meßfühler;
- der Genauigkeit des Datenerfassungssystems.

6.2.1 Isotherme Versuche - Wandtemperaturen

Die im isothermen Versuch 101T250 der Versuchsserie TEGENA 1 bei ~ 300 °C gemessenen Wandtemperaturen sind in Fig. 14 über dem Kanalumfang CP aufgetragen. Die Streuung der 126 Temperaturen beträgt maximal ± 0.3 K mit zwei Ausnahmen in den Meßebenen ME1 und ME5. Der Mittelwert MIT liegt 1.05 K oberhalb der Referenztemperatur TRF = 0.5 (PT3 + PT2). Die Eichgenauigkeit

der Widerstandsthermometer PT3 und PT2 bis 500 °C beträgt nach Angaben des Herstellers ± 0.2 K.

Die wellenförmige Verteilung der Temperaturen am Umfang des Rechteckkanals beruht auf der unterschiedlichen thermischen Isolation der kurzen und der langen Kanalwände. Die stärkere Luftschicht in der Mitte der langen Kanalwände führt zu höheren Temperaturen. Die Schwankungsbreite der Temperaturen am Kanalumfang aufgrund der leicht unterschiedlichen thermischen Isolation beträgt für dieses Beispiel etwa \pm 0.3 K.

In Fig. 15 sind für das Temperaturniveau von ~ 300 °C neben dem oben beschriebenen Versuch 101T250 die zu anderen Zeitpunkten gemessenen Temperaturen der Versuche 107T250 und 152T250 dargestellt; die Reynolds-Zahlen sind um 44 % bzw. 24 % höher. Die zu beobachtenden Änderungen der Temperaturen untereinander sind im MIttel < 0.1 K. Die Abweichungen der Mittelwerte MIT aus jeweils 126 Meßwerten von den zugehörigen Referenztemperaturen TRF betragen in der zeitlichen Reihenfolge der Messungen 1.1 K; 0.8 K; 0.4 K.

Die in der Versuchsserie TEGENA 2 bei drei verschiedenen Temperaturniveaus (300, 350 und 400 °C) und bei konstanter mittlerer Strömungsgeschwindigkeit von UB = 0.5 m/s gemessenen Wandtemperaturen sind in Fig. 16 dargestellt. Die Messungen zeigen geringe Temperaturunterschiede am Kanalumfang von etwa 1 K, die mit der Höhe des Temperaturniveaus leicht zunehmen.

In einem um den Faktor 20 vergrößerten Temperaturmaßstab sind die Wandtemperaturen in den fünf Meßebenen bei einem Niveau von etwa 300 °C und für vier verschiedene Strömungsgeschwindigkeiten (0.5, 1, 2 und 4 m/s) in Fig. 17 dargestellt. Der Unterschied der Absoluttemperatur bei den verschiedenen Geschwindigkeiten beruht auf den jeweils zufällig vorhandenen stationären isothermen Bedingungen in der Teststrecke. Die Messungen zeigen, daß die Temperaturunterschiede in den 5 Meßebenen etwa 0.5 K betragen. Am Umfang des Rechteckkanals variieren die Temperaturen, abhängig von der Strömungsgeschwindigkeit des Natriums, zwischen 0.7 und 1.3 K. Die höchsten Temperaturen wurden bei allen Null-Versuchen jeweils in der Mitte der langen Seiten des Rechteckkanals (B und D) gemessen. Dies liegt an der ringförmigen Isolation des Rechteckkanals, die eine unterschiedliche Stärke der eingeschlossenen Luftschicht aufweist und so zu einer gleichmäßigen, geringfügigen Störung des Temperaturfeldes im Querschnitt des Rechteckkanals führt. Die Störung des isothermen Temperaturfeldes im Querschnitt des Rechteckkanals ist abhängig vom Temperaturniveau und von der Strömungsgeschwindigkeit. Bei 300 °C betragen die maximalen Temperaturvariationen am Kanalumfang 1.3 K bei UB = 0.5 m/s und 0.7 K bei UB = 4 m/s; bei 400 °C betragen die entsprechenden Werte 1.6 und 1.0 K.

Bei der Wiederholung der Messung von 120 Wandtemperaturen ergaben sich bei dem Temperaturniveau von 400 °C und der mittleren Strömungsgeschwindigkeit von UB = 0.5 m/s maximale Abweichungen von 0.25 K. Die Abweichungen zwischen zwei aufeinanderfolgenden Meßwerten waren immer kleiner als 0.1 K. Daraus folgt, daß der relative Meßfehler der Datenerfassungsanlage kleiner als 0.1 K ist.

Während der Versuchsserie 2 versagten zwei von 126 Wandthermoelementen nach einigen Tagen. Auf die Versuchsergebnisse wirkten sich diese Ausfälle praktisch nicht aus, weil die beiden fehlerhaften Wandtemperaturen durch Mittelwertbildung von Signalen der entsprechenden Fühler in benachbarten Meßebenen ersetzt werden konnten.

Zusammenfassend kann festgestellt werden:

- Bei gleicher thermischer Isolation in axialer Richtung beträgt die Streubreite der Wandthermoelemente etwa 0.5 K.
- Wegen geringer Unterschiede der thermischen Isolation am Umfang des Rechteckkanals ergeben sich abhängig von der Strömungsgeschwindigkeit des Natriums Temperaturvariationen der Wandthermoelemente zwischen 0.7 und 1.3 K.

Bei Beheizung der Stäbe sind die geringen Unterschiede der thermischen Isolation am Umfang des Rechteckkanals in gleicher Weise wirksam wie bei Nulleistung. Es wurde deshalb keine Korrektur der Wandtemperaturen vorgenommen.

6.2.2 Isotherme Versuche - Fluidtemperaturen

In Fig. 18 sind für die acht Sonden-Thermoelemente die aus den drei isothermen Versuchen gemittelten Abweichungen als Funktion der Referenztemperatur aufgetragen. Es besteht eine deutliche Temperaturabhängigkeit mit linearer Charakteristik. Die jeweils durch vier Punkte gelegten Geraden wurden nach der Methode der kleinsten Fehlerquadrate ermittelt. Bei der Auswertung der mit den Sondenthermoelementen gemessenen Fluidtemperaturen erfolgte eine Korrektur mit Hilfe der Geraden-Gleichungen; der dabei gemachte Fehler ist kleiner als 0.1 K.

Die Thermoelemente der Sonden S1 und S2 (Versuchsserie TEGENA 1) zeigen im untersuchten Temperaturbereich hauptsächlich negative Abweichungen DTR von der Referenztemperatur TRF. Hier handelt es sich um Miniatur-Thermoelemente mit Bornitrid-Isolation an der Meßspitze. Die Abweichungen der 0.24 mm dicken Thermoelemente der Sonde S1 von der Referenztemperatur sind bei Temperaturen > 350 °C etwa doppelt so groß wie diejenigen der 0.38 mm dicken Thermoelemente der Sonde S2.

Die maximale absolute Abweichung DTR des Thermoelementes TE14 der Sonde S1 bei 400 °C beträgt 3.7 K bzw. 1,9 K des Thermoelementes TE24 der Sonde S2. die maximale relative Abweichung bei 400 °C von Thermoelementen der Sonde S1 beträgt 0.7 K bzw. 1.2 K bei der Sonde S2.

Die TEGENA 1-Experimente wurden in einem Temperaturbereich von 260 bis 380 °C durchgeführt. In diesem Bereich ist die maximale Abweichung zwischen zwei Sondenthermoelementen rund 1 K (TE 21 und TE 24). Würde die oben beschriebene Korrektur dieser Thermoelemente nicht erfolgen, so würde bei gemessenen mittleren Temperaturgradienten von z.B. 1 K/mm zwischen den Thermoelementen TE 21 und TE 24 (Mittenabstand rund 2 mm) ein Fehler von ~ 50% entstehen. Durch die Meßwertkorrektur kann dieser Fehler auf 5 bis 10 % reduziert werden.

Die gemessenen Abweichungen des Eintritts-Thermoelementes TEN sowie des Austritts-Thermoelementes TAS von der Referenztemperatur sind ebenfalls in Fig. 18 eingetragen. Das Eintritts-Thermoelement TEN hat eine von 3 mm auf 1.5 mm verjüngte Meßspitze, die mit Magnesiumoxid gegen den Mantel isoliert ist. Es zeigt eine deutliche Temperaturabhängigkeit mit linearer Charakteristik, im untersuchten Temperaturbereich sind die Abweichungen positiv und nehmen mit steigender Temperatur zu. Das Austritts-Thermoelement TAS hat einen Durchmesser von 3 mm und eine mit MgO isolierte Meßspitze. Die gemessenen Abweichungen liegen im untersuchten Temperaturbereich rund 2.5 K über der Referenztemperatur und zeigen einen linearen Verlauf mit leicht fallender Tendenz. Die gemessenen Abweichungen der 126 Wand-Thermoelemente werden durch den schraffierten Bereich in Fig. 18 beschrieben. Die Temperaturabhängig-

keit ist gering. Die Abweichungen betragen im Mittel plus 0.8 K, die Streubreite beträgt \pm 0.4 K.

Die Thermoelemente der Sonden S1 und S2 (Versuchsserie TEGENA 1) zeigen im untersuchten Temperaturbereich hauptsächlich negative Abweichungen DTR von der Referenztemepratur TRF. Hier handelt es sich um Miniatur-Thermoelemente mit Bornitrid-Isolation an der Meßspitze. Die Abweichungen der 0.24 mm dicken Thermoelemente der Sonde S1 von der Referenztemperatur sind bei Temperaturen >350 °C etwa doppelt so groß wie diejenigen der 0.38 mm dicken Thermoelemente der Sonde S2.

Für die Thermoelemente der Sonden P1 und P2 (Versuchsserie TEGENA 2) ergaben die isothermen Messungen eine geringere Temperaturabhängigkeit im Vergleich zu den Sonden S1 und S2. Die maximale Abweichung zwischen den fünf Thermoelementen der Sonde P1 lag bei 400 °C und betrug 1.2 K. Die maximale Abweichung zwischen den fünf Thermoelementen der Sonde P2 bei 400 °C betrug 4 K; zwischen den vier quadratisch angeordneten Thermoelementen betrug die maximale Abweichung jedoch nur 0.6 K. Das Zentralthermoelement TC25 hat deutlich kleinere Abmessungen und eine anders ausgeführte Meßstelle, so erklärt sich die abweichende Charakteristik.

Wie bei Thermoelementen der Sonden S1 und S2, so erfolgte auch bei den Thermoelementen der Sonden P1 und P2 eine Meßwertkorrektur mit Hilfe von Geraden-Gleichungen. Für sämtliche Sondenthermoelemente sowie für die Thermoelemente TEN und TAS sind die bei der Auswertung verwendeten Geradengleichungen in Tab. 4 zusammengestellt.

Im Verlauf der TEGENA 1-Versuchsperiode konnten aufgrund der isothermen Versuche bei den Thermoelementen der Sonden S1 und S2 keine Veränderungen festgestellt werden. Im Verlauf der TEGENA 2-Versuchsperiode ergab sich jedoch unter anderem aus den isothermen Versuchen:

- Das Thermoelement TC12 der Sonde P1 wurde nach vier Wochen defekt.
- Das Thermoelement TC21 der Sonde P2 funktionierte nicht immer zuverlässig.

Zusammenfassend kann festgestellt werden:

 Die Charakteristik der Abweichungen der Meßwerte der Sondenthermoelemente von den als Referenzelemente verwendeten Platinwiderstandsther-

ι..

mometern ist linear und leicht temperaturabhängig.im untersuchten Temperaturbereich (250 ... 400 °C).

- Die Änderungen der Thermoelement-Charakteristiken während der jeweiligen Versuchsperiode war, bis auf zwei Ausnahmen, vernachlässigbar klein.
- Bei der Auswertung aller zeitlich gemittelten Sondentemperaturen erfolgte eine Meßwertkorrektur auf der Basis der isothermen Messungen.

6.3 Wandtemperaturverteilungen bei Gleichlast

Die gemessenen Wandtemperaturen in den Strukturen (Rechteckkanal) sind eine notwendige Randbedingung für die Beurteilung der im Fluid gemessenen Temperaturverteilungen. Von besonderer Bedeutung ist die Frage: Ist die Strömung in der Hauptmeßebene ME6 (Fluidtemperaturen) bei gleichmäßiger Beheizung des 4-Stabbündels thermisch eingelaufen?

Zunächst sollen die in fünf Meßebenen gemessenen Wandtemperaturverteilungen an einem Beispiel beschrieben werden.

Für das gleichmäßig beheizte Bündel ist die Verteilung der Wandtemperatur am äußeren Umfang des Rechteckkanals als Funktion der beheizten Länge in Fig. 19 dargestellt. Die Messungen erfolgten bei einer Reynolds-Zahl Re = 60100, das entspricht einer mittleren Bündelgeschwindigkeit von UB = 1.91 m/s. Mit einer zugeführten elektrischen Gesamtleistung von 396 kW ergibt sich eine mittlere Wärmestromdichte an der Staboberfläche von QH = 50 W/cm² und eine mittlere Kühlmittelaufheizung bis zur Meßebene ME6 von 96 K. Die Wärmestromdichten der einzelnen Stäbe unterscheiden sich um maximal 1.5 %. In der unbeheizten Bündelzone sind die Temperaturen am Kanalumfang konstant (Meßebene MEO, Symbol 0). In den Meßebenen der beheizten Zone (ME1 bis ME5) treten Temperaturspitzen an den engsten Spalten zwischen den Heizstäben und der Kanalwand auf, an diesen Stellen ist die Wärmeabfuhr durch das Kühlmittel am geringsten. Die Temperatursenken liegen jeweils in der Unterkanalmitte. Die maximalen Temperaturunterschiede zwischen Kühlkanalmitte und engster Stelle liegen bei diesem Versuch zwischen rund 5K (ME1) und rund 12K (ME5); Einzelheiten können der Meßwert-Tabelle im Anhang entnommen werden. Die Variation der Temperaturen am Umfang des Rechteckkanals nimmt mit der beheizten Länge bis zur Meßebene ME2 (LH/DH = 60) stark zu und steigt danach nur noch schwach an. Der Unterschied der Temperaturvariation zwischen den Meßebenen ME4 und ME5 beträgt nur noch etwa 5 %. Man kann aus diesen Wandtempera-
turmessungen schließen, daß die Temperaturverteilung der Strömung nach einer beheizten Länge von 60 hydraulischen Durchmessern (ME2) derjenigen nach 195 hydraulischen Durchmessern (ME5) schon sehr ähnlich ist. Für die Hauptmeßebene ME6 (Fluidtemperaturen) nach einer beheizten Länge von 201 hydraulischen Durchmessern bedeutet dies, daß hier die Strömung thermisch weitgehend eingelaufen ist; das heißt, die beheizte Länge des Bündels wurde bei der Auslegung der Teststrecke mit rund 2.5 m ausreichend bemessen.

Um den Einfluß der Reynolds-(Péclet-)Zahl auf die Ausbildung des thermischen Einlaufs zu untersuchen, wurden in der Versuchsserie TEGENA 1 drei Versuchsreihen (WO3 A120, WO5 A075, WO5 B075) gefahren, deren kennzeichnende Versuchsparameter in Tab. 3 zusammengestellt sind. Die bei unterschiedlichen Wärmestromdichten und unterschiedlichen Kühlmittelaufheizungen gemessenen Temperaturverteilungen sind in ihrem Verlauf ähnlich wie die in Fig. 19 dargestellten. Es wurden nun in jeder Meßebene die maximalen Temperaturdifferenzen am gesamten Kanalumfang ΔT_{CP} ermittelt und mit der mittleren Kühlmittelaufheizung DT normiert. Die so gewonnenen normierten Temperaturdifferenzen $\Delta T_{CP}/DT$ sind in den Fig. 20, 21 und 22 über der beheizten Länge aufgetragen. Parameter ist der durch die Reynoldszahl gekennzeichnete Strömungszustand. Fig. 20 zeigt die Verhältnisse für eine mittlere Kühlmittelaufheizung von DT \approx 95 K. Die Fig. 21 und 22 zeigen die Verhältnisse für eine mittlere Kühlmittelaufheizung von DT \approx 72 K, wobei die in Fig. 22 dargestellten Ergebnisse aus Wiederholungsversuchen stammen.

Die Kurvenverläufe in Fig. 20 zeigen, daß die wesentliche Ausbildung des Temperaturfeldes im Rechteckkanal für alle untersuchten Strömungszustände (24000 \leq RE \leq 76000, 140 \leq PE \leq 440) bis zu einer beheizten Länge von rund 60 hydraulischen Durchmessern (ME2) erfolgt. Die vier Heizstäbe, die natriumdurchströmten Unterkanäle des Bündels und der umschließende Rechteckkanal bilden ein thermisch gekoppeltes System. Deshalb kann man folgern, daß auch die wesentliche Ausbildung des Temperaturfeldes in der Natriumströmung bis zur Meßebene ME2 (60 DH) erfolgt ist. Für kleinere Reynoldszahlen (RE \leq 30000) ist die Strömung nach 60 DH thermisch weitgehend eingelaufen. Die Änderung des Temperaturfeldes bis rund 200 DH beträgt nur noch 10 %. Für größere Reynoldszahlen ME2 und ME5 noch um 50 % und zwischen den Meßebenen ME4 und ME5 nur noch um 7 %. Für diesen Strömungszustand ist die Strömung also nach rund 200 DH thermisch weitgehend eingelaufen.

.

I

Die Fluidtemperaturen in der Meßebene ME6 (= 201 DH) wurden bei maximalen Reynolds-Zahlen von etwa 60000 gemessen. Für diesen Strömungszustand beträgt die Änderung des Temperaturfeldes im Rechteckkanal von ME4 bis ME5 rund 3 %. Nimmt man an, daß die Änderung des Temperaturfeldes in den natriumdurchströmten Unterkanälen derjenigen im Rechteckkanal ähnlich ist, dann gilt: Die Messung sämtlicher Fluidtemperaturen bei voll beheiztem Bündel erfolgte bei thermisch weitgehend eingelaufener Strömung. Die bei der Heizstabfertigung festgelegte beheizte Länge von 2500 mm zur Erreichung einer thermisch eingelaufenen Strömung war also ausreichend bemessen.

Die Kurvenverläufe in den Fig. 21 und 22 aus den Versuchsreihen W05 A075 und W05 B075 sind eine Bestätigung für die zuvor beschriebenen und führen somit zu den gleichen vorgenannten Schlußfolgerungen.

Als Ergänzung und zum Vergleich sind an einem Beispiel aus der Versuchsserie TEGENA 2 die gemessenen Wandtemperaturverteilungen in Fig. 23 dargestellt. Bei voll turbulenter Strömung mit Re = 68000 (Pe = 366, UB = 1.97 m/s, QH = 51 W/cm²) sind die Temperaturprofile am Umfang des Rechteckkanals in allen fünf Meßebenen wieder regelmäßig. Die mittlere Temperaturvariation am Kanalumfang nimmt zunächst deutlich zu bis zu einer beheizten Länge von rund 100 hydraulischen Durchmessern (MP3), danach beträgt die Zunahme nur noch wenige Prozent. Bei Betrachtung der lokalen Temperaturverteilung findet man in der Umgebung der äußeren Stäbe H1 und H4 gewisse Asymmetrien. Der Grund hierfür ist vermutlich ein geringer Stabversatz aus der idealen Position heraus, wie dies durch Pfeile in Fig. 31 angedeutet ist.

Es wurden die Wandtemperatur-Verteilungen bei fünf verschiedenen Strömungszuständen im Bereich 3700 \leq Re \leq 68000 (21 \leq Pe \leq 366) gemessen; die wesentlichen Versuchsparameter dieser Versuchsreihe aus der Versuchsserie TEGENA 2 sind in Tab. 4 zusammengestellt. Auch hier zeigte sich, daß die wesentlichen thermischen Einlaufvorgänge innerhalb der ersten 100 hydraulischen Durchmesser erfolgen. In der oberen Bündelhälfte sind die Temperaturprofile untereinander sehr ähnlich, die Änderungen der Temperaturvariationen am Kanalumfang betragen hier nur noch einige Prozent.

Durch eine weitergehende Analyse der im Bereich der einzelnen Unterkanäle gemessenen Temperaturdifferenzen kann gezeigt werden, daß der thermische Einlauf dort am schnellsten erfolgt, wo die Heiz- und Kühlbedingungen symmetrisch sind. Das ist bei den zentralen Wandkanälen und jeweils bei den Eckkanälen der Fall. In den übrigen Bündelzonen erfolgt der thermische Einlauf langsamer und in einer nichtlinearen Abhängigkeit von der Re-Zahl bzw. der Wärmestromdichte bei konstanter Kühlmittelaufheizung. Die beiden folgenden Diagramme sollen dies beispielhaft veranschaulichen. In Fig. 24 sind lokale azimutale Temperaturdifferenzen (TV) im Bereich der zentralen Wandkanäle für verschiedene Re-Zahlen als Funktion der beheizten Länge aufgetragen. TV ist jeweils eine Temperaturdifferenz zwischen zwei benachbarten Wandthermoelementen in einer Meßebene, vergleiche Fig. 7. Die lokalen Temperaturdifferenzen TV sind mit der mittleren Kühlmittelaufheizung DTC normiert und die beheizte Länge LH ist mit dem mittleren hydraulischen Durchmesser im Bündel DH normiert. Die im Diagramm eingetragenen Punkte sind Mittelwerte aus den vier lokalen Temperaturdifferenzen (diese sind im Bündelguerschnitt markiert) im Bereich der zentralen Wandkanäle. Die Kurven für drei verschiedene Re-Zahlen zeigen einen stetigen Anstieg bis zu einer beheizten Länge von rund 100 DH und flachen dann bis 200 DH sehr stark ab. Weiter kann man dem Diagramm entnehmen, daß die normierten Temperaturdifferenzen TV/DTC oberhalb einer beheizten Länge von etwa 50 DH in beliebigen Unterkanalquerschnitten proportional zur Re-Zahl sind.

Ganz anders stellen sich die entsprechenden Verhältnisse für die mit den Eckkanälen gekoppelten Wandkanäle in Fig. 25 dar. Die in diesem Diagramm eingezeichneten Punkte sind Mittelwerte der vier im Bündelquerschnitt markierten Temperaturdifferenzen. Für Reynolds-Zahlen kleiner als 32000 ändern sich die normierten Temperaturdifferenzen schon nach rund 50 DH nicht mehr, außerdem sind sie deutlich kleiner als im zentralen Wandkanal. Bei stark turbulenter Strömung mit Re = 68000 dagegen ist der Kurvenverlauf im unteren Bündelteil sehr steil, erreicht bei DH \approx 80 ein Maximum und zeigt bei DH = 200 immer noch fallende Tendenz. Man kann vermuten, daß bei diesem Strömungszustand der thermische Ausgleich zwischen Eckkanal und benachbartem Wandkanal noch nicht abgeschlossen ist. Bei mittleren und kleinen Reynoldszahlen sorgt die hohe molekulare Wärmeleitfähigkeit bereits nach kurzen beheizten Längen für einen thermischen Ausgleich.

Der Verlauf der normierten lokalen Temperaturdifferenzen in der Meßebene MP5 ist als Funktion der Re-Zahl in Fig. 26 dargestellt. Die jeweils zwischen benachbarten Wandthermoelementen gemessenen Temperaturdifferenzen TV sind für vergleichbare geometrische Bereiche im Meßquerschnitt mit gleichen Nummern versehen. Die im Diagramm dargestellten Kurven basieren auf den Mittelwerten gleichartiger Temperaturdifferenzen und sind durch die entsprechenden Nummern gekennzeichnet. Man erkennt, daß die normierten Temperaturdifferenzen TV/DTC für die vollsymmetrischen Bündelzonen (zentrale Wandkanäle, Eckkanäle) linear mit der Re-Zahl zunehmen (Kurven 1 bzw. 5). Für alle anderen Fälle ergibt sich eine nichtlineare Abhängigkeit von der Re-Zahl (Kurven 2, 3 und 4).

Zusammenfassend können aus den gemessenen Wandtemperaturverteilungen bei Gleichlast folgende Schlüsse gezogen werden:

- Aus der Entwicklung des Temperaturfeldes in der äußeren Bündelstruktur (Rechteckkanal) wird auf die Ausbildung des Temperaturfeldes in der Natriumströmung geschlossen, weil ein thermisch gekoppeltes System vorliegt.
- Für den Gleichlastfall (alle vier Stäbe sind beheizt) ist die Natriumströmung in der Hauptmeßebene ME6 nach einer beheizten Länge von rund 200 hydraulischen Durchmessern thermisch weitgehend eingelaufen.
- Die lokale Analyse gibt Hinweise, daß für größere Reynoldszahlen der thermische Ausgleich zwischen gekoppelten Unterkanälen unterschiedlicher Größe (Wandkanal/Eckkanal) auch nach 200 hydraulischen Durchmessern noch nicht abgeschlossen ist.

6.4 Fluidtemperatur- und RMS-Profile bei Gleichlast

In diesem Kapitel wird über Temperaturprofile berichtet, die mit den beweglichen Meßsonden auf Quertraversen (Y-Richtung) und Längstraversen (X-Richtung) in den Bündelunterkanälen gemessen wurden.

6.4.1 TEGENA 1, Profile auf X/Y-Traversen, Gleichlast

Die in der Versuchsserie TEGENA 1 gemessenen Fluidtemperatur-Profile sind in den Figs. 27-30 dargestellt. Das Bündel ist gleichmäßig mit 50 W/cm² beheizt und wird mit einer mittleren Natriumgeschwindigkeit von UB \approx 1.90 m/s (RE \approx 60000) durchströmt. Die mit der <u>Sonde S2</u> auf <u>Y-Traversen</u> zwischen den beheizten Stäben H3 und H4 gemessenen Temperaturprofile sind in Fig. 27 (Bewegungsrichtung A, positive Y-Richtung bei der Sonde S2) und Fig. 28 (Bewegungsrichtung B, negative Y-Richtung bei der Sonde S2) dargestellt. Im Versuch F04Q12A.DAT wurden die Sonden jeweils mit zunehmender Meßkoordinate (DIR A) bewegt, im Versuch F04Q12B.DAT mit abnehmender Meßkoordinate (DIR B). Die Bewegungsrichtungen sind in den Diagrammen mit eingezeichnet; DIR A bedeutet schiebende Bewegung der Meßschlitten, DIR B bedeutet ziehende Bewegung der Meßschlitten. Die beiden Meßtraversen haben konstante X-Koordinaten (X21 = 86.96 mm, X22 = 88.79 mm), sie liegen symmetrisch zur Mittellinie in Y-Richtung zwischen den Stäben H3 und H4. Die mit den vier Sondenthermoelementen gemessenen Profile decken sich, sie haben in Wandkanalmitte einen steilen und linearen Verlauf und im engsten Spalt zwischen den Stäben (Y = 16.2 mm) ein symmetrisches Maximum. Die Meßergebnisse sind praktisch unabhängig von der Bewegungsrichtung, wie ein Vergleich der Temperaturprofile in den Fig. 27 und 28 zeigt. Diese Messungen zeigen, daß eine symmetrische Strömungsverteilung sowie eine gleichmäßige Leistungsfreisetzung vorgelegen haben muß. Weiter kann man schließen, daß die Sondenpositionierung korrekt war und ebenfalls die Meßwertkorrektur auf der Basis der isothermen Messungen. Geringe Temperaturunterschiede zwischen den Meßkurven der Thermoelemente TE21/TE22 und denen der Thermoelemente TE24/TE23 beruhen auf kleinen Änderungen der Betriebsparameter, weil die Meßwerte an den gleichen Ortspositionen jeweils zu unterschiedlichen Zeitpunkten erfaßt wurden.

Die mit der Sonde S2 auf X-Traversen parallel zur langen Kanalwand gemessenen Temperaturprofile sind in Fig. 29 (Bewegungsrichtung A, negative X-Richtung für Sonde S2) und Fig. 30 (Bewegungsrichtung B, positive X-Richtung für Sonde S2) dargestellt. Die Meßtraversen liegen auf den Y-Koordinaten Y21 = 2.68 mm und Y24 = 0.85 mm, ihre Abstände zu den Heizstäben bzw. zur Kastenwand sind gleich. Die Meßkurven in Fig. 29 und Fig. 30 zeigen jeweils Minima in den Unterkanalmitten und Maxima in den engsten Spalten. Auch in X-Richtung sind die Meßergebnisse unabhängig von der Bewegungsrichtung der Sonde. Man erkennt eine leichte Verschiebung der Temperaturmaxima im engsten Spalt zwischen Stab H4 und der Kanalwand um ca. 1.5 mm zum Wandkanal hin. Die maximalen Temperaturen im engsten Spalt bei dem Stab H4 liegen nur etwa 4K über denen im engsten Spalt bei dem Stab H3, das entspricht rund 4 % der Kühlmittelaufheizspanne. Die mittleren Temperaturgradienten in Y-Richtung sind an den entsprechenden Stellen um etwa 12 % verschieden. Eine Erklärung hierfür ist die um rund 4 % höhere Stableistung des Stabes H4 im Vergleich zum Stab H3, dies würde eine um 2.5 K höhere Kühlmittelaufheizung bedeuten. Dem entgegen steht aber die Tatsache, daß die Querschnittsfläche des Eckkanals um 22 % größer ist als die des halben Wandkanals und damit der Kühlkanalquerschnitt für den Stab H4 um 11 % größer ist als der für den Stab H3. Eine weitere

Į

Erklärung für die Temperaturunterschiede in den engen Spalten wären Geometrieabweichungen der Stäbe H3 und H4 von der Idealgeometrie. Eine angenommene mittlere exzentrische Position von 0.1 mm des Stabes H3 in positiver Y-Richtung und des Stabes H4 in negativer Y-Richtung kann zu den gemessenen Temperaturunterschieden führen, wie Rechnungen mit einem Subchannel-Code gezeigt haben, vergleiche Kapitel 7. Die vertikalen Abstände zwischen den Kurvenpaaren geben mittlere Temperaturgradienten in Y-Richtung wieder. In den engsten Spalten ergeben sich maximale Werte von rund 3 K/mm, in den Unterkanalmitten minimale Werte von 0.6 K/mm. Die maximalen Temperturgradienten der gemessenen Kurven in X-Richtung betragen 2.2 K/mm.

Die in der Versuchsserie TEGENA 1 mit der Sonde S1 gemessenen Fluidtemperatur-Profile werden hier nicht beschrieben, weil der Sondenschaft leicht verbogen wurde und die Messungen nur eingeschränkt verwendet werden können; die erzielten Ergebnisse sind in /12/ dargestellt.

6.4.2 TEGENA 2, Profile auf X/Y-Traversen, Gleichlast

In der Versuchsserie TEGENA 2 wurden Fluidtemperaturmessungen auf Y- und X-Traversen mit ähnlichen Versuchsparametern wie in der Versuchsserie TEGENA 1 wiederholt. Hierbei ist zu beachten, daß neue Heizstäbe eingebaut waren und modifizierte Meßsonden mit etwas veränderter Geometrie verwendet wurden.

Die mit den <u>Sonden P1 und P2</u> gemessenen Temperaturprofile auf parallelen Y-Traversen sind in den Fig. 31-34 dargestellt. Die gleichzeitig gemessenen RMS-Werte der Temperaturfluktuationen sind ebenfalls eingezeichnet. Die Meßtraversen haben jeweils konstante X-Koordinaten. Für die Sonde P1 liegen diese mit X11 = 31.66 mm und X12 = 29.61 mm symmetrisch zwischen den beheizten Stäben H1 und H2, für die Sonde P2 liegen sie mit X21 = 86.57 mm und X22 = 89.22 mm symmetrisch zwischen den beheizten Stäben H3 und H4. Im Versuch M332.DAT wurden die Sonden jeweils mit zunehmender Meßkoordinate (DIR A) bewegt, im Versuch M334.DAT mit abnehmender Meßkoordinate (DIR B). Die Bewegungsrichtungen sind in den Diagrammen mit eingezeichnet; DIR A bedeutet schiebende Bewegung der Meßschlitten, DIR B bedeutet ziehende Bewegung der Meßschlitten. Folgendes ist aus den auf Y-Traversen gemessenen Profilen zu erkennen: Die mit den vier Sondenthermoelementen gemessenen Temperaturprofile decken sich bei beiden Sonden, weil die Temperaturverteilung in X-Richtung in bezug auf die parallelen Meßtraversen symmetrisch ist. Ausgeprägte Temperaturmaxima liegen in den engsten Spalten zwischen den beheizten Stäben. Genau an diesen Stellen zeigen die RMS-Profile ausgeprägte Minima. Die Temperaturfluktuationen sind also dort am niedrigsten, wo die Temperaturgradienten in der Bewegungsrichtung der Meßfühler zu Null werden, dies ist plausibel. Umgekehrt haben die RMS-Profile ihre Maxima dort, wo die Temperaturgradienten am größten sind. Die jeweils in entgegengesetzter Richtung (DIR A/B) aufgezeichneten Profile (Fig. 31 und 32 für Sonde P1, Fig. 33 und 34 für Sonde P2) liefern gleiche Ergebnisse. Durch geringe Änderungen der Versuchsparameter vom Versuch M332 zum Versuch M334 haben sich jeweils die Temperaturniveaus um wenige Grad verändert. Dies kommt durch die leicht veränderte Lage der Temperaturprofile zum Ausdruck. Die RMS-Profile sind in beiden Versuchen jedoch vollkommen deckungsgleich, weil die Temperaturgradienten sich praktisch nicht geändert haben. Die auffälligen Abweichungen der Temperaturmaxima und der RMS-Minima von der geometrischen Mitte (Y = 16.2 mm) bei der Sonde P2 (Fig. 33 und 34) deuten auf geometrische Verschiebungen der beiden Stäbe H3 und H4 oder eines von beiden hin. Die Unterschiede der RMS-Werte im Bereich maximaler Temperaturgradienten deuten darauf hin, daß die Thermoelementspitzen von TC21 und TC24 bzw. TC23 und TC22 nicht exakt auf jeweils den gleichen Y-Traversen verschoben wurden.

Die bei ähnlichen Versuchsparametern auf X-Traversen gemessenen Temperaturprofile und die zugehörigen RMS-Profile sind in den beiden folgenden Diagrammen dargestellt. Die Thermoelemente der Sonde P1 wurden dabei zwischen den Heizstäben H1, H2, H3 und der langen Kanalwand auf den wandparallelen X-Traversen mit den festen Y-Koordinaten Y11 = 29.39 mm und Y14 = 31.44 mm verschoben (Fig. 35). Die Thermoelemente der Sonde P2 wurden zwischen den Heizstäben H2, H3, H4 und der gegenüberliegenden langen Kanalwand auf den X-Traversen im Abstand Y21 = 3.14 mm und Y24 = 0.48 mm verschoben (Fig. 36) Wie bei den Messungen in der Versuchsserie TEGENA 1 (vergleiche Figs. 29 und 30) zeigen auch hier die mittleren Temperaturprofile ausgeprägte Maxima in den engsten Spalten zwischen den Heizstäben und der Kanalwand. Die Temperaturminima liegen jeweils dazwischen in den Unterkanalmitten. Die maximalen Temperaturvariationen in X-Richtung betragen etwa 22 K. Die Amplitudendifferenz zwischen beiden Kurvenpaaren ist jeweils ein Maß für den mittleren Temperaturgradienten in Y-Richtung an einer bestimmten X-Position. Die mittleren Temperaturgradienten in Y-Richtung variieren etwa zwischen 1 K/mm (Unterkanalmitte) und 3 K/mm (engster Spalt). Die mittlere Temperatur der wellenförmigen Temperaturprofile nimmt zur Bündelmitte hin

٥

ab. Diese Tendenz wurde auch bei den Messungen in der Versuchsserie TEGENA 1 beobachtet (vergleiche Figs. 29 und 30). Die parallel zu den mittleren Temperaturen aufgezeichneten RMS-Werte der Temperaturfluktuationen zeigen wie schon auf den Y-Traversen Maxima in Bereichen mit großen Temperaturgradienten. Die Minima der RMS-Profile liegen dort wo die Temperaturgradienten zu Null werden.

In der Versuchsserie TEGENA 2 wurden bei Gleichlast (alle Stäbe sind beheizt) Temperaturprofile und zugehörige RMS-Profile auf Y- und X-Traversen bei insgesamt 5 verschiedenen Strömungszuständen gemessen (Re \approx 4000, 8000, 16000, 32000, 64000). Die gemessenen Profile für den Fall Re \approx 16000 (Pe \approx 90) sind in den Fig. 37 und 38 (Y-Traversen) sowie den Fig. 39 und 40 (X-Traversen) dargestellt. Die Kurvenverläufe entsprechen weitgehend denen bei hohen Re-Zahlen, obwohl die Wärmestromdichten, die maximalen Temperaturvariationen, die Temperturgradienten sowie die maximalen RMS-Werte etwa um einen Faktor 5 kleiner sind. Die in Y-Richtung gemessenen Temperatur- und RMS-Profile sind denen bei hohen Re-Zahlen sehr ähnlich, Maxima und Minima sind ausgeprägt und liegen an den gleichen Orten. Die in X-Richtung gemessenen Temperatur- und RMS-Profile zeigen im Vergleich zu denen bei hohen Re-Zahlen bei genauerer Betrachtung jedoch charakteristische Unterschiede. Die mit beiden Sonden gemessenen Temperaturprofile zeigen in den engen Spalten der Zentralstäbe H3 und H4 deutlich verschiedene Maxima. Dies ist unerwartet und nicht ohne weiteres zu erklären. Man kann vermuten, daß die zentralen Stäbe bei diesem Betriebszustand geringfügig aus ihrer idealen Position verschoben sind und zwar der Stab H2 in positiver und der Stab H3 in negativer Y-Richtung. Ob bei diesem Strömungszustand (Re \approx 16000, Pe \approx 90) bereits Mischkonvektion zu den beobachteten Temperaturgleichmäßigkeiten führen kann, wäre eine Frage, die nur durch weitere Untersuchungen geklärt werden kann (vgl. Fig. 31-36, Re \approx 68000). Während die RMS-Kurven auf den Y-Traversen noch ausgeprägte Maxima und Minima besitzen, sind die Extremwerte auf den X-Traversen nur noch für die Thermoelemente TC21 und TC22 der Sonde P2 deutlich sichtbar (Fig. 40). Die auf der wandnahen Traverse (Wandabstand Y24 = Y23 = 0.46 mm) bewegten Thermoelemente TC24 und TC23 zeigen praktisch keine Änderungen der Temperaturfluktuationen mehr. Dasselbe gilt für alle Thermoelemente der Sonde P1 (Fig. 39). Hieraus kann man folgern, daß die Thermoelemente mit den nicht isolierten Meßspitzen der Sonde P2 eine höhere Empfindlichkeit aufweisen als die Thermoelemente mit isolierten Meßspitzen der Sonde P1. Die Unterschiede der RMS-Werte verschiedener Thermoelemente gleicher Bauart (isolierte oder nicht isolierte Meßstelle) im Bereich $0.1 \le \text{RMS}[K] \le 0.3$ beruhen wahrscheinlich auf dem unterschiedlichen geometrischen Aufbau der Meßspitzen; sie könnten dann größtenteils durch Eichung eliminiert werden.

Für drei verschiedene Re-Zahlen (Re \approx 8000, 16000, 32000) sind die mit der Sonde P1 gemessenen Temperatur-Profile und die zugehörigen RMS-Profile in Fig. 41 dargestellt. Die Sonde wurde in Y-Richtung auf der Symmetrielinie zwischen den Heizstäben H1 und H2 verschoben, die dabei mit den vier Thermoelementen TC11, TC12, TC13 und TC14 gemessenen Temperaturen sind aus Symmetriegründen weitgehend identisch, das gleiche gilt für die vier RMS-Profile. Alle im Diagramm dargestellten Kurven sind jeweils Mittelwertkurven aus vier von den genannten Thermoelementen erzeugten Kurven. Die Versuchsparameter für die Kurven 1 bis 3 sind in Fig. 41 mit angegeben. Die Temperaturkurven (oben im Diagramm) zeigen über den größten Teil des Wandkanals einen gleichförmigen Anstieg zur Bündelmitte und durchlaufen im engsten Spalt zwischen den Heizstäben ein ausgeprägtes Maximum. Erst wenige Millimeter vor der unbeheizten Kanalwand - die Größenordnung ist die Spaltweite von 3.7 mm - nehmen die Temperaturgradienten sichtbar ab; der Abstand des wandnächsten Meßpunktes beträgt 1.5 mm. Bei den Temperaturkurven 1 und 2 beobachtet man einen leichten Versatz der Temperaturmaxima von der geometrischen Mitte (Y = 16.2 mm) von etwa -0.5 mm bzw. +0.5 mm. Die parallel mit den mittleren Temperaturen aufgezeichneten RMS-Werte der Temperaturfluktuationen sind im unteren Teil des Diagramms dargestellt. Für die hier beschriebenen Beispiele liegen die RMS-Werte zwischen 0.2 und 1.3 K. Die RMS-Kurven haben jeweils dort ein Maximum, wo die Temperaturgradienten in Y-Richtung am größten sind. In X-Richtung sind die Temperaturgradienten an den Meßfühlern außerhalb des engsten Spaltes vernachlässigbar klein. Ausgeprägte Minima weisen die RMS-Kurven übereinstimmend an der Stelle Y = 16.2 mm im engsten Spalt zwischen den Stäben auf, ein leichter Versatz wie bei den Temperaturmaxima ist hier nicht zu erkennen. Absolut unterscheiden sich die RMS-Werte hier um etwa 0.2 K, weil im Bereich des engsten Spaltes die Temperaturgardienten in X-Richtung nicht ganz zu vernachlässigen sind. In einem Abstand 1.5 mm von der unbeheizten Kastenwand stimmen die RMS-Werte für die drei untersuchten Strömungszustände fast überein, die Temperaturgradienten in Y-Richtung unterscheiden sich also kaum noch voneinander. Die mit der Sonde P2 gemessenen Temperatur- und RMS-Profile sind weitgehend identisch mit den zuvor beschriebenen.

Die Reproduzierbarkeit der Meßergebnisse soll mit den folgenden vier Abbildungen (Fig. 42-45) demonstriert werden. Es handelt sich um die aus drei verschiedenen Versuchen mit ähnlichen Versuchsparametern (Tab. 5) ermittelten Profile von jeweils zwei Thermoelementen der Sonde P1 (Fig. 42 und 43) und der Sonde P2 (Fig. 44 und 45). Die Versuche wurden bei Re \approx 33000 und QH \approx 21 W/cm² gefahren. Im Rahmen der Meßgenauigkeit (vergleiche Kapitel 8), der leicht unterschiedlichen Betriebszustände (Eintrittstemperatur, Leistung, Massenstrom) sowie der geringen Abweichungen vom voll stationären Zustand ist die Reproduzierbarkeit der Meßkurven gut. Die Maxima und Minima der Kurven liegen bei allen drei Versuchen an den gleichen Y-Positionen. Der unterschiedliche Verlauf der RMS-Kurven von Fig. 42 und 43 bzw. von Fig. 44 und 45 beruht auf dem unterschiedlichen Abstand der jeweiligen Thermoelemente zu den langen Wänden des Rechteckkanals, siehe Tab. 7. Erwähnt werden sollte an dieser Stelle, daß die mittleren Temperaturänderungen der wellenförmigen Temperaturprofile in X-Richtung stetig sind, aber in entgegengesetzter Richtung verlaufen wie diejenigen bei höherer Reynolds-Zahl und Leistung (vergleiche Fig. 35 und 36, Re \approx 68000, QH \approx 51 W/cm²). Auch dies kann wahrscheinlich nur mit einer leicht veränderten Stabposition im Rechteckkanal erklärt werden.

Zusammenfassend kann für die bei Gleichlast auf Y- und X-Traversen gemessenen Fluidtemperatur- und RMS-Profile festgestellt werden:

- Die Messungen in der Hauptmeßebene ME6 erfolgten bei einem Strömungszustand, den man als weitgehend thermisch eingelaufen bezeichnen kann.
- Ausgeprägte Maxima der Fluidtemperatur-Profile treten in den engsten Spalten der Kühlkanäle auf.
- Die Minima der Fluidtemperatur-Profile befinden sich in den Unterkanalmitten an der unbeheizten Wand.
- Die maximalen Temperaturfluktuationen (Maxima der RMS-Profile) treten in den Bereichen mit den größten Temperaturgradienten auf.
- Die geringsten Temperaturfluktuationen sind immer dort, wo die Temperaturgradienten verschwinden, also an den Stellen der Temperatur-Maxima und -Minima.
- Bei mittleren und kleinen Reynolds- und Péclet-Zahlen (Re ≦ 30000, Pe ≦ 170) trägt die große molekulare Wärmeleitung des Natriums verstärkt zum Temperaturausgleich bei.
- Mit beiden Temperatursonden P1 und P2 wurden vergleichbare Ergebnisse erzielt.

- Verschiedene Thermoelemente auf gleichen Meßtraversen liefern die gleichen Ergebnisse.
- Die Reproduzierbarkeit der Meßergebnisse ist gut.
- Möglicherweise vorhandene Mischkonvektion bei niedrigen Re-Zahlen (Re ≦ 16000) kann nur durch weitere Untersuchungen geklärt werden.

6.5 Wandtemperaturverteilung bei Schieflast

In der Versuchsserie TEGENA 1 wurden bei Beheizung beider und einzelner Außenstäbe eine Vielzahl von Schieflastversuchen durchgeführt (Tab. 6). In Fig. 46 sind die Wandtemperaturprofile bei Beheizung der Außenstäbe H1 und H4 dargestellt. Im Bereich der beheizten Zonen steigen die Temperaturvariationen am Umfang des Rechteckkanals mit zunehmender beheizter Länge bis zur Meßebene ME4 in ähnlicher Weise an wie bei dem voll beheizten Bündel. In der Meßebene ME5 ist jedoch eine deutliche Änderung des Temperaturprofiles in den engsten Spalten zwischen den beheizten Stäben und den langen Kastenwänden zu erkennen. Hier hat offensichtlich ein zweiter thermischer Einlaufvorgang eingesetzt.

Wird bei gleicher Reynoldszahl (Re \approx 61000) nur ein Außenstab H1 beheizt (Fig. 47), dann ergeben sich ähnliche Temperaturverteilungen wie bei Beheizung mit beiden Außenstäben. Der gegenseitige Einfluß über zwei unbeheizte Stäbe hinweg ist also vernachlässigbar klein. Verringert man jetzt aber die Reynoldszahl auf die Hälfte (Re \approx 30000), dann erfolgt eine deutliche Änderung der Temperaturprofile bereits in der Meßebene ME3 (Fig. 48). Bei nochmaliger Halbierung der Reynoldszahl (Re \approx 15000) ändern sich die Temperaturprofile bereits in der Meßebene ME3 (Fig. 48). Bei nochmaliger Halbierung der Reynoldszahl (Re \approx 15000) ändern sich die Temperaturprofile bereits in der Meßebene ME2 (Fig. 49). Bei Schieflast setzt also ein zweiter thermischer Einlaufvorgang ein, dessen Beginn und Entwicklung vom Strömungszustand abhängt. Bei kleinen Reynoldszahlen bewirkt die große molekulare Wärmeleitung des Fluids offenbar, daß dieser zweite thermische Einlauf schon bei kleinen beheizten Längen beginnt.

In der Versuchsserie TEGENA 2 wurden die Verteilungen der Wandtemperaturen systematisch für fünf verschiedene Beheizungszustände des Bündels ermittelt (Gleichlast als Referenzfall und vier Schieflastfälle, Tab. 6). Die gemessenen Wandtemperatur-Profile am Umfang des Rechteckkanals in fünf Meßebenen (MP1... MP5) sind in den Fig. 50 bis 53 dargestellt. Bei diesen Versuchen wurden folgende Parameter konstant gehalten: die Reynolds-Zahl mit Re \approx 30000 (Péclet-Zahl Pe \approx 180, mittlere Strömungsgeschwindigkeit im Bündel UB \approx 1 m/s), die Wärmestromdichte an der Oberfläche der beheizten Stäbe mit QH \approx 21 W/cm². Die mittlere Kühlmittelaufheizung DTC war mit rund 80, 60 und 40 K proportional zu der im Bündel erzeugten elektrischen Leistung. Die Temperaturvariationen am Umfang des Rechteckkanals steigen mit zunehmender beheizter Länge. Für den Fall der Gleichlast mit vier beheizten Stäben (Fig. 50) nimmt die Temperaturvariation am Kanalumfang in der Meßebene MP5 im Vergleich zu MP4 nur noch wenig zu; dies bedeutet, daß die Strömung nach einer beheizten Länge von rund 200 hydraulischen Durchmessern thermisch weitgehend eingelaufen ist. Für die vier Schieflastfälle (Fig. 51 bis 53) verändern sich dagegen die Temperaturprofile jedoch bereits in der Meßebene MP2 bzw. MP3. Hier beginnt also ein zweiter thermischer Einlaufvorgang, der nach rund 200 hydraulischen Durchmessern im Bereich der Hauptmeßebene MP6 noch nicht abgeschlossen ist.

Zusammenfassend liefern die Messungen der Wandtemperaturverteilung bei unterschiedlicher Beheizung des Bündels (Schieflast) folgende Ergebnisse:

- Bei Schieflast ist die Strömung nach rund 200 hydraulischen Durchmessern in der Hauptmeßebene ME6 thermisch nicht eingelaufen.
- Abhängig von der Beheizungsart (1, 2, 3 Stäbe beheizt) und vom Strömungszustand (Re, Pe) entsteht ein zweiter thermischer Einlaufvorgang.

6.6 Fluidtemperatur- und RMS-Profile bei Schieflast

In der Versuchsserie TEGENA 1 waren die mittleren Stäbe H2 und H3 nach einigen Versuchstagen nicht mehr beheizbar, die Sonde S1 war von Beginn an leicht verbogen. Aus diesem Grunde wurden umfangreiche Schieflastversuche mit der Sonde P2 und alleiniger Beheizung des Stabes H4 durchgeführt. Es wurden Fluidtemperatur- und RMS-Profile X-/Y-Traversen, auf Diagonaltraversen und auf Kreisbögen am Umfang des Stabes H4 gemessen. Charakteristische Ergebnisse dieser Messungen werden im folgenden beschrieben. In der Versuchsserie TEGENA 2 waren bis zum Ende alle vier Stäbe und beide Sonden funktionsfähig. Deshalb wurden hier systematisch Messungen bei vier verschiedenen Schieflastfällen durchgeführt, deren Ergebnisse beschrieben werden.

6.6.1 TEGENA 1, Profile auf X/Y-Traversen, Stab H4 beheizt

Die Versuchsparameter der folgenden Beispiele waren:

RE \approx 30000, Pe \approx 180, QH4 \approx 7,7 W/cm².

Die Sonde S2 wurde auf drei Y-Traversen verschoben, nämlich

- zwischen dem beheizten Stab H4 und dem unbeheizten Stab H3;

- zwischen dem beheizten Stab H4 und der kurzen Kanalwand;

- im engen Spalt zwischen dem beheizten Stab H4 und der langen Kanalwand.

Fig. 54 zeigt die Temperaturverläufe auf zwei Y-Traversen symmetrisch zwischen den Stäben H3 und H4. Die Kurven decken sich paarweise. Die Temperaturmaxima liegen genau im engsten Spalt bei Y = 16,2 mm. Der mittlere Temperaturgradient in X-Richtung zwischen den oberen und unteren Kurven ist mit 0,6 K/mm über den gesamten Meßweg etwa konstant. Die RMS-Werte der Temperaturfluktuationen zeigen ausgeprägte Minima im engsten Spalt zwischen den Stäben, weil dort die Temperaturgradienten Null sind. In Fig. 55 sind ebenfalls die Temperaturverläufe auf zwei Y-Traversen symmetrisch zwischen dem beheizten Stab H4 und der kurzen Kanalwand dargestellt. Ein deutlicher Temperaturgradient in X-Richtung existiert nur noch im Bereich des engsten Spaltes, er verschwindet in der Mitte des Eckkanals. Die RMS-Kurven zeigen nur noch schwach ausgeprägte Maxima und Minima, die absoluten RMS-Werte sind wegen der Nähe zur unbeheizten Wand mit Werten unter 0.1 K sehr klein.

Auf den sehr kurzen Y-Traversen im engen Spalt zwischen dem beheizten Stab H4 und der langen Kanalwand wurden mit jedem Thermoelement sechs Meßpunkte gewonnen, (Fig. 56). Man erkennt deutlich den Temperaturanstieg in Richtung auf die beheizte Stabwand sowie das Temperaturgefälle in X-Richtung aus dem Abstand der Kurvenpaare. Letzteres bedeutet, daß am Ende der beheizten Zone (~ 200 DH) immer noch Wärme in Richtung der unbeheizten Stäbe fließt, daß also der thermische Einlauf nicht abgeschlossen ist. Die vom Thermoelement TE24 stammenden relativ hohen RMS-Werte (Symbol D) beruhen möglicherweise auf einer größeren Empfindlichkeit dieses Thermoelementes.

Die Sonde S2 wurde auf drei X-Traversen verschoben, nämlich:

- zwischen den Stäben H2, H3, H4 und der langen Kanalwand;

- im engsten Spalt zwischen Den Stäben H3 und H4;

- zwischen dem beheizten Stab H4 und der kurzen Kanalwand.

Die auf parallelen X-Traversen zwischen den Stäben und der langen Kanalwand (Fig. 57) gemessenen Temperaturprofile decken sich im unbeheizten Bereich und zeigen nur im Bereich des beheizten Stabes H4 zwei Kurvenpaare, deren vertikaler Abstand ein Maß für den Temperaturgradienten in Y-Richtung ist. Die Temperaturmaxima liegen etwa 3 mm rechts vom engsten Spalt zwischen Stab H4 und der Kanalwand, es fließt also hier immer noch Wärme vom Eckkanal in den Wandkanal. Die parallel aufgezeichenten RMS-Kurven zeigen ausgeprägte Maxima im Bereich der größten Temperaturgradienten, die auf der gleichen X-Traverse bewegten Thermoelemente TE21 und TE22 liefern praktisch identische RMS-Werte.

Die auf den kurzen X-Traversen und parallel zur Stabmittenverbindung gemessenen Temperatur- und RMS-Profile sind in den Fig. 58 und 59 dargestellt. Es wurden wiederum mit jedem Thermoelement 6 Meßpunkte im Abstand von jeweils 0,2 mm gemessen. Die Temperaturkurven fallen jeweils paarweise zusammen, weil die Strömungs- und Kühlbedingungen symmetrisch im Bezug auf den Verschiebeweg der Sondenachse (Stabmittenverbindung) sind. Diese Messungen in den engen Spalten bei den relativ kleinen Wärmestromdichten (~7W/cm²)liefern noch physikalisch sinnvolle Ergebnisse.

Es sei an dieser Stelle nochmals darauf hingewiesen, daß die mittleren Temperaturen auf der Basis von Eichversuchen korrigiert wurden. Die RMS-Werte wurden dagegen nicht korrigiert, deshalb ergeben sich zwischen verschiedenen Meßfühlern Unterschiede bis zu 0.2 K, diese beruhen in erster Linie auf der etwas unterschiedlichen Meßfühlergeometrie.

6.6.2 TEGENA 1, Profile auf Radial-Traversen, Stab H4 beheizt

Die Sonde S2 wurde von der beheizten Oberfläche des Stabes H4 auf radialen Traversen in den Wandkanal hinein (-45° in Bezug auf die negative Y-Richtung) und in den Eckkanal hinein (+45°) verschoben. Dabei bewegten sich jeweils zwei Thermoelemente zusammen mit der Sondenachse auf den 45°-Traversen und die anderen beiden Thermoelemente auf parallelen Traversen dazu im Abstand von 1,29 mm. Die bei RE \approx 30000 und QH \approx 7,7 W/cm² gemessenen radialen Temperatur- und RMS-Profile sind in den folgenden vier Abbildungen dargestellt.

Fig. 60 zeigt die Profile im Wandkanal, deren Meßpunkte mit zunehmendem Radius aufgezeichnet wurden (DIR A). Die Temperaturkurven zeigen leicht zunehmende Gradienten in Richtung auf die beheizte Staboberfläche, die knapp 1 mm vom ersten Meßpunkt entfernt ist. Durch Extrapolation ergibt sich eine maximale Temperatur an der Staboberfläche von T \approx 316 °C. Die RMS-Kurven zeigen ein breites Maximum bei einer Variation von nur 0,2 K auf dem gesamten Meßweg. Die in entgegengesetzter Richtung (abnehmender Radius, DIR B) aufgezeichneten Profile liefern praktisch die gleichen Ergebnisse (Fig. 61); sie werden extra aufgeführt, um die Reproduzierbarkeit der Ergebnisse zu demonstrieren.

Die im Eckkanal mit zunehmendem Radius (DIR A) gemessenen radialen Profile zeigt Fig. 62. Die Temperaturgradienten nahe der beheizten Oberfläche sind größer als die entsprechenden im Wandkanal. In der unbeheizten Ecke dagegen gehen die radialen Temperaturgradienten gegen Null. Die durch Extrapolation an der Staboberfläche ermittelte Temperatur beträgt T \approx 321 °C. Die RMS-Werte sind kleiner als 0, 2 K und praktisch konstant über dem gesamten Meßweg. Die mit abnehmendem Radius aufgezeichneten Profile (Fig. 63, DIR B) liefern wiederum die gleichen Ergebnisse, womit die Reproduzierbarkeit der Ergebnisse untermauert wird.

6.6.3 TEGENA 1, Azimutale Profile, Stab H4 beheizt

Auf Halbkreisbögen im Abstand von 0,5 und 1,0 mm von der beheizten Oberfläche des Stabes H4 wurden Temperatur- und RMS-Profile gemessen (Figs. 64, 65). Dabei wurde im Wandkanal (-90° $\leq A \leq 0°$) das Thermoelement TE22 auf dem Kreisbogen bewegt und im Eckkanal (0° $\leq A \leq +90°$) das Thermoelement TE21. Die auf dem Kreisbogen mit dem Radius R = 13,0 mm gemessenen Profile sind in Fig. 74 dargestellt. Die entgegen dem Uhrzeigersinn aufgenommenen Meßwerte (DIR A) haben die Symbole 2, 1 (Temperaturen) und B,A (RMS-Werte).

Die im Uhrzeigersinn aufgenommenen Meßwerte (DIR B) haben die Symbole * (Temperaturen) und + (RMS-Werte). Die auf dem Kreisbogen in entgegengesetzten Richtungen aufgezeichneten Meßwerte liefern praktisch die gleichen Temperatur- und RMS-Profile, die Sondenpositionierung war also korrekt. Die gesamte Temperaturvariation nahe der Staboberfläche auf dem Kreisbogen R =13,0 mm beträgt für dieses Beispiel (RE \approx 30000, QH \approx 15 W/cm²) 17 K. Mit etwa 13 K (75 %) erfolgt die weitaus stärkste Variation im Wandkanal. Der größte Temperaturgradient liegt bei der Winkelposition $A = -30^{\circ}$, an dieser Stelle zeigen auch die RMS-Werte der Temperaturfluktuationen mit etwa 0,6 K ein Maximum. Die auf dem Kreisbogen mit dem Radius R = 13,5 mm gemessenen Profile sind in Fig. 74 dargestellt. Die gesamte Temperaturvariation ist auf diesem um 0,5 mm größeren Kreisbogen mit etwa 22 K um rund 30 % größer. Damit sind auch die maximalen azimuthalen Temperaturgradienten größer und folglich die maximalen RMS-Werte mit jetzt 0,7 K. Trägt man die Meßwerte der Meßrichtung DIR A von beiden Kreisbögen in einem Diagramm auf (Fig. 75), dann kann man folgende Aussagen machen. Der zwischen den Kurven ablesbare radiale Temperaturgradient ist im Wandkanal mit 2,5 K/mm etwa doppelt so groß wie im Eckkanal. Die RMS-Werte haben ihr Maximum bei A = -30° im Bereich der größten Temperaturgradienten, im Eckkanal sind sie nahezu konstant.

6.6.4 TEGENA 2, Profile auf X-Traversen, 2/3/4 Stäbe beheizt

In der Versuchsserie TEGENA 1 waren die Verhältnisse bei Beheizung eines Außenstabes ausführlich untersucht worden. In der Versuchsserie TEGENA 2 wurden vier weitere Schieflastfälle und der Gleichlastfall als Referenzversuch (Tab. 6) gefahren, nämlich:

- Beheizung aller vier Stäbe, Referenzversuch

- Beheizung der Stäbe H1, H3, H4
- Beheizung der Stäbe H1, H2, H4 (hier nicht dargestellt)
- Beheizung der Stäbe H1, H4
- Beheizung der Stäbe H2, H3

In den folgenden vier Diagrammen (Fig. 67-70) sind die bei oben genannten Beheizungszuständen auf X-Traversen mit der Sonde P2 gemessenen Temperatur- und RMS-Profile dargestellt. Für den Gleichlastfall als Referenzversuch (Fig. 67) ergeben sich bei QH \approx 21 W/cm² und Re \approx 33000 ähnliche Temperaturprofile wie bei höheren Wärmestromdichten (OH \approx 51 W/cm², Fig. 36). Der globale Temperaturverlauf zeigt jedoch mit wachsender X-Koordinate fallende Tendenz bei der kleinen Leistung und steigende Tendenz bei der größeren Leistung. Diese Ergebnisse waren so mehrfach reproduzierbar. Als Ursache für diese nicht erwarteten Unterschiede wird eine im Rahmen der Abstandshaltertoleranzen unterschiedliche Stabanordnung im Rechteckkanal bei jeweils geänderten radialen Temperaturgradienten in den Heizstäben vermutet. Die RMS-Werte in Fig. 67 sind entsprechend der geringeren Temperaturgradienten auch reduziert. Die RMS-Profile der in Heizstabnähe bewegten Thermoelemente TC21 und TC22 weisen im Bereich der Unterkanalmitten bei X2 = 60 mm und X2 = 88 mm bei der kleineren Leistung nur noch ein Maximum auf. Die RMS-Profile der in Kanalwandnähe bewegten Thermoelemente TC24 und TC23 zeigen nur noch eine sehr geringe Variation von etwa 0,1 K. Die Gründe hierfür sind vermutlich der bei mittleren Re-Zahlen verstärkte Einfluß der hohen molekularen Wärmeleitung des Natriums sowie eine dämpfende Wirkung der unbeheizten Wand.

Werden nur drei der vier Stäbe beheizt (H2 ist unbeheizt), dann erhält man die in Fig. 68 dargestellten Profile; die veränderten Maßstäbe der beiden Ordinaten sind zu beachten. Durch die steilen Temperaturgradienten im Bereich des unbeheizten Stabes H2 erreichen die maximalen RMS-Werte etwa das dreifache derjenigen bei gleichmäßiger Beheizung des Bündels. Die zusätzlich eingezeichneten RMS-Werte des dünneren Zentralthermoelementes liegen wieder deutlich höher als die der übrigen Thermoelemente, die Erklärung hierfür dürfte das höhere Auflösungsvermögen bei geringerer Baugröße des Fühlers sein. Ist nur der Stab H3 unbeheizt, dann erhält man ähnliche Ergebnisse wie die zuvor beschriebenen!

Die Verhältnisse für den Schieflastfall mit zwei beheizten Außenstäben sind in Fig. 69 beschrieben. Auffallend ist hier die Überschneidung bzw. die Überdeckung der RMS-Doppelkurven auf verschiedenen X-Traversen im Bereich des engsten Spaltes am unbeheizten Stab H3 bei X2 \approx 74 mm. Dies bedeutet, daß der Temperaturgradient in Y-Richtung für X2 \leq 74 im Wandkanal zwischen den unbeheizten Stäben praktisch verschwindet. Der dritte Schieflastfall mit zwei beheizten Innenstäben ist in Fig. 70 dargestellt. Hier ergeben sich zwischen dem beheizten Stab H3 und dem unbeheizten Stab H4 die größten Temperaturgradienten und demzufolge mit rund 2,5 K etwa die 5-fachen RMS-Werte im Vergleich zu denen im gleichmäßig beheizten Bündel.

Zusammenfassend kann aus den Meßergebnissen bei unterschiedlicher Beheizung des Bündels festgestellt werden:

- Bei unterschiedlicher Beheizung des Bündels (Schieflast) ist die Strömung nach einer beheizten Länge von 200 DH thermisch nicht eingelaufen; dies muß bei der Interpretation der Fluidtemperaturmessungen beachtet werden.
- Der unmittelbare Zusammenhang zwischen den lokalen räumlichen Temperaturgradienten und der Intensität zugeordneter Temperaturfluktuationen wird besonders deutlich.
- Die mit der Sonde P1 gemessenen Ergebnisse in der Versuchsserie TEGENA 2 sind denen mit der Sonde P2 gemessenen weitgehend ähnlich und führen zu den gleichen Schlußfolgerungen.

6.7 Zweidimensionale Felder der Fluidtemperaturen und Temperaturfluktuationen in Wandkanälen, TEGENA 2

Zur detaillierten zweidimensionalen Vermessung der Wandkanäle des Bündels wurden die Sonden P1 und P2 auf 11 parallelen X-Traversen (Abstand \approx 1 mm) stufenweise um rund 1 mm verstellt. Auf diese Weise wurden alle Sondenthermoelemente auf den Maschenpunkten eines Netzwerkes mit der Maschenweite von rund 1 mm positioniert. Mit der Sonde P1 wurden die Wandkanäle SC3 und SC5 vermessen, mit der Sonde P2 die Wandkanäle SC6 und SC8 (Fig. 71). Die eingestellten Wärmestromdichten betrugen 5, 10 und 20 W/cm², die entsprechenden Reynoldszahlen 8000, 16000 und 32000. Beispielhaft sind die Meßergebnisse von je einem Thermoelement der Sonde P1 und P2 im Wandkanal SC5 bzw. SC6 dargestellt, Fig. 72 (TC11) und Fig. 73 (TC21). Aufgetragen sind jeweils die Fluidtemperatur- und RMS-Profile auf 7 parallelen X-Traversen mit gleichem Abstand $\Delta Y = 1,03$ mm. Aus Fig. 72 erkennt man, daß die Temperaturprofile symmetrisch zur Symmetrielinie des Unterkanals verlaufen. Der vertikale Abstand der Temperaturkurven auf der Symmetrielinie hätte im Idealfall etwa gleich groß sein müssen, weil der Temperturgradient in Y-Richtung zwischen zwei beheizten Stäben praktisch linear ist, vergleiche Fig. 41. Abweichungen hiervon beruhen auf Abweichungen der Betriebsparameter vom ideal stationären Zustand. Bei den RMS-Kurven wirken sich diese Schwankungen im Versuchsbetrieb auf die lokalen Temperaturgradienten nur noch wenig aus, deshalb ist bei den RMS-Profilen eine größere Regelmäßigkeit festzustellen. Die für die Fig. 72 gemachten Aussagen gelten auch für die in Fig. 73 dargestellten Profile des Thermoelementes TC21.

Die oben beschriebenen Versuchsergebnisse sind als Isothermen und als Linien gleicher RMS-Werte der Temperaturfluktuationen (Isofluktuationen) in den folgenden vier Abbildungen dargestellt. Die X-Koordinaten der Diagrammpunkte wurden jeweils durch Interpolation für vorgegebene konstante Temperatur- bzw. RMS-Werte berechnet. Die mit den Thermoelementen TC11 und TC21 gemessenen Isothermen (Fig. 74 und 75) zeigen einen symmetrischen Verlauf zur Halbierenden der Wandkanäle (X = 59.25 mm). Die Linien gleicher RMS-Werte (Isofluktuationen) in den Figs. 76 und 77 zeigen einen gleichmäßigen und symmetrischen Verlauf; sie haben ihr Maximum auf der Halbierenden der Wandkanäle bei einem Zentrumswinkel $\phi_M \approx \pm 25^\circ$. Die weitere Auswertung dieser Feldmessungen läuft noch, detailliertere Ergebnisse werden in /23/ vorgestellt.

7. BESCHREIBUNG DER BÜNDELGEOMETRIE

Die Bündelgeometrie bestimmt entscheidend die Geschwindigkeits- und Temperaturfelder. Abweichungen von der idealen Bündelgeometrie verändern diese Felder. Diesbezügliche Untersuchungen wurden früher bereits im Zusammenhang mit einem natriumdurchströmten 19-Stabbündel-Experiment angestellt /6/. Für das TEGENA-Experiment war deshalb in der Planungsphase eine Geometrieüberwachung mit Hilfe von Stabpositionsfühlern vorgesehen /13/. Eine derartige Einrichtung zur Vermessung der Stabpositionen während des Versuchsbetriebes wurde konstruiert, jedoch aus Termingründen später nicht realisiert. Die Auswirkungen von angenommenen exzentrischen Bündelpositionen im Rechteckkanal auf die mittleren Unterkanaltemperaturen wurden mit Hilfe einer Globalrechnung /24/ abgeschätzt (Fig. 78). Aus dem Diagramm erkennt man, daß z.B. bei einem angenommenen gleichmäßigen Bündelversatz um 0,3 mm mittlere Temperaturdifferenzen von etwa 5 K in gegenüberliegenden Wandkanälen entstehen; in benachbarten Eckkanälen ergeben sich für diesen Fall mittlere Temperaturdifferenzen von etwa 3 K.

Die Kanalsegemente des Rechteckkanals wurden nach der Fertigung vermessen, vergleiche Abschnitt 3.1.4. Die Kanaltiefe T = 32,4 mm wies nach der Fertigung mit \pm 0,08 mm die größte Toleranz auf. Nach Beendigung der Versuchsserien TEGENA 1 und TEGENA 2 wurden die Kanalsegmente erneut vermessen. Die wesentlichen Ergebnisse sind:

- -Nach der Versuchsserie TEGENA 1 wurde eine maximale Vergrößerung der Kanaltiefe T zwischen 0,1 und 0,2 mm bei den zwei oberen Kanalsegmenten im Bereich der Flansche in Kanalmitte gemessen, ansonsten betrugen die Vergrößerungen der Kanaltiefe T und der Kanalbreite B zwischen 0.01 und 0.03 mm.
- Nach der Versuchsserie TEGENA 2 konnte im Rahmen der Meßgenauigkeit von ± 0,01 mm keine weitere Veränderung der Kanaltiefe T festgestellt werden.

Die Heizstäbe werden im Rechteckkanal durch zylindrische Abstandshalterstifte positioniert. Die Einbautoleranzen zwischen Abstandshaltern und Heizstäben betragen ± 0,05 mm. Die Heizstabdurchmesser wurden mit 25,02 ± 0,01 mm bestimmt, Kontrollmessungen nach der Demontage ergaben keine Veränderungen. Unter Verwendung von Kalibrierungsstäben wurden die engsten Spalten in der Hauptmeßebene ME6 (MP6) mit Hilfe der Meßsonden im kalten Zustand vermessen. Es ergaben sich Spaltweiten zwischen 3,60 und 3,84 mm; der nominelle Wert ist 3,70 mm.

Bei der Demontage der Teststrecke nach der Versuchsserie 4 TEGENA 2 lagen von insgesamt 78 Meßwerten in den Stützebenen 80 % der Spaltweiten zwischen 3,55 und 3,75 mm und 20 % zwischen 3,50 und 3,90 mm. Ähnliche Werte wurden zwischen den Stützebenen bei dem offenen Bündel auf einer ebenen Fläche gemessen. Obige Angaben gelten alle für die Bündelgeometrie im kalten Zustand.

Exakte Angaben über die Bündelgeometrie im heißen Zustand während des Versuchsbetriebes sind nicht möglich. Auf der Basis der Meßergebnisse im kalten Zustand können nur abschätzende Annahmen gemacht werden. Die Experimente geben Hinweise dafür, daß die Stäbe abhängig von den aufgeprägten radialen Wärmeströmen leicht unterschiedliche Positionen im Rechteckkanal angenommen haben. Man kann vermuten, daß die Ungleichmäßigkeiten im Heizstabaufbau (vergleiche Anhang A1.5) hierfür die Ursache sind. Bei gleicher Heizleistung waren die Meßergebnisse immer reproduzierbar.

8. MESSGENAUIGKEITEN

Die Problematik der exakten Beschreibung der Bündelgeometrie im heißen Zustand wurde in Kapitel 7 behandelt. Die Gleichmäßigkeit der Wärmeerzeugung an der Heizstaboberfläche kann nur abgeschätzt werden. Aus Filmaufnahmen der heißen Staboberflächen ergeben bei gleichmäßiger Kühlung Inhomogenitäten im Wärmefluß von etwa 5 %. Querschnittsmessungen eines Heizstabes bestätigen in etwa diesen Wert, wenn man einen azimutalen Wärmeausgleich in der Heizstabhülle und der elektrischen Isolation berücksichtigt. Im Bündelverband wird den Heizstäben eine ungleichmäßige Kühlung am Umfang aufgeprägt, die eine entsprechende Variation der Wärmestromdichte am Umfang zur Folge hat.

Im folgenden werden einige Meßgenauigkeiten angegeben:

- relative Meßgenauigkeit der Datenerfassungs-
- anlage<0.1 K (<4 µV)</th>- Referenztemperatur (PT3, PT2)± 0.2 K (Eichfehler)- Wandtemperaturen (relativ)± 0.4 K (nicht korrigiert)- Fluidtemperaturen (relativ)± 0.05 K (korrigiert)- mechanische Einstellgenauigkeit der Sonden± 0.02 mm (kalt)- Ortskoordinaten der Meßsonden± 0.2 mm (digit. Anzeige)

- 45 -

- Thermoelement-Mittenabstand der Sonde S1	1.96 (keine Nachmessung)
- Thermoelement-Mittenabstand der Sonde S2	1.83 + 0.03 mm
	- 0.01 mm
- Thermoelement-Mittenabstand der Sonde P1	2.05 ± 0.04 mm
- Thermoelement-Mittenabstand der Sonde P2	2.65 ± 0.09 mm

9. ANWENDUNG DER VERSUCHSERGEBNISSE

Mit den TEGENA-Experimenten werden umfangreiche Meßdaten von Temperaturverteilungen mit den zugehörigen Temperaturschwankungen in nicht kreisförmigen Strömungskanälen mit Flüssigmetallkühlung zur Verfügung gestellt. Die Meßergebnisse gelten für die spezielle Geometrie P/D = W/D = 1.147. Es wurden verschiedene Strömungszustände (Re, Pe) und Beheizungsarten (Gleichlast und verschiedene Schieflastfälle) untersucht. Wesentliche Randbedingungen, wie die Strömungsverteilung vor dem Stabbündel und die Temperaturverteilung in den umgebenden Strukturen wurden experimentell bestimmt. Durch die Verwendung von zwei gleichartigen Meßsystemen zur Verstellung der Meßsonden sowie mehrerer Meßsondenfühler pro Meßsonde und durch eine Vielzahl von Wiederholungsmessungen konnten die Meßergebnisse gut abgesichert werden.

Die Meßergebnisse dienen zur Nachrechnung mit geeigneten Rechenprogrammen und zu deren Verifikation. Solche Rechenprogramme sollten zuvor an hydraulischen Experimenten (z.B. /7, 14, 15/) ertüchtigt werden, weil die Strömungsverteilung in Systemen mit gekoppelten Unterkanälen die Temperaturfelder ganz wesentlich bestimmt.

Weitere Analysen der vorgelegten experimentellen Daten in Kombination mit begleitenden Rechnungen sind empfehlenswert. Möglicherweise können die aus Laufzeitmessungen ermittelten Geschwindigkeitsfelder /16/ zusammen mit den hier vorgestellten Temperaturfeldern weitere interessante Erkenntnisse und ergänzende Interpretationen liefern.

10. ZUSAMMENFASSUNG

Für die Auslegung von Brennelementen (längs durchströmte Stabbündel) ist die genaue Kenntnis der Geschwindigkeits- und Temperaturverteilungen notwendig, insbesondere in den ungleichmäßig gekühlten Bündelzonen. Für die Berechnung sind über die bisher gebräuchlichen Global-Codes (Subchannel analysis) Detail-Codes zur Feinanalyse erforderlich. Solche in der Entwicklung befindlichen thermohydraulischen Rechenprogramme müssen experimentell verifiziert werden. Zu diesem Zweck wurden in einem beheizten, reihenförmigen 4-Stabbündel (P/D = W/D = 1.147) mit Natriumkühlung (Pr \approx 0.005) die Verteilung der mittleren Fluidtemperaturen und der zugehörigen RMS-Werte der Temperaturfluktuationen gemessen. Die Temperaturverteilung in den Strukturen wurde als notwendige Randbedingung ebenfalls gemessen.

In diesem Bericht wird der gesamte Versuchsaufbau mit Prüfstand, TEGENA-Teststrecke und Meßeinrichtung beschrieben. TEGENA ist die Abkürzung für "<u>Te</u>mperaturen und <u>Ge</u>schwindigkeiten in <u>Na</u>triumströmung". Es werden Vorversuche und Ergebnisse zur Strömungsverteilung und Komponentenerprobung beschrieben. Zusammenfassend werden dann die wesentlichen und charakteristischen Ergebnisse von zwei größeren Versuchsserien TEGENA 1 und TEGENA 2 dargestellt, beschrieben und diskutiert. Dabei handelt es sich um isotherme Versuche, Gleichlast- und Schieflastversuche bei unterschiedlichen Strömungszuständen.

Die charakteristischen Merkmale der TEGENA-Experimente sind:

- Bewegliche Miniatur-Meßsonden mit jeweils 4 bzw. 5 Thermoelementen;

- Speziell entwickelte Verstelleinrichtungen für diese Sonden;

- Hochleistungs-Heizstäbe mit großen Abmessungen.

Die Versuchsparameter wurden in folgenden Grenzen variiert:

- Reynolds-Zahl	Re = 3700		76000
- Péclet-Zahl	Pe = 20		440
- mittlere Strömungsgeschwindigkeit	UB = 0.1	•••	2.4 m/s
- Wärmestromdichten	QH = 0	•••	60 W/cm ²
- Elektrische Leistung des Bündels	NB = 0		475 kW
- Natriumtemperaturen	250		400 °C
- Kühlmittelaufheizung im Bündel	0		120 K
- Temperaturgradienten im Fluid	0	••••	3 K

- Temperaturfluktuationen im Fluid (RMS)	0.01 2.5 K
- Anzahl der beheizten Stäbe	0,1,2,3 und 4

Im einzelnen wurden folgende Meßergebnisse erzielt:

- Die Geschwindigkeitsverteilung im rechteckigen Einlaufkanal vor dem 4-Stabbündel ist symmetrisch.
- Die Funktionstüchtigkeit der Heizstäbe wurde unter verschärften Betriebsbedingungen (Wärmestromdichte: 90 W/cm², Natriumtemperaturen 350/525 °C) nachgewiesen. Die Inhomogenität der Wärmefreisetzung bei gleichmäßiger Kühlung wurde experimentell mit etwa 5 % abgeschätzt.
- Die Funktionstüchtigkeit der Sonden-Verstelleinrichtungen wurde u.a. mit der Messung von Natriumgeschwindigkeiten im offenen Rechteckkanal nachgewiesen. Das Potential der Meßgenauigkeit der verwendeten Miniatur-Permanentmagnet-Sonden ist vergleichbar mit dem konventioneller Pitot-Sonden.
- Mit regelmäßigen isothermen Messungen wurden sämtliche Temperaturfühler kontrolliert und teilweise kalibriert. Die Ausfallrate war kleiner als 3 %. Die relative Genauigkeit der Datenerfassungsanlage war besser als 0.1 K.
- Die thermische Einlauflänge für die Natriumströmung ist eine Funktion der Beheizung (Gleichlast, Schieflast) und eine Funktion des Strömungszustandes (Reynoldszahl, Pécletzahl).

Gleichlast, Re \leq 60000: die Strömung ist nach 200 hydraulischen Durchmessern weitgehend thermisch eingelaufen

Schieflast, Re \leq 60000: die Strömung ist nach 200 hydraulischen Durchmessern thermisch nicht eingelaufen.

- Nach einer beheizten Länge von rund 200 hydraulischen Durchmessern zeigen die gemessenen Temperaturprofile in der Natriumströmung ausgeprägte Maxima in den engsten Spalten der Unterkanäle und ausgeprägte Minima in den Unterkanalmitten an der unbeheizten Wand.
- Die parallel mit den mittleren Fluidtemperaturen gemessenen RMS-Profile der Temperaturfluktuationen (die Größenordnung der RMS-Werte beträgt 1 K) zeigen Maxima in den Bereichen mit den größten räumlichen Temperaturgradienten und Minima dort, wo die Temperaturgradienten verschwinden.
- In beiden Versuchsserien (TEGENA 1 und TEGENA 2) wurden jeweils mit beiden Meßsonden (S1/S2 und P1/P2) gleiche bzw. vergleichbare Ergebnisse erzielt. Mit verschiedenen Meßfühlern wurden auf gleichen Meßtraversen

identische Temperatur- und RMS-Profile gemessen. Für vergleichbare Betriebsbedingungen waren die Messungen immer gut reproduzierbar.

- Ungleichmäßigkeiten bei der Positionierung der Heizstäbe im Rechteckkanal, bei der Wärmefreisetzung an den Heizstaboberflächen und bei kleinen zeitlichen Veränderungen des stationären Betriebszustandes beeinflussen die gemessenen Temperaturprofile. Eine exakte Quantifizierung dieser Einflußgrößen ist nicht möglich, dies muß bei der Interpretation einiger Ergebnisse entsprechend beachtet werden.
- Möglicherweise werden bei niedrigen Reynolds-Zahlen (Re ≤ 16000) die beobachteten Temperaturungleichmäßigkeiten durch Mischkonvektion verursacht. Diese offene Frage kann jedoch nur durch weitere Untersuchungen geklärt werden.

Mit den TEGENA-Experimenten werden umfangreiche und abgesicherte Meßdaten zur Verifikation geeigneter Rechenprogramme zur Verfügung gestellt. Mit Hilfe solcher verifizierter Rechenprogramme könnte dann die thermohydraulische Auslegung der ungleichmäßig gekühlten Bündelzonen von flüssigmetallgekühlten Stabbündeln verbessert werden.

Abschließend sei erwähnt, daß parallel zu den thermischen Experimenten in der Versuchsserie TEGENA 2 Laufzeitmessungen durchgeführt wurden. Mit ihrer Auswertung können Geschwindigkeitsverteilungen ermittelt werden und zusammen mit den Temperaturverteilungen ergänzende Informationen liefern.

11. DANKSAGUNG

1

Ich danke allen Kolleginnen und Kollegen, die zur erfolgreichen Durchführung des TEGENA-Vorhabens beigetragen haben. Drei Kollegen aus dem Institut für Reaktorbauelemente möchte ich besonders erwähnen: Herr V. Casal hat die Entwicklung und Beschaffung der Hochleistungs-Heizstäbe betrieben. Herr H.-J. Neitzel hat die für die Auswertung und Darstellung verwendeten Rechenprogramme geschrieben. Herr Tschöke hat die Meßsonden-Verstelleinrichtung konstruiert. Schießlich möchte ich noch Herrn Horanyi vom Central Research Institute for Physics Atomenergy in Budapest nennen, der bei der Datenerfassung der TEGENA-Experimente mitgewirkt hat; er hat die Messungen von Intensitäten und Laufzeiten der Temperaturflukutationen durchgeführt. 12. Nomenklatur

A,B,C,D	Seitenwände des Rechteckkanals	
B .	Breite des Rechteckkanals	[mm]
СР	Umfangskoordinate des Rechteckkanals	[mm]
D	Durchmesser der Heizstäbe	[mm]
DC	hydraulischer Durchmesser des Rechteckkanals	
	(= 4 FC/U)	[mm]
DH	mittlerer hydraulischer Durchmesser des Bündels	
· .	$(= 4 \cdot FB/U)$	[mm]
DT	Kühlmittelaufheizung bis ME6 (DT = TNO - TEN)	[K]
DTC	Kühlmittelaufheizung bis MP6 (DTC = TBO - TBI)	[K]
FB	freier Strömungsquerschnitt im Bündel	[mm²]
FC	freier Strömungsquerschnitt des Rechteckkanals	[mm²]
Н	Heizstab (H1 = Heizstab Nr. 1)	[mm ²]
LC	Länge des Rechteckkanals vor dem Bündel	[mm]
LH	beheizte Längen der Stäbe	[mm]
LH/DH	normierte beheizte Länge	[-]
ME(MP)*	Meßebene im Bündelquerschnitt	
	(ME1 = Meßebene Nr. 1)	
MS(MFR)	Massenstrom des Kühlmittels	[kg/s]
NB	Bündelleistung	[kW]
Р	Stabmittenabstand	[mm]
P/D	normierter Stabmittenabstand	
PE(Pe)	Péclet-Zahl (= RE·PR)	[-]
PR(Pr)	Prandtl-Zahl	[-]
PT2, PT3	Platinwiderstands-Thermometer Nr. 2, Nr. 3 (Temp.)	[C]
S1,S2 (P1,P2	?) Meßsonde Nr. 1, Nr. 2	
QH	Wärmestrom normal zur Staboberfläche	[W/cm²]
RC	Eckradius des Rechteckkanals	[mm]
RE	Reynolds-Zahl (= UB·DH/ v)	
RMS	"root mean square" der Temperaturfluktuation im Flu	id [K]
Т	Tiefe des Rechteckkanals	[mm]
TAS	Natriumaustrittstemperatur (Meßkammer)	[C]
тві	Natriumeintrittstemperatur (TEGENA 2, MP0)	[C]
TEGENA	<u>Temperaturen und Ge</u> schwindigkeiten in Natrium	

* Bezeichnungen in Klammern gelten für die Versuchsserie TEGENA 2

-

.

Natriumtemperatur am Bündeleintritt	[C]
mittlere Bündeltemperatur = 0.5 (TEN + TNO)	[C]
Bündeltemperatur in Meßebene ME6(MP6)	[C]
Thermoelement	
Referenztemperatur = 0.5 (PT3 + PT2)	[C]
lokale Temperaturdifferenz (Temperaturvariation)	
am Umfang des Rechteckkanals	[K]
normierte lokale Temperaturdifferenz	[-]
maximale azimutale Temperaturdifferenz	[K]
Strömungsgeschwindigkeit (Wasser, Natrium)	[m/s]
benetzter Umfang im Strömungsquerschnitt des	
Bündels	[mm]
mittlere Natriumgeschwindigkeit im Bündel	[m/s]
mittlere Strömungsgeschwindigkeit im Rechteckkanal	[m/s]
Wandabstand der Heizstäbe	[mm]
normierter Wandabstand	[-]
X-Koordinate der Thermoelementachse	[mm]
Y-Koordinate der Thermoelementachse	[mm]
kinematische Zähigkeit	[m²/s]
	Natriumtemperatur am Bündeleintritt mittlere Bündeltemperatur = 0.5 (TEN + TNO) Bündeltemperatur in Meßebene ME6(MP6) Thermoelement Referenztemperatur = 0.5 (PT3 + PT2) lokale Temperaturdifferenz (Temperaturvariation) am Umfang des Rechteckkanals normierte lokale Temperaturdifferenz maximale azimutale Temperaturdifferenz Strömungsgeschwindigkeit (Wasser, Natrium) benetzter Umfang im Strömungsquerschnitt des Bündels mittlere Natriumgeschwindigkeit im Bündel mittlere Strömungsgeschwindigkeit im Rechteckkanal Wandabstand der Heizstäbe normierter Wandabstand X-Koordinate der Thermoelementachse Y-Koordinate der Thermoelementachse kinematische Zähigkeit

....**.**

. I

13. REFERENZEN

/1/ Möller, R. and Tschöke, H., "Experimental Determination of Cladding Temperature Fields in the Critical Regions of Rod Bundles with Turbulent Sodium Flow and Comparison with Calculations", 6th Int. Heat Transfer Conf., Toronto, Canada, Aug. 7-11, 1978, Vol. 5, pp. 29-34.

· • • •

- Möller, R., Tschöke, H., "Steady-State, Local Temperature Fields with Turbulent Liquid Sodium Flow in Nominal and Disturbed Bundle Geometries with Spacer Grids", Nuclear Engineering and Design 62 (1980) 69-80.
- /3/ Möller, R., Tschöke, H., "Local Temperature Distributions in the Critical Duct Wall Zones of LMFBR Core Elements. Status and Knowledge, Unsettled Problems and Possible Solutions", ANS/ASME/NRC Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Saratoga Springs, New York, October 5-8, 1980, NUREG(CP-0014, Vol. 3 pp. 1871-1881.
- /4/ Möller, R., Tschöke, H., Kolodziej, M., "Messung lokaler Temperaturverteilungen in natriumdurchströmten Stabbündeln - Einfluß von Kastenwandbereich, Abstandshalterbereich und Stabverbiegung", Report KfK-3763, December 1984.
- /5/ Wong, C.-N., Wolf, L., "A 3-D Slug Flow Heat Transfer Analysis of Coupled Coolant Cells in Finite LMFBR Bundles", Massachusetts Institute of Technology, Report No. COO-2245-58TR, Feb. 1978.
- /6/ Slagter, W., Roodbergen, H.A., Dekker, N.H., "Theoretical Investigations of Thermal-Hydraulics of Fast Reactor Fuel Rod Bundles", 6th Int. Heat Transfer Conf., Toronto, Canada, Aug. 7-11, 1978, Vol. 5 pp. 2126-2146.
- /7/ Rehme, K., "Experimental Observations of Turbulent Flow through Wall Subchannels of Rod Bundles", in Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, R.K. Shak, E.N. Ganić, K.T. Yang, Eds., Proc. of the First World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Dubrovnik, Yougoslavia, Sept. 4-9, 1988, pp. 1705-1711.

- /8/ Möller, R., "Temperature and Velocity Measurements in an Electrically Heated 4-Rod Bundle with Sodium Flow (TEGENA-Experiment)", in <u>Pressure and Temperature Measurements</u>, J.H. Kim and R.J. Moffat, Eds., Proc. of an Internat. Symp., Winter Annual Meeting of the ASME, Anaheim, Calif., December 7-12, 1986, New York: ASME, FED-Vol. 44/HTD-Vol. 58, pp. 25-34.
- /9/ Horanyi, S., Krebs, L., "Experimental Investigation of Temperature Fluctuations in the Subchannels of the Sodium Cooled 4 Rod Bundle TEGENA", in <u>Pressure and Temperature Measurements</u>, J.H. Kim and R.J. Moffat, Eds., Proc. of an Internat. Symp., Winter Annual Meeting of the ASME, Anaheim, Calif., December 7-12, 1986, New York: ASME, FED-Vol. 44 / HTD-Vol. 58, pp. 35-44.
- /10/ Möller, R., "Experimental Investigations of Temperature Distributions and Temperature Fluctuations in the Subchannels of the Sodium Cooled 4-Rod Bundle TEGENA 2", in <u>Experimental Heat Transfer, Fluid Mechanics</u> <u>and Thermodynamics</u>, R.K. Shak, E.N. Ganić, K.T. Yang, Eds., Proc. of the First World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Dubrovnik, Yugoslavia, Sept. 4-9, 1988, pp. 302-311.
- /11/ Möller, R., "Measurements of Temperature Distributions and Temperature Fluctuations in the Subchannels of the Sodium Cooled 4-Rod Bundle TEGENA", Fourth Int. Conf. on Liquid Metal Engineering and Technology, Avignon, France, Oct. 17-21, 1988.
- /12/ Möller, R., "Experiment TEGENA 1, Natriumtemperaturen in einem beheizten 4-Stabbündel bei Gleichlast und Schieflast (Teil 1)", KfK-Primärbericht 01.02.23 P 25B, April 1988.
- /13/ Möller, R., Tschöke, H., Kolodziej, M., "Durchführbarkeitsstudie für das experimentelle Vorhaben - Messung von Temperaturfeldern in natriumdurchströmten, vergrößerten Stabbündelgeometrien", KfK-Primärbericht 01.02.23 P 21A, April 1978.
- /14/ Rehme, K., "Experimentelle Untersuchungen der turbulenten Strömung in einem Wandkanal eines Stabbündels", Report KfK-2441, (1977).

I

- /15/ Rehme, K., "Non-Isotropie Eddy Viscosities in Turbulent Flow through Rod Bundles", NATO Advanced Study Institute, Istanbul, Turkey, July 1978, ASI Proceeding Papers.
- /16/ Horanyi, S., Krebs, L., Weinkötz, G., "Measurement and Analysis of Intensity and Transit Time of Temperature Fluctuations in the Sodium Cooled 4-Rod Bundle TEGENA", in Vorbereitung als Beitrag für Fourth Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Karlsruhe, Germany, Oct. 10-13, 1989, Abstract wurde akzeptiert.
- /17/ Horanyi, S., Krebs, L., "Temperature Compensated Miniature Permanent Magnet Probe for Measurements in Liquid Metal", in <u>Experimental Heat</u> <u>Transfer, Fluid Mechanics and Thermodynamics</u>, R.K. Shak, E.N. Ganić, K.T. Yang, Eds., Proc. of the First World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Dubrovnik, Yugoslavia, Sept. 4-9, 1988, pp. 279-285.
- /18/ Möller, R., Tschöke, H., Wiens, E., Demski, A., "Erprobung der TEGENA-Meßeinrichtung mit Messung von Natriumgeschwindigkeiten im Rechteckkanal", KfK-Primärbericht 01.02.23 P 12B, Januar 1985.
- /19/ Müller, St., Thun, G., "Permanentmagnetische Durchflußmesser-Sonde für flüssige Metalle", Report KfK-2479, November 1977.
- /20/ Möller, R., Tschöke, H., Wiens, E., "Messung von Geschwindigkeitsprofilen in der TEGENA-Einlaufstrecke", KfK-Primärbericht 01.02.23P11A, Mai 1984.
- /21/ Neitzel, H.-J., Höschele, E., "BASIC-Rechenprogramme TEGEK1.BAS und TGP1.BAS", persönliche Information.
- /22/ Neitzel, H.-J., Höschele, E., "Fortran-Rechenprogramme THEO.FOR, DISDRU.FOR, PLOTHP.FOR, FINT.FOR, FINTEX.FOR", persönliche Information.

- /23/ Möller, R., "TEGENA A Standard-Experiment for Thermal Hydraulic Measurements in Rod Bundle Geometrics with Turbulent Sodium Flow", in Vorbereitung als Beitrag für Fourth Int. Topical Meeting on Nuclear Reactor Thermal Hydraulics, Karlsruhe, Germany, Oct. 10-13, 1989, Abstract wurde angenommen.
- /24/ Frey, H.H, "Rechnungen mit CIA: Interatom-Version des COBRA II-Programmes von D.S. Rowe, BNWL-1224 (1970)", persönliche Information.
- /25/ Casal, V., Just, W., Kreuzinger, H., Möller, R., "TEGENA-Experiment", PSB-Bericht 1984/I (I. Halbjahresbericht 1984), S. 159-166.
- /26/ Casal, V., "Design of High-Perfomance Fuel Pin Simulators for Thermodynamic Experiments with Nuclear Fuel Elements", Nuclear Technology, Vol. 47, pp. 153-162, January 1980.
- /27/ Möller, R., Tschöke, H., Kolodziej, M., Weber, Hu., "Messung von Temperatur- und Geschwindigkeitsfeldern in natriumdurchströmten Stabbündelgeometrien, TEGENA-Testeinrichtung, Stand Juni 1983", KfK-Primärbericht 01.02.23 P 05A, Dezember 1983.

L

Heater rods			
- Rod diameter:		D = 25.02 mm	
- Wall thickness of th	e rod cladding:	1.5 mm (1.4541)	•
- Thickness of the BN	layer:	1.0 mm	
- Thickness of the cur	rent	1.5 mm	
conductor helical st	rip:	(Ni/Cr 80/20)	
- Diameter of the Mg	O core:	17 mm	
Rectangular channel	with rod bundle		
- Channel width:		118.5 + 0.05 mm	
- Channel depth:		32.4 ± 0.05 mm	
- Corner radius:		RC = 5 mm	
- Mean hydraulic diar	neter of the	DH = 12.21 mm	
bundle:		$(= 4 \times FB/U)$	
- Free flow section in	the bundle:	FB = 1854.44 mm	
- Wall thickness of th	e rectangular channel:	6 mm	
- Pitch to diameter ra	tio of the rod:	P/D = 1.147	
- Wall distance to dia	meter ratio:	W/D = 1.147	
- Length of the rectar	igular channel		
upstream of the bur	ndle: $LC = 20$)64 mm	
- Non-heated rod len	gth: LK = 12	88 mm (= 105 x DH)	
- Heated rod length:	ME1 (MP1): LH = 1	$185 \mathrm{mm}(= 15 \mathrm{x} \mathrm{DH})$	
2	ME2 (MP2): LH = 7	$735 \text{mm} (= 60 \times \text{DH})$	
	ME3 (MP3): LH = 12	$85 \mathrm{mm} (= 105 \mathrm{x} \mathrm{DH})$	
	ME4 (MP4): LH = 18	35 mm (= 150 x DH)	
	ME5 (MP5): LH = 23	85 mm (= 195 x DH)	
	ME6 (MP6): LH = 24	56 mm (= 201 x DH)	

•

TEGENA 1									
Probe S1	А	В	Probe S2	А	В				
TE 11	-0.01723	+ 3.381	TE 21	-0.01114	+ 3.544				
TE 12	-0.01589	+ 3.340	TE 22	-0.01373	+ 3.895				
TE 13	-0.01755	+ 3.509	TE 23	-0.01294	+ 3.778				
TE 14	-0.01833	+ 3.635	TE 24	-0.01533	+ 4.054				
TEN	+ 0.00894	-1.046							
TAS	+ 0.00237	+ 3.268							
		TECE							
,		TEGE	NA 2						
Probe P1	A	TEGE B	NA 2 Probe P2	A	В				
Probe P1 TC 11	A -0.00266	TEGE B + 1.19990	NA 2 Probe P2 TC 21	A + 0.00866	B -0.18800				
Probe P1 TC 11 TC 12	A -0.00266 -0.00631	TEGE B + 1.19990 + 1.43781	NA 2 Probe P2 TC 21 TC 22	A + 0.00866 + 0.00754	B -0.18800 + 0.12422				
Probe P1 TC 11 TC 12 TC 13	A -0.00266 -0.00631 -0.00211	TEGE B + 1.19990 + 1.43781 + 0.31780	NA 2 Probe P2 TC 21 TC 22 TC 23	A + 0.00866 + 0.00754 + 0.00859	B -0.18800 + 0.12422 -0.08488				
Probe P1 TC 11 TC 12 TC 13 TC 14	A -0.00266 -0.00631 -0.00211 -0.00305	TEGE B + 1.19990 + 1.43781 + 0.31780 + 1.01600	NA 2 Probe P2 TC 21 TC 22 TC 23 TC 24	A + 0.00866 + 0.00754 + 0.00859 + 0.00711	B -0.18800 + 0.12422 -0.08488 -0.08183				

TABLE 2Linear equations used for correction
of probe thermocouple signals

ļ

.

|

1

Linear equation: $Y = A \cdot X + B$

. .

.....

CODE	HEATED + + + + 1 2 3 4	FIG.	TEN (C)	DT (K)	RE	PE	UB (m/s)	NB (kW)	QH (W/cm²)
W 03 A 120	·+ + + ·+	20	257	97	23800	139	0.76	159	20
W 03 A 130	+ + + +		266	95	37600	217	1.18	241	31
W 03 A 140	+ + + +		267	93	48900	282	1.53	308	39
W 03 A 150	+ + + +		271	95	62200	356	1.93	394	50
W 03 A 160	+ + + +		270	93	76100	437	2.37	475	60
W 05 A 075 (EXP.1)	+ + + +.	21	255 260 264 264	72 71 72 71	30700 46800 63100 79700	184 279 374 472	1.00 1.52 2.03 2.57	159 236 316 394	20 30 40 50
W 05 B 075 (EXP.2)	+ + + +	22	252 262 265 268	72 71 71 72	30400 47600 63900 80200	184 283 377 471	1.00 1.54 2.05 2.56	157 239 316 398	20 30 40 50

;

.

.

TABLE 3Wall temperatures at different Re-numbers,
TEGENA 1, main parameters

٦

CODE	HEATED + + + + 1 2 3 4	FIG.	TBI (C)	DTC (K)	RE	PE	UB (m/s)	NB (kW)	QH (W/cm²)
M 336	+ + + +	24,25	312	97.1	68100	366	1.97	405	51.4
M 094	+ + + +	24,25	296	78.2	32400	181	0.98	164	20.8
M 080	+ + + +	24,25	293	81.8	16000	89	0.48	84	10.7
M 082	+ + + +		288	88.3	8100	45	0.24	46	5.8
M 085	+ + + +		280	117	3700	21	0.11	28	3.5

Wall temperatures at different Re-numbers, TEGENA 2, main parameters TABLE 4

Fluid temperature- and RMS-profiles, main parameters of retests (Figs. 42-45) TABLE 5

CODE	Re	Pe	UB[m/s]	QH [W/cm ²]	TBI [C]	DTC [K]
M 063	33100	184	1.0	21.8	295	80.5
M 094	32400	181	0.98	20.8	295	78.1
M 408	32700	181	0.98	20.7	300	78.3

Y-coordinates of X-traverses:

L.

Y 11 = Y 12 = 29.43 mmY 21 = Y 22 = 3.13 mmY 14 = Y 13 = 31.48 mmY 24 = Y 23 = 0.47 mm

- -----

TEGENA 1									
CODE	HEATED + + + + 1 2 3 4	FIG.	TEN (C)	DT (K)	RE	PE	UB (m/s)	NB (kW)	QH (W/cm²)
F 10 LWSA	+ +	46	298	6.8	60900	359	1.95	29	7.4
F 25 LWSA	+	47	298	7.0	60500	357	1.94	30	15.0
F 26 LWSA	+	48	298	14.1	30300	178	1.57	29	15.0
F 24 LWSA	+	49	296	13.8	15300	90	0.49	15	7.4
			TE	EGENA	2				
CODE	HEATED + + + + 1 2 3 4	FIG.	TBI (C)	DTC (K)	Re	Pe	UB (m/s)	NB (kW)	QH (W/cm²)
M 094	+ + + +	50	296	78.2	32400		0.98		20.8
M 198	+ - + +	51	318	59.0	33500		0.99		21.0
M 190	+ +	52	334	40.7	33300		0.97	· ;	21.3
M 168	+ + -	53	334	41.8	33000		0.96		21.6

Wall temperatures with different heating TEGENA 1/2, main parameters TABLE 6

-

· · ·

FIG. 1 TEGENA - TEST SECTION

Upper end of the test section

Heater rods and channel segments

Rectangular channel Measuring chamber
FIG. 2 PHOTOS OF THE TEGENA TEST SECTION

— 63 —

Į

- 64 ---

FIG. 5 PHOTOS OF THE MEASURING PROBES

1h

FIG.6 PERMANENT MAGNETIC VELOCITY PROBE

. 1 .

EMBEDDED THERMOCOUPLE

FIG.7 MEASURING CROSS SECTIONS FOR WALL TEMPERATURES

FIG. 8 PITOT PROBE MEASUREMENTS IN WATER FLOW OPEN CHANNEL, X-TRAVERSES, INLET POS. 1

Abb.10 Measuring fields of the velocity probes

I

ΝΟΚΜ. ΥΕLOCITY U/UC

RE=350000/420000/350000

CHANNEL WIDTH X (mm)

FIG. 13 SODIUM VELOCITY, Y-TRAVERSES

Ľ

FIG. 18 TEGENA 1, ISOTHERMAL MEASUREMENTS, TC-DEVIATION VERSUS REFERENCE TEMPERATURE

A/B RE=60100/60200

— 75 —

— 76 —

FIG. 22 DEVELOPEMENT OF THE TEMPERATURE FIELD

--- 77 ---

- 79

I

FIG: 24 THERMAL DEVELOPMENT OF THE FLOW CENTRAL WALL REGION

FIG: 25 THERMAL DEVELOPMENT OF THE FLOW WALL/CORNER REGION

FIG.26 NORMALIZED LOCAL TEMPERATURE DIFFERENCES VERSUS Re-NUMBER IN MEASURING PLANE MP 5

81 ---

- 83 -

I

.

1. L.

— 85 —

---- 87 ----

CURVE	CODE	Re	Pe	UB,m/s	QH,W/cm ²	TBI,C	DTC,K
1	M 102	32000	179	0.97	20.3	294	77 .
2	M 104	16300	91	0.49	10.7	295	80
3	M 106	8100	45	0.24	5.6	291	84

FIG. **41** TEGENA 2 - FLUID TEMPERATURES PROBE 1 TEMP FLUCTUATIONS

- 90 ---

— 93 —

- 94 ----

- 95 -

- 96 -

--- 97 --

— 98 —

- 99 -

-- 100 ---

ONE ROD HEATED

- 101 -

FIG.75 ISOT, HERMS, SC6, P2, TC21, Re=33000, QH=21 W/cm^2

- 106 -

— 107 —

Fig. 78 Calculated subchannel temperature differences for eccentric bundle positions

--- 108 --

ANHANG

• •

INHALT

A1	VERSUCHSEINRICHTUNG
A1.1	Natrium-Prüfstand WÜP II
A1.2	Einlaufstrecke
A1.3	Strömungskanal (Rechteckkanal) und Abstandshalter
A1.4	Begleitheizung und thermische Isolation
A1.5	Heizstäbe
A1.6	Meßkammer und Sonden-Verstelleinrichtung
A2	VORVERSUCHE
A2.1	Heizstaberprobung
A2.2	Erprobung der Meßkammer
	r
FIG. A1	Sodium test rig WÜP II
FIG. A2	Entrance section
FIG. A3	Rectangular flow channel
FIG. A4	Heater rod
FIG. A5	Photos of the measuring chamber
FIG. A6	Temperature profile along the heated surface
FIG. A7	Photo of the heater rod cross section
TAB: A1	TEGENA heater rods
TAB. A2	TEGENA 1, Geometry of heater rod cross section
TAB. A3-A5	Sodium velocities in the rectangular channel

TAB. A6-A56Temperature measurements, TEGENA 1 and 2

A1 VERSUCHSEINRICHTUNG

A1.1 Natrium-Prüfstand WÜP II

Die Experimente wurden in dem Natrium-Prüfstand WÜP II durchgeführt. Es handelt sich dabei um einen geschlossenen Kreislauf (Fig. A1); seine wesentlichen Komponenten sind:

- (1) die Teststrecke;
- (2) die elektromagnetische Pumpe mit einer maximalen Fördermenge von 60 m³/h bei einer Förderhöhe von 3.8 bar ;
- (3) der Erhitzer mit einer Leistung von 120 kW;
- (4) das induktive Volumenstrom-Meßgerät ;
- (5) die Bypaßleitung ;
- (6) zwei parallel geschaltete Natrium/Luft-Wärmetauscher mit einer max.
 Kühlleistung von jeweils 325 kW bei einer Natriumeintrittstemperatur von 320 °C;
- (7) der Natrium-Vorratsbehälter mit einem Inhalt von 2 m³ (6);
- (8) der Ausgleichsbehälter zur Kompensation der Natrium-Volumenänderung und zur Gewährleistung gasfreier Natriumströmung im gesamten Kreislaufsystem;
- die Flüssigmetall-typischen Hilfskreisläufe (Natrium-Reinigung, Inertgas-System usw.).

A1.2 Einlaufstrecke

Der 4-Stabbündel-Teststrecke ist eine Einlaufstrecke zur Erzeugung definierter Strömungsbedingungen am Teststreckeneintritt vorgeschaltet. Die senkrecht stehende Einlaufstrecke (Fig. A2) besteht aus einem thermischen Kompensator mit einer Nennweite von 80 mm (1), einem Einlaufbehälter (2) zur Strömungsberuhigung und einem rechteckigen Einlaufkanal von ca. 1600 mm Länge (= 31 hydraulischen Durchmessern DC; DC ist definiert als der vierfache freie Strömungsquerschnitt des Recheckkanals dividiert durch den benetzten Umfang) mit einem Strömungsgleichrichter an seinem unteren Ende. Die Anströmung der Einlaufstrecke erfolgt über ein U-förmiges Zulaufrohr. Die gemessenen Strömungsverteilungen im Austrittsquerschnitt der Einlaufstrecke ohne und mit Einbauten (Lochplatten bzw. Siebe) sind in Abschnitt 4.1 beschrieben.

A1.3 Strömungskanal (Rechteckkanal) und Abstandshalter

Der Strömungskanal umschließt die vier in Reihe angeordneten Heizstäbe, er ist ca. 4 m lang und hat einen rechteckigen Querschnitt (Fig. A3). Der Rechteckkanal wird aus 550 mm langen Segmenten zusammengeflanscht. In jeder Flanschverbindung ist ein auswechselbarer Abstandshalter eingesetzt. Er besteht aus einem Rahmen mit den Abstandsstiften von 2 mm ø sowie den 3 Stegblechen von 0,5 mm Wandstärke und 10 mm Höhe. Letztere sind in den Spalten zwischen den Heizstäben angeordnet. Der Abstandshalter ist so gebaut, daß er vernachlässigbar kleine Störungen in der Strömung hervorruft. Der innere Querschnitt des Abstandshalterrahmens ist identisch mit dem Querschnitt des Strömungskanals. Es stehen also nur die Abstandsstifte und die drei Stegbleche zwischen den Stäben als unvermeidbare Hindernisse in der Strömung.

Die Kanalsegmente wurden aus gefrästen U-förmigen Halbschalen zusammengeschweißt. Die rundungen in den Kanalecken haben einen Radius von 5 mm. Die Ausführung der Längsschweißnaht hat entscheidenden Einfluß auf die Toleranz der Kanalsegmente. Kleinste Toleranzen wurden mit Elektronenstrahlschweißung erzielt, wobei die Verbindung den in Fig. A3 (Detail "a") eingezeichneten Absatz aufweist. Die Kastensegmente und die Abstandshalter sind in /25/ beschrieben.

	Auße Breite	nmaße Tiefe	Inne Breite B	nmaße Tiefe T
Sollwerte	130,5	44,4	118,5±0,05	32,4 ± 0,05
lstwerte	130,47 ± 0,03	44,39 + 0,05 -0,07	118,5 ± 0,04	32,4 + 0,07 -0,08

Die Vermessung der Kanalsegmente nach der Fertigung ergab folgende Mittelwerte (Istwerte) für die Kanalbreiten und die Kanaltiefen in [mm]:

A1.4 Begleitheizung und thermische Isolation

Die Teststrecke ist mit einer Begleitheizung ausgerüstet, die aus elektrischen Heizstäben von 6 mm Durchmesser besteht. An den rotationssymmetrischen Bauteilen (Meßkammer und Flansche der Strömungskanalsegmente) sind die Heizstäbe jeweils am Umfang und am Meßkammerboden in Form von konzentrischen Ringen angeordnet. Zur möglichst gleichmäßigen Aufheizung der Kanalsegmente zwischen den Flanschen sind mäanderförmig gebogene Heizstäbe in 20 mm Abstand von den großen Kanalflächen installiert. Mit dieser Begleitheizung ist eine gleichmäßige Erwärmung der Teststrecke auf etwa 500 °C möglich. Diese ist zum Ausdestillieren der Natriumreste aus engen Spalten oder Mulden notwendig, bevor die Teststrecke demontiert wird. Vor dem Auffüllen der Teststrecke mit flüssigem Natrium muß diese auf etwa 150 bis 200 °C erwärmt werden. Die Gleichmäßigkeit der durch Strahlung bewirkten Aufheizung bis 500 °C wurde in einem Vorversuch getestet.

Die thermische Isolation der Teststrecke bildet eine 100 mm dicke Schicht aus Glaswolle. Im Bereich des aus acht Segmenten zusammengeflanschten Rechteckkanals ist die Glaswolle in 16 konzentrischen Blechhalbschalen eingeschlossen, die einzeln bündig an den Segmentflanschen eingehängt sind. In diesen Halbschalen sind auch die oben erwähnten mäanderförmigen Strahlungsheizstäbe befestigt (vgl. Fig. 1, unten).

Zwischen den Flanschen der Kanalsegmente entstehen so unterschiedlich dicke Luftschichten zwischen den inneren Halbschalen und dem Rechteckkanal. Die Schichtdicken liegen zwischen 40 und 80 mm, dadurch ergeben sich kleine Unterschiede der thermischen Isolation am Umfang des Rechteckkanals, wie durch isotherme Messungen gezeigt werden konnte (vgl. 6.2).

A1.5 Heizstäbe

In dem 4-Stabbündel simulieren elektrische Heizstäbe die Brennstäbe. Als Heizstabdurchmesser wurde 25 mm als größtmöglicher Durchmesser gewählt, der mit verfügbaren Hämmermaschinen herstellbar war. Die Maßstabsvergrößerung im Vergleich zu Brennstäben von Brutreaktoren beträgt damit etwa 3:1. Dies ermöglicht das detaillierte Messen von Temperaturprofilen zwischen den Stäben. Die mit 2500 mm festgelegte beheizte Länge wurde als ausreichend angesehen, um bei Gleichlast eine weitgehend thermisch eingelaufene Strömung zu erhalten. Als maximale Wärmestromdichte an der Heizstaboberfläche sollten als Dauerbelastung im Versuchsbetrieb 85 W/cm² angestrebt werden. In Anpassung an eine vorhandene Gleichrichter-Hochstromanlage sollte ein Strom/Spannungs-Verhältnis von 1850 A/90 V realisiert werden, das entspricht einem Ohm'schen Widerstand von nur 47 m Ω bei 20 °C.

Da Hochleistungs-Heizstäbe dieser Abmessungen und Anforderungen bisher nicht hergestellt wurden, sollten zwei unterschiedliche Heizstabkonzepte gleichgewichtig und unabhängig voneinander realisiert werden.

Erfolgreich war eine modifizierte Entwicklung des Konzeptes I (Bornitrid-Heizstäbe mit flexiblem Stromleiter und MgO-Kern). Dabei konnte auf eine gezielte Heizstabentwicklung für Flüssigmetallexperimente zurückgegriffen werden /26/. Die Heizstäbe wurden von der Fa. Interatom nach einem vom KfK entwickelten Fertigungsverfahren hergestellt. Der Heizstabaufbau ist schematisch in Fig. A4 dargestellt. Die Wärme wird im Stromleiter, einer dreigängigen Bandwendel, durch Ohm'sche Beheizung erzeugt. Sie fließt über eine ca. 1 mm dicke Isolationsschicht aus Bornitrid-Pulver zur Hülle. Die Bandwendel ist im Inneren zur mechanischen Abstützung mit MgO-Pulver gefüllt. An den Stabenden ist die Bandwendel durch Nickel- und Kupferbolzen verlängert, um die Wärmeentbindung in den sogenannten Kaltenden klein zu halten.

Das Konzept II (Al₂O₃-Heizstäbe von EIR-Würenlingen) führte nicht zum Erfolg. Die entstandenen Probleme sowie Meßergebnisse von Prototypen sind in /27/ beschrieben. Zusammen mit diesem Heizstabkonzept mußte auch der Plan aufgegeben werden, die azimutale Verteilung der Wärmestromdichte in der Heizstabhülle zu messen.

A1.6 Meßkammer und Sonden-Verstelleinrichtung

Die am Kopf der Teststrecke angeordnete zylindrische Meßkammer (Fig. 1, 2) hat einen Innendurchmesser von 500 mm und eine Höhe von 130 mm. Von unten ist der Rechteckkanal so angeflanscht, daß er im Meßkammerboden endet. Auf dem abnehmbaren Deckel der Meßkammer ist eine luftgekühlte Gefrierstopfbuchseinheit angeflanscht. Sie ermöglicht das Drehen von zwei Heizstäben während des Versuchsbetriebes. Ursprünglich war im Versuchsprogramm vorgesehen, mit Hilfe einer Stabdreheinrichtung azimutale Hüllwand-Temperaturprofile in den Meßebenen ME1 bis ME5 zu messen. Auf die dafür erforderliche Instrumentierung der Stabhüllen mit Thermoelementen wurde später jedoch verzichtet, so daß dieser Programmpunkt nicht durchgeführt werden konnte. In der Meßkammer sind seitlich von den langen Kanten des Rechteckkanals zwei gleichartige Meßsonden-Verstelleinrichtungen angeordnet. Diese dienen zur Positionierung von Meßsonden in der Hauptmeßebene ME6. Jede Meßsonden-Verstelleinrichtung besteht aus einem Kreuzschlitten mit spielfreier Kugellagerung. Die Drehbewegung der Schlittenspindeln erfolgt durch lose angekoppelte Antriebswellen über Handräder außerhalb der Meßkammer. Die Abdichtung der Antriebswellen gegen austretendes Natrium erfolgt durch luftgekühlte Natrium-Gefrierstopfbuchsen. Zur Bestimmung der Schlittenposition und damit der Sondenposition werden volle Umdrehungen der Schlittenspindel von einem Zählwerk angezeigt und die Winkelposition der Schlittenspindel durch eine Graduierung neben den Handrädern angezeigt. Parallel dazu werden Umdrehungszahlen und Winkelpositionen der Schlittenspindel als veränderliche Spannungswerte an einem Potentiometer abgegriffen. Das Potentiometer ist über ein mechanisches Getriebe mit der Antriebswelle gekoppelt. Die Potentiometerspannungen werden vom Datenerfassungssystem digital angezeigt und registriert. Die Anzeige für die X- und Y-Koordinaten der Sondenpositionen erfolgt in mm, sie dient zur Kontrolle der mit den Handrädern ausgeführten Sondeneinstellung an der Teststrecke, wo die Anzeige auf der Graduierungsscheibe ebenfalls in mm erfolgt. Ansichten der Meßkammer und der Meßsonden-Verstelleinrichtung zeigt Fig. A5.

A2 VORVERSUCHE

A2.1 Heizstaberprobung

Vor der Serienfertigung von 10 Heizstäben wurden drei Prototyp-Heizstäbe auf ihre Betriebssicherheit getestet /25/.

Die gestellten Anforderungen waren:

- Wärmestromdichte an der Staboberfläche QH \approx 90 W/cm²

- Kühlmitteltemperatur 300 - 500 °C

In einer ersten Testreihe wurden die Stäbe in ruhender Luft stationär auf ein Temperaturniveau von ca. 880 °C hochgeheizt und die vom Heizstab emittierte Wärmestrahlung mit einer Platten-Kamera erfaßt. Die gewonnenen Filmaufnahmen wurden mit einem Densitometer ausgemessen; diese Messung liefert ein Maß für die axiale Temperaturkonstanz an der Heizstaboberfläche. Fig. A6 zeigt als Beispiel die densitometrische Auswertung einer Filmaufnahme über eine Heizstablänge von 920 mm. Mit den eingezeichneten Linien gleicher Temperatur erkennt man, daß örtliche Temperaturabweichungen von weniger als 10 K auftreten. Die maximal bei einem Stab ermittelte Inhomogenität betrug 15 K, dies kann durch eine Inhomogenität im Wärmefluß von etwa 5 % hervorgerufen werden. Unerwünschte örtliche Leistungsvariationen scheinen also klein zu sein. Die ermittelte Leistungskonstanz kann als gut bewertet werden.

In einer zweiten Testreihe wurden die drei Prototyp-Heizstäbe im Natriumprüfstand WÜP II unter verschärften Betriebsbedingungen getestet. Die Stäbe wurden über 24 h bei Vollast mit einer Heizflächenbelastung von 90 W/cm² gefahren; dabei waren die Natriumeintrittstemperaturen ca. 350 °C und die Austrittstemperaturen ca. 520 °C. Zusätzlich wurden 10 Abschaltungen bei Vollast durchgeführt. Zum Ende der Versuchszeit wurde die Heizflächenbelastung kurzzeitig auf 140 W/cm² (~50 % Überlast) bei einer mittleren Natriumaustrittstemperatur von 550 °C erhöht. An einem der drei Stäbe wurde auch die Zentraltemperatur (\triangleq Stromleitertemperatur) gemessen. Sie betrug am Ende der beheizten Zone 800 °C bei 134 W/cm² (Natriumeintrittstemperatur = 370 °C, Natriumaustrittstemperatur = 550 °C). Diese Ergebnisse belegen die Funktionsfähigkeit der untersuchten Heizstäbe bei verschärften Betriebsbedingungen.

Die Einzelerprobung der anschließend gefertigten 10 Serien-Heizstäbe beschränkte sich zunächst auf die Untersuchungen der ersten Testreihe (Aufheizung in ruhender Luft auf 880 °C). Die Ergebnisse waren vergleichbar mit denen der Prototyp-Heizstäbe. In Tabelle A1 sind kennzeichnende Meßdaten der 10 Serien-Heizstäbe zusammengestellt. Vier dieser 10 Stäbe (H1, H2, H3, H4) wurden für das Experiment TEGENA 1 ausgewählt. Es wurde hierfür auf eine Einzelstaberprobung unter verschärften Betriebsbedingungen in Natrium verzichtet. Während der Versuchsserie TEGENA 1 wurden die Stäbe H2 und H3 defekt, so daß sie nicht mehr beheizbar waren. Deshalb wurden für die Versuchsserie TEGENA 2 vier neue Heizstäbe ausgewählt (siehe Tabelle A1) und einzeln unter vollen Betriebsbedingungen (100 W/cm², 500 °C) und mit 20 % Überlast im Natriumkreislauf getestet. Diese Stäbe funktionierten dann im Hauptversuch einwandfrei.

Meßdaten von zwei Querschnitten des Heizstabes H2 aus der Versuchsserie TEGENA 1 sind in Tabelle A2 zusammengestellt. Die maximalen Abweichungen der verschiedenen Schichtdicken vom jeweiligen Mittelwert liegen zwischen 2 und 9 %.

In Fig. A7 ist ein Querschnitt des Heizstabes H2 aus der Versuchsserie TEGENA 1 fotografisch dargestellt. Man erkennt gut die stromführende dreigängige Bandwendel.

A2.2 Erprobung der Meßkammer

Die Meßkammer enthält eine Reihe von Öffnungen für lösbare Verbindungen. Zur Überprüfung aller Abdichtstellen, zur Funktionsprüfung der luftgekühlten Natrium-Gefrierstopfbuchsen sowie zur Funktionsprüfung der beiden Sonden-Verstelleinrichtungen wurde die Meßkammer unter Betriebsbedingungen in strömendem Natrium bis zu Temperaturen von 500 °C über insgesamt 16 Tage erprobt. An sieben Tagen wurden dabei Natriumgeschwindigkeitsprofile im Querschnitt ME6 des offenen Rechteckkanals gemessen (siehe Abschnitt 4.2). Die wesentlichen Testergebnisse und daraus folgende Maßnahmen sind detailliert in /27/ beschrieben.

Detaillierte Angaben zu den beschriebenen Vorversuchen enthalten die Berichte /12,18,20,27/.

FIG.A1 SODIUM TEST RIG WÜP II

- 117 -

- 118 -

FIG. A3 RECTANGULAR FLOW CHANNEL

FIG. A5 PHOTOS OF THE MEASURING CHAMBER

- 120 ---

FIG. A7 PHOTO OF THE HEATER ROD CROSS SECTION

Zuordnung: Diagramme (Hauptteil) / Meßwerte-Tabellen (Anhang)

MAIN PART	CODE	ANNEX	MAIN PART	CODE	ANNEX
Fig. 11 Fig. 12 Fig. 13 Fig. 14	1017250	Tab. A3.1-6 Tab. A4.1-6 <u>Tab. A5.1-6</u> Tab. A6	Fig. 42,43	M063 M094	Tab. A25.1 Tab. A26.1
Fig. 15	101T250 107T250 152T250	Tab. A6 Tab. A6 Tab. A6	<u>—</u> Fig. 44,45	M408 M063 M094	A27.1 Tab. A25.2 Tab. A26.2
Fig. 16	M050 M054 M058	Tab. A7.1 Tab. A7.2 Tab. A7.2	Fig. 46	M408 F10LWSA	Tab. A20.2 Tab. A27.2 Tab. A28
Fig. 17	M038 M295 M296 M297 M298	Tab. A7.5 Tab. A8.1 Tab. A8.2 Tab. A8.3	Fig. 47	F25LWSA F25LWSB F26LWSA F26LWSB	Tab. A29.1 Tab. A29.2 Tab. A30.1 Tab. A30.2
Fi g . 18	101T250 107T250 152T250	Tab. A8.4 Tab. A6 Tab. A6 Tab. A6	Fig. 49 Fig. 50 Fig. 51	F24LWSA F24LWSB M094 M198	Tab. A31.1 Tab. A31.2 Tab. A13.2 Tab. A32
Fig. 19	F04Q12A F04Q12B	Tab. A9.1 Tab. A9.2	Fig. 52 Fig. 53	M190 M168	Tab. A33 Tab. A34
Fig. 20	W03A120 W03A130 W03A140 W03A150 W03A160	Tab. A10.1 Tab. A10.2 Tab. A10.3 Tab. A10.4 Tab. A10.5	Fig. 54 Fig. 55 Fig. 56 Fig. 57 Fig. 58	F31Q12B F37QWSA F35QW4A F30LWSB F32L43A	Tab. A35 Tab. A36 Tab. A37 Tab. A38 Tab. A39
Fig. 21 Fig. 22 Fig. 23	W05A075 W05B075 M336	Tab A11.1-4 Tab A12.1-4 Tab, A13.1	Fig. 59 Fig. 60 Fig. 61	F38LW4A F33D43A F33D43B	Tab. A40 Tab. A41 Tab. A42
Fig. 24,25,26	M336 M094	Tab. A13.1 Tab. A13.2	Fig. 62 Fig. 63	F36D44A F36D44B	Tab. A43 Tab. A44
	M080 M082 M085	Tab. A13.3 Tab. A13.4 Tab. A13.5	Fig. 64	F70K43A F70K43B F70K44A	Tab. A45 Tab. A46 Tab. A47
Fig. 27 Fig. 28 Fig. 29 Fig. 30	F04Q12A F04Q12B F06LWSA F06LWSB	Tab. A14 Tab. A15 Tab. A16 Tab. A17	Fig. 65	F70K44B F71K43A F71K43B F71K44A	Tab. A48 Tab. A49 Tab. A50 Tab. A51
Fig. 31 Fig. 32 Fig. 33 Fig. 34 Fig. 35	M332 M334 M332 M334 M336	Tab. A18.1 Tab. A19.1 Tab. A18.2 Tab. A19.2 Tab. A20.1	Fig. 66 Fig. 67 Fig. 68 Fig. 69	F71K44B s.Fig.64,65 M094 M198 M190	Tab. A52 Tab. 26.2 Tab. A53 Tab. A54
Fig. 36 Fig. 37 Fig. 38 Fig. 39 Fig. 40 Fig. 41	M336 M104 M104 M080 M080 M104	Tab. A20.2 Tab. A21.1 Tab. A21.2 Tab. A22.1 Tab. A22.2 Tab. A21.1	Fig. 72-77	M168 M260 M261 M262 M263 M263 M264	Tab. A55 Tab. A56a Tab. A56b Tab. A56c Tab. A56d Tab. A56e
	M102 M106	Tab. A23 Tab. A24		M265 M266	Tab. A56f Tab. A56g

1984	
(JUNE	
RODS	
HEATER	
TEGENA	
TABLE A1	

į

	R / LH		17.13	17.07	17.25	17.10	17.09	17.29	17.04	17.18	17.25	17.57	17.2		
ENGTH L		NORM.	0.995	0.997	1.002	1.004	0.998	0.995	1.000	1.006	0.998	1.005			
HEATED L (I/		[mm]	2499	2502	2516	2520	2505	2498	2512	2526	2505	2522	2510.5		
	80°C	NORM.	0.991	0.989	1.005	0.998	0.991	1.000	0.991	1.005	1.000	1.026			
ERIMENT	~	[MM]	42.8	42.7	43.4	43.1	42.8	43.2	42.8	43.4	43.2	44.3	43.17		
IRB - EXPI	100°C	NORM.	1.015	0.996	0.994	0.983	0.976	1.000	1.010	066.0	066.0	1.046		OD No)	
	~ ~	[Უɯ]	44.6	43.8	43.7	43.2	42.9	44.0	44.4	43.5	43.5	46.0	43.96	HEATER R	
NCE R	MSON-B)	NORM.	0.989	0.987	1.023	1.009	0.992	0.994	0.985	1.000	0.995	1.025		H4 ()	
V RESISTA	IRB(THO	COLD [mΩ]	40.59	40.5	42.0	41.4	40.7	40.8	40.44	41.02	40.85	42.07	41.03	H3	
ENT-FLOV	ATOM	NORM.	1.001	0.990	1.008	1.001	0.996	0.993	0.990	1.000	0.997	1.026		-H2	
CURRI	INTER/	COLD [mΩ]	42.56	42.08	42.86	42.54	42.35	42.20	42.07	42.50	42.38	43.60	42.51	E-	
	MANUF.	(IA)	S	9	7	80	6	10	1	12	14	16	Ø		J

- 123 -

ł

(MANUE ROD N°, TEGENA 1) (MANUE ROD N°, TEGENA 2)

-95

25

<u>~6</u>

0 4

TABLE A2TEGENA 1, GEOMETRY OF HEATER ROD CROSSSECTION(HEATER ROD H2, PROBE A/N)

Meas.	Claddir	ng Tube	BN-L	ayer	Electrical	Conductor
Pos.	А	N	А	N	А	N
1	1.48	1.36	0.62	0.72	1.35	1.39
2	1.38	1.41	0.67	0.73	1.47	1.39
3	1.35	1.41	0.71	0.75	. 1.46	1.37
4	1.43	1.39	0.59	0.70	1.35	1.37
5	1.41	1.39	0.69	0.73	1.37	1.39
6	1.43	1.47	0.71	0.76	1.36	1.39
7	1.41	1.46	0.62	0.75	1.34	1.40
8	1.47	1.49	0.67	0.73	1.38	1.42
9	1.49	1.45	0.69	0.73	1.35	1.40
Ø.	1.43	1.43	0.66	0.73	1.38	1.39
DAV	+ 0.06 -0.08	+ 0.06 -0.07	+ 0.05 -0.07	+ 0.03 -0.03	+ 0.09 -0.04	+ 0.03 -0.02

DAV = MAXIMUM DIVITATION OF AVERAGE VALUE \emptyset

— 124 —

TAB. A	3.1	GS1, Y =	= 16.35	mm	TAB.	A3.2	GS1, Y	′ = 16.3	35 mm
T = 350	C, UC	= 2.51 m	/s, RE	= 350 000	T = 4	2 0 C, U	C = 2.51 I	m/s,	$RE = 420\ 000$
MS	x	SSP	U	U /UE '	MS	x	SSP	U'	U /U C
	(MM)	(MKV)	(M/S)			(MH)	(НКУ)	(H/S))
1	1.50	23.51	1.90	0.76	1	38.50	37.45	3.02	1.20
2	3.50	27.82	2.25	0.89	2	30.50	36.77	2 97	1.18
3	5.50	29.57	2.39	0.95	3	30.50	14 99	2 99	1.19
4	7.50	30.66	2.48	0.99	4	30.50	36.77	2 96	1.18
5	9.50	32.13	2.59	1.03	5	30.50	30.72	2 97	1.18
6	11.50	33.40	2.70	1.07	6	30.50	36.70	2 96	1.18
7	13.50	34.51	2.79	1.11		30.50	30.07	2 99	1,19
8	15.50	34.81	2.81	1.12		30.50	34 48	2 95	1.17
9	17.50	35.51	2.87	1.14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30.50	36.90	2 98	1.19
10	19.50	35.95	2.90	1.16	10	30.50	36.00	2 98	1 19
11	21.50	36.19	2.92	1.16	11	30.50	36.70	2 96	1.18
12	25.50	36.19	2.92	1.16	12	30.50	36.00	2 97	1.18
13	29.50	36.50	2.95	1.17	13	30.50	36.00	2.77	1 18
14	33.50	36.95	2.98	1.19	14	30.50	36.70	2.7/	1 19
15	37.50	37.30	3.01	1.20	15	38.50	36.05	2.70	1.19
16	41.50	37.58	3.03	1.21	16	38.50	36.67	2.70	1.10
17	45.50	37.76	3.05	1.21	17	38.50	37.85	3.06	1.22
18	49.50	37.89	3.06	1.22	18	38.50	36.63	2.96	1.10
19	53.50	38.27	3.09	1.23	19	38.50	36.75	2.97	1.10
20	57.50	38.35	3.10	1.23	20	38.50	36.87	2.90	1.17
21	61.50	38.01	3.07	1.22	21	38.50	36.67	2.96	1.10
22	65.50	38.24	3.09	1.23	22	38.50	37.05	2.99	1.17
23	69.50	38.18	3.08	1.23	23	38.50	36.86	Z.98	1.19
24	73.50	37.85	3.06	1.22	24	38.50	36.87	Z.98	1.19

TAB. A3.3	GS1, Y = 16	5.35 mm
T = 350 C.	UC = 2.51 m/s.	RE = 350 000

MS	x	SSP	U	u ∕u ≮
	(MM)	(MKV)	(H/S)	
1	1.50	24.01	1.94	0.77
F 2	3.50	27.68	2.23	0.89
3	5.50	29.22	2.36	0.94
4	7.50	30.36	2.45	0.98
5	9.50	32.09	2.59	1.03
6	11.50	32.93	2.66	1.06
7	13.50	34.07	2.75	1.10
8	15.50	34.82	2.81	1.12
9	17.50	35.28	2.85	1.13
10	19.50	35.72	2.88	1.15
11	21.50	35.80	2.89	1.15
12	25.50	36.22	2.92	1.17
13	29.50	36.54	2.95	1.18
14	33.50	37.05	2.99	1.19
15	37.50	37.17	3.00	1.20
16	41.50	37.57	3.03	1.21
17	45.50	37.79	3.05	1.22
18	49.50	37.90	3.06	1.22
19	53.50	38.08	3.07	1.22
20	57.50	38.23	3.09	1.23
21	61.50	38.33	3.09	1.23
22	65.50	38.44	3.10	1.24
23	69.50	38.23	3.09	1.23
24	73.50	38.27	3.09	1.23

-

.

RE = 420 000

U./UE

0.78 0.86 0.92 0.96 1.00 1.05

1.09

1.09 1.12 1.14 1.16 1.16 1.17 1.19 1.20

1.20 1.22 1.21 1.23 1.22 1.23 1.23 1.23 1.22

1.21

TAB. A	<u>3.4</u> C	552, Y = 1	6.35 i	mm	TAB. A	43.5	GS2, Y =	= 16.35	mm
T = 350	C, UC =	= 2.51 m/s,	RE	= 350 000	T = 42	0 C, UC	= 2.51 m	/s, RE	= 42
MS	x	SSP	U.	U	MS	x	SSP	Ľ	U ./U
	(MM)	(MKV)	(M/S)			(MM)	(MKV)	(M/S)	
1	117.60	23.67	1.91	0.76	1	117.60	24.12	1.95	0.7
2	115.60	20.40	2.13	0.85	2	115.60	26.65	2.15	0.8
3	113.60	27.94	2.20	0.90	3	113.60	28.66	2.31	0.93
4	111.60	29.96	2.42	0.96	4	111.60	29.75	2.40	0.90
2	109.60	30.83	2.49	0.99	5	109.60	31.07	2.51	1.00
<u>•</u>	107.60	32.56	2.63	1.05	6	107.60	32.53	2.63	1.0
	105.60	33.85	2.73	1.09	7	105.60	33.77	2.73	1.09
8	103.60	34.79	2.81	1.12	8	103.60	34.74	2.80	1.12
9	101.60	35.24	Z.85	1.13	9	101.60	35.43	2.86	1.14
10	99.60	35.77	2.89	1.15	10	99.60	35.92	2.90	1.16
11	97.60	35.85	2.89	1.15	11	97.60	36.14	2.92	1.14
12	93.60	36.51	2.95	1.17	12	93.60	36.34	2.93	1.17
13	89.60	36.90	2.98	. 1.19	13	89.60	36.91	2.98	1.19
14	85.60	37.70	3.04	1.21	14	85.60	37.33	3.01	1.20
15	81.60	38.10	3.08	1.23	15	81.60	37.93	3.06	1.22
16	77.60	38.35	3.10	1.23	16	77.60	37.66	3.04	1.21
17	73.60	38.26	3.09	1.23	17	73.60	38.13	3.08	1.21
18	69.60	38.55	3.11	-1.24	18	69.60	37.81	3.05	1 22
19	65.60	38.93	3.14	1.25	19	65.60	38.37	3 10	1 21
20	61.60	38.97	3.15	1.25	20	61.60	38.37	3 10	1 2 1
21	57.60	38.99	3.15	1.25	21	57 60	38 18	3.08	1 7 7
22	53.60	38.94	3.14	1.25	22	53.60	38 03	3.03	1 7
23	49.60	38.65	3.12	1.24	23	49 40	17 41	3.07	1.20
24	45.60	38.42	3.10	1.24	24	47.00	37.03	3.04	1.551
					. 4	49.00	21.11	3.05	1.21

TA	B. A3.6	GS:	2,	Y = '	16.35 n	nm	
÷	250.0	 _					_

I = 350 C, $UC = 2.51$ m/s, RE = 350 00

MS	x	SSP	U	U::/U C
	(MM)	(MKV)	(M/S)	
1	117.60	23.92	1.93	0.77
2	115.60	26.91	2.17	0.87
3	113.60	28.35	2.29	0.91
4	111.60	29.46	2.38	0.95
5	109.60	31.31	2.53	1.01
6	107.60	32.52	2.63	1.05
7	105.60	33.48	2.70	1.08
8	103.60	34.45	2.78	1.11
9	101.60	35.15	2.84	1.13
10	99.60	35.39	2.86	1.14
11	97.60	35.88	2.90	1.15
12	93.60	36.45	2.94	1.17
13	89.60	36.86	2.98	1.19
14	85.60	37.36	3.02	1.20
15	81.60	37.64	3.04	1.21
16	77.60	38.01	3.07	1.22
17	73.60	38.25	3.09	1.23
18	69.60	38.23	3.09	1.23
19	65.60	38.14	3.08	1.23
20	61.60	38.71	3.13	1.25
21	57.60	38.46	3.11	1.24
22	53.60	38.09	3.08	1.23
2 3	49.60	38.17	3.08	1.23
24	45.60	38.18	3.08	1.23

GS1 Y=24.35mm UC=2.51m/s, RE=350000

U:

(M/S)

1.92

2.17 2.28 2.37 2.44

2.50

2.55

2.55 2.58 2.56 2.55 2.57 2.59

2.60

2.64

2.67 2.70 2.71 2.73 2.75 2.75 2.74 2.75

2.72

2.72

2.75

UYZUC

0.76

0.87 0.91 0.94 0.97

0.99

1.02

1.03 1.02 1.02 1.02 1.03

1.04

1.05

1.07

1.08 1.08 1.09 1.09 1.09 1.09

î.09

1.08

1.10

SSP

(MKV)

23.74

26.92 28.26 29.32

30.24

30.92

31.57

31.92 31.73 31.58 31.84

32.09

32.26

32.65

33.12

33.42 33.69 33.76 34.04

33.96

34.01

33.74

33.71

34.08

<u>TAB.</u> T=350	<u>44.1</u> C, UC	GS1 Y= =2.51m/s	16.35mm , RE=350000	<u>TAB.</u> T=350	<u>44.2</u>) C, υ
MS	x	SSP	U: U%/U K	MS	x
	(88)	(MKV)	(M/S)		(MM)
1 2	1.50	22.53	1.82 0.72 2.08 0.83	. 1 2 3	1.50 3.50 5.50
3 4 5	5.50 7.50 9.50	27.10 27.75 28.80	2.19 0.87 2.24 0.89 2.33 0.93	4	7.50
6 7 8	11.50 13.50 15.50	30.16 31.31 31.99	2.44 0.97 2.53 1.01 2.58 1.03	6 7 8	11.50 13.50 15.50
9	17.50	32.46	2.62 1.04 2.65 1.06	9 10 11	17.50 19.50 21.50
12	25.50	33.41 34.13	2.70 1.07 2.76 1.10	12	25.50
14 15 16	33.50 37.50 41.50	34.37 34.56 34.85	2.78 1.11 2.79 1.11 2.81 1.12	15	37.50
17.	45.50 49.50 53.50	35.14	2.84 1.13 2.89 1.15	17 18 19	45.50 49.50 53.50
20 21	57.50	35.84	2.89 1.15 2.89 1.15	20 21 22	57.50 61.50
2 2 2 3 2 4	65.50 69.50 73.50	35.94 35.76 35.44	2.90 1.16 2.89 1.15 2.86 1.14	2 3 2 4	69.50 73.50

TAB. A4.3	GS1	Y=28.	.35mm
T=350 C,	UC=2.51m,	/s,	RE=350000

MS	x	SSP	U	U5/U8
	сннэ	(MKV)	(M/S)	
1,	1.50	23.53	1.90	0.76
2	3.50	27.04	2.18	0.87
3	5.50	28.49	2.30	0.92
4	7.50	29.08	2.35	0.94
5	9.50	29.58	2.39	0.95
6	11.50	29.88	2.41	0.96
7	13.50	29.97	2.42	0.96
8	15.50	30.08	2.43	0.97
9	17.50	30.17	2.44	0.97
10	19.50	29.82	2.41	0.96
11	21.50	29.97	2.42	0.96
12	25.50	29.75	2.40	0.96
13	29.50	30.40	2.45	0.98
14	33.50	31.08	2.51	1.00
15	37.50	31.31	2.53	1.01
16	41.50	31.43	2.54	1.01
17	45.50	31.51	2.54	1.01
18	49.50	31.49	2.54	1.01
19	53.50	32.03	2.59	1.03
20	57.50	32.00	2.58	1.03
21	61.50	31.81	2.57	1.02
22	65.50	31.88	2.57	1.03
23	69.50	31.90	2.58	1.03
24	73.50	31.72	2.56	1.02

TAB.	A4.4	GS2 Y:	=16.35m	m	TAB.	<u>A4,5</u>	GS2	Y=8.35mr	n
T=35	0 C, U	C=2.51m/s	s, RE=	350000	T=35	Ο C,	UC=2.51m	/s, RE=	=350000
MS	x	SSP	U.S	UTZUE	MS	x	SSP	Ur	UGZUE
	(MM)	(MKV)	(M/S)			(MH)	(HKV)	(M/S)	
1	117.60	23.05	1.86	0.74	1	117.60	24.09	1.95	0.77
2	115.60	25.21	2.04	0.81	2	115.60	26.42	2.13	0.85
3	113.60	27.13	2.19	0.87	3	113.60	27.88	2.25	0.90
4	111.60	27.91	2.25	0.90	4	111.60	29.07	2.35	0.94
5	109.60	29.14	2.35	0.94	5	109.60	29.82	2.41	0.96
6	107.60	30.49	2.46	0.98	6	107.60	30.48	2.46	0.98
7	105.60	31.64	2.55	1.02	7	105.60	30.84	2.49	0.99
8	103.60	31.70	2.56	1.02	8	103.60	31.17	2.52	1.00
9	101.60	32.28	2.61	1.04	9	101.60	31.36	2.53	1.01
10	99.60	32.94	2.66	1.06	10	99.60	31.32	2.53	1.01
11	97.60	33.21	2.68	1.07	11	97.60	31.55	2.55	1.01
12	93.60	33.59	2.71	1.08	12	93.60	31.59	2.55	1.02
13	89.60	33.84	2.73	1.09	13	89.60	31.99	2.58	1.03
14	85.60	34.12	2.75	1.10	14	85.60	32.48	2.62	1.04
15	81.60	34.53	2.79	.1.11	15	81.60	32.91	2.66	1.06
16	77.60	34.70	2.80	1.12	16	77.60	33.40	2.70	1.07
17	73.60	35.04	2.83	1.13	17	73.60	33.65	2.72	1.08
18	69.60	35.22	2.84	1.13	18	69.6D	33.95	2.74	1.09
19	65.60	35.18	2.84	1.13	19	65.60	33.71	2.72	1.08
20	61.60	34.98	2.82	1.13	20	61.60	34.01	2.75	1.09
21	57.60	35.18	2.84	1.13	21	57.60	33.97	2.74	1.09
22	53.60	35.11	2.83	1.13	22	53.60	34.02	2.75	1.09
23	49.60	35.11	2.83	1.13	23	49.60	34.19	2.76	1.10
24	45.60	34.79	2.81	1.12	24	45.60	34.06	2.75	1.10

TAB. A4.6 GS2 Y=4.35mm T=350 C, UC=2.51m/s, RE=350000

MS	x	SSP	U'	u ∕u€
	(MM)	(MKV)	(M/S)	
1	117.60	23.80	1.92	0.77
2	115.60	26.15	2.11	0.84
3	113.60	27.46	2.22	0.88
4	111.60	27.88	2.25	0.90
5	109.60	28.48	2.30	0.92
6	107.60	28.59	2.31	0.92
7	105.60	28.90	2.33	0.93
8	103.60	28.80	2.33	0.93
9	101.60	28.78	2.32	0.93
10	99.6D	28.65	2.31	0.92
11	97.60	28.70	2.32	0.92
12	93.60	29.00	2.34	0.93
13	89.60	29.43	2.38	0.95
14	85.60	30.22	2.44	D.97
15	81.60	30.47	2.46	0.98
16	77.60	30.76	2.48	0.99
17	73.60	30.83	2.49	0.99
18	69.60	30.98	2.50	1.00
19	65.60	30.98	2.50	1.00
20	61.60	31.02	2.50	1.00
21	57.60	31.26	2.52	1.01
22	53.66	31.03	2.51	1.00
23	49.60	31.26	2.52	1.01
24	45 60	31 14	2 51	1 00

 <u>TAB.</u> T=350	<u>A5.1</u> D C, UC	GS1 X: =2.51m/s	=59.55m s, RE=	m ∋350000
MS	Y	SSP	U.	U./UC
	(мм)	(484)	(H/S)	
1	31.20	30.25	2.44	0.97
2	27.20 27.20	32.13	2.59	1.03
4	25.20	33.70	2.72	1.38
5	23.20	. 55 اذ	2.79	1.11
6	21.23	35.43	2.95	1.14
7	19.20	35.02	5-8-	1.15
8	17.20	35.84	2.89	1.15
9	15.20	35.72	2.09	1.15
10	13.20	34.87	2.32	1.12
11	11.20	33.78	2.73	1.00
12	9.20	32.57	2.43	1.05
13	9.20	32.57	2.03	1.05

.

TAB. A 5.2	GS1	X=31.	.55mm
T=350 C,	UC=2.51	m/s,	RE=350000

MS	Y	5 S P	U	U./U C
	(89.)	(HKV)	(M/S)	
1	31.20	28.06	2.27	U.9U N.97
3	27.20	31.01	2.50	1.00
5	23.20	33.35	2.69	1.07
7 8	19.20	34.52	2.79	1.11
9 10	15.20	34.33	2.77	1.10
11	11.20	32.73	2.64	1.05
13	9.20	31.:5	2.5	1.02

<u>TAB.</u> T=350	15.3 C, UC	GS1 X= =2.51m/s	3.55mm , RE=	350000	<u>TAB.</u> T=350	15.4 C, UC	GS2 X= 2.51m/s	59.55mm , RE=3	n 350000
MS	Y	4 Z Z	U:	U'.70 C	MS	Y	S SP	U ^r	ປ .7ປຮ
	(אא)	(887)	(4/3)			(MM)	(HKV)	(M/S)	
1	31.20	25.50	2.0,	0.82	1	3.50	30.37	2.45	0.98
2	29.20	25.74	2.16	0.86	2	3.50	30.37	2.45	0.9%
3	27.20	20.90	2.17	U.87	3	5.50	31.47	2.57	1.03
4	25.20	26.76	2.15	0.86	4	7.50	33.03	2.72	1.09
5	23.20	20.47	2.14	0.85	5	· .50	34.57	2.79	1.11
6	21.20	25.75	2.03	0.93	6	11.50	35.29	2.85	1.1-
7	19.20	25.55	2.01	0.82	7	13.50	35.85	2.89	1.15
8	17.20	25.97	2.10	J.8+	8	15.50	36.07	2.91	1.16
9	15.20	20.19	2.11	0.8-	9	17.50	35.58	2.87	1.14
10	15.20	24.45	2.14	0.85	10	19.50	34.95	2.82	1.12
11	11.2.)	24.95	2.13	U.H7	11	21.50	34.0.	2.75	1.02
12	4.20	27.38	2.21	0.33	12	23.50	32.86	2.65	1.06
13	7.20	25.80	2.15	0.86	13	25.50	32.63	2.63	1.05

TAB.	A5.5	GS2 X=	87.55m	n -	<u>tab.</u>	15.6	GS2 X=1	15.55	mm
T=35(DC, UC	=2.51m/s	, RE=	350000	T=350	C, U(C=2.51m/s,	, RE=	350000
нs	÷ Y	SSP	U [.]	ປ. /ປະ .	мs	Y	S SP	U.	U'./U C
	(нн)	(HKV)	(8/5)			(MM)	(HKV)	(M/S)	
1	1.50	27.03	2.18	3.97	1	1.50	23.67	1.91	3.76
2	50. ذ	29.0-	2.34	0.93	2	3.50	25.51	2.05	0.8
- 3	5.50	30.51	2.44	0.98	Э	5.50	25.96	2.10	U.8-
••	7.50	31.75	2.50	1.02	4	7.50	25.96	2.04	0.83
5	9.50	32.80	25	1.0,	5	9.50	25.70	2.03	0.83
6	11.50	33.79	2.73	1.09	6	11.50	25.21	2.04	0.91
7	13.50	34.16	2.76	1.10	7	13.50	257	1.92	0.79
8	15.50	34.13	2.76	1.10	8	15.50	2 56	1.98	0.79
ÿ	17.50	34.24	2.70	1.10	9	17.50	291	2.01	0.80
10	19.50	33.39	2.70	1.07	10	14.50	25.36	2.05	0.82
11	21.50	32.47	2.0-	1.05	11	21.50	25.75	2.05	J.83
12	23.50	31.28	2.53	1.01	12	23.50	23.69	1.71	0.76
13	23.50	31.23	2.53	1.01	13	25.50	22.41	1.81	0.7%

TAB. A6 TEGENA 1, ISOTHERMAL MEASUREMENTS, TC-DEVIATIONS OF REFERENCE TEMPERATURE

101T250.DAT

TRF	248.1	248.1	248.1	300.6	300.6	300.6	348.4	348.4	348.4	393.6	393.6	393.6
ABW	-0.68	0.55	0.97	-1.53	-0.06	1.05	-2.22	-0.65	1.09	-3.10	-1.29	0.89
3WU(L)	0.12	0.27	1.15	0.13	0.40	1.68	0.17	0.47	2.02	0.22	0.53	2.50
ABW0 Af	0.22	0.27	0.45	0.28	0.40	0.57	0.33	0.51	0.77	0.41	0.57	0.98
BW3	-0.33	06.0	1.32	-1.13	0.34	1.45	-1.92	-0.35	1.39	-2.70	-0.89	1.29
PT3 A	247.70	247.70	247.70	300.20	300.20	300.20	348.10	348.10	348.10	393.20	393.20	393.20
BW2	-1.03	0.20	0.62	-1.93	-0.46	0.65	-2.52	-0.95	0.79	-3.50	-1.69	0.49
PT2 A	248.40	248.40	248.40	301.00	301.00	301.00	348.70	348.70	348.70	394.00	394.00	394.00
MIT(L)	247.37	248.60	249.02	299.07	300.54	301.65	346.18	347.75	349.49	390.50	392.31	394.49
L	1.00	2.00	3.00	1.00	2.00	3.00	1.00	2.00	3.00	1.00	2.00	3.00

107T250.DAT

-	MIT(L)	PT2 /	ABW2	PT3 4	ABW3	ABWO	3WU(L)	ABW	TRF
1.00	247.26	248.50	-1.24	247.90	-0.64	0.23	0.14	-0.94	248.2
2.00	248.63	248.50	0.13	247.90	0.73	0.23	0.21	0.43	248.2
3.00	248.91	248.50	0.41	247.90	1.01	0.42	1.13	0.71	248.2
1.00	301.85	303.80	-1.95	303.40	-1.55	0.30	0.21	-1.75	303.6
2.00	303.44	303.80	-0.36	303.40	0.04	0.38	0.34	-0.16	303.6
3.00	304.42	303.80	0.62	303.40	1.02	0.59	1.58	0.82	303.6
1.00	353.33	356.10	-2.77	355.80	-2.47	0.36	0.24	-2.62	356.0
2.00	355.11	356.10	-0.99	355.80	-0.69	0.50	0.48	-0.84	356.0
3.00	356.71	356.10	0.61	355.80	0.91	0.76	2.00	0.76	356.0
1.00	395.84	399.80	-3.96	399.20	-3.36	0.42	0.31	-3.66	399.5
2.00	398.00	399.80	-1.80	399.20	-1.20	0.56	0.54	-1.50	399.5
3.00	400.06	399.80	0.26	399.20	0.86	0.92	2.68	0.56	399.5

152T250.DAT

										-		_	_		
TRF	247.2	247.2	247.2	319.9	319.9	319.9	354.7	354.7	354.7	399.4	399.4	399.4	297.1	297.1	297.1
ABW	-0.71	0.74	1.13	-2.26	-0.25	1.18	-2.72	-0.93	0.70	-3.66	-1.78	0.51	-1.99	-0.42	0.45
BWU(L)	60.0	0.33	1.07	0.14	0.51	1.89	0.19	0.51	2.29	0.29	0.64	2.60	0.15	0.37	1.72
ABWO	0.18	0.26	0.53	0.25	0.46	0.78	0.36	0.46	0.69	0.43	0.58	0.83	0.28	0.31	0.55
ABW3	-0.61	0.84	1.23	-2.01	0.21	1.43	-2.47	-0.68	0.95	-3.46	-1.58	0.71	-1.84	-0.27	0.60
PT3 /	247.10	247.10	247.10	319.60	319.60	319.60	354.40	354.40	354.40	399.20	399.20	399.20	296.90	296.90	296.90
ABW2	-0.81	0.64	1.03	-2.51	-0.29	0.93	-2.97	-1.18	0.45	-3.86	-1.98	0.31	-2.14	-0.57	0.30
PT2 /	247.30	247.30	247.30	320.10	320.10	320.10	354.90	354.90	354.90	399.60	399.60	399.60	297.20	297.20	297.20
MIT(L)	246.49	247.94	248.33	317.59	319.81	321.03	351.93	353.72	355.35.	395.74	397.62	399.91	295.06	296.63	297.50
L	1.00	2.00	3.00	1.00	5.00	3.00	00.1	5.00	3.00	1.00	5.00	3.00	00.1	5.00	00.0

L= 1 : 4 Thermocouples of Probe 51 L= 2 : 4 Thermocouples of Probe 52 L= 3 : 126 Wall Thermocouples MIT(L) : Average Value of TC-Group ABW(L): Devitation of MIT(L) from PT2 or PT3 TRF= 0.5× (PT2 + PT3) ABW = 0.5× (ABW(2) + ABW(3))

-- 130 ---

_																_						_	
A7.3			KP5 C	402.1	402.0	402.2	402.4	402.7	401.8	402.2	401.6	401.8	401.7	401.8	401.8	401.8	402.0	402.6	402.8	402.4	102.3	401.7	401.8
TAB.	, 1967 KO58. DAT TAB. Eratures HP1/2/3/4/5	0 K 0 N/cm^2 0 N/cm^2	KP4 C	401.80	401.64	402.20	402.30	402.81	402.79	402.04	402.11	401.40	401.66	401.59	401.59 401 50	401.83	402.27	402.44	402.53	402.56	402.37	402.20	401.85
58.DAT		= 17545.	KP3 C	401.80	402.04	401.90	402.65	402.60	402.79	402.74	402.01	401.59	401.80	401.62	40.7 DE	401.94	402.58	402.63	402.39	402.57	402.56	402.34	401.62
,1987 H O		DTC BTC BTC CH2 CH4	MP2 C	101.662 01.991	01.286	01.662	02.250	02.837	02.767	02.414	02.156	01.803	01.780	01.803	01.897	01.803	01.991	02.602	02.532	02.579	02.438	01.803	01.944
2 JON10	MALL TEMPI Inerter 1	402.3 C .48 m/s .0 W/c .0 W/c	HP1 C	402.13 4	101.97	402.56 4	402.72	402.65	403.10	402.67	402.18 4	401.52 4	401.66 4	101.97	402.09 401.80 4	402.37 4	402.67	402.88 4	402.77 4	403.03 4	402.39 4	402.37 4	402.06 4
17:08:3; Bgena 2 - 1, Hannel Peri	181	4 s	11.00 25 20	33.40	09.40 66.60	81.00	95.30	00.10	138.40	152.70	163.90	185.90	194.10	230.30	241.50	255.90	270.20	284.60	298.90	313.30	327.60	338.80	
7.2	F 0		2	50.8 50.6	50.7	50.8	50.9	51.2	50.7	50.8	50.4	50.8	50.6	20.8	50.0	50.7	50.7	51.1	51.3	50.9	50.8	50.4	50.6
AB. A		2∎~2 2∎~2	C Nb	63 51 3		89 33 33	. 89 3	28 3	28 3	11 3	.97 3	44 3	10		51 51 5	13	99 3	.01 3	.04 3	.08	. 39	. 89 3	63 3
14	12:58:28 JUNIO,1987 B054.DAT T. Trgena 2 - Hall Tenperatures Channel Periberter bp1/2/3/4/5	.0 K .0 H/c .0 H/c	MP4 C	350.	350.	350.	350.	351.	351.	350.	350.	350.	350.	350.	350	350.	350.	351.	351.	351.	350.	350.	350
HO54.DAT		TBI = 351.4 C DTC = 0B = .49 m/s Re = 166 0A1 = .0 M/cm ² 2 0H2 = 0A3 = .0 M/cm ² 2 0H4 =	MP3 C	350.63 351:08	350.85	350.66	351.28	351.16	351.32	351.39	350.89	350.63	350.87	350.70	351 01	350.82	351.28	351.18	350.94	351.18	351.18	351.06	350.47
0,1987			NP2 C	350.584 350.918	350.250	350.584	351.013	351,466	351.347	351.204	351.061	350.799	350.894	350.894	350.942	350.799	350.823	351.299	351.204	351.275	351.228	350.727	350.870
:28 JUNI			KP1 C	351.01 350.75	350.94	351.42	351.58	351.35	351.70	351.39	351.01	350.56	350.63	351.01	350 80	351.20	351.39	351.49	351.42	351.66	351.30	351.32	351.11
12:58			c P	11.00	33.40	55.4U 66.60	81.00	95.30	109.70	128.40	152.70	163.90	185.90	194.10	208.30	241.50	255.90	270.20	284.60	298.90	313.30	327.60	338.80
A7.1			ups c	301.6 301.5	301.6	301.6	301.6	301.9	301.8	301.6	301.2	301.5	301.4	301.5	3 105	301.4	301.5	301.8	301.9	301.7	301.6	301.3	301.4
TAB.	1361 DUDU. JAT 1.40. 4 RATURES P1/2/3/4/5	0 K 0 N/cm ² 2 0 N/cm ² 2	MP4 C	301.49 301.44	301.37	301.44 301.64	301.56	301.88	301.88 301 66	301.47	301.64	301.20	301.42	301.35	301.27	301.47	301.68	301.68	301.68	301.76	301.64	301.66	301.49
50.DAT		DTC =	HP3 C	301.42 301.80	301.61	301.35	301.78	301.73	301.85	302.00	301.59	301.32	301.49	301.37	301.37 301 66	301.49	301.85	301.76	301.49	301.71	301.68	301.66	301.20
1987 NO			HP2	01.297 11.575	00.983	677.10 911.11	01.490	11.853	01.780	11.805	11.660	11.442	11.490	01.515	11.521	11.466	01.442	11.805	11.611	11.660	11.611	11.273	11.466
JUNIO,19 LL TRNPERA LERTER MP1	01.8 C .48 m/s .0 m/ci .0 m/ci	1	1.56 31	1.49 31	1.78 3(1.80 31	1.61 3(1.97 30	1.95 30	1.73 30	1.37 31	1.47 30	1.76 31	1.76 31	1.88 30	1.90 30	1.95 30	1.76 3(1.93 3(1.54 31	1.73 30	1.56 31	
09:54:04	NA 2 - HA NEL PERIN	BI = 3 B = 6 H1 = 1 H3 = 1	CR	.00 30 20 30	10	.60 30	.00 30	.30 30	.70 30	.40 30	.70 30	.90 30	.90 30	.10 30	30 30	.50 30	90 30	.20 30	.60 30	.90 30	.30 30	.60 30	.80 30
	TEGE CHAN		C P	11		99	81	35	109	138	152	163	185	194	208	241	255	270.	284	298	313	327	338

,

- 131 -

TAB. A8.2 2296.3 2296.2 2296.4 2296.9 2296.9 2296.9 2296.9 2296.0 2296.0 2296.1 2296.1 2296.1 2296.1 2296.2 2296.1 2296.2 20000000000000000000000 MP5 C .0 K = 29859. = .0 W/cm^2 .0 M/cm^2 296.06 295.94 295.94 295.94 2295.94 296.03 296.15 296.15 295.19 295.70 295.70 205.70 2 296.49 296.37 296.10 296.54 296.64 RP4 296.08 296.13 296.15 296.15 296.69 296.66 296.66 296.66 296.64 296.74 295.74 295.74 295.74 295.74 296.08 296.03 296.54 296.56 296.42 296.60 296.64 296.52 295.96 08:07:20 JUL09,1987 M296.DAT KP3 C CHANNEL PERIMERTER MP1/2/3/4/5 DTC Re QH2 QH4 **FEGENA 2 - WALL TEMPERATORES** 296.008 295.742 295.742 295.942 295.984 296.419 296.419 296.517 296.517 295.887 295.887 295.911 295.911 295.911 295.911 295.984 295.984 295.984 296.589 296.541 296.565 296.565 296.265 296.226 296.250 .0 W/cm^2 .0 W/cm^2 HP2 C . .97 m/s 296.4 C 296.30 296.10 296.27 296.29 296.69 296.69 296.42 296.42 296.42 296.42 296.18 296.18 296.18 296.00 295.72 295.74 296.03 296.30 296.52 296.71 296.93 296.52 296.56 296:35 295.91 296.71 HP1 C 11 11 11.00 25.20 33.40 55.40 66.60 81.00 95.30 124.00 124.00 152.70 152.70 163.90 163.90 163.90 185.90 264.50 241.50 241.50 270.20 284.60 270.20 284.60 338.80 338.80 TBI QBI QBI **0**-5 8 294.0 293.9 294.0 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.1 294.2 294.2 294.3 204.3 TAB. A8.1 KP5 C .0 W/cm^2 .0 W/cm^2 293.54 293.64 293.98 294.05 294.48 294.53 294.57 294.07 294.07 293.95 293.95 293.81 293.95 294.02 294.35 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.36 294.37 294.36 294.37 294.36 294.37 294.36 294.37 294.36 294.37 294.36 294.37 207.20 20 293.69 293.59 ₩P4 C .0 K = 14813. 293.69 93.83 93.73 94.39 94.44 94.63 294.41 294.58 294.12 293.83 294.00 293.81 293.81 294.15 294.05 94.46 94.46 94.27 94.42 94.36 294.15 93.81 07:40:59 JUL09,1987 M295.DAT 11 • • БР3 С CHANNEL PERIMERTER MP1/2/3/4/5 DTC Re QH4 QH4 TEGENA 2 - WALL TEMPERATURES 294.485 294.485 294.218 293.903 294.024 294.073 294.073 294.073 294.097 294.533 293.636 293.915 293.370 293.612 293.709 294.242 294.655 294.630 294.485 94.485 294.388 293.927 .48 m/s .0 M/cm² .0 M/cm² HP2 C 294.5 C 294.48 294.78 294.78 294.65 294.65 294.65 293.76 294.07 294.07 294.78 294.78 294.78 294.78 294.44 284.78 294.44 284.12 294.44 284.12 294.44 294.78 294.44 294.78 294.44 294.78 294.44 294.78 294.78 294.78 294.78 294.78 204.44 204.78 204.44 204.78 204.44 204.78 204.44 204.58 204.44 204.58 204.44 204.58 204.44 204.58 20 294.02 293.81 294.00 294.04 C BP1 н .. 124.00 152.70 152.70 153.90 185.90 185.90 184.10 2241.50 2241.50 2241.50 225.90 225.90 228.90 313.30 313.30 338.80 338.80 11.00 25.20 33.40 55.40 66.60 81.00 95.30 109.70 .80 7BI 0B 0B 0B3 ດ. ເງ

--- 132 ---
87 8298.DAT TAB.

TAB. A8.4

08:45:49 JUL09,1987 M298.DAT

TAB. A8.3

H297.DAT

08:22:51 JUL09,1987

298.0 298.0 298.2 298.2 298.2 298.3 298.0 298.0 297.9 207.9 207.00 C RP5 .0 W/cm^2 .0 W/cm^2 297.78 297.76 297.66 297.95 297.95 297.88 298.19 298.19 297.88 297.76 297.51 297.51 297.51 297.71 297.95 297.95 297.95 297.95 297.95 297.97 297.71 20 297.76 297.97 ₽4 . 0 =120048. 297.73 298.12 297.90 297.76 297.73 298.14 298.10 297.85 297.78 298.19 298.05 298.24 297.61 297.66 297.61 297.93 297.76 298.07 298.05 297.83 298.01 298.10 298.05 297.59 41 KP3 C CHANNEL PERIMERTER MP1/2/3/4/5 DTC Re QH2 QH4 FEGENA 2 - WALL TEMPERATURES 297.757 297.563 297.684 297.684 297.660 297.947 297.975 297.975 297.999 297.926 297.394 297.588 297.539 298.047 297.975 298.023 297.926 297.830 298.168 297.684 297.781 297.660 297.733 297.805 .0 W/cm^2 .0 W/cm^2 KP2 C 297.9 C 3.87 m/s 298.29 297.88 297.88 297.84 298.17 298.17 298.02 297.83 298.12 297.93 297.56 297.93 297.83 297.66 297.93 297.97 298.12 298.05 297.83 298.05 97.88 297.61 298.24 C III 11.00 25.20 33.40 55.40 66.60 95.30 109.70 138.40 163.90 185.90 81.00 194.10 208.30 230.30 241.50 241.50 270.20 284.60 313.30 313.30 313.30 338.80 338.80 TBI 0B 0H1 0H3 СP g 297.2 297.2 297.3 297.3 297.7 297.6 297.2 297.2 296.8 297.0 297.0 297.1 297.1 297.1 297.1 297.4 297.1 297.1 237.5 297.7 297.4 297.3 296.9 297.1 C RF5 .0 W/cm^2 .0 W/cm^2 296.79 296.84 297.13 297.13 297.50 297.50 297.16 296.94 296.87 297.04 297.13 296.65 296.84 296.82 296.84 296.72 296.72 297.21 297.25 297.25 297.35 297.16 296.92 297.21 HP4 C .0 K = 60287. 296.92 297.30 297.06 296.96 297.40 297.38 297.52 297.33 297.47 296.82 296.75 297.08 296.96 296.94 297.04 296.77 296.94 297.35 297.33 297.13 297.34 297.35 297.25 21.36 •• E B DTC Re QH2 QH4 296.842 297.097 296.576 296.794 296.818 297.133 297.496 297.424 297.278 297.303 297.133 296.867 296.939 296.915 296.746 296.988 296.915 296.939 297.351 297.327 297.278 297.254 296.963 012 BP2 C

CHANNEL PERIMERTER MP1/2/3/4/5 **FEGENA 2 - WALL TEMPERATURES** .0 W/cm^2 .0 W/cm^2 6. 297.2 C 1.95 m/s 296.89 297.05 297.07 297.50 297.50 297.62 297.62 297.18 297.42 297.13 296.70 296.77 297.08 297.04 296.84 297.18 297.33 297.45 297.40 297.04 297.59 297.18 97.08 297.30 C RI н. п 11.00 25.20 33.40 55.40 66.60 81.00 95.30 109.70 24.00 138.40 163.90 185.90 194.10 208.30 230.30 241.50 241.50 255.90 270.20 284.60 288.60 288.90 313.30 327.60 338.80 TBI 0B 0B1 0B3 с Ъ a

— 133 —

TEGENA 1 WALL TEMPERATURE

....

TRB. A9.1

F04912A.DA	11					
RE = 60.1 UB = 1.9 QH3 = 49.3 TEN =256.6	E+03 21 (M/S) 36 (W/CM^) 57 (C)	PE 9H1 2) 9H4 TAS	=352.36 = 50:35 = 50.71 =353.11	MS (W/CM^2) QH2 (W/CM^2) NB (C) TNM	= 3.12 = 49.96 =395.50 =304.26	(KG/S) (N/CN^2) (KH) (C)
CP (MM) 11.00 25.20 33.40 55.40	ME0 (C) 258.32	ME1 (C) 262.63 265.74 262.53 260.87	ME2 (C) 279.86 286.03 280.93 279.95	ME3 (C) 298.67 305.22 299.32 299.35	ME4 (C) 317.35 324.05 318.21 318.31	ME5 (C) 337.84 344.58 338.20 339.25
55.40 80.95 95.30 109.53 124.00	258.37	265.59 261.63 264.22 261.21 263.27 261.95	285.40 279.91 284.36 277.03 281.73	306.95 300.94 305.39 299.19 303.26 297.75	327.54 321.46 326.05 318.53 323.91	348.25 342.24 347.42 335.88 344.29
152.70 153.90 185.90 194.10 208.30 230.30	258.42	264.95 262.26 262.39 264.93 264.93 261.85 241.80	277.74 284.96 279.88 279.74 284.11 278.45 279.30	304.74 298.19 297.60 302.73 297.60 298.30	316.27 325.67 317.11 316.75 322.49 316.60	337.42 345.10 337.62 336.62 342.48 336.76
241.50 255.85 270.20 284.55 298.90	258.66	261.63 261.63 263.07 260.72 263.69	285.91 279.32 282.97 276.25 281.24	306.40 300.70 303.33 297.25 302.22	325.64 321.24 324.34 316.22 323.50	346.32 340.97 344.29 338.01 341.74
313.25 327.60 338.80	258.27	261.24 264.81 262.14	277.98 284.60 280.64	298.13 304.69 298.47	319.10 325.39 317.68	340.85 344.94 337.31

TEGENA 1 WALL TEMPERATURE

TAB. A9.2

F04012B.DAT

RE	= 60,2E+(03	PΕ	=353.01		hS	=	3.12	(KG/S)	
UB	= 1.92	(M/S)	QHI	= 49.39	(W/CM^2)	QH2	=	49.01	(W/CM^2)	
QH3	= 48.43	(W/CM^2)	QH4	= 49.75	(W/CM^2)	NB	=3	88.00	(KW)	
TEN	=257.76	(C)	TAS	=352.72	(C)	TNM	=3	04.36	(C)	

CP	ME()	ME 1	ME2	ME3	ME4	ME5
(MM)	(0)	(C)	(C)	(C)	(C)	(C)
11.00		263.45	280.36	298.80	317.22	337.43
25.20	259.42	266,34	286.17	305,12	323.86	344.19
33,40		263.14	281.14	299.41	318,13	337.88
55.40		261.57	280.41	299.56	318.21	338.91
66.60		265.24	285.86	307.26	327.53	348.08
80.95	259.46	262.52	280.65	301.61	322.03	342.61
95.30		264.95	285.05	305.86	326.47	347.41
109.65		252.04	277.71	299.72	318.74	337.21
124.00		263.92	282.19	303.52	323.95	344.33
138.35	259.59	262.57	278.22	298.03	318.54	339.43
152.70		265.65	285.37	304.83	325.85	344.81
153.90		263.04	280.43	298.42	317.36	337.52
185.90		263.09	280.29	298.13	316.98	336.85
194.10	259.44	265.68	284.67	303.38	322.75	342.83
208.30		262.60	278.97	298.05	316.95	336.99
230.30		262.55	279.83	298.61	315.86	338.02
241.50		265.12	286.51	306.61	325.71	346.98
255.85	259.71	262.33	280.00	301.10	321.41	341.27
270.20		263.89	283.64	303.79	324.72	344.76
284.55		251.47	276.95	297.57	316.69	338.41
298.90		264.43	281.65	302.26	323.47	341.94
313.25 、	259.37	261.99	278.54	298.20	318.85	340.65
327.60		265.68	285.18	304.80	325.23	344.64
338.80		262.84	281.25	298.90	317.75	337.21

10.2		(KG/S) (W/CM^2) (KW) (C)	MES	(0)	351.21	356.25	352.06	74.7CC	353.92	355.85	346.49	10.955	355.16	349.90	349.32	353.54	349.49	31.VLS	357.57	355.45	348.97	353.52	351.54	355.78	351.21
AB. A		<pre>1.91 = 1.91 = 30.40 = 240.61 = 313.66</pre>	ME4	(<u></u>	330.92	335, 25	331.37	11.100	333.70	335.49	328.42	333.00	336.14	329.41	328.93	332.67	328.52	716 07	332,55	334.61	328.45	333.34	330.39	335.80	331.06
6		NS 1/CH^2) 0H 1/CH^2) 0H	ME3	(C)	312.19	316.02	311.85	717.64	313.25	314.91	306.98	311.81	315.30	309.80	309.39	312.96	309.18	20.01C	312.14	313.73	307.71	311.69	309.18	315.90	311.98
ERATURE		=217.20 = 30.63 (\ = 30.82 (\ = 361.91 (C	ME2	(C)	293.48	296.00	292.10	272.01 795. RA	291.83	294.28	286.98	CZ.172	295.35	290.96	291.01	293.89	289.53	705 AT	270.50	293.48	288.12	291.52	289.43	296.73	293.63
NALL TENPE		PE = PE = 1^2) 0.H1 = 1^2) 0.H4 = TAS =	WEI	(0)	274.06	275.62	272.91	275.52	272.03	274.25	270.96	272 08	275.33	272.23	272.81	274.79	272.08	70 226	271.52	273.38	270.77	273.33	271.94	276.30	273.33
(EGENA 1)7=100(K)	DAT	7.6E+03 1.18 (M/S) 0.04 (M/C) 5.41 (C)	MEO	(C)		267.59			267.74			17 140	10-107			267.15			767.54				267.71		
	W03A130.	RE = 37 UB = 1 QH3 = 30 TEN =266	5	(MM)	11.00	25.20	33.40 55 AA	04.60 64.40	80.95	95.30	109.65	178 75	152.70	163.90	185.90	194.10	208,30	00.002	255.85	270.20	284.55	298.90	313.25	327.60	338.80
01		(KG/S) (W/CM^2) (KW) · · · · · · · · · · · · · · · · · · ·	ME5	(C)	346.68 740 07	347.08	347.49	351.44	347.65	248.89 741 73	347.44	345.77	348.18	344.46 701 - 7	10 247	744.15	344.81	346.99	345.65	347.58	343.12	347.32	346.77	349.87	346.58
B. A1		= 1.23 2 = 20.07 =158.95 M =304.92	ME4	(C)	C4 CZS	125.64	326.17	330.68	326.77	52/.65 777 41	326.41	324.80	328.57	525.41	20.020 205 AD	372.35	322.61	327.27	324.58	525.86	21.53	326.50	325.86	329.67	325.62
4		S H R N																		.,	0				
		u/cm^2) u/cm^2) c)	ME3	(C)	305.82	105 AU	305.97	309.64	305.80	09.005	304.76	303.60	307.08	502.92	207,00 705 AA	302:15	302.95	306.85	303.79	304.52	300.09 3	304.59	304.73	509.25	50.75
ERATURE		=135.39 = 20.23 (W/CM^2) = = 20.37 (W/CM^2) = =354.27 (C)	ME2 ME3	(C) (C)	286.42 305.82 287 00 300 55	285.21 305.40	285.57 305.97	288.00 309.64	284.45 305.80	284.04 503.60 279 22 X00 48	283.02 304.76	282.12 303.60	286.64 307.08	283.55 502.92 207 70 702 44	00.307 00.007 705 07	281.73 307:15	282.48 302.95	285.52 306.85	281.87 303.79	283.67 304.52	279.66 300.09 3	283.67 304.59	283.50 304.73	288.92 309.25	286.61 505.75
WALL TEMPERATURE		PE =139.39 0H1 = 20.23 (W/CM^2) 1^2) 0H4 = 20.37 (W/CM^2) 1^8 =354.27 (C)	HEI NEZ ME3		265.83 286.42 305.82 247 07 297 00 300 55	241142 242142 242142 242142 242141 202140	264.41 205.57 305.97	266.15 288.00 309.64	264.14 284.45 305.80	264.83 284.04 303.60 241.47 270.22 300.48	263.12 283.02 304.76	262.63 282.12 303.60	265.81 286.64 307.08	263.78 283.55 302.92 24 26 267 76 70 24	201.11 205.00 001.00 211.07 205.07 705.00	263.36 281.73 302.15	243.34 282.48 302.95	264.19 285.52 306.85	262.11 281.87 303.79	263.85 283.67 304.52	261.48 279.66 300.09 3	263.95 283.67 304.59	263.63 283.50 304.73	26/.1/ 288.92 309.25	265.07 286.61 305.73
TEGENA 1 WALL TEMPERATURE)1=100(K)	DAT	3. BE+03 FE =139.39 0.76 (N/S) BH1 = 20.23 (W/CM^2) 1 0.86 (W/CM^2) QH4 = 20.37 (W/CM^2) 1 0.85 (C) TAS =354.27 (C)	NEO NEI NEZ ME3	(C) (C) (C) (C)	265.83 286.42 305.82 257 54 347 07 287 90 308 55	245.37 285.21 305.50	264.41 205.57 305.97	266.15 288.00 309.64	257.78 264.14 284.45 305.80	264.83 284.04 303.60 241.47 279.22 700.48	263.12 283.02 304.76	257.41 262.63 282.12 303.60	265.81 286.64 307.08	202.72 283.55 302.92 24.20 507 70 702.42	201102 101101 111107 101100 00100 001001 111100	263.34 281.73 302.15	243.34 282.48 302.95	264.19 285.52 306.85	257.58 262.11 281.87 303.79	263.85 283.67 304.52 3	261.48 279.66 300.09 3	263.95 283.67 304.59	257.76 263.63 283.50 304.73	267.17 288.92 309.25	265.07 286.61 305.73

. -

- 135 -

7E D1	GENA 1 A	HALL TEN	•EKATURE	. ,	TAB. A	10.3			TEGENA 1 DT=100(K)	WALL TEMPE	RATURE	TAI	3. A10.	
W03A140.E	AT							W03A150	.DAT					
RE = 48. UB = 1. DH3 = 38. TEN =266.	9E+03 53 (M/S) 48 (W/CM ⁴ 62 (C)	PE 0H1 '2) 0H4 TAS	=282.39 = 39.22 = 39.50 =360.66	(W/CM^2) (W/CM^2) (C)	MS = 2.49 GH2 = 38.94 NB =308:24 TNM =313.16	P (KG/S)		RE = 6: UB = DH3 = 4: TEN =27	2.2E+03 1.93 (M/S) 9.13 (W/C) 0.72 (C)	PE = 0H1 = 1^2) 0H4 = 1^2 1A5 =	356.43 50.14 (W 50.46 (M 365.91 (C	/CM^2) 01	5 = 3.14 12 = 49.76 1 = 593.77 1 = 317.97	(KG/S) (W/CM^2) (KW) (C)
CP (MM)	ME0 (C)	ME1 (C)	HE2 (C)	ME3 (C)	ME4 (C)	ME5 (C)		CP (NN)	ME0. (C)	(C) HEI	ME2 (C)	ME3 (C)	ME 4 (C)	ME5 (C)
11.00		273.87	292.0	1 309.9	3 328.14	347.88		11.00		277.06	294.74	312.99	331.37	351.21
23.40 33.40	268.05	272.14	295.9	0 313.6 B 308.6	3 328.00	355.69		25.20	272.01	278.54	297.70	317.83	337.43	358.23
55.40		271.63	290.6	8 309.4	8 328.43	348.67		55.40		274.47	247.73	317.39	331.33	1/ 1CT
66.60		274.60	294.1	2 316.0	8 336.65	356.50		66.60		278.42	297.99	320.14	340.68	361.15
80.95	268.21	271.65	290.4	8 311.8	2 332.17	352.10		80.95	272.06	274.86	292.71	314.51	335.30	355.71
95.30		274.34	294.5	6 315.2	4 335.12	354.95		95.30		278.01	298.45	319.25	339.39	359.42
C3.701		277.15	286.9	6 306.4	6 326.90	344.28 757 A5		109.65		274.67	290.31	309.97	330.45	348.04
138.35	768.38	711.87	287.91	a.010 a	0 377.74 77.74	348.87 348.83		124.00	14 050	276.86	294.69	315.32	335.95	357.02
152.70		275.24	294.70	0 314.1	3 334.42	353.19		152.70	10.2/2	778.66	CZ.172	318.45	338.96	357.78
163.90		272.04	289.8	3 308.2	7 327.09	347.14		163.90		275.35	292.88	311.47	330.37	350.23
185.90		272.56	289,9	7 307.6	4 326.58	346.59		185.90		275.69	292.76	310.53	329.58	349.63
194.10	268.16	274.97	293.5	4 311.9	6 331.21	351.67		194.10	271.91	278.35	297.12	315.66	335.04	355.64
208.30		14.112	288.6	4 50/./ 5 700 0	6 326.49 0 72/07	546./b		208.30		275.23	291.40	310.58	329.26	349.59
00'0CZ		L1 . 7 / 7	0.70%		70.070 D	765 00		230.30		275.18	292.59	311.42	329.82	350.49
241.JU	12,076	11.412	10 000	/ 112 0	17 121 05 121 05	00.CCC		241.50		277.69	299.13	319.63	339.25	359.39
00 0CC	CC 007	NO.112	10.70%	0.11.0 717 1		00.0L0		255.85	272.25	275.01	292.56	313.88	334.58	354.40
210.20 701 55		270 DE	1.072	1.010 E	75.666 1 75.405 0	7/ °CCC		270.20		276.72	296.61	317.08	338.27	358.59
00 00C		10.0/2	A /07		70,020 0	740.14		284.55		274.21	290.45	309.93	330.39	350, 28
218.7U		40.017	14.072	0 307.6		84.000		298.90		277.06	294.60	313.88	335.59	355.35
CZ . CI C	268.09	2/2.04	A . 882	1 30/.1	B 52/.54	548.50 757 74		313.25	272.03	275.11	291.28	309.66	330.34	351.54
720.00		11.0/2	710.1	1.010 1	7 004.10	H/ .000		327.60		279.30	300.14	318.57	338.03	357.63
33 6. BU		212.72	241.4	6 307.1	Y 528.30	548. Ib	· .	338.80		276.09	294.86	312.77	331.59	351.35

0.5		(K6/S)	(W/CM^2)	(KM)	(C)		MES	(2)	347.82	356.14	348.85	349.23	359.73	353, 85	357.35	345.27	355, 52	350.23	355, 57	347.27	346.37	352.90	346.30	347.44	357.11	351.47	356.16	347.16	352.71	348.63	355.35	348.11
B. A1	n ' -	= 3.85	: = 59.94	=474 78	=316.02	:	ME4	(C)	328.11	335.61	328.71	328.76	339.54	333.31	337.38	327.90	334,37	329.07	337.24	327.73	326.70	332.67	326,31	327.11	337.31	331.69	335.64	327.39	333.29	327.49	336.14	328.54
¥		SM	/CM^2)_0H2	/CM^2) NB	INI (ME3	(C)	310.05	316.41	309.42	310.07	319.34	312.55	317.01	307.68	314.00	308.82	316.24	309.15	308.16	313.61	308.00	308.96	317.80	311.20	314.46	307.20	311.69	307.01	316.36	309.76
ERATURE		-437.15	= 60.49 (W	: 60.88 (W	:364.15 (C		ME2	(2)	292.17	296.85	290.50	291.37	297.38	290.91	297.00	288.41	293.60	289.19	296.51	291.16	290.48	295.25	289.36	290.28	297.60	290.38	294.26	288.17	292.71	288.85	297.58	291.98
WALL TEMFE		μE	EH1 =	1^2) QH4 =	TAS =		MEI	(C)	275.28	277.32	274.16	272.96	277.37	273.77	276.23	273.25	275.60	273.96	277.06	274.28	274.13	276.91	273.96	273.64	276.47	273,86	275.11	272.84	275.55	273.64	277.40	274.25
EGENA 1 (T=100(K)	DAT	• 1E+03	.37 (M/S)	.23 (W/C)	.63 (D)		MEO	(C)		271.18			-	271.28				271.25				271.18				271.45	-		·	271.21		
- 0	M03A160.	RE = 76	UB = 2	GH3 = 29	TEN =269	· .	сь Г	(HH)	11.00	25.20	33.40	55.40	66.60	80.95	95.30	109.65	124.00	138.35	152.70	163.90	185.90	194.10	208.30	230.30	241.50	255.85	270.20	284.55	298.90	313.25	327.60	338.80

•

and a second second

	TEGENA 1 17=75(K) E	MALL TEMPE XP 1	ERATURE	F.I	AB. A1	ΞI		1.0	EGENA 1 4 T=75(K) E)	VALL TEMPE (P 1	RATURE	5	4B. A11	~
405A075.	DAT							N05A075.	DAT					
RE = 3(UB = 1 DH3 = 15 TEN =254	1, 7E+03 1, 00 (M/S) 1, 79 (W/CM	PE = 0H1 = ^2) 0H4 = TAS =	=184,46 = 20,22 (= 20,33 (= 327,21 ()	W/CM^2) W/CM^2) C)	MS = 1.64 DH2 = 20.02 NB =158.62 TNM =291.07	(KG/S) (W/CM^2) (KW) (C)		RE = 46 UB = 1 QH3 = 29 TEN =260	.BE+03 .52 (M/S) .46 (W/CM' .06 (C)	PE = 0 0H1 = 0 1A5 = 1A5 =	279.06 30.06 (N 30.23 (N 331.87 (C	M (CM^2) 0 (CM^2) N	5 = 2,48 42 = 29.80 8 =235.99 NM =295.72	(KG/S) (₩/CM^2) (KW) (C)
4	MEO	MEI	ME2	ME3	MEA	MES		٩	MED	HE I	ME 0	HC 7	MF4	ΝES
(HH)	(C)	(C)	(C)	(<u>)</u>	(C)	(C)		(NN)	(C)	10	1 (1)	(C)	(C)	(C)
11.00		260.47	274.83	289.26	303.81	319.60		11.00	į	264.68	277.90	292.07	305.16	321.62
25.20	255.89	261.05	276.69	292.05	306.71	322.87		25.20	261.16	266.56	281.63	296.24	310.40	325.92
33.40		259.44	274.03	289.16	304.03	320.04		33.40		264.26	277.95	292.22	306.57	321.91
55.40		259.03	274.42	289.48	304.49	320.57		55.40		263.04	277.73	292.39	306.76	322.71
66.60		261.40	277.00	293,50	309.32	324.99	-	66.60		266.78	281.68	297.72	313.06	328.78
80.95	256.11	259.56	274.61	290.96	306.57	322.30		80.95	261.33	264.07	278.17	294.28	309.75	325.40
95.30		261.01	275.91	292.22	308.30	324.41		95.30		265.93	280.83	296.70	312.40	328.52
109.65		258.44	271.57	288.07	303.84	317.85		109.65		263.58	275.42	292.17	307.17	320.93
124.00		259.81	274.42	290.66	306.78	322.80		124.00		265.02	279.17	295.08	310.93	326.67
138.35	255.67	259.47	273.05	288.77	304.61	320.64		138.35	261.33	264.17	277.15	292.51	307.92	323.69
152.70		261.42	276.78	291.95	308.06	322.75		152.70		266.05	281.00	296.31	312.00	326.50
165.90 185.90		25.962	273.96	287.99	305.11	518.78 718.54		163.90		263.58	276.83	290.74	305.24	320.97
194.10	255.42	261.28	275.98	290.54	305.55	321.62		194,10	261.08	265.80	20.972	294,16	308-84	324.24 324.24
208.30		259.56	273.13	288.26	303.04	319.00		208.30		263.82	275.93	290.52	304.97	320.54
230.30		259.76	274.20	289.11	303.26	319.36		230.30		263.99	277.34	291.51	305.21	321.05
241.50		261.08	277.64	293.33	308.21	323.95		241.50		265.24	281.31	296.97	311.78	327.27
255.85	255.91	259.52	274.65	290.95	306.11	321.26		255.85	261.52	263.77	277.59	293.91	309.27	324.24
270.20		260.62	275.76	291.32	307.07	322.82		270.20		265.27	280.63	296.14	311.75	326.91
284.55		258.29	271.25	287.17	302.63	319.24		294.55		263.28	275.42	292.29	307.03	323.11
298.90		260.62	274.59	290.35	306.64	321.77		298.90		265.93	280.51	295.73	311.51	325.47
313.25	256.11	259.25	273.64	289.26	305.09	321.09		313.25	261.28	263.72	277.22	292.61	308.14	324.34
327.60		262.04	277.90	292.75	308.09	323, 02		327.60		266.61	281.87	296.48	311.78	326.24
338.80		259.83	274.93	289.04	303.88	319.35		338.80		264.07	278.29	291.83	306.25	321.24

— 138 —

.

TAB. A DT=75(K) EXP 1 W05A075.DAT	$\label{eq:relation} FE = 79.7E+03 \qquad FE = 472.15 \qquad MS = 4.19 \\ UB = 2.57 (M/S) \qquad QH1 = 50.21 (W/CM^2) \qquad QH2 = 49.79 \\ QH3 = 49.22 (W/CM^2) \qquad QH4 = 50.52 (W/CM^2) \qquad NB = 394.25 \\ TEN = 263.58 (C) \qquad TAS = 335.22 (C) \qquad TNN = 298.86 \\ \end{tabular}$	CP MEO MEI MEZ MEA MEA	(NW) (C) (C) (C) (C)	11.00 267.41 279.29 293,16 307.07	25.20 264.85 269.86 284.85 278.95 312.84	33.40 267.49 280.41 293.70 307.51	55.40 265.68 279.19 293.45 307.58	00.6V 244.95 264.97 279.51 294.95 310.62	95.30 268.78 283.06 298.81 314.55	109.65 266.85 277.98 294.98 308.83	124.00 268.56 282.77 298.25 313.73	138.35 264.87 266.97 279.07 294.28 309.53	152.70 269.39 283.91 299.19 315.10	163.90 266.49 278.29 292.00 306.13 185.90 244.88 270 14 202.07 105.72		194.10 264.73 268.95 282.99 296.89 310.96	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 292.80 306.15	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 292.80 306.15 241.50 268.44 284.30 299.63 314.35	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 277.61 291.85 305.72 230.30 266.75 277.61 291.85 305.72 231.50 266.75 279.19 291.85 306.15 231.50 266.72 268.44 284.30 297.63 314.35 255.85 265.02 266.71 278.80 294.76 310.19	194.10 264.73 268.95 282.99 296.89 310.96 208.30 206.41 277.68 291.85 305.72 230.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 292.80 306.15 231.50 266.44 284.30 299.63 314.35 241.50 266.71 278.80 299.63 314.35 255.85 265.02 266.71 278.80 294.76 310.19 270.20 268.27 283.01 298.18 313.99	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 292.80 306.15 230.30 266.75 279.19 299.63 314.35 241.50 268.44 284.30 299.63 314.35 255.85 265.02 266.71 278.80 294.76 310.19 270.20 268.27 283.01 294.76 310.19 270.20 268.27 283.01 294.76 310.19 270.20 268.27 281.01 294.16 310.19 284.55 266.27 281.01 294.16 310.19	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 291.85 305.72 231.50 266.75 279.19 292.80 306.15 241.50 266.71 278.80 299.63 314.35 255.85 265.02 266.71 278.80 294.76 310.19 270.20 266.27 266.27 283.01 299.48 315.99 270.20 266.27 256.21 283.01 298.40 316.45 294.55 266.27 278.12 294.16 308.40 298.90 298.28 214.52 298.40	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 291.85 305.72 230.30 266.75 279.19 291.85 306.15 241.50 266.44 284.30 299.63 314.35 255.85 265.02 266.71 278.80 294.76 310.19 270.20 266.21 278.10 298.18 313.99 294.55 266.26.82 266.27 278.10 298.18 313.99 298.90 298.88 283.33 298.48 314.52 313.25 264.85 266.66 279.46 314.52	194.10 264.73 268.95 282.99 296.89 310.96 208.30 266.61 277.68 291.85 305.72 230.30 266.75 279.19 292.80 306.15 241.50 266.71 279.19 299.63 314.35 255.85 265.02 266.71 278.80 204.15 314.35 270.20 266.71 278.80 299.63 314.35 270.20 266.71 278.80 294.16 310.19 294.55 264.85 266.27 278.10 298.48 314.52 291.55 264.85 266.66 277.46 310.19 270.20 268.27 278.12 294.16 310.19 271.25 264.85 266.66 277.46 294.46 314.52 377.60 278.17 278.12 294.16 310.09 377.60 276.45 279.46 310.09 377.60 279.46 210.09 279.46 310.09
A11.5	3.31 (KG/S) 39.91 (N/CM^2) 15.93 (KW) 99.64 (C)	4 · ME5) (C)	8.96 324.32	4.31 329.50	9.51 324.51	4.27 52.24 4 01 777 10 4	3.06 328.83	6.28 332.62	0.24 323.96	4.45 330.22	0.98 326.69	5.73 330.10	7.75 323.45 7.80 322.45	2.53 327.63		7.58 322.95	7.58 322.95 7.80 323.57	7.58 322.95 7.80 323.57 5.35 330.87	7.58 322.95 7.80 323.57 5.35 330.87 2.05 327.13	7.58 322.95 7.80 323.57 5.35 330.87 2.05 327.13 5.47 330.63	7.58 322.95 7.80 323.57 5.35 330.87 5.35 330.87 2.05 327.13 5.47 330.63 0.07 326.33	7.58 322.95 7.80 322.57 5.35 330.87 2.05 327.13 5.47 330.63 0.07 326.33 5.13 328.44	7.58 322.95 7.80 323.57 5.35 330.87 5.47 330.63 6.47 330.63 0.07 326.33 6.13 328.44 0.82 327.08	7.58 322.95 7.80 323.57 5.35 330.87 5.47 330.63 5.47 330.63 6.07 326.33 5.13 328.44 0.82 327.08 0.82 327.08
TAB. A11.3	MS = 3.31 (KG/S) CM^2) QH2 = 39.91 (N/CM^2) CM^2) NB =315.93 (KW) TNM =299.64 (C)	ME3 ME4 ME5	(C) (C) (C)	294.93 308.96 324.32	300.21 314.31 329.50	295.30 309.51 324.51	295.08 309.3/ 325.54	297.36 313.06 328.83	300.50 316.28 332.62	295.81 310.24 323.96	298.83 314.45 330.22	295.47 310.98 326.69	300.02 315.73 330.10	293.43 307.75 323.45 293.50 107.80 122.78	297.82 312.53 327.63		293.33 307.58 322.95	293.33 307.58 322.95 294.23 307.80 323.57	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87 296.61 312.05 327.13	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87 296.61 312.05 327.13 299.63 315.47 330.63	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87 296.61 312.05 327.13 299.63 315.47 330.63 295.56 310.07 326.33	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87 296.61 312.05 327.13 299.63 315.47 330.63 299.27 315.47 326.33 299.27 315.13 328.44	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87 300.57 315.35 330.87 296.61 312.05 327.13 297.55 315.47 330.63 297.55 315.47 330.63 297.55 316.07 326.33 297.27 316.13 328.44 295.55 310.07 326.33 295.53 310.07 326.33 295.32 310.082 327.08	293.33 307.58 322.95 294.23 307.80 323.57 300.57 315.35 330.87 296.61 312.05 327.13 299.63 315.47 330.65 295.56 310.07 326.33 295.32 310.82 327.08 295.32 315.23 329.64
RATURE TAB. A11.3	=373.63 MS = 3.31 (K6/S) = 40.22 (W/CM^2) QH2 = 39.91 (W/CM^2) = 40.47 (W/CM^2) NB =315.93 (KW) =335.94 (C) TNM =299.64 (C)	MEZ ME3 ME4 ME5	(C) (C) (C) (C)	280.70 294.93 308.96 324.32	285.69 300.21 314.31 329.50	281.29 295.30 309.51 324.51	280.53 295.08 309.5/ 325.54	281.14 297.36 313.06 328.83	284.62 300.50 316.28 332.62	278.76 295.81 310.24 323.96	283.02 298.83 314.45 330.22	280.12 295.47 310.98 326.69	284.52 300.02 315.73 330.10	279.56 293.43 307.75 323.45 280.44 293.50 107.80 122.78	283.55 297.82 312.53 327.63	278 84 297.33 307.58 322.95		280.34 294.23 307.80 323.57	280.34 294.23 307.80 323.57 284.99 300.57 315.35 330.87	280.34 294.23 307.80 323.57 284.99 300.57 315.35 330.87 280.32 296.61 312.05 327.13	280.34 294.23 307.80 323.57 284.99 300.57 315.35 330.87 280.32 296.61 312.05 327.13 284.16 299.63 315.47 330.63	280.34 294.23 307.80 323.57 284.99 300.57 315.35 330.87 280.32 296.61 312.05 327.13 284.16 299.63 315.47 330.63 279.39 295.56 310.07 326.33	280.34 294.23 307.80 323.57 284.99 300.57 315.35 330.87 280.32 296.61 312.05 327.13 284.16 299.63 315.47 330.63 279.39 295.56 310.07 326.33 283.84 299.27 315.13 328.44	280.34 294.23 307.80 323.57 284.99 300.57 315.35 330.87 280.32 296.61 315.35 330.87 280.32 296.61 312.05 327.13 284.16 299.65 315.47 330.65 284.16 299.65 315.47 330.65 284.16 299.65 310.07 326.33 279.39 295.56 310.07 326.33 285.84 299.27 315.13 328.44 280.17 295.32 310.82 327.08	280.34 294.23 307.80 323.57 280.34 294.23 307.80 323.57 284.19 300.57 315.35 330.87 284.15 299.63 315.47 330.65 279.55 315.47 330.65 279.55 315.47 330.65 283.84 299.27 315.13 328.44 280.17 295.32 310.82 327.08 285.33 299.97 315.23 329.64
WALL TEMPERATURE TAB. A11.3	PE = 373.63 MS = 3.31 (KG/S) QH1 = 40.22 (W/CM^2) QH2 = 39.91 (W/CM^2) 1^{+2}) QH4 = 40.47 (W/CM^2) NB = 315.93 (KW) TAS = 335.94 (C) TNM = 299.64 (C)	ME1 ME2 ME3 ME4 ME5	(C) (C) (C) (C)	267.98 280.70 294.93 308.96 324.32	270.37 285.69 300.21 314.31 329.50	267.95 281.29 295.30 309.51 324.51	266.32 280.53 295.08 309.57 325.34 270 E 20 54 201 27 212 01 272 02	267.52 281.14 297.36 313.06 328.83	269.52 284.62 300.50 316.28 332.62	267.34 278.76 295.81 310.24 323.96	269,08 283,02 298.83 314.45 330.22	267.66 280.12 295.47 310.98 326.69	269.88 284.52 300.02 315.73 330.10	266.93 279.56 293.43 307.75 323.45 247 44 290 44 293.50 107 80 122.78	269.35 283.55 297.82 312.53 327.63	267.25 278.86 293.33 307.58 322.95		267.39 280.34 294.23 307.80 323.57	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 267.15 280.32 296.61 312.05 327.13	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63	26/7.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63 266.78 279.39 295.56 310.07 326.33	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63 266.78 279.39 295.56 310.07 326.33 266.740 283.84 299.27 315.13 328.44	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.65 315.47 330.63 268.98 284.16 299.65 315.47 330.63 268.98 284.16 299.65 315.47 330.63 268.78 279.39 299.55 310.07 326.33 269.40 283.84 299.27 315.13 328.44 269.40 283.84 299.27 315.13 328.44 267.17 280.17 295.53 310.82 327.08	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63 266.78 279.39 295.56 310.07 326.33 266.740 283.84 299.27 315.13 328.44 267.17 280.17 295.32 310.82 327.08 270.10 265.33 299.92 315.23 329.64
EGENA I WALL TEMPERATURE TAB. A11.3 T=75(K) EXP I Dat	.1E+03 PE =373.63 MS = 3.31 (KG/S) .03 (M/S) QH1 = 40.22 (W/CM^2) QH2 = 39.91 (W/CM^2) .46 (W/CM^2) QH4 = 40.47 (W/CM^2) NB =315.93 (KW) .89 (C) TAS =335.94 (C) TNM =299.64 (C)	HEO HEI MEZ MEJ ME4 ME5	(C) (C) (C) (C) (C)	267.98 280.70 294.93 308.96 324.32	265.07 270.37 285.69 300.21 314.31 329.50	267.95 281.29 295.30 309.51 324.51	266.32 280.53 295.08 309.37 325.54 270.35 26 04 301.37 314.01 337 93	265.29 267.52 281.14 297.36 313.06 328.83	269.52 284.62 300.50 316.28 332.62	267.34 278.76 295.81 310.24 323.96	269,08 283.02 298.83 314.45 330.22	265.22 267.66 280.12 295.47 310.98 326.69	269.88 284.52 300.02 315.73 330.10	266.93 279.56 293.43 307.75 323.45 247.44 290.44 293.50 307.80 322.78	265.05 269.35 283.55 297.82 312.53 327.63	267.25 278.86 293.33 307.58 322.95		267.39 280.34 294.23 307.80 323.57	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 265.41 267.15 280.32 296.61 312.05 327.13	267.39 280.34 294.23 307.80 323.57 268.96 284.99 300.57 315.35 330.87 265.41 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63	26/.39 280.34 294.23 307.80 323.57 265.41 267.15 284.99 300.57 315.35 330.87 265.41 267.15 280.32 296.61 312.05 327.13 268.78 284.16 299.63 315.47 330.63 266.78 279.37 295.56 310.07 326.33	267.39 280.34 294.23 307.80 323.57 265.41 267.15 280.32 296.61 312.05 327.13 265.41 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63 266.78 279.39 295.56 310.07 326.33 265.40 283.84 299.27 315.13 328.44	261.39 280.34 294.23 307.80 323.57 265.41 267.15 280.32 296.61 312.05 327.13 265.41 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63 266.78 279.39 295.56 310.07 326.33 265.71 285.84 299.27 315.13 328.44 265.22 267.17 280.17 295.32 310.82 327.08	261.37 280.34 294.23 307.80 323.57 265.41 267.15 280.32 296.61 312.05 327.13 265.41 267.15 280.32 296.61 312.05 327.13 268.98 284.16 299.63 315.47 330.63 266.78 279.39 295.56 310.07 326.33 265.22 267.17 280.17 295.32 310.82 327.08 270.10 285.33 299.92 315.23 329.64

,

I

1 0	EGENA 1 T=75(K) E	WALL TE EXP 2	MPERATURE	14	AB. A12.	- -1	1	EGENA 1 1=75(K) E	WALL TEMPE XP 2	ERATURE	TAI	B. A12	2
W05B075.	DAT						W05B075.	DAT					
RE = 30	.4E+03	ш : Ц	=184.16		MS = 1.64	(KG/S)	RE = 47	. 6E+03	н Н Н Н	282,82 30,42		- 2.51	(KG/S)
UB = 1 QH3 = 19 TEN -757	.00 (M/S .62 (W/C)) UH M^2) QH TA	H = 20.06 $H = 20.16$ $C = 724.44$	(W/CM^2) (W/CM^2)	UHZ = 19.83 NB =157.31 TM -207.00	(W/ CM~2) (KW) (r)	UB = 1 0H3 = 29 1EN =21	.34 (M/S) .80 (W/CM	2) · QH4 = 2) · QH4 = 1AC -	30.40 (1 30.58 (1 37. 22 (1	4/CM^2) UH 4/CM^2) NE	12 = 30.14 1 = 238.68 14 = 207.47	(W/CM^2) (KN) (C)
167= N91	- 64 (F)	±	04.430- 01	(1)	00*/07- LINI		107- NJ 1	10) 10.	-	77.400		64*/27= 11	(1)
СР	MEO	ME 1	ME2	ME3	ME 4	MES	СЪ	MEO	ME 1	ME2	ME 3	ME4	MES
(WW)	(2)	(C)	(C)	(C)	(C)	(C)	(WW)	(C)	(C)	(C)	(C)	(C)	(C)
11.00		258.1	3 271.6	39 286.05	300.49	316.34	11.00		266.78	280.09	294.23	308.40	323.98
25.20	253.35	258.4	0 273.4	11 288.55	303.17	319.30	25.20	262.70	268.47	283.67	298.42	312.62	328.27
33.40		256.9	5 270.8	32 285.60	300.44	316.46	33.40		266.19	279.92	294.33	308.79	324.15
55.40		256.5	1 271.1	16 286.01	300.92	317.06	55.40		265.07	279.78	294.37	308.88	324.89
66.60		258.4	7 273.4	18 289.87	305,80	321.51	66.60		268.59	283.48	299.63	315.25	330.94
80.95	253.52	256.9	0 271.3	36 287.57	303.27	319.04	80.95	262.75	265.83	279.88	296.12	311.73	327.55
95.30		258.0	6 273.5	55 289.92	305.85	321.66	95.30		267.66	282.72	298.83	314.60	330.62
109.65		256.4	4 270.2	28 286.55	302.06	315.52	109.65		265.44	277.59	294.47	309.41	322.85
124.00		258.0	1 272.6	37 288.90	04.60	320.31	124.00		267.32	281.70	297.57	313.30	328.97
138.35	253.32	256.9	8 270.	38 286.14	1 301.77	317.69	138.35	263.04	266.12	279.19	294.81	310.35	326.11
152.70		259.4	3 274.3	31 289.17	305.10	319.69	152.70		268.83	283.65	298.88	314.50	328.95
163.90		257.4	4 271.5	58 285.55	300.27	315.98	163.90		266.02	279.45	293.43	307.85	323.50
185.90		257.5	4 271.5	55 285.43	300.12	315.59	185.90		266.41	279.78	293.28	307.77	322.92
194.10	253.13	259.1	6 273.4	18 287.81	302.61	318.51	194.10	-262.97	268.10	282.35	296.65	311.39	326.88
208.30		256.7	6 270.2	23 285.19	299.81	315.81	208.30		265.80	278.24	292.92	307.31	322.99
230.30		256.9	3 270.5	77 285.84	1 300.00	316.24	230.30		265.97	279.39	293.70	307.60	323.43
241.50		258.3	3 274.4	11 290.02	304.84	320.70	241.50		267.46	283.50	299.05	313.90	329.38
255.85	253.50	256.5	9 271	36 287.65	302.78	318.00	255.85	263.21	265.58	279.29	295.56	310.93	326.04
270.20		257.6	8 272.8	37 288.22	303.99	319.81	270.20		267.10	282.36	297.52	313.37	328.78
284.55		256.0	5 268.4	41, 41	299.88	316.44	284.55		264.82	277.61	293.45	308.38	324 72
298.90		258.1	3 272.5	50 287.91	303.99	319.04	298.90		267.51	281.75	297.01	312.93	327.15
313.25	253.47	256.9	0 271.7	70 287.11	302.54	318.29	313.25	262.70	265.41	279.07	294.28	309.78	325.99
327.60		259.5	3 275.1	23 290.04	305.20	319.93	327.60		268.42	284.03	298.66	313.85	328.11
338.80		257.3	5 271.5	94 285.85	300.68	316.08	338.80		266.05	280.29	293.94	308.47	323.38

- 140 -

TEGENG	1 WA	LL TEMPER	RATURE	ł	VD dv	5	-	EGENA 1 M	ALL TENFER	8ATHRF	Ĥ		4
D1=75	K) EXP	6.4		=		<u>,</u>		[=75(K) EX	P 2		21	ID. AIZ	F.
W05B075.DA1							W05B075.1	DAT					
RE = 63.9E+(UB = 2.05)3 (M/5)	EH EH EH E	377.09 40.15 (W	1/CM^2) 01	5 = 3.34 H2 = 39.86	(KG/S) (W/CM^2)	RE = 80 UB = 2	.2E+03 56 (M/S)	34 111 111	471.12 50.62 (I	H(CM^2) 6	5 = 4.17 H2 = 50.25	(K6/S) (W/CM^2)
UH3 = 39.40 TEN =2 65. 39	(M/CM~2	= 144 () TAS = (40.43 (W 336.97 (C) The	B =315.52 NM =300.7B	(K#) (C)	0H3 = 49 Ten =267	.61 (W/CM^	2) 0H4 = TAS =7	50.95 (I	U/CM^2) N	B =397.59 NM =303.47	(KM) (C)
CP MEG		HEW	MF?	ME3	MF 4	HES	đ	MED	HE I	M .	MET	MEA	NC L
(MM) (C)		()	10	(C)	(2)	(C)	(HH) .	(C)	(0)	(C)	(C)	() ()	(C)
11.00		269.63	282.11	296.18	310.06	325.48	11.00		271.92	284.02	297.51	311.50	326.75
25.20 266	. 67	271.95	286.97	301.44	315.41	330.62	25.20	268.97	272.68	288.10	302.83	317.23	332.70
33.40		269.53	282.67	296.48	310.61	325.51	33.40		270.65	283.46	297.34	311.65	326.75
55.40		267.87	281.89	296.28	310.52	326.54	55.40		269.97	283.54	297.80	311.98	328.02
66.60		271.85	286.38	302,50	317.96	333.95	66.60		273.21	287.76	304.72	320.60	336.79
80.95 266	.17	269.04	282.47	298.56	314.18	329.85	80.95	269.06	270.99	284,00	300.42	316.39	332.41
95.30		270.92	286.02	301.90	317.60	333.71	95.30		273.04	288.83	304.79	320.46	336.67
109.65		268.56	280.14	297.25	311.65	325.08	109.65		270.65	282.37	299.76	313.81	327.28
124.00	-	270.19	284.49	300.15	315.77	331.31	124.00	-	272.53	287;04	303.05	318.46	333.97
138.35 266	.58	268.92	281.30	296.67	312.13	327.69	138.35	269.02	270.99	282.76	298.17	313.79	329.70
152,70		271.68	286.12	301.36	316.85	331.14	152.70		273.58	288.23	303.20	319.13	333.61
153.90		268.51	281.18	295.00	309.07	324.62	163.90		270.80	283.25	296.66	310.75	325.98
185.90		268.87	281.79	294.85	309.12	323.97	185.90		270.75	283.07	296.42	310.58	325.38
194.10 266	. 36	270.83	285.05	299.14	313.72	328.75	194.10	268.82	272.94	286.96	301.09	315.91	331.24
208.30		268.48	280.21	294.66	308.71	323.99	208.30		270.58	281.98	296.13	310.32	325.43
230.30		268.63	281.45	295.29	308.80	324.48	230.30		270.53	282.95	296.91	310.10	325.86
241.50		270.46	286.29	301.61	316.23	331.50	241.50		272.80	288.76	303.95	318.65	333.92
255.85 266		268.46	281.35	297.42	312.83	327.79	255.85	269.14	270.70	283.15	299.08	314.54	329.46
270.20		270.27	285.29	300.37	316.28	331.26	270.20	-	272.04	286.96	302.01	318.00	333.03
284.55		268.17	280.40	296.40	310.83	327.04	284.55		270.14	282.03	297.71	312.15	328.67
298.90		270.75	284.78	300.11	315.94	329.28	298.90		272.63	286.40	301.53	317.57	330.97
313.25 264	. 17	268.63	281.50	296.40	311.77	328.08	313.25	268.92	270.72	283.03	297.80	312.95	329.58
327.60		271.68	286.82	301.12	316.32	330.45	327.60		273.07	289.25	303.68	318.32	332.24
338.80		269.04	282.54	295.75	310.01	324.64	338.80		270.94	283.93	297.22	311.36	325.82

— 141 —

A13.2			NP5 C	362.4	364.5 361 5	362.4	367.4	366.0	367.4	371.1	367.7	366.8	361.1 360 3	362.5	359.2	360.5	365.5	364.3	368.6	366.4	370.1	367.3	368.1	362.8
TAB.		3.2 K 18. 1.8 M/cm ⁻ 2 1.8 M/cm ⁻ 2	NP4 C	345.82	347.20	344.88	349.99	348.42	353.25 351.28	354.90	351.68	351.49	344 43	346.03	341.68	342.43	347.39	346.51	350.66	349.20	353.68	351.37	351.97	346.22
1094.DAT	1/5	C = 78 = 3243 12 = 20	MP3 C	330.80	331.30	328.61	331.87	330.68	335.01 334.03	338.29	336.09	336.14	329 74	330.41	325.73	326.77	329.93	328.81	332.76	332.07	336.46	335.42	336.45	330.92
22,1987	SPERATORES HP1/2/3/	: //s //cm^2 91 //cm^2 91	NP2 C	316.550	316.529 313.057	313.587	314.672	313.347	316.935 316.646	319.943	319.029	320.760	316.285	316.357	311.828	312.238	312.961	311.973	315.466	315.250	319.245	318.523	320.568	316.911
5:43 JUN	- WALL TRI Perinerter	= 296.0 (= .98 = 20.8 P	KP1 C	301.64	301.76 300.60	300.78	300.41	299.63	299.44	300.50	301.35	302.58	301.78	302.94	300.45	300.09	299.66	298.95	299.15	299.39	300.28	301.06	303.72	301.23
08:0	TEGENA 2 Channel	781 08 QH1 QH3	d C	11.00	25.20 33.40	55.40	66.60	81.00	95.30 109.70	124.00	138.40	152.70	185.90 185.90	194.10	208.30	230.30	241.50	255.90	270.20	284.60	298.90	313.30	327.60	338.80
2				3.0	9.2 3.0	3.8	.5	8.	J.4 3.1	4	3.3	2.1	.1	.6	0.0	ł.	0.0	1.1	.1	.0	. 4	.3		9.6
A13			MP5 C	393	39.00	39.	40	66	39.04 39.04	401	396	405	568	397	39(391	39.0	393	396	392	390	395	1 0	393
TAB.		.1 K 3. .4 H/cm ⁻ 2 .4 H/cm ⁻ 2	MP.4 C	372.86	378.87 372.50	372.67	380.20	373.12	379.01	381.12	377.26	382.53	372.65	377.73	369.38	369.92	377.31	371.15	376.50	370.94	378.89	374.68	380.74	372.84
1336.DAT	/5	C = 97 = 6814 4 = 51	HP3 C	353.39	359.31 353.49	353.34	358.82	351.84	356.82 351.61	360.19	356.25	361.86	352.99	357.75	350.37	351.08	356.49	349.75	354.91	350.03	357.92	353.37	360.48	353.32
10,1987 B	IPERATURES HP1/2/3/4) h/s DT h/s Re h/cm^2 QH t/cm^2 QH	HP2 C	334.169	338.917 333.834	334.672	338.520	331.318	335.270	337.855	334.456	340.796	334.049	338.763	332.300	332.780	335.725	329.544	334.648	329.951	336.946	332.085	338.883	334.815
5:17 JUL1	- WALL TRI BRINGRTER	= 311.7 (= 1.97 = = 51.5 M	KP1 C	315.80	318.52 315.34	315.43	319.36	314.91	316.91	316.88	315.10	318.69	315.20	318.47	314.88	315.17	317.99	314.09	315.97	313.68	316.42	314.33	318.73	315.51
:21	2			-	_							•		_	_	_	_	_	_	_	_	_		_

.

— 142 —

10:31	NOC 10.	15,1987 H	080.DAT			09:53	INOC ET:	6,1987 M	082.DAT		-	20:02:	INUL JUNI	6,1987 M	185.DAT	-	
TEGENA 2 Ceannel Pi	- WALL TR BRINKRRR	HPERATORES HP1/2/3/4	11	AB. A	13.3	TEGENA 2 Channel P	- HALL TRH Bringrygr	PERATURES BP1/2/3/4,	14	AB. A	13.4	TEGENA 2 - Ceannel Pe	HALL TRH (riherter	PERATORES HP1/2/3/4/	1-1	AB. AI	3.5
181 08 041 043	293.3 = 293.3 =	C DT N/8 Re N/Cm^2 QH N/Cm^2 QH	$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$.8 K 8. .7 W/cm^2 .7 W/cm^2			24 8 24 8 25 8 24 8 24 8 24 8 24 8 25 8 26 8 26 8 26 8 26 8 26 8 26 8 26 8 26	/8 DT /6 Re /cm^2 QH /cm^2 QH	2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.3 K 3. .8 M/cm^2 .8 M/cm^2		181 981 983	280.2 C .11 m 3.6 H	DTC /s Re /cm^2 QH/ /cm^2 QH	2 = 116 = 373 1 = 3	.8 K 2. .5 ¥/cm^2 .5 ¥/cm^2	
ີ 🖬	HP1 C	BP2 C	KP3 C	RP4 C	RP5 C	C P	KP1 C	HP2 C	RP3 C	AP4 C	KP5 C	C P	KP1 C	KP2 C	KP3 C	KP4 C	BP5 C
11.00	302.26	313.990	329.54	346.98	365.9	11,00	295.14	311.069	329.44	348.81	368.9	11.00	286.41	311.194	335.99	360.19	385.6
25.20 33.40	300.28 298.80	315.713	331.15 329.71	347.48	367.5 366.1	25.20 33.40	294.07	312.756 310.972	330.04	349.67 348.88	369.6 368.7	25.20 33.40	286.78 286.70	311.883	336.39 336.39	360.14	385.4
55.40	297.99	312.689	330.45	348.31	366.8	55.40 66.60	293.92	311.696	330.38	349.36	369.1	55.40 55.60	287.15	312.110	336.46	360.43 361 66	385.6
81.00	291.35	314.954	333.95	351.91	369.3	81.00	294.17	313.335	332.41	351.00	369.6	81.00	288.91	312.640	337.04	360.95	385.1
95.30	298.15	318.300	336.61	354.75	371.9	95.30	295.50	314.876	333.49	352.50	370.9	95.30	289.76	313.773	337.49	361.83	385.6
124.00	299.41 300.01	318.180 319.334	335.70 336.87	353.13	369.5	109.70	296.47 296.45	313.840	332.65 333.30	351.43 352.10	369.1 370.3	109.70	290.49 290.76	313.267 314.014	337.09 337.78	361.09 361.45	384.0
138.40	301.49	316.712	333.78	350.96	368.6	138.40	295.67	312.130	332.03	350.74	369.5 369.6	138.40	290.90	313.556	337.52	360.76	384.7
06.201	300.91	311.363	327.58	345.86	364.8	163.90	293.23	309.356	329.03	348.88	368.4	163.90	289.76	311.965	336.42	360.05	384.5
185.90	300.16	311.508	327.53	345.52	364.2	185.90	293.13	309.694	328.86	348.71	368.1 369.1	185.90	289.86	311.941	336.39 336.39	360.22	384.3
208.30	297.35	310.929	328.29	346.07	364.7	208.30	292.43	310.707	329.10	348.36	368.4	208.30	289.57	311.724	335.70	360.17	384.6
230.30	296.77	312.183	329.64	346.67	365.5	230.30	292.55	311.623	329.90	348.48	368.7	230.30	289.32	312.206	336.18	360.22	384.9
241.50	296.84	314.376	332.85 339 99	350.29 350 39	368.6	241.50	293.69 294 17	313.286	331.62 331.81	350.34	370.1 369 3	241.50	289.62 289.18	312.857 317 496	336.58 336.37	361.09 360 64	385.6
270.20	297.93	317.025	335.12	352.91	370.9	270.20	295.04	314.804	332.94	351.31	370.7	270.20	288.82	313.267	336.85	361.14	385.7
284.60	298.73	316.784	334.31	351.72	369.5	284.60	294.97	314.033	332.15	350.43	369.6	284.60	288.26	312.447	336.23	360.52	385.1
298.90	300.18	319.094	336.32	353.56	370.8	298.90	295.70	314.683	333.12	351.55	370.2	298.90	288.06	312.857	337.US	361.24	10.385
327 60	303 16	317.674	333,83	21.166	369.0	327.60	235.16	313.117	331.93	350.86	369.9	327.60	286.87	312.230	337.18	361.24	385.6
338.80	302.55	314.809	329.71	347.38	366.2	338.80	295.29	311.454	329.44	349.02	368.9	338.80	286.22	311.387	335.79	360.26	385.4
																	Ī

— 143 —

;

--- 144 ----

TEBENA I FLUID TEMPERATURE DIR A PROBE 2

TAB. A14

F(4012A.DAT

RE = 60 UB = 1 DR3 = 49 TEN =257	.4E+03 .92 (M/S) .24 (W/CN' .63 (C)	PE 0H1 ^2) 0H4 121	=354.08 = 30.23 (# = 50.59 (# = 86.96 (*	H 1/CM^2) Q 1/CN^2) N 1/) X	5 = 3.13 H2 = 49.84 B =394.56 22 = 98.79	(K6/S) (W/Ch^2) (KW) (MM)					
V21	Y24	TE21	TE22	TE23	TE24	QH1	QH2	ers	QH4	UB	PE
(((M)) 2 71	(MM) A DO	(L) 741 70	(C) 381 77	(L) 381 69	(C) 300 AA	(M/CM^2) 50 23	(W/UM^Z) 30 04	(R/CM^Z) 	(W/UM^2) 50 50	(11/5)	754 09
4.60	2.77	345.04	345.39	342.36	342.16	50.41	50.02	49.41	50.77	1.93	354.95
6.70	4.87	350.86	350.65	346.21	345.78	50.50	50.21	49.59	50.95	1.93	355.99
8.74	6.91	357.82	356.93	352.13	352.90	51.01	50.62	50.01	51.38	1.94	356.51
12.57	10.74	369.74	370.21	364.23	363.90	50.20	49.80	49.20	50.54	1.93	354./2
13.38	11.73	374.63	374.24	307.20	371.74	49.99	49.40	47,30	50.35	1.73	354.34
15.09	13.26	377.45	377.64	373.73	373.79	50.26	49.85	49.25	50.60	1.92	353.62
15.61	13.78	377.99	377.B1	375.22	374.54	50.33	49.94	49.34	50.69	1.93	355.07
16.13	14.30	378.82	378.99	376.72	376.18	50.48	50.09	49.47	50.83	1.92	354.18
15.5/	14.84	377.92	3/8.42 376 69	377.01	3/5.87 · 374 85	30.44 49.45	30.03 49 76	47.44 48 66	3V./9 Aq qq	1.73	333.18
17.17	15.87	375.30	375.49	376.39	376.35	49.41	49.02	48.43	49.75	1.91	351.61
18.21	16.38	374.62	375.34	377.47	377.26	49.42	49.04	48.45	49.77	1.91	351.72
18.72	16.89	372.97	373.04	376.70	376.62	49.21	48.83	48.24	49.56	1.71	351.33
17.69	17.86	367.85	367.8/	5/3.28	5/5.65	47.10 AD 10	48./2	48.15	47.43 AD A7	1.90	330./8
20.87	18.64	363.41	363.03	369.62	369.33	49.20	48.82	48.23	47.54	1.91	351.11

۱

TEGENA 1 FLUID TEMPERATURE DIR B PROBE 2

TAB. A15

F040128.DAT

RE	=	60.1E+()3	PE	=	352.52		ĦS	= 3.12	(KG/S)
UB	=	1.91	(M/S)	0H1	Ξ	49.38	(W/CM^2)	0H2	= 49,00	(#/CM^2)
6H3	z	48,42	(W/CM^2)	QH4	=	49.74	(W/CM^2)	N8 .	=387.95	(KM)
TEN	=7	257.98	(C)	X21	z	86.97	(MM)	X22	= 88.80	(MM)

Y21	¥24	TE21	TE22 .	TE23	TE24	QH 1	BH2	2H3	QH4	UB	ΡE
(MM)	(MM)	(C)	(C)	(C)	(0)	(₩/CM^2)	(W/CH^2)	(W/CM^2)	(W/CM^2)	(M/S)	
21.65	19.82	363.33	363.09	370.15	369.85	49.38	49.00	48.42	49.74	1.91	352.52
20,76	18.93	366.29	365.77	372.45	372.91	49.37	48.99	48.40	49.72	1.91	352.30
19.80	17.97	370.46	370,54	375.11	375.04	49.42	49.02	48.44	49.77	1.92	353.23
19.81	17.98	369.77	370.78	375.33	374.68	49.40	49.01	48.41	49.73	1.91	352.61
18,84	17.01	373.30	372.48	376.59	375.56	49.39	49.01	48.42	49.74	1.91	351.52
18.32	16.49	374.85	375.00	376.96	377.07	49.48	49.09	48.50	49.83	1.91	352.28
17.81	15.98	375.20	375.71	375.68	376.65	49.29	48.91	48.32	47.64	1.91	351.31
17.30	15.47	375.56	376.05	375.98	375.96	49.28	48.90	48.31	49.63	1.92	353.58
16.79	14.96	375.75	376.19	375.13	374.83	49.32	48.94	48.35	49.67	1.92	354.13
15.26	14.43	376.82	376.94	374.48	374.39	49.29	48.91	48.32	47.64	1.92	353.18
15.74	13.91	375.94	375.42	373.13	373.06	49.23	48.85	48.26	49.58	1.91	351.16
15.21	13.38	375.21	376.18	372.36	371.97	49.41	49.02	48.43	49.75	1.91	351.54
14.68	12.85	375.14	375.10	370.18	370.33	49.33	48.95	48.36	49.58	1.91	352.26
13.66	11.83	371.56	371.59	365.44	365.81	49.17	48.79	48.21	49.51	1.91	352.69
12.68	10.85	368,24	368.21	362.54	362.18	49.21	48.81	48.24	49.55	1.91	351,54
10.79	8.96	362.54	362.20	356.97	357.04	49.27	48.88	48.30	49.62	1.92	353,16
8.86	7.03	356.12	355,55	351.28	350.79	47.38	48.97	48.39	49.70	1.92	352.78
6.83	5.00	350.43	350.35	344,66	345.11	49.53	49.14	48.56	49.88	1.92	352.80
4.72	2.89	343.99	344.60	341.18	341.00	49.63	49.24	48.66	49.98	1.92	353.64
2.69	0.86	341,28	341.10	340.13	339.72	49.57	49.19	48.60	49.92	1.92	353.27

		•	
16		(KG/S) (W/CM^2) (KW) (MM)	(WLCH*2) (WL
AB. A		= 3.19 = 50.59 = 400.67 = 0.85	1124 1124 1124 1124 1124 1124 1124 1124
14		M/CN^2) MS W/CN^2) 0H2 W/CN^2) NB MH) Y24	C C C C C C C C C C C C C C C C C C C
PERATURE		=360.31 = 51.01 = 51.37 = 2.68	CE 200 200 200 200 200 200 200 200 200 20
FLUID TEM Obe 52) PE 041 M^2) 044	112 112 112 112 113 113 113 113
TEGENA 1 DIR A PR	.DAT	1.3E+03 1.96 (M/S 0.02 (W/C 6.55 (C)	55,85,86,67,77,77,75,88,88,88,97,78,88,89,778,89,89,778,89,89,778,89,7777,775,89,89,778,89,7777,775,89,89,778,89,7777,775,89,89,778,89,7777,775,89,89,7777,775,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,89,7777,775,89,89,77775,89,89,89,777775,89,89,77775,89,77775,89,77775,89,89,89,777775,89,89,89,77775,89,89,89,77775,89,89,89,777755,89,777755,89,777755,89,7777555,89,7777555,89,7777555,89,7777555,89,7777555,89,77777555,89,7777555,89,7777555,89,7777556,89,7777555,89,777775556,89,777775556,89,77775556,89,77775556,89,777775556,89,77775556,89,77777556,89,777775556,89,77777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,77775556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,7777556,89,777556,89,7777556,89,7777556,89,7777556,89,7777575757575777775757577777777575777777
	ACW5A		

FO6LWSA.DAT

EN BHR

(%) 2012 2012 2014 2017 2 RH2 (#/CH^2) 50.02 50.02 50.03 50.00 521.03 52 338.82 338.82 339.21 339.22 339.22 339.22 339.22 339.22 339.24 349.25 339.24 3375.92 3475.92 3 746.54 746.54 746.54 746.55 747.55 74

X21 (MH) (MH) 99. 95. 94 97. 98. 97 97. 98. 97 97. 98. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 97. 97 96. 97 77 75. 02 77 75. 02 77 75. 02 77 75. 02 75. 01 75. 01 75. 01 75. 02 75. 01 75. 02 75. 01 75. 01 75. 02 75. 02 75. 01 75. 02 75. 02 75. 02 75. 02 75. 01 75. 02 55. 02 55

ш.

			PE 258, 259 258, 259 258, 259 258, 259 258, 259 258, 259 259, 259 250, 250 250, 250 250, 250 250, 250 250, 250 250, 250 250, 250 25
			(# #) (# 2,58,58,58,58,58,58,58,58,58,58,58,58,58,
			15 202 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20
			700 200 200 200 200 200 200 200
	·		85554642355555555555555555555555555555555
		-	(H3 49.49 49.49 49.49 49.49 49.49 50.00 5
			E E E E E E E E E E E E E E
17		(KG/S) (W/CN^2) (KW) (MN)	ESSISTENT SOUND S
AB. A		3 = 3.17 42 = 50.06 8 = 396.50 24 = 0.85	TE24 (C) 338, 68 339, 68 339, 68 339, 68 335, 60 336, 50 336, 50 344, 76 346, 76 347, 76 357, 86 347, 76 357, 86 357, 86 357, 76 357,
FI		W/CH^2) 0 W/CH^2) 0 W/CH^2) 0 WM) Y	183344596884596166884866254834444447474747566689 334455968734444494888486675347474747474747668889 33818868864544494988888886675347474747474775656889 3381886886676688888886675347474747474747656688 33818888888888888888888888888888888
ERATURE		:358.29 : 50.48 : 50.84 (1 : 2.68 (1	CCCC2 CCCC2 CCCC2 CCC2 CCC2 CCC2 CCC2 CCC2 CCC2 CCC2 CCC2 CCC2 CCC
FLUID TEMF BE S2		2) PE = 0H1 = 0H4 = 721 = 721	TE21 339, 157 339, 157 339, 157 339, 157 339, 157 344, 155 344, 155 355, 157 355, 158 355, 15
EGENA I IR B PRO	DAT	0E+03 .95 (M/S) 49 (W/CN	X M22 M43 M42 M42 M42 M42 M42 M42 M42 M42
II Q	FO6LWSB.1	RE = 61 UB = 1 QH3 = 49 TEN =256.	X2 X2 X2 X2 X2 X2 X2 X2 X2 X2

146 -

TAB. A18.1

15:19:25 JULIO,1987 8332.DAT

FRGEMA 2 - FLUID TEMPERATURES PROBE 1 TEMP FLUCTUATIONS

= 29.61 mm = 401.3 C = 50.68 H/cm⁻2 = 50.70 H/cm⁻2 = 3.13 kg/s = 1.94 m/s = 361.0 112 082 084 084 Pe = 31.66 m = 304.7 C = 50.82 M/cm⁻² = 50.87 M/cm⁻² = 39.1 km = 96.6 K = 66569.

QB4	li/cm^2	50.70	50.17	50.03	50.09	50.16	50.18	50.16	50.29	50.33	50.30	50.43	50.50	50.54	50.63	50.75	50.86	50.84	50.79	51.07						
QE3	li/cn^2	50.37	49.84	19.71	19.77	49.84	49.86	49.84	49.96	50.01	49.98	50.11	50.18	50.22	50.31	50.43	50.54	50.53	50.46	50.76						
QB2	W/cm^2	50.68	50.17	50.02	50.06	50.15	50.17	50.14	50.27	50.33	50.27	50.43	50.49	50.52	50.66	50.74	50.85	50.83	50.76	51,06						
QE1	li/cn ⁻²	50.82	50.30	50.15	50.20	50.28	50.30	50.28	50.42	50.48	50.41	50.57	50.63	50.66	50.81	50.88	50.99	50.98	50.91	51.21						
DTC	1	96.59	95.82	95.90	95.77	95.94	95.59	96.03	96.01	96.04	95.71	95.95	95.96	96.18	96.21	96.41	96.31	96.22	96.33	96.35						
BFR	kg/s	3.13	3.12	3.11	3.12	3.12	3.13	3.11	3.12	3.12	3.13	3.13	3.14	3.13	3.14	3.14	3.15	3.15	3.14	3.16						
181	ن	304.73	305.03	304.97	305.23	305.22	305.19	304.96	304.82	304.95	305.12	305.32	305.43	305.61	305.61	305.58	305.63	305.85	306.16	306.55		10.4				
BBS15	-	.10	66 .	1.31	1.61	1.93	2.33	2.54	2.64	2.53	2.10	1.60	1.08	1.07	1.51	2.04	2.38	2.49	2.59	2.48	6 4 F	IAD.				
T C15	ం.	386.83	388.59	389.23	392.19	395,33	401.13	406.95	411.12	413.67	418.49	121.18	424.46	424.57	424.98	421.00	417.69	414.01	410.91	407.75						
715	=	29.84	28.81	27.83	26.91	25.99	24.09	22.00	20.91	19.84	18.80	17.83	16.91	15.98	15.07	14.08	13.06	11.99	10,89	9.82	114 accu	0002.VAI		S	CHIN	
RUS14	4	61-	2	1.07	1.4	1.83	2.32	2.55	2.72	2.66	2.35	1.99	1.43	.98	.95	1.37	1.88	2.20	2.56	2.62	10 1007	1021'11		BEPERATORS	1 100 100 1	
1014	ы С	385.94	386.13	387.05	390.25	391.79	398.20	404.45	407.82	411.96	416.07	120.44	124.05	427.08	427.05	424.10	422.63	418.63	416.24	413.95	101 30.0	100 C7:2		L GIOTA -	J 0 § 1	
RUSIJ	M	.65	.85	1.05	1.41	1.76	2.27	2.50	2.71	2.70	2.43	2.12	1.57	1.04	1.03	1.51	2.01	2.30	2.58	2.58	1.11	1:01		TECENA 2	7 99091	
1013	ы	386.19	386.56	387.62	390.34	391.89	396.43	404.80	409.18	411.89	416.80	120.10	423.60	426.58	126.28	424.98	122.21	418.56	415.42	412.61						
7 13	=	30.86	29.83	28.85	27.93	27.01	25.11	23.02	21.93	20.86	19.82	18.85	17.93	17.00	16.09	15.10	14.08	13.01	11.51	10.84						
BUS12	4	.82	.78	.82	.83	. 85	.80	. 80	.84	18.	68.	.89	1.00	.81	.83	.83	.84	.84	1.44	1.29	-21 m	1.3 C	0.7 N/cm ²	0.7 W/cm ² 2 .13 kg/8	94 1/8	1.0
T C12	ల	396.15	397.16	396.95	396.25	397.30	396.62	395.77	396.27	396.63	395.91	396.50	397.46	397.76	398.01	398.05	398.96	398,41	397.00	393.38	22 = 89	B0 - 40	H2 = 5			a - 30
RMS11	-	1.13	1.51	1.89	2.15	2.45	2.72	2.74	2.57	2.20	1.60	1.1	- 26	1,35	1.82	2.31	2.61	2.12	2.11	2.67		-	N/cn 2 0	H/cm^2 Q kii		ú
1011	5	387.45	389.59	391.73	395.12	397.65	104.41	411.25	416.06	418.99	422.82	426.26	426.25	425.83	421.82	420.17	417.28	411.95	409.02	106.94	= 86.56	= 304.7	= 50.8	= 50.4	= 96.6	- 00002
711	=	28.81	27.78	26.80	25.88	24.96	23.06	20.97	19,88	18.81	17.77	16.80	15.88	14.95	14.04	13.05	12.03	10.96	9.86	8.79	121	IBI	981		10	2

.	C IBO	401.32	400.85	400.87	401.00	401.16	400.78	401.00	400.83	400.99	400.83	401.26	401.39	101.79	401.82	401.99	401.95	402.07	402.50	402.90
e	9/8 •/8	1.94	1.94	1.93	1.94	1.94	1.94	1.94	1.94	1.94	1.95	1.95	1.95	1.95	1.95	1.95	1.96	1.96	1.95	1.97
5	2 2	399 .09	394.97	393.85	394.26	394.86	395.02	394.88	395.89	396.31	395.92	397.06	397.59	97.86	398.77	399.53	100.41	100.28	89.80	102.10
140	i n	100.20	99.14	98.86	98.99	99.12	99.17	99.12	99.37	9 3 .46	99.39	39 .66	99.80	59.87	100.05	100.28	100.50	100.46	100.37	100.92
6110		90.06	98.02	97.76	97.87	98.01	98.05	98.02	98.26	98.36	98.29	98.55	98.69	98.76	98.93	99.18	99.40	99.37	99.24	99.82
487	NH2	99.92	98.91	98.62	98.71	98.87	98.91	98.87	99.12	99.24	99.12	99.42	99.55	99.62	99,89	100.04	100.26	100.22	100.09	100.68
101		99.92	98.90	98.61	98.69	98.86	98.89	98.86	99.13	99.25	99.11	99.42	99.55	99.61	99.91	100.03	100.25	100.23	100.10	100.68
DACAL	C709X	1.29	1.67	2.06	2.49	2.74	3.18	3.50	3.57	3.30	2.87	2.16	1.50	1.26	1.66	2.29	2.71	3.01	3.04	3.02
	C201	385.39	387.53	389.40	392.22	394.85	400.70	107.71	413.26	415.32	420.73	423.69	425.87	425.62	425.78	423.43	419.84	416.93	414.51	411.60
AAC	2	2.77	3.72	4.73	5.77	6.82	8.88	10.82	11.75	12.68	13.66	14.68	15.71	.16.78	17.82	18.85	19.83	20.78	21.71	22.67
DACAL	1	.65	.96	1.27	1.65	1.87	2.21	2.43	2.56	2.42	2.21	1.78	1.29	. 68 .	.65	.80	1.M	1.56	1.88	2.16
TUJA	1024	384.31	385.64	387.55	388.90	392.50	398.22	405.06	408.86	412.98	418.50	422.75	126.30	428.32	129.97	129.61	427.55	425.33	421.21	417.45
DACOS	1 1	19.	.92	1.23	1,66	2.00	2.45	- 2.77	2.89	2.80	2.67	2.23	1.67	1.13	.82	1.07	1.54	1.97	2.28	2.46
5673	1023 C	384.14	385.60	386.68	388.46	391.01	397.19	403.95	407.49	411.32	417.62	420.89	425.88	427.15	428.82	428.23	123.77	121.85	420.07	416.62
	e71	1.44	2.39	3.40	1.11	5.49	7.55	9.49	10.42	11.35	12.33	13.35	14.38	15.45	16.49	17,52	18.50	19.45	20.38	21.34
DKCOD	7700a	1.32	1.63	1.80	2.02	2.10	2.25	2.29	2.16	1.71	1.26	.82	. 13	1.04	1.54	1,91	2.06	2.05	2.00	1.90
6608	1771	387.14	390.47	393.69	397.08	398.96	406.56	415.57	418.35	421.67	425.85	126.81	427.92	127.42	423.82	122.48	417.65	413.70	411.39	107.01
DNC91	17000	1.36	1.65	1.78	1.96	1.97	2.09	1.99	1.78	1.38	1.00	69	8	88.	1.26	1.59	1.79	1.92	1.94	1.90
10.04	1771	368.90	391.97	394.18	398.04	401.11	408.47	418.05	419.86	123.46	127.50	428.32	429.49	128.48	125.44	422.97	418.49	414.73	410.43	1 08.00
104	2	4.10	5.05	6.06	7.10	8.15	10.21	12.15	13.08	14.01	14.99	16.01	17.04	18.11	19.15	20.18	21.16	22.11	23.04	24.00

A19:1	
TAB.	

	31.66	=	112	••	29.61	
••	307.8	<u>ں</u>	180		101.3	പ
••	51.04	W/cm^2	QH2	••	50.87	š
••	50.57	11/cm ² 2	ee.	••	50.89	2
••	400.7		81B	••	3.15	3
**	96.5	I	8	••	1.96	2
••	67344.		Pe Pe	••	363.7	

H334.DAT	RCS	110KS
JULIO, 1987	ID TEMPERATO	TRAP FLOCTON
16:02:22	TEGENA 2 - FLO	PROBE 1
29.61 mm 404.3 C	50.89 N/cm ² 50.89 N/cm ²	3.15 kg/s 1.96 m/s
112	E E	.
: :.:	N/cn ⁻² N/cn ⁻²	

Q84 V/ca^2	50,89 50,89 50,80 50,91 50,91 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,93 50,73 50,93 50,730	
Q83 W/cm^2	50.55 50.65 50.65 50.65 50.65 50.65 50.33 50.33 50.55 50.33 50.55 50 50 50 50 50 50 50 50 50 50 50 500	
982 W/cm^2	50.85 50.86 50.91 50.91 50.95 50.95 50.95 50.95 50.93 50.93 50.93 50.93 50.93 50.93	
QB1 N/ca ⁻ 2	51.04 50.93 51.05 51.05 51.05 51.08 50.91 50.93 50.83 50.83 50.93 50.93 50.93 50.93 50.93	
DTC K	96.46 96.24 96.24 96.76 96.76 96.78 96.78 96.49 96.40 96.43 96.23 96.23 96.23 96.23 96.23 96.23 96.23	
HFR Lg/B		
T BI C	307.75 308.08 308.51 308.51 308.51 308.61 309.00 309.02 309.18 309.18 309.03 309.18 309.03 309.03 309.03 309.03 309.04	. 19.2
RMS15 L	2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55	TAB
1015 C	409.51 414.21 414.21 417.10 422.05 422.05 422.45 52.45 422.45 52.55 52.	
T15	9.79 10.85 11.94 11.94 13.00 15.000 15.000 15.000 15.0000000000	1334 . D.LT S ORE
RBS14	2.63 2.53 1.78 1.37 1.37 1.38 2.53 2.53 1.38 2.54 1.38 2.66 2.54 1.38 2.55 1.38 2.55 1.38 2.55 1.38 2.55 1.38 2.55 2.55 5.34 1.55 5.53 5.53 5.53 5.53 5.53 5.53 5.53	10, 1987 Erperatore Floctuati
1014 C	413.90 417.00 417.00 422.77 422.94 422.31 422.39 422.39 422.39 422.39 423.31 423.33 423.33 423.33 423.33 423.33 423.33 423.33 423.33 423.33 423.33 423.33 423.33 337.43 37	2:22 JUL - FLUID T TEMP
RUS13 K	2.56 2.57 1.89 1.89 1.89 1.80 2.51 1.86 2.51 1.45 2.55 1.45 2.55 1.45 2.55 1.45 2.55 1.45 2.55 1.45 2.55 1.45 2.55 1.45 2.55 2.55 1.45 2.55 2.55 1.45 2.55 1.55 2.55 1.55 2.55 1.55 2.55 1.55 2.55 1.55 2.55 1.55 2.55 1.55 2.55 2	16:0 Tegeka 2 Probe 2
7013 C	41333 41811 42315 425.24 425.24 425.25 43039 425.23 43039 425.23 43039 425.23 43039 425.23 43039 33955 33955 33957 33915	
1 13	10.81 11.87 11.87 11.86 14.02 15.05 15.05 15.05 25.06 25.06 25.06 25.06 25.06 25.06 25.06 20.77 20.71 20.77	
RUS12 K	1.07 1.23 82.81 81.82 81.83 81.83 81.83 81.83 81.83 81.83 81.83 81.83 81.43 81	.22 mm 1.3 C 1.9 K/cm ⁻ 2 1.9 K/cm ⁻ 2 15 kg/s 96 m/s
7012 C	397.32 400.95 402.45 402.45 402.45 401.51 402.52 401.51 401.51 401.37 401.70 401.70 401.70	89
RHS11 L	2.69 2.71 2.72 2.54 1.78 1.78 2.51 2.51 2.51 2.51 2.51 2.51 2.51 2.51	
7C11 C	406.93 406.93 410.46 413.85 419.57 423.29 429.15 420.68 424.67 421.34 427.33 336.70 338.70 338.70 338.70 338.70 338.70 338.70	= 86.57 1 = 307.8 C = 51.0 H = 50.6 H = 400.7 k = 96.5 E = 67344.
₽₽	8.76 9.82 9.82 10.91 13.97 13.97 14.90 15.83 15.83 15.83 15.83 15.83 15.74 15.77 15.74 15.83 15.91 15.	721 7481 7481 748 748 748 748 748 748 748 748 748 748

180	ы	404.25	101.32	404.79	404.92	405.57	406.08	105.99	105.42	405.76	405.90	405.22	405.60	405.75	405.53	405.54	105.44	405.80	405.90
80	B/B	1,96	1.96	1.95	96 1	1.95	1.95	1.95	1.96	1.96	1.95	1.96	1.95	1.95	1.95	1.95	1.96	1.95	1.95
AR .	N.	400.66	400,51	399.91 100 87	400.83	399.71	401.20	401.25	401.11	401.30	399.76	399.61	398.80	399.12	399.21	399.84	400.88	400.65	399.99
Yen	ž,	100.55	100.54	100.38	100.63	100.34	100.65	100.71	100.68	100.73	100.34	100.30	100.09	100.17	100.22	100.40	100.63	100.55	100.37
KE3	H	99°45	99.43	99.27	09 66	99.22	99.59	19.69	99.57	99.62	99.24	99.21	99.00	60 .09	60 [°] .09	99.26	99.50	99.47	99.30
NB2	3	100.31.	100.28	100.13	100.36	100.07	100.47	100.47	100.43	100.47	100.09	100.05	39.85	99.93	99.96	100.10	100.37	100.31	100.15
18N	3	100.35	100.26	100.14	100.34	100.07	100.49	100.46	100.43	100.47	100.05	100.05	99.85	99.93	16 .98	100.08	100.38	100.32	100.16
BBS25	1	3.04	3.06	3.90	2.27	1.11	1.31	1.50	2.22	2.81	3.31	3.56	3.51	3.26	2.74	2.53	2.13	1.68	1.31
7C25	2	411.52	416.68	118.68	126.28	429.59	431.02	429.52	429.09	426.08	122.33	416.87	413.28	405.01	400.03	397.52	394.13	391.45	390.90
725	= [.]	22.71	21.80	20.86	18.92	17.90	16.85	15.78	14.73	13.73	12.77	11.84	10.89	8.96	6.91	5.84	1.79	3.79	2.84
RMS24	1	2.15	1.89	1.54	11.1	89.	6.	1.29	1.79	2.12	2.37	2.55	2.43	2.26	1.86	1.66	1.29	96.	.68
1024	сı	418.12	122.68	426.76	132.24	131.02	432.57	432.06	427.36	121.64	418.17	412.53	410.54	402.43	396.21	393.98	391.68	391.03	389.91
RUS23	-	2.45	2.28	1.98	1.06	8	1.14	1.68	2.34	2.63	2.86	2.88	2.74	2.49	1.98	1.70	1.27	16.	65
1023	ы	117.16	421.75	425.19	430.88	132.26	431.46	128.74	427.85	122.13	11.17	410.45	407.44	103.68	396.92	393.39	391.91	390.08	389.54
723	=	21.58	20.47	19.53	17.59	16.57	15.52	14.45	13.40	12.40	11.14	10.51	9.56	7.63	5.58	4.51	3.46	2.46	1.51
RUS22	H	1,93	1.98	2.05	1.88	1.53	1.10	11.	98.	1.23	1.72	2.13	2.29	2.33	2.12	2.07	1.91	1.64	1.34
1022	сı	408.91	412.54	117.04	425.48	127.42	430.82	432.81	133.62	431.14	£28.09	422.08	419.61	110.49	101 11	401.18	398.93	395.18	393.38
RBS21	1	1,89	1.91	1,80	1.51	1.24	.92	.65	69	- 16	1.35	1.76	1.97	2.15	2.00	1,96	1.83	1.64	1.41
T C21	ப	408.25	411.97	416.93	121.45	130.26	431.58	433.85	433,58	431.85	428.52	124.15	421.80	411.49	406.18	102.44	399.26	396.61	394.16
721	=	24.04	25.15	85.18 21.22	20.25	19.23	18.18	17.11	16.06	15.06	14.10	13.17	12.22	10.29	8.24	7.17	6.12	5.12	4.17

I

— 148 —

A20.1	
TAB.	

.

		Q84 W/cm^2	51.39	51.37	51.39	51.60	51.60	51.70	19 ¹⁰	51.47	51.43	51.60	51.63	51.65	51.65	51.63	51.71	50.38	50.43	50.52	50.54	50.05	50.10	50.22	50.24	50.35	50.33	50.28	50.17	50.23	50.37	50.36	50.46	50.53 50 43	50.45	50.46	50.42	50.57	50.46	50.52	50.49 50.49	50.43	50.50	50.58
		Q83 N/cn^2	51.09	51.06	51.09	51.29	51.30	51.40	NC 10	51.17	51.12	51.29	51.33	51.34	51.34	51.33	51.41	61.10 20 11	50.13	50.23	50.24	04-0C	49.80	49.92	19.95	50.06	50.04	49.99	19.81	49.94	50.08	50.07	50.16	50.24	50.15	50.17	50.12	50.29	50.17	50.22	50.20	50.15	50.21	50.28
		QA2 V/cm^2	51.38	51.22 51.37	51.38	51.58	51.59	51.69	10.10	51.46	51.42	51.57	51.61	51.64	51.63	51.61	51.69	01.10	50.41	50.53	50.51	50.00 50.13	50.08	50.19	50.23	50.33	50.32	50.28	50.14	50.21	50.36	50.35	50.44	50.52	50.43	50.46	50.40	14-06 20.57	50.44	50.50	50.47	50.41	50.49	50.54
		QB1 N/cm^2	51.52	51.52	51.52	51.13	51.73	51.84	61.10	51.60	51.57	51.73	51.77	51.18	51.78	51.77	51.83	18.16	50.55	50.68	50.66	20.UC	50.23	50.30	50.37	50.48	50.47	50.42	50.29	50.36	50.50	50.49	50.58	50.67 60.66	50.57	50.61	50.54	20.05	50.59	50.65	50.61	50.53	50.64	50.69
A20		DTC K	97.11	97.55 91.48	97.17	97.35	97.85	97.80	55 LG	91.68	97.54	97.75	97.70	97.57	91.69	97.77	97.91	70.18 96 88	96.43	96.52	96.49	96.95	96.34	96.10	95.89	96.66	96.04	96.19	95.59	90.06	96.01 of £7	96.13	96.04	96.60	11.0c	96.23	96.48	96.59	95.79	96.34	96.03 96.42	95,93	96.43	95.62
TAB		lif. kg/s	3.16	3.15	3.16	3.16	3.15	3.16	3.15	3.15	3.15	3.15	3.16	3.16	3.16	3.15	3.15	1.5	3.12	3.13	3.13	1.1	3.10	3.12	3.13	3.12	3.13	3.12	3.13	3.12	3.13	3.13	3.13	3.12	3.11	3.13	3.12	3.12	3.14	3.13	3.14	3.14	3.12	3.12
		TBI C	311.65	311.52	311.89	312.00	312.25	312.38	312.31	312.39	312.53	312.42	312.46	312.67	312.82	312.98	313.08	213.20	313.44	312.93	312.37	312.36	311,68	311.66	311.30	310 69	310.45	310.41	309.84	309.84	309.58	309.51	309.41	309.28	309.20	309.30	309.19	17.605	309.18	309.11	309 02	308.94	308.86	308.69 308.69
		RUS15 K	63	1.01	1.00	12	.52	33.	2 3	82	.91	1.05	1.03	78	13	.66	8	<u>5</u> 5	12	51.	.19	2	99	35	.42	15.	3	65.	6.8	8	88.	12	69	[j.	8.19	.66	12	8.7	. E	.87	18 [.]	.53	8	36
36. DAT	SNOL	7C15 C	394.66	397.99 402.25	406.29	407.75	410.27	410.98	410.55	408 84	407.09	104.10	100.17	10.160	396.35	395.70	395.94	396.31 305 01	395.58	396.16	398.45	401.48 401 55	101.101	405.56	406.21	406.3U 405.82	105.09	403.98	11 105	395.60	393.84	390.80	390.33	389.42	389.55	390.16	391.15	395.41	400.13	401.35	402.03 403 78	404.87	405.62	405.03
, 1987 63	TEMPERATU	51 1	6.67	8.65 10.62	12.61	13.62	15.65	16.66	11.65	60.01 19 61	20.60	22.60	24.63	20.07 27 65	28.64	29.62	30.61	31.60	33.61	34.64	36.66	38.64	41.53	42.60	43.61	29 H	19.01	11.64	49.62 50 60	52.58	54.61	56.64	57.64	58.61	09.85 69 09	61.57	62.58	19.69 66.63	68.61	69.60	70.59 71 58	72.58	73.59	75.65
17 JOLIO	2 - FLUID TR	RUS13 K	91	19 18	06	- 88° 78°	99.	61.	R ²	2 5	69	68	6.	8	5	.67	ક. ક		25	-51	99. 1	2,3	8. 99.	.60	.52	24.	35.	9	5. 3	13	92.5	69	99		R, 9	9	9 <u>5</u> .	29.	8.	11.	51. 21.	3 3	61	3.4
17:25:	TEGEKA Probe 1	1C13 C	392.51	395.53 398.92	102.44	404.13 406.23	407.53	108.44	108.53	02.00 4	406.61	404.28	401.26	397 54	396.51	396.23	395.28	395.33 206 61	394.82	394.81	395.85	398.55	101.63	402.51	403.28	403.66	403.36	402.98	401.33 398 70	396.15	393.97	390.63	390.46	389.62	388 98	386.93	389.00	390.50 394 08	396.80	398.26	399.55 401 03	401.70	402.74	403.14
		RUS12 K	.78	8.	.78	13 13	8	80	.82	28	2	8.	æ. 1	10. Z	98	a,	18.	26.	90 92	18	.81	2.5	. 2	61.	18.	58		18.	28 ⁻	83	1 6	6.6	.84	1 6	96 96	6.	-95 	5.8	86.	.95	1.00	86	.92	18
		1012 C	406.02	405.96 406.07	405.80	405.75 405.80	406.93	406.79	106.03	401.VU	101.29	405.30	405.11	106.38	106.72	406.92	406.90	106.21	406.04	404.24	405.14	105.77	101.70	404.83	103.69	403.45	402.28	402.86	402.67	402.42	102.62	359.48	401.15	400.19	401 74	101.27	100.77	401.79	100.35	399.61	398,38 299 26	398,44	398.91	399.88 397.34
		112	5.64	1.62 9.59	11.58	12.59	14.62	15.63	16.62	10.11	19.57	21.57	23.60	CO. CZ	27.61	28.59	29.58	30.57	32.58	33.61	35.63	37.61	10.56	11.57	42.58	13.60	15.62	19.61	12 51	51.55	53.58	55.61	56.61	57.58	10.00 59.56	60.54	61.55	63.30 65 60	67.58	68.57	69.56 70.55	71.55	72.56	74.62
.44 mm 8.8 C	1.4 K/cm 2 16 kg/s 97 m/s	RUS14 K	.61	.81 .86	.13	.60	.28	5	5.5	00. 61	; ;	.86	22	89	67.	.42	÷.	: :	95	.58	63	.62			.22	22.		15	5. 3	.67	2	6	.42	8.5	24.	.26	3	21.	89	.63	5	18	.22	.33
10 - 10 10 - 10 10 - 10		1014 C	395.41	399.12 402.18	405.66	406.81	107.78	108.60	107.77	405.3U	403.65	400.85	398.32	396.73	395.03	394.73	395.00	395.43	29. 926 396 19	396.35	398.45	100.70	403.50	404.05	104.07	403.71	402.03	400.89	399.24 106 36	393.66	391.50	389.43	389.02	389.03	386.97	389.87	390.74	393.30	399.54	400.60	401.61	403.03	403.41	402.78
		RUS11 K	1.07	1.33	.97	6L, 9	99	5	.12	06. L	1.20	1.32	1.32	1.1	66	.95	1.02	8.1		1.10	1.03	66. 6	99	5	.43	≕	6. 99	.82	.92	1.14	1.1	1.03	96	<u>9</u> ,5	58. E0 1	1,06	1.16	1.18	1.04	16	.82	5	¥.	6 1 .
= 29.39 = 311.7 (51.1 51.1 51.1 51.1 51.1 51.1 51.1 51.1	1011 C	397.87	401.39	410.34	412.00	413.63	413.75	412.56	21.114	407.72	403.22	399.75	CI 160	396.17	396.94	396.78	396.55	12.995	398.03	400.89	404.58	408.39	10, 01	109.43	109.21	406.69	405.40	103.21	396.08	393.47	96.06C	369.96	389.62	390.68	391.61	392.50	335.83 101 23	403.09	404.85	406.28	407.99	408.11	407.72
111	PTC BE	∃∎	7.69	9.67	13.63	14.64	16.67	17.68	18.67	19.06	21.62	23.62	25.65	21.68	29.66	30.64	31.63	32.62	19.65 ME	35.66	37.68	39.66	(2.6)	13.62	11.63	69.61 19.62	11.67	48.66	19.61	53.60	55.63	57.66	58.66	59.63	60.62 61 61	62.59	63.60	65.63	69.63	70.62	71.61	13.60	74.61	75.64

		08 •/•	1.97 1.95	1.96	1.97	1.97	1.96	1.97	1.96	1.96	1.96	96.1	1.97	1.97	1.97	1.97	1.97	1.96	1.95	1.95	1.95	1.94	1.93	1.94	1.95	1.94	1.95	1.94	56.1	1.94	1.95	1.95	1.95	1.94	1.94	1.95	16.1		1.96	1.95	1.95	56	1.94	1.95	1.94
		KN KN	404.62	404.53	404.62	106.27	406.28	101.07	406.63	405.23	101.96	406.24	10.001	406.66	406.62	406.53	107 11	396,90	397.04	397.89	397.85	394.88	394.43	395.26	395.58	396.42	396.33	395.94	20° 160	395.49	396.62	396.52	397.28	397.91	397.18	397.39	396.95	397,5U 80 805	397.29	397.76	397.41	10.180	397.65	397.75	398.16
		KB4 LV	101.55	101.51	101.56	101.97	101.97	102.16	102.06	101.70	101.63	101.98	102.02	102.07	102.06	102.03	102.18	99.56	99.66	99.83	99.87 100 17	11.991	98.99	99.23	99.28	57 66	99.47	99 .36	20 - 66 71 - 66	99.26	99.54	99.52	99.72	99.86	co. 66	99.72	99.63	51.85 00 00	11.66	· 99 . 83	99.74	17.88 00 66	99.79	99 B4	9 8.96
21		NB3 Li	100.47	100.42	100.47	100.87	100.88	101.08	100.96	100.62	100.54	100.87	100.92	100.97	100.96	100.95	101.10	38.54	98.59	98.79	98.79	50.86	97.94	98.17	98.24	98.44	98.42	98.31	91.97 98 08	98.21	98.49	98.47	98.65	98.80	90.00 98.63	98.67	98.57	96.71 08 90	98.66	98.76	98.69	38.12 98 67	98.74	98.79	98.88
A20.		NE2 N	101.00	101.29	101.30	101.71	101.71	101.92	64.101 64.101	101.45	101.39	101.69	101.74	101.81	101.79	101.76	101.92	85.38	99.40	99.64	99.58 00 01	58.85	98.74	98.95	99.03	81 . 88 87 . 88	99.22	99.13	98.75 98.87	99°01	99.29	39.27 99.27	99.46	99.62	99.43 99.43	99.49	99.37	19.51 17 00	59.65	99.57	99.49	16.88	99.54	99.55	9 9.62
TAB.		HEI Ku	101.31	101.31	101.30	00.101 72	101-71	101.92	101 87	101.45	101.40	101.70	51.101 76	101.81	101.81	101.79	101.91	00.201 89.62	99.40	99.64	99.61 00 00	98 87	98.76	98.90	88°.C4	81.88 84 24	99.23	99.14	96.76 98 88	99.01	99.30	12°.21	99.46	99.63	99.43	99.51	99.38	99.52	17.66	99.59	99.49	10.88	88.57	99.58	99.67
		RMS25 K	1.17	1.1	1.22	- n - T	.82	98 [.]	85. L	1.16	1.22	1.26	17.1	1.07	1.03	1.02	1.06	1119	1.20	1.22	1.18	71.1 36	.91	.82		. 83 19	1.02	1.14	1.22	1,23	1.16	1.10	1.00	- 6.	10.1	1.1	1.22	1.26	61 1	1.16	1.05	96. 8	.82	.84	.89
		1C25 C	393.68	402.14	405.10	407.85	408.30	408.13	40, 104	405.27	403.66	400.57	394.78	394.56	394.22	394.11	394.64	396.21	395.88	397.00	398.94	103 45	403.95	404.91	404.85	404.61	402.01	400.96	399.16	392.31	390.43	366.03	387.55	387.37	388.06	389.48	390.14	393.24	17 060	400.38	401.65	10.201	402.84	402.81	402.18
336.DÅT	NS N	I25	11.11	107.25	105.27	103.26	102.24	101.19	91 001 91 99	98.21	97.25	95.29	12.55	90.19	89.19	88.23	87.28	85.30	84.30	83.29	81.22	17.61	76.30	75.30	74.29	73.29	71.22	70.20	69.21 67 70	65.31	63.28	67.29	60.20	59.20	62.86 57.73	56.32	55.31	53.29	62 67	48.26	47.30	16.33	44.33	43.30	42.28
0,1987 M	KPERATORES FLOCTUATIO	RUS23 K	35	99.	5	8,3	.35	.28	50	8	.55	.62	80. 90	? ?	.52	Ŧ.	27	67	53	.57	65.5	į	12	.36	E	26		5	.52	.62		5.5	4	=	11	9	.53	.62	20.	55	15	9	32	.26	.28
11 JOL	T DIDJA -	7C23 C	390.95 393 81	398.14	401.39	403.31	405.32	406.27	CR. CA1	404.21	403.37	400.45	395 A4	394.51	394.00	393.57	393,85	29.465	393.87	394.82	395.80	100 35	400.86	401.62	401.96	401.98	401.04	400.54	398.79	393.37	390.40	388.47	387.95	387.05	386.97	387.69	388.69	391.15	395 RG	397.04	397.94	399.23	400.42	400.48	400.60
17:25	TEGENA 2 Probe 2	RUS22 K	11.	1.19	1.00	58.	3	.26	R7.	99	11.	5.	1 12	1.09	1.09	1.01	1.01	50.T	1.21	1.26	1.1	22	. 63	9	36.2	4 <u>7</u> . 72	e e	61	. 63	9	1.05	6.1	66	68 [.]	99. 99 99. 99	5	1.03	1.12	1.05	6.6	52	53	92. 58.	12.	12.
		TC22 C	393.02	401.78	406.76	408.99	412.49	413.26	113.12	11.57	410.09	405.10	108 60	397.37	396.89	395.17	396.04	10.CKU	396.76	397.75	399.18	81.2U1	106.67	407.69	408.73	408.91 408.78	408.35	107.45	405.26	397.23	393.87	391.05	389.67	389.28	388.94	389.41	390.39	391.77	336.35 ADD 66	102.03	403.19	101.76	00.70	407.58	107.63
		122	112.50	108.58	106.60	105.60	103.57	102.52	101.51	10.001	98.58	96.62	94.60 09.64	91.52	90.52	89.56	88.61	86.63 86.63	85.63	84.62	82.55	19 8L	77.63	76.63	15.62	71 62	72.55	71.53	10.54	70.00 99.64	64.61	63.58 67.55	61.53	60.53	59.58 58.69	57.65	56.64	54.62	16.2C	49.59	48.63	11.66	15.66	44.63	43.61
48	.97 m/cm 2 .97 m/c 5.8	RBS24 K	.58	85.	5	57 5 5	23	.31	5.5	55	.57	19.	19.1	15	.37	.42	S . 2	26.	95.	.55	<u>.</u>	3.	.22	.20	:25	32	94.	15.	3.3	3	3	92.		38	91.	5 25	.60	5	i i	62	30	.22	12	.29	.36
127		7C24 C	394.38	402.25	404.25	105.38	405.11	405.20	403.82 403.60	401.55	400.26	397,39	394.66	392.97	393.65	393.43	394.58	10.080 75 305	396.46	397.94	398.69	101 53	402.62	402.42	402.18	401.41 300 05	398.77	397.38	395.16	389.85	368.08	387.44 187 AG	387.06	387.23	387.68 388 97	390.13	390.86	393.78	396.24	399.84	400.51	400.82	400.46	399.77	398.96
		RUS21 K	1,09		: 1 3	.29	18	94	9 [.] 5	. 1.2	.92	1.05	1.06	16	16	1.06	1.13	1 29		1.06	.82	19.	22	.22	.28	12.	. 62	2.	8.	96 [.]	.93	.86 81	.85	68.	- 10 1	1.05	1.03	16.	.62	64	36	.26	67	33	. 53
= 3.14 = 311.7 = 51.5	= 51.1 = 404.6 = 88143.	7C21 C	398.92	409.02	412.62	413.41	413.27	413.13	410.63	106.76	404.98	401.65	398.50	395.49	395.40	395.83	396.00	100 TO	400.26	401.60	403.58	100 00	410.56	410.71	410.14	109.09	105.42	402.97	400.31	393.45	390.10	388.95	369.26	388.99	390.00 391 BD	393.08	393.76	398.52	402.42	10.001	407.96	408.46	407.88	406.52	405.39
721 781 981	2 22 22 <i>2</i>	I21	109.85	105.93	103.95	102.95	100.92	99.87	98.86	96.89	95.93	93.97	91.95	88.87	81.87	86.91	85.96 61.00	84 . 48 8.2 . 98	82.98	81.97	19.90	11.69	14.98	13.98	72.97	11.97	63.90	68.83	61.89	63,99	61.96	60.93 40 90	58.88	57.88	56.93	55.00	53.99	51.97	49.92	16.91	45.98	45.01	43.01	41.98	40.96

`

.

ł

·

		DTC .	80.35 81.06	81.39	81.60	80.86 55	80.86 81 13	81.40	81.21	81.15	81.15	80.90	80.89	80.76	81.26	81.35	81.21	81.24	80.78						
		M78 kg/s ·	.79 18	8.	.81	ສຸ	5		8	8	8	5	3	8	8	8	18.	18.	.81						
A21.1		1 81 C	294.94 794.78	295.03	295.58	295.58	295.64	295.93	296.16	296.52	296.63	296.63	296.84	296.94	297.11	297.08	297.20	297.58	297.59	A21.2					
TAB.		RUS15 L	8	2	62.	8	.	91. 81.	.23	.30	.37	=	9	8 .	21.	8.	.31	32	.21	TAB.					
		T C15 C	375.18 377 03	378.46	380.03	380.41	381.27	382.08	382.33	381.89	381.12	379.91	379.21	376.85	374.97	374.41	373.89	373.43	372.79						
		ŝ i 1	9.84 10 85	11.93	12.98	14.01	11.99	16.84	11.11	18.75	11.11	20.87	21.93	24.00	25.93	26.87	27.80	28.78	29.78	8104. DAT		ų	ORS		
B104.DAT	SHO]	R ^{BS14}	15.2	; 4	31	.21	2.2	26	36.	₹.	15.	.55	9.	- 59	1	9 .	Г. [.]	22.	.20	22.1987		2011 102030	PLOCTOATI		
K22, 1987	TELOCTOAT	1014 C	376.28 379 01	379.85	381.01	381.27	381.70	381.76	381.54	380.91	380.33	379.24	377.91	376.14	374.11	373.82	372.68	373.07	372.68	6:48 JOH					
16:48 JD	- 7LUID	RNS13 L	56 56	5	9	.31	17.	8. R	9	5	56	8 5.	6 3.	6 3.	S.	₹	38.	8.	27	15:31		. 102346	PROBE 2		
15:0	TEGENA 2 Probe 1	7C13 C	376.41	379.23	381.39	381.45	382.18	382.47	381.88	381.35	379.88	378.62	377.78	375.52	373.94	373.45	372.96	373.18	372.76						
		112	10.86	12.95	14.00	15.03	16.01	15.92 17 ac	18.79	19.77	20.79	21.89	22.95	25.02	26.95	27.89	28.82	29.80	30.80						
	12 M/cm 2 74 M/cm 2 79 kg/s 49 m/s 1.9	RUS12 L	21.	. 2	39	58	S	5	=	9	55	65.	5	92.	2.	19	19 .	.55	4	18	5.3 C 0 7 W/m^3	0.7 N/cm2	.79 kg/a	.49 m/6 0,9	
31.0		1012 C	373.42	376.95	378.85	379.04	380.45	381.60	382.12	381.68	381.36	379.80	379.19	377.30	375.44	374.59	373.45	373.27	372.49	- 89			 	。 	
		RBS11 I	69	1	62	51	Ę	R 7		9	9	.52	- 29	69	.65	.62	.55	84.	0 9 .	-	11 11 10	/cr.2		52	
= 31.65 m = 294.9 C	= 10.68 % = 10.68 % = 84.6 % = 80.4 K	TČI1 C	373.96	317 00	379.20	380.04	380.94	382.10	382.71	382.35	381.79	381.19.	379.31	377.78	375.66	375.48	373.82	373.88	373.15	= 86.53 m	- 10 8 9	- 10.7 1	= 84.6 h	= 80.4 I = 16322.	
		₽∎	8.81	70 [.] k	11.95	12.98	13.96	14.87	11.91	11.72	18.74	19.84	20.90	22.97	24.90	25.84	26.77	27.75	28.75	121		19	e	Brc Be	:

Q84 -2 10.74 11.00 11.08 11.08 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03 11.03

 W/cm^2 2 10.72 10.72 10.97 11.06 11.08 11.08 11.02 10.97 11.02 10.97 11.02 11.02 11.02 11.02 11.02 11.02 10.97 11.02 10.98

QH M/cm² 10.79 11.15 11.15 11.05 11.04 11.08 11.08 11.08 11.08 11.08 11.08 11.08 11.08 11.08 11.08 11.08 11.08 11.08

10.95 11.05 11.02 11.02 10.94 10.94 10.95 10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93 10.93

QB3 V/cm^2

88 %	61.	<u>5</u>	<u>5</u>	50	.50	-50	50	20.	-20	<u>s</u>	<u>s</u> .	<u>8</u>	<u>.</u>	<u>.</u> 5	20	20	<u>.</u>	.50	.50
	84.58	86.67	87.27	87.90	85.76	86.60	86,89	86.48	86.87	86.79	86.44	86.52	86.50	86.53	86.63	86.82	86.92	86.85	86.19
New Yes	21.22	21.74	21.89	22.05	21.51	21.73	21.79	21.69	21.79	21.77	21.69	21.70	21.70	21.70	21.73	21.78	21.80	21.79	21.62
ER Fr	21.00	21.53	21.68	21.84	21.30	21.51	21.58	21.46	21.58	21.56	21.47	21.49	21.49	21.49	21.52	21.56	21.59	21.57	21.41
KB2 Lin	21.14	21.67	21.81	21.97	21.44	21.65	21.72	21.62	21.71	21.69	21.61	21.62	21.52	21.63	21.65	21.70	21.73	21.71	21.54
LEN Ma	21.22	21.73	21.89	22.04	21.51	21.72	21.79	21.69	21.79	21.77	21.68	21.71	21.69	21.70	21.73	21.77	21.80	21.78	21.62
BUS25 L	1.14	1.14	1.10	1.06	1.00	86 .	96 .	96 [.]	66 '	1.03	1.07	. 1.09	1.11	1.14	1.10	1.06	1.04	1.00	- 3 5
1c25 C	375.09	376.89	379.29	380.36	380.99	381.66	382.27	382.28	382.18	381.74	380.37	380.05	378.14	376.57	374.13	373.55	372.74	372.56	372.26
125	22.73	21.82	20.90	19.95	18.94	17.94	16.89	15.85	11.11	13.77	12.80	11.86	10.93	9.00	6.95	5,88	4.83	3,83	2.86
RUS24 L	.51	9	F.	. 25	11.	=	81.	.26	36.	91	5	.56	.63	60	9	.39	52	.23	.18
1C24 C	376.89	378.95	380.10	382.27	381.81	382.37	382.38	381.66	381.37	380.64	379.48	377.91	376.60	374.97	373.50	372.67	372.06	372.07	371.73
RUS23 L	.55	15.	C F -	36.	Е.	. 29	16.	36	6	5.	8 5.	.60	- 61	.65	23	9	39	.33	.30
7C23 C	377.46	378.88	360.28	381.89	381.45	382.16	382.28	381.94	381.53	380.56	379.50	378.21	377.22	375.34	372.97	372.68	371.84	372.11	371.79
123 1	21.40	20.49	19.57	18.62	17.61	16.61	15.56	14.52	13.44	12.44	11.47	10.53	9.60	7.67	5.62	1.55	3.50	2.50	1.53
RHS22 L	85.	85	53	4	66.	30	.20	-	=	.20	30	36	98	5	25	56	61	\$	32
1C22 C	373.40	375.60	377.45	379.38	379.48	381.12	382.15	382.50	383.15	383.07	382.33	381.01	379.98	377.87	375.90	374.58	373.99	373.58	372.56
RBS21 K	.58	53	53	5	.39	.29	.21	5	51.	.20	.29	35	45	.55	.56	56	61	=	.32
7c21 C	374.18	375.86	377.73	379.71	380.22	381.12	381.98	382.64	383.05	383,06	382.42	381.82	380.91	377.92	375.91	375.27	374.24	373.97	372.87
121	24.06	23.15	22.23	21.28	20.27	19.27	18.22	17.18	16.10	15.10	14.13	13.19	12.26	10.33	8.28	1.21	6.16	5.16	4.19

C 180 375.29 375.84 375.45 376.45 376.45 377.18 377.51 377.78 377.77 377.77 377.77 377.77 378.41 378.41 378.41 378.41 378.41 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 378.63 377.70 378.41 377.51 378.41 378.41 378.41 378.41 378.41 378.41 378.41 378.41 378.41 378.41 377.51 378.41 377.51 378.41 377.51 378.41 377.51 377.51 378.41 377.51 377

- 151 -

-	Q84 N/ca^2	10.71	10.72	10.73	10.70	10.68	10.74	10.72	10.75	10.79	10.90	10.70	10.74	10.80		10 01	10.90	10.88	11.12	11.12	11.04	11.00	10.98	10.99	11.03	11 03	11.05	11.02	11.04	39	11.07	11.08	11.08	11.10	11.10	10.83	10.91 10 85	10.92	10.94	10.98	96.01	11.03	11.09	10.93 10.91	10.95
	QB3 V/cn^2	10.66	10.67	10.68	10.65	10.61	10.62	10.66	10.70	10.74	10.05	10.65	10.69	10.74	10.78	10.92	10.85	10.84	11.07	11.06	10.98	10.91	10.92	10.93	10.98	10.98	10.99	10.96	10.98	11 00	11.01	11.03	10.11	10.11	11.04	10.78	10.85	10.87	10,88	10.92	16.01	10.98	11.03	10.88 10.86	10.90
	Q82 V/ca^2	10.70	10.71	10.72	10.69	10.68	10.73	10.71	10.74	10.78	10.83	10.69	10.72	10.78	28.01	10 - 20 10 - 20	10.89	10.88	11.11		88	66.01	10.96	10.98	11.02	11 02	18.11	11.00	11.02	11.05	11.05	11.08	90-11 1	11.08	11.09	10.82	10.90	10.91	10.93	10.96	66 01 10 68	11.02	11.07	10.92	10.94
	QB1 V/ca^2	10.77	10.78	10.79	10.76	10.74	10 80	10.77	10.81	10.84	66.01	10.76	10.80	10.85	10.89	51 I	10.95	10.95	11.18	11.11	11.10	90.11	11.03	11.04	11.08	11 09	11.10	11.06	11.09	11.10	11.12	11.15	11.12	11.15	11.15	10.89	10.96	10.98	10.99	11.03	11 07	11.09	н.н	10.99	11.01
	DTC I	81.84	81.94 10	82.09	82.10	82.05	87 21	82.12	82.08	82.19	11.28	81.76	82.15	82.40	CF 78	C0.10	82.40	82.56	83.35	83.41	63.24	82.54	82.64	82.72	83.05	82.30	83.12	82.77	82.96	83 74	82.96	83.21	83.U6 83.D3	83.52	83.14	82.53	82.43	82.54	82.40	82.76	82.51 83 10	82.92	82.94	82.75 82.59	82.39
	NTR hg/s	.78	.78	22	Ę	E	e e	22	.78	2	2		.78	.78	2	6 - C	61	82.	- 79	62	61.	5.2	61.	.79	61.	61	62.	.79	. 19	5.2	62.	.19	2,2	2.5	.79	2.1	61.	2.62	19	62.1	61. 62.	2	.80	. 19	62.
	181 C	293.30	293.06	292.89	293.05	293.17	06 666	293.04	292.86	293.00	293.01	293.09	293.20	293.39	293.43	C1. CE2	294.20	294.29	294.56	294.96	295.09	04.652	295.98	296.23	296.47	246 RG	297.14	297.28	297.51	291.33 298 01	298.16	298.33	298.42	258.31	298.48	298.54	298.51	238.15	298.07	297.85	297 78 297 78	297.61	29/.72	297.55 297.64	297.49
	RUS15 L	-1 5	9	12	.16	9. S	<u>e</u> =	1	8	81 S	1	8	.18	81.	<u>ع</u> :	9.9	<u>1</u>	12	.16	16	e :	į	19	91	9	- -	20	19	6	9	1	1	Ę	. =	1	61	e . •	92	1	Ę	i a	16	.22	2.5	9
	1C15 C	373.52	373.60	373.62	373.54	373.32	372 69	371.90	371.04	370.87	370.65	370.08	370.52	370.74	371.15	510.210	373 53	374.59	376.52	377.31	377.43	317.05	378.09	377.95	377.98	311.55	376.34	375.36	375.58	373.60	375.59	375.79	375.74	376.25	377.30	377.22	377.90	378.31	378.39	378.20	377.75	377.10	377.05	375.05 373 87	372.49
FURES FOATIONS	\$11 #	75.65	11.11	13.65	71.65	70.66	69.69 68 70	66.72	64,69	62.66	61.66	59.68	58.71	57.73	22.95	27.00	52.67	50.67	48.72	47.73	12.9	2.2	43.69	42.67	11.67	69.04 19.19	36.75	34.71	33.69	32.65	30.69	29.70	28.73	26.75	24.70	22.67	20.69	13.10	17.75	16.76	15.73	13.69	12.69	10.69 8 73	6.76
ID TEMPERA Temp fluct	RUS13 L	. 25	12:	12	2	2	97.5	25	.25	2	7.1	52	52	.24	5 <u>,</u> 5	ci x	jz	12	.25	77	5. Z	2	5	52	8.5	97.5	96	12.	8.3	97 F	<u>i 8</u>	. 26	8. ×	55	72.	.28	22	9. X	8	.25	12.	57	3	52.	32
88 J 88 J	1C13 C	373.44	373.31	373.06	372.92	372.79	372.33	371.37	370.61	370.24	370.38	369.91	370.44	370.75	371.17	20.216	373 79	374.51	376.21	376.88	377.00	31.116	377.26	377.05	377.31	376.33	375.60	375.02	375.05	875, 28	375.54	375.64	375.97	376 48	377.41	377.45	377.97	31.15	377.74	377.41	377.20	376.21	376.04	374.17	372.11
TKG PRO1	RUS12 K	.37	=:		9	9	33	5	;₹	9	ę:	; 3	3	.42	;	; =		=	=	9 .	ត្ត	67. 61	=	-42	Ę	7	i I	46	9			.43	2	3	9	.43	.	3, 2	=	н.	2 5	23	÷	2	5
	1 C12 C	373.89	373.78	373.60	373.22	373.02	372.32	371 14	370.50	369.98	370.19	369 58	370.06	370.45	370.82	572.03	373 81	374.84	376.81	377.46	377.67	21. 25 277 79	377.63	377.44	377.41	311.21	375.22	374.57	374.53	374.59	375.11	374.86	375.55	376.37	377.14	377.44	378.15	378 26	378.37	378.04	377.71	376.41	376.29	374.02	371.43
	I12	14.62	13.68	11.62	70.62	69.63	68.66 67 67	67 69	63.66	61.63	60.63	58 65	57.68	56.70	55.71	69. KG	19 19	19.64	47.69	46.70	45.71	11 . TU	42.66	41.64	10.64	39.66	35.72	33.68	32.66	31.65	29.66	28.67	27.70	26.11	23.67	21.64	19.66	18.67	16.72	15.73	14.70	12.66	11.66	9.66	5.73
	RUS14	61	.20	91	1	81.9	F. 2	<u>.</u> =	22	61.	61.	9 2	61.	.19	ຊ	5.2	3.5	2.2	27	.20	8. ÷	9] E	1	.18	81.5	6I :	12	12	.20	8. 2	.20	19	61.9	5 <u>-</u>	50	.20	2	6I. 6	1	.18	8.9	12	53	2	52
	1014 C	372.65	372.78	372.95	373.02	372.99	372.53	12.716	371.14	370.61	370.58	10 010	370.23	370.19	370.63	371.48	110 66	373.52	375.60	376.20	376.58	376.92	377.41	377.42	377.56	377.51	376 18	375.48	375.44	375.46	375.26	375.32	375.39	21.215	376.64	376.56	377.13	377.39	377.49	377.51	377.35	376.91	376.67	374.79	372.75
	RUS11 K	35			ā	36	9 <u>6</u> .	ŝ		. 39	8E.	80. U	3	9.	e :	2 8	6. E		66	.36	35	8. 2		3	8.3	8. E	9 F	8	66.	66.	2 5	66.	66	9? 9?	5	.38	80.3	8			7	8. S	8	8. S	98. 98
- 10.8 x - 10.3 x - 10.3 x - 10.3 x - 10.3 x - 10.3 x - 10.8 x - 10.3 x - 1	1011 C	373.74	373.89	374.22	374.21	374.08	373.67	319 4R	371.57	370.94	371.03	369.01	370.45	370.74	370.60	371.74	00 215	374.26	376.46	377.32	377.58	378.06	378.62	378.62	378.72	378.64	376.84	375,91	375.58	375.82	375.34	375.68	376.01	IC.CIC	377.07	377.30	377.91	378.10 178 38	378.80	378.77	378.61	378 12	377.76	375.65	373.23
GB1 DTC Re CC	∃∎	16.67	75.73	2.2	12.67	71.68	10.71	71.69	65.71	63.68	62.68	61.69 60 70	59.73	58.75	57.76	26.7	1	51.69	10.71	48.75	41.76	46.75 16.75	11.11	(3.69	42.69	11.11	11.10	35.73	34.71	33.70	31.71	30.72	29.75	41 . 6Z	25.72	23.69	21.71	20.72	18.11	17.78	16.75	14.1	13.71	11.11	7.78

TAB. A22.1

10:31:07 JUNIS,1987 BOBU.DAT

5 Tid = 31.48 mm TBO = 375.1 C

= 29.43 mk

A2	
TAB.	

22.2 11. 11.	21.73 21.59 21.73 86.90 49 21.64 21.70 21.91 87.35 49 21.43 21.35 21.56 86.90 49 21.43 21.35 21.56 86.36 49 21.43 21.35 21.56 85.36 49 21.51 21.36 21.36 85.36 49 21.51 21.36 21.56 85.36 49 21.51 21.43 21.43 21.43 21.43 21.44
22.2.2 22.2.2 11 12.1.2 14 11 21.1.5 14.1.5 12 21.1.5 14.1.5 13 21.1.5 14.1.5 14 14 14 13 21.1.5 14.1.5 13 21.1.5 14.1.5 14 14 14.1.5 15 21.1.5 14.1.5 15 21.1.5 14.1.5 15 21.1.5 14.1.5 15 21.1.5 14.1.5 15 21.1.5 14.1.5 16 21.1.5 14.1.5 17 21.2.5 14.1.5 17 21.2.5 14.1.5 17 21.2.5 14.1.5 17 21.2.5 14.1.5 18 21.1.5 14.1.5 17 21.55 14.1.5 18 21.1.5 14.1.5 17 21.55 14.1.5 17 21.55 14.1.5 <	21.73 21.53 21.73 86.30 21.64 21.70 21.31 86.30 21.43 21.33 21.56 86.32 21.43 21.33 21.56 86.32 21.43 21.35 21.56 86.32 21.43 21.35 21.56 85.32 21.51 21.43 21.56 85.32 21.51 21.54 21.56 85.32 21.51 21.54 85.32 21.56
22.2 22.2 11. 22.2 12.2 12.2 13.1 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14. 15. 1	21.73 21.59 21.79 21.84 21.70 21.91 21.53 21.39 21.60 21.48 21.35 21.56 21.48 21.35 21.56 21.43 21.35 21.56 21.43 21.35 21.56
	21.73 21.59 21.84 21.70 21.53 21.39 21.49 21.35 21.49 21.35 21.57 21.43
	21.73 21.64 21.53 21.49 21.57
Hall Hall Hall Hall Hall Hall Hall Hall	21.80 21.91 21.60 21.56 21.56
R 255 842 1 - 100 1 -	. 96 96 95
80.047 11045 11045 11045 11045 11045 11045 11045 11045 11045 11045 11045 11045 11045 111555 111555 111555 111555 111555 111555 111555 111555	376.41 376.62 374.48 373.03 371.60
,1987 MD 125	104.16 105.16 107.10 109.02
2 - 2 - 1 JONIS 2 - 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10	31 32 33
10:31:1 10:31:1 10:31:1 10:31:1 10:325 11:1 11:25 11:2	375.08 374.91 373.13 371.77 371.77
R8522 8522 114 115 115 115 115 115 115 115 115 115	22222
722 2314.41 314.41 314.55 315.54 3317.55 317.55.54.55.54.55.54 317.55.54.55.54.55.54.55.54.55.55.55.55.55.	376.16 376.16 373.97 372.40 371.02
1 22 1 23 1 23 1 23 1 24 1 25 1	105.49 106.49 108.43 110.35 112.35
X = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =	19861
1 1	376.01 376.08 374.53 373.26 372.09
N (= 1) N (= 1)	51115
23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.12 23.14 23.12 23.14 24.14 24.14 24.14 24.14 24.14 24.14 24.14 24.14 24	378.13 376.13 376.20 374.68 373.00
122 122 123 123 124 124 125 124 126 124 127 124 128 124 129 125 121 124 121 124 123 124 124 124 125 125 126 124 127 124 126 124 127 124 126 125 127 124 126 124 127 124 127 124 126 124 127 124 126 124 127 124 126 124 127 124 126 124 127 124 126 125 127 124 126 125 127	102.84 103.64 105.78 107.70 109.70

— 153 —

A23 TAB.

JUK22,1987 M102.DAT

11:08:52

2 - FLUID TEMPERATURES I TEMP FLOCTUATIONS TECENA 2 Frobe 1

29.61 mm 371.5 C 20.27 N/cm⁻² 20.29 N/cm⁻² 1.56 kg/m 97 m/e 178.6

.

20.21 20.51 20.51 20.53 20.53 20.16 20.16 20.16 20.17 20.17 20.17 20.20 20.20 20.20 20.20 20.20 20.20 282 1/cm^2 20.29.29 20.59 20.59 20.59 20.29 20.25 20.26 20.28 20. QB1 W/c=^2 Ľ. 848 8/8 A24 <u>ا</u> TAB. RUS15 K 1C15 365. 366. 3366. 3366. 3375. 3375. 3382. 3382. 3382. 3375. 375. 29.85 29.85 29.85 27.84 28.85 28.85 28.85 28.85 28.85 16.93 16.93 11.88 11.98 2. RMS14 K 34948844104948428503389 1C14 363. 364. 365. 375. 375. 375. 375. 382. 382. 375. 375. 375. 32RBS13 E 1013 30.1 228.1 117.1 1 8. 29.61 mm 375.2 C 5.60 W/cm² 5.60 W/cm² .40 kg/s .24 m/s 45.2 RBS12 L 1012 C 3365.3333. 3379. 3381. 3381. 3381. 3381. 3374. 3374. 3374. 3374. 377. RUS11 K = 31.66 mm = 294.3 C = 20.37 N/cm⁻2 = 159.8 kM = 77.2 K = 31952. Ξ∎

20.29 20.51 20.51 20.51 20.53 20.19 20.19 20.19 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.25 20.53 20.53 20.53 20.53 20.53 20.53 20.53 20.53 20.53 20.53 20.53 20.53 20.54 20.54 20.55 20.54 20.55 20.54 20.55 20.54 20.55

20.15 20.38 20.38 19.95 20.05 19.95 20.05 19.95 20.05

QE4 W/cn^2

QB3 N/cn^2

0H4	K/c. 2	5.60	5.60	5.61	5.62	5.61	5.63	5.61	5.64	5.63	5.65	5.65	5.65	5.64	5.63	5.62	5.62	5.62	5.60	5.61
DR3	1/c 2	5.59	5.59	5.59	5.60	5.59	5.61	5.60	5.62	5.62	5.63	5.64	5.64	5.62	5.62	5.60	5.61	5.61	5.59	5.59
083	K/cn^2	5.60	5.59	5.60	5.61	5.60	5.62	5.61	5.62	5.62	5.64	5.64	5.65	5.63	5.63	5.61	5.61	5.61	5.59	5.60
1HQ	N/c 2	5.64	5.64	5.65	5.65	5.65	5.67	5.65	5.67	5.67	5.69	5.69	5.69	5.68	5.67	5.66	5.66	5.66	5.64	5.64
DEC		84.33	84.82	84.76	84.39	84.30	84.45	84.74	84.52	84.66	. 85.28	84.95	84.17	84.95	85.39	84.96	85.84	84.94	85.48	86.40
APR.	kg/8	9	39	.39	9	9 .	9	39	9	97	39	97.	9	39	.39	.39	.39	.39	. 39	.39
+RI		290.82	291.14	291.76	292.24	292.42	292.48	292.54	292.56	292.72	292.76	292.97	293.12	293.36	293.11	292.38	291.03	290.43	290.11	289.70
RNS15	I	.16	.17	.19	.22	.23	.24	.24	.22	.20	.18	11.	.15	51.	81.	.18	.20	.21	.23	. 23
1015	2	369.81	370.52	371.16	371.72	372.54	373.89	375.33	376.09	376.85	377.80	378.02	378.05	378.50	378.29	377.84	376.78	375.47	374.55	373.23
716	1	29.83	28.82	27.83	26.91	25.99	24.08	21.99	20.90	19.85	18.82	17.84	16.91	15.99	15.06	14.08	13.05	11.98	10,90	9.86
PNCTA	ľ	11.	.18	.19	.21	.23	.27	.28	.28	12.	.23	.20	.18	.17	.17	18	.19	.22	.24	. 24
71.74		369.53	370.12	370.67	371.01	372.23	373.13	374.55	375.26	376.07	377.09	377.48	377.68	378.27	378.44	377.95	376.97	375.92	374.79	373.66
preta	l	.24	.24	.26	.28	30	.33	.33	.32	30	.28	.27	.25	.24	.24	12.	. 26	.27	.29	16
513	212	369.59	370.26	370.64	371.24	372.03	373.36	374.71	375.27	376.30	377.39	377.51	377.86	378,30	378.55	378,03	377.17	376.10	375.04	374.26
	3	30.85	29.84	28.85	27.93	27.01	25.10	23.01	21.92	20.87	19.84	18.86	17.93	17.01	16.08	15.10	14.07	13.00	11.92	10.88
DICID	71001	.39	9	.42	91 ?	84.	19.	99.	6	3	.39	. 38	.37	9	91	.43	C) .	Ξ	94	.45
	111	368.97	370.02	370.55	371.22	372.23	373.76	375.23	375.80	376.83	377.42	377.36	377.49	377.61	377.49	376.52	375.47	374,65	373.21	372.12
DMC 11	11eou	.33	34	36	38	9	.39	31	.37	16	.32	.31	31	.32	.35	.35	.36	37	39	38
1100	12.2	369.74	370.55	371.07	371.91	372.90	373.97	375.62	376.35	377.07	377.92	317.95	377.87	378.08	377.92	377.12	375.98	374.76	373.60	372.57
114		28.80	27.79	26.80	25.88	24.96	23.05	20.96	19.87	18.82	17.79	16.81	15.88	14.96	14.03	13.05	12.02	10.95	9.87	8.83

M106.DAT

JUR22,1987

19:41:27

2 - FLUID TEMPERATURES I TEMP FLOCTOATIONS

-TECENA 1 PROBE 1

.

31.66 mm 290.8 C 5.64 M/cm^2 5.59 K/cm^2 44.2 kW 84.3 K 8086.

		QBA N/cm^2	21, 82 21, 82 21, 82 21, 82 21, 83 21, 84 21, 85 21, 85 21	
		QB3 W/cm^2	21.65 21.65 21.65 21.65 21.65 21.65 21.71 21.71 21.71 21.72 21.73 21.73 21.74 21.74 21.74 21.75	
		982 V/ca^2	21.85 21.87 21.73 21.75 21.75 21.88	
		Q81 W/cn^2	21.93 21.93	
		L DIC	80.64 80.64 80.42 80.42 80.42 80.45 80.54 80.55	
A25.1		NFR hg/b		
TAB.		7BI C	225, 82 225, 85 225, 8	
		RUS15 L		
		7C15 C	355, 17 355, 17 375, 355, 37 375, 355, 37 372, 38 372, 38 372, 38 372, 28 372, 28 372, 28 372, 28 372, 28 375, 29 356, 59 356, 59 374, 27 374, 27 374, 28 374, 27 374, 27 374, 28 374, 27 374, 27 374, 29 374, 29 375, 53 375, 55 375,	
H063. DAT	2KS F1 ONS	512 8		
3%10,1987	TEMPERATU SP FLUCTUA	BUS13 I	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	
:29:19 JI	2 - FLUID TER	7C13 C	364, 45 365, 46 365, 56 371, 14 371, 14 371, 14 371, 15 371, 15 371, 15 372, 15 366, 19 366, 19 372, 15 371, 17 372, 13 372, 13 373, 13 374, 13 375, 13 377, 14 377, 14 377, 15 377, 15 377, 15 377, 15 377, 15 377, 15 377, 15 377, 15 377, 15 377, 1	
20:	TEGENA Probe 1	RUS12 L	x; z;	
		7C12 C	365, 28 365, 28 372, 65 372, 65 372, 65 372, 65 371, 17 375, 37 375, 37 375, 37 375, 37 375, 45 375, 45 375, 46 375, 47 375, 46 375, 4	
		112	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
10 10 10 10	8 %/cm^2 8 %/cm^2 1 kg/s 0 m/s 2	BUS14 I		
= 31.4	21.6	7C14 C	365, 55, 55, 56, 51, 56, 55, 56, 31, 57, 56, 55, 56, 31, 52, 56, 55, 56, 31, 52, 56, 56, 31, 52, 56, 56, 31, 56, 56, 56, 31, 56, 56, 56, 31, 56, 56, 31, 56, 56, 31, 56, 56, 31, 56, 56, 31, 56, 56, 31, 56, 56, 31, 56, 56, 31, 56, 56, 56, 31, 56, 56, 56, 31, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56	
		BUS11 I	***************************************	
29.44 m	21.7 #/ 21.7 #/ 171.8 km 33123.	1011 C	366 55 376 55 376 55 376 55 377 45 377 45 377 45 377 55 375 55 37	
191		E 1	7, 6 1, 7 1, 6 1, 7 1, 7 1	

--- 155 ---

		1B0 C	376.46 375.94	376.00 376.06	375.75	375.83	375.69	375.49	375.38	375.19	375.00	37.016	375.14	374.58	374.85	375.19	374 87	374.90	374.68	374.76	374.65	375.11	10 128	374.77	374.89	374.90	375.01	374.87	374.75	374.68	374.64	374.90	374.96	374.97	10.110	374.13	374.63	375.08	375.04	20.610	375.16	374.93	375.00	374.02	10.410	313.57	373.87
		0B 11/5	1.00	8.1	8.1	0	8.9	1.0	1.00	1.00	8.1	8.8	1.00	1.00	1.00	8.1	3 8	1.00	1.00	1.00	1.00	8.1	8.4	1.8	1.00	8.2	1.0	8.8	1.00	1.00	1.00	00.1	1.00	1.00	0.1 1	10.1	1.00	1.00	1.60	3.1	8	1.00	1.8	66 -	6. S	66	66
		: RN	171.85 171.66	171.53	171.61	172.03	172.15	171.75	172.11	172.40	172.27	172 23	172.24	172.10	172.35	172.04	171 83	11.11	171.79	171.28	171.50	172.20	172 60	172.33	172.30	172.23	171.80	68 111	171.41	171.79	171.65	171.60	172.25	172.37	172.06	172.11	172.25	172.85	173.13	38 641	173.09	172.98	173.22	168.35 168.35	168 80	169.04	169.03
		KB4 LV	43.11 43.07	43.03 43.03	43.06	43.16	43.20	13.09	43.17	13.25	13.22	13 20	43.21	43.18	- 43.24	43.16	1.5	10.61	43.10	42.97	43.02	13 .21	12 21	13.23	13.23	13.21	43.10	13.12	43.01	10.11	13.18	13.11	43.22	13 24	13.17 15	(3.18	43.21	43.37	: :	45. JI	13,43	43.41	49.46 55.55	42.23	12.32	42.41	12.41
~1	;	N83 La	42.65 42.60	42.58	12.59	42.69	42.72	42.62	42.72	42.79	12.76	11 11	12.75	42.71	42.77	42.70	20.24 20.24	42.54	42.63	42.52	42.57	12.74	18 61	12.11	42.76.	42.75	12.61	42. FU	42.54	12.64	47.69 12.60	42.64	42.75	42.78	42.70	12.12	12.75	42.90	42.97	16.24	12.95	42.93	43.00	41.78	02.14 02.14	96 LT	41.95
A25.2		NB2 kn	43.01 42.96	42.93	16 21	13.06	13.09	12.98	43.08	43.15	13.12	01 67	43.11	43.08	43.14	13.06	19.54	12.90	43.00	42.87	42.92	43.10	er.et	43.14	43.13	43.10	13.00	13 02	42.90	42.99	13.05	13,00	43.11	13.14	13.07	43.08	13.11	43.26	43.33	13.26	43.32	43.29	43.34	42.14	12.20	02.24	42.31
TAB.		NA Na	43.07 43.02	42.99	43.01	43.12	13.11	13.05	43.14	43.21	43.17	67.04 81.81	43.17	43.14	43.21	43.12	43.UB	42.96	43.06	42.93	42.99	4 3.15	37.54	43.19	43.19	43.17	10.64	13.12	12.97	43.06	43.12	13.06	43.17	43.20	43.12	13.13	43.18	43.32	13 39	13.32	43.38	43.35	43.41	42.20	12.21	16.21	12.37
•••		RBS25 K	.37	15		33	.23	9 =	91.	.20	55	8	33	5	.35	ж. :	9 E	. 8	=	38	38	11	5, 2	58.	12	Ę	21:	ei 6	12	.33	F .	3	8	.32	R, a			.37	66.	8. s	5.6	.32	.26	61.5	<u>.</u>	1	.22
		TC25 C	363.48 365.62	367.92	50°. 00	370.69	371.07	371.13	370.86	370.38	369.54	17.00C	365.72	365.04	365.06	365.08	364.66 164.69	365.05	365.41	366.18	367.55	369.42	371 88	372.27	372.82	373.26	373.41	373.11	372.10	370.79	369.04	367.37	366.46	366.45	366,04	366 10	366 57	367.39	368.78	369.93	372.98	373.36	374.00	373.45	373.9U 373.69	373.35	373.00
063.DÅT	SN	125 11	111.08	107.23	57 - ONT	104.24	103.23	101.19	100.18	99.18	98.21	90. 23 04 98	92.24	91.21	90.19	89.19	69.23 61 91	86.30	85.29	84.29	82.25	80.20	10.23	76.29	75.30	74.29	73.28	17.25 17.21	70.19	68.21	66.27	63.25	62.22	61,20	60.16 50.16	58 21	57.26	56.28	51.27	52.23	10.19	48.22	17.28	16.31	45.31 41 30	13.77	12.26
1,1967 H	SPERATURES PLOCTUATIO	BMS23 L	36	9	9 3	12	e. :	8. E	.32	.32	ຄຸ	9 7			38.	19	36		; R	.37	.39	8	Ę Z		36	2	e.:			. 38	ទុ	22	8	38	15.	8. ¥	5	36.	8. i	6F.	3 F	38	36.	5			
INOC 61:	- PLOID TR	1C23 C	362.08 363.71	365.76	10. 100 167 99	368.33	369.16	369.23 369.76	369.75	369.62	369.01	306.21 366 98	365.59	365.21	364.92	364.59	364.36	364.49	364.48	364.87	365.94	367.83	209.U4	370.31	371.07	371.53	371.91	372.02	371.60	370.71	369.24	367 87	366.91	366.71	365.95	365 73	365,84	366.34	367.51	368.49	370.83	371.81	372.38	371.78	372.35	379 39	372.18
20:29	TECENA 2 Probe 2	RMS22 I	11.2	3	8 F	3	E.	19 19 19	2	.24	12.	ý s	9	67	15.	5	R, I	3 5	5	.61	58	6	; :	-		29	.25	2.	51	.35	=	8	61	.52	3.5	ទំន	25	53	3	5	: 3	=	.37	E.	- 28		.23
		1C22 C	362.82 364.68	367.40	369.20 369.88	371.23	372.02	512.55 573.77	373.36	373.07	372.17	3/U.05	367.07	366.49	366.32	365.73	365.45	365.39	365.43	365.75	367.46	369.66	379 61	10.210	374.05	374.62	375.27	375.49	374.95	373.57	371.70	369.49	368.31	367.61	366.67	366 52	366.56	367.09	368.58	369.69	372.96	374.20	375.10	374.73	375.35	375 57	375.49
		122	112.41	108.56	82.7U1	105.57	104.56	102.55	101.51	100.51	99°.54	91.62 06.61	19.52	92.54	91.52	90.52	89.56	87 63	86.62	85.62	83.58	81.53	10.20	17.62	76.63	75.62	74.61	73.58	71.52	69.54	67.60	85 PS	63.55	62.53	61.49	70.00	58,59	57.61	55.60	53.56	21.01	49.55	48.61	19 11	19.91	69.64 11 60	43.59
	8 W/cm ⁻ 2 8 W/cm ⁻ 2 10 m/s 2	RBS24 I	.32	8	67 X	18	5i :	i a	61.	.22	53	2	23	.22	.22	.23	.2	5,52	38	.27	.21	.21		17.	1	Н.	. 16	50	3	.25	52	5	12	.21	.20	27	28	58	.29	5.2	97	20	.16	=	i.	1.5	20
· · ·		1024 C	364.60 366 46	368.61	369.04	370.05	370.03	369.96 369.66	369.17	368.67	367.77	366.47	364.51	364.26	364.38	364.56	361.59	365.33	365.85	366.44	367.99	369.50	370.97	371.62	371.93	371.91	371.81	371.66	370.27	369.15	368.00	366 58	366.13	365.77	365.83	365.76 366 11	366.80	367.45	368,95	370.55	372.14	373.12	373.59	372.64	372.67	10.216	371.11
724 DTC	2003 2003 2003 2003 2003 2003 2003 2003	RBS21 I	20 20	33	1.2	1	.13	i, #	1	.22	51	.32	1	23	.55	95	5	8 [,] 5	33	9	.42	36.	97.	57.	19	.16	5	.21	.28	35	9	ę 4	9	11	Ę	9 5 2		8	Ę	6F. 5		20	.20	91.1	51	EL.	32
3.11 mm 295.8 C	: 21.9 K/ : 21.7 K/ : 171.8 kW : 33123.	1021 C	366.21 368.65	371.29	372.55	373.92	374.07	373.85	372.76	371.81	370.59	366.69	365 93	365.78	365.82	366.10	366.05	26.000 26.58	366.98	367.93	369.58	372.22	313.92	375.31	375,67	375.78	375.58	375.12	373.22	371.19	369.08	14.000	366.89	367.21	366.50	260 . 47 767 . 47	367.93	368.93	371.27	372.63	375.85	376.36	377.03	376.05	376.13	50.015 174 81	373.85
121 181	8 8 8 9 9 1 1 1	121	109.76	105.91	101.93	102.92	101.91	100.90 99 87	98.86	97.86	96.89	94.97	66 Ub	89.89	88.87	87.87	16,38	86 78	83.97	82.97	80.93	78.88	76.91	CR.CI	73.98	72.97	71.96	70.93	68.87	66.89	61.95 51	61 93	60.90	59.88	58.84	51.61 56 80	16.55	54.96	52.95	50.91	10.00	16.90	45.96	66 . H	43.99	42.36	10.94

TAB. A26.1

		Q84 W/cn ⁻ 2	20.76	20.62	20.53	20.55	20.46	20.45	20.60	20.66	20.60	20.56	20.51	20.46	20.48	20.49	20.49	20.49	20.51	0C.U2	20.52	20.44	20.44	20.43	20.54 82 02	20.68	20.84	20.88	20.47	20.23	20.19	20.22	20.21	20.14	20.04	20.47	20.46	20.42	20.42	20.43	20.35	20.36	57 NZ	20.41	20.45	20.41
		QE3 V/ca^2	20.63	20.49	20.40	20.42	20.33	20.33	20. US	20.52	20.47	20.43	20.38	CC.U2	20.36	20.36	20.36	20.35	20.38	10.02	20.39	20.31	20.31	20.30	20.41	20.55	20.70	20.75	20.34	20.10	20.06	20.05	20.08	20.01	19.92	20.33	20.33	20.28	20.29	20.30	20.23	20.23	20.33	20.28	20.31	20.34
		Q82 V/ca^2	20.75	20.61	20.51	20.54	20.45	20.45	20.59	20.64	20.58	20.55	Z0.49	CF-07	20.47	20.47	20.48	20.48	20.50	20.50	20.50	20.43	20.42	20.42	20.52	20.67	20.81	20.87	20.45	20.22	20.17	20.20	20.20	20.12	20.03	20.45	20.44	20.40	20.41	20.41	20.34	20.34	12.02	20.40	20.42	20.45 20.43
		QB1 K/ca^2	20.84	20.70	20.61	20.63	20.54	20.55	20.68	20.73	20.68	20.64	20.58	12.02	20.56	20.57	20.57	20.57	20.50	0C.U2	20.60	20.52	20.52	20.51	20.62	20.17	20.91	20.96	20.55	20.31	20.27	20.34	20.29	20.21	20.12	20.55	20.54	20.50	20.50	20.51	20.43	20.45	20.36	20,49	20.52	20.55 20.52
A26		DTC I	78.16	78.25	11.81	77.90	77.58	1.11	17.98	18.22	11.94	11.11	99.11	CI.11	77.80	11.11	11.11	11.87	18.07	11.03	17.78	77.40	77.63	11.11	19.17	77.83	78.14	78.25	17.70	11.44	11.34	15 11	11.46	11.04	11.04	21.11	17.93	77.85	11.99	11.54	77.76	21.15	20 LL	77.58	11.67	77.83
TAB.		bfR Lg/s	1.58	1.57	1.5	1.57	1.57	1.56	10.1	1.51	1.57	1.57	1.57	1.36	1.56	1.57	1.57	1.56	1.56	1.51	151	1.57	1.56	1.57	1.57	1.58	1.58	1.59	96.1	1.55	1.55	1.56	1.55	1.55	1.55	1.26	1.56	1.56	1.56	1.56	1.55	1.56	5. I 5. I	1.56	1.56	1.56
		TBI C	296_01	295.89	G1 767	295.70	295.47	295.27	12.682	295.09	295.12	294.81	294.76	51. FC2	294.74	294.79	294.73	294.72	294.68	11.442	00 562	294.82	294.73	294.83	294.60	294.67	294.62	294.74	CR. 842	294.95	294.90	294.83	294.61	294.49	294.43	12.162	294.43	294.73	294.53	294.65	294.42	294.29	294.40	11.162	294.67	294.44 294.56
		RUS15 K	23	5.5	1.2	.22	.26	.29	15.	32	15	30	-28	17.	28	.29	.31	31	E 9	67. 52	23	.20	.18	.18	.21	12		.33	15.	30	.29	12.	.26	.27	.27	95.	.28	.26	.23	17.	. 19	ដុរ	12.	35	.37	.31
8094. DAT	ES 10#S	1015 C	374.74	374.68	374.13	373.99	373.15	372.14	371.86	368.76	366.81	366.70	365.94	365.53	365.88	366.07	366.71	367.08	368.46	370.14	372.23	372.28	372.37	372.64	372.29	371.30	370.91	369.65	367.37 366 00	365.30	364.59	364.44	364,04	364.14	364.14	00.000	367.65	369.01	369.47	14'40C	370.06	369.63	368.99	367.70	365.38	363.36 361.58
N22, 1987	FLUCTUAT	115 11	75 70	14.72	13.65	71.66	10.67	69.69	66.73 66.73	64.70	62.67	61.66	60.68	59.69 68 73	71.00	56.74	55.73	54.71	52.67	50.67 19.05	21.01	46.74	45.73	11.72	43.69	11 68	40.69	38.72	36.75	33.70	32.68	31.68	29.70	28.73	21.74	CI 97	22.68	20.69	19.70	11.01	16.76	15.73	14.72	12.69	10.69	8.74 6.76
05:43 J0	2 - FLUID	RUS13 K	76	.22	17	28	.32	.33	ē, Z		16	.30	.28	12.	et.	32	34	31	.33	E. r	2.2	23	.23	.25	30	20.	35	36	E. C	E	.29	.28	.28	.30	ຄື	28.	30	.28	22	-23	12.	30	36.	6°.	37	.31
08:	PROBE 1	7C13 C	374 28	373.94	373.85	372.66	372.05	371.11	370.55 369 23	368.38	366.76	366.15	365.84	365.53	10.000	366.66	366.95	367.64	368.89	370.52	371 87	371.51	371.55	371.37	370.81	00 0JE	369.31	368.43	366.39	364.75	364.30	363.98	364.01	364.23	364.21	364.95	367.48	368.77	369.23	16.846	369.01	368.32	367.56	365.93	364.23	362.05 360.71
		RBS12 L	11	5	9 5	ខេ	-53	19	9	5 2		.63	19	3	6.9	62	.62	.61	9.5	5	<u>i</u> 2	5	61	13	. 52	9 S	3	.63	.62 65	3	.63	<u>6</u>	G. 19	.61	8 <u>.</u> :	5. S	śS	15.	ş.	- 5	8	5	.56 12	19.	3	50 50
		T C12 C	175 81	375.58	31.62	374.08	372.92	372.10	371.23	368 DE	366.82	366.23	365.80	365.20	70.000 70.000	367.25	366.91	367.99	369.58	371.67	213.00	373.21	373.18	372.98	372.63	311.10	370.43	368.93	366.59	364.82	364.23	363.98	364.06	364.26	364.18	365.60 366 01	368.50	370.19	370.64	371.25	370.70	369.84	368.96	11. 000 146 90	364.35	362.45 360.65
		I12	13 11	73.69	72.66	70.63	69.64	68.66	67.68 64.70	19 E3	61.64	60.63	59.65	58.66	11 12	55.71	54.70	53.68	51.64	19.61	11.11	12.21	44.70	43.69	42.66	C9.14	39.66	37.69	35.72	32.67	31.65	30.65	28.67	27.70	26.71	22.12	21.65	19.66	18.67	20. 11 17. 21	15.73	14.70	13.69	99.21 11.66	9.66	1.71
.47 m 4.2 C 0.8 k/cm ⁻ 2	0.8 K/cm ² 58 kg/s .98 m/s 0.7	RUS14	16	22	.18	.18	.21	.25	.29	5.8	.29	.28	.21	.25	c7.	25	35	. 28	.29	52.	2.2	52	20	.17	5.2	12	5.	.32	.32	9.6	.28	.26	53	.23	121	12.	.28	26	12.	77.	91	.19	22	97.	36	33
4	1 1 1 1 1 1 1 1 1 1	1014 C	79 575	373.26	373.73	373.24	372.70	372.07	371.75	36 05	367.28	366.56	366.12	365.55	11.000	365.81	366.02	366.08	367.42	368.65	C7.016	370.83	371.20	371.50	371.43	81.115	370.67	369.72	367.44	365.34	364.71	364.36	363.66	363.50	363.37	364,19	366.29	367.65	367.98	10.000	369.01	368.71	368.28	368.10	365.90	363.96 362.17
71 718 718 718	K Car2 008	RMS11 I	9	38	aj s	. S.	39	5	5	13	5 53	.55	5	z, s	i s	5	55	5.	.52	5	įs	186	36	ю.	F.	02.	-	.52	5.3	53	.55	S.	5	5	53	5.5		9	-12	9C.		.35	31	3	5	55
= 25.42 = = 256.0 C	= 20.6 H = 163.5 K = 78.2 E = 32438.	1011 C	376 16	375.40	375.84	375.35	374.67	373.90	373.36	370 33	368.19	366.80	366.58	366.54	10.000	366.17	366.41	367.11	368.37	370.24	31 275	373.06	373.34	373.71	373.67	17.00	372.60	371.34	368.58	366.47	365.69	364.97	364.12	364.10	364.05	364.82	367.46	369.30	369.81	14.016	371.23	371.01	370.54	370.42	367,33	365.03 362.72
711 781	QH3 DTC Be	∃∎	75 79	15.74	11.11	72.68	71.69	10.71	69.73	66 77	63.69	62.68	61.70	60.71	11.42	21.16	56.75	55.73	53.69	51.69	10.75	11.76	46.75	45.74	1.1	12.10	11.11	39.74	11.16	34.72	33.70	32.70	30.72	29.75	28.76	21.17	23.70	21.71	20.12	19.14	11.78	16.75	15.74	11.11	11.11	9.76 7.78

— 157 —

.

		780 C	314.11 314.11 314.11 314.11 314.11 314.11 314.11 314.11 314.11 314.11 314.11 317.15 31	372.32
		08 a/a	\$ 555555555555555555555555555555555555	16
		8	153.50 162.53 161.64 161.64 161.64 161.64 162.53 161.64 162.53 161.64 162.53 161.64 16	160.98
		KB4		0.0
~1		KB3 km		36.95
A26		NH2 NN		40.28
TAB.		NA NA		10.35
		RBS25 L		8
		7C25 C	373,45 373,45 372,11 372,12 372,12 372,12 372,12 372,12 372,13 373,13 37	360.02
1094.DAT	38	125		111.00
2,1987	HPERATORES PLOCTOATIC	RUS23 I		.32
:43 JUK2	- PLOID TH TRHP	7C23 . C		358.63
08:05	TEGENA 2 Probe 2	RUS22 I		, e
		1022 C	375, 80 375, 71 375, 71 375, 72 375, 71 375, 72 375, 72 375, 73 375, 73 375, 74 375, 75 365, 74 375, 55 365, 5	359.46
		122		112.33
18 m .2 L	8 #/c= 2 38 #/c= 2	RBS24 I	\$	58
		1C24 C	371.97 371.97 371.97 371.97 371.97 371.97 371.97 371.97 371.97 371.97 371.97 365.13 365.14 365.13 365.13 365.14 365.14 365.15 36	361.07
124 174		RUS21 I	***************************************	9
3.14 m 296.0 C	20.6 N/ 163.5 ki 32438.	7C21 C	374, 70 375, 46 375, 46 375, 46 375, 46 376, 47 376, 46 376, 4	362.40
121 181		121	40 84 74 74 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75	109.68

.

TAB. A27.1

10:22:57 JUL17,1987 B408.DAT = 31.48 mm = 378.2 C = 20.7 N/cm²2 = 20.7 N/cm²2 = 1.58 kg/s = .98 m/s 714 082 084 08 08 76 76 29.43 mm 71 299.9 C TB 20.9 W/cm 2 QB 20.6 W/cm 2 QB 18.5.5 kM 201 18.1.5 kM 201 20.659. Re

QE4 N/cn^2	20.74	20.74	20.70	20.64	20.67	20.67	10.02	20.02	10.03	00.02	10.02	CA. 02	20.61	20 60	20.50	20.60	20.67	20.57	20 55	20.77	20.78	20.70	20.75	01 10	20.69	20.69	20.68	11 16	20.75	20.70	20.73	20.75	20.83	20.80	20.77	20.78	20.02	CD . DZ	20.93	12.02	60 16	10.12	CT . 17	20.67	20.57	20.39	20.51	20.53	20.57	20.46	20.39	20.4Z
QB3 N/cn^2	20.65 20.65	20.65	20.61	20.56	20.58	20.59	SC. U2	00.02	70.02	63 VC	67 N7	20.02	20.53	00 63	20.50	20.53	20.49	20.48	20 46	20.68	20.69	20.61	20.66	20 K2	20.60	20.60	20.59	20.62	20.66	20.61	20.64	20.66	20.74	20.72	20.68	20.69	20.13	20.10	19.02	00.02	60 . V2	20.02	00.12	57 F	20.48	20.30	20.42	20.44	20.48	20.38	20.30	20.33
QB2 V/ca^2	20.71 20.69	20.71	20.68	20.62	20.65	20.65	C9.02	70.02	33 06	00.02		50.03	10. U2	50 67	50 K7	50 KR	20 KK	20.54	63 UG	20.75	20 75	20.68	20.01	20 K8	20 CC	20.02	20.65	20.04	20.12	20.68	20.70	20.73	20.80	20.78	20.74	20.75	20.79	20.02	20.90	CR . N7	00.07	66.U2	01.12 20 61	10.01	20.54	20.36	20.48	20.50	20.55	20.44	20.36	20.38
QAI W/ca^2	20.87 20.85	20.88	20.84	20.78	20.81	20.82	78.02	21.07	61.02	70.02	1.02	61 . N7	20.75	16 06	1.00	20.71	20.71	20 70	20.69	20.02	16 04	20.84	20.04	20.95	CO 07	00 80	10.02	10.01	20.89	20.85	20.86	20.89	20.97	20.95	20.91	20.92	20.96	20.99	70.12	11.12	61.13	CI.17	67.17	1.02	20.71	20.52	20.64	20.67	20.71	20.60	20.52	20.54
DTC I	78.29	18.35	18.28	78.15	78.23	78.02	19.11	11.01	07-01	71.01	11.01	17.01	10.01	11 19	1	1	70 05	17 90	10 11	21.92	1. 11	78 19	16 91	10.01	17.01	11 DU	00.11 01.97	10.14	78 57	11 97	78 28	78.30	78.20	78.35	78.17	78.30	78.38	18.41	18.36	19.1	10.11	10.03	17.61	10.11	16.11	77 60	77,83	17.87	17.91	77.86	77.39	11.61
NFB hg/s	1.58	1.51	1.57	1.57	1.57	1.58	1.5		1.1	3.5		1	5				5	5	5	5 5	3 3	5.1					0.1	63 1	5		1.58	1.58	1.59	1.58	1.58	1.58	1.58	1.58	1.59	69.T	1.28	1.00	2.1	1	5	1.56	1.57	1.57	1.57	1.56	1.57	1.57
18I C	299.91 200 85	21.222	299.72	299.76	299.69	299.64	299.41	02.482	81.867	C1.842	14.842	10. 000	31 006	11.000	11.000	ST. 667	00.661	10.001	10 00	208 RQ	61 006	11.007	FF 0.67	11 006	36 006	07.667	11.000	31 006	12 864	36 96	16 066	299.43	299.48	299.45	299.45	299.47	299.55	299.74	299.72	21. 662	C1.862	18.82	200.14	300.10	300 14	299.98	300.14	300.01	299.89	299.81	299.79	299.78
RMS15 I	.32	9	3	39	.32	2.	61.	2.2	1	97.	7	į	5.5	1.5	10.				; :	i a		5	2.5		2			3.9			; 2			35	.31	16.	5	.29	. 29	.28	5	3	ŝ	27	12	36	32	.25	20	11	.21	.26
1015 C	366.82	370.82	373.07	373.86	374.40	374.60	375.01	314.40	97.51	213.38	313. Ib	10.110	360.05	96.00V	20°.000	10.100	00 036	10 225	17 000	16.000	160 99	171 20	12 626	11.110	11.616	10 216	10.010	11.016	10.010	176 80	376 20	376.06	374.51	373.11	371.83	371.48	371.23	371.18	371.26	31.15	371.39	371.64	312.92	11.010	12.110	377.33	21.75	378.44	378.75	378.57	378.26	377.81
1 I	6.71	10 63	12.61	13.62	14.64	15.65	16.65	2.5	10.01	19.63	20.60	10.11	20.12	12 14	CO.17	10.01	12 46	19 12	10.10	10.70	10.00	10. FC	00.00	10.00	10.01	60.1 1	10.11	10.01	14 61	IS ST	12 11	18.63	50.60	52.58	54.61	55.64	56.64	57.64	58.63	59.62	60.59	19.19	96.28	19.9	69 63 68 63	69.60	10.59	71.58	72.58	73.59	74.63	75.64
RMS13 I	.32	5	1	9	9	8.1	32	5.0	67.	77	5.	5.0	0.0	5	ē	5	3:	3 E	3.2	5 5	5 5	<u>,</u> 2	6		2	Ē	2	ŝ	5.5	ŝ		1		5	38	.37	36	E.	R.	32		,	36.	6°.	3	2	3	36		.23	.30	.31
1013 C	365.48	368 75	370.86	371.50	372.33	372.98	373.48	313.22	313.23	373.00	312.58	311.33	16.600	00.000	000.UU	10.100	201.13	11 100	11.100	14 735	10.100	10.000	11.600	71.110 71.110	01.116	10.010	CU. FIC	00.110	10.010	11 JTF	376.36	375.10	374.24	373.12	371.28	371.00	370.53	370.53	370.51	370.45	370.72	370.84	371.68	371.99	11.616	375.42	375,86	376.65	377.09	376.98	376.93	376.76
RMS12 K	.52	15	3	13.	.52	5	8, S	2:	Ā,	₽:	2:	Ę.	2:	R 5	2.5	<u>,</u>	<u>ק</u> 5	R, 5	7 5	ē.	15	e a	ភ្ :	<u>ק</u> 5	70.	76.	2 S	7 S	e e	1 5	i a	3	3	23	19.	15.	.55	5.	5	3	8.1	29.	<u> </u>	a s		-	5	205.	- 23	5	.52	.58
7C12 C	373.10	379 83	372.85	372.65	372.42	372.54	372.50	112.04	312.20	372.30	372.21	372.13	10.110	CA. 710	00.110	10.11C	16.170	11.15	CC. 110	111.JO	11.00	10.210	11.110	10.110	311.10	211.13	55.110	01.110	10.116	10.110	1110121	371 60	371.78	372.04	371.64	371.63	371.85	372.23	372.97	372.68	372.49	373.02	372.95	371.98	01.216	371 47	371 14	371.28	371.24	370.89	370.63	370.12
1 17	5.68	70.1 0 6	11.58	12.59	13.61	14.62	15.63	19.62	19.11	18.60	10.61	16.12	RC. 67	70.07	79.97	19.12	10.01	10.50		02.16	00.10	10.00	20.00	10.10	10.85	90°.0	10.14	DC 71	19.01	10.11	10.01	10.01	19 61	51.55	53.58	54.61	55.61	56.61	57.60	58.59	59.56	60.54 1	61.55	63.58	19.69	5 23	60 56	70.55	71.55	72.56	73.60	14.61
ens14 I	.29	5	1	.26	.19	61.	.12	9. :	02.		2	5.	9	1	17.	F .	<u>.</u>	1	ġ 8	ġ s	9.6	97	į	76.	8.2	3.:	- : :	71.	i =	9	2.2	5.	22	21	12.	.20	61.	.18	.18	.20	2	.28	R.	Ę	200	3.2	5	1	1	12	1	.22
1014 C	367.44	371 18	372.74	373.19	373.65	373.65	373.75	373.11	312.65	372.51	371.66	370.35	369.10	06.100	301.14	361.60	301.05	20.10C	11.000	10 000	10.500	00.000	17.110	01.110	514.0G	10.010	313.20	C0.010	91.010 976 60	99. 910 976 96	10.010 11 111	31.1.36	373.06	371.73	370.69	370.32	370.23	370.39	370.76	370.98	371.11	372.01	372.83	373.40	376 11	377 00	377 20	377.68	377.62	377.25	376.77	376.21
RMS11 E	3	ē. 5	3 5	-	35	.32	32	<u>8</u>	F. :	3	9	2	s :	<u>ק</u> :	7	S.	2.2	F, H	i, :	6.5		Ę S	ŝ	76.	e :	3	ŝ	26.	10.		ŝ	1 4	9	3	3	61.	.50	50	61	, 20	23	ž.	S .	<u>s</u> :	2	2 5			32		36	4 0
1011 C	368.06	17.010	375 19	375.43	375.97	376.08	376.06	375.39	374.85	373.94	373.04	371.42	370.45	10.000	366.51	366.35	366.26	10.000	00.000	10 010	10.500	11.110	CC. 710	07.416	316.22	17.110	20.116	378.12	210.13	11.010	11. 110	376 02	374 82	373.04	371.60	370.99	370.99	371.06	371.47	371.56	372.09	372.54	373.85	11.115	376.35	378 87	379.31	379.79	379.86	379.46	379.00	378.13
= #	1.13	3.01	13 63	14.64	15.66	16.67	11.66	19.67	19.66	20.65	21.62	23.62	19.62	10.12	19.62	99.62	30.65	21.62	20.20	22.02	24.02	60.02	00.10	22.00	79.11	19.21	13.62		ca. ct		10.14	10.01	5 5	53.60	55.63	56.66	57.66	58.66	59.65	60.64	61.61	62.59	63.60	65.63	99°.19	10.60	19 12	72.60	13.60	14.61	75.65	76.66

		5 1B0	378.20	378.17	178.14 177 99	16.776	377.92	377 66	377.59	377.50	50.110 77 67	377.51	377.61	377.26	377.15	376.90	377.08	376.79	377.10	311.UI	10.00 177 04	377 K	377 17	377.28	377.32	377.47	377.01	377.46	377.54	377.28	377.52	371.73	377.69	377.63	377.77	377.92	378.15	378.08	118.44 979 65	378 78	379.34	378.29	378.12	378.05	377.58	377 PB	377.80	377.67	377.18	377.38
		08 •/8	86	8.8	8.5	5	.6	8	16.	. S	i õ	5	16	-6	.91	86.	-6	8, S	5		Ē	ŝ	2 5	. 8	86.	6	8. S	B 8	. ð	3	86.	5 , 1	<u>8</u> .8	3	86.	86. 1	8 <u>.</u> 1	8.3	ș.		86	5	86 .	6. 1	L6.	5.5	6	16	.97	- 16
		23	163,45	163.28	163.50 163.19	162.75	162.94	162.99	163.00	61.201	167 DK	162.46	162.80	162.67	162.49	162.40	162.34	162.43	162.20	102.14	163 77	161 70	163 20	163.57	163.24	163.07	163.09	162.98	163.20 163.57	163.21	163.39	163.58	164.15	163.72	163.81	164.13	164.35	164.98	165.32	165 66	166.71	162.65	162.61	162.15	160.71	C9.191	162.18	161.33	160.69	160.90
		KA Ka	40 B	40.92	86.0F	40.79	40.84	40.86	40.85	10.01	10 87	10.73	40.81	40.75	40.72	10.71	10.69	1.0	10.66		10.04	20 II	10 07	11.00	10.91	40.88	40.89	40.86	11.00	06 07	10.97	41.01	11.16	11.04	41.07	41.15	41.20	41.36			41.79	11.05	40.76	10.64	40.29	29.01	10.65	10.44	40.29	40.34
21			19 UV	10.56	40.62 40	10.43	10.47	40.49	40.49	1. O	8. 9 19 19	10.01	40.45	10.41	40.36	40.35	10.32	40.35	40.29	07.04	17.01	10.01	51.01 19 01	10.63	40.55	40.51	40.52	40.49	60.01 63.01	10 54	40.59	10.64	40.79	10.67	40.70	40.77	40°83	40.98	-10.11	11 15	11.11	40.40	40.39	40.28	39.92	40.16 10 20	10.29	80.0 8	39.92	39.97
A27.		NH2 kn	40 83	10.79	40.84	10 66	10.71	40.72	40.72	10.01	60.01	10 59	10.67	40.65	40°.60	40.57	10.55	10.58 10.58	40.52	0.01	10.01	10 01	70.01	10.87	40.78	10.74	10.74	10.11	40.76 40.86	40.04	10.81	40,87	41.02	10 90	40.92	41.00	41.06	41.21	11.30	10.16	11.65	10.63	40.63	40.51	40.15	40.38	12.01	40.30	40.14	40.19
TAB.			41 US	8.1	41.05 40 87	40.86	40.92	40.93	40.93	10.02	10.01	10.78	40.87	40.85	40.80	40.78	10.77	40.73	1. IJ	10.70	11.11	11	71.11 70 98	11.07	41.00	40.95	10.91	40.92	40.73	00 IV	41.02	11.07	11.23	11.11	41.13	41.22	41.27	41.42	19.14	6. II	11.86	40.84	40.84	40.72	40.36	40.59	40.04 10.73	40.51	40.35	40.39
, ,		RKS25 L	1	8	8 <u>.</u> 2	3, 5	12	И.	2	e :	2	2	18	8	18.	.82	8	8, 3	- 82	29.	3	2 S	70.78	5	8	.80	2 .	Ę	2.5	2	80	1 8.	2 <u>1</u> 8	7 H	18.	8.	8	æ :		10. 6	82		3	.82	٤,	2	- 2	22	16	.76
		7C25 C	365 37	367.18	370.05	317 35	372.66	372.79	372.72	217.215	70.116	370 61	369.22	367.60	366.78	366 63	366.17	366.61	366.39	367.04	301.13 327 06	25 23 235	270 55	372.07	373.45	374.30	374.57	375.03	375.11 375 AB	374 66	373.85	373.52	372.08	369 63	369.24	369.15	369.14	369.39	369.26	21.60C	371.54	372.23	373.85	375.13	376.02	376.34	70.11C	377.08	376.82	376.41
08. DAT	S	125	111 08	109.17	107.25	17.01	103.26	102.24	101.19	100.19	59.13 00 01	17.02	95.30	93.27	91.21	90.19	89.19	88.24	81.29	86.30 51	02.20	06 50 06 50	07.60	17.10	77.28	76.30	75.30	2.3	67.61 56 61	65 12	70.21	69.21	61.29	57 E9	62.25	61.23	60.21	59.21	28.29 51.29	67.10	55.31	53.29	51.23	49.23	48.26	11.31	10.00 15 33	11.33	43.31	42.29
,1987 B4	PERATORES Loctuation	RUS23 L	86		15.	ŝ	. 8	.27	2,2	3,2			58	5	52.	.28	.28		8.3	87,5	Q 2	5		32	16	.31	. 29	.26	2	5	26	.28	ຄຸຄ	ș e	53	.29	.27	5	8.5	17.	ja			.33	33	E. 8	67.	5	.23	.24
57 JOL17	ANNI Anni Tru	7C23 C	36 T 36	365.93	367.91	203.01 270.33	371.15	371.49	371.58	11.11	311.42 371 95	05 028	369.49	368.20	366.97	366.65	366.31	366.38	366.39	366.42	200.035 225 00	00.73 167 BU	00.100	370.37	371.95	372.70	373.12	373.60	374.05	07.61C	373.75	373.33	372.38	07.11C	369.34	369.18	369.13	369.35	369.29	370 AD	370 67	370.88	372.56	374.07	374.53	375.11	010.10 175.97	376.12	375.88	375.81
10:22:	TEGENA 2 - Peobe 2	RHS22 K	35	52	15	. 2	53	.20	E.:	- ; :	.	- 61 -		3	Ŧ.	9 9 -	84	4	S	<u> </u>	7,3		5	2	. 82	35.	.28	2:	i :	11	19	.25	£.	5	=	C F .	H.	91	2 -	9 5	4		97	Ŧ	12	9E.	çi ç	11	17	1
		7C22 C	UL 131	366.60	368.94	80.110 877 88	373.73	374.42	374.77	314.46	314.4Z	61.110 271 18	371.62	369.67	368.65	367.37	367.24	367.05	367.06	366.97	366.98	16.100 27 926	200.10	371 80	373.83	374.64	375.66	376.32	376.99	71 115	376.61	376.16	374.98	14.178	370.54	370.21	370.00	370.38	369.97	209.91 270 PU	371 70	371.86	373.61	375.60	376.41	377.23	21.015 218 46	378.94	378.81	378.67
		122	11 011	110.50	108.58	106.00	104.59	103.57	102.52	101.52	20.001	10. 55 54 55	69.96	94.60	92.54	91.52	90.52	89.57	88.62	87.63	86.63	CO.CO	10.01 10	87.50 BN 51	78.61	77.63	76.63	75.63	11.62	13.05	11.54	70.54	68.62	60.00 61.67	63.58	62.56	61.54	60.54	59.58 59.58	20.00	54 EL	19.19	52.56	50.56	49.59	19.61	11.00 16.66	15.66	11.64	43.62
1	8 / c - 2	RUS24 L	, e	8	<u>۳</u>	15	-	.15	<u> </u>	n	8	1.	12	.21	.20	.20	.21	.23	7	2.5	នុះ	9.2	9	9 X	20	11.	Ŧ,	Ę	1.5	9 F	ខ្ម	.25	7,1	ġ z	5	61 .	.19	ភ្	.23	5.5	55		87	22	.21	8 <u>1</u> :	ų z	<u>;</u> =	20	22
28.	18.9	7C24 C	11 336	368.12	370.20	10.115	371.89	371.71	371.36	370.79	370.33	369.02 360 16	368 23	366.77	366.31	366.19	366.08	366.45	366.79	367.24	367.69	300.03	10.000	377 17	373.21	373.79	373.89	373.87	373.86	10.010	372.56	372.00	370.86	368 R9	368.62	368.86	368.88	369.62	369.77	370.15	10.110	377 61	374.31	375.40	375.89	376.16	310.41 376 90	375 88	375.24	374.77
124 DTC DTC	582 	RHS21 K	4	3	Ę	97 9	91.	.16	61.1	52	9, S	n.	į		8	.52	.53	53	55	S. 5	5	1	2:	22	2	.20	.16	91.	5	77.	12	.34	8	i i	9	\$ 1'	91	.48	5	e :	. 3	Ę	-	32	.27	2	ę ¥	9 E	5	38
3.07 mm 299.9 C 20.9 H/C	20.6 N/c 163.5 km 32659.	T C21 C	10 236	370.09	372.54	374.44	375.28	314.96	374.47	373.34	372.91	312.10	369 49	368,06	367.07	367.25	366.62	367.28	367.59	368.07	368.96	310.UU	310.36	61.710 51.11	376.18	376.90	377.05	377.22	376.93	310.41 376 01	374.99	374.15	372.22	311.01	369.19	369.56	369.77	370.18	370.68	371.00	07.710	374 69	376.22	378.00	378.90	379.03	379.40	378 91	378.07	377 32
Y21 = 781 = 081		121	100 76	107.85	105.93	101.05	101.94	100.92	99.87	58.87 51	19.12	20.02	5	31.95	69.69	88.87	81.87	86.92	85.97	86.18	83.98 50 50	96.28	96.18	12.30	15.96	14.98	73.98	12.98	11.97	10.94	68.83	61.89	65.91	61.93	60.93	59.91	58.89	57.89	56.93	55.91	10.00 00.00	51 97	16.61	17.91	46.94	45.99	19.CT	19	66 IT	10.97

TEGENA 1	WALL TEMPERATURE
OUTER RODS	HEATED DIR A

TAB. A28

FIOLWSA.DAT

RE = 6 UB = QH3 = TEN =29	0.9E+03 1.95 (M/S) 0.00 (W/CM 7.91 (C)	PE QH1 ^2) QH4 TND	=359.22 = 7.36 = 7.42 =304.75	MS (W/CM^2) 0H2 (W/CM^2) NB (C) TNM	= 3.18 = 0.00 = 29.05 =301.33	(KG/S) (W/CM^2) (KW) (C)
CP.	MEO	MEI	ME2	ME3	ME4	MES
(門門)	(0)	107	(()	(6)	(5)	
11.00 25.20 77 40	298.73	299.51	301.54	304.27 305.58 304.30	305.86	309.88
55 40		277.32 297 kn	301.32	304.30	306,78	- 307.70 - 307.70
66.50		200.00	302.12	304.65	307.20	309.51
80.95	298.98	299.19	300.26	302.12	303.50	305.12
95.30		298.95	299.27	299.68	300.57	301.52
109.65		299.10	298.93	299.17	299.53	297.94
124.00		298.71	299.05	299.51	300.04	300.95
138.35	298.59	297.15	- 300.14	301.90	302.94	304./8 700.40
132,70		277.01 299 64	302.07	304.81	306.73	308.07
185.90		298.71	301.19	303.84	305.40	309.17
194.10	278.18	299.39	302.00	304.65	307.27	310,31
208.30		298.88	300.86	303.69	305.33	309.34
230.30		298.65	301.04	303.91	305.94	307.01
241.50		299.53	302.07	304.54	306.76	309.10
255.85	298.75	298.98	300.16	302.17	303.40	304.90
270.20		278.80	277.07	277.61	300.25	301.3Z 300.05
204.33		270./8 290 AR	299.12	270.01 299 51	300 33	277.73
313.25	298.90	298.88	300.28	301.84	303.35	304.54
327.60	2.01.0	299.68	302.22	304.78	306,98	308.62
338.80		299.19	301.61	303.86	306.54	309.05

TEGENA 1 MALL TEMPERATURE -ROD 1 HEATED DIR A

TAB. A29.1

F25LWSA.DAT

RE = 6 UB = 1 QH3 = 0 TEN =290	0.5E+03 1.94 (M/S) 0.00 (W/CN 8.23 (C)	PE = 941 = 1^2) 044 = TNO =	=356.85 = 14.98 () = 0.00 () =305.22 ()	MS #/CM^2)	= 3.16 2 = 0.00 = 29.50 1 =301.73	(K6/S) (W/CM^2) (KW) (C)
CP	MEO	ME 1	ME2	MES	MF 4	MES
(NN)	(C)	(C)	(C)	(0)	(Č)	(6)
11.90		300.41	305.01	310.51	315.69	321.30
25.20	299.08	301.28	306.70	312.73	317.74	323.51
33.40		300.17	304.79	310.39	315.69	321.30
55.40		298.40	304.64	310.08	315.23	320.84
65.60		301.26	306.53	311.57	315.46	321.08
80.95	299.40	299 .9 0	302.44	305.92	308.99	312.08
95,30		299.30	300.07	300.99	302.71	304.28
109.65		299.52	299.40	299.64	300.05	298,43
124.00		299.01	299.28	299.28	299.25	299.35
138.35	299.15	299.30	299.08	299.45	298.94	299.25
152.70		298.99	298.79	299.03	299.01	298.82
163.90		298.65	298.70	298.72	298.48	299.11
185.90		298.62	298.67	298.91	298.72	298.94
194.10	298.77	299.03	298.67	298.79	298.65	299.01
208.30		298.89	298,45	298.52	298.70	299.11
230.30		298.67	298.74	299.03	298.50	299.01
241.50		299.01	298.72	298.85	298.89	298.95
255.85	299.35	299.15	298.82	299.25	299.15	299.06
270.20		299.18	299.20	299.08	299.23	299.42
284.55		299.15	299.18	299.15	299.61	300.20
298.90	535 TF	299.49	299.71	300.49	302.06	303.15
313.23	299.35	299.42	302.25	305.20	308.29	310.92
327.50		301.02	306.48	311.33	315.91	319.64
338.80		299.98	305.03	309.79	315.14	320.24

TEGENA I WALL TEMPERATURE ROD I HEATED DIR B

TAB. A29.2

e

F25LWSB.DAT

-	RE = UB = 0H3 = TEN =2	60.2E+03 1.93 (M/S) 0.00 (W/CM 98.13 (C)	PE QH1 '2) QH4 TNO	=355.16 = 14.98 = 0.00 =305.16	(W/CM^2) (W/CM^2) (C)	MS = 3.15 QH2 = 0.00 NB = 29.49 TNM =301.65	(KB/S) (W/CM^2) (KW) (C)
	CP	NE()	MEI	ME2	ME3	MEA	ME5

CP	RE0	MEI	ME2	ME3	MEĄ	ME5
(MM) -	(C)	(C)	(C)	(3)	(0)	(C)
11.00		300.17	304.89	310.41	315.62	321.22
25.20	298.77	301.19	306.58	312.61	317.66	323.44
33.40		300,05	304.62	310.27	315.59	321.22
55.40		298.28	304.55	309.93	315.14	320.74
66.60		301.16	306.33	311.40	316.32	320.94
80.95	299.05	299.78	302.30	305.73	308.82	311.91
95.30		299.15	299.88	300.85	302.57	304.14
109.65		299.40	299.28	299.49	299.95	278.31
124.00		298.89	299.15	299.15	299.15	299.25
138.35	299.06	299.15	298.95	299.32	298.89	299.15
152.70		298.86	298.67	298.91	298.99	298.72
163.90		298.50	298.60	298.60	298.40	298.99
185.90		298.57	298.55	298.92	298.65	298.82
194.10	298.77	298.79	298.60	298.67	298.57	298.94
208.30		278.82	298.36	298.50	298.65	299.01
230.30		298.55	298.65	298.91	298.45	298.94
241.50		298.89	298.62	298.77	298.84	298.89
255.85	299.30	298.94	298.74	299.15	299.05	299.01
270.20		299.20	299.13	299.03	299.15	299.35
284.55		299.03	299.03	299.08	299.54	300.12
298.90		299.40	299.59	300.44	302.03	303.12
313.25	299.08	299.32	302.15	305.13	308.29	310.82
327.50		300.94	306.38	311.26	315.88	319161
338.80		299.88	304.91	309.74	315.06	320.14

TE Ro	SENA 1 K G I HEATED	IALL TEMPE DIR A	RATURE	<u></u>	AB. A	A30.1
F26LWSA.D	AT ·					
RE = 30. UB = 0. QH3 = 0. TEN =297.	3E+03 96 (M/S) 00 (W/CM^ 51 (C)	PE = QHI = 2) QH4 = TNO =	177.55 14.96 (W 0.00 (W 311.58 (C	MS /CM^2) QH3 /CM^2) NB) TNI	= 1.57 2 = 0.00 = 29.46 1 =304.54	(K6/S) (W/CM^2 (KW) (C)
CP (MM) 11.00 33.40 55.40 66.60 80.750 109.65 109.65 124.00 138.35 152.70 185.90 185.90 185.90 194.10 208.30 241.50 230.30 241.50 255.85 270.25	ME0 (C) 298.04 298.45 298.04 297.49 298.24	ME1 (C) 301.04 302.74 302.59 299.16 298.53 297.91 298.53 297.44 297.44 297.73 297.51 297.51 297.90 298.02 298.28	ME2 (C) 311.23 313.40 311.19 310.97 312.70 305.78 300.46 298.62 298.26 297.63 297.51 297.51 297.51 297.58 297.58 297.58 297.58 297.58	ME3 (C) 321.73 324.49 321.80 321.95 312.10 299.25 298.28 297.49 297.49 297.49 297.59 297.49 297.59 297.68 297.69 297.69 298.14 298.07	ME4 (C) 331.50 334.16 330.92 330.66 317.93 306.38 298.50 297.90 297.53 297.51 297.51 297.51 297.51 297.51 297.51 297.51 297.51	ME5 (C) 341.55 344.58 341.88 340.81 338.92 323.80 309.81 299.81 299.847 297.50 297.70 297.70 297.80 297.80 297.80 297.82 298.02 298.02 298.02
298.90 313.25 327.60 338.90	298.41	298.58 299.11 302.30 300.70	299.57 304.69 312.27 311.21	301.89 310.63 321.18 320.77	305.44 316.75 329.49 330.35	308.22 322.14 336.74

TEGENA I WALL TEMPERATURE ROD I HEATED DIR B

F26LWSB.DAT

RE	= 29.9E+	03	PE =1	75.67		ĦS	=	1.55	(KG/S)
UB	= 0.95	(M/S)	QH1 =	14.95	(W/CM^2)	QH2	=	0.00	(0/CN^2)
0H2	= 0.00	(W/CM^2)	QH4 =	0.00	(W/CM^2)	NB	= 2	29.46	(KH)
TEN	=297.05	(C)	TNO =3	111.27	(E)	TNM	=3(14.15	(E)

TAB. A30.2

CP (MM)	ME() (C)	HE1 (C)	ME2 (C)	ME3 (C)	. HE4 (C)	ME5 (C)
11.00 25.20	297.75	300.97 302.63	311.18 313,40	321.75 324.49	331.64 334.27	341.76 344.82
33.40 155.40		301.01 299.05	311.09 310.92	321.87 321.29	331.85 330.99	342.12 341.02
66.60 80.95	298.16	302.44 299.71	312.63 305.65	321.89 312.07	330.78 317.95	339.06 323.84
95.30 109.65		298.40 298.38	300.34 298.47	302.97 299.15	306.43 300.19	309.76 299.42
124.00	297.94	297.94 298.14	298.14 297.89	298.18 298.26	298.40 297.80	298.81 298.16
152.70		297.29	297.33 297.41	297.72	297.84	297.82
103.90	297.46	297.41 297.55 297.55	297.41	297.50 297.51	297.48 297.38 207.44	297.63
230.30		277.00 297.41 297.00	297.48 297.48	297.77	297.40 297.29 207.10	297.84
255.85	298.18	297.00	297.65	277.65 278.06 298.01	277.00 298.01 299.29	297.94
29 4. 55 298.90		278.05	298.14 299.44	298.43	299.59 305 44	300.97
·313.25 377.60	298.18	299.01	304.59 712 24	310.60	316.82 770 50	322.21
338.80		300.55	311.16	320.79	330.46	339.87

TAB. A31.1

F24LWSA.DAT

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
80.95 296.38 297.95 303.54 309.43 314.49 319.45. 95.30 296.28 298.63 301.58 304.89 308.15 109.65 296.38 296.50 297.49 298.80 298.41 124.00 295.92 296.09 296.23 296.62 297.35 138.35 296.23 296.23 295.51 295.58 295.70 296.14 152.70 295.77 295.51 295.58 295.65 295.36 143.90 295.36 163.90 295.73 295.51 295.58 295.65 295.36 143.97
95.30 296.28 298.63 301.58 304.89 308.15 109.65 296.38 296.50 297.49 298.80 298.41 124.00 295.92 296.09 296.23 296.62 297.35 138.35 296.23 296.52 295.57 296.19 295.70 296.14 152.70 295.77 295.51 295.58 295.65 295.36 163.90 295.36 163.90 295.36 295.34 295.72 294.97 295.54 295.36 295.
109.65 296.38 296.50 297.49 298.80 298.41 124.00 295.92 296.09 296.23 296.62 297.35 138.35 296.23 296.23 296.42 297.35 138.35 296.62 297.35 132.70 295.77 295.51 295.58 295.65 295.36 163.90 295.39 295.34 295.72 294.97 295.51
124.00 295.92 296.09 296.23 296.62 297.35 138.35 296.23 296.23 295.87 296.19 295.70 296.14 152.70 295.77 295.51 295.58 295.65 295.36 163.90 295.39 295.34 295.77 294.97 295.51
138.35 296.23 296.23 295.87 296.19 295.70 296.14 132.70 295.77 295.51 295.58 295.65 295.36 163.90 295.39 295.34 295.77 295.51
132.70 295.77 295.51 295.58 295.65 295.36 163.90 295.39 295.34 295.77 294.97 295.51
163.90 .295.39 295.34 295.22 294.97 295.51
LIVIVI EIVIVI LIVILL LITIIL LIVILL
195.90 295.36 295.31 295.41 295.19 295.31
194.10 295.72 295.77 295.34 295.29 295.12 295.43
208.30 295.63 295.09 295.12 295.17 295.53
230.30 295.51 295.41 295.58 295.00 295.48
241.30 273.74 275.45 275.45 275.45 275.53 255.95 20/ 40 20/ 40 205 /2 205 22 275.35
233,63 276,46 276,07 273,68 <u>273,97 273,97 275,97</u> 970,90 90/77 90/00 50/00 90/55 903 73
270.20 · 276.33 276.07 296.07 296.53 297.37 204.55 201.14 201.20 201.01 200.70 70.45
201,00 270,14 270,20 270,71 270,37 300,10 200 00 701 50 200 10 700 67 704 20 700 20
-210,10 - 270,30 270,17 300,03 304,26 308,97
(10,00 11,10 001.74 000.20 010,00 00.00 000.00 000.00 000.00 000.00 000.00 000.00 000
338.80 299.14 308.85 317.09 325.15 377.06

— 164 —

TEGENA 1 WALL TEMPERATURE ROD 1 HEATED DIR B

TAB. A31.2

F24LWSB.DAT

RE = 15. UB = 0. QH3 = 0. TEN =295.	2E+03 49 (M/S) 00 (W/CM^ 65 (C)	PE = 0H1 = 2) 0H4 = TNO =	89.38 7.42 (¥ 0.00 (¥ 309.46 (C	MS /CM^2) QH2 /CM^2) NB) TNM	= 0.79 = 0.00 = 14.61 =302.55	(KG/S) (W/CM^2) (KM) (C)
CP	ME0	MEI	ME2	HE3	ME4	NE5
	(C) ·	(C)	(C)	(C)	(0)	(C)
11.00		299.82	309.34	318.47	326.64	334.72
25.20	295.85	301:17	310.98	320.73	328.49	336.70
33.40		300.30	309.89	319.25	527.21	335.29
33.40 11 10		278.47	309.72	. 318.05	326.40	334.19
90.0V 90.05	204 40	201.08	307.73 10 767	317.30	324.8/	331.22
95.30	270.77	294.33	298.78	301.03	314.74	317.77 308 47
109.65		296.31	296.55	297.54	299.95	298.44
124.00		295.77	296.04	296.28	296.72	297.54
138.35	296.11	295.99	295.75	296.15	295.80	296.31
152.70		295.56	295.44	295.63	295.80	295.61
153.90		295.19	295.34	295.31	295.17	295.80
185.90		295.22	295.29	295.53	295.41	295.63
194.10	295.44	295.51	295.29	295.39	295.31	295.73
208.30		295.51	295.10	295.24	295.39	295.82
230.30		295,29	295.39	295.65	295.19	295.80
241.30	56/ 77	293.68	273.37	295.46	295.58	295.77
233.03	276.33	273.80	17J.JJ 701 07	273.74	273.7/	275.11
270.20		270.11	275.02	270.07	270.03	177.J2 100 10
298.90		296.55	298.32	300.98	304.41	307.19
313.25	296.35	297.32	302.94	308.44	313.82	318.52
327.60		300.13	308.61	316.35	323.44	329.25
338,80		299.53	309.19	317.41	325.44	332.87

134		٩	KP5 C	340.4 340.4 340.1 340.1 351.8 351.8 351.9 350.9 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 351.3 352.5 352.5 352.5 352.5 352.5 352.5 352.5 352.5 355.5
TAB. /		.8 K 0. .7 M/cm ⁻ 2 .0 M/cm ⁻ 2	RP4	337.22 336.57 336.57 336.57 336.57 336.59 384.70 384.70 384.70 384.70 384.70 384.70 384.70 384.70 384.70 385.54 382.55 38
168. DAT	/5	2 = 41 = 3301 = 21	BP3 C	335.47 335.47 335.49 335.49 340.64 353.73 353.73 354.64 354.45 334.45 334.45 334.45 334.45 334.45 370.12 354.45 370.12 354.45 370.12 354.45 370.12 354.45 370.12
9,1987 B	PERATURES BP1/2/3/4,	6 8 DT 6 6 6 7 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8	BP2 C	334.344 334.536 334.536 334.536 334.536 354.554 354.554 354.554 354.304 335.137 355.137 355.137 355.137 355.137 335.158 335.158 355.136 355.158 355.158 355.158
:38 JUN2:	- HALL TRH Brinerter	334.3 C 96 m 21.5 N	HP1 C	34.37 34.37 334.37 334.32 335.92 335.69 335.69 333.91 333.91 333.91 333.91 333.91 333.91 333.91 333.55 334.95 334.95 334.95 334.32 334.95 334.32 334.32 334.32 334.32 334.32 334.32
12:20	TEGENA 2 Channel P	181 081 081 081	C P	11.00 25.20 55.40 55.40 66.60 95.30 95.30 109.70 124.00 138.40 152.70 152.70 154.00 154.00 155.90 154.10 155.90 241.50 230.30 231.50 231.50 233.30 233.50 233.30 333.30 23
133			RP5 C	398.0 398.7 398.7 398.5 399.5 399.5 399.5 399.9 399.6 399.9 391.1 391.1 391.5 391.2 391.2 391.2 391.2 391.2 391.2 391.1
TAB./		.7 K 3. 0 W/cm^2 .2 W/cm^2	HP4 C	381.95 385.83 381.74 380.08 378.10 359.19 359.19 344.78 351.02 379.83 381.20 381.20 379.59 379.59 376.09 376.83 346.83 346.83 361.44 379.59 379.59 379.59 379.59 379.59 379.59 379.59 379.59
190.DAT	/5	C = 40 = 3328 4 = 21	KP3 C	368.85 371.65 371.65 367.81 355.41 355.41 355.41 355.41 355.41 355.55 355.67 355.67 355.69 355.63 355.63 355.63 355.22 355.17 355.22 355.17 355.22 355.22 355.17
1,1987 B	PERATURES - HP1/2/3/4	/s DT /ca^2 QH /ca^2 QH	BP2 C	353.789 355.643 355.643 355.643 355.644 355.644 355.694 341.482 334.482 334.482 354.813 354.813 354.813 355.408 355.408 355.003 355.670 355.670 355.670
1:57 JOLO	- WALL TRN BRINBRTER	= 333.8 C = .97 = = 21.3 M	MP1 C	338.40 337.54 337.54 337.54 334.07 335.43 334.04 334.04 335.43 335.43 335.43 335.43 335.43 335.60 334.43 335.60 334.43 335.20 334.43
15:59	TRGRNA 2 Channel P	181 08 981 983	23	11.00 25.20 55.40 66.60 81.00 95.30 95.30 109.70 124.00 138.40 152.70 152.70 153.90 154.10 155.90 155.90 155.90 230.30 231.50 231.50 231.50 231.50 231.50 233.80 333.80
132		· · · · · · · · · · · · · · · · · · ·	BP5 C	384.0 384.0 384.0 377.4 377.4 377.4 379.4 379.0 386.7 386.7 386.7 386.7 386.7 386.7 386.7 386.7 386.6 384.6 384.6 384.6 379.1 357.9 357.9 357.9 357.9 357.9 357.9
TAB. /		.0 K L. .0 M/cm^2 .0 M/cm^2	HP4 C	367.04 364.24 364.24 365.47 365.47 365.67 345.68 345.68 374.81 365.67 367.33 367.33 367.33 367.33 367.33 367.33 365.67 365.67 365.67 365.67
198.DAT	/5	C = 59 = 3348 4 = 21	HP3 C	353.05 354.45 354.45 349.28 348.33 335.83 335.41 355.43 355.43 355.43 355.41 355.40 355.40 355.40 355.40 355.40 355.40 355.40 355.40 355.60 355.61 355.61 355.61
2,1987 B	PERATURES BP1/2/3/4	/s D1 /c 2 QH /c 2 QH	MP2 C	338.586 339.089 336.241 336.265 335.667 325.667 322.860 329.222 329.222 329.225 329.265 338.418 341.956 338.418 341.956 338.418 341.284 338.265 339.040 336.768 337.007 337.275 337.275 338.275
:02 JULO	- WALL TEB Brinerter	= 318.2 C = .99 = = 21.1 M	KP1 C	323.34 323.12 322.12 322.65 323.65 319.57 318.60 321.61 324.28 321.61 324.28 321.61 322.16 322.16 322.16 322.16 322.16 322.16 322.64 322.64
13:11	TEGENA 2 Ceannel P	181 UB QH1 QH3	C P	11.00 11.00 55.40 55.40 55.40 95.30 95.30 109.70 124.00 138.40 138.40 138.40 138.40 138.40 138.40 139.30 254.60 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.90 255.80 313.30 255.80 256.80 256.80 256.80 256.80 256.80 257.80 256.80 257.80 256.80 256.80 256.80 256.80 256.80 257.80 256.80 257.80 256.80 257.80 256.80 257.80 256.80 257.80 256.80 257.80 20

— 165 —

TAB. A35

TESENÀ 1 FLUID TEMPERATURE DIR B

F31012B.DAT

RE	= 30.3E+()3	PE	=178.8	2	MS	 1.59	(K6/S)
Ub	= 0.97	(M/S)	081	= 0.0	0 (W/CK^2)	QH2	0.00	(W/CM^2)
QH3	= 0.00	(W/CM^2)	084	= 7.7	9 (W/CK^2)	NB	15.29	(KW)
Ten	=296.64	(C)	X21	= 86.9	6 (MH)	X22	88.79	(MM)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y21	. Y22	TE21	TE22	TE23	TE24	RMS21	RNS22	RMS24	F2	TEN	QH4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(MM)	(MM)	(3)	(2)	(2)	(C)	(K)	(K)	(K)	ΗV	(C)	(₩/CM^2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.66	21.66	311.60	312,75	313.32	312.18	0.35	0.34	0.36	2.01	296.64	7.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.79	19.79	312.10	313.15	313.78	312.50	0.25	0.26	0.28	2.01	296.59	7.80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.82	18,82	312.28	313.31	313.60	312.47	0.20	0.22	0.25	2.01	296.65	7.78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.81	17.81	312.40	313.43	313.62	312.40	0.13	0.16	0.24	2.01	296.47	7.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.79	16.79	312.55	313.62	313.60	312.38	0.09	0.13	0.26	2.01	296.60	7.78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15.73	15.73	312.54	313.53	313.28	312.18	0.10	0.13	0.30	2.01	296.51	7.78
13.65 13.65 312.29 313.33 312.92 311.51 0.19 0.20 0.41 2.01 296.50 7.78 12.68 12.68 312.10 313.19 312.76 311.32 0.25 0.26 0.46 2.01 296.37 7.77 11.72 11.72 311.74 312.79 312.38 311.02 0.30 0.29 0.50 2.01 296.40 7.78 7.83 7.83 310.58 311.77 311.22 309.83 0.48 0.45 0.66 2.01 296.61 7.79 5.76 5.76 310.37 311.39 311.08 309.86 0.55 0.52 0.66 2.01 296.46 7.78 3.68 3.68 309.84 310.75 309.45 0.53 0.52 0.54 2.01 296.46 7.79	14.69	. 14.68	312.36	313.50	313.28	311.90	0.14	0.17	0.35	2.01	296.40	7.78
12.68 12.68 312.10 313.19 312.76 311.32 0.25 0.26 0.46 2.01 296.37 7.77 11.72 11.72 311.74 312.79 312.38 311.02 0.30 0.29 0.50 2.01 296.40 7.78 7.83 7.83 310.58 311.77 311.22 309.83 0.48 0.45 0.66 2.01 296.61 7.79 5.76 5.76 310.37 311.39 311.08 309.86 0.55 0.52 0.66 2.01 296.46 7.78 3.68 3.68 309.84 310.75 309.45 0.53 0.52 0.54 2.01 296.46 7.79	13.65	13.65	312.29	313.33	312.92	311.51	0.19	0.20	0.41	2.01	296.50	7.78
11.72 11.72 311.74 312.79 312.38 311.02 0.30 0.29 0.50 2.01 296.40 7.78 7.83 7.83 310.58 311.77 311.22 309.83 0.48 0.45 0.66 2.01 296.61 7.79 5.76 5.76 310.37 311.39 311.08 309.86 0.55 0.52 0.66 2.01 296.46 7.78 3.68 3.68 309.84 310.75 309.45 0.53 0.52 0.54 2.01 296.46 7.79	12.68	12.68	312.10	313.19	312.76	311,32	0.25	0.26	0.46	2.01	296.37	7.77
7.83 7.83 310.58 311.77 311.22 309.83 0.48 0.45 0.66 2.01 296.61 7.79 5.76 5.76 310.37 311.39 311.08 309.86 0.55 0.52 0.66 2.01 296.46 7.78 3.68 3.68 309.84 310.75 309.45 0.53 0.52 0.54 2.01 296.39 7.79	11.72	11.72	311.74	312.79	312.38	311.02	0.30	0.29	0.50	2.01	296.40	7.78
5.76 5.76 310.37 311.39 311.08 309.86 0.55 0.52 0.66 2.01 296.46 7.78 3.68 3.68 309.84 310.88 310.75 309.45 0.53 0.52 0.54 2.01 296.39 7.79	7.83	7.83	310.58	311.77	311.22	309.83	0.48	0.45	0.66	2.01	296.61	7.79
3.68 3.68 309.84 310.88 310.75 309.45 0.53 0.52 0.54 2.01 296.39 7.79	5.76	5.76	310.37	311.39	311.08	309.86	0.55	0.52	0.66	2.01	296.46	7.78
	3.68	3.68	309.84	310.88	310.75	309.45	0.53	0.52	0.54	2.01	296.39	7.79

TEBENA 1 FLUID TEMPERATURE DIR A TAB. A36

F370WSA.DAT

12.7.4

RE	=	30.1E+(03	PΕ	=17	78,18		MS	=	1.58	(KS/S)
UB	=	0.97	(H/S)	<u> 연범</u> (=	0.00	(W/CM^2)	0H2	=	0.00	(W/CM^2)
QH3	=	0.00	(W/CM^2)	QH4	=	7.58	(W/CM^2)	NB	z	14.88	.(KW)
TEN	=2	296.19	(C)	X21	=1)	15.78	(MM)	X22	=1	17.61	(MM)

121	122	1221	1522	1520	1E24	R6521	Rn522	RM524	F2	TEN	QH4
(MM)	(MM)	(2)	(0)	(C)	(0)	(K)	(K)	(K)	ΗV	· (C)	(W/CM^2)
7.73	7.73	319.05	318.91	318.41	318.38	0.06	0.05	0.09	2.01	296.19	7.58
9.72	9.72	319.83	317.51	313.89	319.02	0.07	0.05	0.11	2.01	296.22	7 58
11.61	11.61	320.72	320.29	319.67	319.92	0.07	0.05	0.11	2.01	296 55	7.50
13.56	13.56	321.34	320.74	320.25	320.75	0.05	0.05	0 10	2 01	270.33 704 AQ	7.60
14.57	14.57	321.62	320.91	320.55	321.05	0.04	0 04	0.09	2.02	270.47	7.02
15.41	15.61	321.90	321 19	320 94	321 40	0.01	0.04	0.07 A AG	2.02	270.22	7.04
14.45	14 45	321.90	321 20	321 14	721.0V	0.03	0.04	0.00	. 2.02	270.JA 201 71	7.05
17 10	17 10	701 70	321,20	:371 71	321.01	0.03	0.04	. 0.07	2.02	270.00	7.07
10 71	10 71	701 07	321.00	701 47	777 15	0.04	0.04	0.08	2.02	275.34	1.55
10./1	10./1	321.03 731 71	321.17 700 74	021.40 754 44	322.13	0.03	0.02	0.05	2.03	275.24	1.72
17.07	17,07	321.30	320.79	J21.14 726 ((321.84	0.03	0.03	0.08	2.02	296.70	7.67
21.28	21.35	320.33	320.03	320.56	371.74	0.07	0.06	0.10	2.62	295 59	7 48

TEBENA 1. FLUID TEMPERATURE DIR A

TAB. A37

F350W4A.DAT

RΕ	=	30.35+6)3	₽E	=1	79.07		MS	=	1.59	(K6/S)	
UB	=	0.97	(M/S)	QH1	=	0.00	(W/CH^2)	QH2	Ξ	0.00	(W/CH^2)	
6H2	=	0.90	(W/CM^2)	QH4	=	7.78	(W/CM^2)	NB	Ξ	15.27	(KW)	•
TEN	=7	94. AB	(2)	121	= 1	01.38	(MM)	\$22	= 1	03.21	(88)	

Y21	¥24	TE21	TE22	7E23	TE24	RMS21	RMS22	RMS24	TEN	9H4	MS
(MM)	. (MM)	(C)	(C)	(0)	(C)	(K)	(K)	(K)	(3)	(₩/CM^2)	(KG/S)
2.24	0.41	319.59	320.14	319.49	318.88	0.19	0.13	0.26	296.68	7.78	1.59
2.35	0.52	319.59	320.13	319.40	318.72	0.20	0.14	0.30	295.40	7.77	1.59
2.55	0.72	319.64	320.26	319.43	318.72	0.18	0.13	0.30	296.54	7.79	1.59
2.74	0.91	319.88	320.49	319.59	318.93	0.17	0.13	0.30	296.61	7.79	1.59
2.93	1.10	319.93	320.56	319.55	318.89	0.17	0.12	0.32	296.59	7.78	1.59
3.12	1.29	320.34	320.95	319.84	319.20	0.15	0.12	0.32	296.73	7.79	1.59

TAB.2	TEGENA	1	FLUID	TEMPERATURE
	DIR B			

TAB. A38

F30LWSB.DAT

. . .

ŗ

RE = 30 UB = 0 QH3 = 0 TEN =295	.0E+03 .96 (N/5) .00 (N/CM .71 (C)	PE = 0H1 = 0H4 = Y21 =	177.37 0.00 (7.39 (2.71 (MS W/CM^2) QH2 W/CM^2) NB MM) Y24	= 1.57 = 0.00 = 14.50 = 0.98	(K8/S) (W/CM^2) (KW) "(MM)	
171	X22	TE21	TE22	TE23	TE24	RMS21	RMS22
(MM)	(MM)	(3)	(0)	(C)	(2)	(K)	(K)
56.94	58,77	297.60	297.72	297.84	297.51	0.09	0.13
58.88	50.71	297.82	298.01	298.27	297.80	0.12	0.17
60.89	62.72	298.22	298.49	298.63	298.20	0.15	0.22
62.96	64.79	298.45	298.76	298.94	298.41	0.20	0.28
64.96	66.79	298.81	299.33	299.52	298.93	0.27	0.33
66.89	68.72	299.21	299.92	300.04	299.21	0.32	0.37
68,85	70.68	300.28	301.19	301.22	300.27	0.37	0.39
70 04	70 10	701 00	300 00	TA9 17	701 17	0.37	0.70

371	172	1521	TE 22	TE 23	1524	RMS21	RMS22	RMS24	584	TNO	TNM
(NH)	/MM \	(1)	101	101	103	(K)	18)	(Y)	(W/CMA2)	(0)	(0)
52 08	58 77	207 40	207 72	207 24	207 51	N 00	0 13	0 14	7 30	74 767	300.17
59 99	50.77	207 82	298 01	298 27	297 80	0 12	0.10	0.10	7 70	303.59	300.14
20.00	40.71	200 22	200 40		200 20	0.15	A 22	0.19	7 70	303.45	300 19
20.07 20.01	01.71 LA 70	100.11 100 AF	270.47	170.00 700 CA	270.20	0.13	N 20	0.22	7 77	303.68	300 19
11 61	11 70	270,92 .	270.70	270.77	270.71	0.27	0.77	. 0.22	7.37	303.04	700.02
04.70 11 00	00./7 10 70	270,01 -	277.00	271.32	270,70	0.27	0.33	0.20	7.30	303.47	700.01
00.07 10 05	70.12	277.21	271.72	300.04	277.21	0,32	0.07	0.32	7.00	707 10	766.55
00,0J 70 0L	70.00	300.20	301.15	301.22	300.27	0.37	0.07	0.37	7.52	767 10	700.23
70.00	72.07	301,20 705 A7	302.00	302.17 765 64	301.17 701 DO	0.07	0.37	0.41	7.00	203.07	200.29
72.70	74.77	202.07	302.93	302.74 764 67	301.70	0.08	0741	(7.44 A 44	7.21	202.33	277.70
74.73	10.10	303.21	304.08	304.08 764.55	303.08	0.41	0.43	0.40	7.32	303.21 767 E/	700 31
70.87	/8./2	304.20	303.30	304.73	304.04	V.40 A EA	0.50	V.90 0 45	7.30	303.38	300.11
/8.83	80.68	303.35	305.32	305.05	303.03	V.30	0.33	. V. 43	7.31	303.38	277.73
80.88	82.71	306.33	307.14	306,87	305.00	0.47	0.49	V.41	7.31	303.23	277.17
82.97	84.80	307.32	307.99	307.95	308.73	0.49	V.48	0.40	7.33	303.44	300.00
84.76	86.79	308.15	208.97	308.99	307.84	v.48	0.48	0.37	1.32	303.77	300.33
85.91	88.74	309.37	310.25	310.21	309.13	0.45	0.4/	0.40	7.31	303.67	300.24
88.86	90.69	310.25	311.52	311.31	309.98	0.45	0.46	0.40	7.31	303.45	300.03
90.89	92.72	311.51	312.89	312.77	311.32	0.45	0.47	0.37	7.37	303.39	299.93
92,97	94.80	312.71	314.07	314.01	312.62	0.45	0.47	0.39	7.36	303.50	300.15
94.97	96.80	314.35	315.72	315.50	313.95	0.44	0.41	0.38	7.37	303.58	300.11
95.91	98.74	315.99	317,49	315,97	315.56	0.39	0.33	0.37	7.37	303.55	300.11
78.86	100.59	317.37 v	318.51	317.78	316.70	0.31	0.24	0.33	7.38	303.15	299.69
100.89	102.72	318.71	319.41	318.58	317.81	0.20	0.15	0.26	7.37	303.52	300.06
102.97	104.80	319.15	319.34	318.60	318.23	0.11	0.10-	0.19	7.35	303.42	299.97
104.96	106.79	319.47	319.37	318.73	318.68	0.05	0.09	0.14	7.35	303.33	299.68
106.90	108.73	319.00	318.70	318.19	318.34	0.05	0.11	0.14	7.35	303,68	300.23
108.86	110.69	318.46	318.13	317.76	317.93	0.05	0.10	0.15	7.34	303.58	- 300.13
110.87	112.70	318.28	318.01	317.84	317.92	0.06	0.10	0.14	7.36	303.52	300.07

TAB. A39

				the second s						
RE UB DH3	= 30.4E+03 = 0.98 (M/S) = 0.00 (M/S)	PE =179.55 <u>PH1</u> = 0.00 OH4 = 7.84	(W/CN^2) (N/CM^2)	MS = 1.59 BH2 = 0.00 NB = 15 AA	(KG/S) (W/CM^2) (VW)	TESENA Dir A	1 FLUIE) TEMPERATUR	Ε	
TEN	=295.32 (C)	Y21 = 17.11	(NM)	Y24 = 15.28	(MN)	F32L43	A.DAT			
X21 (NM)	X22 TE (MM) (C	21 TE22) (C)	TE23 (C)	TE24 (C)	RMS21 (K)	RMS22 (X)	RMS24 (K)	TEN IC)	0H4 (W/CM^2)	MS (Kg

87.36 87.26 87.12 87.08 86.88 86.68 86.69 86.50	(177) 89.19 89.09 88.95 88.91 88.71 88.52 88.33	(L) 313.14 312.92 312.73 312.73 312.77 312.65 312.83	107 314.29 314.14 313.89 313.84 313.71 313.56 313.62	(C) 314.38 314.20 313.92 313.91 313.83 313.57 313.69	(C) 312.98 312.73 312.65 312.65 312.64 312.51 312.70	(K) 0.11 0.11 0.10 0.10 0.09 0.09	(K) 0.12 0.13 0.13 0.14 0.14 0.14	(k) 0.28 0.31 0.29 0.29 0.29 0.29	(D) 296.32 296.50 296.69 296.69 296.82 296.97 296.41	(W/CM^2) 7.95 7.99 7.98 7.98 7.98 7.99 7.99 7.98	(KG/S) 1.59 1.60 1.59 1.59 1.59 1.59 1.59
85.00	88.00	312.83	313.62	313.67	312.70	0.07	0.14	0.29	295.51	7.88	1.59

TAB. A40

RE = UB = NUT -	= 30.2E+03 = 0.97 (M/S) - 0.00 (M/S)	PE =178.43 OH1 = 0.00	(N/CN^2) (N/CN^2)	MS = 1.58 QH2 = 0.00	(K8/S) (W/CN^2)	TEGENA 1 DIR A	FLUIE) TEMPERATUR	Ε	
TEN =	= 0.00 (#/CH 2) =296.39 (C)	$Y_{21} = 17.11$	(MM)	Y24 = 15.28	(NM) (NM)	F38LW4A	.DAT			
X21 /WM1	X22 TE	21 TE22	1E23	TE24	RMS21	RMS22	RMS24	TEN	QH4	M5

			/	1220		1111021	100677	111227	1 - 14	2017	110
(88)	(HX)	(8)	(2)	(C)	(2)	(K)	(K)	(K)	(C)	(0/0842)	(KG/S)
115.30	118.13	321.81	321.32	321.35	321.84	0,05	0.07	0.25	296.39	7.63	1.58
116.12	117.95	321.72	321.16	321.17	321.74	0.05	0.08	0.25	294.50	7.63	1.58
115.92	117.75	321.75	321.12	321.14	321.79	0.05	0.07	0.25	296.52	7.62	1 52
115.74	117.57	321.96	321.14	321.17	321.92	0.04	0.08	0.25	204 44	7 61	1 59
115.54	117.37	322.20	371.36	321.38	322.20	0.04	0.08	0.25	296 45	7 .1	1.00
115 35	117 18	722.25	701 70	701 77	700 04	0 04	V • V9 A A9	V,20 A 35	270130	7.61	1100
110100	11/110		241.24	ن د ا م	041.27	V. V*	0.08	V.23	270.23	7.01	1.38

RE = 30 UB = 0 DH3 = 0	.5E+03 .98 (M/S) .00 (N/CMA	PE =1 2H1 = 2) DHA =	80.13 0.00 (W/ 7 88 (W/	HS CM^2) Of CM^2) NS	5 = 1.60 12 = 0.00 15 47	(KS/S) (W/CM^2) (VW)			TESENA 1 DIR A	FLUID TEN	PERATURE
TEN =296	.60 (C)	A22 =-	44.97 (DE	Gi Al	1 =-48.51	(DEG)		F33D43A	.DAT		
R22 (MK) 19.62 19.07 18.37 17.69 16.28 15.55 14.84 14.10 13.37	A22 (DE6) -44.97 -45.02 -45.02 -45.08 -45.20 -45.25 -45.38 -45.38 -45.43	R21 (MM) 20.95 19.03 19.03 17.63 16.90 16.19 15.46 14.73	A21 (DE6) -48.51 -48.78 -48.78 -48.78 -48.95 -49.39 -49.62 -49.88 -50.15 -50.44	R24 (MM) 22.20 21.66 20.96 20.28 19.58 18.87 18.14 17.42 16.69 15.96	7E21 (C) 309.33 310.02 310.37 310.79 311.11 311.47 312.03 312.23 313.12 313.49	TE22 (C) 310.58 311.25 311.38 311.77 312.37 312.78 313.60 313.58 314.59 315.15	TE23 (C) 310.36 311.07 311.48 311.76 311.95 312.48 312.70 313.06 313.89 314.27	TE24 (C) 309.19 309.71 310.14 310.15 311.69 311.49 311.67 312.25 312.81	RMS21 (K) 0.46 0.51 0.52 0.53 0.50 0.48 0.46 0.44 0.34	RMS22 (K) 0.47 0.53 0.52 0.53 0.49 0.46 0.46 0.42 0.36	RM524 (K) 0.41 0.50 0.54 0.59 0.60 0.62 0.63 0.61 0.56
				Т	AB. A	+2					
RE = 30. UB = 0. GH3 = 0. TEN =296.	1E+03 97 (M/S) 00 (W/CM^2 31 (C)	PE =17 8H1 = 0H4 = A22 =-4	77.90 0.00 (N/C 7.73 (W/C 15.44 (DEC	MS (M^2) DH (M^2) NB () A2	= 1.58 2 = 0.00 = 15.17 1 =-50.44	(K6/S) (W/CN^2) (KW) (DEG)		T D F330438.	EGENA 1 IR B Dat	FLUID TEMP	ERATURE
R22 (NM) 13.37 14.67 15.41 16.85 18.95 18.95 18.95 19.63	A22 (DE6) -45.31 -45.26 -45.22 -45.12 -45.01 -44.98 -44.97 -44.98	R21 (MM) 14.73 15.29 16.02 16.76 17.46 18.99 18.90 19.59 20.29 20.96	A21 (DE6) -50.44 -49.87 -49.63 -49.39 -49.39 -49.39 -48.75 -48.53 -48.52	R24 (MH) 15.96 16.53 17.26 17.99 18.70 19.43 20.15 20.94 21.54 22.22	TE21 (C) 313.29 312.66 312.23 311.65 311.35 310.80 310.38 309.98 309.98 309.21	TE22 (C) 314.92 314.30 312.86 312.86 312.45 312.02 311.59 311.12 310.57 310.12	TE23 (C) 314.32 313.82 312.53 312.53 312.30 311.80 311.55 311.12 310.52 310.16	TE24 (C) 312.62 312.11 311.74 311.00 310.63 310.45 310.10 309.73 309.31 308.95	RMS21 (K) 0.41 0.45 0.51 0.52 0.52 0.50 0.48 0.45	RMS22 (K) 0.28 0.36 0.42 0.44 0.49 0.50 0.51 0.51 0.49 0.46	RH524 (K) 0.56 0.63 0.63 0.60 0.62 0.57 0.55 0.50 0.45 0.39
				٦	TAB. A	43					
RE = 30 UB = 0 QH3 = 0 TEN =298).4E+03).98 (N/S)).00 (W/CM*).21 (C)	PE =) 0H1 = 2) 0H4 = A21 =	179.60 0.00 (W) 7.69 (W) 44.72 (D)	N (CM^2) 0 (CM^2) N (6) A	S = 1.59 H2 = 0.00 B = 15.10 22 = 48.66	(K6/S) (W/CM^2) (KW) (DEG)] F36D44A.	IEGENA 1)1r a .dat	FLUID TEMF	ERATURE
R21 (NH) 17.58 16.94 16.21 15.49 14.75 14.04 13.28	A21 (DE5) 44.72 44.92 44.91 45.01 45.01 45.08 45.07	R22 (MN) 18.91 18.28 17.55 16.84 16.09 15.39 14.63	A22 (DEG) 48.55 48.99 49.15 49.41 49.52 49.90 50.14	R23 (MM) 20.16 19.53 18.79 18.08 17.34 15.63 15.86	TE21 (C) 318.17 318.29 318.51 318.93 319.40 319.74 320.41	TE22 (C) 318.10 318.25 318.25 318.57 318.85 319.14 319.66	TE23 (C) 317.90 317.85 317.90 318.08 318.32 318.46 318.84	TE24 (C) 317.82 317.86 318.24 318.24 318.57 318.81 319.28	RHS21 (K) 0.09 0.10 0.11 0.12 0.12 0.12 0.10	RMS22 (K) 0.08 0.09 0.11 0.12 0.13 0.14 0.14	RMS24 (K) 0.14 0.15 0.17 0.17 0.18 0.18
]	TAB. A	<u>+4</u>					
RE = 30 UB = 0 QH3 = 0 TEN =295).2E+03).97 (M/S)).00 (W/CM .24 (C)	PE =: 9H1 = 2) 0H4 = A21 =	178.67 0.00 (W) 7.63 (W) 45.07 (D)	H (CM^2) Q (CM^2) N Eg) A	S = 1.58 H2 = 0.00 B = 14.97 22 = 50.14	(KS/S) (W/CM^2) (KW) (DEG)		F36D44	TEGENA 1 DIR B B.DAT	FLUID TE	MPERATURE
R21 (MH) 13.28 13.29 14.63 15.36 15.01 16.81 17.50	A21 (DEB) 43.07 45.10 43.04 45.03 44.71 44.91 44.87	R22 (MM) 15.24 15.98 16.70 17.35 18.15 18.83	A22 (DEG) 50.14 49.96 49.68 49.47 49.01 49.01 48.82	R23 (NM) 15.86 15.48 17.22 17.95 18.60 19.40 20.09	TE21 (C) 320.34 319.99 319.39 318.85 318.47 318.17 318.01	1E22 (C) 317.55 319.27 318.88 318.45 318.17 318.00 317.92	TE23 (C) 318.73 318.59 318.29 317.95 317.78 317.72 317.75	TE24 (C) 319.23 318.98 318.55 318.14 317.87 317.73 317.65	RMS21 (K) 0.10 0.11 0.11 0.11 0.10 0.09	RMS22 (K) 0.14 0.12 0.12 0.12 0.11 0.10 0.08	RMS24 (K) 0.18 0.17 0.15 0.15 0.14 0.13
TAB. A45

— 169 —

TEGENA 1 FLUID TEMPERATURE DIR A

F70K43A.DAT

RΕ	= 30.4E+	03	₽E	=177.41		ĦS	= 1.57	(KS/S)
UB	= 0.95	(M/S)	QH1	= 0.00	(W/CM^2)	QH2	= 0.00	(₩/CM^2)
₽H3	= 0.00	(W/CM^2)	QH4	= 14.93	(W/CM^2)	NB	= 29.32	(KW)
TEN	=299.42	(0)	R22	= 13.04	(NM) .	R21	= 13.16	(HH)

A22 (DEG) 0.02 -9.99 -19.64 -29.63 -39.86 -44.99 -50.20 -60.27 -69.79 -79.53 -89.83	R22 (MM) 13.04 13.05 13.06 13.06 13.00 12.95 12.95 12.95 12.98 13.03 13.00 12.98	A24 (DEG) -6.99 -15.57 -23.16 -32.16 -40.72 -44.99 -49.34 -57.75 -65.75 -73.99 -82.81	R24 (MM) 15.26 15.43 15.51 15.54 15.54 15.54 15.49 15.41 15.21 14.93	TE21 (C) 344.20 341.41 338.96 335.94 334.06 333.06 332.47 330.86 330.78 330.96 331.22	TE22 (C) 345.68 344.01 342.08 339.34 337.08 335.45 335.45 333.32 333.43 333.59	TE23 (C) 344.07 342.57 340.83 338.19 336.02 335.11 334.68 333.54 333.09 332.70	TE24 (C) 341.08 338.64 336.25 333.05 331.31 330.39 329.75 328.78 328.78 328.57 328.71	RMS21 (K) 0.54 0.65 0.77 0.42 0.79 0.76 0.74 0.73 0.67 0.50 0.37	RMS22 (K) 0.30 0.42 0.53 0.30 0.54 0.50 0.48 0.44 0.40 0.34 0.25	RH523 (K) 0.44 0.55 1.10 1.06 0.97 0.58 0.62 0.62 0.43	RMS24 (K) 0.60 0.77 1.00 0.61 1.21 1.19 1.15 1.03 0.96 0.80 0.49
A21 (DES) -7.96 -26.82 -36.16 -50.18 -54.86 -54.86 -63.88 -63.83 -89.85	R21 (NH) 13.16 13.51 13.78 14.20 14.20 14.21 14.41 14.50 14.81 14.81	A22 (DE6) 0.02 -9.99 -19.64 -29.63 -39.86 -44.99 -50.20 -60.27 -69.79 -79.53 -89.83	R22 (HH) 13.04 13.07 13.06 13.06 12.95 12.95 12.98 13.00 12.98	A23 (DEG) -8.76 -17.25 -26.08 -35.20 -39.80 -44.52 -53.74 -62.62 -71.84 -81.81	R23 (NM) 14.87 14.87 14.62 14.41 14.20 13.98 13.46 13.12	A24 (DEG) -6.99 -15.57 -23.76 -32.16 -40.72 -44.99 -49.34 -57.75 -65.75 -73.99 -82.81	R24 (MM) 15.26 15.43 15.54 15.54 15.54 15.49 15.49 15.21 15.21 14.93	TEN (C) 299.42 299.58 299.58 299.58 299.59 299.57 299.57 299.57 299.52 299.49 299.49	TND (C) 313.45 313.83 313.83 313.93 314.01 313.78 313.79 313.73 313.73 313.72 313.73	QH4 (W/CM^2) 14.95 15.33 15.33 15.35 15.35 15.37 15.37 15.37 15.37 15.37	MS (K6/S) 1.57 1.57 1.59 1.59 1.59 1.59 1.59 1.59 1.59

TEGENA 1 FLUID TEMPERATURE DIR B TAB. A46

F70K43B.DAT

RE	=	30.72+(03	PΕ	=1	79.23		MS	=	1.58	⊀KS/S)
UB	=	0.97	(M/S)	QH1	Ξ	0.00	(W/CH^2)	QH2	=	0.00	(#/CH^2)
6H3	=	0.00	(¥/CM^2)	QH4	=	15.24	(W/CM^2)	NB	=	29.92	(KM)
TEN	=2	299.71	(C)	R22	=	13.04	(MM)	R21	=	14.87	(MM)

H22 (DEE)- -90.05 -79.78 -70.17 -60.67 -50.79 -45.52 -40.39 -33.67 -29.93 -20.10 -10.32 -0.38	R22 (MH) 13.04 13.04 12.99 12.97 12.97 12.95 13.03 13.03 13.03	A24 (DEG) -83.03 -74.23 -58.09 -49.82 -49.82 -45.43 -35.43 -35.48 -35.48 -35.48 -35.48 -35.48 -35.35 -15.85	R24 (NM) 15.26 15.55 15.55 15.57 15.55 15.53 16.06 15.49 15.42 15.24 15.24 15.24	(C) 331.33 330.86 331.17 332.19 332.91 333.82 334.06 335.08 338.83 342.02 344.91	(C) 333.65 333.56 334.15 335.43 336.17 336.97 337.34 337.34 339.25 342.10 344.68 346.44	(E23 (C) 333.79 332.97 333.07 333.50 334.63 334.89 335.82 336.17 337.95 340.42 342.97 344.93	1624. (C) 329.56 328.62 328.34 328.96 329.95 330.42 331.14 331.54 333.38 336.04 339.13 341.60	(K) 0.41 0.52 0.71 0.89 0.77 0.80 0.81 0.90 0.84 0.81 0.70 0.51	KH522 (K) 0.27 0.35 0.42 0.41 0.49 0.55 0.55 0.55 0.59 0.56 0.45 0.29	KN525 (K) 0.44 0.61 0.70 0.76 1.05 1.05 1.10 0.92 0.65 0.44	(K) 0.50 0.79 0.79 1.00 1.12 1.18 1.19 1.20 1.20 1.03 0.80 0.57
A21 (DEG) -90.04 -71.03 -72.57 -64.17 -55.38 -50.65 -36.65 -36.45 -27.27 -17.99 -8.37	R21 (HM) 14.87 14.87 14.83 14.67 14.46 14.33 14.20 14.60 13.98 13.77 13.49 13.17	A22 (DE6) -90.05 -79.78 -70.67 -50.79 -45.52 -40.39 -33.67 -29.93 -20.10 -10.32 -0.38	R22 (MM) 13.04 13.04 13.04 12.99 12.97 12.95 13.51 12.78 13.03 13.04 13.03	A23 (DEG) -82.06 -72.12 -63.02 -45.06 -40.28 -35.66 -29.81 -26.34 -17.65 -9.05 -0.33	R23 (MM) 13.17 13.51 13.62 14.03 14.22 14.31 14.39 15.07 14.59 14.59 14.84 14.84	A24 (DE6) -93.03 -74.23 -66.09 -49.82 -45.43 -41.16 -35.48 -32.42 -24.15 -15.86 -7.35	R24 (MM) 15.28 15.25 15.55 15.55 15.55 15.55 15.49 15.24 15.24 14.98	TEN (C) 299.65 299.64 299.67 299.67 299.67 299.25 299.33 299.33 299.55 299.55 299.47	TND (C) 313.88 313.83 313.64 313.67 313.61 313.67 313.67 313.54 313.75 313.75 313.75 313.75	0H4 (W/CM^2) 15.29 15.30 15.29 15.29 15.29 15.29 15.31 15.31 15.35 15.35 15.35	NS / 55 (K5 / 55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1

TEGENA 1 FLUID TEMPERATURE DIR A — 170 —

1111

F70K44A.DAT

RE = 30. UB = 0. QH3 = 0. TEN =299.	5E+03 97 (M/S) 00 (W/CM^ 51 (C)	PE 9H1 = 2) 9H4 = R22 =	=178.40 = 0.00 () = 15.11 () = 14.91 ()	MS (/CH^2) QH2 (/CH^2) NB (M) R21	= 1.58 2 = 0.00 = 29.68 1 = 13.08	(K6/5) (W/Ch^2) (KN) (MM)					
A21 (DEG) 89.83 79.67 70.02 60.51 50.52 45.44 40.05 29.90 20.01 10.26 0.23	R21 (MH) 13.08 13.09 13.09 13.02 12.98 12.98 12.97 13.00 13.01 13.04 13.05 13.04	A23 (DEG) B2.85 74.15 657.95 57.95 49.60 45.37 40.87 32.39 24.07 15.B1 7.22	R23 (MM) 15.03 15.29 15.47 15.53 15.56 15.58 15.58 15.58 15.25 15.25 14.99	TE21 (C) 350.47 350.26 347.17 348.28 347.55 347.28 347.28 347.27 347.11 347.07 346.59 345.66	TE22 (C) 348.54 348.32 347.33 345.49 345.69 345.60 345.60 345.69 345.23 346.23 346.33	TE23 (C) 348.65 347.73 346.21 345.05 344.32 344.17 344.19 344.23 344.57 344.78 344.73	TE24 (C) 349.15 346.33 345.01 344.27 343.89 343.84 343.60 343.64 343.27 342.48	RMS21 (K) 0.30 0.33 0.37 0.33 0.34 0.37 0.33 0.31 0.31 0.38	RMS22 (K) 0.17 0.20 0.27 0.28 0.28 0.27 0.28 0.27 0.24 0.24 0.24 0.21 0.19	RMS23 (K) 0.25 0.32 0.37 0.37 0.37 0.35 0.34 0.33 0.29 0.25 0.29	RHS24 (K) 0.23 0.28 0.34 0.34 0.33 0.31 0.30 0.27 0.21 0.23 0.42
A21 (DEG) 89:83 79.67 70.02 60.51 50.52 45.44 40.05 29.90 20.01 10.28 0.23	R21 (NH) 13.08 13.09 13.02 12.98 12.97 13.00 13.01 13.05 13.04	A22 (DEG) 89.85 80.94 64.03 55.14 50.58 45.70 36.40 27.77 17.72 8.22	R22 (MH) 14.91 14.89 14.82 14.65 14.43 14.33 14.24 14.01 13.50 13.50 13.17	A23 (DE6) 82.85 74.15 65.97 57.95 49.60 45.37 40.87 24.07 15.81 7.22	R23 (MM) 15.03 15.29 15.53 15.54 15.56 15.58 15.58 15.52 15.45 15.25 14.99	A24 (DEB) 81.87 72.03 62.87 53.98 44.82 40.22 35.38 26.32 17.59 7.00 0.20	R24 (MM) 13.21 13.54 13.82 14.02 14.21 14.45 14.45 14.45 14.79 14.86 14.87	TEN (C) 299.51 299.33 299.33 299.33 299.33 299.43 299.43 299.43 299.43 299.43	TND 313.64 313.56 313.41 313.32 313.32 313.32 313.38 313.60 313.60 313.60 313.60 313.56	GH4 (W/CM^2)) 15.11 15.05 15.05 15.02 15.01 14.95 15.04 15.03 15.00 14.93 14.93	MS (K6/S) 1.58 1.58 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57

TAB. A47

TEGENA 1 FLUID TEMPERATURE DIR B TAB. A48

F70K44B.DAT

RE	Ŧ	30.7E+0	03	PE	=1	79.18		MS	=	1.58	(KG/S)
UB	=	0.97	(M/S)	QH1	=	0.00	(\/CH^2)	QH2	Ξ	0.00	(#/CM^2)
6H3	=	0.00	(W/CM^2)	QH4	Ξ	15.26	(\/C8^2)	NB	=	29.97	(KW) -
TEN	=7	297.51	(0)	R22	=	13.15	(MM)	R21	=	13.03	(MM)

N21 (DEE) -0.07 10.00 19.66 29.47 39.71 44.96 50.19 60.28 69.78 79.53 89.84	R21 (MH) 13.03 13.07 13.06 13.00 12.94 12.95 12.94 12.99 13.03 13.02 13.02	A23 (DES) 6.95 15.59 23.77 32.03 40.59 44.96 49.32 57.76 65.74 74.00 82.82	R23 (MM) 14.97 15.26 15.44 15.51 15.52 15.52 15.52 15.52 15.42 15.23 14.94	TE21 (C) 346.18 347.19 347.38 347.60 347.76 347.76 347.89 347.91 348.72 348.72 349.34 350.24 350.18	TE22 (C) 346.93 346.77 346.30 346.11 346.03 346.05 346.05 346.05 346.62 347.29 349.31 348.20	TE23 (C) 345.29 345.31 344.87 344.68 344.64 344.64 344.65 344.70 344.64 344.65 344.64 344.64 344.64 344.74 345.31 345.31 345.331 346.31 348.37	TE24 (C) 342.91 343.76 343.82 344.02 344.15 344.34 344.55 345.39 345.39 345.21 345.65	RMS21 (K) 0.41 0.35 0.35 0.41 0.41 0.39 0.38 0.43 0.38 0.37 0.38	RMS22 (K) 0.20 0.23 0.24 0.27 0.28 0.29 0.29 0.29 0.29 0.24 0.19	RMS23 (K) 0.30 0.32 0.32 0.35 0.35 0.36 0.37 0.39 0.40 0.37 0.30	RMS24 (K) 0.23 0.24 0.30 0.31 0.31 0.33 0.34 0.35 0.35 0.32 0.25
A21 (DE5) -0.07 10.00 17.66 29.47 39.71 44.96 50.19 60.28 69.78 79.53 85.84	R21 (XM) 13.07 13.07 13.000 12.99 12.99 12.99 12.99 12.99 12.02 13.02 13.02	A22 (DEG) 17.67 26.84 36.00 45.41 54.86 72.23 89.86 89.86	R22 (MM) 13.15 13.51 13.78 14.18 14.30 14.40 14.40 14.60 14.83 14.83	A23 (DEG) 15.59 23.77 32.03 40.59 49.32 57.74 45.74 74.00 82.82	R23 (MM) 14.97 15.24 15.51 15.52 15.52 15.52 15.52 15.52 15.52 15.52 15.42 15.23 15.42 15.23	A24 (DEG) -0.06 B.78 17.27 25.94 35.05 39.75 44.50 53.75 62.61 71.86 81.83	R24 (MN) 14.85 14.87 14.62 14.62 14.40 14.30 14.19 13.98 13.77 13.48 13.13	TÉN (C) 299.53 299.55 299.55 299.55 299.60 299.40 299.41 299.41 299.34 299.12	TNO (C) 313.72 313.69 313.53 313.72 313.72 313.54 313.54 313.39 313.51 313.45 313.16	0H4 (W/CM^2) 15.26 15.27 15.27 15.22 15.19 15.17 15.17 15.17 15.10 15.00	MS (KB/S) 1.59 1.59 1.58 1.59 1.58 1.59 1.59 1.59 1.59 1.59 1.59

TEGENA 1 FLUID TEMPERATURE DIR A

-- 171 ---**TAB.** A49

F71K43A.DAT

.

į

-

RE = 30.8 UB = 0.9 RH3 = 0.0 TEN =298.3	BE+03 78 (M/S) 00 (W/EM^ 75 (C)	PE =1 QH1 = 2) QH4 = R22 =	80.34 0.00 (W/) 15.49 (W/) 13.51 (MM)	MS CM^2) &H2 CM^2) NB) R21	= 1.59 = 0.00 = 30.42 = 13.63	(K6/S) (N/CM^2) (KW) (MM)					
A22 (DEG) -9.93 -19.63 -29.67 -39.83 -45.04 -50.16 -56.76 -66.17 -69.78 -79.60 -89.82	R22 (MM) 13.55 13.55 13.55 13.48 13.48 13.46 13.99 13.87 13.52 13.52 13.52 13.48	A24 (DES) -5.81 -15.35 -23.62 -32.11 -45.04 -49.33 -54.93 -54.93 -65.87 -74.23 -83.03	R24 (MH) 15.45 15.75 15.92 16.03 16.06 16.06 16.04 16.53 16.31 15.91 15.72 15.42	TE21 (C) 344.00 341.34 337.48 334.62 332.27 331.71 330.82 329.31 328.94 329.20 329.94 330.26	TE22 (C) 345.43 343.76 340.82 337.75 335.68 334.76 334.05 332.11 331.57 331.98 332.11 332.15	TE23 (C) 344.19 342.79 339.68 336.62 334.45 333.23 331.52 331.52 331.23 331.70 331.65 332.34	TE24 (C) 340.95 338.66 335.26 331.89 329.65 328.89 	RHS21 (K) 0.55 0.73 0.88 0.95 0.88 0.87 0.84 0.93 0.82 0.74 0.52 0.38	RHS22 (K) 0.32 0.51 0.65 0.65 0.65 0.65 0.65 0.56 0.49 0.41 0.28	RMS23 (K) 0.41 0.59 0.86 1.16 1.17 1.16 1.11 1.10 0.91 0.80 0.71 0.51	RMS24 (K) 0.53 0.69 1.22 1.24 1.25 1.27 1.28 1.14 1.02 0.79 0.47
A21 (DE5) -7.372 -26.72 -35.95 -55.95 -55.95 -50.67 -50.89 -50.84 -89.84 -89.84	R21 (MM) 13.63 14.27 14.51 14.52 14.51 15.55 15.55 15.55 15.32 15.31	A22 (DEG) -9.01 -9.63 -29.67 -39.83 -45.04 -50.16 -56.76 -66.17 -69.82 -89.82	R22 (MM) 13.55 13.55 13.32 13.48 13.48 13.48 13.47 13.46 13.87 13.87 13.52 13.52 13.48	A23 (DEB) -0.01 -17.33 -26.24 -35.33 -40.03 -44.68 -50.93 -59.63 -72.19 -82.09	R23 (NM) 15.34 15.28 15.28 15.28 14.93 14.82 14.70 15.07 14.76 13.97 13.61	A24 (DEG) -5.81 -23.62 -32.11 -40.66 -45.03 -54.93 -54.93 -52.88 -54.23 -54.23 -53.03	R24 (MM) 15.45 15.75 15.75 16.03 16.04 16.04 16.53 16.04 15.72 15.42	TEN (C) 298.87 298.86 298.78 298.78 298.77 298.84 298.77 298.72 298.64 298.64 298.54	TNO (C) 313.07 313.15 313.26 313.06 313.07 313.14 312.98 312.98 312.98 312.92 312.85	QH4 (W/CM^2) 15.49 15.46 15.46 15.50 15.50 15.45 15.45 15.45 15.49 15.49 15.52	MS (KB/S) 1.57 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

TEBENA 1 FLUID TEMPERATURE DIR B

TAB. A50

F71K43B.DAT

2

 RE
 = 31.0E+03
 PE
 =181.48

 UB
 = 0.99
 (M/S)
 EH1
 = 0.00

 EH3
 = 0.00
 (W/CM^2)
 EH4
 = 15.57

 TEN
 =298.31
 (C)
 R22
 = 13.48
M5 = 1.61 QH2 = 0.00 NB = 30.58 R21 = 15.31 (K6/S) (W/CH^2) (W/CH^2) (\/CH^2) (KW) (MM) (MM)

A22 (DE6) -89.83 -79.64 -70.17 -60.70 -50.71 -40.52 -29.91 -29.91 -20.03 -10.33 -0.36	R22 (MM) 13.48 13.55 13.52 13.52 13.51 13.49 13.54 13.54 13.54 13.54	A24. (DE6) -83.04 -74.28 -66.21 -58.20 -49.80 -45.44 -41.02 -32.32 -23.96 -15.70 -7.11	R24 (MM) 15.43 15.75 15.94 16.03 16.08 16.08 16.08 16.07 16.01 15.73 15.73	TE21 (C) 330.13 329.42 329.91 329.23 330.15 331.28 332.24 333.74 337.23 340.55 5343.41	TE22 (C) 331.95 331.73 332.52 333.27 334.23 335.13 337.25 340.35 340.35 344.84	TE23 (C) 332.25 331.50 331.16 331.92 332.47 333.35 334.32 334.07 339.43 342.04 343.62	TE24 (C) 329.27 326.95 326.86 327.23 327.50 328.61 329.51 331.30 334.71 338.11 340.42	RNS21 (K) 0.45 0.52 0.73 0.85 0.85 0.85 0.89 0.88 0.91 0.87 0.74 0.55	RMS22 (K) 0.33 0.40 0.53 0.59 0.54 0.65 0.70 0.64 0.51 0.32	RM523 (K) 0.51 0.80 0.95 1.10 1.16 1.15 1.19 1.14 0.86 0.59 0.43	RMS24 (K) 0.47 0.78 1.02 1.17 0.64 1.27 0.63 1.18 0.94 0.94 0.53	
A21 (DE5) -89.85 -72.50 -64.09 -55.15 -50.47 -45.70 -36.19 -26.95 -17.73 -8.06	R21 (MH) 15.31 15.30 15.14 14.97 14.97 14.97 14.57 14.57 14.57 13.98	A22 (DE6) -89.83 -79.64 -70.17 -60.70 -50.71 -45.52 -40.26 -29.91 -20.03 -10.33 -0.36	R22 (MM) 13.55 13.54 13.55 13.54 13.54 13.54 13.54 13.54 13.54	A23 (DE5) -82.11 -72.25 -54.38 -45.20 -40.47 -35.72 -26.45 -17.65 -9.10 -0.31	R23 (MH) 13.61 14.00 14.29 14.50 14.73 14.83 15.11 15.34 15.34	A24 (DE6) -83.04 -74.28 -66.21 -58.20 -49.80 -45.44 -41.02 -32.32 -23.96 -15.70 -7.11	R24 (MM) 15.43 15.75 15.94 15.03 16.08 16.09 16.07 16.07 15.92 15.73 15.46	TEN (C) 298.33 298.33 298.47 298.20 298.21 298.38 297.72 298.38 297.92	TND (C) 312.65 312.65 312.65 312.55 312.55 312.52 312.66 312.03 312.42 312.42 312.42 312.31	QH4 (W/CK^2 15.54 15.54 15.55 15.55 15.55 15.55 15.55 15.55 15.65	MS (K6/S) 1.61 1.60 1.60 1.60 1.60 1.60 1.60 1.60	

TEGENA 1 FLUID TEMPERATURE DIR A

— 172 — TAB. A51

.7

MS (KG/S) 1.59 1.59 1.59 1.59 1.50 1.60 1.50 1.59 1.59 1.59 1.59

F71K44A.DAT

RE = 30. UB = 0. QH3 = 0. TEN =298.	9E+03 98 (M/S) 00 (W/CM ² 99 (C)	PE = QH1 = 2) QH4 = R22 =	180.48 0.00 (W/ 15.37 (W/ 15.30 (MM	MS CM^2) QH2 CM^2) NB) R21	= 1.50 = 0.00 = 30.18 = 13.47	(KS/S) (W/CN^2) (KW) (KN)		·			
A21 (DE6) 97.85 73.99 70.24 60.58 50.53 45.43 40.23 29.98 20.01 10.27 0.21	R21 (MM) 13.47 13.57 13.26 13.26 13.50 13.47 13.46 13.47 13.50 13.51 13.52 13.51	A23 (DE6) B3.05 74.45 69.37 66.26 58.09 49.64 45.35 41.00 32.30 23.95 15.55 6.99	R23 (MM) 15.41 15.58 15.58 15.92 16.01 16.05 16.05 16.05 16.01 15.92 15.71 15.45	TE21 (C) 349.83 349.64 349.55 348.78 347.72 347.04 347.01 346.82 346.53 346.53 346.57 346.27 346.71	TE22 (C) 348.26 348.11 347.13 345.13 345.34 345.30 345.24 345.26 345.57 345.57 345.87 345.14	TE23 (C) 348.46 347.65 346.91 346.91 344.91 344.91 344.19 344.03 344.08 344.45 344.77 344.76	TE24 (C) 348.37 345.69 345.77 344.55 343.77 343.67 343.49 343.26 343.35 343.35 343.16 342.67	RMS21 (K) 0.33 0.35 0.36 0.38 0.38 0.36 0.34 0.35 0.33 0.33 0.34	RMS22 (K) 0.17 0.23 0.27 0.28 0.34 0.27 0.26 0.24 0.22 0.20 0.20 0.22	RMS23 (K) 0.29 0.34 0.39 0.38 0.40 0.38 0.36 0.34 0.32 0.31 0.28 0.31	RHS24 (K) 0.34 0.35 0.37 0.37 0.33 0.35 0.30 0.27 0.24 0.22 0.37
A21 (DES) 89.85 79.85 70.24 80.58 40.23 40.23 29.88 20.01 10.27 0.21	R21 (MM) 13.47 13.57 13.26 13.54 13.54 13.47 13.46 13.47 13.54 13.54 13.52 13.54	A22 (DEG) 87.87 81.05 75.92 72.56 63.99 54.99 50.40 45.68 36.17 26.76 7.93	R22 (MH) 15.30 15.37 15.28 15.12 14.93 14.93 14.82 14.72 14.50 14.50 14.50 13.96 13.64	A23 (DE9) 83.05 74.46 69.37 64.26 58.09 49.64 45.36 41.00 32.30 23.95 15.65 6.99	R23 (MM) 15.41 15.58 15.58 15.92 16.05 16.05 16.05 16.05 15.91 15.71 15.45	A24 (DEG) 82.11 72.45 63.31 54.26 45.01 40.38 35.49 26.42 17.65 9.05 0.19	R24 (MH) 13.60 14.01 14.27 14.27 14.27 14.71 14.90 14.90 15.11 15.32 15.32	TEN (C) 298.99 299.04 298.87 299.02 299.15 299.15 299.13 299.10 299.10 299.16 299.95 299.96	TNO (C) 313.19 313.27 313.26 313.08 313.35 313.35 313.36 313.36 313.41 313.25	QH4 (W/CM^2) 15,37 15,37 15,37 15,41 15,42 15,42 15,42 15,42 15,42 15,42 15,42 15,42	MS (K5/S) 1.50 1.57 1.57 1.57 1.50 1.60 1.60 1.57 1.57 1.57

TESENA 1 DIR B FLUID TEMPERATURE

A52 TAB.

F71K44B.DAT

RE	=	30.7E+0)3	ΡE	=1	79.85	•	MS	=	1.59	(KG/S)
U8	=	0.98	(M/S)	eht	=	0.00	(¥/CH^2)	QH2	=	0.00	(W/CM^2)
0H3	=	0.00	(W/CM^2)	₿H4	=	15.3B	(₩/CM^2)	NB	=	30.20	(KW) -
TEN	=7	297.77	(C)	R22	Ξ	13.63	(MM)	R21	Ŧ	13.51	(11)

A21 (DE6) -0.04 9.98 19.64 29.44 39.73 44.93 50.19 60.25 69.85 79.57 89.82	R21 (MM) 13.51 13.55 13.55 13.45 13.45 13.45 13.47 13.47 13.49 13.48 13.47	A23 (DE6) 5.75 23.63 31.95 40.58 44.94 49.35 57.81 55.93 74.20 83.02	R23 (MM) 15.45 15.76 15.93 16.01 16.04 16.04 16.05 15.99 15.89 15.41	TE21 (C) 344.19 345.02 345.20 345.30 345.66 345.91 346.01 346.42 347.54 348.52 348.84	TE22 (C) 344.77 344.72 344.17 343.95 344.05 344.25 344.25 344.14 344.71 345.87 346.90 347.19	TE23 (C) 343.54 343.69 343.20 342.79 342.79 342.94 343.08 343.11 343.69 344.99 346.40 347.41	TE24 (C) 341.15 341.95 342.00 341.94 342.18 342.50 342.60 343.16 344.50 345.98 347.19	RMS21 (K) 0.40 0.32 0.32 0.35 0.35 0.35 0.36 0.37 0.36 0.38 0.37 0.34 0.34	RMS22 (K) 0.20 0.18 0.21 0.24 0.25 0.26 0.28 0.28 0.28 0.29 0.26 0.19 0.22	RHS23 (K) 0.30 0.28 0.32 0.33 0.36 0.37 0.37 0.40 0.41 0.35 0.31	RHS24 (K) 0.35 0.22 0.23 0.28 0.31 0.32 0.33 0.37 0.37 0.33 0.23
A21 (DEB) -0.04 9.98 19.98 19.44 39.73 50.19 60.25 69.85 79.57 85.82	R21 (MM) 13.51 13.55 13.55 13.46 13.46 13.47 13.47 13.49 13.48 13.47	A22 (DEG) 7.67 26.58 35.78 45.22 49.95 54.69 63.70 72.23 80.81 89.85	R22 (NM) 13.63 14.00 14.27 14.49 14.70 14.80 14.92 15.09 15.23 15.29 15.30	A23 (DEG) 6.76 13.38 23.63 31.95 40.58 40.58 40.58 40.58 57.81 57.81 65.93 74.20 83.02	R23 (MM) 15.45 15.74 15.93 16.01 16.04 16.04 16.05 15.99 15.88 15.41	A24 (DEG) -0.03 8.79 17.34 26.05 35.23 39.25 44.70 53.95 62.92 72.15 82.09	R24 (MM) 15.34 15.29 15.12 14.92 14.92 14.71 14.47 14.23 13.93 13.60	TEN (C) 297.57 297.52 297.65 297.65 297.58 297.58 297.60 297.61 297.63	TNO (C) 311.86 311.79 311.91 312.07 311.82 311.82 311.82 311.92 311.92 311.93	QH4 (W/EM^2) 15.39 15.46 15.46 15.44 15.48 15.42 15.42 15.47 15.52 15.51 15.51	MS (K6/S) 1.57 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60

		780 C	377.25	377.89	378.40	378,69	379.62	379.27	379.28	378.84	378.62	378.84	379.32	379.65	379.79	379.26	379.58	379.76 379.86	319.53	379.82	379.50	379.86	380.09 380.24	380.66	380.55	380.05	379.96	379.98	379.96	379 81	379.77	379.54	379.50	379.57	379.93 379.67	379.88	379.79 379.70	379.85	380.04	380.05
		8/8 8/1	66 ⁻	86.	66.	66 6	1.00	86.	86.	66	66.	66 [.]	66. 66.	66	86 [.]	66	66.	66 [.]	66	6. 6	r 5	66	66 [.]	66.	1.00	66 [.]	66	66. 66.	86.	<u> </u>	65	6	66	66	66	6	66 - 66 -	66	66	66
		AB Na	123.90	123.09	124.38	124.19	126.28	123.34	123.62	123.76	123.71	123.52	124.37	124.42	124.22	124.66	125.09	124.20	124.19	125.16	124.26	124.47	124.90	125.61	126.22	123.38	122.91	123.45	123.55	123.72	123.57	123.44	123.98	123.63	123.80	123.82	124.08	124.39	124.58	124.69
		NB4 Lu	11.79	11.21	11.65	41.58	12.28	41.29	11.46	11.43	11.42	41.31	11.66	11.66	11.60	11.11	41.88	41.58	41.58	41.90	19.14	41.66	41.81	12.05	12.25	11.30	41.15	11.24	11.36	11.51	11.36	11.33	1 50	11.39	1.1	11.45	11.51	11.61	11.11 11.11	1.11
		NE3 La	41.05 40 84	40.79	11.22	41.16	11.84	10.87	11.03	10.14	10.99	10.95	1.23	41.24	1.11	16.11	91.19 11	11.15	11.15	11.48	1.1	11.25	41.40	11.62	41.82	40.88	40.72	10.91	10.91	10.30	10.91	10.91	11.09	40.97	11.03	11.03	41.12	11.22	41.29	41.32
A53	×	MB2 kh	- 10	60	60	60 [°] '	60 -	.10	60 [.] -	60	60	60	60	10	. 10	19.	60 ^{°-}	60 [.] -	60	- 10	11.	- 10	10	10	60.	2 2	10	60 -	60	2, 2	60	60 [°] -	60 [.] -	01	1.1	60	- ⁻ 00	. 10	60	60 [°] -
TAB.		NE I Le	41.45	41.18	11.61	11.55	12.25	41.27	11.42	11.11	11.39	11.35	11.63	41.61	41.55	11.11	41.86	41.56	11.56	41.88	11.65	11.65	41.79	12.0	12.21	11.03	41.13	11.20	11.34	11.30	11.36	11.29	8	41.36	41.42	11.0	41.51	11.62	41.68	11.72
		RBS25 K	1. 22	. 08. N	.15	22	92	9Ľ	.75	16	- 63	8	79.	- 19	08 [.]	. 18	.82	.81	2	12	58	5	1.06	1.27	1.39	1.55	1.51	1.40	1.32	1.23	1.22	1.16	1.10	1.03	35 38	3 2	6L ¥	1	Z,	12
		T C25 C	385.81 387 69	390.19	393.63	394.67	396.31	395.94	394.65	393.48	390.47	388.79	387.96	387.85	387.80	387.38	387.89	387.96	388.86	389.46	388.34	387.58	386.75	383.67	382.44	374.75	369.75	364.65	363.33	361.03	357.79	356.74	355.04	353.26	351.97	350.31	349.92	349.70	349.63	349.81
K198.DAT	ES JONS	125 ••	111.10 109 16	107.25	104.27	103.26	101.19	100.17	99.10 98.21	97.25	93.26	91.21	80.19 89.19	88.24	87.28 Rf 30	85.30	84.30	83.28	79.21	77.28	15.30	74.30	73.29	71.22	70.20	67.29	65.31	63.29 62.26	61.23	60.19 59 91	58.23	57.29	55.31	53.29	51.24	18.26	17.31	45.33	11.33	42.28
L02, 1987	TENPERATUR P FLUCTOAT	RNS23 K	.24	28	. 28	12.	23	22	.23	2.5	30	E.	75°.	30	.29	58	.26	.26 26	22.	5,5	ġ E	.32	33			2 E8	8.1		2,2	2,2	39	8	70 85	.52	5,5	16	.32	.26	.23	12
11:05 JD	2 - FLUID TRH	7C23 C	384.46 384.46	388.16 388.16	391.69	392.84	394.83	394.81	394.24	393.27	390.30	389.13	388.19	387.90	387.50	387.02	387.10	387.13	387.85	388.03	387.56	387.12	386.49 386.49	384.75	383.61	377.62	373.29	365.85	364.90	363.03 361 63	359.91	358.52	355.95	353.79	352.48	350.98	350.24	349.83	349.65	349.68
13:	TEGENA Probe 2	RHS22 L	.26	8	, e	12.	19[.12	11.	. 23	e	5	3	55	5.3	5	5	15.	38	.33	00	N.	₹3	19	98°.	1.34	1.53	1.40	1.36	1.21	1.24	1.22	1.11	86.	2,3		18.	6	Ę:	112
		7C22 C	385.13 387 08	389.46	394.25	395.54 106.53	398.05	398.03	397.25	396.06	392.17	390.59	389.38	388.77	388.45	388.01	388.14	388.05	390.22	390.56	391.18	390.47	390.00	388.26	386.28	379.70	374.72	367.21	364.28	363.49	360.18	358.81	356.22	354.71	353.05	351.14	350.66	350.02	349.85	349.75
		122 11	112.43	108.58	105.60	104.59 107.56	102.52	101.50	10.001	98.58 66 59	20.05 1.59	92.54	90.52	89.57	88.61 87 53	86.63	85.63	84.61	80.54	78.61	16 63 76 63	75.63	74.62	72.55	71.53	68.62	66.64	64° 62	52.56	50 . 52 60 54	59.56	58.62	29.95 19.95	54.62	52.57 50 56	49.59	19.61	16.66	45.66	13.61
.41 9.0 K D H/cm ² 2	1.0 W/cm ² 99 m/s 3.0	RHS24 L	.22	12.	11.	1	33	.16	.20	.22	12.	.26	22	.21	.20	50.	.20	-20	e1.	.27	32	.	19	12.	32	00. 279	.78	68	69	69. 69	22.	<u>s</u> .	7. 8	Ę	35	.22	5, 2	17	.16	.27
		1C24 C	386.60 388.58	390.45	393.28	393.96	394.83	394.28	392.89	391.59	388.62	387.56	386.97	387.07	386.98	386.94	387.46	387.77	387.66	387.62	385 64	384.85	383.75	380.65	378.72	373.03	367.95	363.96	360.59	358.45	356.63	354.81	353.46	352.38	351.11	350.01	349.63	349.60	349.69	350.20
/c=^2	7. 	BBS21 K	.39 ar			61 <u>-</u>	- 6 -	.23	.32	36.		z, s	9. S	5	.56	. 20	48	5 .	.32	.35	8. ¥	55	11.	1.02	1.20	1.4	1	1.32	1.21		1.10	1.03	6, I6,	12	15.	.25	.20	.18	19	3
= 3.07 = 318.2 (= 21.1 M	= 20.91 = 123.91 = 33481.	7C21 C	387.96	393.29	396.61	397.39	398.21	396.98	395.01	393.69	389.77	388.39	C6. 195	388.11	388.30 188.45	388.59	389.09	389.18	390.77	390.83	389 53	368.32	387.45	383.59	380.96	373.66	369.31	363.23	360.86	359.34	357.09	355.45	353.91	352.79	351.69	349.92	349.71	349.75	349.58	350.07
721 781 981	R R R	121	109.78	105.93	102.95	101.94	99, 87	98.85	96.89	95.93	16.16	89.89	87.87	86.92	85,96 84 98	83.98	82.98	81.96	77.89	75.96	13.98	72.98	71.97	69.90	68.88	65.97	63.99	60.94	16.93	19:95	56.91	55.97	53.99	51.97	19.92	16.91	45.99	10.11	43.01	96°01

		180 C 1	374.53	373.52	373.86	374.16	374.04	374,39	374.11	374.17	31.11	374.18	374.13	374.23	374.11	373.84	19.97 19.97	374.00	373.85	374.03	374.27	373 64	373.53	373.76	373.48	373.76	373.97	373.82	373.91	373.61	374.19	374.04	373.53	373.85	373.69	373.93	374.26	373,79	374 02	374.23	374.17	373.91	313.99	373.77
		08 ■/8	.98 86	8. a	86	86	8,8	88.	86	8.8	66,	86.	8 <u>.</u> 8	66 ·	66	66	66.0	r. 8	66	66.	6. 6	s B	66	96,	8 . 3	6 6	86	8.8	6.6	86.	8. a	6	66	86 [.]	6, a	66	66	8	R S	8	66.	66	88.	88
			83.82 84.04	83.83 83.83	84.43	84.46	84.68 24.75	84.99	19.18	81.88 10 10	85.25	84.95	84.98	85.20	85.43	85.31	85.45	67 D8	84.83	85.33	85.24	60.00 84 48	84.55	84.67	81.68	84.78	84.85	84.64	81.84	84.76	84.83	16.18	85.05	84.83	85.10	85.12	85.07	85.06	85.24	85.04	85.37	19.18	84.79	84.76
		YER I	41.93 42.03	41.92	42.22	42.24	42.37	42.50	42.35	42.46	42.61	42.49	12.51	12.51	42.73	42.66	42.74	35.6	12.44	42.67	42.63	12 27	12.29	42.35	42.35	42.39	42.43	42.33	12.43	42.40	42.46	12.49	12.54	42.45	42.56	12.57	42.54	42.54	47.54 19.64	12.53	42.70	42.45	42.40	42.40
		KES Lu	01.01	9, s	19	3	9	19	9 <u>.</u>	10	19	.10	9:	12	9	.10	0. S	1	19	.10	<u>e</u> :	<u> </u>	99	9	9;	9.9	1	aʻ:	19	9	9. S	22	19	10	ę:	3 =	1	1 .:	a =	19	.10	a :		1
		KH2 KN	01 00	60.		9	9.9	01.	·.10	a. :		10	9, s	a =	11,	-,10	9.9		ļļ	10	a:		91	- 10	9. S		1	a, : -		10	5	₹.	19	60 [°] .	a.:			- 10	2 F	19	10	1 .		9
A54			41.89 42.00	41.90	42.20	12.21	42.31 12.31	42.48	42.31	12.12	42.60	12.46	42.48	65 24	42.70	42.65	42.70	5 - 73 1 - 73	42.40	42.65	42.61	98 74 12 51	42.26	12.32	42.32	12.30	12.41	42.31	12.41	42.36	12.13	17 - 17 17 - 17 17 - 17	12.51	12.37	12.51	15 57	42.52	42.52	42.52 19.65	12.51	12.66	42.42	12.39	12.36
AB.		iis25 N	17. 18	. 19	<u>;</u> ;	.80	3	1.02	1.07	1.14	1.32	1.34	9.5	1 12	1.1	1.48	3	1.1 1.1	9.1	1.49	1.53	1.33	1.53	1.48	1.4	1.46	1.34	1.29	1.1	.87	8.8	e e		.76	91.5	e. 2	16.	1.07	1.20	1.31	1.39	1.51	1.52	1.61
-1		C25 B	95.32 96.07	91.01	10.18	97.20	96.96	20.02 59.65	92.76	90.69 90.69	20.00 86.88	79.69	75.06	20°E1	69.72	68.34	67.57	97.CQ	62.87	60.67	58.50	51.91	51.68	50.66	86.98	48.12 47 16	45,95	44.65	10.21	40.09	40.52	40.U¥	39.71	39.77	39.67	17.04 11 11	41.13	41.76	43.95	46.15	46.66	48.62	50.29	52.43
. DAT		+ 0 % -	11.15 3 09.17 3	01.25 3	01.27	03.27 3	02.24 3	07.10 00.18 3	99.19 3	98.22 3	97.70 J	93.27 3	91.21	80 20 3	88.24 3	87.29 3	86.31 3	50.31 3	83.29 3	81.22 3	19.22 3	6 67.11	15.30 3	74.30 3	73.30 3	12.26	70.21 3	69.22 3	61.3U J	53.29 3	52.26 52.26	50 22 J	59.22	58.26 3	57.30	20°.32	53.30 3	51.25 3	13.21	17.32 3	16.34 3	15.34 3	1. CI	12.29 3
187 11190	ALTORES CTUATIONS	52 3 I	21 12	2.5	3.5	2	5.5 5.5	. 10 11	-43	Ę:	2 2 3	3	2	19	5	.83	ភ្ន	2.5	: 2	52.	aj s	26.3	9 6	16	នុះ	£ 3	5	នុ	8,3	3	s:	5.5	12	.25	8,3	97,0	12	9	5. 3	82	8	នុខ	1 01	1.02
10702	TRNP FLOU		1.25	25	. 40 102	118	.10	.56	1.12			09.0	8,2	1 83		9.73	9.02	5.8	1.02	.92	9.62	89.9	101	2.12	1.51	1.12	94.	5.25	20.1	0.81	=:	1.54	85	0.16	80	0.23	.89	. 72			10.5	.33	1.65 8.6	.80
15:59:51	85 - FL 8 2	2 10	16 39/ 19 39/		160 CT 61	: 51 : 51	22 396		55 393	68 391	53 391 10 386	23 380	34 371	10 37	46 37	50 369	47 36	196 197 19	23 36/	55 36	32	26 35t	-re 90	36 1 6	90 351	87 349 86 349	18	87 34	80 340 340	94(53 34	170 AF	33 339	28 34(29 33	30	17 17 18	68 34	80 343	5 X 2 X	87 34	93 34	16 24 24 24 24 24 24 24 24 24 24 24 24 24	00 351
	T KGK	RNS2 L			"			 			•		-i. -			5 1.		-i - 80 e		8	9																 							`
		1C22 C	395.3 396.2	397.4	398.U	399.3	399.3	0.945 0.895	396.0	394.2	388.4	382.3	379.4	376.5	373.6	371.2	369.7	366.1	364.2	362.7	360.7	357.3	354.3	352.9	351.2	350.1	347.5	346.1	342.2	340.3	340.6	340.2	339.8	339.7	339.3	339.8	340.5	340.7	342.4	34.1	345.4	346.5	348.2	350.9
-		122 BB	112.48	108.58	105.60	104.60	103.57	101.53	100.52	99°55	96.53 96.63	94.60	92.54	51.12 51.12	89.57	88.62	87.64	89.99 5 5 5 5	84.62	82.55	80.55	18.62	76.63	75.63	74.63	73.59	71.54	70.55	66.63 66.65	64.62	63.59	62.50 61.65	60.55	59.59	58.63	57.65 Fr Fr	51.63	52.58	50.57	99.65 18.65	11.67	46.67	15.61	43.62
	.0 %/cm_2 .97 m/s	RMS24 L	11.	1	61. 52	55.	8. S	3 6	.52	9 <u>3</u> .5	8. S	E.	8.3	2.2	. 8	8.	E, I	11.	61	3	16.	8. S	r. 6	6.	16.	8.5	22	.65	2 %	.26	21	2.		.21	.25	23	3 =	.62	8.7	(S	16	1.05	1.05	1.05
بية. 11.11 11.12	198 73 11 11 11 11 11 11 11 11 11 11 11 11 11	1C24 C	395.35 395.81	396.27	396.34 395 42	395.06	394.03	392.15 391.16	388.62	386,96	385.71	375.55	372.35	371.02	367.80	365.83	364.58	363.63	360.65	358.48	356.31	353.89	350 28	349.10	347.94	345.93	344.33	343.99	342.26	339.94	340.46	340.10	339.82	340.19	340.21	340.64	342.06	343.34	345.24	347.72	349.17	350.21	350.90	354.49
		RHS21 L	.30	ត្រុ	67.	15	Ę	. 16 16	.86	- -	1.07	1.24	1.35	9.1	1.51	1.48	1.46	1.48	4 T	1.31	1.08	6.	5	E.	18.	8.3	18.	6 .	12	=	36	n, s		38.	. . .	9	. 99 99	.78	61.	6	83	6	- 6. 1	1.13
3.13 m	21.3 M 1 M 83.8 M 33283.	7C21 C	396.73 397.86	398.97	399.58 198 84	398.33	396.76	394.52	391.52	388.80	386.71 381 61	376.82	373.54	371.36	367.95	366.80	366.35	363.59	361.96	359.62	357.09	353.71	501.03 350 57	349.13	348.14	345.88	344.23	343.02	341.17 340 54	339.40	339.94	339.51	339,09	339.60	339.67	339.96	341.35	342.51	344.69	247.50	348.63	350.29	351.61	354.79
121	le n del	1 21	109.83 107 85	105.93	103.95	101.95	100.92	99.88 88.86	97.81	96.90	95.94 93 98	91.95	89.89	88.88 91 99	86.92	85.97	84.99	83.99	55.70 81 97	79.90	77.90	15.97	13.98	72.98	71.98	70.94 50 00	68.89	67.90	65.98 64 00	61.97	60.94	59.91 68.00	06.00	56.94	55.98	22°00	51.98	49.93	47.92	00°91	45.02	11.02	(3 .02	40.97

۰,

TAB. A54

15:59:57 JULOI, 1987 B190.DAT

		88 ■/\$.		'n				9	<u>,</u> 0	ņ	? ? ?	هر	ő	ņ	ņ			6 .	.	o, (.	<u>.</u>	ņ o	. . .		<i>.</i>			<u>.</u>	<u>,</u> 0	: •:			. o					: •:		, c		
		RB XV	85.06	84.99	69.48	67.69	85.48	85.41	85.42	61.08	84 95	84.77	84.79	81.74	84.69		84.44	84.01	86.39	86.27	86.57	86.21 PE 20	86.24	86.21	86.32	85.90	60.03 10 78	85.83	85.68	85.85	16 58	85.91	85.70	86.17	86.34	86.15	86.13	86.16 86.06	66.10	86.11	86.11	80.U1 86 08	86.05	85.94	86.17	86.29 86.29	86.24
		AB4 èv	 20	- 05	50	50.1	. 05	05	5, 5		, , ,		? 0?	- 02	, 1	5 5 5	50 -	- 30	05	05	- 02	- 0°	, , 9	05	05			3 0.	05	- 02		. 05	50		- 05	05	5.5	6.8	90	05	90	5 2		05	- 05	50°-	9.
		RE3 ky	42.34	12.31	42.16	12.57	42.55	42.52	12.52	12.11	12.21	42.20	42.21	42.19	12.17	cn 74	12.01	41.82	43.01	42.95	43.10	42.95	16 67	12.92	42.98	42.76	19.2	12.73	42.65	12.71	12.08	42.77	42.67	12.30	42.99	42.89	42.88	12.90	12.87	42.87	42.87	42.83 47 RG	42.84	42.79	12.91	42.95	12.94
		HH2 kn	42.70	42.66	42.48	15 .00	42.90	42.87	42.88	12.76	19.24	12.55	42.56	42.53	42.50	86.24	12.38	12.17	43.36	43.31	43.46	16.64	10.01	43.27	43.33	11.64	13.19	13.08	13.01	43.08	13.02	13.12	43.02	13.25	12.51	13.24	43.23	13.25	13.22	43.23	43.22	13.17	43.19	43.14	43.25	43.29	13.28
A5		KB1 kr	10.	.07	0.	0	6	0.	-01	20,		0	.07	6.	5	5	6	0.	.07	.07	6	10.	20	5	-01	5	5.6	10	.07	5	5.6	10	10.	- 6		-07	10.	10, 10	5	.07	.07	L0.	6	.07	6	.07	5
TAB.		RUS25 K	1.51	1.35	1.26	1 00	.92	88.	10.	8.	19.	.82	.82	.83	5.5	5.5	7 <i>0</i> .	98.	18	.85	.87		00 T	1.23	1.36	1.52	1.62	1.84	1.87	1.92	1.91	1.96	2.00	2.00	2.04	2.02	2.13	2.20	01.7	2.04	1.99	1.86	1.65	1.59	1.49	1.35	1.02
		1C25 C	396.16	397.36	398.43	00 399 23	401.33	401.20	101.41	401.19	400.51	399.855	100.77	400.73	400.73	50 TO	101 52	101.79	404.22	404.42	405.03	105.24	64. 40 40 10	103.57	101.17	401.02	398.82 306 03	392.60	387.83	383.09	11.285	379.72	377.47	375.28	373.08	372.17	369.35	365.30	26.10C	358.59	356.34	354.15 151 00	351.86	349.74	348.44	346.17 345 DK	342.75
8.DAT	·	125 	42.22	43.18	41.21	17.04	17.15	48.11	19.09	51.06	51.14 66 10	56.17	57.12	58.10	59.07	60.06 51.06	62 DB	63.14	65.19	67.13	69.07	70.05	79 DR	73.14	74.19	75.20	76.17	19.07	81.04	83.14	86.19 86.19	86.16	87.12	88.U9	10.06	91.04	93.12	95.18	98 D7	99.04	100.02	101.03	103.12	104.15	105.17	109 01	111.00
1987 B16	UCTUATIONS	BBS23 K	12	19	.21		Ē	32	30		Ę.		16	.31	<u>.</u>	5	1.	E	30	.32	9	S . 1	5. Z	1	.82	68.	36.	1.06	1.11	1.18	1.16	1.1	1.17	1.19	1.20	1.18	1.27	1.35	1.30	1.33	1.30	1.22	1.02	36	58. 18	29	2
8 · JOK29,	FLOID TRMP TRMP FL	1023 C	397.13	397.80	399.09	12.885	100.38	100.47	400.26	400.09	399.6 9	398.95	399.87	400.32	400.50	400.65	101 54	101.66	103.74	403.40	403.42	403.09	102.23	60 40	398.48	397.67	395.58	388.47	384.29	380.21	019.80 178 01	376.14	374.58	373.68	370.55	370.08	366.97	363.77	89 14E	356,58	354,60	353.26 367 60	350.27	348.41	347.45	345,72	342.84
12:20:3	BGBNA 2 - Robe 2	BUS22 K	96.	.80	69.	8 3	5	35		33	ę 2	22	5	.52	22	S. S	. 4	2	37	34	3	S, S	6	6	1.08	1.26	1	1.81	1.90	2.01	2.08	2.23	2.26	2.34	2.42	2.33	2.23	1.90	1 35	1.19	1.09	1.01	56	96	5	93	99
	₽ 4.	1C22 C	399,89	401.23	402.59	103 39	403.30	403.32	403.09	402.29	90.104	100.07	401.01	401.63	401.91	401.86	71.201	403.49	405.94	406.32	406.46	406.29	105.57	103.36	401.54	399.30	397.85	390.16	386.36	381.90	380.23	378.30	376.31	374.50	371.20	370.85	367.57	363.00	357 80	356.89	355.09	352.95	350.03	347.98	347.00	345.40	342.45
		122	43.55	44.51	15.51	10.01	48.48	19.44	50.42	52.39	1.1	20.02	58.45	59.43	01.00	61.39	17 ES	64.47	66.52	68.46	70.40	71.38	12.38	11.47	75.52	76.53	71.50	80.40	82.38	84.47	85.52 86.53	87.49	88.45	89.42	50°.06	92.37	94.45	96.51	1. 00	100.37	101.35	102.36	34.401	105.48	106.50	108.42	112.33
	7 K/cm ⁻ 2 0 K/cm ⁻ 2 6 m/ 6 5	RNS24 K	52	.83	82.	29	9	38	. 29	61	91	21	.21	.21	.19	19		21	21	.19	.19	12.	67.	61	53	2.	83	50.1	1.12	1.21	1.17	1.22	1.30	1.24	1.2.1	1.21	1.28	1.29	5	3	1.42	1.37	1.25	1.20	1.1	5	. 8
· · ·	113	7C24 C	392.54	393.91	395.39	395.65 397 89	398.80	399.18	399.81	400.15	100.33	CA. 660	400.27	100.51	100.30	100.47	82.004	400.81	403.26	402.97	404.16	103.90	103.73	02.92	402.69	400.94	399.97	394.64	389.13	387.08	384.52	379.58	378.93	376.82	374 55	373.44	371.15	367.01	361 63	360.15	358.12	356.15	353.72	351.69	349.81	347.30	343.87
124 DTC	Can'2 2	RNS21 K	1.31	1.13	66	67.	53	9	.37	5	.36	3	9	.50	6	Ę	ī 5	5	3	.37	.33	35.	8		9	51		1.39	1.59	1.73	1.80	1.94	2.03	2.12	2.22	2.17	2.25	2.17	1.79	1.50	1.34	1.15	68	85	80	59. 58	3 2
3.10 m	21.5 H/ 21.5 H/ 85.1 kH 33010.	1021 C	395.46	397.74	398.45	400.22 401 20	402.45	102.88	403.51	103.24	102.39	89.001	402.01	402.04	101.53	101.19	36 201	102.04	101.63	405.39	406.85	107.34	107.12	106.87	406.15	104.97	403.46	11.105	391.50	388.05	385.89 389 89	381.68	379.50	377.23	375 17	375.03	371.90	368.47	362.505	360.73	358.68	357.30	353.51	352.00	350.41	347.90	343.51
721 TB 1		1 21	40.90	41.86	42.89	43.89	15.83	46.79	11.11	12.61	28.10	54.85	55.80	56.78	51.15	11.90	50 JK	61.82	63.87	65.81	67.75	68.73	51.13 10.75	71.82	72.87	73.88	14.85	11.15	79.72	81,82	62.87	84.84	85.80	86.77	88.72	89.72	91.80	93.85	81.CE	97.72	98.70	11. 001	101.80	102.83	103.85	105.77	109.68

C 710 375.05 375.05 375.05 374.50 374.50 374.50 374.50 376.28 376.28 376.28 376.28 376.28 376.28 376.28 376.28 376.28 376.28 376.28 376.28 376.26 376.28 376.26 376.28 376.26 376

		DTC K	77.71.71 77.89 77.69 77.69 77.69 77.85 77.85 77.95	77.79 77.60 77.79 77.89 78.46 78.46	78.93			TBI C	298.30 298.29 298.29 298.29 298.21 298.11 298.11 298.11 298.11 296.12 296.12 296.12 296.12 296.12 296.12 296.12 296.12 296.12 297.71 297.71
		NFR kg/s	1.59 1.58 1.58 1.58 1.58 1.58 1.58 1.58		1.59			QB H/cm^2	20.75 20.67 20.67 20.61 20.61 20.61 20.65 20.66 20.57 20.56 20.56 20.56 20.56 20.56 20.57 20.56 20.56 20.57 20.56 20.57 20.57 20.56 20.57
		RKS15 K	.25 .17 .31 .33 .33 .33 .33	23 38 39 31 38 32 31 32 32 32 32 32 32 32 32 32 32 32 32 32	. 24			RUS25 K	71 71 71 71 71 71 71 71 71 71 71 71 71 7
		TC15 C	375.91 376.54 376.54 375.09 373.48 371.97 369.55 369.55 369.53	369,59 372,19 374,23 374,23 377,36 377,36	377.31			1C25 C	374.41 374.41 373.40 373.40 357.80 359.26 368.04 368.26 368.26 375.49 375.49 375.53 375.53 375.53
		115 	45.92 45.01 45.01 55.31 55.31 55.31 55.31 59.41	61.43 65.60 65.60 69.70 71.73 82 73.82	75.93			125 ED	75.67 73.59 69.40 65.41 65.23 65.116 55.07 12.59 88.68 65.112 55.07 44.79 44.79 44.79 42.69
8		715 Din	30.37 30.37 30.35 30.37 30.37 30.37 30.37 30.37	30.37 30.37 30.37 30.37 30.37 30.37	30.37			725 BB	1.73 1.73 1.73 1.73 1.73 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72
A56		RUS13 K	34 33 33 33 33 33 33		.21		• .	RĽS23 K	222223323222222222222222222222222222222
TAB.		1C13 C	374.27 375.30 375.45 374.57 372.01 372.01 370.31 369.38 369.23	368.99 369.52 370.61 372.51 373.73 375.96 375.96	376.61			7C23 C	372.62 373.36 373.37 371.77 371.77 357.90 367.54 367.79 367.54 367.54 367.54 372.09 3772.09 3772.09 3772.09 375.33
·		X13 . ED	41.89 45.06 48.08 48.08 58.08 54.28 54.28 56.34 56.34	60.40 62.47 64.57 64.57 66.64 67.67 70.70 72.79	14.90			X23 DB	71,00 74,92 74,92 74,92 66,77 66,77 66,77 66,77 66,45 55,46 55,455 55,455 55,455 55,455 55,555 55,55555555
.DAT		RBS14 K	14 09 24 25 25 23 23 20	25 28 28 28 21	.21	0. DÅT	-	RBS24 K	
.987 B260	CEATORES CL	TC14 C	375.23 375.23 374.79 373.53 372.09 372.09 370.85 369.55 369.26	369.63 371.12 372.16 374.04 376.47 376.39	375.82	1987 M26	ERATURES RL	1024 C	373.52 373.45 373.46 371.66 367.88 367.88 367.89 367.89 367.89 373.60 375.00 375.00 375.00
5 JUL08,1	FLDID TENNI	X14 DD	483,994 66,69,111 66,03,111 66,33 86,333 86,3333 86,3333 86,3333 86,3333 86,3333 86,3433 86,3433 86,35333 86,35333 86,35333 86,35333 86,35333 86,35333 86,353335 8	62.45 64.52 66.62 68.69 72.72 72.72 74.84	76.95	15 JUL08,	FLUID TEMP SUBCHANN	124 DB	74.35 74.35 66.09 66.09 66.09 65.09 55.80 55.80 55.80 55.80 55.55 81.55 51.55
07:46:35	EGENA 2 - 1 ROBE PI	714 Be	31,39 31,39 31,39 31,39 31,39 31,39 31,39	31.39 31.39 31.39 31.39 31.39 31.39 31.39	31.39	07:46:3	RCENA 2 - ROBE P2	724 DD	କୁକୁକୁକୁକୁକୁର୍ଚ୍ଚର୍ଚ୍ଚର୍ଚ୍ଚର୍ଚ୍ଚର୍ଚ୍ଚର୍ଚ
		RNS12 I	55. 56. 56. 56. 58. 58. 58. 58. 58. 58. 58. 58. 58. 58	6 6 5	.68			RBS22 K	. 1133 84 44 45 44 45 45 45 45 45 45 45 45 45 45
		1C12 C	373.43 373.43 373.14 373.19 373.29 373.29 372.98 372.98 372.98	372.51 372.52 371.55 370.52 372.49 372.69	370.97			1C22 C	315.15 316.53 316.53 314.06 314.06 358.97 368.97 368.40 368.40 368.40 374.25 377.25 377.94 377.94
3 E	.8 W/cm ² .8 W/cm ²	X12 BD	4 4 4 3 1 7 8 4 8 3 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 8 8 9 1 7 1 7 8 9 1 7 8 9 1 7 8 9 1 7 8 9 1 7 1 7 8 9 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	60.40 62.41 64.57 66.64 67 70.70 70.70	74.90	.7 K 1.	.8 H/cm^2. .8 H/cm^2.	. X22 BD	71,00 71,00 71,00 71,00 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 66,77 77 76,77 77 76,77 77 76,77 77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 77 76,77 76,77 76,77 76,77 76,77 76,77 77 76,77 77 76,777 77 77 77 77 77 77 77 77 77 77 77 77
C = 77 - 3080	4 = 20	RES11 K	220129999933 2012999993 20139999993 2013999999	1994 94 94 95 95 95 95 95 95 95 95 95 95 95 95 95	.37	c = 77 = 3280	2 = 20	RHS21 K	22 22 23 24 24 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25
10 	/cm^2 QH	1011 C	377.62 377.78 375.36 372.94 372.94 372.07 372.07 369.13 369.13	372.40 372.00 373.24 375.49 378.72 378.72	377.86	/s DT	/cm^2 QH /cm^2 QH	TC21 C	376.88 375.76 375.76 372.15 372.15 369.09 369.35 369.35 372.25 378.27 378.27 378.22 378.22 378.22 377.20
- 298.3 C	20.9 ×	III au	43.94 45.03 48.11 50.13 54.22 56.33 56.33 56.33	62.45 64.52 66.62 68.69 72.75 74.84	76.95	= 298.3 C : .98 m	= 20.9 H	X21 DB	74.35 79.16 66.09 65.09 55.78 55.78 55.78 45.55 51.65 55.88 45.55 41.57 51.555
181		111 84	29.34 29.34 29.34 29.34 29.34 29.34 29.34 29.34 29.34	29.34 29.34 29.34 29.34 29.34 29.34 29.34 29.34 29.34	29.34	ier en	QB1 QB3	121 BB	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

ſ

.

			DTC K	78.6	. 78.8	79.0	79.2	1.61	79.1	79.2	78.7	78.9	78.9	78.9	
			HFR kg/s	1.59	1.59	1.59	1.60	1.60	1.60	1.59	1.60	1.59	1.59	1.59	
			RES15 K	.33	.35	.40	.42	.43	.42	.44	.43	.42	39	.36	
			TC15 C	376.72	375.57	374.11	372.26	371.72	371.66	372.07	373.02	375.04	376.89	377.89	
4			X15 BB	50.21	51.13	53.21	55.31	57.38	59.41	61.42	63.50	65.60	67.67	68.69	
A56			715 BB	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31	29.31	
TAB.			PHS13 K	39	39	.42	.43	.43	.40	14.	.44	46	.46	.45	
			1C13 C	375.46	375.11	373.77	372.09	371.21	370.95	370,90	371.68	373.09	374.92	375.73	
			X13 BB	49.18	50.10	52.18	54.28	56.35	58.38	60.39	62.47	64.57	66.64	67,66	
261.DAT -			RBS14 K	.34	.34	. 36	. 34	.30	.30	.37	.38	.38	.36	.32	
8,1987 M		UPERATURES NNEL	TC14 C	374.26	373.37	372.24	371.19	370.89	370.83	372.00	372.93	374.90	376.52	377.21	
:01 10F0		- FLUID TE SUBCRA	X14 DE	51.23	52.15	54.23	56.33	58.40	60.43	62.44	64.52	66.62	68.69	69.71	
08:31		TEGENA 2 PROBE P1	Y 14 BB	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	30.33	
			RMS12 E	.54	-54	64	.64	.59	.67	.57	.67	.63	F9.	.56	
			TC12 C	373,58	373.57	374.43	373.15	374.27	373.91	373.99	374.24	374.25	373.85	373.61	
7 8	1 W/cm ²	1 ¥/cz^2	X12 BB	49.18	50.10	52.18	54.28	56.35	58.38	60.39	62.47	64.57	66.64	67.66	
= 32940	- 21		RES11 E	.45	.48	.58	.65	69.	69.	99.	.57	-11	.43	39	
DTC Be	cn'2 0H2	cu^2 984	1011 C	377.13	375.74	374.14	372.55	371.72	371.91	372.74	374.64	376.99	379.08	380.30	
298.5 C	21.2 1/	21.0 N	111 111	51.23	52.15	54.23	56.33	58.40	60.43	62.44	64.52	66.62	68.69	69.71	
191	E	953		28.28	28.28	28.28	28.28	28.28	28.28	28.28	28.28	28.28	28.28	28.28	

		0 181	298.50	298.60	298.51	298.54	298.57	298.60	298.69	298.87	298.93	298.95	298.64
		QB W/cm^2	21.07	21.10	21.18	21.27	21.22	21.24	21.20	21.16	21.15	21.12	21.17
		RKS25 K	.81	.81	.83	.84	.83	.85	.87	.87	.85	. 84	.82
		7C25 C	374.61	373.79	372.18	370.75	369.73	369.63	370.64	371.37	373.24	375.21	376.18
		X25 BB	68.28	67.41	65.38	63.29	61.16	59.10	57.12	55.07	52.98	50.87	49.E3
		725 BB	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.60	2.59	2.60	2.60
		RHS23 K	. 33	.35	.35	.37	.35	.33	.33	.37	.40	. 39	.39
		1C23 C	373.66	373.01	. 371.85	370.65	369.62	368.96	369.29	369.78	371.24	372.86	373.85
		X23 De	69.61	68.74	66.71	64.62	62.49	60.43	58.45	56.40	54.31	52.20	51.16
H261.DAT	S	RBS24 K	.33	. 32	. 33	.30	.26	.29	.36	.35	.36	.35	.32
08,1987	EKPERATORE Annel	1C24 C	371.72	371.26	370.31	369.27	368.88	369.20	370.05	371.27	373.25	374.68	375.51
1:07 JOL		X24 DB	66.96	66.09	64.06	61.97	59.84	57.78	55.80	53.75	51,66	49.55	48.51
08:3	TEGENA 2 PROBE P2	72 4 De	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.27	1.26	1.27	1.27
		RHS22 K	.21	.25	34	11	53	.65	.65	63	15	13	38
		1C22 C	378.09	376.97	375.20	373 34	371.68	370.57	370.53	371.28	373.10	376.10	376.62
3.7 K	90. .1 N/cm ² .1 N/cm ²	X22 BB	69.61	68.74	66.71	64 62	62.49	60.43	58.45	56.40	54.31	52.20	51.16
	575 1 1 278 1 1 1 278	RHS21 K	.35	.37	11	15	. 90	62	65	11	55		.26
ā.	/s Ke /cm^2 QB /cm^2 QB	1C21 C	375.40	374.30	372.65	371 29	370.45	370.94	372.00	373.78	376.59	378.40	379.71
: 298.5 C	21.2 8 21.2 8 21.0 8	X21 BB	66.36	66.09	64.06	61.97	59.84	57.78	55.80	53.75	51.66	49.55	48.51
181		121 BB	3.93	3.93	3.93	5 63	66	3.93	66	3.53	3.92	1 93	3.93

٥

TAB. A56b

)

08:31:07 JUL08,1987 M261.DAT.

<u>_</u>

	DTC K	79.64 78.20 77.81 78.09	78.03	77.69		2	TBI C	298.80 298.86 299.08 299.01 298.74	298.36 298.29 296.27
	HFR kg/s	1.58	1.58	1.58			QB H/ce ⁻ 2	21.40 20.82 20.72 20.68	20.73 20.74 20.67
	RNS15 K	37 56 56	8 8 8 S	.43			RUS25 K	6 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	82 82
	1C15 C	377.03 375.41 372.05 372.05	371.48 371.78 373.07	375.13			TC25 C	374.96 373.27 371.23 370.45 369.62	371.64 372.96 373.32
	X15 [°]	52.24 53.20 55.31 57.37	59.41 61.43 63.50	65.60 66.64			X25, BB	65.80 65.38 63.29 61.16 59.10	55.08 52.98 52.47
	Y15 BB	28.28 28.28 28.28 28.28	28.28 28.28 28.28	28.28			725 BB	3.59 3.50 3.50 5.50 5.50 5.50 5.50 5.50 5.50	3.59
	RUS13 K	. 45 . 49 . 52	51 -52 -52	52			RNS23 K	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	41
•	TC13 C	376.36 374.58 373.10 371.31	370.70 370.26 371.09	372.25 373.75			1C23 C	373.98 372.22 370.81 368.62 368.62	369.20 370.37 370.53
	X13 - BB	51.21 52.17 54.28 56.34	58.38 60.40 62.47	64.57 65.61			X23 BB	67.13 66.71 62.49 50.43 50.43	56.41 54.31 53.80
	RBS14 K	4 4 9 6 4 4 9 7 9 9 7 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8 8	.43	62.DAT		RĽS24 K	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13
ER&TORES EL	TC14 C	374.35 372.92 371.45 370.75	370.37 370.93 372.62	374.21 374.92	,1987 112	PER&TURES NEL	1024 C	371.88 370.59 369.29 368.69 368.69	371.11 371.11 372.64 372.64
FLUID TERP Subceann	\$14 •	53.26 54.22 56.33 58.39	60.43 62.45 64.52	66.62 67.66	56 JUL08	FLUID TEN SUBCEAN	X24 DD	64,48 64,66 61.97 59,84 78	53.76 51.66 51.15
RCENA 2 - ROBS P1	714	29.30 29.30 29.30 29.30	29.30 29.30 29.30	29.30 29.30	08:57:	TEGENA 2 - PROBE F2	724 EE	2.2128	2.27
-	RUS12 K	55 55 55	19 63	99 63			RES22 R		
	TC12 C	374.63 373.79 373.67 374.20	373.01 372.38 372.89	371.91 372.45			7C22 C	378.51 376.86 374.63 371.96 371.96 371.08	372.03 372.03 373.51 374.28
4 W/cm ² 2 4 W/cm ² 2	X12 Dia	51.21 52.17 54.28 56.34	58.38 60.40 62.47	64.57 65.61	3	4 W/cm^2 4 W/cm^2	X22 BD	67.13 66.71 64.62 62.49 60.43	56.41 56.41 54.31 53.80
= 33089 = 21. = 21.	RMS11 K	.50 .58 .77 .90	.86 .76 .59	.40	: 33089	21	RUS21 K	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	32 46
s Re cs^2 QH2 cs^2 QH4	7C11 C	377.41 375.63 373.83 371.89	371.68 372.76 374.66	376.89 378.05	s Be	(cn 2 09)	7021 ° C	375.18 374.06 371.94 371.15 371.18	373. 23 373. 73 376. 23 377. 23
.99 B/ 21.5 H/ 21.3 H/	III aa	53.26 54.22 56.33 58.33	60.43 62.45 64.52	66.62 67.66	298.8 C	21.5 8	X21 DD	64,48 61,06 59,84 784 784	53.76 53.76 51.66 51.15
081 083 1	111 aa	27.25 27.25 27.25 27.25	27.25 27.25 27.25	27.25 27.25	181 = 18	0H3	T21 .	288888 8888 77777	4.93 4.93 4.93

TAB. A56c

08:57:56 JULO8,1987 M262.DAT

DTC = 79.6 K

TBI = 298.8 C

•

— 178 —

			DIC DIC	78.14 78.14 78.53 78.53 78.55 78.55 78.55	:	181 C	298.29 298.29 298.18 298.17 298.17 298.47			DTC I	78.33 77.92 78.43 78.43 76.29		LEI C	
			HFR Lg/s	1.59 1.59 1.58 1.58 1.59		QB W/ce^2	20.94 20.93 20.93 20.93 20.94 20.94 20.85			KFR Łg∕δ	1.59 1.59 1.58 1.59		QP W/ce^2	20.55 20.55 20.56 20.56
			RUSI5 L	84 212 26 212 26		RUS25 E	91 10 11 11 10 10 10 10 10 10 10 10 10 10			RUS15 L	61 82 82 82		5525 E	ngaga 1991
			1015 C	375.23 374.26 372.70 371.79 373.11 374.99 375.83		1C25 C	372.92 372.14 370.67 370.14 371.20 372.11 372.11			1C15 C	376.43 374.66 373.53 374.43 374.43 376.33		1025 C	376.24 376.24 372.31 372.31
			X15 BB	54.33 55.30 59.41 61.43 64.56	÷.,	125 BB	64.26 63.29 61.16 57.12 55.07 54.05	9		215 BB	55.39 57.37 59.41 61.43 63.50		125 EE	61.16 61.16 61.16 61.16 61.16 86.16
A56d			Y15 BB	27.30 27.30 27.30 27.30 27.30 27.30 27.30		725 NB	4.62 4.62 4.62 4.62 4.62 4.62 4.62	A56		115 88	26.37 26.35 26.37 26.37 26.37		72: 72:	89.5 89.5 89.5 89.5 89.5 89.5 89.5 89.5
TAB.			RUS13 L	51 55 55 55 65 71 71 58		RES23 E	** 55 56 54 55 54 54 55 54 54	TAB.		RNS13 L	59 94 15		ersea K	**************************************
			7C13 C	374.51 373.43 371.91 371.20 372.20 373.21		TC23 C	372.01 371.22 369.65 368.68 369.07 369.94 370.59			1013 - C	375.45 373.45 372.43 372.67 372.67		1C23 C	572.22 571.06 569.98 576.49 270.45
			113 [.]	53.30 54.27 56.34 58.38 60.40 63.55		I23 De	65.59 64.62 62.49 60.44 56.40 55.38			113 Be	54.36 56.34 58.38 50.40 62.47		123 ED	62.43 62.43 62.45 52.45 57.45
63. DAT			RUS14 L	55 55 55 54 55 54 55 54	263. DAT	RHS24 E	44 22 22 23 24 4 2 22 23 24 4 2 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	64. DAT		RKS14 L	14 89 70 12	264.DAT	ES24 K	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
.1987 112	PERATORES	NEL .	1014 C	372.81 371.75 371.13 370.98 372.02 373.49 373.49	1, 1987 B' 1, 1987 B' 1988Atures	1C24 C	370.40 369.02 369.28 368.78 370.70 372.14 372.90	,1987 H2	PERATORES NEL	1014 C	373.47 372.32 372.01 373.41 375.81	8,1987 B IPERATURES INEL	1524 C	370.23 570.18 352.95 51.07 51.07 51.72
24 JUL08	ST CICLI	SUBCEAN		55.35 56.32 58.39 60.43 61.43 64.52 64.52 65.58	24 JULO	124	62.94 61.97 57.79 55.80 53.75 53.75	11 JULOB	FLUID TRU Subcean	111	56.41 58.39 60.43 62.45 64.52	:11 JOLA - FLEID FE SUBCEAL	124 De	00 ♥ 05 03 03 P 26 P 16 17 C 35 P 16 17 C 35 P 16 13 17
09:21:	TEGENA 2 -	PROBE P1	714 BB	28.32 28.32 28.32 28.32 28.32 28.32 28.32 28.32	09:21 TEGENA 2 DECAR 27	724	3.29 3.29 3.29 3.29 3.29 3.29	69:39:	PROBE P1	an Alf	27.39 27.38 27.39 27.39 27.39	09:39 TEGENA 2 PROBE P2	724 P27	ಹುತುಹುತುತು ಬಿಬ್ಬೆ ಬೆಬ್ಬೆ ದಾದುದಾದಾದ
		-	RUS12 I	55 55 55 53 53 53 53 53 53 53 53 53 53 5	E	RUS22 E	.28 .40 .72 .65 .68		-	RBS12 L	58 53 53 53 54 54 55		PUS22 K	80000
	-		1 C12 C	372.79 372.04 373.01 372.87 372.21 372.21 372.47		1C22 C	376.84 375.66 373.33 371.85 372.05 372.69 374.62			TC12 C	372.36 372.85 370.75 373.37 372.01		1022 C	
11	3. .9 k/cs ² 2 9 k/cs ² 2	7 87/4 6.	112 11	53.30 54.27 56.34 58.38 58.38 58.38 58.47 63.53	.1 E 3. 9 K/ce ⁻ 2 9 K/ce ⁻ 2	I22 BB	65.59 64.62 60.44 56.45 56.40 55.38	. j I	8. .9 K/cm ² .9 K/cm ²	112 BB	54.36 56.34 58.38 60.40 62.47		11 727	88 88 88 87 88 80 8
. 16	- 3291		RMS11 K	73 87 1.11 88 60 .46	C = 78 = 3291 4 = 20	RBS21 I	64 95 33 33 33 33 34 34 34 34 34 34 34 34 34	C = 78	2 = 3284	RUS11 L	.94 1.29 1.31 .93 .55	C = 3284 = 2284	PBS21 K	90. 1 00 1 1 00
10	(s Re (cn ⁻² 08)	7 40	1011 C	375.49 374.29 372.92 374.73 374.73 376.75 378.32	/6 /6 78 /ce ⁻ 2 48 /ce ⁻ 2 48	1C21 C	373.68 372.31 371.82 371.87 373.91 375.88 377.29	5	/s /ke /cs 2 48 /cs 2 48	1011 C	376.17 374.56 374.50 376.07 378.91	/s 71 /cr 2 98 /cr 2 98	1021 C	
298.3 C	21.0 K	¥ C.N7		55.35 56.32 58.33 58.33 58.33 58.33 61.52 64.52 65.58	298.3 C 99-B/ 21.0-H/ 20.5 H/	I21 BB	62.94 61.97 51.79 55.80 53.75 52.73	= 298.5 C			56.41 58.39 60.43 61.52 64.52	= 298.5 C = 298 m = 21.6 M	121 EE	995595 995595 995595
IEL	89		711 8	26.27 26.27 26.27 26.27 26.27 26.27 26.27	181 08 08	721 13	5.95 5.95 5.95 5.95 5.95 5.95	TBI	081 081 083	111	25.34 25.33 25.34 25.34	191 191	721 127	

— 179 —

0	5		8.5 E			19:60	10f 10:5	108.1567	2 265. DAT			TAB.	A56	4				
s re cr^2 082 cr^2 084	~ 4		20.9 W/ce 7			TECENA 2 PROBE F1	- FLEID 1 SUBCE	TENPERATUPA Jannel	S					1				
TC11 R	84 M	1133	112 BB	TC12 C	RNS12 K	FEK .		7C14 C	P#S14 K	II3 BB	7013 C	RUS 13 I	915 BB	115 Be	TC15 C	RES15 K	HFR Hg/8	DTC K
377.61 377.16 375.94 379.41 379.74		1.21 1.40 1.39 .94 .69	55.40 56.34 58.33 58.33 58.33 58.33 58.33 58.34 50.40 61.44	373.13 372.16 372.65 372.38 372.22	55 54 55 59	26.43 26.43 26.43 26.43 26.43	57.45 58.39 60.43 62.45 63.49	374.26 373.68 373.52 374.63 374.63	1.02 1.10 1.06 1.06 .82	55.40 56.34 58.38 58.38 58.38 58.38 58.40 51.44	376.01 375.16 373.63 373.26 374.92	.75 .88 1.14 1.13 1.00	25.41 25.41 25.41 25.41 25.41	56.43 57.37 59.41 61.43 62.47	377.34 375.67 375.18 376.16 377.60	.79 .93 .1.10 .75	1.59 1.59 1.59 1.59	78.27 78.05 78.31 78.09 78.58
DTC Re	0	= 7.	8.3 E 99.			09:53	:01 JOL	08,1967	¥265.DÅT		:				:			
18°2 984	4 13		0.9 K/cm ² 0.9 K/cm ²			TECENA 2 PROBE P2	- FLOID T SOBCEL	ELPERSTORE SNNEL	S.									
1C21 C		RES21 K	I 22 BB	7C22 C	RMS22 E	724 BB	124 BB	TC24 C	RBS24 K	123 M	TC23 C	RBS23 K	725 BB	I25 BB	TC25 C	R <u>u</u> s25 I	QB M/cm ⁻ 2	1BI C
375.77 375.27 376.07 377.80 379.07		1.17	63.44 62.49 60.43 57.43	378.68 377.61 375.51 374.79 375.86	47 70 1.21 1.32	2244	60.79 59.84 55.80 54.78	372.00 370.86 371.22 372.74 374.59	92 93 14 61	63.44 62.49 60.43 57.43 57.43	373.28 373.10 371.52 371.83 371.83	. 67 . 79 1.04 1.04	6.77 6.77 6.77 6.77	62.11 61.18 59.10 57.12 56.10	374.83 373.98 373.11 373.93 375.18	1,18 1,31 1,35 1,35	20.89 20.89 20.92 20.68 21.04	298.50 298.50 298.42 298.52 298.55 298.55
PT Re		= 3310	8.8 K 31.			-10:13	:18 - JOLC	98,1987 b	8266. DAT			TAB	A56	- mi				Τ
n'2 0H2 n'2 0H4	C1	- 2	1.2 N/ch ² 1.2 N/ch ²			TEGENA 2 PPOBE P1	- FLOID TE SUBCEA	ENPERATORES Innel	s									
1011 C		RNS11 K	X12 BD	1012 C	RUS12 K	714 BB	X14 BB	7C14 C	RUS14 I	113 BB	1013 C	RNS13 K	715 BB	115 Ba	1 015 C	RES15 E	KFR kg/s	DTC L
379,28 378,72 379,35 379,99 381,43		1.44 1.61 1.48 1.20 .88	56.43 57.37 58.38 59.39 60.40	373.59 373.35 372.84 373.11 372.45	83. 85. 81. 81. 81. 81. 81. 81. 81. 81. 81. 81	25.44 25.43 25.43 25.43 25.43	58.48 59.42 60.43 61.44 62.45	375.77 375.50 375.91 375.91 377.62	1.23 1.35 1.26 1.08	56.43 57.37 58.38 59.39 60.40	377.51 376.39 375.97 375.03 375.03	.94 1.18 1.32 1.29	24.42 24.41 24.41 24.41 24.41	57.46 58.40 59.41 60.42 61.43	378.87 378.43 378.35 378.29 378.94		1.60 1.60 1.60 1.60	78.78 79.43 79.08 78.03 78.76
PTC Re		= 78	¥8 .			10:13:1	8 JOLO8	,1987 - K2	166. DAT									
-2 9H2 -2 9H4			.2 W/cm ² 2 .2 W/cm ² 2			PROBE P2	FLOID TEN Subceen	PERATURES Kel										
C21		RES21 K	122 BB	1C22 C	RĽŠ22 K	724, BB	124 BB	TC24 C	RUS24 K	123 BB	1C23 C	RMS23 K	925 Bir	I25 EB	TC25 C	RES25 K	QB W/cm^2	181 C
77.65 79.32 79.32 79.68		1.23 1.30 1.16 .64	62.37 61.44 60.44 58.45 58.45	380.06 379.15 377.85 377.68 377.68	.65 .95 .180 .180	6.51 6.51 6.51 6.51	59,72 58,79 56,79 56,79 55,80	372.74 372.49 374.56 375.21	¥1.1 11.1 29:	62.37 61.44 59.43 59.43 58.45	274.62 374.62 373.55 373.29 374.11	. 89 1.23 1.25 1.25	49. 49. 49. 49. 49. 49. 49. 49. 49. 49.	61.04 60.11 59.11 57.12	376.67 376.73 375.91 375.52 377.31	3.42 1.62 1.62 1.43	21.20 21.31 21.29 21.25 21.25	298.65 298.67 298.69 298.69 298.89 298.87

--- 180 ----