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Abstract

In geodesy, two-point functions appear as covariance functions, convolution kernels like the Green functions,
transfer functions of the gravity field functionals and filter kernels. Knowledge of their structure both in the spatial
and the spectral domains opens vistas not only for understanding their behaviour, but also enabling their design.
Here, we develop the two-point functions in terms of spherical harmonic functions and discuss their structure. We
identify homogeneity and isotropy as the two key structural properties of the two-point functions that provide a
solid basis for their classification.

1 Introduction

A two-point function b(θ,λ,θ′,λ′) is one which takes
two positions as its input, one a calculation point

(θ,λ), also known as evaluation point and the other
a data point (θ′,λ′), also known as source point.
Geodesy is replete with such functions, for exam-
ple, the Stokes and Vening Meinesz kernels (Heiska-
nen and Moritz, 1967), filters (Pellinen, 1966; Jekeli,
1981), covariance functions (Rummel and Schwarz,
1977), Green functions (Farrell, 1972), Meissl scheme
(Meissl, 1971), upward and downward continuation
operators (Heiskanen and Moritz, 1967). Many of
these functions are similar in their mathematical form
in that the function values depend only on the dis-
tance between the calculation and data points, and such
functions are commonly referred to as (homogeneous)
isotropic functions. The spectral structure and utility
of other types of two-point functions were explored

variance functions for collocation. Later, Jekeli (1981)
introduced ideas of filtering with the use of isotropic
and anisotropic two-point weight functions. It is only
the advent of the Gravity Recovery and Climate Ex-
periment (GRACE) mission and the need for filtering
its data has brought to the fore a variety of two-point
functions (Han et al., 2005; Swenson and Wahr, 2006;
Kusche, 2007; Klees et al., 2008). Given the impor-
tance of the GRACE mission for climate research, and
the absolute necessity for filtering GRACE data, pro-
vided the right impetus to explore the characteristics
of two-point functions. In this contribution, we will
discuss the structural characteristics of the two-point
functions as they directly influence their spherical har-
monic spectrum.
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2 Two-point functions

A general two-point function b(·, ·) in terms of a spher-
ical harmonic transform pair is given as (e. g., Var-
shalovich et al. 1988)

b(θ,λ,θ′,λ′) = ∑
l,m

Ylm(θ,λ)∑
n,k

Bnk
lm Y ∗nk(θ

′,λ′),

(2.1a)

Bnk
lm =

1
16π2

∫∫

Ω,Ω′
b(θ,λ,θ′,λ′) Y ∗lm(θ,λ)×

Ynk(θ′,λ′)dΩdΩ′. (2.1b)

Ylm(θ,λ) =

⎧⎪⎨⎪⎩
Nlm Plm(cosθ) eimλ , m≥ 0

(−1)m Y ∗l,−m(θ,λ) , m < 0

Nlm = (−1)m

√
(2l +1)

(l−m)!
(l +m)!

∑
l,m

=
∞

∑
l=0

l

∑
m=−l

dΩ = sinθdθdλ

where Ylm(·) are the 4π-normalized complex surface
spherical harmonics of degree l and order m; (θ,λ)∈Ω
and (θ′,λ′) ∈ Ω′ are the coordinates of the calcula-
tion and data points, respectively; Bnk

lm are the spherical
harmonic coefficients of the two-point function b(·, ·);
Plm(cosθ) are the associated Legendre functions nor-
malized using the factor Nlm.

An alternative representation of (2.1a) can be obtained
by taking the calculation point as the pole of the sphere
Ω′ (cf. Figure 2.1). This accounts for a rotation of
the coordinate system of the sphere Ω′ and thereby
allowing for the data points on the rotated sphere to
be viewed as points at certain spherical distances and

azimuths from the calculation point. The rotation of
the coordinate system also corresponds to the rotation
of the spherical harmonics, which is accomplished by
the use of Wigner-D functions, for example (Edmonds,
1960).

Ynq(ψ,π−A) = ∑
k

Dnqk(λ,θ,0) Ynk(θ′,λ′) (2.2a)

Ynk(θ′,λ′) = ∑
q

Dnkq(0,−θ,−λ) Ynq(ψ,π−A)

(2.2b)

= ∑
q

D∗nkq(0,θ,λ) Ynq(ψ,π−A) (2.2c)

where Dnkq(0,−θ,−λ) are the 4π-normalized Wigner-
D symbols with the three Euler rotation angles (α = 0,
β = −θ, γ = −λ), ψ is the spherical distance and A is
the azimuth between (θ, λ) and (θ′,λ′). The Wigner-D
symbol is defined as

Dnkq(α,β,γ) = e−ikγ dnkq(β) e−iqα (2.3)

For a complete overview on different normalization
conventions and the methods of computation used for
the Wigner-D functions, consult (Sneeuw, 1991).

Inserting (2.2b) into (2.1a) gives

b(θ,λ,ψ,A) = ∑
l,m

Ylm(θ,λ)∑
n,k

Bnk
lm ×

∑
q

D∗nkq(0,−θ,−λ)Y ∗nq(ψ,π−A)

(2.4a)

= ∑
l,m

Ylm(θ,λ)∑
n,q

Y ∗nq(ψ,π−A) ×

∑
k

Bnk
lm D∗nkq(0,−θ,−λ) (2.4b)

Such an expression was already presented to the
geodetic community by Rummel and Schwarz (1977),
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Figure 2.1: Alternative representation of the two-point function.
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3 Structural properties of two-point functions

where they use expression (2.4a) to compute inhomo-
geneous covariance functions for use in collocation
studies. Also, Martinec and Pěč (1985) provide two
more expressions for representing the two-point func-
tion, which arise by the use of bipolar spherical har-

monics and Clebsch-Gordan coefficients as used in the
quantum mechanics and astronomy communities. In
this document the expressions and methods of (Rum-
mel and Schwarz, 1977) will be followed.

3 Structural properties of

two-point functions

The convenience of the representation shown in (2.4a)
is that all the points on the sphere can be referred
and/or visualized as points at certain spherical dis-
tances and azimuths. This representation also allows
an intuitive understanding of the behaviour of the two-
point function in terms of the distribution of the func-
tion values over the whole sphere.

The values of the two-point function depends on the
four arguments – the coordinates of the calculation
point and the (spherical) distance and direction (az-
imuth) of the data point with respect to the calcula-
tion point. In the most general case the function value
changes with every calculation point given the same
values for the ψ and A. In the other extreme, the
two-point function only depends on only one argu-
ment. For example, the Stokes function depends only
on the spherical distance between the calculation and
data points, but not on the calculation point and the az-
imuth.

The independence of the two-point function with re-
spect to its calculation point gives rise to an important
property called homogeneity. A two-point function is
homogeneous if the distribution of the function values
over the domain of the data points (ψ,A) remain the
same for all the calculation points (θ,λ). For example,
a homogeneous covariance function would mean that
all the calculation points on the sphere have the same
covariance function. Homogeneous functions are also
referred to as translation invariant functions.

Another important property of the two-point functions
comes from the directional invariance of the function
values. Here, the functions values are independent of
the azimuth, and therefore, they depend only on the
spherical distance. Thus, they are axially symmetric

around the calculation point, and this property is called
isotropy.
It must be evident from the description of the structural
properties that homogeneity/inhomogeneity is a global

property as it concerns all the calculation points, while
isotropy/anisotropy is a local property since it con-
cerns the axial symmetry at a given calculation point.

4 Classifying two-point functions

The properties homogeneity and isotropy can be used
to classify the two-point functions in terms of their spa-
tial structure. It needs to be ascertained whether such
specific spatial structures also correspond to specific
spectral structures. One way of identifying the spec-
tral structures is by taking the average of the two-point
functions with respect to specific arguments that make
them homogeneous and/or isotropic.

Homogeneity⇒ 1
4π

∫

Ω

b(θ,λ,ψ,A)dΩ = b(ψ,A)

(4.1)

Isotropy⇒ 1
2π

∫

A

b(θ,λ,ψ,A)dA = b(θ,λ,ψ)

(4.2)

It must be mentioned here that although in the homo-
geneous case (4.1) there is no explicit reference to the
calculation point (θ,λ), it is embedded in the spheri-
cal distance (ψ) and the azimuth (A) values. Hence, it
is still a two-point function. In the following sections,
we will use these two integrals to identify the spec-
tra of the various two-point functions (cf. Table 3.1).
Also, we will only show the important results. For
a complete discussion and detailed derivations of the
different classes of the two-point functions, the reader
is referred to (Rummel and Schwarz, 1977; Devaraju,
2015).
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Table 3.1: The different classes of two-point functions, their spherical harmonic expansion and spectral structure. Notice that only the
anisotropic filters are dependent on the spherical harmonic order, while the isotropic filters are all degree dependent. Also, in
the anisotropic case the inhomogeneity is manifest in the structural changes of the spectrum, while in the isotropic case it is manifest
in the change of coefficient values depending on the location.

Anisotropic Isotropic

In
ho

m
og

en
eo

us

L
oc

at
io

n
de

pe
nd

en
t b(θ,λ,ψ,A) = ∑

l,m
Ylm(θ,λ) ∑

n,k
Y ∗nk(θ

′,λ′)Bnk
lm b(θ,λ,ψ) = ∑

l
(2l +1)Pl(cosψ)Bl(θ,λ)

l,m

n,k

(θ,λ)

l

n

L
at

itu
de

de
pe

nd
en

t b(θ,ψ,A) = ∑
l,m

Ylm(θ,λ) ∑
n

Bnm
lm Ynm(θ′,λ′) b(θ,ψ) = ∑

l
(2l +1)Pl(cosψ)Bl(θ)

l,m

n,m

θ

l

n

H
om

og
en

eo
us b(ψ,A) = ∑

l,m
Y ∗lm(ψ,π−A)Blm b(ψ) = ∑

l
(2l +1)Pl(cosψ)Bl

(θ,λ)

l

n

l

n

4.1 Homogeneous functions

Convolution (in the classical sense) is a standard oper-
ation in signal processing, and homogeneous functions
are at the heart of convolution. Convolution can be per-
formed either using an isotropic or an anisotropic ker-
nel. Jekeli (1981) refers to the convolutions with ho-
mogeneous isotropic kernels as convolution of the first

kind and those with homogeneous anisotropic kernels
as convolution of the second kind. Apart from convo-
lution, homogeneous functions have implications for
covariance functions. In the sequel, the general form of
the isotropic and anisotropic homogeneous functions
will be described and their implications discussed.

Isotropic

The two-point homogeneous isotropic functions on the
sphere depend only on the spherical distance ψ be-

tween the calculation and the data points. They are
the simplest class of two-point functions defined on
the sphere, also the most ubiquitous form. Rummel
and Schwarz (1977) provide a detailed derivation of
the homogeneous isotropic two-point function derived
from the general two-point function. Here, only the fi-
nal formulae of the spherical harmonic transform pair
are given.

b(ψ) =
1

8π2

∫

Ω

∫

A

b(θ,λ,ψ,A)dΩdA (4.3a)

=
∞

∑
l=0

Pl(cosψ)
l

∑
m=−l

Blm
lm (4.3b)

=
∞

∑
l=0

Pl(cosψ)(2l +1)Bl (4.3c)

Bl =
1
2

π∫

0

b(ψ)Pl(cosψ)sinψdψ (4.3d)
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4 Classifying two-point functions

where b(ψ) is the homogeneous isotropic function,
Pl(cosψ) are the unnormalized Legendre polynomials
of degree l and Bl is the spectrum of b(ψ). One of
the most important use of the homogeneous isotropic
functions is in the description of the power spectrum
of the gravity field as devised by Kaula (1967).

C(ψ) = ∑
l

σ2
l Pl(cosψ) (4.4a)

where σ2
l = ∑

m
|Klm|2 (4.4b)

in which Klm are the 4π-normalized complex spherical
harmonic coefficients of a given gravity field model.
Comparing (4.3a) and (4.4a), it is evident that the
power spectrum that is routinely computed is indeed a
global average of the covariance function. It tells us
about the average behaviour of the signal covariance
of the given gravity field model.

Anisotropic

The two-point homogeneous anisotropic functions de-
pend both on the spherical distance ψ and the azimuth
A. The values of the function can be derived by aver-
aging the general two-point function over all the calcu-
lation points as follows:

b(ψ,A) =
1

4π

∫

Ω

b(θ,λ,ψ,A) dΩ

= ∑
l,m

Blm Ylm(ψ,π−A) (4.5)

Since co-latitude and longitude are the spherical dis-
tance and direction from the pole to any other point
on the sphere, the spectrum of the homogeneous
anisotropic function resembles that of a function de-
fined on the sphere. This function has very limited (so
far) use in geodesy.

4.2 Inhomogeneous functions

Inhomogeneity in its strict sense results in a two-point
function that at every calculation point has a unique
field of values b(·,ψ,A). In a less restricted sense the
two-point function is inhomogeneous only with respect
to either the latitude or the longitude. In the following
we will discuss only the strict and latitude dependent
inhomogeneities.

Isotropic

Inhomogeneous isotropic functions are generated by
integrating the general two-point kernel over the az-
imuth.

b(θ,λ,ψ) =
1

2π

2π∫

0

b(θ,λ,ψ,A) dA (4.6a)

= ∑
l,m

Ylm(θ,λ) ∑
n,k

Bnk
lm Y ∗nk(θ,λ) P̄n(cosψ)

(4.6b)

= ∑
n

Bn(θ,λ) P̄n(cosψ) (4.6c)

Equation (4.6c) is the spectrum for a location depen-
dent isotropic function. The inhomogeneity of the two-
point function in (4.6a) can be restricted only to the
latitude and this results in

b(θ,ψ) =
1

2π

2π∫

0

b(θ,λ,ψ) dλ (4.7a)

= ∑
l,m,n

P̄lm(cosθ)Bnm
lm P̄nm(cosθ) P̄n(cosψ)

(4.7b)

= ∑
n

Bn(θ) P̄n(cosψ) (4.7c)

Although such functions, to the best of our knowledge,
have not been used in geodesy, they can be employed
for describing location dependent Green functions.

Anisotropic

The general two-point function is a completely in-
homogeneous and completely anisotropic kernel (i.e.,
asymmetric). Such a function can be imagined to have
a unique field f (ψ,A) defined at each calculation point
(θ,λ). Although Rummel and Schwarz (1977) indicate
that the most general of such inhomogeneous func-
tions will not be physically meaningful, Klees et al.
(2008) describe an optimal filter for the GRACE data
that is completely inhomogeneous and anisotropic (and
asymmetric). This is an example of the general two-
point function. As in the isotropic case, anisotropic
two-point functions can also be made only latitude de-
pendent. Again, it is accomplished by averaging the
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general two-point function over the longitudes of the
calculation points.

b(θ,ψ,A) =
1

2π

2π∫

0

b(θ,λ,ψ,A) dλ (4.8a)

= ∑
l,m,n

P̄lm(cosθ) Bnm
lm Y ∗nm(θ

′,Δλ) (4.8b)

= ∑
l,m

Ylm(θ,λ) ∑
n

Bnm
lm Y ∗nm(θ

′,λ′) (4.8c)

The spectrum of the latitude dependent two-point func-
tion (4.8c) has a clear order-leading block-diagonal
structure, because it depends on only one order m in-
stead of two m and k (cf. Table 3.1). The latitude
dependent anisotropic two-point functions are an im-
portant class of functions for satellite gravimetry, since
the covariance derived from the satellite data have
an order-leading block diagonal structure (Colombo,
1986; Sneeuw, 2000). For this reason, the most effec-
tive filters for the noisy GRACE data have block diag-
onal structures (Han et al., 2005; Swenson and Wahr,
2006; Kusche, 2007) (cf. Figure 4.1).
A peculiarity of the latitude dependent two-point
functions is that they are all isotropic at the poles
(θ = {0,π}) due to convergence (cf. Figure 4.1).

Mathematically, it means that the spherical harmonics
become order independent at the poles, and hence, the
coefficients become degree dependent.

b(0,ψ,A) = ∑
l,n,m

Ylm(0,λ)Bnm
lm Ynm(θ′,λ′)

= ∑
l,n,m

√
2l +1δm0 eimλ Bnm

lm Ynm(θ′,λ′)

= ∑
l,n

√
2l +1

√
2n+1Bn0

l0 Pn(cosθ′)

An interesting case develops when the off-diagonal el-
ements of each of the m blocks of the spectrum of the
two-point function become zero. Then the spectrum of
the two-point function takes the following form:

b(θ,ψ,A) = ∑
l,m

Ylm(θ,λ) Blm
lm Y ∗lm(θ

′,λ′) (4.9a)

and the area under the function at each calculation
point is
∫

Ω′
b(θ,ψ,A) dΩ′ = ∑

l,m
Ylm(θ,λ) Blm

lm

∫

Ω′
Y ∗lm(θ

′,λ′) dΩ′

= 4π ∑
l,m

Ylm(θ,λ) Blm
lm δl0 δm0

= 4π B00
00 (4.9b)
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Figure 4.1: Spatial plots of the two of the most commonly used filter kernels in GRACE community – the destriping filter cascaded with a
Gaussian filter and the regularization filter – shown here for three different latitudes. Both the filter kernels are anisotropic, but
inhomogeneous only in the latitude-direction.
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5 Summary

which implies that the area under the two-point func-
tion is independent of the latitude. The underlying
meaning is that no matter which latitude the function
is located, the area under the function must be a con-
stant. This is an important criterion for designing such
latitude dependent anisotropic two-point functions.

5 Summary

The two-point function on the sphere is a ubiquitous
function in geodesy. It manifests as a transfer func-
tion of gravity functionals, as a filter kernel, as a Green
function and also as a covariance function. Here, we
identified two structural properties of the two-point
functions, namely, homogeneity and isotropy, which
allowed us to devise a classification scheme. The clas-
sification turned out to be meaningful as each struc-
tural class had its unique spectrum. We also indicated
two classes that play an important role in geodesy, viz.
homogeneous isotropic functions and latitude depen-
dent anisotropic functions. In the classification, we
did not, however, explore directional two-point func-
tions b(·,A) and longitude dependent two-point func-
tions b(λ, ·).
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