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Abstract

In this paper, we study the spectral response of Stokes’s integral, which is determined by its modification and
truncation. Two spectrally modified Stokes’s kernel functions are selected and compared to the unmodified Stokes’s
kernel in terms of the spectral transfer coefficient effectiveness. Stokes’s integral is truncated at four spherical cap
sizes with spherical radii ψ0 = 1◦,3◦,6◦,9◦. The results suggest that the unmodified Stokes’s integral is spectrally
unstable when being arbitrarily truncated, and a modification to Stokes‘s kernel is required for a smooth geoid
model.

1 Introduction

This paper, part of a special commemorative publica-
tion, is a tribute in honor to Dr. Bernhard Heck who
is retiring at the end of March 2018 after a long and
successful career in geodesy at Karlsruhe Institute of
Technology in Germany. It addresses the topic on the
modification of Stoke’s integral. Heck and Grüninger
(1987) studied the combined modification of Stokes’s
integral. Their study is frequently cited, and their idea
is still applied in today’s studies (e.g. Featherstone et
al., 1998; Sjöberg and Shafiei Joud, 2017). This pa-
per starts with the same generalization of the modified
Stokes’s kernel function as Heck and Grüninger (1987,
Eq. (1.3)), but focuses on characterizing the spectral
response of Stokes’s kernel and its two spectral modi-
fications.

The goal of the Stokes’s kernel modification is to min-
imize the geoid error. There have been several papers
and reports on this topic. Jekeli (1980) provided a com-
prehensive study of the modifications by Moloden-

skii et al. (1962), Wong and Gore (1969), and Meissl
(1971a,b), etc. in terms of the RMS error. These clas-
sical modifications are deterministic in principle and
provide basis for further improvement. Vaníček and
Kleusberg (1987) re-formulated Molodenskii’s modifi-
cation. Heck and Grüninger (1987) proposed the com-
bined Wong and Gore and Meissl modification, and ex-
amined four types of errors. Featherstone et al. (1998)
formulated the combined Vaníček and Kleusberg and
Meissl modification. Huang and Véronneau (2013)
improved Wong and Gore’s modification by introduc-
ing a transition low-degree band. Considering errors
in gravity data and the combination of satellite grav-
ity models and terrestrial gravity data, Wenzel (1982)
and Sjöberg (1984) suggested stochastic modifications
based on the least-squares principle. However these
stochastic modifications require error degree variances
for terrestrial gravity data, which are often approxi-
mated by the error variance model.

Data obtained from the dedicated satellite gravimetric
missions (CHAMP, GRACE, GOCE) have contributed
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significantly to determining the long wavelength com-
ponents of the geoid model (> 200 km). It is critical
to use the optimum technique for combining satellite
and terrestrial gravity data. For regional geoid mod-
elling, the combination is commonly realized by the
remove-compute-restore Stokes scheme and the modi-
fication to the Stokes kernel. In particular, the Stokes’s
integration is only carried out regionally within a lim-
ited spherical cap around the computational point. The
choice of cap size and modification method is mostly
empirical or largely based on numerical test and search
for the best fit between the resulting geoid model and
external validation data such as GNSS-Levelling data
on benchmarks. There is a lack of understanding on
the spectral response of Stokes’s integral to the mod-
ification and truncation supporting that choice. In the
context of this study, the spectral response is character-
ized by a set of spherical harmonic degree-dependent
transfer coefficients for the corresponding components
of the terrestrial gravity data, which will be defined in
Section 2.

Vaníček and Featherstone (1998) suggested the spher-
ical harmonic representation of the truncated Stokes’s
integral, which is useful for studying the spectral re-
sponse of Stokes’s integral to the modification and
truncation. They also spectrally compared Stokes’s,
Wong and Gore’s, and Vaníček and Kleusberg’s ker-
nels for a fixed truncation cap size.

In this study, we explore the spectral stability of the un-
modified and modified Stokes’s integrals and how the
integration cap size affects the spectral response.

Section 2 gives mathematical formulae. Section 3 pro-
vides and discusses numerical results of the spectral
response. Section 4 summaries this paper.

2 Mathematical formulae

The kernel function of Stokes’s integral (hereafter the
Stokes kernel in short form) can be written as (Heiska-
nen and Moritz, 1967)

S(ψ) =
∞

∑
n=2

2n+1
n−1

Pn(cosψ) (2.1)

where Pn is Legendre’s polynomial of spherical har-
monic degree n; ψ is the angular distance between the
computational point and an integration surface element
on a sphere.

The modified Stokes kernel can be generalized as
(Wenzel, 1982; Heck and Grüninger, 1987; Huang and
Véronneau, 2013, Appendix A)

SM(ψ) =
∞

∑
n=0

αn(ψ0)
2n+1
n−1

Pn(cosψ) (2.2)

where αn is the spherical harmonic transfer coefficient
of degree n.

In the remove-compute-restore (RCR) Stokes scheme,
the gravity anomaly synthesized from a selected global
geopotential model (GGM) is first removed from the
terrestrial gravity anomaly giving the gravity anomaly
residual δg. Then the geoid residual δN is computed
from the gravity residual by the Stokes integration over
a truncated zone which is often defined as a spherical
cap centered at the computational point. Finally, the
geoid height synthesized from GGM NGGM is restored.
The RCR Stokes scheme can be mathematically ex-
pressed as

N(Ω) = NGGM(Ω)+δN(Ω) (2.3)

δN(Ω) =
R

4πγ

∫
(Ω′0)

SM(ψ)δg(Ω′)dΩ′ (2.4)

where γ is the normal gravity. Ω′0 stands for the trunca-
tion zone. Following Vaníček and Featherstone (1998,
Eq. (11)), the modified and truncated Stokes‘s integral
in Equation (2.4) can be generally expressed in a spher-
ical harmonic series as

δN(Ω) =
∞

∑
n=0

βnδNn (2.5)

where δNn is the geoid residual component of degree
n. βn is the corresponding effective spherical harmonic
transfer coefficient which can be given by

βM
n (ψ) = αM

n (ψ0)− n−1
2

QM
n (ψ0) . (2.6)

QM
n is called the truncation coefficient (Molodenskii et

al., 1962; Heiskanen and Moritz, 1967):

QM
n (ψ0) =

∫ π

ψ0

SM(ψ)Pn(cosψ)cosψdψ . (2.7)

In this study, the truncation coefficients for the Stokes
and VK kernels are computed by a FORTRAN pro-
gram by Martinec (1996).
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3 Numerical examples

Equations (2.6) and (2.7) give the transformation be-
tween αn and βn. The coefficient αn is derived by ei-
ther/both minimizing the truncation error, or/and mak-
ing the spectral combination of GGM and terrestrial
gravity data; while the coefficient βn represents weight
which is effectively applied to the corresponding com-
ponent of gravity anomaly residual. Therefore the ker-
nel modification and truncation to Stokes‘s integral
jointly determine the combination method of GGM
and the terrestrial gravity data.

In this study, we select the Stokes kernel and two de-
terministic modifications to the kernel to characterize
their spectral response when the Stokes’s integral is
truncated to the spherical cap with a radius ψ0. For
the Stokes kernel αn = 1, i.e. the transfer coefficient
has the full weight across the whole spectrum.

For the degree-banded (DB) Stokes kernel, the transfer
coefficient is defined as (Huang and Véronneau, 2005)

αDB
n =

⎧⎪⎨⎪⎩
0 n < L+1
1 L < n < mT G +1
0 n > mT G

(2.8)

where L represents the modification degree; mT G is the
maximum degree of the DB kernel.

For Vaníček and Kleusberg (1987) (VK’s) modifica-
tion, the transfer coefficient can be written as

αV K
n (ψ0) =

{
− n−1

2 tn(ψ0) n < L+1
1 n > L

(2.9)

where tn is VK’s modified kernel coefficient of de-
gree n.

3 Numerical examples

Figure 3.1 shows the transfer coefficients αn for the
three kernels. They represent weights on the spherical
harmonic components of the gravity anomaly residual
if ψ0 = 180◦. Differences among the three kernels are
in the low degree band from degree 2 to L. The Stokes
kernel has a constant weight of 1, while the DB kernel
defines them as 0. The VK kernel becomes mathemat-
ically undefined in this case.
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Figure 3.1: The spherical harmonic transfer coefficients of the three
Stokes kernels. For the DB kernel, L = 90; mT G = 5400.
For the VK kernel, the modification degree L = 90 with
the four different cap radii.

Figures 3.2-3.5 show the effective transfer coefficients
βn when Stokes‘s integral is limited to the spherical
cap size defined by ψ0. These coefficients are the most
unstable for the Stokes kernel. They distort an individ-
ual geoid component by more than 50% at the maxi-
mum, even though the sum of the distortions tends to
be much smaller due to the cancellation by the oscil-
lation of coefficients with respect to the unit weight.
The increase of cap size does not lower the amplitude
of the distortion per degree when enhancing the fre-
quency of oscillation with respect to degree. The sum
of distortions is equal to the truncation error with an
opposite sign. The use of the RCR scheme can sig-
nificantly reduce the truncation error when an accurate
and high-degree GGM is used in the remove step mak-
ing the magnitude of gravity anomaly residual smaller.
Nevertheless, the instability of these coefficients may
render a ringing distortion in the resulting geoid model
that is dependent of the complexity of gravity field. A
spatial modification to the Stokes kernel is required to
eliminate the distortion by smoothing the transition of
the kernel to zero at the cap edge, and the truncation
error is accordingly derived (Meissl, 1971a,b).

The effective transfer coefficients βn for the DK ker-
nel are relatively more stable than those for the Stokes
kernel, but can still introduce 10% distortion per de-
gree at the maximum. Similar to the Stokes kernel, the
increase of cap size does not significantly lower the
amplitude of distortion when enhancing the frequency
of oscillation. However the difference is that the dis-
tortion consists of two parts. One is the sum of dis-
tortion above degree L which is equal to the truncation
error with an opposite sign. The other is the distortion
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below degree L + 1 which is considered as the low-
degree spectral leakage error. The latter is caused by
the spectral discontinuity of the DB kernel from de-
gree L to L+1. The truncation error can be minimized
by Meissl’s modification (Heck and Grüninger, 1987)
while the leakage error can be stabilized by introduc-
ing a spectrally smooth transition of the transfer coef-
ficients from degree L+ 1 to a lower degree (Huang
and Véronneau, 2013). Furthermore, the increase of
the cap size fades the low-degree leakage error making
the DB kernel approximate the high-pass filter function
more closely.

The VK kernel is designed to minimize the truncation
error. As expected, its effective transfer coefficients
βn are the most stable among the three kernels. On
one hand, these coefficients cause the least distortion
above degree L, consequently the smallest truncation
error. With the increase of cap size, these coefficients
approach to the desired unit value reducing the trunca-
tion error to a few millimeters. Furthermore, these co-
efficients show the most stable transition below degree
L+ 1 indicating the smoothest combination of GGM
and terrestrial gravity data. On the other hand, it in-
troduces greater errors than the DB kernel when the
gravity anomaly residual contains the low-degree sys-
tematic errors as shown in the North American gravity
data (Huang et al., 2008). The increase of cap size
leads less modification to the Stokes kernel as shown
in Figure 3.1, consequently more contamination from
the systematic errors. Considering that the VK ker-
nel is aiming at minimizing the truncation error only,
it performs well towards its goal. A further improve-
ment is a Meissl-modified VK kernel which has been
formulated by Featherstone et al. (1998).
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Figure 3.2: The spherical harmonic effective transfer coefficients of
the three Stokes kernels with ψ0 = 1◦.
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Figure 3.3: Same as Figure 3.2 with ψ0 = 3◦.
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Figure 3.4: Same as Figure 3.2 with ψ0 = 6◦.
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Figure 3.5: Same as Figure 3.2 with ψ0 = 9◦.

4 Summary and discussion

This study numerically analyzed the spectral response
of Stokes’s integral to the modification of its kernel
function and the truncation of integration domain. The
results suggest that the unmodified Stokes’s integral is
spectrally unstable when being truncated to a spheri-
cal cap. The degree-banded and Vaníček and Kleus-
berg’s modifications are spectrally more stable, there-
fore more suitable for the geoid modelling. The choice
between them depends on the type of dominant error
in terrestrial gravity data. The former can filter out
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most of the low-degree systematic error enabling satel-
lite global geopotential model to constrain the low-
degree geoid components but causes the truncation er-
ror which is significant enough to be accounted for.
The latter can be greatly affected by the systematic er-
ror in the gravity data but causes the truncation error
at the mm level. A potential improvement on the latter
is modifying a narrower low band from degree L− u

to L. Huang and Véronneau (2013) applied a cosine
modification to the narrower band. It will be worth-
while to study if the latter modification can be applied
to the narrower band so that the new modification al-
lows an effective high-pass filtering while minimizing
the truncation error.
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