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Abstract

In global gravity forward modelling the tesseroid is commonly used as elementary mass element. However, for-
mulas for the gravitational potential and its derivatives currently suffer from numerical problems when evaluating
in its close proximity. Based on the subdivision of a tesseroid in smaller rectangular prisms, this study examines
the gravitational field in the close proximity of a tesseroid including its faces, edges, vertices and interior and
quantifies approximation errors when replaced by a single rectangular prism. Results show that approximation
errors can exceed 100 μGal when placing the computation point at the vertex of a 30′′ × 30′′ × 10 km tesseroid
but considerably reduce for smaller tesseroids and when placing the computation point at the tesseroid’s centre top
face. While this study confirms that the prism is a suitable mass element to model masses in close proximity of the
evaluation point it also opens further research questions.

1 Introduction

Gravity field modelling frequently requires the calcu-
lation of gravitational effects induced by given masses
(e.g. Heiskanen and Moritz, 1967). In space-domain
this is usually done through the application of numer-
ical integration techniques or replacement of the mass
distribution by an envelope of regularly shaped mass
elements such as point masses, prisms or tesseroids.
For this approach, approximation errors depend on
how well the real mass distribution is expressed by the
discrete mass elements.

While local mass distributions may be modelled in
planar approximation using rectangular prisms (here-
after called prisms) for regional and global applica-
tions the curvature of the Earth has to be considered. In
this case a spherical or ellipsoidal volume element e.g.
tesseroid (also called spherical or ellipsoidal prism) to-
gether with constant or variable mass density, can be
considered as a natural mass element (e.g. Anderson,

1976; Grüninger, 1990; Heck and Seitz, 2007). How-
ever, as pointed out by e.g. Heck and Seitz (2007), for
the tesseroid, no closed formula solutions for the grav-
itational potential and its derivatives exist.

To mitigate this problem, solutions have been pro-
posed based on Taylor series expansions of the respec-
tive integral kernels in spherical (e.g. Heck and Seitz,
2007; Wild-Pfeiffer, 2008; Deng et al., 2016) or Carte-
sian (e.g. Grombein et al., 2013) coordinates. It has
been demonstrated that these solutions, termed here
in general as tesseroid formulas, provide accurate and
numerically efficient estimates when the computation
point is located some distance away from the source
masses, e.g. the tesseroid (Grombein et al., 2013).
For computation points located in close proximity of
a tesseroid, on its faces, edges or vertices or the in-
terior the evaluation of the tesseroid formulas shows
significant numerical problems, e.g. the near area
problem. The mitigation of these problems require
some alternate modelling such as numerical integration
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(e.g. Wild-Pfeiffer, 2008; Roussel et al., 2015; Uieda
et al., 2016), the use of different mass elements such as
prisms (e.g. Heck and Seitz, 2007) and/or subdivision
of the tesseroid (e.g. Heck and Seitz, 2007; Grombein
et al., 2013). In this regard the prism can provide a
suitable replacement when evaluating directly on the
topographic surface even in spherical or ellipsoidal ap-
proximation (e.g. Kuhn et al., 2009; Hirt et al., 2016).

Several studies have examined approximation errors
when replacing a tesseroid by a mass-equal prism
of identical vertical extension (e.g. Anderson, 1976;
Grüninger, 1990; Kuhn, 2000; Heck and Seitz, 2007;
Wild-Pfeiffer, 2008). Apart from some selected eval-
uation points only, none has yet attempted to examine
the entire gravitational field in the very close proxim-
ity of a tesseroid, the space where either the use of
tesseroid formulas lead to numerical problems or nu-
merical integration techniques become increasingly in-
tensive (e.g. Ku, 1977; Wild-Pfeiffer, 2008; Roussel et
al., 2015; Uieda et al., 2016). Based on the concept of
subdividing a tesseroid in smaller prisms, this study in-
tends to examine the gravitational field generated by a
tesseroid in its very close proximity including its faces,
edges, vertices and interior. Particular focus will be on
approximation errors in gravitational attraction when
replacing a tesseroid by a mass-equal prism.

2 Methodology

2.1 Approximation of a tesseroid by a prism

The term tesseroid has been introduced by Anderson
(1976) describing a spherical (or ellipsoidal) volume
element. In spherical approximation it is bounded by
the respective surface pairs related to the geographic
longitudes λ1 and λ2, latitudes φ1 and φ1 and radii R1

and R2 (cf. Figure 2.1). In this study the tesseroid is
approximated by a prism following the basic idea in-
troduced by Anderson (1976). Hereby the tesseroid
is approximated such that the prism (i) has the same
volume, (ii) is aligned with the axes of the topocen-
tric coordinate system x′, y′, z′ and (iii) has an identical
vertical extension , e.g., ΔH = R2−R1 = Δz. Here the
axes x′, y′, z′ are aligned with the north, east and radial
directions through the tesseroid’s geometric centre Q0,
respectively (cf. Figure 2.1 and 2.2, and point nota-

tions used therein). The geometric centre is defined as
λ0 =

λ1+λ2
2 , φ0 =

φ1+φ2
2 , R0 =

R1+R2
2 .
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Figure 2.1: A tesseroid in spherical approximation.

Based on the above approximation, the prism, in com-
parison to the tesseroid, has a different geometry and
as such a different mass distribution. This change
is exemplified in Figure 2.2 illustrating a cross sec-
tional view (along the meridian through point Q or Q0)
of a tesseroid (ABCD) approximated by a mass-equal
prism (A′B′C′D′). Shaded in grey are the “wedge-like”
masses that are displaced.
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Figure 2.2: Approximation of a tesseroid by a prism shown as cross
section along the meridian through Q.

Here the position of the prism is chosen so that its
geometric centre is identical to that of the tesseroid.
This implies that there are no mass displacements at
the centre of the tesseroid’s top face (point Q) where
often the computation point is located. This partic-
ular choice, however, leads to a slight separation be-
tween the centroids of the tesseroid and prism. Based
on the equivalence of mass and vertical extension, the
horizontal dimension of the prism expressed along the
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local north-south (x′) and east-west (y′) directions are
given as (e.g. Anderson, 1976)

Δx = 2Dφ = RΔφ (2.1)

Δy = 2Dλ = RC cosφ0Δλ (2.2)

with the mean radius R = R0 and Δλ = λ2−λ1, Δφ =

φ2 − φ1. Anderson (1976) points out that in Eq. 2.2
the radius of the centroid RC can safely be replaced by
R leading to a first-order approximation of the mass
(Heck and Seitz, 2007). As an example, the relative
approximation error is ≈ 1.2 10−7 for the volume of a
tesseroid with Δλ = Δφ = 5′ and ΔH = 10 km.

Based on the geometric relations in Figure 2.2 dis-
tances dsi and dhi(i = 1,2), expressing geometric dif-
ferences between tesseroid and prism, are given as

ds1 = Dφ−R1 tanα, ds2 = R2 tanα−Dφ (2.3)

dhi = Ri

(
1− cosα

cosα

)
, i = 1,2 . (2.4)

Further the dimensions of the “wedge-like” masses are
characterised by Dφ (cf. Eq. 2.1) and

δH =
ds1

tanα
and δR =

ds2

sinα
−dh2 . (2.5)

In order to provide some quantification of the displaced
masses at the upper edge of the tesseroid (e.g. point B),
Table 2.1 lists the distances Dφ, ds2, dh2, and δR for se-
lected horizontal dimensions (DEM resolutions) and a
tesseroid height of ΔH = 10 km.

Table 2.1: Distances Dφ, ds2, dh2, and δR at the upper edge of a
tesseroid with a horizontal dimension Δλ×Δφ and height
of 10 km centred at the equator (e.g. φ0 = 0o). Mean Earth
radius is R = 6,378,130 m. Units in [m].

Δλ×Δφ Dφ ds2 dh2 δR

5′ ×5′ 4,638.312 3.637 1.688 4,999.438
30′′ ×30′′ 463.831 0.364 0.017 4,999.994
3′′ ×3′′ 46.383 0.036 <0.001 5,000.000
1′′ ×1′′ 15.461 0.012 <0.001 5,000.000

Results in Table 2.1 show that the displaced masses can
be considerable for tesseroids with a horizontal dimen-
sion of 30′′ × 30′′ or larger and become very small or
negligible for smaller dimensions.

2.2 Gravitational attraction of a tesseroid

Unlike for other elementary mass elements (e.g. point
mass or prism) no closed analytical formulas can be
provided for the gravitational potential and its deriva-
tives for a tesseroid as elliptic integrals need to be
solved (Heck and Seitz, 2007). As outlined in the
introduction, solution strategies based on Taylor se-
ries expansions lead to numerical problems when the
computation point is located in close proximity of the
tesseroid (Heck and Seitz, 2007). Therefore, as this is
the area of interest here, an alternative technique has to
be used to derive reference values for the gravitational
effects.

In this study the method of subdividing the tesseroid
horizontally and vertically into nλ × nφ × nH smaller
mass elements is used where nλ, nφ and nH indi-
cate the number of subdivisions in longitude, latitude
and radial directions, respectively. This is a common
method to improve gravity calculations in close prox-
imity of the source masses (e.g. Forsberg, 1984; Heck
and Seitz, 2007; Grombein et al., 2013). Following
this approach the original tesseroid is approximated by
smaller tesseroids which in this study are further re-
placed by mass-equal prisms (cf. Section 2.1).

The use of prisms has the advantage that the respec-
tive formulas provide precise numerical values for the
gravitational potential and first derivatives at any loca-
tion including its faces, edges, vertices or interior (cf.
Nagy et al., 2000, 2002). Here, the subdivision is it-
eratively increased as long as the difference between
two subdivision steps falls below a given threshold ε
(e.g. ε < 1 μGal). While this criterion is rather sim-
ple it serves the purpose of obtaining reference val-
ues. More sophisticated criteria to stop the iteration
(based on point masses) are provided by, e.g., Uieda
et al. (2016) and cited references therein.

In order to numerically demonstrate the convergence
of the subdivision procedure using prisms, Figure 2.3
shows the differences in gravitational attraction δgz (in
radial direction) between subsequent subdivision steps
for selected evaluation points at the tesseroid’s top
face. In all instances the procedure seems to numer-
ically converge, e.g. differences get gradually smaller.
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Figure 2.3: Differences in gravitational attraction δgz between sub-
sequent subdivisions (horizontal and vertical) of a 30′′ ×
30′′ ×10 km tesseroid. The iteration has been stopped at
ε = 10−10 mGal (10−15 ms−2).

While the test above only reveals that the procedure
numerically converges to some value it does not guar-
antee that it converges to the correct value. In order to
test the latter the same procedure is applied to model
δgz of a spherical shell, e.g. for each tesseroid form-
ing the complete spherical shell the same subdivision
procedure is applied. Results shown in Table 2.2 for
various horizontal resolutions clearly demonstrate that
increased subdivision (e.g. smaller threshold ε) consid-
erably reduces the absolute and relative errors, e.g. in-
dicating that the procedure converges towards the cor-
rect value, at least within the given precision levels.

Table 2.2: Absolute (upper value) and relative (lower value) errors
in gravitational attraction δgz of a spherical shell (R =
6,378,130 m, ΔH = 10 km). Errors are the differences
between the analytical solution and result of the subdivi-
sion procedure. Evaluation is on the shell’s top surface.
Units of absolute errors in [μGal].

Δλ×Δφ n/a(1) 1 mGal(2)1 μGal(2) 1 nGal(2)

1◦ ×1◦ 6,925.742 705.349 54.012 4.404
3.1e-3 3.2e-4 2.4e-5 2.0e-6

15′ ×15′ 751.638 39.870 13.393 1.606
3.4e-4 1.8e-5 6.0e-6 7.2e-7

5′ ×5′ -107.991 -6.972 -5.182 -1.088
4.8e-5 3.1e-6 2.3e-6 4.5e-7

(1) No subdivision. (2) Each tesseroid forming the complete

shell is subdivided by at least 3×3×3 elements with further

subdivisions applied as required to reach the indicated

threshold levels ε.

2.3 Gravitational attraction of a prism

As outlined in Section 2.2 this study uses prisms to
derive the gravitational effect of a tesseroid through
subdivision (cf. Section 2.2) as well as to replace the

original tesseroid (cf. Section 2.1). Formulas to de-
rive the gravitational potential and its derivatives for a
prism are well-known and can be found in e.g. Mader
(1951), Nagy (1966) and Nagy et al. (2000, 2002).
Here the numerically more stable formulas given by
e.g. Grüninger (1990), Kuhn (2000) and Heck and
Seitz (2007) are used and hereafter referred to as prism
formulas.
Using the prism formulas the gravitational attraction
at the computation point P (e.g. gravity vector com-
ponents δg′x, δg′y, δg′z) can directly be derived in the
topographic coordinate system (x′, y′, z′) aligned with
the prism edges (cf. Figure 2.4).
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Figure 2.4: Gravitational attraction δgz of a prism in spherical ap-
proximation.

However, in spherical or ellipsoidal approximation an
additional transformation needs to be applied to obtain
the gravitational attraction aligned with the axes of the
topocentric coordinate system (x, y, z) at P (cf. Fig-
ure 2.4). This can be done through a rotation matrix
relating the base vectors of the two topocentric coordi-
nate systems via the base vectors of the geocentric co-
ordinate system (X , Y , Z), (cf. Grüninger, 1990; Kuhn,
2000; Heck and Seitz, 2007).

3 Numerical study

This section provides an insight into the gravitational
field of a tesseroid and its approximation by a mass-
equal prism. Specific focus is on the gravitational at-
traction in radial direction δgz, evaluated in the very
close proximity of the tesseroid. In order to avoid
numerical problems of the tesseroid formulas, refer-
ence values for δgz are obtained by iterative subdi-
vision as outlined in Section 2.2. Approximation er-
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rors are derived by comparison of the reference values
with δgz, obtained when replacing the tesseroid by a
mass-equal prism (cf. Section 2.1) without using any
subdivision. All numerical tests are done in spherical
approximation using R = 6,378,137 m, mean density
ρ = 2670 kg m−3 and Newton’s gravitational constant
G = 6.672 · 10−11m3 kg−1s−2. Further, the respective
geometrical centres of the tesseroids used are located
at λ0 = φ0 = 0o and R0 = R.

3.1 Approximation errors at

selected locations

Before studying the gravitational field in close proxim-
ity of the tesseroid approximation errors are derived at
the following two locations:

(a) At the centre of the tesseroid’s top face (cf. point
Q in Figure 2.1).

(b) At the north-eastern vertex of the tesseroid (cf.
point V in Figure 2.1).

While point Q can be considered as a commonly used
evaluation point on the topographic surface (also ex-
amined by Heck and Seitz (2007) and Grombein et
al. (2013) , point V provides an example for a location

close to major mass displacements (cf. Figure 2.2).
Therefore, larger errors can be expected at the latter
location. Tables 3.1 and 3.2 list the respective ap-
proximation errors in relation to horizontal and vertical
tesseroid dimensions commonly used to model source
masses close to the computation point.

The results show that the approximation errors at Q are
relatively small reaching magnitudes above the μGal-
level for the largest height of 10 km only. A maximum
error of 30 μGal (relative 5.410−4) is obtained for
the largest tesseroid dimension of 30′′ × 30′′ × 10 km.
These relatively low approximation errors are due to
the fact that the bulk of the displaced masses are some
distance away from the computation point. However,
this is not anymore the case when the computation
point is either located at an edge or vertex as can be
seen by considerably larger approximation errors in
Table 3.2. Now the approximation error is mostly
above the μGal-level and smaller only for the small-
est tesseroid dimensions considered. For the largest
tesseroid dimension of 30′′ ×30′′ ×10 km the approx-
imation error is now 109 μGal (relative 4.0 10−3).
Overall, it can be noticed that most approximation er-

rors (absolute and relative) are at least one order of
magnitude higher when evaluating at the vertex of the
tesseroid rather than at the centre top face.

Table 3.1: Absolute (upper values) and relative (lower values) ap-
proximation errors in gravitational attraction δgz at the
centre of the tesseroid’s top face (cf. point Q). Units of
the absolute approximation errors in [μGal].

Δλ×Δφ ΔH ΔH ΔH

= 100 m = 1 km = 10 km

30′′ ×30′′ 0.300 0.116 30.583
2.9e-5 2.6e-6 5.4e-4

5′′ ×5′′ 0.003 0.406 6.928
5.0e-7 4.3e-5 7.2e-4

1′′ ×1′′ 0.005 0.124 1.461
2.5e-6 6.4e-5 7.5e-4

Table 3.2: Same as Table 3.1 but at the upper north-eastern vertex of
the tesseroid (cf. point V ).

Δλ×Δφ ΔH ΔH ΔH

= 100 m = 1 km = 10 km

30′′ ×30′′ 2.218 11.052 109.100
8.3e-4 6.6e-4 4.04e-3

5′′ ×5′′ 0.228 2.218 19.936
1.1e-4 5.0e-4 4.1e-3

1′′ ×1′′ 0.050 0.486 4.068
6.3e-5 5.14e-4 4.2e-3

3.2 Approximation errors on the top face

In this experiment the gravitational attraction δgz and
approximation errors (absolute and relative) are exam-
ined on and in close proximity of the tesseroid’s top
face. The evaluation is done on part of the sphere
with radius R2 including and extending around the
tesseroid’s top face (cf. Figure 3.1 A). Panel B in Fig-
ure 3.1 illustrates δgz of a tesseroid with the dimen-
sions of 30′′ × 30′′ × 1 km. It can be seen that largest
values are present on top of the tesseroid (maximum
at centre) and quickly reduce with distance from the
tesseroid. While lines of equal gravitational attraction
very close to the tesseroid follow to some extent its
shape they take on a near circular shape when extend-
ing further away from the tesseroid. This behaviour
shows that at some distance from the tesseroid the
gravitational field more and more resembles that of a
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point mass, e.g. the impact of edges becomes negligi-
ble. This is consistent with the 1st order approximation
of the tesseroid formulas expressing the gravitational
field of a point mass (cf. Heck and Seitz, 2007).
Analysing the approximation errors (cf. Figure 3.1 C)
it can be seen that maximum errors are present at the
vertices and edges, e.g. locations of largest mass dis-
placements (cf. Section 2.1). Confirming results from
Section 3.1, at the centre top face of the tesseroid ap-
proximation errors are relatively small. Form the ver-
tices and edges approximation errors quickly reduce to
levels well below the μGal level. At a distance of about
1⁄2 the horizontal dimension of the tesseroid (e.g. 15′′)
approximation errors are close to zero and change their
sign from positive to negative and further away start to
slightly increase in magnitude, though remain below
the μGal level.
In terms of relative approximation errors (cf. Fig-
ure 3.1 D) again the vertices and edges show largest
values with magnitudes reaching almost 0.1% (see also
Table 3.2). Like the absolute approximation errors also
the relative errors reduce rather quickly to minimum
values at a distance of about 1⁄2 the tesseroid’s horizon-
tal dimension and slightly increase again to a level of
about 0.002% further away.

3.3 Approximation errors in the

meridian plane

In this experiment the gravitational attraction and ap-
proximation errors are examined in the vertical cross
section along the meridian through the geometric cen-
tre of the tesseroid (cf. Figure 3.2 A). This includes
locations on the north-south faces and interior of the
tesseroid. Panel B in Figure 3.2 illustrates the gravita-
tional attraction with maximum positive values at the
centre top face (see also Section 3.2) gradually taper-
ing off with increased height and horizontal distance.
The behaviour is almost symmetrical (though with op-

posite sign) to the mean sphere with radius R passing
through the geometrical centre of the tesseroid (e.g.
zero height). Therefore, maximum negative values are
present at the centre bottom face of the tesseroid and
zero gravity occurs close to the sphere with radius R.

Approximation errors shown in Figure 3.2 C again
show largest (positive) magnitudes at the edges of the
tesseroid as could already be seen in Figure 3.1 C. Neg-
ative approximation errors are mostly present inside
the tesseroid and extending to the north and south of
the tesseroid faces. Interestingly there are small areas
of negative approximation errors between the edges
(large positive errors) and centre top/bottom faces
(small positive errors). These can be explained by the
deviation between the top/bottom faces of the tesseroid
and prism (cf. Figure 2.2). While approximation er-
rors are always positive on the top/bottom faces of the
tesseroid (cf. Figure 3.1 C) they rapidly become nega-
tive as the computation point is elevated/lowered from
these surfaces. The transition from positive to negative
values happens over the approximate distance that sep-
arates both surfaces, which for small-sized tesseroids
can happen over only few mm. Again approximation
errors quickly reduce to sub-μGal levels with distance
from the tesseroid.

Relative approximation errors (cf. Figure 3.2 D)
show similar behaviour to their absolute counterparts
at and above/below the top/bottom faces. Again rather
large relative errors are present at the edges and much
smaller at the centres of the tesseroid’s top and bot-
tom faces consistent with the relative errors shown in
Figure 3.1 D. However, maximum relative errors are
present on and close to the sphere with radius R and
to some extend along the faces of the tesseroid. This
behaviour is related to the fact that δgz is close to zero
around the mean sphere (cf. Figure 3.2 D) and as such
even small absolute approximation errors can lead to
rather large relative errors.
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Figure 3.2: Gravitational attraction and approximation errors in the meridian plane through the tesseroid’s geometric centre. The thick black
line indicates the extension of the tesseroid with a dimension of 30′′ ×30′′ ×1 km. Colour scales are non-linear.
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4 Discussion and Conclusions

This study provided insight into the gravitational field
in very close proximity of a tesseroid including its
edges, vertices, faces and interior. Particular focus was
on approximation errors when replacing a tesseroid by
a mass-equal prism. While providing some quantifi-
cations in this regards, several new research questions
may arise from the results as outlined further in this
section.

It has been demonstrated that horizontal and vertical
subdivision of a tesseroid and subsequent replacement
of the smaller mass elements by mass-equal prisms is a
viable procedure to obtain precise reference values for
the gravitational attraction of a tesseroid. This enabled
the evaluation of the gravitational field in the very close
proximity of the tesseroid, the space where the eval-
uation with tesseroid formulas currently leads to nu-
merical problems. This also validates Heck and Seitz
(2007), proposing that prisms should be used close to
the computation point.

As a main outcome, it has been shown that approxi-
mation errors in the close proximity of the tesseroid
largely vary depending on the selected location of the
computation point. This behaviour is directly related
to spatially varying mass changes associated to the re-
placement of the tesseroid by a mass-equal prism. De-
pending on the horizontal and vertical dimension of the
tesseroid maximum errors mostly well above the μGal

level are present when the computation point is located
at or close to the vertices (similarly at the edges, not
shown), e.g. areas close to considerable mass changes
(cf. Section 2.1). On the other hand approximation
errors (absolute and relative) are in almost all cases at
least one order of magnitude smaller when the compu-
tation point is located at the centre of the tesseroid’s
top face. In this case approximation errors stay well
below the μGal level for all but the largest tesseroid
dimension (30′ × 30′ × 10 km) considered. This un-
derlines the importance of a careful selection of the
computation point location when aiming to minimize
approximation errors in the very close proximity of the
tesseroid.

Apart from the careful selection of the computation
point location in gravity forward modelling, approx-
imation errors could further be reduced by subdivid-
ing the tesseroid (or tesseroids) in close proximity of

the computation point as has been demonstrated by the
successful derivation of reference values for the gravi-
tational attraction of a tesseroid. While this study uses
prisms others have explored the use of different mass
elements to be used in the subdivision process (e.g.
Wild-Pfeiffer, 2008; Grombein et al., 2013; Uieda et
al., 2016). In this regard, a question still to be answered
is which elementary mass element may be best suited
both in terms of accuracy and numerical efficiency
when aiming to evaluate in the very close proximity
of the tesseroid including its edges, vertices, faces and
interior. For example, while numerically more inten-
sive, prism have the advantage that “mass-free” areas
are kept to a minimum (mostly at edges and vertices)
while point masses may have larger “mass-free” ar-
eas. This would make prisms better candidates when
evaluation in the interior of the tesseroid is required,
e.g. for the modelling of plumblines. Another bene-
fit of the subdivision procedure, not explored further
in this study, might be the possibility to provide preci-
sion estimates for global gravity forward modelling es-
timates when accounting for discretisation errors that
arise from the use of a particular mass element (e.g.
rectangular prism vs. tesseroid). As such the subdivi-
sion procedure could be employed to evaluate approx-
imation errors for any type of mass element (e.g. point
mass, mass line, mass surface, polyhedron, etc.). Such
studies may become more important when aiming at
regional and global gravity forward modelling at the
highest possible precision level, e.g. μGal or below
but still be able to perform calculations in a reasonable
timeframe.
This study examines a rather benign case in terms
of the tesseroid’s location at the equator where the
tesseroid has a near quadratic base. In this case approx-
imation errors, when replacing a tesseroid by a prism,
may be at a minimum (e.g. Heck and Seitz, 2007). Fur-
ther studies in terms of the tesseroid’s location are war-
ranted to study the respective gravitational fields in re-
lation to the geographic latitude. While the horizontal
dimension in longitude direction, e.g. Dλ (cf. Eq. 2.2
in Section 2.1), of the prism will account for the merid-
ian convergence it is to be expected that larger errors
are present at higher latitudes.
Finally, when examining discretisation errors arising
from geometric approximations of elementary mass el-
ements one important aspect not considered here is the
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question of how good do these represent the real mass
distribution (e.g. topography)? It is well know that
for example flat-topped tesseroids or prisms may be
a rather crude approximation of the real (undulating)
topography (e.g. Smith et al., 2001). While several
solution strategies have been suggested (e.g. inclined
top, polyhedral, bi-cubic interpolation) more compre-
hensive studies in relation to global high-resolution to-
pographic masses have not yet been undertaken but
may explain current μGal discrepancies when compar-
ing high-resolution gravity forward modelling of the
Earth’s global topography in the space and frequency
domains (e.g. Hirt and Kuhn, 2014; Hirt et al., 2016).
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