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Abstract

Whether or not a time series is weakly stationary has long been a question of major interest in the field of time
series analysis. Stationary time series can be sufficiently described by means of autoregressive moving average
(ARMA) processes. When modelling temporal correlations of GNSS observation noise, the applicability of ARMA
processes depends on the stationarity of residual time series from GNSS data analysis. According to the property
that stationary processes have homogenous variances, statistical inferences on stationarity can be made by testing
for homogeneity of variance (HOV). In addition, considering a time series as a realisation of a stochastic process,
stationarity can be assessed by testing for stochastic trends using unit root tests. Based on representative data
simulations, this paper analyses the empirical size and power of commonly used HOV and unit root tests. The
results show that the performance of the HOV test is strongly affected by serial correlations, whereas the unit root
test produces high power without significant size distortions.

1 Introduction

In the preliminary stage of modelling time series data,
an important question to be answered is whether a time
series is stationary or not. A discrete time series {Xt}
with t ∈ Z is considered as stationary if it has the sim-
ilar statistical properties to those of the "time-shifted"
series {Xt+h}, for each h ∈ Z. Strict stationarity of a
time series is defined by the condition that (X1, . . . ,Xn)

and (X1+h, . . . ,Xn+h) have the same joint distributions
for all integers h and n > 0. A weaker form of sta-
tionarity commonly known as weak stationarity simply
requires that the mean function μX (t) = E(Xt) and the
covariance function γX (t +h, t) of {Xt}, i.e.,

Cov(Xt+h,Xt) = E{[Xt+h−μX (t +h)] [Xt −μX (t)]}
(1.1)

do not vary with respect to time t for each h∈Z, where
E(·) is the expectation operator. This indicates that

E(Xt) = μ0, (1.2)

Cov(Xt+h,Xt) = Cov(Xh,X0). (1.3)

If {Xt} is strictly stationary and E(X2
t ) < ∞ for all t,

then {Xt} is also weakly stationary (Brockwell and
Davis, 2002, p. 15). For the sake of brevity, the term
stationary is used in this paper in the sense of weakly
stationary.
Setting h = 0 in Eq. (1.3), the variance function of a
stationary time series is equal to a constant:

Var(Xt) = Cov(Xt ,Xt) = Cov(X0,X0) = Var(X0).

(1.4)
This means that all random variables in the time se-
ries have the same finite variance (also known as ho-
moscedasticity). Therefore, statistical tests for HOV,
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such as the two-sample β test (Teusch, 2006, p. 114),
can be used to verify the necessary condition for sta-
tionarity by revising equal variances.
Consider a time series {Xt} as a linear stochastic pro-
cess and assume that it can be described by an autore-
gressive model of order p, i.e., AR(p)

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt , (1.5)

where {Zt} denotes a white noise (WN) process repre-
senting a sequence of uncorrelated random variables,
each with zero mean and variance σ2

Z . Such a pro-
cess is indicated by the notation {Zt} ∼ WN(0,σ2

Z).
If z = 1 is a root of the associated pth-degree autore-
gressive characteristic equation given by

1−φ1z−φ2z2−·· ·−φpzp = 0, (1.6)

{Xt} represents a unit root process and is non-
stationary (Brockwell and Davis, 2002, p. 85). In
comparison to a stationary process, where all roots of
Eq. (1.6) lie outside the unit circle (Box et al., 2016,
p. 55), a unit root process illustrates a mean-diversion
behaviour and has a time-dependent variance diverg-
ing to infinity. In general, unit root processes can be
rendered stationary by serially differencing, for ex-
ample, by applying the first-order or lag-1 difference
Yt = Xt − Xt−1. If the differenced time series {Yt}
can be modelled by an ARMA process, the original
time series {Xt} is called an autoregressive integrated
moving average (ARIMA) process. {Xt} is difference-
stationary and has stochastic trends. If the increments
of {Xt} represent a WN process, i.e.,

Xt −Xt−1 = Zt , (1.7)

where {Zt}∼WN(0,σ2
Z), {Xt} is called a random walk

process. According to Eqs. (1.5) and (1.6), the au-
toregressive characteristic equation of a random walk
process has a unit root. Therefore, a time series is
non-stationary if it has random walk components. Pre-
testing for unit roots plays an important role not only
in assessment of stationarity but also in selection of ap-
propriate time series models. One of the most famous
unit root tests is the augmented Dickey-Fuller (ADF)
test (Dickey and Fuller, 1979; Said and Dickey, 1984).
The remainder of this paper is organised as follows. In
Sect. 2 the mathematical backgrounds of the applied

HOV and unit root tests for assessing stationarity are
briefly described. Sect. 3 presents the data simulation
by means of representative AR(I)MA processes. In
Sect. 4 the performance of the tests is analysed based
on empirical size and power values. Finally, Sect. 5
provides concluding remarks and an outlook on future
research work.

2 Tests for assessing stationarity

This section summaries the core characteristics of the
two-sample β test and the ADF test which are used in
this study to verify homogeneity of variance and the
existence of unit roots, respectively. The significance
level α is the probability that the test falsely rejects the
null hypothesis and commits a Type I error.

2.1 Two-sample β test

Based on the ergodic theorems that establish the re-
lation between time and space averages (Birkhoff,
1942; Anosov, 2001), the HOV tests verify the equal-
ity of variance among individual groups longitudi-
nally formed by subdividing a univariate time series
rather than transversally built by assembling indepen-
dent realisations. Let (X11, . . . ,X1n1)

iid∼ N (μ1,σ2
1) and

(X21, . . . ,X2n2)
iid∼ N (μ2,σ2

2) be two independent sam-
ples, where iid denotes independently identically dis-
tributed. The corresponding unbiased estimators for
population variances σ2

j , j ∈ {1,2} are given by

s2
j =

1
n j−1

n j

∑
i=1

(
Xji−X j.

)2 , where X j. =
1
n j

n j

∑
i=1

Xji.

(2.1)
Under the normal distribution assumption and the null
hypothesis H0 : σ2

1 =σ2
2, the two-sample β test statistic

Tβ follows the β distribution (Abramowitz and Stegun,
1972, p. 944)

Tβ :=
s2

1

s2
1 + s2

2
∼ β(a,b), (2.2)

where a = n1−1
2 and b = n2−1

2 (Teusch, 2006, p. 115).
The null hypothesis of equal variances is rejected at a
significance level of α if

Tβ < β n1−1
2 ,

n2−1
2 ; α

2
or Tβ > β n1−1

2 ,
n2−1

2 ;1− α
2
. (2.3)
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2 Tests for assessing stationarity

In the case of independent and normally distributed
random variables, the β test is a uniformly most pow-
erful two-tailed test (Lehmann, 1986; Teusch, 2006,
p. 129). However, it is very sensitive to deviations
from the normal distribution. In addition, the assumed
uncorrelatedness among the random variables within
each sample and the independence between two sam-
ples are hardly fulfilled in practise. As an application
example, Howind (2005) utilised the two-sample β test
to evaluate the performance of an advanced stochastic
model of GPS carrier-phase observations.

2.2 Augmented Dickey-Fuller test

The augmented Dickey-Fuller (ADF) test is based on
the existence and uniqueness property of an ARMA
process, i.e., the pth-degree autoregressive character-
istic equation given by Eq. (1.6) has no unit root
(Brockwell and Davis, 2002, p. 85). To understand
the basic concept of autoregressive unit root tests, let
(X1, . . . ,Xn) be observations from a first-order autore-
gressive AR(1) process

Xt = φXt−1 +Zt , (2.4)

where Zt ∼ WN(0,σ2
Z) and |φ| < 1. It can be shown

that the ordinary least squares (OLS) estimator of φ
asymptotically follows a normal distribution (Hamil-
ton, 1994, p. 216):

φ̂ A∼N (φ,
1−φ2

n
). (2.5)

However, in the unit root case with φ = 1, the normal
distribution approximation φ̂ A∼ N (1,0) is no longer
applicable, which precludes its use for testing the
unit root hypothesis H0 : φ = 1 against the alternative
H1 : |φ|< 1. The problem is that under H0, {Xt} is nei-
ther stationary nor ergodic, and the usual sample mo-
ments do not converge to fixed constants. Dickey and
Fuller (1979) first considered the autoregressive unit
root test and derived the limiting distribution as n→∞
for the test statistic

tφ=1 =
φ̂−1
SE(φ̂)

, (2.6)

where SE(φ̂) denotes the standard error of φ̂ resulting
from the OLS evaluation. The limiting distribution of
tφ=1 is referred to as the Dickey-Fuller distribution.

When testing for autoregressive unit roots in prac-
tise, many time series have more complicated dynamic
structures which cannot be fully characterised by a
simple AR(1) process as given in Eq. (2.4). Said
and Dickey (1984) augmented the basic autoregres-
sive unit root test to accommodate general ARMA
processes with unknown order parameters. Assuming
that the stochastic dynamics in the data can be suffi-
ciently described by an ARMA process, the regression
model of the ADF test, verifying the null hypothesis
H0 that {Xt} is difference-stationary (non-stationary)
against the alternative hypothesis H1 that {Xt} is trend-
stationary, is formulated as

Xt = CT Dt +φXt−1 +
l−1

∑
j=1

ψ jΔXt− j +Zt , (2.7)

where C = (c,d)T and Dt = (1, t)T capture the deter-
ministic trend, φ is the AR(1) coefficient, and the l−1
difference terms ψ jΔXt− j approximate the ARMA
structure of the residuals. Neglecting the deterministic
trend in Eq. (2.7), the presentability of an ARMA pro-
cess by the ADF regression model is mathematically
proved in Luo (2013, pp. 303–305). If the truncation
lag l is set to a too small value, the remaining serial cor-
relations in regression residuals will bias the test. If l is
set to a too large value, the power of the test will suffer.
Ng and Perron (1995) suggested a data-based approach
to optimizing the truncation lag selection. It begins
with a maximum lag length lmax (Schwert, 1989) given
by

lmax =

⌊
12 ·
( n

100

)1/4
⌋
, (2.8)

where �x� denotes the integer part of x. Then, the sig-
nificance of the coefficient of the last lagged difference
is evaluated by means of the t-statistic. If this coeffi-
cient is statistically significant, the unit root test is car-
ried out. Otherwise, the truncation lag l is reduced by
one, and the procedure is repeated. By doing this, the
lag value determined leads to a stable size (Sect. 4.1)
and a minimum power loss. Based on the OLS esti-
mates of Eq. (2.7), the ADF test statistic tφ=1 can be
calculated using Eq. (2.6). The ADF test is a one-
sided and left-tailed test, meaning that the unit root
null hypothesis H0 is rejected at a significance level
of α if tφ=1 < DFα, where DFα denotes the α-quantile
of the Dickey-Fuller distribution. Note that under H0,
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the asymptotic distribution of tφ=1 is influenced by the
type of the deterministic terms in Eq. (2.7), but not by
their parameter values.

3 Data simulation

In order to empirically investigate the size and power
of the above-introduced tests for assessing stationar-
ity, representative time series are simulated by means
of low-order AR(I)MA processes. Keeping the con-
text of GNSS stochastic modelling in mind, the pa-
rameters of the data-generating processes are speci-
fied considering the temporal correlation characteris-
tics of GNSS observation noise presented in Wang et
al. (2002), Howind (2005), Schön and Brunner (2008)
and Luo et al. (2012). Following the notation of a gen-
eral ARMA(p, q) process defined in Brockwell and
Davis (2002, p. 83), i.e.,

Xt −
p

∑
i=1

φiXt−i = Zt +
q

∑
j=1

θ jZt− j, (3.1)

where {Zt} ∼ WN(0,σ2
Z), Table 3.1 provides the

model parameters of the AR(I)MA processes used for
data simulation. The model parameters of AIM are re-
lated to the lag-1 differenced process, and the random
walk process (RWP) is given by Eq. (1.7). For each
AR(I)MA process listed in Table 3.1, 1000 time se-
ries have been simulated for each of the data lengths
26,27, . . . ,212.
Once a stationary ARMA process is uniquely defined,
the associated autocorrelation function (ACF) can be
derived from the model parameters (Brockwell and
Davis, 2002, p. 88). Fig. 3.1 shows the theoretical
ACFs of the ARMA processes used for data simula-
tion. All model ACFs exclusively exhibit positive cor-
relations, reflecting the general assumption that GNSS
observation noise is positively correlated in time. In
comparison to the AR(1) processes, the ACFs of the
higher-order ARMA(3,2) processes illustrate signif-
icantly larger correlation lengths, indicating the ca-
pability of higher-order ARMA models of describing
more complex temporal correlation behaviour (Luo et
al., 2012).
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Figure 3.1: Theoretical ACFs of the stationary ARMA processes
used for data simulation (cf. Table 3.1).
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Figure 3.2: Path examples of the non-stationary ARIMA models
used for data simulation (cf. Table 3.1).

Fig. 3.2 visualises two path examples of the non-
stationary ARIMA processes which seem indistin-
guishable from trend-stationary processes. Being dif-
ferent from deterministic trends that are regulated by
time, temporal increases or decreases due to stochas-
tic trends are caused by cumulated shocks which have
persistent effects over time. In order to effectively dif-
ferentiate between stochastic and deterministic trends,
hypothesis tests considering the underlying stochas-
tic processes are more appropriate than those merely
based on empirically derived statistical characteristics.

4 Empirical size and power analysis

Applying the two-sample β test and the ADF test to the
simulated data, the resulting empirical size and power
are analysed in this section. All tests are performed at
a significance level of 5%, where different regression
models and truncation lags are considered for the ADF
test.

4.1 Size and power of a statistical test

The size of a hypothesis test, also known as signifi-
cance level α, gives the probability of falsely reject-
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4 Empirical size and power analysis

Table 3.1: Model parameters of the low-order AR(I)MA processes used for data simulation. (1)-Wang et al. (2002), (2)-Luo et al. (2012),
(3)-Maddala and Kim (1998, pp. 20, 76).

Process φ1 φ2 φ3 θ1 θ2 σZ Notation Reference

AR(1) 0.50 − − − − 1.00 ARL (1)
AR(1) 0.90 − − − − 1.00 ARH (1)

ARMA(3,2) 0.62 0.43 −0.09 −0.42 −0.34 0.24 AML (2)
ARMA(3,2) 0.73 0.38 −0.14 −0.33 −0.35 0.29 AMH (2)

ARIMA(1,1,1) 0.90 − − 0.5 − 1.00 AIM (3)
ARIMA(0,1,0) − − − − − 1.00 RWP (3)

ing the null hypothesis H0 (Type I error). In order to
protect H0 and to prevent the investigator from inad-
vertently making false claims, the size of a hypothesis
test should be kept as small as possible. A significance
level of 5% is normally used in the practise of hypoth-
esis testing (Stigler, 2008). The empirical size is de-
fined as the rejection rate of H0 tested based on data
for which H0 is actually true.
The power of a hypothesis test measures the test’s abil-
ity to reject H0 when it is actually false. In other words,
the power of a test is the probability of not committing
a Type II error which means failing to reject H0 when
it is in fact false. The maximum power of a statistical
test is 1 and ideally a test is desirable to possess high
power close to 1. The empirical power is determined
by calculating the rejection rate of H0 tested using data
for which the alternative hypothesis H1 is true. Note
that decreasing the size of a test raises the probability
of Type II errors and reduces the test power.
Table 4.1 gives an overview of the AR(I)MA data for
the empirical size and power analysis (cf. Table 3.1).
The size is investigated based on the data for which H0

is true, whereas the power is evaluated using the data
for which H1 is true.

4.2 Two-sample β test

The two-sample β test is applied to the simulated
AR(I)MA time series of different lengths, the empiri-
cal size and power values are presented in Table 4.2. It
can be seen that in most cases both the size and power
rise with an increasing data length. This means for a
larger n, it is more likely to falsely reject the null hy-
pothesis of HOV, and thus stationarity. On the other
hand, in terms of power, the probability of committing
a Type II error becomes smaller as n grows.

Table 4.1: AR(I)MA data for empirical size and power analysis.

Measure Two-sample β test ADF test

Size ARL, ARH, AIM,
AML, AMH RWP

Power AIM, ARL, ARH,
RWP AML, AMH

The empirical sizes of ARL, which illustrates the
shortest zero-crossing correlation length in Fig. 3.1, are
closest to the nominal level of 5%. Moreover, the size
increases with correlation length, which can be seen by
comparing the results between ARL (AML) and ARH
(AMH). For a sufficient data volume of n≥ 1024 that is
approximately 10 times the correlation length of AMH
(Luo et al., 2011), the HOV null hypothesis is rejected
for more than 50% of the data with stronger serial cor-
relations, i.e., ARH, AML and AMH. Such high rejec-
tion rates are due to the deviation from the iid assump-
tion of the two-sample β test. For n = 64, the empirical
sizes of AML and AMH are also close to the nom-
inal level of 5%. Such low sizes are due to the small
data length which is insufficient to reflect the stochastic
properties of the data-generating processes. Regarding
n = 1024, almost 90% of the simulated non-stationary
data can be correctly rejected by the two-sample β test,
showing favourable rejection rates with high empirical
power values.
For n = 1024, Fig. 4.1 illustrates the empirical cumu-
lative distribution functions (CDFs) of the two-sample
β test statistic Tβ, along with the theoretical CDF of the
β distribution. Depending on the degree of serial cor-
relations, the empirical CDFs of ARL and AMH show
the smallest and largest deviations from the theoretical
CDF curve, respectively.
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Table 4.2: Empirical size and power values of the two-sample β test (α = 5%).

Data length Empirical size Empirical power

n ARL ARH AML AMH AIM RWP

26 = 64 0.11 0.38 0.07 0.13 0.69 0.54
27 = 128 0.11 0.45 0.11 0.27 0.75 0.66
28 = 256 0.12 0.47 0.23 0.44 0.82 0.75
29 = 512 0.13 0.51 0.38 0.56 0.85 0.83

210 = 1024 0.10 0.52 0.43 0.61 0.89 0.88
211 = 2048 0.13 0.54 0.54 0.68 0.92 0.92
212 = 4096 0.14 0.50 0.56 0.68 0.95 0.93
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Figure 4.1: Empirical and true CDFs of the two-sample β test statis-
tic Tβ (n = 1024); see Eq. (2.2).

4.3 Augmented Dickey-Fuller test

When performing the ADF test, it is important to prop-
erly specify the regression model and the truncation
lag. The regression model should be able to describe
the trend behaviour of the data, whereas the truncation
lag directly impacts upon the test performance. Ta-
ble 4.3 provides the parameter settings for the ADF
test. Regarding the path examples of AIM and RWP
shown in Fig. 3.2, it is reasonable to consider a non-
zero constant and a time-dependent trend within the
regression model. According to Schwert (1989) and
Kwiatkowski et al. (1992), three lag values l = 0, lshort

and llong are used, where lshort and llong are given by

lshort =

⌊
4 ·
( n

100

)1/4
⌋
, (4.1)

llong =

⌊
12 ·
( n

100

)1/4
⌋
. (4.2)

Applying the ADF test to the non-stationary AIM and
RWP time series, the empirical sizes are provided in
Table 4.4. The alternative hypothesis is a station-
ary ARMA process around a constant mean (a time-

dependent trend) for the regression model C0 (CD). It
can be seen that the empirical sizes of the ADF test
are fairly close to the nominal level of 5%, even for
moderate data lengths. Furthermore, including a trend
in the regression model improves the size value (C0
vs. CD), which is particularly visible for L0. When
changing the lag parameter from L4 to L12, only slight
size improvements are observed. This indicates that
the truncation lag given by Eq. (4.1) seems sufficient
to characterise the serial correlations in the regression
residuals.

Table 4.3: Parameter settings for the ADF test; see Eq. (2.7).

Parameter Setting Notation

Regression c �= 0,d = 0 C0
model c+d · t c �= 0,d �= 0 CD

Truncation l = 0 L0
lag l l = lshort; Eq. (4.1) L4

l = llong; Eq. (4.2) L12

Tables 4.5 and 4.6 show the empirical power of the
ADF test against the alternative stationary processes
ARL, ARH, AML and AMH. Regarding the same
data length and the same regression mode, the empiri-
cal power decreases with increasing serial correlations
(ARL vs. ARH, AML vs. AMH). In addition, consid-
ering a time-dependent trend in the regression model
reduces the power of the ADF test (e.g., L4: C0 vs.
CD). As mentioned in Sect. 2.2, the power of the ADF
test will suffer if the truncation lag is set to a too large
value. This can be observed by comparing the power
results between L4 and L12. Taking both the empiri-
cal size and power into account, the regression model
CD together with the truncation lag L4 seems to be an
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5 Conclusions and outlook

Table 4.4: Empirical sizes of the augmented Dickey-Fuller (ADF) test (α = 5%).

Process Data length Regression model C0 Regression model CD
n L0 L4 L12 L0 L4 L12

AIM

64 0.11 0.07 0.06 0.06 0.10 0.06
128 0.15 0.05 0.06 0.06 0.04 0.06
256 0.16 0.06 0.06 0.05 0.05 0.05
512 0.13 0.04 0.04 0.06 0.05 0.04

1024 0.15 0.05 0.05 0.06 0.06 0.04
2048 0.14 0.05 0.05 0.07 0.06 0.05
4096 0.15 0.05 0.06 0.07 0.05 0.05

RWP

64 0.05 0.04 0.05 0.04 0.05 0.04
128 0.04 0.05 0.04 0.04 0.04 0.04
256 0.05 0.05 0.05 0.05 0.04 0.03
512 0.05 0.05 0.05 0.05 0.04 0.04

1024 0.05 0.05 0.05 0.05 0.04 0.05
2048 0.05 0.05 0.05 0.03 0.04 0.04
4096 0.06 0.06 0.06 0.05 0.04 0.05

Table 4.5: Empirical power of the augmented Dickey-Fuller (ADF) test (α = 5%).

Process Data length Regression model C0 Regression model CD
n L0 L4 L12 L0 L4 L12

ARL

64 1.00 0.73 0.12 0.99 0.49 0.07
128 1.00 0.99 0.49 1.00 0.94 0.28
256 1.00 1.00 0.94 1.00 1.00 0.78
512 1.00 1.00 1.00 1.00 1.00 1.00

1024 1.00 1.00 1.00 1.00 1.00 1.00
2048 1.00 1.00 1.00 1.00 1.00 1.00
4096 1.00 1.00 1.00 1.00 1.00 1.00

ARH

64 0.16 0.11 0.05 0.09 0.08 0.04
128 0.48 0.32 0.16 0.30 0.21 0.10
256 0.98 0.84 0.49 0.84 0.60 0.28
512 1.00 1.00 0.96 1.00 1.00 0.83

1024 1.00 1.00 1.00 1.00 1.00 1.00
2048 1.00 1.00 1.00 1.00 1.00 1.00
4096 1.00 1.00 1.00 1.00 1.00 1.00

ter combination, the unit root hypothesis is correctly
rejected at high power levels above 95% without sig-
nificant size distortions.

5 Conclusions and outlook

This paper presents an empirical investigation of the
size and power of hypothesis tests for assessing weak
stationarity of time series data. Based on represen-
tative AR(I)MA simulations, statistical inferences on
stationarity are made by testing for homogeneity of
variance (HOV) and for the existence of autoregressive

unit roots. The two-sample β test is used to verify the

HOV null hypothesis, whereas the augmented Dickey-
Fuller (ADF) test is applied to the detection of autore-
gressive unit roots.
In spite of the high sensitivity to non-stationary al-
ternatives, the two-sample β test overrejects the as-
sumption of stationarity in this study, which becomes
more severe with increasing data length and serial cor-
relations. In comparison to the two-sample β test,
the empirical sizes of the ADF test are significantly
closer to the specified nominal level. Including a time-
dependent trend in the regression model and utilising
larger truncation lags improve the empirical size of the
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ADF test, but lead to power loss.



Table 4.6: Empirical power of the ADF test (α = 5%; continuation of Table 4.5).

Process Data length Regression model C0 Regression model CD
n L0 L4 L12 L0 L4 L12

AML

64 1.00 0.49 0.06 1.00 0.39 0.05
128 1.00 0.64 0.10 1.00 0.59 0.08
256 1.00 0.78 0.16 1.00 0.75 0.13
512 1.00 0.95 0.33 1.00 0.90 0.22

1024 1.00 1.00 0.87 1.00 1.00 0.65
2048 1.00 1.00 1.00 1.00 1.00 1.00
4096 1.00 1.00 1.00 1.00 1.00 1.00

AMH

64 0.98 0.28 0.04 0.98 0.24 0.04
128 1.00 0.35 0.06 1.00 0.30 0.07
256 1.00 0.47 0.09 1.00 0.40 0.07
512 1.00 0.75 0.29 1.00 0.63 0.17

1024 1.00 0.98 0.78 1.00 0.95 0.55
2048 1.00 1.00 1.00 1.00 1.00 0.97
4096 1.00 1.00 1.00 1.00 1.00 1.00

The essential limitation of the HOV test applied in this
study is the assumption of independent samples. To
test for variance homogeneity of correlated variables,
the robust large-sample methods proposed by Harris
(1985) will be considered in future studies. Moreover,
for a moderate data length, the ADF test exhibits low
test power against the alternatives which are close to
the unit root null hypothesis. To overcome this defi-
ciency, Elliott et al. (1996) suggested the efficient unit
root tests, which are recommended for future research.
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