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Abstract

Double differences (DD) of GNSS phase observations are often used to eliminate or largely reduce systematic
effects in the observations, especially the satellite and receiver clock errors. However, during this operation not only
errors are eliminated but also information of four different lines-of-sights is combined into one DD observation.
Consequently, specific effects of interest like e. g. multipath signatures or tropospheric slant delay variations can be
hardly attributed to a specific line-of-sight. To overcome these problems, Alber et al. (2000) proposed a strategy to
recover undifferenced observations (ZD) from DD which is now widely used in geodesy and GPS data assimilation
in meteorology. In this paper, the explicit analytical solution of the strategy proposed by Alber et al. (2000) will be
given. The findings describe directly the repartition of the information contained in the DD on the recovered ZD
and the difference between the original ZD and the recovered one. Using simulated and real data the benefits and
limitations of the strategy are discussed. It is shown that individual signatures cannot be completely recovered. We
found that the success of recovering individual signatures and the degree of contamination of other observations
by these signatures depend on the number of stations in the network, the number of satellites in common view, and
the uniqueness of the signatures.

1 Motivation

Double differencing GPS phase observations is a stan-
dard approach in relative positioning. The impact of
distance dependent systematics can be largely reduced
as the satellite and receiver clock errors cancel out. In
addition, depending on the network size the unmod-
elled tropospheric and ionospheric propagation effects
are also lower. However, if double differences (DD) in-
stead of undifferenced observations (zero differences,
ZD) are used, specific effects of interest, like e. g., mul-
tipath signatures or tropospheric slant delay variations
can be hardly attributed to a specific line-of-sight. As a
consequence, it becomes difficult to study these effects
in detail, i. e. each DD includes four different paths.

Information from high-resolution line-of-sight is in-
creasingly requested. Prominent applications are the
description of temporal and spatial variations of the
water vapor in the atmosphere which are mandatory
for weather prediction. A direct use of ZD is generally
difficult for these applications since the information
of interest is masked by or highly correlated with the
dominant receiver clock error (Luo et al., 2007).
To overcome this problem, Alber et al. (2000) pro-
posed a method for obtaining single-path delays from
DD using the so-called “zero mean” assumption. This
method has been rapidly adopted in meteorological
modeling and multipath characterization. For exam-
ple, Braun et al. (2001) and Braun et al. (2003) adopted
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the zero mean assumption and derived integrated wa-
ter vapor along the ray path between a ground-based
GPS receiver and GPS satellites. MacDonald et al.
(2002) or Bender et al. (2011) used the obtained phase
delays to determine and analyze 3D water vapor fields.
Within the TOUGH-project (Targeting Optimal Use
of GPS Humidity Measurements in Metrology) this
methodology was also applied to retrieve slant delays
for use in numerical weather prediction assimilation,
cf. e. g. van der Marel and Gundlich (2006).

A second application is the mitigation or monitoring of
GPS multipath effects. Here DDs are transformed to
inbetween station single difference, in order to take the
individual satellite repeat time and thus the repeata-
bility of multipath patterns into account (Zhong et al.,
2010). Huisman et al. (2009) transform DD residuals
from a CORS network in Australia into ZD residuals
and propose finger print maps for the analysis of mul-
tipath.

Besides its attractiveness, reconverting DDs into ZDs
is based on different assumptions that can restrict the
possible interpretations. In this contribution we present
the explicit algebraic formulation of the recovered ZDs
from SD as well as from DD. These results enable to
evaluate if recovered ZD may answer the specific sci-
entific question of interest.

In Section 2, the different strategies for double differ-
encing are briefly revisited. Two algebraic solutions
for the recovered ZD from DD are derived and dis-
cussed. Finally, we will use simulated and real data to
illustrate the mathematical properties of the recovering
procedure. The remainder of the paper will summarize
in a comprehensive way the benefits and limits of using
recovered ZD.

2 Mathematical concept

We can compute linearly independent DD using differ-
ent construction sequences, like e. g. the fixed differ-
encing basis selecting one reference satellite and one
reference station (Remondi 1984, also named pivot-
ing) or the sequential differencing basis (Beutler et al.
1984, also named cycling). Lindlohr and Wells (1985)
showed that the estimated parameters and their asso-

ciated variancecovariance matrices are independent of
the specific strategies used for computing the DD. Fol-
lowing the strategy of first differencing between sta-
tions and then between satellites, the DD can be ex-
pressed as follows

d12
AB = s1

AB− s2
AB = (z1

A− z1
B)− (z2

A− z2
B) , (2.1)

where z1
A and z1

B are the original undifferenced (zerod-
ifferenced) observations of satellite 1 by station A and
B, respectively, and z2

A and z2
B are observations of satel-

lite 2 by station A and B, respectively. The difference
between z1

A and z1
B is the single difference s1

AB. Sim-
ilarly s2

AB denotes the SD for the satellite 2. The two
single differences can then be combined into the dou-
ble difference d12

AB.

Considering a network with m stations A,B, ...,M ob-
serving n satellites 1,2, ...,n,m− 1 linearly indepen-
dent baselines can be formed. In matrix vector notation
we can write

si =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s′IA

s′IB
...

s′IM

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 −1 0 ... 0
1 0 −1 ... 0
...

...
1 0 0 ... −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z′I
z′A
z′B
...

z′M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=APz′ ,

(2.2)
where the (m− 1)×m matrix AP presents the func-
tional relationship between ZDs and SDs in case of
pivoting and station I was arbitrarily chosen as refer-
ence station. Similarly, we form the DD for one base-
line IJ as the product of a (n− 1)× n matrix BP for
pivoting the SDs vector sIJ

dIJ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d12
IJ

d13
IJ
...

d1n
IJ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 −1 0 ... 0
1 0 −1 ... 0
...

...
1 0 0 ... −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1
IJ

s2
IJ

s3
IJ
...

sn
IJ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=BPsIJ ,

(2.3)

Finally, the (m−1)(n−1)×1 vector of all linear inde-
pendent DD of the whole network reads

d = (B⊗A)z = Mz

= (B⊗ Im−1)(In⊗A)z
(2.4)

where ⊗ is the ‘Kronecker-Zehfuss product’ (e. g.,
Koch 1999). The matrix M relates the ZDs to the
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3 Explicit algebraic solution for recovered zerodifferences

DDs. The mn× 1 vector z is sorted by satellites (i. e.
z1

I ,z
1
A, ...,z

1
M,z2

I ,z
2
A, ...,z

2
M, ...,zn

I ,z
n
A, ...,z

n
M). The vector

sS and sB contain the SD sorted by satellites and base-
lines, respectively. These formulations are developed
for observed- computed values. However, they are also
valid for DD residuals.
Eqs. (2.2),(2.3) and (2.4) are three under-determined
equation systems of ZDs as function of linearly inde-
pendent DDs. Thus, the matrix M cannot be directly
inverted. Consequently, recovering ZDs from the DDs
is only possible under some assumptions.
In order to invert the matrix M, Alber et al. (2000)
added constraints to Eqs. (2.2) and (2.3), assuming that
the residual delay in the direction of one GPS satellite
at each epoch, averaged over the entire GPS network,
is equal to zero. They stated that this assumption is
generally valid for a network distributed over a large
area. This ‘zero mean’ assumption is also used for the
transformation between DDs and SDs.

3 Explicit algebraic solution for

recovered zerodifferences

In this section, we derive an analytical and explicit so-
lution of the recovered ZD based on DD. Without loss
of generality we concentrate on star-like networks. We
generalize the allowed constraints so that a weighted
sum of the ZDs is fixed to an arbitrary value d . Again,
we assume a network of m stations A,B, ...,M ; the sta-
tion I is the reference station for all m− 1 baselines

and the same i = 1, ...,n satellites are observed at each
station.

3.1 Two-step solution

The m×1 vector zi∗∗ is given by:

zi∗∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi
I wi

A ... wi
M

1 −1
... ...

1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

[
δi

si∗
P

]
, (3.1)

where zi∗∗ is the vector of ZDs referring to the i-th
satellite. The (m−1)×1 vector si∗

P = [si∗
IA,s

i∗
IB, ...,s

i∗
IM]T

contains the corresponding recovered SDs, which we
get from DDs using a similar strategy (see Fig. 2.1, red
selection path). The required condition is ∑

K
(wi

Kzi∗∗
K ) =

δi. After some rearrangements, the solution of Eq.
(3.1) is completely described by

zi∗∗
J = zi

J +

δi−∑
K

wi
Kzi

K

wi +

∑
k

wk
IJsk

IJ−δIJ

∑
k

wk
IJ

+∑
K

wi
K

wi

δIK−∑
k

wk
IKsk

IK

∑
k

wk
IK

(3.2)

where zi∗∗
J is the recovered ZD for the i-th satellite

measured at the J-th station.

Figure 2.1: Recovery scheme of undifferenced observations (z) from Double Differences d. Blue: Process of double-differencing, green: direct
solution by generalized inverse, red: two-step solution by zero mean assumption.
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The terms δi − ∑
K

wi
Kzi

K ,∑
k

wk
IJsk

IJ − δIJ and δIK −
∑
k

wk
IKsk

IK represent the constraints applied to the satel-

lite i, the baseline IJ , and all baselines referenced with
station I, respectively. Note that for the reference sta-
tion I, the second and the third term vanish. In the
second line of Eq.(3.2) the recovered observation is ex-
pressed in terms of ZD and SD.

3.2 Equivalence conditions

and final solution

Since in Eq. (3.2) the correction for the reference sta-
tion differs from that of the other stations, the solution
is obviously dependent on the strategy used to compute
the DD. However, this is in contradiction with the fun-
damental differencing theorem (Lindlohr and Wells,
1985). Therefore, we propose the following equiva-
lence conditions to be fulfilled in order to guarantee
independency on the DD processing strategy:
EC1. The weights wk

ST must be identical for a given
satellite k in all baselines ST with arbitrary endpoints
S and T .
EC2. The constraints for the baselines cannot be cho-
sen in an arbitrary way. They must fulfill the following
equation:

∑
K

wi
K

wi δIK−δIJ = ∑
K

wi
K

wi δJK , (3.3)

note that δII = 0.

With these two conditions we can rewrite our solution,
which is now independent on the selection of the DD.
For the given station J and satellite i the solution reads:

zi∗∗
J = ji

J +
δi

∑
K

wi
K
−

∑
K

wi
Kzi

K

∑
K

wi
K
−

∑
k

wk
ST zk

J

∑
K

wk
ST

+∑
K

wi
K

∑
K

wi
K

∑
k

wk
ST zk

K

∑
k

wk
ST

+∑
K

wi
K

∑
K

wi
K

δJK

∑
k

wk
ST

(3.4)

with wk
ST according to the EC1, and an arbitrary start-

ing point K of the baseline instead of the firm refer-
ence station. The corrections are now independent of
the choice of reference station or baseline selection in
the network. If we use the assumption that δi and δJK

equal zero and wi
I = wk

ST = w are identical for all sta-

tions and satellites, the solution can be expressed in its
most simplified case

zi∗∗
J = zi

J−
∑
K

zi
K

m
−

∑
k

zk
J

n
+

∑
K

∑
k

zk
K

mn
. (3.5)

3.3 Direct inversion

The general solution for the consistent equation
Mz = d can be expressed according to Koch (1999) as
follows:

z = M−d+(I−M−M)β

= M−Mz+(I−M−M)β

= z+(I−M−M)(β− z)

(3.6)

where M− denotes the generalized inverse of the ma-
trix M, and β is an arbitrary mn× 1 vector. Using the
pseudo inverse, a special solution of Eq. (3.6) reads

z� = M+d ,where M+ = MT(MMT)−1 (3.7)

for the matrix M with full row rank and refers to the
minimal norm of ||z|| In order to compare the pseudo-
inverse solution and Eq. (3.4) we can describe the in-
version problem as[

W

M

]
z∗∗ =

[
δ
d

]
, (3.8)

where

[
W

M

]
has a suitable inversion and combines the

two-step strategy in one step. The two-step solution
and the MINOS solution provide both a unique so-
lution because of the uniqueness of the inverse and
pseudo inverse. Through d = Mz and the matrix iden-
tity MM+M = M (see Koch, 1999) we can obtain
Mz� = MM+Mz = Mz = Mz∗∗. If the upper part of
equation system (3.8) holds, i. e. Wz� = δ , both so-
lutions give the identical result. In addition, they are
identical under the condition δ = 0 and wi ∈ null(M)

with WT = [w1, ...,wi, ...,wn+m−1] , and null denoting
the nullspace of the matrix M. This special scenario
is given under the zero mean assumption designed by
Alber et al. (2000) when the weights that appear in the
same row of the matrix W are identical.
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4 Discussion and examples

4 Discussion and examples

4.1 General discussion

In Section 3 we derived explicit formulas for the recov-
ered undifferenced observations in terms of DD and
ZD. In all cases three corrections are applied to the
original observation, namely:

i) For common mode errors in all observations of the
satellite i. This correction includes mainly the satel-
lite clock error, but also satellite hardware delays,
and satellite specific parts of ionospheric and tropo-
spheric refraction that are common over the whole
network.

ii) For common mode errors in all observations of
the station J. This correction includes primary the
receiver clock error and receiver hardware delays
as well as station specific common parts of iono-
spheric and tropospheric refraction.

iii) For common mode errors in all observations of the
whole network. The specific combination of these
corrections yields that the signatures that are com-
mon to all observations of one satellite or common
to all observations at one station cannot be recov-
ered. Consequently, the recovered observations are
free of the receiver clock error in J and the satellite
clock error of the satellite i. This property is one
of the basic benefit of the strategy, since the clock
errors mask many line of sight effects, like slant tro-
spospheric delays or multipath effects.

4.2 Discussion of special properties

The recovering by the simplest model was evaluated.
From Eq. (3.5), the individual signature can only be
recovered to a fraction of fR = mn−n−m+1

mn of the orig-
inal signature. Assuming n = 10 satellites observed
at each station, then fR equals 45% in a two-station-
network (m = 2) and 85%(89%) for 20 (100) stations.
For even larger networks, fR is limited by the num-
ber of satellites n and tends to fR = 1− 1

n , e. g. for
n = 10, fR → 90%. Consequently, with Eq. (3.5) the
individual signature cannot be completely recovered.
In addition, we can see that the smaller the number
of stations or satellites, the smaller the percentage of
recovery, like e. g., for n = 5 satellites the maximum
recovery tends to 80%. Finally, all observations of the
network will be contaminated by the signature. The de-

gree of contamination depends on the relationship be-
tween each observation and the observation with signa-
ture. Four groups of observations can be distinguished:

1) The observation to satellite i at station J with indi-
vidual signature.

2) The observations to satellite i at any arbitrary sta-
tion L. It is affected by fC1 = − n−1

mn times the sig-
nature of the observation to satellite i at station J.

3) The observations to any arbitrary satellite k at any
station L. It is affected by fC2 =

1
mn times the sig-

nature of the observation to satellite i at station J.
4) The observation of any satellite k at station J. It is

affected by fC3 = −m−1
mn times the signature of the

observation to satellite i at station J.

Figure 4.1: Dependency of the recovery and contamination factors
on the network size (number of stations involved) for a
scenario of n = 10 common satellites visible at all sta-
tions.

Figure 4.1 shows the variation of the contamination de-
pending on the number of stations m involved in the
network and the relation of the observation k to the one
with the signature i. For large networks only observa-
tions at station J are affected, since fC1 and fC2 tend to
zero. If less than 10 satellites are visible, the recovery
is less successful and the contamination is increased.
In order to highlight the special properties of the re-
covering strategy, simulations were carried out. A for-
ward strategy is applied to assess how well signatures
can be recovered. We consider a network of 4 stations
(A,B,C, and D) observing 6 satellites (1,2, ...,6). For
each of the 24 observations, time series of undiffer-
enced observations are generated as a series of normal
distributed random variables. Since common mode
signatures cancel during double differencing, we trans-
form the simulated time series in such a way, that the
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data fulfill exactly the zero mean assumption epoch by
epoch. In a next step, we add an individual signature to
one observation time series, like e. g., variations due to
multipath in the observation of satellite 2 at station B.
Then, the DD are computed assuming a star-like net-
work with station A as reference station and satellite 1
as reference satellite.

Figure 4.2 shows that for our example, the sine-
oscillation of the original time series from satellite 2 at
station B can only partially be recovered. An estima-
tion of the amplitude gives a recovery factor of 62.3%
which is close to the theoretical value of 62.5%. All
observations at station B and all observations of satel-
lite 2 are distorted after recovering with a contamina-
tion factor of 12.5% and 20%, respectively. Please note
the phase shift of 180◦ in the sineoscillation. All other
observations are contaminated by 5% which is not vis-
ible from the data depicted in Fig. 4.1.
Corresponding results are obtained if the satellite
and/or station with individual signature are changed.
If the weight wi

J of the individual signature is small,
the factor of recovery can be improved. In this case

even for small networks (i. e. few stations) the factor
of recovery tends to fR → 1− 1

n , i. e. in our example to
83%. The contamination of the satellite 2 at all other
station tends to 0. However, the contamination factor
of all other satellites is unchanged, especially the con-
tamination factor fC3 of the observations at station B
does not vanish, i. e. in our example it is 12%. Al-
ber et al. (2000) proposed the selection of the weights
according to the satellites’ elevations. For small net-
works (i. e. station separation smaller than 10 km), the
individual weight for a particular satellite differs only
little, so that this selection equals an assignment of an
identical weight for the satellite.

5 Recovering real data series

Up to now we have considered only one individual sig-
nature. In real data however, different signatures may
occur that may have common mode parts. Starting
with ZD residuals from PPP processing, we compute
DD and reconstruct the ZD. Test data sets from two
networks are investigated. The first data set is from

Figure 4.2: Simulated undifferenced data for 4 stations observing the identical 6 satellites. Comparison of original (blue) and recovered (green)
simulated time series. The subplots are arranged in a matrix, each column refers to one station and contains the time series of all 6
satellites. Identical weights have been used.
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5 Recovering real data series

Figure 4.3: Comparison of the original (blue) and recovered (green) time series of undifferenced phase residuals from the LUH network when
using Eq. (3.5) for recovering. The subplots are organized in a matrix; each column contains the observations to 6 satellites at the
four stations MSD 2, MSD4, MSD6 and MSD8. Data from a 2 h segment (12:00–14:00 GPS time) on 7. July 2009

a very small network on the roof top of the Geodetic
Institute of Leibniz Universität Hannover (LUH net-
work). Four equally equipped and aligned stations
were used that are separated by 10 m each. The sec-
ond network is a subset of 6 stations of the EPN net-
work (Bruyninx et al., 2004). Both data sets were pro-
cessed by the IfE-developed PPP-software, Weinbach
and Schön (2011, 2015).

The evaluation of the recovering success is not straight
forward and may depend on the specific applications.
As a first quality measure, we propose the cumulative
histogram of absolute deviations of the recovered time

series xi
J(t) with respect to the original one xi

J(t). This
quantity is computed as

Δi
J = cumhist

{
Δi

J(t)
}

Δi
J(t) = |xi

J(t)− xi
J(t)| .

(5.1)

Due to the very short station separations in the LUH
network, many common mode systematic variations
exist in the original time series. From the discussion
in Sec. 4.1, it is obvious that these common patterns
cannot be recovered, they will be lost during doubled-
ifferencing. Consequently, the success of recovering
is small. For a network of EPN stations the situa-
tion is different since individual signatures exist due
to the larger station separations. For the LUH net-

Figure 4.4: Comparison of the original (blue) and recovered (green) time series of undifferenced phase residuals from the EPN subnetwork
when using Eq. (3.5) for recovering. The subplots are organized in a matrix; each column contains the observations to 5 satellites
at the six stations Hof, Leipzig, Dresden, Rakownik, Wettzell, and Erlangen.
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work, the deviation between original and the recov-
ered data is in 55%/85%/95% of all data points smaller
5 mm/10 mm/15 mm, respectively. Maximum devia-
tions of 37 mm occur. In addition, the recovery success
depends of the satellite: PRN 27 can be best recov-
ered, i. e. for 70% of the data, deviations smaller 5mm
are obtained, and maximum deviations of 13mm occur.
However, for PRN 17 in 70% of the data point devia-
tions smaller than 8 mm are obtained. Here maximum
deviations of 37 mm can be found.

The change of the weights in the recovering to an
elevation dependent weighting yields no significant
change of the recovery success.

6 Conclusions

In this paper, the explicit algebraic solution for recov-
ered ZDs from DDs is presented. The strategy ini-
tially proposed by Alber et al. (2000) is expanded. It
is shown that the recovered ZD of a particular satel-
lite at a distinct station can be expressed as the origi-
nal ZD plus three correction terms. They represent the
common mode errors of all observations of (1) the par-
ticular satellite, (2) at the distinct station, and (3) all
observations of the whole networks. The main benefits
of recovering ZD is that the ZD is consequently free
of common mode errors, especially the receiver and
satellite clock errors. This enables the analysis of sig-
natures with small amplitudes (i. e. from some mm to
a few cm), e. g. like variations in the tropospheric slant
delays or multipath patterns. However, it is mathemat-
ically shown that the recovery will never be perfect.
For an individual signature, we introduce recovery and
contamination factors. The recovery success depends
on the number of stations involved in the network and
the satellites in view at all stations. While the num-
ber of stations can be increased and thus the recover-
ing improved, the number of satellites is restricted and
currently limits the success of recovery from a theo-
retical point of view to a maximum of 90% recovery.
The operational use of multi GNSS will improve the
situation in future. Since the recovered ZD are linear
combinations of all original ZD, all recovered ZD will
be contaminated by an individual signature. The de-
gree of contamination depends on the relation of each
observation to the observation with individual signa-
ture and the number of stations and satellites in com-

mon view in the network. Considering real PPP resid-
uals as “true” ZD signatures, it could be shown that the
success of recovery increases if the signatures of the
observation time series of the identical satellite at dif-
ferent stations differ at most and meet the zero mean
assumption. Considering original and recovered ZD
as identical if their deviations are smaller than the GPS
carrier phase noise level of about 2 mm, in our example
about 50% of the time series of high elevation satellites
could be correctly recovered.
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