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Abstract

The question we would like to address is: Can any of the gravity anomalies (free-air, Fay, Bouguer, Helmert, etc.),
multiplied by the radius r, be continued downward, using the (only rigorous) Poisson approach?

1 The discussion of downward
continuation

(1) When talking about downward continuation of a
function f (r,Ω), we understand that we know the func-
tional value f (rt ,Ω) at the earth surface, i.e., at r = rt ,
and want to determine the functional value f (rg,Ω) at
the geoid i.e., at r = rg. Thus the function f (r,Ω) is to
be downward continued from the surface of the earth
to the geoid, through the topography, i.e., τ ≡ {rg ≤
r ≤ rt}.
(2) The Poisson downward continuation is, of course,
formulated under the assumption that the downward
continued function is, in the region τ, harmonic. In
other words, f (r,Ω) must satisfy the Laplace equation

∇2 f (r,Ω) = 0 , (1.1)

for r ∈ τ. For other reasons (existence of solution to the
BVP of geodesy) we will require that f (r,Ω) be har-
monic for all rg ≤ r, i.e., everywhere above the geoid.

(3) We have several choices as how to go about proving
that a gravity anomaly, multiplied by radius r, is har-
monic above the geoid. To show these choices, let us
recall that any gravity anomaly Δg∗ can be expressed
as a difference (Vaníček et al., 1999)

∀r,Ω : Δg∗(r,Ω) = g∗(r,Ω)− γ(r− z,Ω) , (1.2)

where g∗ stands for the gravity that comes from the
model pertaining to the particular gravity anomaly
(free-air gravity, Bouguer gravity, Helmert gravity,
etc.), γ is the normal gravity and z stands for the dis-
placement of the corresponding equipotential surfaces
belonging to the two gravities. As harmonicity is asso-
ciative (a sum of two harmonic functions is a harmonic
function) and r · γ(r− z,Ω) is known to be harmonic
above the geoid (by definition of the normal gravity) it
remains to be proved that also r · g∗(r,Ω) is harmonic
above the geoid.

(4) Alternatively, denoting the potential that generates
g∗ by V ∗ and the potential that generates γ by U , we
can also express the anomaly Δg∗ as

∀r,Ω : Δg∗(r,Ω) =|∇V ∗(r,Ω)|r=r

−|∇U(r,Ω)|r=r−z .
(1.3)

Then the proof of harmonicity of r ·Δg∗ reduces to the
proof of harmonicity of V ∗.

(5) Clearly, if V ∗ is generated only by masses inside
the geoid, as is the case with Helmert anomaly, or any
of the isostatically compensated anomalies, the har-
monicity of V ∗ - and thus that of the corresponding
Δg∗ multiplied by r – above the geoid is assured.
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(6) Can the potential V ∗ for the free-air, Bouguer, or
Fay anomalies be found? These anomalies are defined

in the literature only in a two-dimensional sense as

∀Ω : Δg∗(Ω) =g(rt ,Ω)

− ∂g∗(r,Ω)

∂r
|r=rg ·H(Ω)− γ(re,Ω) ,

(1.4)

where g(rt ,Ω) is the (observed) gravity on the earth
surface, H(Ω) is the orthometric height of the observed
gravity and re is the radius of the reference ellipsoid.
Can the real gravity g(rt ,Ω) on the earth surface and
the adopted vertical gradient ∂g∗(r,Ω)/∂r|r=rg of g∗ be
construed as defining either g∗(r,Ω) or V ∗(r,Ω) in a
three-dimensional way?

(7) Another way of approaching the problem is by
defining the disturbing potential T ∗ that corresponds
to the specific potential V ∗ in the following manner:

∀r,Ω : T ∗(r,Ω) =V ∗(r,Ω)−U(r,Ω) . (1.5)

Then, applying eqns. (1.2), (1.3) and the Bruns theo-
rem, we get

∀r,Ω : Δg∗(r,Ω) =
∂T ∗(r,Ω)

∂h
+

+
1
γ
· ∂γ

∂h
|r=r−z ·T ∗(r,Ω) ,

(1.6)

where h is the geodetic height reckoned along the nor-
mal to the reference ellipsoid. This equation is often
called the fundamental gravimetric equation. We note
that if T ∗(r,Ω) is harmonic in the desired domain, than

∀r,Ω : Δg∗′(r,Ω) =
∂T ∗(r,Ω)

∂r
− 2

r
·T ∗(r,Ω) (1.7)

multiplied by r is also harmonic (because harmonic-
ity is associative and because if T ∗ is harmonic then
r ·∂T ∗/∂r is automatically harmonic). It is possible to
transform Δg∗(r,Ω) into Δg∗′(r,Ω) by means of some
small correction, as a matter of fact by two smallish
ellipsoidal corrections (Vaníček et al., 1999).

(8) But can the disturbing potential T ∗(r,Ω) for the
free-air, Bouguer, or Fay anomalies be found? Later
on we found out that this cannot be done (Vaníček et
al., 2004).

(9) Another way of showing that r ·Δg∗(r,Ω) is a har-
monic function would be to carry out the Laplacian op-
eration on it and to show that the result is indeed iden-
tically equal to 0 in the domain of interest (above the
geoid). Can that be done?
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