KIT | KIT-Bibliothek | Impressum
Open Access Logo
DOI: 10.5445/IR/1000080339

Deformation and damage mechanisms of ODS steels under high-temperature cyclic loading

Chauhan, Ankur

Abstract (englisch):
The aggressive operating conditions of future nuclear power plants including generation IV fission and fusion reactors will be beyond those experienced in current nuclear power plants. Hence, the high irradiation resistance, the high creep resistance as well as the high fatigue strength are the main material properties that will be required to build future reactors with enhanced efficiency and safety. Due to their good resistance to swelling under irradiation and their improved mechanical properties, oxide dispersion strengthened (ODS) steels are promising structural material candidates. Nevertheless, a clear understanding of their deformation and damage mechanisms under various loading conditions (especially cyclic loading) are still lacking. In this scope, this work has been performed to obtain a better description of the deformation and damage mechanisms of a tempered martensitic Fe-9%Cr based ODS steel. This includes understanding of its monotonic behavior by testing under tensile loading, pure-fatigue/continuous cycling (PF/CC) response by examining within low-cycle fatigue (LCF) regime and creep-fatigue (CF) behavior by introd ... mehr

Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM)
Publikationstyp Hochschulschrift
Jahr 2018
Sprache Englisch
Identifikator URN: urn:nbn:de:swb:90-803397
KITopen ID: 1000080339
HGF-Programm 32.02.11; LK 01
Verlag Karlsruhe
Umfang IX, 243 S.
Abschlussart Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM)
Prüfungsdatum 16.02.2018
Referent/Betreuer Prof. J. Aktaa
Projektinformation MatISSE (EU, FP7, 604862)
Schlagworte ODS steel, Transmission electron microscopy (TEM), Electron backscattered diffraction (EBSD), Low cycle fatigue (LCF), Ferritic-martensitic steel, Fatigue and fracture analysis, Deformation mechanisms, Damage mechanisms, Dislocation, High temperature materials, Dispersion strengtheneing, Microstructure characterization, Powder metallurgy
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page