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Abstract 
A novel permutation-dependent Baire distance is introduced for multi-channel data. The optimal 
permutation is given by minimizing the sum of these pairwise distances. It is shown that for most 
practical cases the minimum is attained by a new gradient descent algorithm introduced in this 
article. It is of biquadratic time complexity: Both quadratic in number of channels and in size of 
data. The optimal permutation allows us to introduce a novel Baire-distance kernel Support Vec-
tor Machine (SVM). Applied to benchmark hyperspectral remote sensing data, this new SVM pro-
duces results which are comparable with the classical linear SVM, but with higher kernel target 
alignment. 
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1. Introduction 
The Baire distance was introduced to classification in order to produce clusters by grouping data in “bins” by [1]. 
In this way, they seek to find inherent hierarchical structure in data defined by their features. Now, if there are 
many different features associated with data, then it is reasonable to sort the feature vector by some criterion 
which ranks their contribution to this inherent hierarchical structure. We will see that there is a natural Baire 
distance associated to any given permutation of features. Hence, it is natural to ask for this task to be performed 
in reasonable time. In general, there is no efficient way of sorting n  variables, but if the task is to find a per- 
mutation satisfying some optimality condition, then often a gradient descent algorithm can be applied. In that 
case, the run-time complexity is decreased considerably. 

In this paper we introduce a permutation-dependent Baire distance for data with n  features, and we define a 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.63046
http://dx.doi.org/10.4236/am.2015.63046
http://www.scirp.org
mailto:patrick.bradley@kit.edu
mailto:andreas.braun@felis.uni-freiburg.de
http://creativecommons.org/licenses/by/4.0/


P. E. Bradley, A. C. Braun 
 

 
485 

linear cost function depending on the pairwise Baire distances for all possible permutations. The Baire distance 
we use depends on a parapmeter  , and we argue that the precise value of this parameter is seldom to be ex- 
pected of interest. On the contrary, we believe that it practically makes more sense to vary this parameter and to 
study the limiting case 0→ . Our theoretical result is that there is a gradient-descent algorithm which can  
find the asymptotic minimum for 0→  with a runtime complexity of ( )2O dn , where d  is the number of 
all data pairs. 

The Support Vector Machine (SVM) is a well known technique for kernel based classification. In kernel bas- 
ed classification, the similarity between input data is modelled by kernel functions. These functions are em- 
ployed to produce kernel matrices. Kernel matrices can be seen as similarity matrices of the input data in 
reproducing kernel Hilbert spaces. Via optimization of a Lagrangian minimization problem, a subset of input 
points is found, which is used to produce a separating hyperplane for the data of various classes. The final de- 
cision function is dependent only on the position of these data in the feature space and does not require esti- 
mation of first or second order statistics on the data. The user has a lot of freedom on how to produce the kernel 
functions. This offers the option of producing individual kernel functions for the data. 

As an application of our theoretical result, we introduce the new class of Baire-distance kernels which are 
functions of our parametrized Baire distance. For the asymptotically optimal permutation, the resulting Baire 
distance SVM yields results comparable with the classical linear SVM on the AVIS Indian Pine dataset. The 
latter is a well known hyperspectral remote sensing dataset. Furthermore, the kernel target alignment [2] re- 
presents an a priori quality assessment and favours our new Baire distance multi-kernel SVM constructed from 
Baire distance kernels at difference feature resolutions. This new multi-kernel combines in a sense our first ap- 
proach with the approach of [1], as it combines the different resolutions defined by their method of “bin” 
grouping. As our preliminary practical result, we obtain greater completeness in many of our clusters than with 
the classical linear SVM clusters. 

2. Ultrametric Distances for Multi-Channel Data 
After a short review on the ultrametric parametrized Baire distance, it is shown how to find for n  variables 
their asymptotically optimal permutation for a linear cost function defined by permutation-dependent Baire dis- 
tances. It has quadratic run-time complexity, if the data size is fixed. 

2.1. Baire Distance 
Let ,  x y  be words over an Alphabet A . Then the Baire distance is 

( ) ( ),, 2 x yd x y −=   

where ( ),x y  is the length of the longest common initial subword, as depicted in Figure 1. The length of a  

word is defined as the number of letters from A  (with multiple occurrences). The reason for choosing 1
2

 as 

the basis in the Baire distance is pure arbitrariness, at least to our opinion. Hence, 1
2

 can be replaced by any 

fixed   in the interval ( )0,1 . 
Definition 2.1. The expression 

 

 
Figure 1. Two words with common initial subword.               
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( ) ( ),, x yd x y = 

   

is the  -Baire distance. 
Later on, we will study the limiting case 0→ . 
Remark 2.2. The metrics d  are all equivalent in the sense that they generate the same topologies. 
The Baire distance is important for classification, because it is an ultrametric. In particular, the strict triangle 

inequality  

( ) ( ) ( ){ }, max , , ,d x y d x z d z y≤  

holds true. This is shown to lead to efficient hierarchical classification with good classification results [1] [3] 
[4]. 

Data representation is often related to some choice of alphabet. For instance, the distinction “Low” and “High” 
leads to { }0,1A =  and is used in [4]. The decimal representation of numbers yields { }0,1, ,9A =   for the 
method in [1]. A very general encoding with arithmetic flavour is given by subsets KA O⊆  inside the ring of 
integers inside a p -adic number field K , with all a A∈  different modulo   [5]. No knowledge of p -adic 
number theory is required for what comes after the following Example 2.3. However, the interested reader may 
consult [6] for a first application of such mathematics in classification. 

Example 2.3. The simplest example of p -adic number fields K  in data representation is given by taking 
K  as the field of 2-adic numbers  . Then 2KO =   is the ring of 2-adic integers, and as alphabet { }0,1A = . 
The numbers 0.1 represent the finite field 2  in a standard way which is often used when 2-adic numbers are 
written out as power series in 2, i.e. as finite or infinite binary numbers. 

The role of the parameter   in classification can be described as follows. Let X A⊆  be a set of words. 
Then X  defines a unique dendrogram ( )D X , and d  defines a metric dendrogram ( ) ( )( ),D X D X d=  .  

Observe that ( )D X  depends only on the metric d . By equivalence of the Baire metrics, dendrograms ( )D X  
are tree-isomorphic for all  . However, optimal classification results in general do depend on  , as has been 
observed in Theorem 2 of [7], where the result is formulated for p -adic ultrametrics. 

2.2. Optimal Baire Distance 

Given data X  and attributes ( )1, , np p p=   with possible values { }1, , mV v v=  , then a permutation nSσ ∈ , 

where nS  is the symmetric group of all permutations of the set { }1, , n , defines the expression 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2: np x p x p x p xσ
σ σ σ=   

i.e. a word with letters from the alphabet V . This yields the Baire distance ( ),d x yσ
 . 

In order to determine a suitable permutation for the data, consider the average Baire distance. A high average 
Baire distance will arise if there is a large number of singletons, and branching is high up in the hierarchy. On 
the other hand, if there are lots of common initial features, then the average Baire distance will be low. In that 
case, clusters tend to have a high density, and there are few singletons. From these considerations, it follows that 
the task is to find a permutation nSσ ∈  such that 

( ) ( )
,

,
x y X

E d x yσ σ

∈

= ∑   

is minimal, leading to the optimal Baire distance dσ
 . Any method attempting to fulfil this task must overcome 

the problem that !nS n=  is quite large for large n . 
Let ( )1, , nP p p=  , written as { }1, ,n . Expanding ( )Eσ   into powers of   yields: 

( ) ( )
0 0

        ,
k

n n

J
k J

E with m
ν

σ σ ν σ
ν ν σ

ν
α α

= = ∈Σ

= =∑ ∑ ∑                           (1) 

where ( )Jmσ  is the number of data pairs ( ),x y  with identical values exclusively in the set ( ) ( ){ }J j j Jσ σ= ∈ . 

The inner sum is taken over the set 
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( ){ }2 ,k PJ J k Jν λ νΣ = ∈ = =                              (2) 

where { }1 kJ j j= < < , and ( ) ( )1 1,
kj j nJ w w w wλ =     is the length of the common initial subword with 

the standard word 1 nw w  obtained by defining an ordering on any arbitrary alphabet { }1, , nA w w=  . 
Some first properties of k

νΣ  are listed in the following: 
1. k

νΣ = ∅  if kν >  
2. { }0

0Σ = ∅  

3. { } { } { }{ }{ }1
0 2 , 3 , , nΣ =   

4. { } { } { } { } { }{ }2
0 2,3 , , 2, ; 3, 4 , , 3, ; , 1,n n n nΣ = −    

5. { }{ }1, ,n
n nΣ =   

These properties follow from Equation (2) above, and they imply some first properties of σ
να :  

{ }( ) { }( ) { }( )0 , , ,
1 2 2

i i j i j k
i i j n i j k n

m m m mσ
σ σ σα ∅

≠ ≤ < ≤ ≤ < < ≤

= + + + +∑ ∑ ∑                         (3) 

( ) ( ){ }1 1 , , 1n nmσ
σ σα − −=



                                       (4) 

{ }1, ,n nmσα =


                                          (5) 

An important observation is that σ
να  depends only on the first 1ν +  permuted values ( ) ( )1 , , 1σ σ ν + . This 

will be exploited in the following section, where it is shown how optimal permutations σ  can be computed. 
The following two examples list all values of  

( ), :
k

k J
J

m
ν

σ
ν σα

∈Σ

= ∑  

in the case idσ =  for 3, 4n = . By effecting the permutation σ , one obtains the corresponding matrices 

( ),k
σ
να , and summing over the row labelled ν  yields σ

να . 

Example 2.4. Table for 3n =  and idσ = : 

{ } { } { }

{ } { }

{ }

{ }

2 3 2,3

1 1,3

1,2

1,2,3

3 0 1 2 3
0

1

2

3

n
m m m m

m m

m

m

∅

=
+

 

Example 2.5. Table for 4n =  and idσ = : 

{ } { } { } { } { } { } { }

{ } { } { } { }

{ } { }

{ }

{ }

2 3 4 2,3 2,4 3,4 2,3,4

1 1,3 1,4 1,3,4

1,2 1,2,4

1,2,3

1,2,3,4

4 0 1 2 3 4
0

1

2

3

4

n
m m m m m m m m

m m m m

m m

m

m

∅

=
+ + + +

+
 

2.3. Finding Optimal Permutations 
Let ∆  be the simplex of n  channels labelled by the set { }: 1, ,N n=  . The faces are given by subsets of N  
or, equivalently, by elements of the power set ( )NP . 
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The function  

( )
0

Eσ σ ν
ν

ν
α

≥

= ∑   

from Equation (1) is to be minimised, where nSσ ∈  is a permutation of the set N . A combinatorialtopo- 
logical point of view appears to be helpful in the task. Namely, view the simplex ∆  as a (combinatorial) 
simplicial complex. A star of an i -face x∈∆  is the set of ν -faces attached to x  with iν ≥  (including x  
itself). The weak topology on ∆  is generated by the stars. 

To ∆  is associated a graph ∆Γ  whose vertices are the faces, and an edge is given by a pair ( ),v v′  con- 
sisting of an i -face v  and an 1i + -face v′  such that v  is a face of v′ . 

The counts ( )Jm σ  appearing in Equation (1) define a function ( ):m N N→P , and this in turn yields weights 

on ∆Γ  in the following way: 

( )
( )

( )
Star

                   vertex weightsU
U v

w v m
∈

= ∑                           (6) 

( ) ( ) ( ) ( )( ),                    if , edge weightsw e w v w v e v v′ ′= − =                       (7) 

Observe that all edge weights are non-negative: 

( ) 0w e ≥  

because ( ) ( )Star Starv v′ ⊆ . The graph ∆Γ  is a directed acyclic graph with origin vertex v∅  and terminal 
vertex Nv . 

An injective path : Jv vγ ∅   in ∆Γ  has a natural  -length 

( ) ( )
1

0
w e

ν
µ

µ
µ

γ
−

=

= ∑   

where γ  is given by the sequence of edges ( )0 1, ,e eν − . 
Definition 2.6. A permutation nSσ ∈  is said to be compatible with an injective path : Jv vγ ∅  , if  

( ){ } 1\i ii J Jσ −=                                     (8) 

where γ  is given by the sequence of sets 0 , ,J J Jν= ∅ = .  
Lemma 2.7. If σ  is compatible with γ , then 

( )
1

0

ν
σ µ
µ

µ
γ α

−

=

= ∑   

where the path γ  is given as in Definition 2.6. 
Proof. Let ( )1,e v vµ µ µ+=  be an edge on γ  given by the pair of sets 1,  J Jµ µ+ . Then  

( )
( ) ( )1Star \Star

u
U v v

w e m
µ µ

µ
+∈

= ∑  

Assume that idσ =  is compatible with γ . Then  

( ) ( ) { }{ }1
0

Star \ Star 2 1, , , 1
n

N k

k
v v I I Iµ µ µµ µ+

=

= ⊆ ⊇ + ∈ = Σ/



                 (9) 

from which the assertion follows for idσ =  by summation over the edges along γ . For arbitrary σ  com- 
patible with γ  the proof is analogue to this case. � 

The following is an immediate consequence: 
Corollary 2.8. Let : Nv vγ ∅  , and σ  compatible with γ . Then  

( ) ( )N
Nm Eσγ + =    

The minimising ( )Eσ   can be found by travelling along a shortest path from v∅  to Ev . One method for 
finding such shortest paths is given by the well known Dijkstra algorithm. 
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Corollary 2.9. Dijkstra’s shortest path algorithm on ∆Γ  finds the global minima for ( )Eσ   with any given 

( )0,1∈ . 
The main problem with applying Corollary 2.9 is the size of ∆Γ  for large n . However, we believe that it is 

of practical interest to consider ( )Eσ   for sufficiently small  . We will show below that in this case, the 
following gradient descent finds the global minimum in an exhaustive manner. Given an edge ( ),e v w= , the 
expression ( )o e  will denote the origin vertex v , and ( )t e  means the terminal vertex w . 

Algorithm 2.10. (Gradient descent) Input. ( ), w∆Γ . 
Step 0. Set { }0 :V v∅=  and { }0 all edges of E ∆= Γ . 

Step 1. Collect in 1E  all edges e  with ( ) 0o e V∈  having smallest weight ( )w e , and set ( ){ }1 1:V t e e E= ∈ . 

Step 1ν > . Collect in Eν  all edges 1e Eν −∈  with ( ) 1o e Vν −∈  having smallest weight, and set  

( ){ }:V t e e Eν ν= ∈ . 

Output. The subgraph of ∆Γ  containing all paths with smallest sum of edge weights from v∅  to Nv .  
This algorithm clearly terminates after n  steps. The paths : Nv vγ ∅   correspond bijectively to a set   

of permutations nSσ ∈ . 
Lemma 2.11. Let σ ∈  be a permutation derived from gradient descent, ( )0,1∈ , and nSτ ∈  such that  
( )Eτ   is minimal. Then there exists a constant 0Cτ >  such that for all 0 Cτη< <  it holds true that 

( ) ( )E Eσ τη η≤ . 

Proof. We may assume that there exists some { }1, ,nν ∈   such that  

τ σ
ν να α<                                            (10) 

as otherwise :Cτ =   can be chosen. Assume now further that ν  be minimal with property (10). Still further, 
we may assume that there exists some { }1, , 1µ ν∈ −  such that  

σ τ
µ µα α<                                            (11) 

as otherwise σ  could not be derived by gradient descent. The reason is that at step ν  that method would 
descend down to ( )τ ν  instead of to ( )σ ν , since ν  is the first occurrence of property (10). Let now µ  be 
minimal with (11). All this implies that  

( ) ( ) ( )E t E t
P t

t

τ σ

τ µ

−
=  

is a polynomial with real coefficients such that ( )0 0Pτ > . Hence, by continuity of ( )P tτ , there exists a small 
neighbourhood of 0 on which ( )P tτ  is still positive. This neighbourhood defines the desired constant Cτ . 
� 

An immediate consequence of the lemma is that gradient descent is asymptotically the method of choice: 
Theorem 2.12. There exists a constant ( )0,1C∈  such that gradient descent on Γ  finds a global minimum 

for the cost function ( )Eσ   whenever 0 C< < .  
Proof. Let T  be the set of all nSτ ∈  for which ( )Eτ   is minimal with some fixed  . Then  

{ }: minC C Tτ τ= ∈  has the desired property. � 

The competitiveness of the gradient descent method is manifest in the following Remarks: 
Remark 2.13. Algorithm 2.10 is of run-time complexity at most ( )2O n .  

Proof. In the first step, there are n  choices for possible edges to follow, and after n  steps the possible 
permutations are found. Finding the minimal edge in step ν  can be done with complexity ( )O ν . This proves 
the upper bound. � 

Notice that the efficiency holds only for the case that the weights w  of ∆Γ  are already given. However, 
this cannot be expected in general. Therefore, we investigate here the computational cost for ( )w γ  for a gra- 
dient descent path γ  in ∆Γ . The following is immediate: 
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Lemma 2.14. Let 0: Jv vγ  . Then ( ) ( )1Star \ Starv vµ µ+  is a (combinatorial) simplex of dimension 
1n µ− − . 

We will write ( )e∆  for the simplex coming from an edge ( )1,e v vµ µ+=  as in Lemma 2.14. An immediate 
consequence is 

( )
( )

( )
x e

w e m x
∈∆

= ∑                                      (12) 

the computation of which seems at first sight exponential in the dimension of ( )e∆ . In particular, the weights 
of the n  very first edges ( )1,v v∅  look to be very cumbersome to compute. The problem is the function 

 
: 2Nm →  with its computational cost ( )O nd  for each 2NI ∈ , where 2d X= . Slightly more efficient is 

the function 

 

( ) ( ) ( ){ }2
1 2 1 2: 2    ,    , :Nc I x x x X i I i x i x→ = ∈ ∀ ∈ =

 
which counts all pairs 2x X∈  on which the channels in I  coincide. A trivial, but important observation is  

( ) ( )
J I

c I m J
⊇

= ∑                                       (13) 

as this allows to define a nice way of computing the weight ( )w e : 
Lemma 2.15. Let 2NI ∈  be a vertex. Then for any edge e  with origin ( )o e I=  and terminus ( )t e J=  

it holds true that  

( ) ( ) ( )w e c I c J= −  

Proof. This is an immediate consequence of the identity  

( ) ( ) ( )Star \ Stare I J∆ =  

which follows from Lemma 2.14. � 
Assume now that we are given for each pair ( ) 2

1 2,x x x X= ∈  the subset 2N
xI ∈  on which 1x  and 2x  

coincide. Let 2:Z X=  be the set of all pairs, and Y Z⊆ . Then define for 2NI ∈  the set of pairs  

( ) ( ) ( ){ }1 2:Y I x Y I x I x= ∈ =  

and its corresponding cardinality  

( ) ( ):Yc I Y I=  

together with the conventions  

( ) { }( ) ( ) { }( ), , : , , ,    , , : , ,Y YY i j Y i j c i j c i j= =     

Then the identity  

( ) ( ) ( ) ( ) ( ) ( ),Z Z Z i Z ic i c i j c c j− = ∅ −                               (14) 

is immediate. Its usefulness is that the right hand side is computed more quickly than the left hand side:  
Lemma 2.16 The cost of ( )Yc I  is at most ( )O Y I⋅ .  
Proof. Take each i I∈  and check coincidence of each y Y∈  in channel i . � 
Algorithm 2.17 Input. 2Z X= , N , ∆Γ , 0J = ∅ . 
Step 1. Find minimal edge { }:e i∅  with  

( ) ( ) ( )Z Zw e c c i= ∅ −                                   (15) 

minimal. Set ( ):Z Z i= , { }: \N N i= , { }1 0:J J j= ∪ . 

Step 1ν > . Repeat Step 1 with current values of Z  and N , if both sets are non-empty. Set { }1J J iν ν −= ∪  
with current value of i . 

Output. Path : Jµγ ∅  for some nµ ≤ .  
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Theorem 2.18 Algorithm 2.17 has run-time complexity at most ( )2O n d⋅ .  

Proof. The complexity in Step ν  is at most ( )( )O d nν ν⋅ −  for d Zν ν=  with the Zν  being the Z  at 

that step. The reason is that, according to (15) and Lemma 2.16, ( )w e  has complexity ( )O Z
ν

, and there are  

n ν−  edges going out of vertex vν . Bounding the cardinalities of Zν  by d  from above, and summing the 
costs yields the desired bound ( )2O n d⋅ . � 

Notice that the constant C  of Theorem 2.12 can be very close to zero. That would mean that the gradient 
descent method yields only a local minimum for most values of  . However, we believe that there is no poly- 
nomial-time algorithm which finds a minimum which is global for all  , or at least for all   below a pre- 
described threshold. 

3. Combining Ultrametrics with SVM 
Within this section the potential of integrating ultrametrics into state-of-the art classifiers—the Support Vector 
Machine (SVM) as introduced by [8]—is presented. SVM has been intensely applied for classification tasks in 
remote sensing and several methodological comparisons have been established in previous work of the authors 
[9] [10]. At first, our methodology is outlined. Secondly, a classification result for a standard benchmark from 
hyperspectral remote sensing is shown. 

3.1. Methodology 
Kernel matrices are the representation of similarity between the input data used for SVM classification. To 
integrate ultrametrics into SVM classification the crucial step is therefore to create a new kernel function [11] 
[12]. Instead of representing the Euclidean distance between input data, this new kernel function represents the 
Baire distance between them. To have an optimal kernel based on the Baire distance, at first an optimal per- 
mutation σ  is found as outlined in Section 2.3 by using Algorithm 2.17. The new kernel is thus given as 

( ) ( ) 1
, ,i j i jK x x d x xσ

σ

−
=                                     (16) 

where d dσ σ=   for some choice of ( )0,1∈  sufficiently small, and we call it a Baire distance kernel. 
This new kernel function could be used for classification directly. However, one feature of kernel based 

classification is that multiple kernel functions can be combined to increase classification performance [13]. The 
Baire distance is dependent on the resolution (bitrate) of the data. Two very similar features will maintain a large 
σ -value at high bit depths, while the value of σ  of less similar features will deteriorate at higher bit-rates. 

Thus, by varying the bit depth of the data, one obtains additional information about the similarity of the data. 
Therefore, a kernel is to be created which incorporates the information about similarity at each resolution. At 
first, data with 8-bit depth are used. An optimal 8σ  is computed as described in Section 2.3. Afterwards, a kernel 

8
Kσ  is computed, which includes the Baire distance between features for the given σ  at 8 bit. In the next step, 
data are compressed to 7-bit depth. Again, an optimal 7σ  is found, a new kernel is computed and the kernels are 
summed up. For bit depths { }1, ,8b∈   kernels are computed and summed to the multiple Kernel multK . 

( )
8

mult
1

,
b i j

b
K K x xσ

=

= ∑                                     (17) 

This multiple kernel also belongs to the new class of Baire distance kernels and has the advantage of in- 
corporating the similarity at different bit depths. It is compared against the standard linear kernel frequently used 
for SVM:  

lin ,i jK x x=                                        (18) 

where the bracket ,⋅ ⋅  denotes the standard scalar product on the Euclidean space into which the data is mapped. 

3.2. Application 
Within this section, a comparison on a standard benchmark dataset from hyperspectral remote sensing is 
presented, cf. also [14]. The AVIRIS Indian Pines dataset consists of a 145 145×  pixel hyperspectral image 
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with 220 spectral channels (Figure 2). It is well known due to the complexity of the classification problem it 
represents. The 16 land use classes consisting mainly of crop classes are to be separated. These are difficult to 
separate since they are spectrally very similar (due to the early phenological stage of the vegetation). 

Although our implementation of Algorithm 2.17 is capable to process 220 features, only the first six principal 
components are considered. The reason is that there are two sources of coincidences. The first is coincidence 
due to spectral similarity of land cover classes (signal), the second is coincidence due to noise. For this work, 
only the coincidence of signal is relevant. Since the algorithm is not fit to distinguish between the two sources, 
only the six first principal components are considered relevant. They explain 99.66% of the sum of eigenvalues 
and are therefore believed to contribute considerably to coincidences due to signal and only marginally to 
coincidence due to noise. 

At first, the dataset is classified with a linear kernel SVM as given in Equation (18). A visual result can be 
seen in Figure 3 (left). The overall accuracy yielded is 53.5% and the κ -coefficient is 0.44. As can be seen, the 
dataset requires more complex kernel functions than linear ones. Then, a multiple kernel multK  of the form (16) 
is computed as described in Section 3.1. The dataset is again classified using an SVM, and a visual result can be 
seen in Figure 3 (right). The overall accuracy yielded is 53.7% and the κ -coefficient is 0.45. 

 

 
Figure 2. Hyperspectral image.                     

 

   
(a)                                         (b) 

Figure 3. (a) Linear SVM; (b) Multi-Baire-kernel SVM.                                     
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The overall accuracy is the percentage of correctly classified pixels from the reference data. The κ -co- 
efficient is a statistical measure of the agreement, beyond chance, between the algorithm’s results and the 
manual labelling in the reference data. Both are global measurements of performance. 

As can be seen, both results have a lot of resemblance in the major part. However, the result produced with 
the linear kernel tends to confuse the brown crop classes in the north with green pasture classes. On the other 
hand, the linear kernel SVM better recognizes the street in the Western part of the image. 

The kernel target alignment between these kernels and the ideal kernel  

( )ideal ,,
i ji j L LK x x δ=  

was computed. The ideal kernel is defined via the label L  associated to each pixel, and has value 1 if the labels 
coincide, otherwise its value is zero. Note that the kernel target alignment proposed by [2] represents an a-priori 
quality assessment of a kernel’s suitability. It is defined as  

( ) ideal
ideal

ideal ideal

,
, :

, ,
G

G G

K K
A K K

K K K K
=

⋅
 

where  

( ) ( )
, 1

, , ,
n

i j i jG
i j

M N M x x N x x
=

= ∑  

denotes the usual scalar product between Gram matrices. 
The kernel target alignment takes values in the interval [ ]1, 1− +  with one being the best. The kernel target 

alignment of linK  was 0.37. The multK  yielded a higher alignment of 0.47 thus giving reason for expecting a 
higher overall performance of the latter. The producers’ accuracies ( )pa  and users’ accuracies ( )ua  for the 
individual classes are shown in Table 1 and Table 2. 

The users’ accuracy shows what percentage of a particular ground class was correctly classified. The pro- 
ducers’ accuracy is a measure of the reliability of an output map generated from a classification scheme which 
tells what percentage of a class truly corresponds to a class in the reference. Both are local (i.e. class-dependent) 
measurements of performance. 

 
Table 1. Hyperspectral image (channels R:25, G:12, B:1).                                                       

Value C1 C2 C3 C4 C5 C6 C7 C8 

pa(Kmult) 0 46.6 12.6 1.2 17.5 82.9 0 99.1 

pa(Klin) 0 39.9 0.8 2.4 49.1 80.4 0 99.1 

pa(Kmult) − pa(Klin) 0 6.7 11.8 −1.2 −31.6 2.5 0 0 

ua(Kmult) 0 43.0 33.4 20.0 74.3 72.8 0 75.8 

ua(Klin) 0 38.9 45.4 28.5 57.1 78.5 0 84.5 

ua(Kmult) − ua(Klin) 0 4.1 −12.0 −8.5 17.2 −5.7 0 −8.7 

 
Table 2. Hyperspectral image (continued).                                                                     

Value C9 C10 C11 C12 C13 C14 C15 C16 

pa(Kmult) 0 10.1 80.6 4.6 90.5 90.2 15.4 63.6 

pa(Klin) 0 0.1 88.0 1.1 91.8 86.5 15.0 84.8 

pa(Kmult) − pa(Klin) 0 10.0 −7.4 3.5 −1.3 3.7 0.4 −21.2 

ua(Kmult) 0 38.9 46.3 32.2 54.0 68.8 45.5 93.3 

ua(Klin) 0 50.0 43.7 12.8 56.6 72.5 65.5 86.1 

ua(Kmult) − ua(Klin) 0 −11.1 2.6 19.4 −2.6 −3.7 −20.0 7.2 
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As had to be expected, each classification approach outperformed the other for some classes. The approach 
based on multK  yields higher producers’ accuracy values than linK  in seven cases. For five cases, linK  is su- 
perior. For users’ accuracy, multK  is superior in five cases, linK  in eight cases. 

Since producers’ accuracy outlines which amount of pixels from the reference are found in the classification 
(completeness) while users’ accuracy outlines which amount of the pixels in one class are correct, it can be 
concluded, that the proposed approach produces more complete results for many classes than with the standard 
linear kernel approach. Of course, due to the low overall accuracy values yielded, the approach should be ex- 
tended by applying e.g. Gaussian functions over the similarity matrices. 

4. Conclusion 
Finding optimal Baire distances defined by permutations of n  variables can be done in quadratic time, if the 
data size is fixed and a gradient descent algorithm is used. For the Baire distance parametrised by the base  , 
this becomes the global minimum if   is sufficiently small. In practice the outcome will be not a unique 
permutation, but a more or less large set   of optimal permutations σ . The σ  can be viewed in a natural 
way as words over some alphabet. This implies that the symmetric group nS  of the n  variables has a well- 
defined dendrogram ( )nD S  in which we can view   as a cluster. The common initial word w  of   de- 
fines a ranking of ( )w n= ≤    of the variables which we conjecture to contain the most relevant inherent 
hierarchical information of the dataset X , after removing variables with very small variation. We expect further 
hierarchical information about X  by finding optimal classifications of   with respect to the ultrametric 
defined by its dendrogram ( )D  . Apart from theoretically providing an algorithm which finds the optimal 
permutation, the applicability of the methodology was demonstrated. To this end, an initial experiment to in- 
tegrate the Baire distance into state-of-the-art SVM classification is provided. By defining a new multiple kernel 
function based on Baire distances, classification accuracy on a benchmark dataset is increased. This finding 
emphasizes the usefulness of the optimal Baire distance in classification. In future work, Gaussian kernels based 
on the Baire distance will be studied. Furthermore, unsupervised classification algorithms using the permu- 
tation-dependent ultrametrics will be dealt with in future work. 
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