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Abstract

In many engineering disciplines, abstract models are used to describe systems
on a high level of abstraction. On this abstract level, it is often easier to gain
insights about that system that is being described.

When models of a system change – for example because the system itself has
changed – any analyses based on these models have to be invalidated and
thus have to be reevaluated again in order for the results to stay meaningful.
In many cases, the time to get updated analysis results is critical. However,
as most often only small parts of the model change, large parts of this
reevaluation could be saved by using previous results but such an incremental
execution is barely done in practice as it is non-trivial and error-prone.

The approach of implicit incrementalization offers a solution by deriving an
incremental evaluation strategy implicitly from a batch specification of the
analysis. This works by deducing a dynamic dependency graph that allows to
only reevaluate those parts of an analysis that are affected by a given model
change. Thus advantages of an incremental execution can be gained without
changes to the code that would potentially degrade its understandability.

However, current approaches to implicit incremental computation only sup-
port narrow classes of analysis, are restricted to an incremental derivation
at instruction level or require an explicit state management. In addition,
changes are only propagated sequentially, meanwhile modern multi-core
architectures would allow parallel change propagation. Even with such
improvements, it is unclear whether incremental execution in fact brings
advantages as changes may easily cause butterfly effects, making a reuse of
previous analysis results pointless (i.e. inefficient).

This thesis deals with the problems of implicit incremental model analyses
by proposing multiple approaches that mostly can be combined. Further, the
thesis suggests a new formalism how this incrementalization system can be
used to empower incremental, uni- or bidirectional model transformations.
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Abstract

To define and ensure the correctness of the resulting incremental evaluation
strategy, the thesis presents a formalization of the incrementalization process
using functors from category theory.

A first approach as a direct consequence of the formalization allows an
incrementalization at the level of method calls such that often used methods
can be annotated with an optimized incremental execution algorithm. By
extending the functor to distributed computing, memory problems can be
resolved.

A second approach simplifies dynamic dependency graphs by generalizing
model changes and thus summarizing parts of the analysis using several
strategies. The selection of strategies gives the developer a chance to adjust
the incrementalization process to a given scenario. Alternatively, an auto-
mated design space exploration can be performed to find a (Pareto-)optimal
configuration with regard to memory consumption and response time of the
analysis to a given model change.

The combination of these approaches improves the incrementalization pro-
cess such that it never gets worse than batch execution but in many cases
gains significant speedups. Generic operators to be reused in many analy-
ses can be optimized by choosing appropriate algorithms whereas complex
domain logic can be optimized for incremental execution by the incremen-
talization system. The implicit nature of the overall approach allows these
improvements to happen automatically and transparent to the developer of
the analysis.

Although the presented approach is Turing-complete and therefore univer-
sally applicable, especially in the context of model-driven engineering a
special class of artifacts deserves a special investigation as they are usually
hard to describe with general-purpose languages: Model transformations.
Therefore, we propose a new formalism and a language to describe uni- or
bidirectional model transformations in a way that they can profit from the
incrementalization system for analyses. For this formalism, we can proof a
correct and hippocratic synchronization process.

All approaches have been implemented and integrated into the .NET Model-
ing Framework that supports developers in model-driven engineering. The
advantages of all approaches regarding performance are validated using
seven case studies. In particular, we use five case studies from the Trans-
formation Tool Contest (TTC) from the years 2015 to 2017 for which also
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Abstract

solutions using other tools are available. The expressiveness of the model
transformation approach is validated by a higher-order transformation from
the commonly used ATL transformation language into the language pre-
sented in this thesis. Using this transformation, also the performance of
model transformations is compared to ATL for a number of model transfor-
mations.

The results of the case studies show that especially for the application of the
proposed incrementalization systems to model transformation, significant
speedups compared to classic model transformations, but also compared to
existing incremental model transformation languages can be achieved, often
by multiple orders of magnitude. In particular, the case studies suggest that
time to propagate a change in the source model is often independent from
the size of the input model. Especially for large input models, this causes
large speedups.

The incrementalization of a model analysis is always bound to the metamodel.
However, metamodels used in practice only use a subset of the commonly
used modeling standard MOF. This sometimes causes a high accidental com-
plexity of the metamodel and necessitates a range of analyses. An extension
of the modeling language can help to make several model analyses obsolete
an simplify others, thereby also improving the performance characteristics
of these analyses.
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Zusammenfassung

In vielen Ingenieursdisziplinen werden Modelle verwendet, um Systeme
verschiedenster Art auf einem hohen Abstraktionsgrad zu beschreiben. Auf
diesem Abstraktionsgrad ist es häufig einfacher, Aussagen über den Zustand
des Systems zu treffen.

Wenn sich Modelle eines Systems ändern – beispielsweise, weil sich das
System selbst geändert hat – müssen Analysen auf Grundlage dieses Mo-
dells jedoch neu berechnet werden, um weiterhin gültig zu sein. In vielen
Fällen ist diese Neuberechnung der Analyseergebnisse zeitkritisch. Da sich
oft nur kleine Teile des Modells ändern, könnten zwar große Teile des letz-
ten Analysedurchlaufs durch eine inkrementelle Ausführung der Analyse
wiederverwendet werden, in der Praxis ist eine solche Inkrementalisierung
aber nicht trivial und oft fehleranfällig.

Eine Lösungsmöglichkeit für dieses Problem bietet der Ansatz der impliziten
Inkrementalisierung, bei der ein inkrementeller Algorithmus für eine gegebe-
ne Analyse aus der Batch-Spezifikation abgeleitet wird. Aus der Spezifikation
wird ein dynamischer Abhängigkeitsgraph konstruiert, der es erlaubt, nur
die Teile einer Analyse neu auszuwerten, die von einer Änderung tatsäch-
lich betroffen sind. Damit lassen sich Vorteile einer Inkrementalisierung
nutzen, ohne dass der Code angepasst werden muss und die Lesbarkeit des
Analysecodes leidet.

Leider unterstützen derzeitige Verfahren für implizite Inkrementalisierung
nur eine bestimmte Klasse von Analysen, sind auf eine Inkrementalisierung
auf Ebene von einzelnen Instruktionen beschränkt oder benötigen eine ex-
plizite Zustandsverwaltung. Auch mit diesen Verbesserungen ist unklar, in
welchen Fällen eine Inkrementalisierung Vorteile bringt, da in einigen Sze-
narien Änderungen Schmetterlingseffekte verursachen können und eine
Wiederverwertung des letzten Analysedurchlaufs keinerlei Beschleunigungs-
potential hat.
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Zusammenfassung

Diese Dissertation behandelt diese Probleme bei impliziter Inkrementali-
sierung von Modellanalysen mittels mehrerer Verfahren, die größtenteils
kombinierbar sind. Desweiteren wird ein neuer Formalismus vorgestellt,
mit dessen Hilfe Inkrementalisierungssysteme auch für uni- oder bidirek-
tionale Modelltransformationen einsetzbar sind. Um die Korrektheit der
entstehenden inkrementellen Modellanalysen zu definieren und zu zeigen,
wird Inkrementalisierung in Kategorientheorie als Funktor beschrieben.

Ein erstes Verfahren ermöglicht als direkte Konsequenz der formalen Darstel-
lung die Inkrementalisierung auf Ebene von Methodenaufrufen, sodass für
häufig verwendete Operatoren eine optimierte Inkrementalisierung zur Ver-
fügung gestellt werden kann. Durch Erweiterung des Funktors auf Verteilung
lassen sich auf ähnliche Weise auch etwaige Speicherprobleme lösen.

Ein zweites Verfahren vereinfacht die entstehenden dynamischen Abhän-
gigkeitsgraphen, indem Teile der Analyse durch eine generalisierte Betrach-
tung von Modelländerungen mit mehreren Strategien zusammengefasst
werden können. Die Auswahl der Strategien ermöglicht dem Entwickler eine
Anpassung der Inkrementalisierung auf einen konkreten Anwendungsfall.
Alternativ kann für ein gegebenes Szenario auch durch automatische Ent-
wurfsraumexploration eine (Pareto-) optimale Konfiguration hinsichtlich
Speicherverbrauch und Antwortzeit der Aktualisierung eines Analyseergeb-
nisses nach einer Modelländerung gefunden werden.

Die Kombination dieser Verfahren ermöglicht es, die Performanz von Inkre-
mentalisierungen so zu verbessern, dass diese bis auf einmalige Initialisierung
nie schlechter ist als die batchmäßige Wiederholung der Analyse, in vielen
Fällen aber teils deutlich schneller sein kann. Generische Operatoren, die in
vielen Modellanalysen wiederverwendet werden, können für die Inkrementa-
lisierung durch geeignete Algorithmen spezifisch optimiert werden, während
komplexe Domänenlogik durch das System optimiert werden kann. Durch
den impliziten Ansatz geschehen diese Verbesserungen vollautomatisch und
transparent für den Entwickler der Modellanalyse.

Obwohl der so geschaffene Ansatz Turing-mächtig und somit universell
einsetzbar ist, gibt es doch gerade in der modellgetriebenen Entwicklung
eine Klasse von Artefakten, die eine besondere Betrachtung erfordern, da
sie sich im Allgemeinen nur schwer mit gewöhnlichen objekt-orientierten
Sprachen beschreiben lassen: Modelltransformationen. Daher wird in dieser
Dissertation ein neuer Formalismus und eine darauf aufbauende Sprache
vorgestellt, die Modelltransformationen so beschreiben, dass diese leicht mit
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Zusammenfassung

Hilfe eines Inkrementalisierungssystems inkrementell ausgeführt werden
können. Die Synchronisierung einer Modelländerung ist hierbei bewiesen
korrekt und hippokratisch.

Alle Verfahren wurden implementiert und in das .NET Modeling Framework
integriert, welches Entwickler auf der .NET Plattform bei der modellgetriebe-
nen Entwicklung unterstützen soll. Die entstandenen Vorteile aller Verfahren
hinsichtlich Performanz werden anhand von sieben Fallstudien in verschie-
denen Domänen validiert. Insbesondere werden hierzu fünf Fallstudien des
Transformation Tool Contests (TTC) der Jahre 2015 bis 2017 herangezo-
gen, für die auch mit anderen Ansätzen verfasste Lösungen zur Verfügung
stehen. Die Ausdrucksmächtigkeit der Modelltransformationssprache wird
durch eine Transformation der in der modellgetriebenen Entwicklung weit
verbreiteten Transformationssprache ATL in die neu geschaffene Transfor-
mationssprache validiert. Mithilfe dieser Transformation wird weiterhin die
Ausführungsgeschwindigkeit von Modelltransformationen mit der von ATL
in einigen Modelltransformationen verglichen.

Die Ergebnisse aus den Fallstudien zeigen gerade bei der Anwendung des In-
krementalisierungssystems aufModelltransformationen deutliche Performance-
Steigerungen im Vergleich zu herkömmlichen Modelltransformationen, aber
auch gegenüber anderen inkrementellen Modelltransformationssprachen
zeigt der vorgestellte Ansatz deutliche Beschleunigungen, teils um mehrere
Größenordnungen. Insbesondere weisen die Fallstudien darauf hin, dass die
benötigte Zeit für die Propagation von Änderungen des Eingabemodells
in vielen Fällen unabhängig von der Größe des Eingabemodells ist. Gera-
de bei großen Eingabemodellen kommen so sehr hohe Beschleunigungen
zustande.

Die Inkrementalisierung einer Analyse ist dabei immer an das Metamodell ge-
bunden. In der Praxis verwenden aber die meisten eingesetzten Metamodelle
nur den eingeschränkten Modellierungsstandard EMOF, der teilweise zu
einer unnötigen Komplexität des Metamodells führt und viele Analysen über-
haupt erst notwendig macht. Eine Erweiterung des Modellierungsstandards
kann hier einige Klassen von Modellanalysen komplett überflüssig machen
und andere Analysen deutlich vereinfachen, sowie auch die Performance der
entsprechenden Analyse beschleunigen.
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1. Introduction

The goal of this chapter is to motivate and explain the purpose and structure
of this dissertation. Section 1.1 introduces the motivation on a high level.
Section 1.2 discusses the working hypotheses under which the dissertation is
created. Section 1.3 lists the research questions tackled. Section 1.4 lists the
core contributions made in this thesis. Section 1.5 gives an overview how
these contributions are validated. Section 1.6 demonstrates the contributions
of this thesis in an example taken from the railway domain. Section 1.7
explains the structure of the remaining document.

1.1. Motivation

A common goal in many engineering disciplines is to create abstract models
of a system in order to reason on properties of the modeled system by
analyzing the model. Nowadays, many of these analyses are supported by
software. As the systems evolve, the models are changed and the analyses
may have to be recomputed. These analyses include simple validations, but
also more complex ones such as simulations.

For many analyses, even little changes have a dramatic effect so that keeping
prior intermediate results does not yield any benefits. For others, surprisingly
large benefits can be drawn from incremental execution. An early example
of the latter is digital circuit simulation. There, incremental simulation yields
orders of magnitude in performance [45, 178] by introducing buffers to
save some intermediate results to speed up response times from a model
change to updated analysis results. In many application areas these response
times to get updated analysis results for a given model change are critical.
Examples include the area of self-adaptive systems where it is important to
reconfigure the system as fast as possible before it crashes or breaks service
level agreements [44, 55]. Hence, this response time is the most common
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measurement for evaluating approaches in the area of self-adaptive systems
[198].

Saving such intermediate results for future requests on changed input models
and their invalidation is called incrementalization. The goal of this process
is that ideally only those parts of an analysis have to be recomputed that are
affected by a change of parts of the underlying models. This may lead to an
improved performance if the efforts to invalidate those analysis parts are
smaller than rerunning the analysis from scratch. Similar to parallelization
and distributed computing, incrementalization can be thought of as a tech-
nique to improve the scalability of an analysis1. However, while the possible
speedup that can be gained from parallelism and distributed computing is
bound by the used resources2, incrementalization in theory offers speedups
dependent on the size of the analyzed data: Ideally, the response times to
adjust the result of an analysis is dependent only on the size of a model
change rather than on the size of the entire model3. On the other hand,
saving intermediate results costs memory and time to traverse this memory
or keep these intermediate results up to date. Therefore, the speedup that
can be achieved for practical problems is unclear.

The baseline for this comparison is a batch implementation where only the
analysis result is stored and invalidated for every model change. Analysis
and underlying models are not divided in this batch incrementalization.
Therefore, the mapping which parts of the analysis need to update for which
parts of the model is trivial. In addition to the fact that the entire model
has to be reevaluated for every model change, this approach also has the
disadvantage that complex analysis results are complex to compare since the
analysis will usually create entirely new result objects. However, if otherwise
small changes of the underlying models may cause to reevaluate large parts
of the analysis in a butterfly-effect, the batch incrementalization may be the

1 Another technique to improve the performance of an analysis is forecasting, where some
calculations are made in advance to accelerate future analysis runs. However, there are only
few problems where forecasting solutions exist. Thus, forecasting is not in the focus of this
thesis.
2 Amdahl’s law [6] provides a more precise upper bound for the speedup that can be achieved
with parallelism but it in some cases it is not even obvious how this speedup can be achieved.
3 Giese and Wagner even define incremental model transformation engines through their
performance characteristics: A model transformation is fully incremental if the response
time for a model change only depends on the change size and effectively incremental, if the
response time depends strictly less than linear on the overall model size [74].
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best choice. If such changes exist but occur rather seldom, risking them may
produce better results in the average case. Therefore, it is also not clear how
to incrementalize a given analysis.

Even if the incrementalization strategy is clear, manual incrementalization is
a non-trivial and error-prone task. One has to identify a suitable partition how
analysis and underlying models can be divided. Upon changes of underlying
model parts, the right intermediate results of the analysis (parts) have to
be invalidated. This opens the gates for bugs since it is very easy to forget
cases in which intermediate results need to be invalidated4. In any case,
a manual incrementalization is quite costly to develop. Furthermore, the
management of intermediate results may conceal the analysis code and
degrade understandability. As a possible consequence, domain experts may
no longer be able to proofread the code. This may lead to undetected bugs in
the analysis and hence wrong analysis results implying wrong conclusions
on the real system. Besides correctness, the understandability is crucially
important. Currently, understanding existing code makes up almost half of
software maintenance costs [22]. Maintenance in turn is the main driver for
overall project costs [193].

A promising approach to tackle these problems is implicit incrementality. An
implicit incrementalization system decides based on a batch specification of
the analysis which intermediate results should be saved and manages their
invalidation, typically by tracking its dependencies. Such systems exist either
for general-purpose languages capable of expressing any analysis [43] or for
specific classes of analyses such as incremental queries [217, 25], incremental
pattern matching [26] or even incremental model transformations [74, 73].
These specialized incremental approaches limit their applicability to a given
class of analyses and use abstractions common to these analyses to make
incremental execution more efficient. Meanwhile, existing general-purpose
approaches are limited in their applicability as there is currently no approach
that can handle Essential Meta Object Facility (EMOF) models.

4 Several authors [118, 60, 18] have claimed that a third of the code base of Adobe desktop
applications concern event handlers to user actions. These event handlers would make 50%
of the defects. Edwards even denotes this as a Callback Hell. However, while I agree on the
difficulty of event handler management, these authors all seem to draw from a keynote talk
by Sean Parent at the OOPSLA 2006, which is no longer online accessible.
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As of today, most existing incrementalization systems divide analyses using
the instruction set of the programming language in which the analysis is
specified and divide the underlying models in their individual model ele-
ments5. When the analysis is run initially, the system tracks the execution
in a graph data structure called Dynamic Dependency Graph (DDG) and
uses this graph to propagate changes. The expressiveness of such an ap-
proach, but also the size of a DDG and hence the memory footprint of such
an approach is determined very much by the level of abstraction offered by
the programming language. Because the incrementalization operators are
limited to the instruction set, this technique is referred to in the remainder
of the thesis as instruction-level6.

Incrementalization systems exist both for Turing-complete programming
languages such as OCaml, Rust and Python [43, 84] but also for specialized
languages such as IncQuery [26] for graph pattern matching. While the
instructions of the former are on a very low level such as adding two numbers
or a conditional expression, the primitives of a language for graph pattern
matching are on a much higher abstraction level such as joining two partial
pattern matches. This means that much less primitives are required for an
analysis and therefore a much smaller DDG suffices. Here the problem is
rather that they are restricted to certain classes of analysis as the underlying
formalisms are not Turing-complete. This is problematic especially when
analyses have to be modified such that they fall out of this scope.

In a batch specification of model analyses, these problems are mitigated
by internal composition, i.e. developers may use libraries and frameworks
that raise the level of abstraction to specify analyses. As an example, math
libraries such as the Intel MKL7 lifts the level of abstraction when working
with math operators. At the same time, it is massively optimized for perfor-
mance. In a similar way, it would be desirable to give library or framework
developers a tool at hand such that they tune their libraries and frameworks
for incremental execution such that they can get a comparable efficiency like
specialized incrementalization systems without losing the general-purpose
applicability of a Turing-complete functional programming language.

5 Some approaches such as Adapton or Self-adjusting computation are originally defined on
immutable data and are not aware of models at all but these approaches have a granularity
similar to individual model elements.
6 An exception to this are Traceable Data Types [3] which are discussed in Section 11.
7 https://software.intel.com/en-us/mkl, retrieved 06 Sep 2017
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Not only the expressiveness of the language used for model analyses is impor-
tant. Meyerovich and others have shown that programmers do not appreciate
to change their primary programming language [149], thus creating a new
language causes a language adoption problem. Furthermore, Mohaghegi and
others found that in model-driven engineering, an important factor for the
adoption of these techniques in industry is the availability of tools [152] but
multiple studies reported that this tool support is lacking [188, 153]. On the
contrary, modern mainstream general-purpose programming languages are
already on a high level of abstraction. Akehurst and others even state that
C# makes the Object Constraint Language (OCL) redundant [5]. According
to many indices on the popularity of programming languages such as the
TIOBE index8 or the IEEE Spectrum9, C# is one of the most widespread
programming languages in the world. Therefore, it is appealing to use this
language as a basis for incrementalization, in particular the purely functional
part of C# that is used by Akehurst and others in their discussion.

However, even though functional programming is theoretically capable to
express all kinds of model analyses or other artifacts built on top of them,
general-purpose languages are not always an appropriate tool. An impor-
tant example of such model analyses are model analyses implemented as
model transformations [184]10. Specialized incrementalization systems for
model transformations in the form of incremental model transformation lan-
guages exist, based on Triple Graph Grammars (TGGs) [75, 72] and textual
transformation languages [122], but it is unclear whether general-purpose
incrementalization systems can be extended in this direction. Even though
model transformations have some characteristics that make them hard to
specify in general-purpose languages, other parts such as helper functions
or predicates are often specified in functional expression languages and thus
their incrementalization yield the same problems. Therefore, reusing general-
purpose incrementalization systems for these kinds of model analyses, in
particular model transformations, would be highly appreciated.

Model transformations are also very important for any other model anal-
yses as they enable external composition: An analysis may consist of a

8 https://www.tiobe.com/tiobe-index/, retrieved 06 Sep 2017
9 https://spectrum.ieee.org/computing/software/the-2017-top-programming-

languages, retrieved 06 Sep 2017
10 This statement is almost a matter of course in the model-driven community but is hardly
supported by empirical studies.
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1. Introduction

transformation of the input model to a different metamodel and a chained
analysis on that metamodel. For example, to analyze whether a system is free
of deadlocks, one often transforms the model into Petri nets and analyzes
this property there. However, an incrementalization of such a composed
analysis always requires an incrementalization of the model transformation
to Petri nets. Otherwise, the analysis would always have to operate on an
entirely new input model which makes it hard to identify what has actually
changed.

In order to avoid the language adoption problem and the tool availability
problem for model analyses, the thesis in particular uses the approach to use
an internal Domain Specific Language (DSL) [67] for model transformation.
This approach has been followed by multiple tools in the past [50, 70, 92,
110, 129] for various different reasons, but none of these languages supports
incremental change propagation.

An implicit incrementalization system can only restructure the analysis in
the boundaries of the underlying metamodel. However, some inefficiencies
and even some analysis needs may come from lacking capabilities of the
used meta-metamodels: The probably most common meta-metamodel is
Ecore, an implementation of the EMOF standard that only is a subset of the
Meta Object Facility (MOF) standard. In particular, Ecore does not support
redefinitions. The usage of redefinitions could simplify metamodels in such
a way that certain classes of analyses such as several constraint validation
checks are no longer required as can be guaranteed by the target platform
type system.

Furthermore, several metamodels, in particular architecture-description lan-
guages, contain a high accidental complexity caused by the inapplicability
of strict metamodeling techniques to clearly represent instance-of relations
between different model elements [135]. This leads to more complex anal-
yses that could be simplified significantly if the instantiation relation was
reflected in the metamodel.

Approaches that overcome this limitation are usually referred to as Deep
Modeling or Multi-level modeling approaches. However, these approaches
require entirely new tools [13]. To avoid a necessary adaptation of implicit
incrementalization techniques, it is desirable to have an approach for Deep
Modeling that is less intrusive as an extension to existing metamodeling
frameworks.
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In summary, this dissertation follows two main goals:

1. Reduce the response time from changes in a model to
updated analysis or transformation results and

2. minimize the efforts for the developers of these artifacts
to enable change propagation.

The contributions of this dissertation are implemented for C# or an internal
DSL in C# in order to reduce the language adoption problem or the tool
availability problem.

1.2. Assumptions and Definitions (A)

Before we discuss how the goals of this dissertation are broken down to
research questions, this section introduces assumptions and definitions that
this dissertation is based upon.

A1: Amodel analysis is a side-effect free computation that takes one ormulti-

plemodels as input and returns the analysis results in the form of amodel, a

primitive value or a (possibly ordered) collection of any of the former. This
assumption defines the space of programs affected by the termmodel analysis
to clarify the scope of the dissertation. A primitive value in this context can
be a number, a date, an enumeration item or a string. While the restriction
on a particular result format is only a syntactical restriction, the demand that
the analysis is side-effect free is a hard limitation. The reason we require the
absence of side-effects is that for the behavior of the overall program it must
not matter which parts of an analysis are reevaluated as long as the correct
result can be obtained.

Because model analyses usually generate new insights on a model, they
are usually not injective and therefore not invertible. In particular, it is
impossible to reconstruct a model based on a given analysis result.

9
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A2: Existing programming languages are well-suited to develop model anal-

yses in batchmanner. We believe that existing mainstream programming
languages are well-suited to specify model analyses in a batch manner. This
specification may either be based on an imperative or functional program-
ming paradigm.

A3: Manually implementing amodel analysis incrementally is non-trivial, er-

ror-prone and conceals the intention of the model analysis. Manual incre-
mentalization of a model analysis requires the developer to think about
which intermediate results are worth saving and demands the invalidation of
these intermediate results. Furthermore, the developer has to find the right
granularity in which the analysis is incrementalized. The incrementalization
can either be done together with the model modification or based on events.
In any case the choice how an analysis can be incrementalized is non-trivial
and the implementation is error-prone.

A4: Amodel transformation isaprogramthat takesoneormultiplemodelsas

input and returns a new (transformed) model as well as a trace that defines

the correspondence between parts of the input model and parts of the out-

put model or collections thereof A model transformation maps elements
of a source model to elements of the target model. This implicitly defines a
correspondence relation between these elements referred to as trace. Notably,
we existing classifications of model transformation approaches see trace-
ability as optional [53], but we think that this feature is central for model
transformation approaches. In particular, we think that just referring to the
input and the output of a program as models is not enough to qualify for the
term model transformation.

A model transformation may be invertible and may even be bidirectional, a
feature often required for model synchronization purposes [53].

A5: General-purpose programming languages are not suitable to specify mo-

del transformations. This assumption was originally introduced by Sendall
and Kozaczynski in 2003 [184]. In the model-driven community, this assump-
tion is almost a matter of course. The reasons for this is mostly that model
transformations in general-purpose programming languages require a lot
of book-keeping and manually specified pattern matching. However, this
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statement is hardly empirically validated and therefore treated as an assumo-
tion in this thesis. In particular, we are not aware of an existing empirical
study that shows that a dedicated model transformation language is better
suited for model transformation tasks than a general-purpose programming
language. We designed an empirical experiment template to create empirical
evidence [127], but this experiment has not yet been carried out due to time
constraints.

However, a multitude of approaches [50, 221, 111, 92, 129] shows that model
transformation languages can be implemented in internal languages [67]. An
investigation on how to reuse modularity concepts and tool support using
internal model transformation languages can be found in prior work [101].

A6: Amodel synchronization is anuni- or bidirectionalmodel transformation

that operates on existing models rather than creating fresh ones. Usually,
each execution of a model transformation produces a new target model. In
the presence of heterogeneous models where the information contained in
an existing target model cannot fully be reconstructed by the source model
(and vice versa), creating a fresh target model is not desirable as it would
lead to information loss. In such a scenario, it is often desirable to reuse
existing target models where possible and fit their structure such that it is
consistent with the source model with regard to the model transformation.
In case of a bidirectional model transformation, this repair of inconsistencies
may also be performed in the opposite direction, i.e. that the source model is
changed to obtain a consistent state. 11

Because model transformations, especially model synchronizations, need
to perform side-effects that are forbidden in model analyses and the dif-
ferences in language suitability, we assume that there is a significant dif-
ference between model analyses and transformations such that techniques
for incremental model analyses cannot immediately be applied for model
transformations.

However, there are interesting commonalities between model transforma-
tions and model analyses: In a typical model transformation, one is often

11 Model synchronization is also often referred to as consistency preservation. A very good
overview on the challenges and possible solutions to this problem have been provided by
Kramer in his PhD thesis [128].
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interested which model elements need to be transformed, often depending
on other model elements. This analysis is necessary for the execution of the
model transformation. Therefore, these analyses are an integral part of a
model transformation.

A7: Amodel analysis andamodel transformation canbe composed internally

or externally. The usage of libraries for often used functionality is a very
important feature of most modern programming languages. Developers may
save time and reduce bugs by reusing already implemented functionality. A
common example of reused functionality in the context of model analyses
are query libraries (cf. Section 1.6). For model transformations, internal
composition is still a subject of research [218], but also a desirable goal.

As external composition, we regard the reuse of existing model analyses or
transformations as a black box through chaining. With this technique, an
existing analysis or transformation based on a different metamodel can be
reused by first transforming the input model to this metamodel and then
processing the transformed model further.

1.3. Research Questions (RQ)

In this section, the research questions tackled by this thesis are explained.
All these research questions contribute to the three general goals identified
in Section 1.1.

For an overview, the goals and research questions are depicted in Figure 1.1.
RQ I–RQ III contribute to the goal of an increased performance at lowest
cost for developers. RQ IV reviews how the response times can be reduced
by utilizing the target platform type system.

In the following, the research questions are described in more details:

RQ I: How to incrementalize methods on a high abstraction level? Existing
incrementalization approaches operate at the instruction level of their re-
spective programming languages. This inevitably means that any incremen-
talization of a method is tied to its batch specification. This is not necessarily
optimal since the batch implementation may implicitly include assumptions
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Figure 1.1.:Goals and research questions of the dissertation. The goals are printed in clouds, the
research questions are depicted in ellipses.

that are not necessary for the semantics of the method. For example, the
batch implementation of a method may iterate a collection in sequence,
though the order of the elements is not relevant. Here, a way to describe the
(optimized) incrementalization of a method would be a clear advantage.

This research question can be decomposed into the following questions:

RQ I.1: How to design an interface for extensions to support incrementality?

Similar to traditional batch analysis frameworks being tuned for performance,
it is desirable to enable developers of frameworks to tune their frameworks
for incremental execution. For some analyses like the connectivity in a
graph, algorithmic solutions for their incremental behavior exist. As these
analyses may be specified by third-party component vendors, there must be
an interface to express the incremental behavior of analyses.

RQ I.2: How to ensure the correctness of incremental execution in the pres-

ence of user extensions? If an incrementalization system is extended by
explicit incrementalizations provided by third parties, it is unclear how to
ensure that the resulting incrementalized analysis is still correct.
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RQ I.3: How does the performance of a general-purpose incrementalization

systems with manual incrementalization relate to specialized incremental-

ization frameworks? The application of incrementality is tied to the goal
of a performance improvement. If no performance improvement can be
gained, there is no point having an incrementalized model analysis. For the
implied importance of performance, it is important that any method call
incrementalizations can achieve a performance comparable to specialized in-
crementalization frameworks such as IncQuery [26] for incremental pattern
matching.

Another way to think of this research question is how we enable incremen-
talization in the presence of internal composition of model analyses and
use this internal composition to improve the performance of the resulting
incremental model analysis.

RQ II: What is the best granularity for incrementalization? Depending on
the complexity of the analysis12, incrementalization may lead to large DDGs
that consume a lot of memory. It is therefore desirable to partition the
model in a more coarse-granular way than into individual model elements
and update a larger part of the analysis when an elementary model change
happens inside such a model partition.

This research question can again be decomposed into the following research
questions:

RQ II.1: How to find suitablemodel partitions? As of today, incrementaliza-
tion approaches mostly operate on individual model elements. This enables
incrementalization systems to only reevaluate those parts of a model analysis
that are affected by a given elementary change. However, due to the memory
overhead, the time taken to traverse and update the DDG may outweigh the
any benefits drawn from the reduced computational complexity arising from
reusing prior results. Therefore, it can be useful to group multiple model
elements in model partitions and consider elementary model changes in this
partition rather than in an individual model element. However, this raises
the question how this can be done.

12 Possibly as part of a model transformation
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RQ II.2: Howto find suitablemodel analysis partitions? Similar to RQ II.1, it
is also unclear how the model analysis should be partitioned. Ideally, this par-
tition minimizes the cross-connection accesses between model partitions.

RQII.3: Howto incrementalizecross-partitionreferenceswithinamodelanal-

ysis partition? If suitable partitions are found both for the model and the
analysis, this raises the question when to reevaluate this part of the analysis.
If the analysis partition is associated with a model partition, elementary
model changes within that model partition will likely lead to reevaluate the
analysis. However, if there is an elementary model change that references
a different model partition (such that the referenced other model partition
may change), it is unclear how to react on such a change.

RQII.4: Howtoautomatethechoiceof strategies foranalysispartitions? Gi-
ven that there are multiple possibilities for a model partition and likewise for
an analysis partition, this implies an additional overhead for the developer of
a model analysis to actually make this choice. In order to take away this new
burden from the analysis developer, it would be appreciated to automate this
design process and obtain the best model and analysis partition automatically
where best may be relative to one or multiple quality dimensions such as
response time or memory consumption.

RQ III: How to reuse incrementalization systems for model transformation?

Model-transformations play an important role in model-driven engineering.
Sometimes, they are even called its "heart-and-soul" [184]. Therefore, an
incremental execution to reduce the response time from a model change to
an updated target model is also desirable for model transformations. Such
an incremental transformation is also a foundation for reusing existing
incremental model analyses specified for other metamodels.

This research question is decomposed as follows:

RQ III.1: How to incrementalize unidirectional model transformations?

Many model transformations are unidirectional in the sense that they trans-
form models from a source metamodel to a target metamodel. An incre-
mental execution of such a model transformation simply has to monitor the
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source metamodel for any changes and propagate these changes to the target
model.

RQ III.2: How to execute bijective bidirectional model transformations incre-

mentally? Bijective model transformations can be executed either from a
source to a target metamodel or vice versa. In both cases, the transformation
target can be entirely recomputed from the source model, but a difficulty of
such model transformations is typically how to express both directions of the
transformations at once, i.e. with minimal overhead to the transformation
developer.

RQ III.3: How to execute heterogeneous model synchronizations incremen-

tally? Lastly, there are also model transformations that can be executed
in both directions but neither the target model can be generated from the
source model nor vice versa. Rather, there is some semantic overlap between
the metamodels that has to be kept consistent in instances of the involved
metamodels [128]. An important criterion for model synchronization is that
the synchronization is hippocratic, which means that an change in one of
the models that does not break the consistency criteria also does not cause
any propagation in the other model.

In an analogy to RQ I, this research question can be thought of how to enable
incrementalization in the context of external composition of model analyses
and model transformations.

RQ IV:How to extendmetamodel design to improvemodel analyses? So far,
most languages for MDE are applicable for classical two-level modeling
conforming to the EMOF standard. However, it is not clear whether meta-
modeling using this standard yields the best metamodels with respect to
incremental model analysis, or whether metamodel extensions could lead
to better metamodels. Here, especially the ideas of Deep Modeling have
claimed to improve metamodels by avoiding accidental complexity but also
the modeling options defined in the Complete MOF (CMOF) standard are
worth an investigation.

This research question again can be decomposed into the following research
questions:
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RQ IV.1: How can a meta-metamodel be extended to better make use of type

system guarantees? CMOF defines a concept of association redefinitions
that is however not available in the EMOF subset and not implemented in
common meta-metamodels such as Ecore. However, an implementation of
redefinition or refinements compatible to platform type systems could use
guarantees of the target platform to simplify model analyses.

RQ IV.2: HowcanDeepModelingbe achievedwhile reusing the tools for tradi-

tional strict two-levelmetamodeling? This research question mainly seeks
a formalism how Deep Modeling can be described that does not break with
existing tool support. In particular, the rationale behind this question is to
avoid a need for a second incrementalization system, but to reuse an incre-
mentalization system for traditional two-level modeling approaches also for
Deep Modeling.

RQ IV.3: Howtoadapt an incremental computation system forDeepModeling

techniques? This research question deals with the performance of model
analyses in an incremental computation system and how this system needs
to be adapted for such a purpose.

1.4. Contribution Summary (C)

The thesis presents an automated approach to incrementalize functional code
with a high level of abstraction and optimization based on the containment
hierarchy. This incrementalization system is further applied to model trans-
formations. Furthermore, the thesis investigates how and to what degree
the efficiency of analyses can be improved by using more expressive model-
ing foundations, particularly enabling Deep Modeling. These contributions
are validated and evaluated by implementations, case studies and empirical
experiments.

An overview of the contributions made in this dissertation is depicted in Fig-
ure 1.2. Each contribution consists of a formalization and an implementation
integrated to .NET Modeling Framework (NMF). In the remainder of this
section, the contributions and their main results are described in a bit more
detail.
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Figure 1.2.:Contributions of this dissertation

C I: Improvements of Incremental Computation The thesis improves the
implicit incrementalization process in several ways:

C I.1: Integration of Dynamic Algorithms We formally represent the process
of incrementalization as a functor from category theory. While the use of
category theory for incrementalization has been suggested before [42], this
happened rather to simplify the implementation of incremental computation
systems. Chapter 4 proposes an approach to use this insight for integrating
custom dynamic algorithms into incrementalization systems. This gives
developers of analysis frameworks an opportunity to tune their framework
for incremental execution. With the help of the formalization, the thesis
proves an important correctness theorem which enables to guarantee the
correctness of incremental computation if all elementary instructions are
correctly incrementalized. Therefore, this contribution tackles RQ I.

C I.2: Incrementalization Strategies utilizing Generalized Model Changes

along Containment Hierarchies Chapter 5 proposes a set of four different
incrementalization strategies to realize the incremental derivation of model
analyses. These different strategies span a design-space how the incremental-
ization of a given analysis can be configured. By automatically exploring this
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design-space, the incrementalization process can be optimized with regard
to the response times from a change to an updated result in a given example
model. This contribution tackles RQ II.

C II: Synchronization Blocks To reuse an incrementalization system for
incremental, bidirectional model transformations, Chapter 6 proposes the
approach of synchronization blocks. We prove that using this new algebraic
construct, inconsistencies can be fixed incrementally and bidirectionally and
the synchronization operator is hippocratic13. Synchronization blocks give
an answer to RQ III.

C III: Meta-metamodel extensions The thesis proposes several meta-meta-
model extensions to enable the design of better metamodels with respect to
the performance of analyses based on them, tackling RQ IV:

C III.1: Refinements and Structural Decomposition Chapter 7 proposes two
extensions to existing two-level modeling approaches: Refinements and
Structural Decomposition. With the help of these two extensions, metamod-
els can be simplified such that several analyses become obsolete as they are
guaranteed by the underlying type system.

C III.2: Non-intrusive Deep Modeling Chapter 8 proposes an approach to
make Deep Modeling techniques available only through structural decom-
position of references and attributes. This approach does not only have
advantages in the reuse of existing tool support, it also circumvents some re-
strictions of existing Deep Modeling approaches. In particular, the approach
is able to express metamodels with a composite instantiation patterns which
level-adjuvant Deep Modeling techniques cannot.
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TTC 2016 Dataflow 
language

Figure 1.3.:Validation of Research Questions

1.5. Validation Overview

An overview of the validation conducted in this thesis is depicted in Figure 1.3.
The validation for incremental model analyses (C I) and incremental model
transformations (C II) is done through multiple case studies. Because several
insights from the contributions come in the form of correctness proofs, the
validation concentrates on the applicability of the proposed formalisms and
the speedup that can be achieved in the various systems. Overall, this part
of the validation consists of seven case studies. However, the sizes and the
complexity of these case studies varies. Some of the case studies are taken
from multiple editions of the Transformation Tool Contest (TTC), often
inspired from realistic projects. Therefore, multiple solutions of other tools
are available which leads to the possibility to compare the contributions of
this thesis with other tools.

13 Hippocraticness of a synchronization operator means that if source and target model are
already consistent, the synchronization operator does not change either source or target
model.
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Semaphore

Route

Segment
Switch

Entry

Exit
Switch position

of the Route
Current position

of the Switch

Figure 1.4.:A visualization of the railway network model as used in the TTC 2015 Train Bench-
mark case [197]

Because all of the case study solutions use the incrementalization system of
C I.1, insights regarding RQ I can be drawn from all of these case studies.
Similarly, all case study solutions that involve model transformations can
be used to draw insights to RQ III. C I.2 requires heterogeneous change
sequences to be applicable which were not available for the selected case
studies. We therefore extended the Train Benchmark in this direction, but
this means that this is the only case study that we use to validate RQ II.

Contribution C III is validated using case studies from the MULTI 2017
modeling challenge and a Deep Modeling version of the Palladio Component
Model (PCM). In addition, Section 7.5 discusses the concepts of contribution C
III.1 using examples from the domain of industrial production automation.

1.6. Running Example

Throughout large parts of this dissertation, a synthetic example analysis is
used to explain issues and solutions to the problems dealt with in the thesis.
The example is taken from the TTC Train Benchmark [197]. Though only
a synthetic benchmark, this example case demonstrates both practical use
cases and also many of the problems attached to incremental computation.

One of the tasks in this benchmark is to select the switches along routes
in a railway net that are set incorrectly according to signal positions. The
railway network is described in a model conforming to a railway metamodel
created by Szárnyas et al. [197]. An illustration of an instance model for an
railway network excerpt is depicted in Figure 1.4.
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Figure 1.5.:An excerpt of the railway metamodel used in the Train Benchmark [197]

The railway network essentially consists of many segments, switches, sema-
phores and routes. Each route starts and ends at a semaphore and is defined
by a list of switch positions which define where a train following this route
should go. An excerpt of the metamodel is depicted in Figure 1.5.

One wants to make sure that if the entry semaphore shows the signal GO, all
switches along the route should be set accordingly to the route description.
The benchmark iteratively finds and fixes some violations of this and some
other validation constraints.

A possible solution to this analysis is the NMF solution which can be found
in Listing 1.1. According to the peer-review process in the TTC, this solution
was the most understandable, even for developers not familiar to the C#
language.

Line 1 takes as input a collection of all routes in the network. Line 2 selects
those routes that have an entry semaphore set and that entry semaphore
shows a GO signal. Line 3 selects the switch positions along those routes that
define which switches in the network have to be set to what position. Line
4 restricts the set of switch positions in the result set of the query to those
where the position of the corresponding switch does not match the required
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1 var faultyPositions = from route in routes

2 where route.Entry != null && route.Entry.Signal == Signal.GO

3 from swP in route.Follows

4 where swP.Switch.CurrentPosition != swP.Position

5 select swP;

Listing 1.1:Query to find inaccurate switch positions in a collection of routes

position. Lastly, Line 5 specifies that the result set of the query should only
contain the switch position elements.

While this solution is very hard to beat in terms of understandability and
conciseness, using standard C#, the entire model has to be reevaluated when-
ever a model element changes. Furthermore, one has no information when
the analysis should be reevaluated and a new result has to be compared with
the last one in order to understand which switch positions are wrong that
were not wrong before.

As a consequence, as soon as performance gets an issue, developers may start
introducing cache objects, e.g. to save the routes with an entry semaphore
set to the signal GO and dynamically registering hooks when the position
of switch positions changes. However, this is a laborious and error-prone
procedure as one may easily forget some cases when to update these caches.
For example, one may easily forget to remove the hooks when a SwitchPo-
sition element is removed from one of the routes with GO signal. While
this maintains correctness, it slowly decreases the performance over time
and is therefore hard to detect14.

Presumably the most dramatic consequence of such an analysis inflated by
caches is that domain experts likely have no longer a chance to proofread
the code. Meanwhile, the code in Listing 1.1 is likely to be understood by
railway experts as well, meaning they could identify possible flaws in the
understanding of what this analysis should do.

Therefore, the goal of (live) implicit incrementality is to enable the system
to execute the analysis from Listing 1.1 incrementally. That is, the system
automatically registers event handlers to propagate model changes and issues

14 Some approaches exist that may automatically detect such performance problems by auto-
matically conducting experiments [215]
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a notification is a change to the model caused the result of the analysis to
change. However, to achieve good results, it is necessary to provide an explicit
incrementalization of commonly used functions such as the query operators
from, where and select used in Listing 1.1. To enable incrementalization
systems to incorporate such dynamic algorithms is made possible through C
I.1.

However, an analysis does not only consist of calls to common functions but
also of domain-logic, often used for example for query predicates. In Listing
1.1, these predicates are rather simple, but they can get more complex. In
that case, an incrementalization close to an instruction level yields very large
and thus memory-consuming dependency graphs and make the incremental
algorithm slow. Therefore, C I.2 seeks to shrink the dynamic dependency
graphs and therefore reduce the memory impact.

1.7. Structure

This dissertation is divided in six parts. The remainder of Part I introduces
the thesis and the used formalization. Chapter 2 introduces the foundations
that this thesis is built upon. Chapter 3 introduces Mutable Type Caegories
that are used to discuss formal aspects in the remainder of the thesis.

Part II is concerned with efficient implicit incremental model analyses. Chap-
ter 4 formalizes incremental model analyses and draws conclusions on the
integration of dynamic algorithms and methods of distributed computing.
Chapter 5 discusses how the granularity in which to incrementalize model
analyses can be increased and how a suitable granularities can be found
automatically and optimized for a particular usage scenario.

Part III presents the approach for incremental model transformations. Chap-
ter 6 takes a look into model analyses implemented in model transformations
and how the results from the previous chapters can be reused for incremental
model transformations.

Part IV is devoted to the influence of metamodel restrictions to incremental
model analyses and how they can be mitigated. Chapter 7 presents an
approach to support metamodel design to gain an improved expressiveness
that makes many model analyses obsolete as they are implied by type system
guarantees. Chapter 8 explores how incremental model analyses are affected
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by Deep Modeling and how incrementalization tools can be reused for this
modeling paradigm.

Part V validates and evaluates the approaches of all previous parts. Chapter
9 presents a series of case studies that validate and evaluate the approaches
of Parts II and III. Chapter 10 reports experiences and lessons learned from
conducting these case studies.

Part VI concludes the dissertation. Chapter 11 discusses related work. Chap-
ter 12 lists limitations of the approach and gives an outlook to future work.
Chapter 13 summarizes the achievements of this dissertation and draws
conclusions.
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2. Foundations

This chapter briefly introduces the foundations that this thesis is built upon.
Section 2.1 introduces model-driven engineering, the engineering paradigm
that this thesis is embedded in. Section 2.2 introduces existing definitions of
incrementality. Section 2.3 introduces advanced language features of C# that
are necessary to understand how the contributions of this thesis have been
implemented. Section 2.4 introduces virtual actors and their implementation
in the Microsoft Orleans framework. Section 2.6 introduces the theory of
partially ordered sets and lattices. Section 2.7 introduces the theory of lenses,
a formal construct for bidirectional transformation. Section 2.8 gives a very
short introduction to category theory that will be used to formalize the
results of this thesis.

2.1. Model-driven engineering

Model-driven engineering (MDE) is an approach to handle the problem of
ever-increasing complexity in software development. Instead of code, domain
specific models are the central software artifacts. All other software artifacts
like code, documentation or test cases are then (fully or partially) generated
from the models using transformations. To make transformations possible,
the models have to conform to a formal definition.

The following sections introduce the main artifacts and terminology used in
model-driven engineering, as they are relevant for this thesis. Furthermore,
the .NET Modeling Framework and its meta-metamodel NMeta are briefly
introduced as the contributions of this thesis are implemented integrated
into this framework.

For a more detailed introduction to model-driven engineering, centered on
its application to software development called model-driven software devel-
opment (MDSD), we recommend the book by Stahl and Völter [186]. There
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is also a model-driven software development process is also standardized by
the Object Management Group (OMG) in the MDA standard [145].

2.1.1. Metamodels

As the formal definition of a system representation is once again a model in
the domain of metamodeling, it is called a metamodel. It describes the struc-
ture of the models that conform to this metamodel. As metamodels in turn
are models in the domain of metamodeling, they also have their own meta-
model, referred to as the meta-metamodel. Most available meta-metamodels
are self-descriptive. This prevents endless conformance sequences. The
OMG standardized the meta-metamodel MOF [151]. Due to the lack of full
implementations of the MOF standard, the most commonly used subset of
MOF is standardized as EMOF meanwhile the full specification is now called
CMOF. The presumably most common meta-metamodel in practice is Ecore,
an implementation of the EMOF standard. Ecore is implemented as part of
the Eclipse Modeling Framework (EMF).

In many applications, the structural description encoded in a metamodel still
allows modelers to create models that are not valid in the sense that they
cannot correspond to a physical system. To restrict the validity of models,
static semantic rules are used to restrict the space of allowable models. These
rules are usually expressed through invariants that have to hold for specific
objects, often expressed using the Object Constraint Language (OCL) [157].
However, these invariants are typically not enfored automatically. Instead,
the modeler has to check15.

2.1.2. Editors

To create a model representation of a given system, modelers use editors
for the metamodels that typically provide a more convenient syntax for the
model than its XML Metadata Interchange (XMI) representaion.

There are two fundamentally different types of editors: graphical and tex-
tual editors. Graphical editors provide a graphical user interface and show

15 Some approaches use static analysis to restrict when the changes that could possibly affect a
constraint violation [40]
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the models as diagrams where nodes and edges are defined by metamodel
concepts. The model-driven developer may then edit the models by editing
the diagram or creating new diagrams. Textual editors rely on a grammar
that describes how models can be described in text. The syntax of these
editors, either textual or graphical16, is referred to as concrete syntax as they
describe what is visible to the model developer. In contrast, the abstract syn-
tax describes the abstract concepts that are expressed through the concrete
syntaxes. The abstract syntax is defined together with the static semantics
in the metamodel. An abstract syntax can have multiple concrete syntaxes
as there might be multiple editors to edit instances of the same metamodel.
[186]

Metamodel and concrete syntax together form a DSL [186].

Technologies such as Sirius [209] or XText [61] help to reduce the effort to
create an editor.

To ensure that a model created in an editor is valid, the editor usually repeti-
tively reevaluates the validity constraints. These can therefore be regarded as
model analyses with the result being a boolean value whether the constraint
is satisfied. Constraint checks are usually done either after each individual
model change or manually triggered by the user. In the former case, static
analysis is often used to find out which constraints may be affected by a
given change [40, 204].

2.1.3. Model Transformations

The models obtained from the various editors are then transformed to ei-
ther other models or traditional software artifacts. This process is usually
supported by Model transformation languages (MTLs). In many cases, the
overall abstraction level of the model representing the whole system is rel-
atively high and thus model transformations transforming these models
directly to the desired software artifacts (such as code) are very complex.
Moreover, it is often not only the semantics that has to be transformed, it
also is the syntax. Therefore, it is a widely adopted approach to split the
transformation of the semantics from the transformation of the syntax. Thus,
a metamodel is created that describes the structure of the target software

16 Projective editors such as MPS [210] also allow further types of editors.
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artifact. A first model transformation then transforms the input system level
model to a model of the target semantics. A second transformation takes
the model with the semantics already fit to the target software artifact and
only transforms the syntax, i.e. prints the model in the format according to
the type of software artifact that is to created. These two types of model
transformations fundamentally differ. The former takes models as inputs
and creates models. It is referred to as Model-to-Model (M2M) whereas the
latter is referred to as Model-to-Text (M2T) or Model-to-Code [53].

The goal of M2T-transformations is to fit a model in a given structure. Such
transformations contain a lot of static information like keywords or the
structure of the targeted format and are thus mostly formulated as text
templates. However, as they aim to transform syntax rather than seman-
tics, it is often difficult to include complex transformation logic into these
transformations.

In contrast to M2T, M2M-transformations transform models conforming
to one or multiple source metamodels into a model conforming to a target
metamodel. Usually, the modeling framework is used to load and save models
in their default serialization format. The transformations do not care how
the models are serialized. The focus is rather set to the transformation of
semantics. However, there are usually correspondence relations between
elements of the source model and elements of the target model that are
often useful to know. These correspondences are referred to as the model
transformation trace [53].

In many cases, one does not only consider the model transformation from
the source model to a target model but also the backward transformation.
If this is the case, the direction from the source to the target is referred to
as forward transformation. Model transformation problems that involve
both forward and backward directions are often referred as bidirectional
transformations, abbreviated as BX. A bidirectional model transformation
need not be bijective [128].

In the remainder of this thesis, if we say model transformations, we implicitly
mean M2M transformations. A couple of well-suited techniques to achieve
incremental execution of M2T-transformations can be found in the PhD
thesis of Ogunyomi [159].
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2.1.4. The .NET Modeling Framework

As Meyerovich suggests, most programmers do not easily change their pri-
mary programming languages [149]. When the adoption of MDE implies
the adoption of the Java platform, this can block the adoption of MDE in
domains where Java is not the primary language to work with. In addition,
although MDE has existed for more than a decade now, tool support is still
one of the major factors that hampers a wide adoption of MDE in industry
[187, 153].

To solve this problem, the author of this thesis has created the .NETModeling
Framework (NMF)17. The development of this framework started with the
M2M transformation language NMF Transformations Language (NTL) [92]
and an XML serialization compliant to the XMI standard. By now, it is an
open-source framework of libraries, tools and languages to support model-
driven engineering on the .NET platform. NMF contains tools to generate
model representations compliant with EMF, supports a model management
repository system and allows developers to specify model analyses, model
transformations and model synchronizations. To minimize both the language
adoption problem and the tool support problem, NMF is entirely based on
internal languages that use C# as a host language.

An introductory tutorial for NMF can be found on YouTube18.

All contributions of NMF were made either by the author of this thesis or
one of the students advised in the course of conducting research towards
this thesis. Consequently, all contributions made in Parts II and III have been
integrated into NMF.

2.1.5. NMeta

NMF contains its own meta-metamodel NMeta to resolve Java platform
specific of the Ecore metamodel.

In NMeta, every model element is an instance of ModelElement and therefore
has an absolute Unique Resource Identifier (URI) which makes it uniquely

17 http://github.com/NMFCode/NMF
18 https://youtu.be/NIMYuwTltVs
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identifiable and addressable. This URI is created automatically based on the
containment hierarchy of the model elements (the Parent reference) and
on the URI of the model that contains the model element. Further, model
elements also have a relative URI to identify within the scope of their model.
Conversely, it is possible to resolve a relative URI starting from a given model
element as context or an absolute URI in the context of a model repository.

Model elements are categorized into classes that define the type system
of a model (metamodel). An excerpt of NMeta showing the metaclasses
responsible for the type system is depicted in Figure 2.1. The type system
is similar to the one from Ecore and there is a model transformation from
Ecore to NMeta. In particular, a model conforming to an Ecore metamodel
𝑀 can also be read using the transformed NMeta metamodel 𝑀 ′, provided
𝑀 does not contain generic types, factories or custom XMI handlers.

The metaclasses StructuredType and ReferenceType describe the structural
features of a class. This description of structural features is extracted into
separate metaclasses as these features are used also by structures and ex-
tensions, not shown in Figure 2.1. A structure is a structured value type, an
extension is an implementation of a Universal Modeling Language (UML)
stereotype. However, as both of these concepts are not used in Ecore, they
are hardly used so far and thus a detailed description is omitted here.

NMeta uses naming conventions from the .NET platform without an explicit
prefix, for example the reference eSuperTypes is called BaseTypes.

Same as CMOF [151, p.43], NMeta only allows one attribute to be the identi-
fier, but makes this constraint more explicit. This identifier is used to identify
elements either locally, i.e. in the scope of their container, or globally, i.e. in
the scope of the model they reside in. In both cases, an identifier overrides the
way a URI is computed for a given model element, though NMF also allows
to switch to a referencing scheme based on indices for local identifiers.

2.2. Incrementality

In complexity theory, dynamic problems or dynamic algorithms are stated
in terms of changes of input rather then original input. There, incremental
algorithms mean algorithms that handle additions (increments), but no dele-
tions. In the context of model-driven engineering, incrementality usually
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2. Foundations

refers to incremental advent of changes to a given model. However, these
changes may also be decremental, for example deleting model elements or
references. Therefore, from a complexity theory point of view, the thesis
is about implicitly creating fully dynamic algorithms for arbitrary analyses
and transformations.

For model transformations, Czarnecki et al. present a threefold definition
of incrementality [53]: A model transformation is target-incremental if it
incrementally reuses the target model instead of recreating a new every time
the transformation is executed. It is source-incremental if only changes of the
source model are processed instead of the entire model transformation. A
transformation preserves user changes if changes made by a user after a model
has been transformed are not overridden by the transformation engine.

In the terminology of Czarnecki, the model analyses and transformations
considered in this thesis are source-incremental but not necessarily target-
incremental19. Especially for model analyses, it is not a common scenario
that a user would change a target model and the changed need to be pre-
served. Further, target-incrementality is often not important, though it is
often a consequence of source-incrementality. However, in Chapter 5, the
target-incrementality is slightly relaxed and may be violated to improve
performance.

Hearnden et al. [85] suggest an implementation strategy of model transfor-
mations that are both source- and target-incremental as live model transfor-
mations. Here, the transformation runs continously and monitors changes
of the source model that are propagated to the target model in small batches.
This idea matches quite closely the understanding of an incremental analysis
or transformation followed in this thesis.

Giese and Wagner [74] define incremental model transformations through
asymptotic complexity: A model transformation is fully incremental if the
complexity of propagating a change only depends at most linearly on the
size of the change rather than the size of the model. They call a model
transformation effectively incremental if the complexity of propagating a
change depends on the size of the model as well but less then linear such

19 The incrementalization system presented in Chapter 4 is target-incremental unless combined
with the approach from Chapter 5.
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as for example logarithmic. In both cases, the complexity is taken in the
average case.

The problem with this definition is that the question whether a model trans-
formation is incremental depends on the average impact of changes, i.e.
which parts of a model transformation have to be recomputed. Except for
trivial models, there is a huge set of potential model changes. The frequency
of their occurrence is unclear and cannot be deduced from the analysis or
transformation.

Furthermore, in the general case of arbitrary analyses, the impact of a change
is very hard to analyze. Meanwhile, the definition by Giese and Wagner
makes the assumption that model transformations always have linear com-
plexity. Especially for model transformations that perform matchings of
multiple models, this is not true. For model analyses, we also do not want to
make this assumption.

Therefore, whether a given analysis is fully incremental or effectively incre-
mental depends on the usage, in particular on the frequency of changes.

2.3. Advanced C# Language Features

Throughout the thesis, a couple of rather advanced language features of the
C# programming languages are used that are hardly present in other pro-
gramming languages and therefore hardly known for developers not familiar
with C#. However, a basic understanding of these features is necessary to
understand how the contributions of this thesis are implemented. Hence,
they are briefly described in the remainder of this section.

2.3.1. Expression Trees

Starting with version 3.0, the C# language supports a feature called expres-
sion trees. This feature allows developers to obtain a model of a function
instead of already compiled code. This model already contains information
from semantic analysis. That is, missing type information is inferred and
references to methods or other members are already resolved. These analysis
steps are done at compile-time, only the last step, the output of intermediate
language code, is changed.
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LambdaExpression isGo

BinaryExpression AndAlso

BinaryExpression NotEqual

MemberExpression Entry

ParameterExpression p

Constant null

BinaryExpression Equal

MemberExpression Signal

MemberExpression Entry

ParameterExpression p

Constant GO

Figure 2.2.: The expression tree for the lambda expression to obtain whether the entry signal of
a route shows GO.

To enable this feature, all the programmer has to do is to use a dedicated
function type called Expression<> around the regular function type Func<>.
As an example, we depicted the predicate whether the entry semaphore of a
route shows GO in Listing 2.1.

1 Expression<Func<Route, bool>> isGo =

2 route => route.Entry != null && route.Entry.Signal == Signal.GO;

Listing 2.1: Lambda Expressions in C#

The result of an assignment as in Listing 2.1 is an expression tree that is
depicted in Figure 2.2.

This expression tree closely resembles the abstract syntax tree of the function
specified by the developer, yet alreadywith the results from semantic analysis.
That is, each node knows its type, member expressions carry a reference to
a reflection object referencing the member they are accessing and implicit
conversions as well as type inference are considered in the tree.

36



2.3. Advanced C# Language Features

1 var faultyPositions = routes

2 .Where(route => route.Entry != null && route.Entry.Signal == Signal.GO)

3 .SelectMany(route => route.Follows,

4 (route, swP) => new { route = route, swP = swP })

5 .Where(_t => _t.swP.Switch.CurrentPosition != _t.swP.Position)

6 .Select(_t => _t.swP);

Listing 2.2:Query to find inaccurate switch positions in a collection of routes (as treated by the
compiler)

2.3.2. Language Integrated Query and the C# Query Syntax

Language Integrated Query (LINQ) is a framework integrated into the .NET
framework to allow developers to specify queries against objects, XML docu-
ments or even databases integrated into their primary programming language,
which is often C# or VB.NET [147]. For this purpose, Microsoft defined the
Standard Query Operators (SQOs) which essentially is a query Application
Programming Interface (API) consisting of extension methods, i.e. static
methods with a special annotation such that they are treated like member
methods of their first parameter’s type.

Examples of SQO methods are the query operators Select, Where or Select-
Many. A comprehensive list of API methods and their semantics can be
obtained online20.

The compilers of the .NET languages use this API to offer a special and
dedicated syntax for it. In case of C#, this is the C# query syntax. An example
of this syntax can be seen in Listing 1.1 on page 23.

At compile time, the compiler converts the query syntax into a chain of
methods, generating anonymous types where necessary. For example, Listing
1.1 is internally handled very close to Listing 2.221. This style of writing
queries is also directly supported in the language and is often called the
method chaining syntax.

The SQO methods are resolved using the normal name resolution rules of
the respective language. Depending on the type of routes and the extension

20 https://msdn.microsoft.com/en-us/library/bb394939.aspx, retrieved 15 Feb 2017
21 The names of compiler-generated identifiers and classes are more sophisticated
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1 var faultyPositions = routes

2 .Where(route => route.Entry != null && route.Entry.Signal == Signal.GO)

3 .SelectMany(route => route.Follows)

4 .Where(swP => swP.Switch.CurrentPosition != swP.Position);

Listing 2.3:Query to find inaccurate switch positions in a collection of routes (method chaining
syntax)

methods available in the current scope, the chosen SQO methods in Listing
2.2 may be different. Therefore, developers may change the semantics of
how such a query is executed by providing different implementations of the
SQO methods.

To resolve these extension methods, the compiler actually allows the predi-
cates to be required either as regular compiled functions, but it also allows
expression trees. This is how LINQ translates queries specified in C# to
database queries in SQL [147].

Note that the method chain generated by the C# compiler is (at least at
the time of writing) not optimal22. For instance, a better method chaining
translation of Listing 1.1 would be the method chaining syntax depicted in
Listing 2.3 that requires only three SQO calls instead of four in Listing 2.2.

The fact that the implementation of SQO methods can be exchanged makes
the syntax very appealing for incremental analyses: The query syntax is very
concise and easy to understand. In particular, the SQO API allows predicates
to be specified either as compiled functions or as expressions: In the latter
case, the compiler generates a fully typed abstract syntax tree of the provided
lambda expression instead of generating the entire code.

The Language Integrated Query (LINQ) is an example of an SQO implemen-
tation. It uses the option to obtain predicates as typed abstract syntax trees
and translates these expressions to other languages such as SQL in order to
execute the query on a database. The result of the query is then converted to
objects through an integrated object-relational mapper. Since the translation
of the query expression is encapsulated in a component, LINQ provides
a common interface for querying data from a vast variety of information

22 Here, optimality is with regard to the number of SQO method calls generated.
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sources. This system is also extensible so that new information sources can
be added by just implementing a new provider implementation.

However, in the context of this dissertation, LINQ is not relevant. This is
because the interfaces that LINQ is built upon only consider a batch scenario
where data is retrieved and then the connection to the data source is lost23.

The query syntax of C# can be thought of as built-in monad support as
queries can be considered as extensions of collections to a monad (cf. Section
2.8). The syntax is tailored for monads that (like in Haskell) focus on the bind
function (as an extension method called SelectMany). The framework design
guidelines of the .NET framework [52] even state that the query syntax
should only be used by collections. As these guidelines are used across all
the .NET framework, it would be confusing for developers to break them.

2.4. Virtual Actors

Gul Agha has proposed the actor model to overcome problems typically
induced by parallel computation such as deadlocks [4]. In this model, actors
asynchronously send messages to other actors while the implementation of
these messages itself is synchronous.

The actor model has been implemented in the Microsoft Orleans framework
[38, 39] which also extended the model to virtual actors where virtual means
that the existence of an actor (called grain) is independent of a direct repre-
sentation in memory (activation). Rather, if no activation exists, the actor
is transparently loaded from persistent storage into a silo, a container of
grains.

While a silo is bound to a physical machine, grains may interact with grains
from other silos, enabling support for distributed systems. An auto-tuning
agent is able to move grains across silos in order to increase locality and
raise performance. Since the framework has direct support for a deployment
to Windows Azure, this can be used in elastic cloud computing scenarios.

23 The object-relation mapper allows to save changes to objects in the data source, but changes
made in the database are not reflected locally.
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The Orleans framework has been used for large distributed applications
such as the online services for the Halo 5 computer game [28], distributed
matrix-vector multiplication or the Horton project [180] for large graph
processing.

2.5. The Palladio Component Model (PCM)

PCM is the metamodel used in the Palladio simulation tool suite [21]. Its
goal is to describe the architecture, deployment and usage of a component-
based system in a level of detail that is sufficient to analyze the system for
its non-functional properties but on the other hand higher than the actual
implementation. While the metamodel was originally created to predict
performance, it has been extended to also target reliability [30], energy
consumption [192] or security [183]. In its current state, PCM is entirely
implemented using strict two-level metamodeling. The metamodel consists
of more than 200 classes, divided in more than ten packages. It further
builds upon several other metamodels that model for instance stochastic
expressions.

PCM internally consists of four models [21]:

• The repository model contains the components and their interfaces.
For each service offered by a component, it also contains a rough
behavior description called service effect specification (SEFF) that
models the resource demands when executing this service.

• The composition model specifies which of the components in the
repository are instantiated in a system architecture and how they are
connected to each other.

• The allocation model specifies how the instantiated components of a
system’s architecture are deployed to available resources.

• The usage model specifies how the system is used, for example what
services are typically called by users in which intervals. This model is
again outside the scope of this paper and thus not described in more
detail.
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<<ResourceContainer>>
Application Server

<<ResourceContainer>>
Client

<<ResourceContainer>>
Database Server

Web-Browser

WebForm AudioStore UserManagement

OggEncoder EncodingAdapter DBAdapter

MySqlClient

MySqlDB

<<LinkingResource>>
throughput=128
unit=KBit/s

<<LinkingResource>>
throughput=512
unit=KBit/s

<<Interface>>
ICommand
IConnection
IDataReader

<<Interface>>
IUserDB

<<Interface>>
IUserManagement

<<Interface>>
IAudioDB

<<Interface>>
IEncoder

<<Interface>>
IAudioStore

<<Interface>>
HTTP

Figure 2.3.:An example e-commerce system in PCM cf. [21]

Figure 2.3 shows an example e-commerce system modeled in Palladio where
these models have been merged into a single view.

Because PCM only uses two-level modeling, it contains a range of helper
constructs to represent e.g. instantiated components as instantiation itself
is not available. The components in this diagram form the architecture
of the e-commerce application. In PCM, the types of these components
are stored in a repository to make it easier to reuse these components in a
different application. In 2.3, all component types in the underlying repository
are instantiated exactly once such that the component instances in Figure
2.3 have the same names as their corresponding component types. The
surrounding boxes denote the resource containers towhich these components
are deployed.

To get a rough idea of how the assembly of a system is realized in PCM, we
have depicted a simplified metamodel excerpt in Figure 2.4. An instantiated
component (AssemblyContext) is realized as a class that holds a reference to
its actual type, namely the component that is instantiated in the assembly.
Then, the connections of such an instantiated component are realized using
separate connector elements (AssemblyConnectors) that specify to which
other assembly context the current context is connected to for a given re-
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System AssemblyContext

ResourceEnvironment ResourceContainer

Allocation AllocationContext

Assemblies

0..*

Containers

0..*

Contexts

0..*

System 1

Environment 1

Assembly 1

Container 1

Figure 2.5.: System deployment in PCM (simplified excerpt)

quired interface. OCL constraints ensure that for each required interface of
an assemblies component, the system architecture contains a connector that
connects this assembly to another assembly whose component provides this
interface.

A system then also may have provided roles (the composition is actually
shared by a common base class not depicted in Figure 2.4) that serve as
interface of the system towards the user. A different kind of connector
elements is then used to map these system provided roles to provided roles
of the inner assemblies.

Components may either be basic components – components with no detailed
inner structure – or composite components. Composite components are es-
sentially a combination of systems and repository components and represent
components that realize their provided interfaces through delegation to other
components. In the example of Figure 2.3, one may want to bundle the two
components for encoding data streams together in a composite component.
The advantage of such a composite component is that the decision to use
the OggEncoder component for encoding is encapsulated in the composite
component and can be exchanged independent of how often this composite
component is instantiated.

The metamodel excerpt responsible for the deployment of assembly contexts
is roughly depicted in Figure 2.5. An allocation essentially consists of alloca-
tion contexts that each describe to which resource container (e.g., machine)
an assembly context should be deployed. The resource containers are mod-
eled in a resource environment that specifies the resources available at each
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resource container as well as their connection through linking resources
such as e.g. network.

2.6. Partially Ordered Sets and Lattices

This section gives a brief introduction to the theory of partially ordered sets
and lattices. These theories will be used in the remainder for a formalization
of of type systems and their applications. The definitions can be found in
many text books on partial orders. The definitions depicted here are taken
from Crole [49].

Definition 1 (Partial order). A partial order ≤ on a given set 𝑋 is a binary
relation which is reflexive, transitive and anti-symmetric. This means, for
any given 𝑥,𝑦, 𝑧 ∈ 𝑋 the relation ≤ fulfills the following properties:

𝑥 ≤ 𝑥 (reflexive)

𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧 (transitive)

𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 ⇒ 𝑥 = 𝑦 (anti-symmetric)

Definition 2 (Partially ordered set). A partially ordered set (𝑋, ≤) is a set
𝑋 equipped with a partial order ≤. If the partial order ≤ is clear from the
context, we also simply write 𝑋 .

Definition 3. Let 𝑋 be a partially ordered set. Then an upper bound 𝑠 of a
subset 𝑆 ⊂ 𝑋 of 𝑋 is an element such that for each 𝑠 ∈ 𝑆 we have that 𝑠 ≤ 𝑠 .
Likewise, a lower bound for 𝑆 is an element 𝑠 for which we have that for
every 𝑠 ∈ 𝑆 it holds that 𝑠 ≤ 𝑠 .

Definition 4 (Join and Meet). A join of a subset 𝑆 ⊂ 𝑋 of𝑋 is the supremum
of 𝑆 with respect to ≤, denoted as

∨
𝑆 . This means,

∨
𝑆 is an upper bound

and for any other upper bound 𝑠 of 𝑆 , we have that
∨

𝑆 ≤ 𝑠 . Likewise, a meet
of 𝑆 is an infimum of 𝑆 with respect to ≤ denoted as

∧
𝑆 , i.e. it is a lower

bound of 𝑆 and for every other lower bound 𝑠 we have that 𝑠 ≤
∧

𝑆 .

A join (meet) of a subset consisting only of two elements 𝑎 and 𝑏 is also
denoted as 𝑎 ∨ 𝑏 (𝑎 ∧ 𝑏). Joins and meets of finite subsets are called finite
joins and meets.
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Definition 5 (Lattice, Semilattice). A lattice is a set equipped with a partial
order such that any finite meet and join exists. If only finite meets (joins)
exist, then it is called a meet-semilattice (join-semilattice).

Example 1. Any totally ordered set such as the real numbers are lattices
and therefore of course also meet- and join-semilattices.

Example 2. For a given set 𝑋 , the powerset P(𝑋 ) with set-inclusion is a
lattice. For a given set 𝑆 ⊂ P(𝑋 ), the join

∨
𝑆 =

⋃
𝑆 is the union of these

sets, while the meet
∧

𝑆 =
⋂

𝑆 is their intersection.

2.7. Lenses

Lenses are a an algebraic construct originally introduced by Foster et al. [64]
to solve the view-update-problem for tree structures. They operate on a set
of tree structures V and are able to compute updates to the original tree
when views have changed.

Definition 6 (Lens). A lens 𝑙 is a pair of two partial functions 𝑙 ↗: V ⇀ V

called the Get-function of 𝑙 and 𝑙 ↘: V ×V ⇀ V called the Put-function
of 𝑙 . The intuition is that 𝑙 ↗ computes a view on an element while 𝑙 ↘
applies changes to the view back to the original element.

Definition 7 (Well-behavedness). Let 𝐶 and 𝐴 be subsets of V . A lens is
called well-behaved and total from𝐶 to𝐴 if it maps arguments of𝐶 to results
of 𝐴 (𝑙 ↗ (𝐶) ⊂ 𝐴 and 𝑙 ↘ (𝐴 ×𝐶) ⊂ 𝐶) and complies with the following
laws:

𝑙 ↘ (𝑙 ↗ (𝑐), 𝑐) = 𝑐 for all 𝑐 ∈ 𝐶 (GetPut)

𝑙 ↗ (𝑙 ↘ (𝑎, 𝑐)) = 𝑎 for all (𝑎, 𝑐) ∈ 𝐴 ×𝐶. (PutGet)

Intuitively, these laws state that when no modification is performed in the
view, the Put function should not modify the original element; otherwise,
it should store this information such that recomputing the view would not
change the results.
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Definition 8. The composition operator ; puts two lenses 𝑙 and 𝑘 in se-
quence:

(𝑙 ;𝑘) ↗:𝑐 ↦→ 𝑘 ↗ (𝑙 ↗ (𝑐))

(𝑙 ;𝑘) ↘:(𝑎, 𝑐) ↦→ 𝑙 ↘ (𝑘 ↘ (𝑎, 𝑙 ↗ (𝑐)), 𝑐) .

Proposition 1. The composition 𝑙 ;𝑘 of a well-behaved total lense 𝑙 from 𝐴
to 𝐵 and a well-behaved, total lense 𝑘 from 𝐵 to 𝐶 is a well-behaved, total
lense from 𝐴 to 𝐶 .

2.8. A very short Primer to Category Theory

The goal of this section is to introduce the category theory that is used in
this thesis for reference purposes. The concepts are not explained as suitable
explanations can be obtained from many textbooks on category theory. The
interested reader is referred to Lawvere and Rosebrugh [137] or Crole [49].
The definitions from this section are taken from the latter.

2.8.1. Categories

Definition 9 (Category). A category C consists of a collection 𝑜𝑏 C of ob-
jects and collections of morphisms between objects of C equipped with an
associative operator ◦. The morphisms between objects 𝐴, 𝐵 ∈ 𝑜𝑏 C are de-
noted as𝑀𝑜𝑟C (𝐴, 𝐵) or𝑀𝑜𝑟 (𝐴, 𝐵) if C is clear from the context. Furthermore,
for each object 𝐴, the identity 𝑖𝑑𝐴 must exist and for each 𝑓 ∈ 𝑀𝑜𝑟 (𝐴, 𝐵), it
must hold that 𝑓 ◦ 𝑖𝑑𝐴 = 𝑓 = 𝑖𝑑𝐵 ◦ 𝑓 .

Remark 1. The associtativity means that for any 𝑓 ∈ 𝑀𝑜𝑟 (𝐴, 𝐵),
𝑔 ∈ 𝑀𝑜𝑟 (𝐵,𝐶), ℎ ∈ 𝑀𝑜𝑟 (𝐶, 𝐷) where 𝐴, 𝐵,𝐶, 𝐷 ∈ 𝑜𝑏 C that (ℎ ◦ 𝑔) ◦ 𝑓 =
ℎ ◦ (𝑔 ◦ 𝑓 ).

Remark 2. In category theory, equations are often visualized as diagrams. For
this, one uses objects of the category as nodes of the graph and morphisms
between these objects as edges. Due to composition of morphisms, any paths
in this graph are also morphisms in the category. The terminology that such
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a diagram commutes is equivalent to saying that the morphisms generated
by following multiple paths between objects are the same.

Definition 10. A category C is called small if its objects 𝑜𝑏 C form a set
and likewise every class of morphisms𝑀𝑜𝑟 (𝐴, 𝐵) for any objects 𝐴 and 𝐵 is
a set.

Example 3 (Trivial Category). The trivial category T (𝑆) for a given set 𝑆
is a category with 𝑜𝑏 T = 𝑆 and the only morphisms are the identities for
each object.

Example 4 (Sets). One of the most important categories is the category S
of sets. Here, the morphisms are the mappings between sets and the identity
for a given set 𝐴 is the identity mapping on 𝐴.

The category S is not small. If it was small, then its objects would form a set
and this set of objects would have to be an element of itself. This is forbidden
in axiomatic set theory.

Example 5 (Type systems). As shown by Crole [49], every algebraic type
system corresponds to a (cartesian-closed) category. In the running example,
the railway network type system is a category, where the objects are the
types such as Semaphore, Switch and Route. The morphisms are the reflexive-
transitive closure of the model properties between these types, such as for
instance the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of a switch, but also combinations such whether the
position of the first switch in some collection of switches matches a given
(constant) value.

Definition 11. Let C be a category. The opposite category C𝑜𝑝 has the
same objects as C and for each objects 𝐴, 𝐵, we have that 𝑀𝑜𝑟C𝑜𝑝 (𝐴, 𝐵) =
𝑀𝑜𝑟C (𝐵,𝐴).

Example 6. Every partially ordered set (𝑆, ≤) gives rise to a category C by
setting 𝑜𝑏 C = 𝑆 and for each objects 𝐴, 𝐵 of C, we have that 𝑀𝑜𝑟 (𝐴, 𝐵) ≠
∅ :⇔ 𝐴 ≤ 𝐵. In particular,𝑀𝑜𝑟 (𝐴, 𝐵) contains at most one element.

Example 7. The category G of groups consists of the collection of groups
together with the group homomorphisms. A similar construction is possible
for a range of algebraic constructs such as rings or fields.
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Remark 3. The goal of this range of examples is to show the generality of
categories. However, this has a downside that so far only few theorems are
known that hold on this very general level. Such a theorem simply has to
hold for a very diverse range of mathematical entities. Thus, the main benefit
from category theory is its universal language.

In particular, category theory defines a range of properties defined on this
very abstract level, called universal properties. To prove whether a given
category possesses such a property usually requires to use the inner structure
of this category but the language offered by category theory can be very
beneficial for communication.

Definition 12 (Product, Sum). Let 𝐴 and 𝐵 be objects of a category C. The
product of 𝐴 and 𝐵 in C is an object 𝐴 × 𝐵 of C together with two projection
morphisms 𝜋𝐴 : 𝐴 × 𝐵 → 𝐴 and 𝜋𝐵 : 𝐴 × 𝐵 → 𝐵 such that for every object
𝐶 and every pair of morphisms 𝑓 : 𝐶 → 𝐴 and 𝑔 : 𝐶 → 𝐵, there is a unique
morphism 𝑝 : 𝐶 → 𝐴 × 𝐵 such that 𝑓 = 𝜋𝐴 ◦ 𝑝 and 𝑔 = 𝜋𝐵 ◦𝐴. That is, the
following diagram commutes:

𝐶

𝐴 𝐴 × 𝐵 𝐵

𝑓
𝑝

𝑔

𝜋𝐴 𝜋𝐵

A sum of objects 𝐴 and 𝐵 in C simply is the product of 𝐴 and 𝐵 in C𝑜𝑝 . That
is, it is an object 𝐴 + 𝐵 together with two morphisms 𝚤𝐴 : 𝐴 → 𝐴 + 𝐵 and
𝚤𝐵 : 𝐵 → 𝐴 + 𝐵 such that for every object 𝐶 and every pair of morphisms
𝑓 : 𝐴 → 𝐶 and 𝑔 : 𝐵 → 𝐶 , there is a unique morphism 𝑠 : 𝐴 + 𝐵 → 𝐶 such
that 𝑓 = 𝑠 ◦ 𝚤𝐴 and 𝑔 = 𝑠 ◦ 𝚤𝐵 . That is, the following diagram commutes:

𝐴 𝐴 + 𝐵 𝐵

𝐶

𝑓
𝑠

𝑔

𝚤𝐴 𝚤𝐵
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Proposition 2. Sums and products for given objects𝐴 and 𝐵 in C are unique
up to isomorphism, in case they exist.

Definition 13 (Exponential). Let C be a category such that for each objects
𝐴 and 𝐵 their product exists. Then the exponential of𝐴 and 𝐵 is an object𝐴𝐵

together with a morphism 𝑒𝑣𝑎𝑙 : 𝐴𝐵 × 𝐵 → 𝐴 such that for any morphism
𝑓 : 𝐶 × 𝐵 → 𝐴, there is a unique morphism 𝜆𝑓 : 𝐶 → 𝐴𝐵 such that for every
𝑐 ∈ 𝐶 and 𝑏 ∈ 𝐵, 𝑓 (𝑐, 𝑏) = 𝑒𝑣𝑎𝑙 (𝜆𝑓 (𝑐), 𝑏). That is, the following diagram
commutes:

𝐶 × 𝐵

𝐴𝐵 × 𝐵 𝐴

𝜆𝑓 × 𝑖𝑑𝐵 𝑓

𝑒𝑣𝑎𝑙

Definition 14 (Initial object, terminal object). An initial object ⊥ of a cat-
egory C is an object such that for every object 𝐴 in C, there exists exactly
one morphism from ⊥ to 𝐴.

Conversely, a terminal object � of a category C is an object such that for
every object 𝐴 in C, there exists exactly one morphism from 𝐴 to �.

An initial object of C is a terminal object of C𝑜𝑝 and vice versa.

Proposition 3. Initial and terminal objects are unique up to isomorphism,
i.e. if 𝐴 and 𝐵 are initial objects of the same category, then there is an
isomorphism from 𝐴 to 𝐵.

Example 8. In the category S of sets, the initial object is the empty set. The
terminal objects are the sets that contain exactly one element.

Example 9. In programming, initial and terminal objects usually correspond
to the type of void and null. This is because for any given type, there is
exactly one morphism that returns null (because there is no other choice)
and there is exactly one morphism from void to that type (that does not have
a specification because the type void allows no instances).
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Definition 15. A category C is called cartesian-closed if it satisfies the
following properties:

• It contains an initial and a terminal object.

• For any objects 𝐴 and 𝐵, the product 𝐴 × 𝐵 exists.

• For any objects 𝐴 and 𝐵, the exponential 𝐴𝐵 exists.

Example 10. The category S of sets is cartesian-complete. The binary
product of two sets 𝐴 and 𝐵 is the set-theoretic product 𝐴 × 𝐵 and the
exponential 𝐴𝐵 is the set of functions 𝐵 → 𝐴.

2.8.2. Functors and Monads

Definition 16 (Functor). A (covariant) functor F : C → D between cat-
egories C and D is a mapping between the objects of C and D and the
morphisms such that for each objects 𝐴 and 𝐵 and 𝑓 ∈ 𝑀𝑜𝑟 (𝐴, 𝐵) in C, we
have that F (𝑓 ) ∈ 𝑀𝑜𝑟D(F (𝐴), F (𝐵)). Further, a functor has to respect
composition, i.e. if 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 , then it must hold that
F (𝑔 ◦ 𝑓 ) = F (𝑔) ◦ F (𝑓 ) and F (𝑖𝑑𝐴) = 𝑖𝑑F(𝐴) inD and for each object 𝐴 in
C.

A contravariant functor of C is a covariant functor of C𝑜𝑝 . However, con-
travariant functors will not be a subject of consideration in this thesis.
Whether a functor is covariant or contravariant is usually clear from context
so that one often omits this information.

A functor F : C → C for some category C is called an endofunctor.

Example 11 (Identity functor). An important functor is the identity functor
𝑖𝑑C : C → C for a category C that maps each object 𝐴 ∈ C to itself and
likewise each mapping 𝑓 ∈ 𝑀𝑜𝑟 (𝐴, 𝐵) to itself.

Example 12. Further, if𝐴 is an object of a small category C, then𝑀𝑜𝑟 (𝐴,−)
is a functor from C to S. It maps each object 𝐵 of C to𝑀𝑜𝑟 (𝐴, 𝐵) and each
mapping 𝑓 ∈ 𝑀𝑜𝑟 (𝐵,𝐶) to𝑀𝑜𝑟 (𝐴, 𝑓 ) : 𝑀𝑜𝑟 (𝐴, 𝐵) → 𝑀𝑜𝑟 (𝐴,𝐶), 𝜙 ↦→ 𝑓 ◦𝜙.

Example 13. There are three prominent collection functors on S:
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1. The powerset functor P : S → S sends each set to its powerset and
for each morphism 𝑓 : 𝐴→ 𝐵 we have that

P(𝑓 ) : P(𝐴) → P(𝐵), 𝑆 ↦→ 𝑓 (𝑆) := {𝑓 (𝑠) |𝑠 ∈ 𝑆}.

2. The multiset functorM : S → S sends each set 𝑆 to the set of
multisets with elements of 𝑆 , i.e. to a function 𝑆 → N0 that assigns
each element a multiplicity in the multiset. A morphism 𝑓 : 𝐴→ 𝐵 is
mapped to

M(𝑓 ) : M(𝐴) → M(𝐵),𝑚 ↦→ (𝑏 ↦→
∑

𝑎∈𝑓 −1 ( {𝑏 })

𝑚(𝑎)).

3. The Kleene closure ∗ : S → S maps each set 𝐴 to its Kleene closure
𝐴∗ which is the monoid of finite sequences of elements of 𝐴. A
morphism 𝑓 : 𝐴→ 𝐵 is mapped to

∗(𝑓 ) : 𝐴∗ → 𝐵∗, (𝑎1; . . . ;𝑎𝑛) ↦→ (𝑓 (𝑎1); . . . ; 𝑓 (𝑎𝑛)).

All three of these functors will be important in the remainder of this thesis.

Remark 4. Functors are the ‘natural’ mapping constructs between categories.
This is because indeed, the collection of categories forms the category C𝑎𝑡
where the morphisms between categories C and D (which are themselves
objects of C𝑎𝑡 ) are the functors F : C → D.

Definition 17 (Natural transformation). A natural transformation
𝜂 : F → G between two functors F ,G : C → D is a set of mappings
𝜂𝐴 ∈ 𝑀𝑜𝑟 (F (𝐴),G(𝐴)) for each 𝐴 ∈ C such that for each 𝐴, 𝐵 ∈ 𝑜𝑏 C and
𝑓 ∈ 𝑀𝑜𝑟 (𝐴, 𝐵) it holds that 𝜂𝐵 ◦ F (𝑓 ) = G(𝑓 ) ◦ 𝜂𝐴. That is, the following
diagram commutes:

F (𝐴) F (𝐵)

G(𝐴) G(𝐵)

F (𝑓 )

𝜂𝐴

G(𝑓 )

𝜂𝐵
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If all 𝜂𝐴 are isomorphisms, 𝜂 is called a natural isomorphism between F and
G.

Remark 5. With natural transformations, category theory offers a formal
definition of naturality that is provable.

Example 14. An important example of a natural transformation between
functors is the identity transformation on a given functor F . For each
object 𝐴 in C, the transformation component for 𝐴 is simply the identity, i.e.
(𝑖𝑑F)𝐴 = 𝑖𝑑F(𝐴) .

Definition 18 (Monad). A monad T : C → C is a functor equipped with
two natural transformations 𝜂 : 𝑖𝑑C → T and 𝜇 : T 2 → T such that
𝜇 ◦ T 𝜇 = 𝜇 ◦ 𝜇T and 𝜇 ◦ T𝜂 = 𝜇 ◦ 𝜂T = 𝑖𝑑T .

Example 15. The powerset functor from Example 13 can be extended to a
monad with the following natural transformations: Let 𝐴 be a set in S, then

𝜂P𝐴 : 𝐴→ P(𝐴), 𝑎 ↦→ {𝑎}

𝜇P𝐴 : P(P(𝐴)) → P(𝐴), 𝑆 ↦→
⋃

𝑆.

𝜂P is natural since 𝑓 ({𝑎}) = {𝑓 (𝑎)} for 𝑎 ∈ 𝐴 and 𝑓 : 𝐴→ 𝐵. The naturality
of 𝜇P follows from

⋃
𝑆 ∈℘ 𝑓 (𝑆) = 𝑓 (

⋃
𝑆 ∈℘). This time, ℘ ∈ P(P(𝐴)) is a subset

of subsets of 𝐴.

To proof that P is a monad, it is even necessary to go one more functor level
deeper than before. Thus, let 𝑋 ∈ P3 (𝐴) be a subset of subsets of subsets of
𝐴. Then

(𝜇 ◦ 𝜇P)𝐴 (𝑋 ) =
⋃
℘∈𝑋

∪𝑆 ∈℘𝑆 = (𝜇 ◦ P)𝐴 (𝑋 )

and for each 𝑆 ∈ P(𝐴)

(𝜇 ◦ 𝜂P)𝐴 (𝑆) = 𝑆 =
⋃
𝑎∈𝑆

{𝑎} = (𝜇 ◦ P(𝜂))𝐴 (𝑆).

Hence, P is a monad.
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Remark 6. The difference between 𝜇 ◦ P𝜇 and 𝜇 ◦ 𝜇P is in the order the sets
of sets of sets are flattened. In the first case, the inner sets of sets of 𝐴 are
flattened first, while in the latter the outer sets of sets of P(𝐴) are merged
first.

Likewise, the operator 𝜇 ◦ P𝜂 first packages every item 𝑎 ∈ 𝑆 into a subset
{𝑎} and then flattens these subsets, meanwhile 𝜇 ◦ 𝜂P simply maps 𝑆 to {𝑆}
and flattens this one-element set of sets to 𝑆 .

For both equations, the representation suffers from the fact that the math-
ematical set union notation already ignores the order in which unions are
computed as this does not matter in S.

Example 16. Like the powerset monad, the Kleene functor can also be
extended to a monad using the natural transformations 𝜂∗ and 𝜇∗ as follows:

𝜂∗𝐴 : 𝐴→ 𝐴∗, 𝑎 ↦→ 𝑎;

𝜇∗𝐴 : 𝐴 ∗ ∗ → 𝐴∗,

(𝑎11; . . . ;𝑎
1
𝑛1 ); . . . ; (𝑎

𝑚
1 ; . . . ;𝑎

𝑚
𝑛𝑚 );

↦→ 𝑎11; . . . ;𝑎
1
𝑛1 ;𝑎
2
1; . . . ;𝑎

𝑚−1
𝑛𝑚−1 ;𝑎

𝑚
1 ; . . . ;𝑎

𝑚
𝑛𝑚 ;

Similarly, the functor M can be extended to a monad through the natural
transformations 𝜂M and 𝜇M as follows:

𝜂M𝐴 : 𝐴→ M(𝐴), 𝑎 ↦→ (𝑏 ↦→ 𝛿 (𝑎, 𝑏))

𝜇M𝐴 : M
2 (𝐴) → M(𝐴), 𝑀 ↦→ (𝑎 ↦→

∑
𝑚∈M(𝐴)

𝑀 (𝑚) ·𝑚(𝑎).
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In this chapter, we introduce the notion of mutable type categories. The
rationale behind this formalization is to extend the static category-theory
based formalization of algebraic type systems as given by Crole [49] with
a notion of state in order to formally denote a reaction of state changes in
incremental computing.

Section 3.1 explains the structure of mutable type categories. Section 3.2
introduces the notion of stateless methods and stateless types used in the
thesis. The next sections define the semantics and present some results
for several modeling features. In particular, Section 3.3 inheritance, Sec-
tion 3.4 collections, Section 3.5 composition references and the composition
hierarchies defined by them, Section 3.6 opposite references.

3.1. Types and State as a Category

The goal of this section is to introduce a formalization of type systems based
on category theory. In particular, this section will introduce a formaliza-
tion of basic properties of a type system which are then completed in later
sections.

The basic idea is to interpret types in a type system as objects of a category,
similar to Croles mapping of algebraic type systems to categories [49]. Each
type object represents the set of possible objects of this type. In contrast to
Crole, however, we consider the mutable state of objects at runtime. This has
a multitude of consequences: First, the value of a member access of an object
may be different, depending on the state in which the member was accessed,
but the identity of the object is assumed to stay the same. Second, the added
complexity in the formalization by Crole to cope with generic methods and
functions is not necessary because at runtime, each method is bound already
to a type, i.e. we do not have to take open generic type definitions into
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account. Therefore, we basically rest on the proof made by Crole that any
algebraic type system is equivalent to a cartesian-closed category.

While this foundation on algebraic type theory is useful for many practical
applications, we need to keep in mind that model elements have an identity
that stays the same even though its attributes or references may change.
In particular, models are mutable. This is because according to the general
model theory by Stachowiak [185], models always correspond to an original
or concept whose identity does not change either.

The goal of considering the state is to analyze the impact when this state
has changed. Therefore, we are also interested in actions that will change
the global states. These operations can be represented as a series of ele-
mentary model manipulations which in turn are inversions of elementary
model accesses. Hence, we will be interested not only in elementary model
manipulations but also in their inversions. A similar approach was taken by
Foster et al. with their Lenses framework [64], later extended by Diskin to
Delta-Lenses [56].

To account for multiple objects having an interrelated state as, e.g., through
opposite references, we model this state as a global state Ω on which we
do not make any assumption. This is inspired by the universe Ω commonly
used in stochastics. The intuition is that attributes of an object can change
over time, just like random variables in stochastics can change over multiple
states in the state space.

The reason for a very rough model of a global state is that an elementary
model change may change the state not only of the model element that is
worked with but also many others. An example here are opposite references
where setting a reference of one model element implicitly also sets the
opposite reference at another model element. Furthermore, a global state
space enables a unified consideration of changes regardless of where the
change originates.

The state space Ω can be seen as the space of possible memory states where
we abstract from temporary data needed only to compute a given method.
Thus, Ω can be thought of the set of sequences over an alphabet (e.g., {0, 1})
with finitely many non-zero entries. In particular, an element of the func-
tion set Ω → 𝐴 simply is a typed pointer, very similar to a typed random
variable.
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One of the merits of category theory is that it often does not require an
in-depth understanding of the inner structure of objects but rather reasons
on their behavior, i.e. the value or the uniqueness of certain morphisms.
This is useful for us, because it enables a formalization at a very high level
of abstraction that yields a good flexibility for a later implementation. In
particular, we do not make any assumptions on the structure of the state
space Ω or a given type 𝐴 except that there is a relation that checks whether
a given object has a certain type. We use the element notation 𝑎 ∈ 𝐴 to
depict that an object 𝑎 is an instance of 𝐴. Further, we identify 𝐴 with the
set of its instances.

To take the global state into account, the basic idea is to extend a static
type system (which can be thought of as a category T through the mapping
defined by Crole [49]) with this global state space. The resulting category
has as objects the canonical product of objects of 𝑜𝑏 T (i.e., types) and the
global state space Ω.

We are particularly interested in the incrementalization of side-effect free
morphisms as per the following definition:

Definition 19 (Side-effect free methods). The idea of the definition of side-
effect free methods is that they do not change the global state. In particular,
a function 𝑓 : 𝐴 × Ω → 𝐵 × Ω is side-effect free if and only if for all
(𝑎,𝜔) ∈ 𝐴 × Ω, it holds that

𝜋Ω (𝑓 (𝑎,𝜔)) = 𝜔

where 𝜋Ω is the canonical projection to the state of the result24. Since side-
effect free morphisms do not change the global state, we sometimes identify
the result of the result of a side-effect free function with the resulting object
and discard the state as the latter did not change.

Example 17. For any type 𝐴, the identity on 𝐴 × Ω is side-effect free.

Proposition 4. A composition of side-effect free morphisms is side-effect
free.

24 It is common to index projections with indices. However, in the scope of this thesis, projec-
tions will be indexed with the space they are projecting to, as there is no case of confusion.
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Definition 20 (Mutable Type Category). AMutable Type Category (MTC) C
for a set of types 𝑜𝑏 T and a state space Ω is a category that consists of tuples
𝑜𝑏 C := {𝐴 × Ω |𝐴 ∈ 𝑜𝑏 T } as objects and morphisms 𝑀𝑜𝑟 (𝐴 × Ω, 𝐵 × Ω)
between two types 𝐴 and 𝐵 as functions 𝐴 × Ω → 𝐵 × Ω. We further
demand that the restriction of C to side-effect free morphisms CΩ forms a
cartesian-closed category.

Remark 7. If C is a category, then the restriction CΩ with 𝑜𝑏 C = 𝑜𝑏 CΩ and
𝑀𝑜𝑟CΩ (𝐴 × Ω, 𝐵 × Ω) = {𝑓 ∈ 𝑀𝑜𝑟C (𝐴 × Ω, 𝐵 × Ω) |𝑓 is side-effect free} is a
category in any case because the composition of side-effect free morphisms is
side-effect free. Demanding that CΩ is cartesian-closed means that products
and sums exist for which only side-effect free methods must be taken into
account.

The reason for this is that for methods with side-effects, the order in which
they are executed matters which makes it hard to reason on product and
sum types. If we restrict the methods to side-effect free methods, we can
simply assume that the product of objects𝐴×Ω and 𝐵×Ω in CΩ is𝐴×𝐵×Ω,
because the global state is not touched in CΩ . Meanwhile, we require the
surrounding type system C in order to perform changes of the global state.

Definition 21 (Notation). In the remainder of the thesis, we use a slightly
simplified notation where we write 𝑓 : 𝐴 → 𝐵 for 𝑓 ∈ 𝑀𝑜𝑟 (𝐴 × Ω, 𝐵 × Ω)
when it is clear from context that 𝐴 and 𝐵 are types. We also say that 𝐴 ∈ C
to denote that 𝐴 × Ω ∈ 𝑜𝑏 C.

Further, a functor F applied to a given object 𝐴 × Ω in C must be an object
F (𝐴 × Ω) = 𝐴′ × Ω. We notate this type 𝐴′ as 𝐴′ = F (𝐴) such that
F (𝐴 × Ω) = F (𝐴) × Ω. We refer to changes of the global state as set-
theoretic functions Δ𝜔 ∈ ΔΩ := Ω → Ω.

If we know that a morphism 𝑓 : 𝐴→ 𝐵 is side-effect free, we often treat it
as a function 𝐴 × Ω → 𝐵, because it is clear that the state will not change.

Definition 22. In a mutable type category C, a state change Δ𝜔 can be
extended to a transformation C → C

Δ𝜔𝐴 : 𝐴→ 𝐴, (𝑎,𝜔) ↦→ (𝑎,Δ𝜔 (𝜔))

that simply applies this state change but leaves the value intact. In the
remainder we use this inclusion if this is clear from the context.
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Definition 23 (In-model Lens). In this interpretation, a (well-behaved) in-
model lens (m-lens) 𝑙 : 𝐴 ↩→ 𝐵 between types 𝐴 and 𝐵 of a mutable type
category C consists of a side-effect free Get morphism 𝑙 ↗: 𝐴→ 𝐵 and a
partial morphism 𝑙 ↘: 𝐴 × 𝐵 → 𝐴 called the Put function that satisfy the
following conditions:

• For each 𝑎 ∈ 𝐴,𝜔 ∈ Ω, the morphism 𝑙 ↘ is defined for the tuple
(𝑎, 𝑙 ↗ (𝑎,𝜔)) and we have that

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎,𝜔) (GetPut)

• If 𝑙 ↘ is defined for a tuple (𝑎, 𝑏, 𝜔) ∈ 𝐴 × 𝐵 × Ω, then we have that

𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, 𝜔̃) for some 𝜔̃ ∈ Ω. (PutGet)

The first condition is a direct translation of the original PutGet law. Mean-
while, the second line is slightly weaker than the original GetPut because
the global state may have changed. In particular, we allow the Put function
to change the global state.

Example 18. We want to show how references and attributes such as de-
fined in MOF translate to Mutable Type Category (MTC) morphisms. Let
𝑒𝑛𝑡𝑟𝑦 : Route ↩→ Semaphore be the reference of Route that specifies a routes
entry semaphore and likewise 𝑠𝑖𝑔𝑛𝑎𝑙 : Semaphore ↩→ Signal the attribute
containing the current signal of the semaphore.

The corresponding excerpt from the metamodel is depicted in the class
diagram of Figure 3.1.

The setter morphism 𝑠𝑖𝑔𝑛𝑎𝑙 ↘ has full domain, i.e.

D(𝑠𝑖𝑔𝑛𝑎𝑙 ↘) = Semaphore × Signal × Ω.

Thismeans that all possible instances of Signal are valid for a given semaphore.

However, we would typically want to restrict the semaphores that can be
used as entries of a route to those semaphores that are in the same railway
container.
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RailwayContainer

Route Semaphore

+ street : String

entry

1

routes 0..* semaphores0..*

Figure 3.1.: The metamodel excerpt of the railway network metamodel used in Example 18

We can formulate this constraint formally by limiting the domain of the
𝑒𝑛𝑡𝑟𝑦 ↘ morphism:

D(𝑠𝑖𝑔𝑛𝑎𝑙 ↘) = {(𝑟, 𝑠, 𝜔) ∈ Route × Semaphore × Ω

|𝑠 ∈ 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒𝑠 ↗ (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑟, 𝜔))}.

Here, we used a 𝑝𝑎𝑟𝑒𝑛𝑡 morphism that simply returns the parent of a given
route in the containment hierarchy. Such a morphism is usually generated
by the modeling framework.

Remark 8. Whether and to which degree the domain of a lens Put morphism
is enforced by the type system is not clear. From a very technical point of
view, the morphism may still be defined but an implementation may also
throw an exception in such a case.

Remark 9. In general, setters may do more than just setting the value of
their getter functions but change the global status entirely. The rationale is
that setters may also influence other morphisms, especially the backward
references. In the case of Example 18, assume that a Semaphore also holds
the backwards reference to the Route instances that start at this semaphore.
Then, changing the entry of a route should remove the route from the list of
routes starting at the old entry and add the route to the list of routes starting
at the new entry.
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3.2. Stateless Types and Stateless Methods

Our formalization of MTCs specifically targets to understand the impact of
changes. Thus, for a given morphism 𝑓 : 𝐴 → 𝐵, we want to understand
which state transitions Δ𝜔 ∈ ΔΩ cause the method return value 𝑓 (𝑎,Δ𝜔 (𝜔))
for a given 𝑎 ∈ 𝐴 to change, i.e. be different than 𝑓 (𝑎,𝜔). For this, a very
important kind of methods are stateless methods that we want to study in
this section.

Definition 24 (Stateless Morphism). Let C be a MTC, 𝐴 and 𝐵 objects of C
and 𝑓 : 𝐴→ 𝐵. Then 𝑓 is stateless if and only if it is side-effect free and for
every 𝑎 ∈ 𝐴 and every 𝜔1, 𝜔2 ∈ Ω we have that

𝜋𝐵 (𝑓 (𝑎,𝜔1)) = 𝜋𝐵 (𝑓 (𝑎,𝜔2)).

Example 19. For each object 𝐴 of C, the identity 𝑖𝑑𝐴 on 𝐴 is stateless since
for any 𝑎 ∈ 𝐴 and 𝜔1, 𝜔2 ∈ Ω we have that

𝜋𝐴 (𝑖𝑑𝐴 (𝑎,𝜔1)) = 𝑎 = 𝜋𝐴 (𝑖𝑑𝐴 (𝑎,𝜔2)).

Example 20. Let 𝐴 × 𝐵 be a tuple type. Then the projection morphisms
𝜋𝐴 : 𝐴 × 𝐵 → 𝐴 and 𝜋𝐵 : 𝐴 × 𝐵 → 𝐵 are stateless as extensions of the
projections in S.

Example 21. For numbers and boolean types, arithmetic operators +, −, ∗, /,
% are stateless, same as equality and inequality and comparison operators. For
more complex types such as collections, concatenations can be implemented
stateless by just saving references to the concatenated lists instead of copying
elements. While in the latter, updates to the original lists are lost (which is
why the state matters), they are kept if the lists are only referenced.

Example 22. For any side-effect free morphism 𝑓 : 𝐴×𝐵 → 𝐶 , its exponen-
tial mate 𝜆𝑓 : 𝐴→ 𝐶𝐵 is stateless because the function 𝑓 is only evaluated
in through the 𝑒𝑣𝑎𝑙 morphism.

Proposition 5. The composition of stateless morphisms is stateless.
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Proof. Let C be a MTC type system and 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶 stateless
morphisms, 𝑎 ∈ 𝐴 and 𝜔1, 𝜔2 ∈ Ω, then we have that

(𝑔 ◦ 𝑓 ) (𝑎,𝜔1) = 𝑔(𝑓 (𝑎,𝜔1))

= 𝑔(𝜋𝐵 (𝑓 (𝑎,𝜔1)), 𝜔2)

= 𝑔(𝜋𝐵 (𝑓 (𝑎,𝜔2)), 𝜔2)

= 𝑔(𝑓 (𝑎,𝜔2))

= (𝑔 ◦ 𝑓 ) (𝑎,𝜔2) .

3.3. Inheritance

Object-oriented design has proved its usefulness inmany applications through-
out the past decades. An important concept in the object-oriented world is
the concept of inheritance between classes as a tool to specify generalizations
and specializations. Inheritance has many facets and many semantic issues
are related to it, suggesting when and how to use inheritance.

From a runtime perspective, this discussion is not necessary since the decision
whether or not a given type inherits from another is a design question that
already has an answer. In particular, the difference between inheritance
and true subtyping is meaningless at runtime. If a type 𝐴 inherits from a
different type 𝐵, this implies that instances of 𝐴 are also instances of type 𝐵
and morphisms of 𝐵 to another type𝐶 are also morphisms of𝐴. We formalize
this understanding of inheritance in the following definition.

Definition 25. Inheritance is a partial order relation � on the types of a
MTC C such that forms a join-semilattice on the types of C. Further, 𝐴 � 𝐵
for types 𝐴 and 𝐵 implies that all instances of 𝐴 are also instances of 𝐵.

Remark 10. The inheritance relation � may not exactly match the intuitive
understanding of ‘A inherits B’ but rather its reflexive, transitive closure.
Definition 25 allows multiple inheritance that is forbidden in Java and .NET
for classes. Therefore, model classes are usually implemented in interfaces.
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3.4. Collections

Attributes or references in type systems often may have more than a single
value. Such references are often called multi-valued. There are multiple
kinds of multi-valued attributes in order to describe different behavior. Some
of them already have been formalized. The most important behaviors are
that all elements of a collection must be unique or that all elements of a
collection have a defined order. This section aims to give these multi-valued
attributes a formal semantics.

Proposition 6. Let C be a MTC. Then the (lazy) powerset functor P defines
an endofunctor on CΩ as follows: For any type 𝐴, P maps this object to
pointers to sets of elements of 𝐴, i.e. P(𝐴) = Ω → P(𝐴). We also demand
that these subsets are finite, i.e. for each 𝑠 ∈ P(𝐴) and 𝜔 ∈ Ω, |𝑠 (𝜔) | < ∞.
Further, a morphism 𝑓 : 𝐴→ 𝐵 is mapped through specification below.

P(𝑓 ) : P(𝐴) → P(𝐵), (𝑆, 𝜔̃) ↦→ ((𝜔 ↦→ {𝑓 (𝑎,𝜔) |𝑎 ∈ 𝑆 (𝜔)}), 𝜔̃).

Here, the resulting mapping is clearly finite for each 𝜔 ∈ Ω. In particular,
P(𝑓 ) is stateless, regardless of whether 𝑓 originally was stateless or not.

Proof. To show that P defines an endofunctor on CΩ , we need to show that
P(𝑖𝑑𝐴) = 𝑖𝑑P(𝐴) and for any side-effect free morphisms 𝑓 : 𝐴→ 𝐵,𝑔 : 𝐵 →
𝐶 that P(𝑔 ◦ 𝑓 ) = P(𝑔) ◦ P(𝑓 ).

Thus, let 𝑆 ∈ P(𝐴) and 𝜔̃ ∈ Ω. We then have that

P(𝑖𝑑𝐴) (𝑆, 𝜔̃) = 𝜔 ↦→ {𝑖𝑑𝐴 (𝑎,𝜔) |𝑎 ∈ 𝑆 (𝜔)} = 𝜔 ↦→ 𝑆 (𝜔) = 𝑖𝑑P(𝐴) (𝑆, 𝜔̃)

and furthermore

P(𝑔 ◦ 𝑓 ) (𝑆, 𝜔̃) (𝜔) = {(𝑔 ◦ 𝑓 ) (𝑎,𝜔) |𝑎 ∈ 𝑆 (𝜔)}

= {𝑔(𝑓 (𝑎,𝜔)) |𝑎 ∈ 𝑆 (𝜔)}

= {𝑔(𝑏,𝜔) |𝑏 ∈ {𝑓 (𝑎,𝜔) |𝑎 ∈ 𝑆 (𝜔)}}

= {𝑔(𝑏,𝜔) |𝑏 ∈ P(𝑓 ) (𝑆, 𝜔̃) (𝜔)}

= (P(𝑔) ◦ P(𝑓 )) (𝑆, 𝜔̃) (𝜔).
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Remark 11. The fact that P is restricted to CΩ instead of being applicable
to the entire C means that we may only use side-effect free morphisms as
inputs to the monad. This has the reason that otherwise, it would not be
clear in which order the state changes would have to be evaluated. We will
restrict the other collection types in the same way.

Proposition 7. In the above situation, the endofunctor P defines a monad
with the following transformations for a given object 𝐴 of CΩ :

𝜂P𝐴 : 𝐴→ P(𝐴), 𝑎 ↦→ (𝜔 ↦→ {𝑎})

𝜇P𝐴 : P
2 (𝐴) → P(𝐴), ℘ ↦→ (𝜔 ↦→

⋃
𝑆 ∈℘

𝑆 (𝜔)).

Proof. We need to show that the transformations 𝜂P and 𝜇P are natural and
fulfill the requirements for a monad. Therefore, let 𝑓 : 𝐴→ 𝐵 be a side-effect
free morphism, 𝑎 ∈ 𝐴, ℘ ∈ P2 (𝐴) and 𝜔̃ ∈ Ω. We then have that

(𝜂P𝐵 ◦ 𝑓 ) (𝑎, 𝜔̃) = 𝜔 ↦→ {𝑓 (𝑎, 𝜔̃)}

= P(𝑓 ) (𝜔 ↦→ {𝑎}, 𝜔̃)

= (P(𝑓 ) ◦ 𝜂P𝐴) (𝑎, 𝜔̃).

Furthermore,

(𝜇P𝐵 ◦ P
2 (𝑓 )) (℘, 𝜔̃) = 𝜔 ↦→

⋃
𝑆 ∈℘(𝜔)

{𝑓 (𝑎,𝜔) |𝑎 ∈ 𝑆 (𝜔)}

= 𝜔 ↦→ {𝑓 (𝑎,𝜔) |𝑎 ∈
⋃

𝑆 ∈℘(𝜔)

𝑆 (𝜔)}

= (P(𝑓 ) ◦ 𝜇P𝐴 ) (℘, 𝜔).

This shows that 𝜂P and 𝜇P are natural.

Now, similar to Example 15, let 𝑋 ∈ P3 (𝐴) be a subset of subsets of subsets
of 𝐴. Then

(𝜇P ◦ 𝜇PP)𝐴 (𝑋 ) = 𝜔 ↦→
⋃

℘∈𝑋 (𝜔)

⋃
𝑆 ∈℘(𝜔)

𝑆 (𝜔) = (𝜇P ◦ P𝜇P)𝐴 (𝑋 )
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and for each 𝑆 ∈ P(𝐴)

(𝜇P ◦ 𝜂PP)𝐴 (𝑆) = (𝜇
P ◦ P𝜂P)𝐴 (𝑆) = 𝜔 ↦→

⋃
𝑎∈𝑆 (𝜔)

{𝑎} = 𝑆.

Definition 26. Let 𝑓 : 𝐴 → 𝐵 be a side-effect free morphism in C. Then
the inverse 𝑓 −1 is a mapping 𝑓 −1 : P(𝐵) → P(𝐴 × Ω) such that we have for
each 𝑆 ∈ P(𝐵) that (𝑎,𝜔) ∈ 𝑓 −1 (𝑆) :⇔ 𝑓 (𝑎,𝜔) ∈ 𝑆 .

The existence of this mapping is guaranteed by basic set theory. The purpose
of this definition here is only to be clear about the notation. We will need
this inverse of morphisms for non-unique multi-valued morphisms.

Proposition 8. Let C be a MTC. Then the multi-powersetM defines an
endofunctor on CΩ through the following mapping for each 𝐴 ∈ 𝑜𝑏 C:

M(𝐴) = Ω → (𝐴→ N0).

Here, we also demand that the domain of a multiset is finite for every 𝜔 ∈ Ω,
i.e. |𝑚(𝜔)−1 (N) | < ∞ for any 𝜔 ∈ Ω25.

That is,M(𝐴) is a function returning a multiset with elements of𝐴 for every
state of the state space Ω. The elements of 𝑚 ∈ M(𝐴) for a given state
𝜔 ∈ Ω is given by𝑚(𝜔)−1 (N) and for each element this set, the multiplicity
is given by𝑚(𝜔) (𝑎). We will shorten that an element 𝑎 is contained in the
multi-set through the notation 𝑎 ∈𝑚(𝜔) :⇔𝑚(𝜔) (𝑎) > 0.

Let 𝑓 : 𝐴 → 𝐵 be a morphism in C, thenM(𝑓 ) is given by the following
definition:

M(𝑓 ) :M(𝐴) → M(𝐵),

(𝑚, 𝜔̃) ↦→ ((𝜔 ↦→ (𝑏 ↦→
∑

(𝑎,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

𝑚(𝜔) (𝑎))), 𝜔̃)

with D(M(𝑓 ) (𝑚, 𝜔̃) (𝜔)) = 𝑓 (D(𝑚(𝜔)), 𝜔).

In particular,M(𝑓 ) is stateless regardless whether 𝑓 was stateless.

25 We denote N as the set of natural numbers starting with 1.
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Proof. To show thatM is a functor, we also need to show thatM(𝑖𝑑𝐴) =
𝑖𝑑M(𝐴) for any object 𝐴 in CΩ and for every side-effect free morphisms
𝑓 : 𝐴→ 𝐵,𝑔 : 𝐵 → 𝐶 we have thatM(𝑔 ◦ 𝑓 ) =M(𝑔) ◦M(𝑓 ).

Thus, let𝑚 ∈ M(𝐴) and 𝜔, 𝜔̃ ∈ Ω. We then have that

M(𝑖𝑑𝐴) (𝑚, 𝜔̃) (𝜔) = 𝑏 ↦→
∑

(𝑎,𝜔) ∈𝑖𝑑−1 ( {𝑏 })∩𝐴×{𝜔 }

𝑚(𝜔) (𝑎)

= 𝑏 ↦→
∑

(𝑎,𝜔) ∈{𝑏 }×Ω∩𝐴×{𝜔 }

𝑚(𝜔) (𝑎)

= 𝑏 ↦→𝑚(𝜔) (𝑏)

=𝑚(𝜔)

= 𝑖𝑑M(𝐴) (𝑚, 𝜔̃) (𝜔) .

Furthermore,

M(𝑔 ◦ 𝑓 ) (𝑚, 𝜔̃) (𝜔) = 𝑐 ↦→
∑

(𝑎,𝜔) ∈(𝑔◦𝑓 )−1 ( {𝑐 })∩𝐴×{𝜔 }

𝑚(𝜔) (𝑎).

Here, we have that for every 𝑐 ∈ 𝐶 that

(𝑎,𝜔) ∈ (𝑔 ◦ 𝑓 )−1 ({𝑐}) ∩𝐴 × {𝜔} ⇔ 𝑔(𝑓 (𝑎,𝜔), 𝜔) = 𝑐

⇔ (𝑓 (𝑎,𝜔), 𝜔) ∈ 𝑔−1 ({𝑐}) ∩ 𝐵 × {𝜔}.

For each (𝑏,𝜔) ∈ 𝑔−1 ({𝑐}) ∩ 𝐵 × {𝜔}, the origin pairs (𝑎,𝜔) for which
𝑏 = 𝑓 (𝑎,𝜔) are precisely given by 𝑓 −1 ({𝑏}) ∩𝐴 × {𝜔}.

Hence, for any𝑚 ∈ M(𝐴), 𝑐 ∈ 𝐶 and a given pair (𝑎,𝜔) ∈ (𝑔 ◦ 𝑓 )−1 ({𝑏})
we conclude

M(𝑔 ◦ 𝑓 ) (𝑚, 𝜔̃) (𝜔) (𝑐) =
∑

(𝑏,𝜔) ∈𝑔−1 ( {𝑐 })∩𝐵×{𝜔 }

∑
(𝑎,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

𝑚(𝜔) (𝑎)

=
∑

(𝑏,𝜔) ∈𝑔−1 ( {𝑐 })∩𝐵×{𝜔 }

M(𝑓 ) (𝑚, 𝜔̃) (𝜔) (𝑏)

=M(𝑔) (M(𝑓 ) (𝑚, 𝜔̃), 𝜔̃) (𝜔) (𝑐).

This shows thatM(𝑔 ◦ 𝑓 ) =M(𝑔) ◦M(𝑓 ).
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Proposition 9. In the situation of Proposition 8, the functorM defines a
monad on CΩ equipped with the following natural transformations:

𝜂M𝐴 : 𝐴→M(𝐴), 𝑎 ↦→ (𝜔 ↦→ (𝑏 ↦→ 𝛿 (𝑎, 𝑏) :=

{
1 if𝑎 = 𝑏
0 otherwise

))

𝜇M𝐴 :M
2 (𝐴) → M(𝐴), 𝑀 ↦→ (𝜔 ↦→ (𝑏 ↦→

∑
𝑚∈M(𝐴)

𝑀 (𝜔) (𝑚) ·𝑚(𝜔) (𝑏))).

Proof. We first show that indeed, 𝜂M and 𝜇M define natural transformations.
Therefore, let 𝑓 : 𝐴→ 𝐵 a side-effect free morphism. We need to show that
𝜂M𝐵 ◦ 𝑓 =M(𝑓 ) ◦ 𝜂M𝐴 and 𝜇

M
𝐵 ◦M

2 (𝑓 ) =M(𝑓 ) ◦ 𝜇M𝐴 .

Thus, first let 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔, 𝜔̃ ∈ Ω. We then have

𝜂M𝐵 (𝑓 (𝑎, 𝜔̃)) (𝜔) (𝑏) = 𝛿 (𝑓 (𝑎,𝜔), 𝑏)

=
∑

(𝑎̃,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

𝛿 (𝑎, 𝑎)

=M(𝑓 ) (𝜂M𝐴 (𝑎), 𝜔̃) (𝜔) (𝑏).

Furthermore, for𝑀 ∈ M2 (𝐴), 𝑏 ∈ 𝐵 and 𝜔, 𝜔̃ we have

𝜇M𝐵 (M
2 (𝑓 ) (𝑀, 𝜔̃)) (𝜔) (𝑏)

=
∑

𝑚∈M(𝐵)

M2 (𝑓 ) (𝑀, 𝜔̃) (𝜔) (𝑚) ·𝑚(𝜔) (𝑏)

=
∑

𝑚∈M(𝐵)

∑
(𝑚̃,𝜔) ∈M(𝑓 )−1 ( {𝑚})∩M(𝐴)×{𝜔 }

𝑀 (𝜔) (𝑚̃) ·𝑚(𝜔) (𝑏) .

For such a multi-set 𝑚̃ ∈ M(𝐴), it holds that

(𝑚̃, 𝜔) ∈ M(𝑓 )−1 ({𝑚}) ∩M(𝐴) × {𝜔} ⇔ M(𝑓 ) (𝑚̃, 𝜔) =𝑚.

Furthermore, the sets {𝑚} are pairwise disjunct for𝑚 ∈ M(𝐵) and thus⋃
𝑚∈M(𝐵)

M(𝑓 )−1 ({𝑚}) =M(𝑓 )−1 (M(𝐵)) =M(𝐴) × Ω.
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As a consequence,

𝜇M𝐵 (M
2 (𝑓 ) (𝑀, 𝜔̃)) (𝜔) (𝑏)

=
∑

𝑚∈M(𝐵)

∑
(𝑚̃,𝜔) ∈M(𝑓 )−1 ( {𝑚})∩M(𝐴)×{𝜔 }

𝑀 (𝜔) (𝑚̃) ·𝑚(𝜔) (𝑏)

=
∑

𝑚̃∈M(𝐴)

∑
(𝑎,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

𝑀 (𝜔) (𝑚̃) · 𝑚̃(𝜔) (𝑎)

=
∑

(𝑎,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

∑
𝑚̃∈M(𝐴)

𝑀 (𝜔) (𝑚̃) · 𝑚̃(𝜔) (𝑎)

=M(𝑓 ) (𝜇M𝐴 (𝑀), 𝜔̃) (𝜔) (𝑏).

We can exchange the summation since for any 𝑀 ∈ M2 (𝐴), the term
𝑀 (𝜔) (𝑚̃) is only non-zero for finitely many elements because𝑀 only con-
tains finitely many elements in any global state 𝜔 . Likewise, 𝑚̃ only contains
finitely many elements and thus the summation is finite and can be ex-
changed.

This concludes the naturality of 𝜇M .

To show that the equations 𝜇M ◦ M𝜂M = 𝜇M ◦ 𝜂MM = 𝑖𝑑M and 𝜇M ◦
M𝜇M = 𝜇M ◦ 𝜇MM, let𝑚 ∈ M(𝐴) and 𝑋 ∈ M3 (𝐴). Then we have for
𝑎 ∈ 𝐴 and 𝜔 ∈ Ω

(𝜇M𝐴 ◦M𝜂M𝐴 ) (𝑚) (𝜔) (𝑎) =
∑

𝑚̃∈M(𝐴)

𝛿 (𝑚,𝑚̃) ·𝑚(𝜔) (𝑎)

=𝑚(𝜔) (𝑎)

=
∑

𝑚̃∈M(𝐴)

= (𝜇M𝐴 ◦ 𝜂M𝐴 M)(𝑚) (𝜔) (𝑎)

and

(𝜇M𝐴 ◦M𝜇M𝐴 ) (𝑋 ) (𝜔) (𝑎) =
∑

𝑀 ∈M2 (𝐴)

∑
𝑚∈M(𝐴)

𝑋 (𝜔) (𝑀) ·𝑀 (𝜔) (𝑚) ·𝑚(𝜔) (𝑎)

= (𝜇M𝐴 ◦ 𝜇M𝐴 M)(𝑋 ) (𝜔) (𝑎).
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This concludes thatM is a monad.

Proposition 10. Let C be a MTC. Then the Kleene closure K defines an
endofunctor on CΩ where for each object 𝐴 ∈ CΩ and each side-effect free
morphism 𝑓 : 𝐴→ 𝐵 we have that

K(𝐴) = Ω → 𝐴∗

and

K(𝑓 ) :K(𝐴) → K(𝐵),

(𝜔 ↦→ (𝑎1; . . . ;𝑎𝑛), 𝜔̃) ↦→ (𝜔 ↦→ (𝑓 (𝑎1, 𝜔); . . . ; 𝑓 (𝑎𝑛, 𝜔))).

In particular, again K(𝑓 ) is stateless regardless whether 𝑓 was stateless.

Proof. Let 𝑎 ∈ K(𝐴) and 𝜔, 𝜔̃ ∈ Ω. Then we have that for the sequence
𝑎(𝜔) = (𝑎1, . . . , 𝑎𝑛) that

K(𝑖𝑑𝐴) (𝑎, 𝜔̃) (𝜔) = (𝑖𝑑𝐴 (𝑎1, 𝜔); . . . ; 𝑖𝑑𝐴 (𝑎𝑛, 𝜔)) = (𝑎1; . . . ;𝑎𝑛).

Furthermore, for morphisms 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶:

K(𝑔 ◦ 𝑓 ) (𝑎, 𝜔̃) (𝜔) = (𝑔(𝑓 (𝑎1, 𝜔), 𝜔), . . . , 𝑔(𝑓 (𝑎𝑛, 𝜔), 𝜔))

= K(𝑔) (𝜔̂ ↦→ (𝑓 (𝑎1, 𝜔̂), . . . , 𝑓 (𝑎𝑛, 𝜔̂)), 𝜔̃) (𝜔)

= K(𝑔) (K(𝑓 ) (𝑎, 𝜔̃), 𝜔̃) (𝜔)

= (K(𝑔) ◦ K(𝑓 )) (𝑎, 𝜔̃) (𝜔).

This concludes the proof.

Proposition 11. In the situation of Proposition 10, K can be extended to a
monad on CΩ through the following transformations for a given object 𝐴 of
CΩ :

𝜂K𝐴 : 𝐴→ K(𝐴), 𝑎 ↦→ (𝜔 ↦→ (𝑎))

𝜇K𝐴 : K
2 (𝐴) → K(𝐴),

𝑎 ↦→ (𝜔 ↦→ 𝑎 (1)1 ; . . . ;𝑎
(1)
𝑚1 ;𝑎

(2)
1 ; . . . ;𝑎

(𝑛−1)
𝑚𝑛−1
;𝑎 (𝑛)1 ; . . . ;𝑎

(𝑛)
𝑚𝑛
)
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where in the latter equation 𝑎(𝜔) = (𝑎 (1) ; . . . ;𝑎 (𝑛) ) and similarly 𝑎 (𝑖) (𝜔) =
(𝑎 (𝑖)1 ; . . . ;𝑎

(𝑖)
𝑚𝑖
).

Proof. We omit the proof here since it is rather uninteresting and technical.

Remark 12. The fact that all of the collection monads presented lift mor-
phisms to stateless morphisms in the monad is utilized by query frameworks
such as provided by the SQOs. It means that the state in which a query
was defined has no influence on the query result but only the state when
evaluating the query has.

Proposition 12. The transformation 𝚤K : K →M with the components

𝚤K𝐴 : K(𝐴) → M(𝐴),

(𝜔 ↦→ (𝑎1; . . . ;𝑎𝑛)) ↦→ (𝜔 ↦→ (𝑎 ↦→ |{𝑖 ∈ {1, . . . , 𝑛}|𝑎𝑖 = 𝑎}|))

is natural.

Proof. Let 𝑓 : 𝐴 → 𝐵 be a morphism. We need to show that 𝚤K𝐵 ◦ K(𝑓 ) =
P(𝑓 ) ◦ 𝚤K𝐴 . For this, fix 𝜔 ∈ Ω and let 𝑎 ∈ K(𝐴) be a list of elements in 𝐴
such that 𝑎(𝜔) = (𝑎1, . . . , 𝑎𝑛). We then have that 𝑏 ∈ 𝐵

(𝚤K𝐵 ◦ K(𝑓 )) (𝑎, 𝜔̃) (𝜔) (𝑏) = |{𝑖 ∈ {1, . . . , 𝑛}|𝑓 (𝑎𝑖 , 𝜔) = 𝑏}|

= |{𝑖 ∈ {1, . . . , 𝑛}|(𝑎𝑖 , 𝜔) ∈ 𝑓 −1 ({𝑏}) ∩𝐴 × {𝜔}}|

=
∑

(𝑎̃,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

|{𝑖 ∈ {1, . . . , 𝑛}|𝑎𝑖 = 𝑎}|

= (M(𝑓 ) ◦ 𝚤K𝐴 ) (𝑎, 𝜔̃) (𝜔) (𝑏).

This shows the naturality of 𝚤K .
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Proposition 13. The transformation 𝚤P : P →M with the components

𝚤P𝐴 : P(𝐴) → M(𝐴), 𝐴 ↦→ (𝜔 ↦→

(
𝑎 ↦→

{
1 if𝑎 ∈ 𝐴(𝜔)
0 otherwise

})
)

is not natural.

Proof. Informally, the reason that 𝚥P is not natural is that it makes a differ-
ence when to apply 𝚤P if a morphism 𝑓 is not injective for a given 𝜔 ∈ Ω.
Let for example 𝑎1, 𝑎2 ∈ 𝐴 such that for a given 𝜔 ∈ Ω we have that
𝑓 (𝑎1, 𝜔) = 𝑓 (𝑎2, 𝜔) = 𝑏 for some 𝑏 ∈ 𝐵. If we now consider the constant list
K(𝐴) � 𝑎 := 𝜔̃ ↦→ (𝑎1, 𝑎2), then we have that

𝚤P𝐴 (𝑎) (𝜔) = 𝑎 ↦→

{
1 𝑎 ∈ {𝑎1, 𝑎2}
0 otherwise

}
and consequently

M(𝑓 ) (𝚤P𝐴 (𝑎), 𝜔̃) (𝜔) (𝑏) =
∑

(𝑎̃,𝜔) ∈𝑓 −1 ( {𝑏 })∩𝐴×{𝜔 }

{
1 𝑎 ∈ {𝑎1, 𝑎2}
0 otherwise

}
= 2.

On the other hand, we have that 𝚤P𝐵 (P(𝑓 ) (𝑎, 𝜔̃)) (𝜔) (𝑏) ≤ 1 for any 𝑏 ∈ 𝐵

due to the construction of 𝚤P .

Remark 13. The above proposition inevitably raises the question what the
consequence of this negative result is, especially in comparison to Proposi-
tion 12. The consequence is that developers must always be clear whether
they are operating onM or P as the results may differ, not only in terms of
performance (as deduplication usually is an expensive operation), but also
concerning correct results. A possible solution can be to append a deduplica-
tion after each computation that is done on sets but we argue that this is easy
to forget as the necessity seems unclear. Furthermore, such an additional
deduplication degrades performance.

On the other hand, the monad P is not so important in practical applications,
at least not the functor applications to morphisms.
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3.5. Composition

Many type systems include a notion of composition. As an example, the
UML distinguishes between associations, aggregations and compositions26.
The main difference between these references is the relation of instances if
they are connected through one or the other type of reference. If an object
𝑎 is connected to an object 𝑏 through an association, this has no influence
on either 𝑎 or 𝑏 in the sense that both 𝑎 and 𝑏 can still be associated to any
other instance. If however, 𝑎 ∈ 𝐴 is connected to an instance 𝑏 ∈ 𝐵 through
a composition, this means that 𝑎 contains the instance 𝑏. No other element
𝑎 may contain 𝑏 through the same or any other composition reference. For
this composition, the owner 𝑎 is unique for every 𝑏, if it exists.

Definition 27 (Composition Hierarchy). Let C be a MTC. A composition
hierarchy 𝑪 is a set of side-effect free morphisms that are called composition
morphisms such that the following properties hold: For every composition
morphisms 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐶 → 𝐵, 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 and 𝜔 ∈ Ω such that
𝑓 (𝑎,𝜔) = 𝑔(𝑐, 𝜔), either there exists a composition morphism 𝑓 : 𝐶 → 𝐴
such that𝑔 = 𝑓 ◦𝑓 and (𝑎,𝜔) = 𝑓 (𝑐, 𝜔) or a compositionmorphism𝑔 : 𝐴→ 𝐶
such that 𝑓 = 𝑔 ◦ 𝑔 and (𝑐, 𝜔) = 𝑔(𝑎,𝜔). Furthermore, for each type 𝐴, the
identity is a composition morphism.

Remark 14. Note that Definition 27 demands the implication only if 𝑓 is
evaluated in the same state for 𝑎 and 𝑐 . In particular, it is allowed to move
model elements through the composition hierarchy.

Proposition 14. Let 𝑓 : 𝐴→ 𝐵,𝑔 : 𝐵 → 𝐶 be composition morphism in the
MTC C. Then the morphism 𝑔 ◦ 𝑓 is also a composition morphism.

Proof. Let ℎ : 𝐷 → 𝐶 be a composition from some type 𝐷 such that for
some 𝑎 ∈ 𝐴,𝑑 ∈ 𝐷 and 𝜔 ∈ Ω we have that (𝑔 ◦ 𝑓 ) (𝑎,𝜔) = ℎ(𝑑,𝜔). Because
(𝑔 ◦ 𝑓 ) (𝑎,𝜔) = 𝑔(𝑓 (𝑎,𝜔) and 𝑔 is a composition, we can distinguish two
cases:

26 Even in the most recent version UML 2.5, the difference between these types is not entirely
clear and we rather refer to the presumably most common usage.
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1. There exists a composition morphism 𝑔𝑓 : 𝐷 → 𝐵 such that
ℎ = 𝑔 ◦ 𝑔𝑓 and 𝑓 (𝑎,𝜔) = 𝑔𝑓 (𝑑,𝜔). In this case, we can apply that 𝑓 is
also a composition morphism and again have two cases to consider:

a) There exists a composition morphism 𝑓 : 𝐷 → 𝐴 such that
𝑔𝑓 = 𝑓 ◦ 𝑓 and (𝑎,𝜔) = 𝑓 (𝑑,𝜔). In this case, we see that

ℎ = 𝑔 ◦ 𝑔𝑓 = 𝑔 ◦ 𝑓 ◦ 𝑓 = (𝑔 ◦ 𝑓 ) ◦ 𝑓

and further (𝑎,𝜔) = 𝑓 (𝑑,𝜔) as required.

b) There exists a composition morphism 𝑓 : 𝐴→ 𝐷 such that
𝑓 = 𝑔𝑓 ◦ 𝑓 and (𝑎,𝜔) = 𝑓 (𝑑,𝜔). In this case, we see that

𝑔 ◦ 𝑓 = 𝑔 ◦ 𝑔𝑓 ◦ 𝑓 = ℎ ◦ 𝑓

and further (𝑎,𝜔) = 𝑓 (𝑑,𝜔) as required.

2. There exists a composition morphism ℎ̃ : 𝐵 → 𝐷 such that 𝑔 = ℎ ◦ ℎ̃
and (𝑑,𝜔) = ℎ̃(𝑓 (𝑎,𝜔)). In this case, we have that 𝑔 ◦ 𝑓 = ℎ ◦ (ℎ̃ ◦ 𝑓 )
as required27.

3.6. Opposites

EMOF supports the notion of opposite references, a feature widely used
in the model-driven community as it has proved to be very useful28. It is
also the reason for the very flexible approach we made in Section 3.1 for
elementary morphism: The goal was simply to allow such morphisms as
opposite references. In this section, we will formally define what opposite
references are and present a few results.

27 Strictly, we do not know that ℎ̃ ◦ 𝑓 is a composition. However, in practice, most compositions
are assemblies of finitely many atomic composition morphisms that are not the identity and
we therefore apply the presented disassembly as many times as required.
28 A reference and its opposite can also be viewed as the two ends of a bidirectional reference.
However, this point of view is more difficult to capture formally.
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Definition 28 (Opposites). Let 𝑓 : 𝐴 → M(𝐵) and 𝑔 : 𝐵 → M(𝐴) be
side-effect free morphisms in the MTC C. Then, 𝑓 is the opposite of 𝑔, if for
every 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω we have that

𝑓 (𝑎,𝜔) (𝜔) (𝑏) > 0⇔ 𝑔(𝑏,𝜔) (𝜔) (𝑎) > 0.

If 𝑓 : 𝐴 → 𝐵 or 𝑔 : 𝐵 → 𝐴, then these morphisms can be inserted into the
above definition through the application of 𝜂M , i.e. 𝑓 is an opposite for 𝑔 if
𝜂M ◦ 𝑓 is an opposite of 𝜂M ◦ 𝑔.

Proposition 15. Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐴 morphisms of a MTC C.
Then 𝑓 is an opposite of 𝑔 if and only if for every 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω we
have that

𝑓 (𝑎,𝜔) = 𝑏 ⇔ 𝑔(𝑏,𝜔) = 𝑎.

Proof. We have that for every 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω we have that

(𝜂M 𝑓 ) (𝑎,𝜔) (𝜔) (𝑏) > 0⇔ 𝛿 (𝑏, 𝑓 (𝑎,𝜔)) > 0

⇔ 𝑓 (𝑎,𝜔) = 𝑏.

This proposition also holds for 𝑔 for symmetry reasons. Thus, we have the
equivalence of the following four statements:

𝑓 (𝑎,𝜔) = 𝑏 𝑔(𝑏,𝜔) = 𝑎

(𝜂M 𝑓 ) (𝑎,𝜔) (𝜔) (𝑏) > 0 (𝜂M𝑔) (𝑏,𝜔) (𝜔) (𝑎) > 0

This shows the claim.

Proposition 16. Let C be a type system and 𝐴 a type. Then the identity on
𝐴 is an opposite of itself.

Proof. The claim follows straight from the definition.
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Proposition 17. Let 𝑓 : 𝐴 → 𝐵,𝑔 : 𝐵 → 𝐶, 𝑓 : 𝐵 → 𝐴,𝑔 : 𝐶 → 𝐵 be
morphisms such that 𝑓 is an opposite of 𝑓 and 𝑔 is an opposite of 𝑔. Then
also 𝑔 ◦ 𝑓 is an opposite of 𝑓 ◦ 𝑔.

Proof. We have that for 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵 and 𝜔 ∈ Ω that

(𝑔 ◦ 𝑓 ) (𝑎,𝜔) = 𝑏 ⇔ 𝑔(𝑓 (𝑎,𝜔)) = 𝑏

⇔ 𝑓 (𝑎,𝜔) = 𝑔(𝑏, 𝜔)

⇔ 𝑎 = 𝑓 (𝑔(𝑏,𝜔), 𝜔)

⇔ 𝑎 = (𝑓 ◦ 𝑔) (𝑏,𝜔).
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4. Efficient Incremental

Computation Systems

The goal of this chapter is to let general-purpose incrementalization systems
work on the same abstraction level the developer of a given analysis is using
when designing a model analysis rather than on the instruction set of the
programming language (C I.1). The rationale behind this goal is that model
analyses nowadays often use library methods wherever possible to reduce
cost and the probability of bugs by reusing modules that are usually well
tested and potentially optimized for performance. As an example of such a
frequently used library, we consider an implementation of query methods. To
achieve this goal, this Chapter develops a formalism how incrementalization
can be described in order to understand how it can be overridden. The latter
concept is then implemented and applied to a query framework.

The remainder of this chapter is structured as follows: Section 4.1 introduces
a formalization of incrementalization as functors from category theory. Sec-
tion 4.2 discusses how to use insights from this formalization to integrate
dynamic algorithms in incrementalization systems. Section 4.3 presents the
implementation of these concepts in the incrementalization system NMF Ex-
pressions. Section 4.4 shows an example usage of the integration approach
to integrate dynamic algorithms for the SQOs. Section 4.5 discusses how the
approach used in this chapter can be used also to combine incrementality
with distributed computing as another technique to overcome scalability
problems of model analyses. Lastly, Section 4.6 summarizes the insights and
achievements from this chapter.

79



4. Efficient Incremental Computation Systems

4.1. Incrementalization as a Functor

In this section, the application of MTC in formalizing incremental com-
putation systems is shown. The goal of a formalization for incremental
computation systems given an analysis morphism 𝑓 : 𝑀 → 𝑅 is some object
of a type I(𝑅). This object will represent the running live analysis (cf. Sec-
tion 2.2). From this object, we would like to query the current analysis result
and apply any model changes, such as through natural transformations

𝑣𝑎𝑙𝑢𝑒 : I(𝑅) → 𝑅 and 𝑎𝑝𝑝𝑙𝑦 : I(𝑅) × ΔΩ29 → I(𝑅).

In this situation, the 𝑣𝑎𝑙𝑢𝑒 function is meant to return the current value
of an incremental value instance of I(𝑅) while 𝑎𝑝𝑝𝑙𝑦 applies a change of
the global state to the incremental value. The idea is that this application
could be used to propagate changes to the analysis result. The type I(𝑅) is
dependent on 𝑅 to maintain type-safety while the system I is independent
of the analysis result type.

As a trivial example, consider the check whether a semaphore is set to GO
in the running example. Let Signal : Semaphore ↩→ Signal be the property
access returning the current signal of a semaphore. Further we have the
morphism ≠: Object × Object → bool and the constant value GO can be
extended to a constant morphism 𝐺𝑂 : � → Signal which simply returns
the signal GO regardless of the state that is provided as a parameter. Thus,
we can formulate the expression as

isGo :Semaphore→ bool,

(𝑠, 𝜔) ↦→≠ (𝑆𝑖𝑔𝑛𝑎𝑙 ↗ (𝑠, 𝜔),𝐺𝑂 (𝜔)).

In implementations, such a representation can be easily retrieved from a
typed abstract syntax tree.

With the help of mutable type categories, we can formalize incremental
analyses using functors, i.e. we can simply formalize I from above as a
functor from CΩ to itself30. The functor I then maps each type 𝐴 in C to
some I(𝐴) in C for which we demand that natural transformations 𝑣𝑎𝑙𝑢𝑒 :

29 We will define the semantics of this construct in Proposition 18
30 Thanks to assumption A1, we can restrict ourselves to side-effect free morphisms
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I → 𝐼𝑑C and 𝑎𝑝𝑝𝑙𝑦 : I × ΔΩ → I exist. We also require I to respect
products and exponentials, i.e. for any objects 𝐴, 𝐵 in CΩ , we have that
I(𝐴 × 𝐵) = I(𝐴) × I(𝐵) and I(𝐴→ 𝐵) = I(𝐴) → I(𝐵), respectively. We
can then applyI to our analysis 𝑓 and yield a functionI(𝑓 ) : I(𝑀) → I(𝑅).
This function is then used to automatically update analysis results from a
changed model underneath which we formalize as an instance of I(𝑀).

Using the functor I, we can simply apply it to our small sub-expression isGo
to retrieve

I(isGo) : I(Semaphore) → I(bool).

The associativity of the functor guarantees us that we can assemble I(isGo)
from the functor applied to the components of isGo, i.e. its abstract syntax
tree.

Moreover, the general approach of using functors to change the way how
a given function is executed is independent of the exact structure of the
type I(𝐴) for a given type 𝐴. This provides several degrees of freedom for
implementations.

Although functors already suffice to represent incremental execution systems,
it is useful to consider monads. One reason for this is that in order to apply
I(𝑓 ) to an instance𝑚 ∈ 𝑀 , one needs an instance𝑚′ ∈ I(𝑀). Since the
incrementalization system should be independent of the model type𝑀 , such
a method should be available as a transformation 𝐼𝑑C → I. Semantically, an
element of a given type can be regarded as an incremental value that simply
never changes, i.e. as a constant. This definition matches the requirements
for the unit transformation 𝜂 of a monad.

For a given fixed model element, the value for a given property may change
over time so that the property value can be understood as an incremental
value. A useful thing one would like to achive is to also apply such a func-
tion to incremental values of the model element type and still retrieve an
incremental value instead of an incremental value of an incremental value.
Such a simplification can be offered by the 𝜇 transformation of a monad.

What remains to discuss is whether the naturality of 𝜂 and 𝜇 is useful in this
scenario. For 𝜂, this naturality means that we could either apply a function
on a value and then regard the result as an incremental value (by regarding it
as a constant) or lifting the input to the monad (by regarding it as a constant)
and then run the incremental derivation of the function on it. This is clearly
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not the case. Consider for example a property access as function. The value
of the property may change over time (if the property is assigned a new
value) whereas the constant value obtained by lifting the property access
result once does not change. Thus, naturality is something that we explicitly
do not want to have for 𝜂 and we have to be very careful when to apply it.

This situation is different for 𝜇, as this function is only used to combine
the incrementality of two levels into one. However, we are typically not
interested inwhy the result of a model analysis changed and it suffics to know
that the value has changed. Therefore, it is viable to lose track of whether
the outer or the inner incremental value has caused a value to change.

For a formal definition, we first define what we mean by I × ΔΩ in the
following rather technical proposition.

Proposition 18. Let C be a MTC and I an endofunctor on CΩ . Then, the
point-wise tuple I × ΔΩ that consists of objects

𝑜𝑏 I × ΔΩ = {I(𝐴) × ΔΩ |𝐴 ∈ 𝑜𝑏 C}

and morphisms

𝑀𝑜𝑟I×ΔΩ (𝐴, 𝐵) = {(I(𝑓 ),Δ𝜔) |𝑓 ∈ 𝑀𝑜𝑟C (𝐴, 𝐵),Δ𝜔 ∈ ΔΩ}

is a category and the mappings F (𝐴) = I(𝐴) ×ΔΩ and F (𝑓 ) = (I(𝑓 ), 𝐼𝑑Ω)
form a functor CΩ → I × ΔΩ. We identify this functor with the assigned
category if this is clear from the context.

Proof. As composition operator on I × ΔΩ, we choose the mapping

(𝑔,Δ𝜔2) ◦ (𝑓 ,Δ𝜔1) = (𝑔 ◦ 𝑓 ,Δ𝜔2 ◦ Δ𝜔1).

This is clearly associative since its components are. The identity for an object
I(𝐴) ×ΔΩ of I ×ΔΩ is given by (𝐼𝑑I(𝐴) , 𝐼𝑑ΔΩ), which is the image of F for
the identity on 𝐴. Furthermore, let 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵 → 𝐶 be morphisms
in CΩ , we have that

F (𝑔 ◦ 𝑓 ) = (I(𝑔 ◦ 𝑓 ), 𝐼𝑑ΔΩ)

= (I(𝑔), 𝐼𝑑ΔΩ) ◦ (I(𝑓 ), 𝐼𝑑ΔΩ)

= F (𝑔) ◦ F (𝑓 ).
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This concludes the proposition which therefore explains the meaning of the
naturality for the 𝑎𝑝𝑝𝑙𝑦 transformation since we used F in its definition.

Finally, we arrive at the following definition for an incremental computation
system:

Definition 29 (Incremental Computation System). Let Ω be a set of global
states. Let C be a MTC. Then an incremental computation system I : CΩ →
CΩ for C is a functor for which natural transformations 𝑣𝑎𝑙𝑢𝑒 : I → 𝐼𝑑CΩ
and 𝑎𝑝𝑝𝑙𝑦 : I ×ΔΩ → I exist. We further demand a natural transformation
𝜇 : I2 → I and a (non-natural) transformation 𝜂 : 𝐼𝑑 → I with stateless
components exist such that

𝜇 ◦ I𝜇 = 𝜇 ◦ 𝜇I,

𝜇 ◦ I𝜂 = 𝜇 ◦ 𝜂I = 𝑖𝑑I,

𝑣𝑎𝑙𝑢𝑒 ◦ 𝜂 = 𝐼𝑑C

𝑎𝑝𝑝𝑙𝑦 ◦ (−, 𝐼𝑑Ω) = 𝐼𝑑I .

The last equation means that 𝑎𝑝𝑝𝑙𝑦 does not change neither the given incre-
mental value nor the global state if the identity on the state space is passed
in.

Further, we demand that applying a state change to constants does not have
an effect, i.e we have that for each Δ𝜔 ∈ ΔΩ that

𝑎𝑝𝑝𝑙𝑦 ◦ (𝜂,Δ𝜔) = 𝜂 ◦ Δ𝜔.

Here, we used the inclusion defined in Definition 22.

Remark 15. For a given type 𝐴, the 𝑣𝑎𝑙𝑢𝑒-transformation shall return the
current value of an incremental value 𝑎 ∈ I(𝐴). The 𝑎𝑝𝑝𝑙𝑦-transformation
applies a given state change to an incremental value. 𝜂 plays the role of
an elevation of a given instance of a type 𝐴 to a constant of that type. 𝜇 is
required to simplify nested modifiable references, for example an attribute
reference of a modifiable reference. The first two validity constraints mean
that an incrementalization system actually is a monad with the slight excep-
tion that 𝜂 does not have to be natural as this would be too restrictive: If a
result of a computation is elevated to a constant, this must not yield the same
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result as performing the computation incrementally on constant arguments -
the latter may change due to state changes as well.

The 𝑣𝑎𝑙𝑢𝑒-transformation can (and should) be natural so that there is no
difference in the result whether the current value of a modifiable reference
is processed incrementally or not. Besides that, an incremental processing
also means that the result are refreshed upon a state change.

The last two constraints mean that the value of a constant should always
be the original instance the constant was created from. The last constraint
implies that if no changes are made to the global state, modifiable references
must not change.

For the correctness, we want incremental values giving us the same analysis
results as we would obtain through batch mode execution. This is formalized
by the below definition.

Definition 30 (Correctness of Incremental Computation Systems). An in-
cremental computation system I on the category C is correct if for every 𝐴
and 𝐵 in C, every side-effect free morphism 𝑓 : 𝐴 × Ω → 𝐵 in CΩ and every
state change Δ𝜔 ∈ ΔΩ the following holds:

𝑣𝑎𝑙𝑢𝑒𝐵 ◦ I(𝑓 ) ◦ 𝜂𝐴 = 𝑓 (Initialization)

and

𝑣𝑎𝑙𝑢𝑒𝐵 ◦ 𝑎𝑝𝑝𝑙𝑦𝐵 ◦ (I(𝑓 ) ◦ 𝜂𝐴,Δ𝜔) = 𝑓 ◦ Δ𝜔𝐴 . (Updates)

as mappings 𝐴 × Ω → 𝐵. This corresponds to the following commutative
diagram for (Initialization):

𝐴 𝐵

I(𝐴) I(𝐵)

𝑓

𝜂𝐴

I(𝑓 )

𝑣𝑎𝑙𝑢𝑒𝐵

The equation (Updates) corresponds to the following commutative diagram:
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𝐴 𝐴 𝐵

I(𝐴) I(𝐵) I(𝐵)

Δ𝜔𝐴

𝜂𝐴

𝑓

𝑣𝑎𝑙𝑢𝑒𝐵

I(𝑓 ) 𝑎𝑝𝑝𝑙𝑦𝐵 (−,Δ𝜔)

This means, if we create an incremental value for a given analysis and
immediately query the current value, we get the same as if we just executed
the original analysis (Initialization). Before we do that, we can apply a state
change Δ𝜔 ∈ ΔΩ to the incremental value and then it should give us the
same value as if we were obtaining the analysis result value again from
scratch (Updates).

The key observation here is that while on the right hand of (Updates), the
analysis function 𝑓 is only used after the state change Δ𝜔 is applied, the left
hand of the equation first evaluates I(𝑓 ) before applying the change using
𝑎𝑝𝑝𝑙𝑦𝐵 . As a consequence, we already know the analysis 𝑓 when we apply
Δ𝜔 and can use abstractions of 𝑓 to update caches.

Theorem 1. Let I be an incremental evaluation system for the MTC C.
Then I is correct.

Proof. Let 𝑓 : 𝐴 → 𝐵 an arbitrary morphism in CΩ and Δ𝜔 ∈ ΔΩ be a
state change. We begin by proving that (Initialization) holds for 𝑓 . We first
observe that the following diagram commutes due to the naturality of 𝑣𝑎𝑙𝑢𝑒 :

I(𝐴) I(𝐵)

𝐴 𝐵

I(𝑓 )

𝑣𝑎𝑙𝑢𝑒𝐴

𝑓

𝑣𝑎𝑙𝑢𝑒𝐵
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We then have that

𝑣𝑎𝑙𝑢𝑒𝐵 ◦ I(𝑓 ) ◦ (𝜂𝐴 × 𝐼𝑑Ω)

= 𝑓 ◦ 𝑣𝑎𝑙𝑢𝑒𝐴 ◦ (𝜂𝐴 × 𝐼𝑑Ω)

= 𝑓 ◦ (𝐼𝑑C)𝐴 = 𝑓 .

To proof the updates, we see that the following diagram commutes due to
the naturality of 𝑎𝑝𝑝𝑙𝑦:

I(𝐴) × ΔΩ I(𝐵) × ΔΩ

I(𝐴) I(𝐵)

(I(𝑓 ), 𝐼𝑑ΔΩ)

𝑎𝑝𝑝𝑙𝑦𝐴

I(𝑓 )

𝑎𝑝𝑝𝑙𝑦𝐴

Thus,

𝑣𝑎𝑙𝑢𝑒𝐵 ◦ 𝑎𝑝𝑝𝑙𝑦𝐵 (I(𝑓 ) ◦ 𝜂𝐴,Δ𝜔)

= 𝑣𝑎𝑙𝑢𝑒𝐵 ◦ 𝑎𝑝𝑝𝑙𝑦𝐵 ◦ (I(𝑓 ), 𝐼𝑑ΔΩ) ◦ (𝜂𝐴,Δ𝜔)

= 𝑣𝑎𝑙𝑢𝑒𝐵 ◦ I(𝑓 ) ◦ 𝑎𝑝𝑝𝑙𝑦𝐴 ◦ (𝜂𝐴,Δ𝜔)

= 𝑓 ◦ 𝑣𝑎𝑙𝑢𝑒𝐴 ◦ 𝑎𝑝𝑝𝑙𝑦𝐴 ◦ (𝜂𝐴,Δ𝜔)

= 𝑓 ◦ 𝑣𝑎𝑙𝑢𝑒𝐴 ◦ 𝜂𝐴 ◦ Δ𝜔𝐴

= 𝑓 ◦ Δ𝜔.

This concludes the proof.

Remark 16. Theorem 1 essentially shows that the correctness of an incre-
mentalization system is a consequence of the naturality of the 𝑣𝑎𝑙𝑢𝑒 and
𝑎𝑝𝑝𝑙𝑦 transformations. These naturalities can be checked for each morphism
separately and thus enable to deduce the correctness of an entire incremental-
ization system from the correct incrementalization of elementary morphisms.
As a reason, the commutative diagrams that are required for the naturality
of a transformation can be easily stacked together as long as the functor
conforms to the law that I(𝑓 ◦ 𝑔) = I(𝑓 ) ◦ I(𝑔). Thus, if a transformation
is natural for morphisms 𝑓 and 𝑔, it automatically is natural for 𝑓 ◦ 𝑔.
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4.2. Integrating Dynamic Algorithms into

Incremental Analyses

This section describes how arbitrary analysis frameworks can be tuned for
implicit incremental computation systems (C I.1). If applied correctly, such
an extension is entirely transparent for the developer of a model analysis.

Many analyses are based on recurring problems with dedicated algorithmic
solutions for the incremental (dynamic) and non-incremental case, often
based on graph theory. In the literature, the APIs for both kinds of algorithm
are different: The API for the dynamic algorithm usually extends the API
for the non-incremental case by operations that propagate input changes.
For our approach, this is problematic because we assume a model analysis to
be strictly separated from the model manipulation. In particular, we do not
want to make the model manipulation aware that there is an incremental
analysis going on. Rather, the analysis has to adapt to the changed model au-
tomatically. Therefore, the goal of this section is to describe how algorithms
need to be reified for incrementalization.

For this, we first explain why different algorithms are necessary in the
incremental case and then present the approach how such problems must be
reified for incrementalization.

4.2.1. Choice of Algorithms

As an example for graph algorithms beyond queries, we have chosen con-
nectivity analysis to explain our approach. This means, we analyze whether
two nodes in a graph are connected, i.e. whether there is a path between
them.

In batch mode, one would typically use a Union-Find data structure that
is created in Θ(𝑛 +𝑚𝛼 (𝑛)) time [200] and answers connectivity queries in
𝑂 (log𝑛) time where𝑛 is the number of vertices,𝑚 is the number of edges and
𝛼 is the inverse Ackermann function [201]. This amounts to Θ(𝑛 +𝑚𝛼 (𝑛))
when we answer at most 𝑂 (log𝑛) connectivity queries. As Tarjan showed,
this solution has optimal asymptotic complexity [200].

The Union-Find data structure essentially adds a parent-pointer to each
vertex pointing to a representative of its strongly-connected component.
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These pointers are followed until an element is found which references itself.
Then, two vertices are in the same cluster iff their pointers ultimately point
to the same element. The data structure is created by iterating through all
edges and making sure that vertices connected by an edge are always in the
same cluster.

The Union-Find data structure does not support decremental updates, i.e.
when edges are removed from the graph the entire data structure has to
be rebuilt. However, there is also a fully dynamic connectivity algorithm
by Holm et al. [109]. Fully dynamic here means that the problem size
may increase (incremental) or decrease (decremental) and the algorithm
handles this input change asymptotically faster than recreating the entire
data structure (cf. Section 2.2).

As Holm et al. suggest [109], one can create and maintain a data structure of
dynamic spanning forests in the graph, thus answering connectivity queries
in amortized 𝑂 (log𝑛) time while requiring amortized 𝑂 (log2 𝑛) time for
updating the data structure when edges are inserted or deleted. This yields
a total time of 𝑂 (log2 𝑛) to update analysis results on model changes if
at most 𝑂 (log𝑛) connectivity queries must be answered. This is faster
than recreating a Union-Find data structure for each change which requires
Ω(𝑛 +𝑚𝛼 (𝑛)) time as the existing data structure cannot be reused in case of
edge deletions.

The key observation here is that the incremental algorithm in this case,
maintaining a dynamic spanning forest, is entirely different to the batch
mode approach of using a Union-Find data structure. While Tarjans Union-
Find data structure efficiently answers connectivity queries, the dynamic
spanning forest by Holm allows to be updated even if edges are deleted from
the graph.

However, although Holms dynamic spanning forest algorithm is known for
more than a decade, it can be doubted that many analysis developers are
aware of it or even can implement it. For a developer of an analysis, it is more
common to simply use an implementation of connectivity analysis provided
by a library, without a deeper understanding of the algorithm that is used
behind the scenes. The rationale behind our approach is that the developer of
that library probably knows the dynamic algorithms available, but requires
a way to implement that algorithm in a way such that an incrementalization
system is able to pick up this implementation.
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4.2.2. Reification of the Problem for Incrementalization

Incrementalization approaches that work tied to the batch implementation
cannot see the algorithmic problem and therefore are not aware that it has
an elegant solution in an incremental setting which is entirely different to
the best solution in the batch scenario. Further, most graph algorithms are
specified in imperative code that modifies some internal state in loops where
some loop invariant ensures the correctness. On an instruction level, the state
space for these internal states is very large and invariants are hard to identify
automatically. Therefore, to achieve an efficient result, the incrementalization
has to chose a different algorithm for an incremental execution.

Because finding a suitable incremental algorithm for a given problem can
easily take decades of research (such as in the case of graph connectivity anal-
ysis), finding the best incremental algorithm cannot be done automatically.
However, when creating a framework for connectivity analysis, developers
of this framework may know such an alternative solution as they are aware
of what the method is supposed to do. Our approach enables them to create a
custom incremental derivation of the connectivity analysis that uses Holms
dynamic forests instead of a Union-Find data structure. The analysis devel-
oper can simply reuse the connectivity analysis as a building block and the
incrementalization automatically decides whether to run the connectivity
analysis using Tarjans Union-Find data structure or Holms dynamic span-
ning forest, depending on whether the analysis is executed in batch mode or
incrementally.

The basic idea is to enable developers to provide a custom implementation
of the functor application of framework functions. An explicit functor ap-
plication is only required once for each generic analysis method such as
connectivity analysis while it may be used in a multitude of analyses.

The advantage of our formalization of incrementality as a functor is that the
correctness of the whole analysis simply follows from the requirement that
functors respect functional composition, i.e. for morphisms 𝑓 : 𝐴 → 𝐵,𝑔 :
𝐵 → 𝐶 we have that I(𝑓 ◦ 𝑔) = I(𝑓 ) ◦ I(𝑔).

In terms of programming languages, this means that a function 𝑓 from
𝐴1 × . . . ×𝐴𝑛 → 𝐵 with 𝑛 parameters must be mapped to a function I(𝑓 ) :
I(𝐴1) × . . . × I(𝐴𝑛) → I(𝐵). Here, the advantage of the category over
previous approaches is that if any of the 𝐴𝑖 is a function type, then the
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incrementalization of 𝑓 (𝑎1, . . . , 𝑎𝑛) may access the incrementalization I(𝑎𝑖 )
of this function since the functor treats functions and objects the same. This
allows to provide explicit incrementalizations for higher-order functions.

For example, consider again Listing 1.1 on page 23. The query in this listing
is translated into calls to SQO methods such as SelectMany, Where or Select.
These method calls need to be mapped to their incremental derivatives,
i.e. functions to which the incremental computation system I has been
applied.

Calls to these higher-order functions need to be mapped to calls of the in-
cremental derivatives, i.e. functions to which the incremental computation
system I has been applied. An easy specification method is possible in lan-
guages that keep metadata such as Java or C#. The metadata of a function can
then simply contain a reference to the incremental derivative, e.g. through
.NET attributes or Java annotations.

While this approach is a straight-forward outcome of the formalization of
incrementality as a functor (cf. Section 4.1), it has a strong impact on the API
design of analysis frameworks. In algorithmics, fully dynamic algorithms
such as the connectivity algorithm presented by Holm et al. [109] are often
designed with an API that mixes the functional specification of the algorithm
(in the example a function returning whether two vertices are connected)
and an API to adjust the data structure to updated input (in the example
methods that insert or remove edges from the graph). As a consequence of
our approach, the latter is no longer necessary and thus the API gets cleaner.
Instead of explicit commands, the adoption to an updated input is implicitly
in the functor implementation of the algorithm.

In the example of connectivity analysis, we can (and have to) reduce the API
to the two elements below.

• Connectivity<T>(𝑇∗ vertices, 𝑇 → 𝑇∗ edges) :

Connectivity<T> creates a new data structure to decide whether two
elements of type 𝑇 are connected where the underlying graph is
given by a set of vertices and for each vertex the incident edges. Here,
𝑇∗ denotes the Kleene closure, i.e. a collection of type 𝑇 .

• AreConnected(𝑇 a, 𝑇 b) : bool as an instance method of the
resulting data structure determines whether the vertices a and b are
connected.
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In batch mode, the method Connectivity creates a Union-Find data structure
as proposed by Tarjan. On this data structure, the method AreConnected
checks for two instances of the domain, whether the parent pointers are
pointing to the same element.

In the incrementalized version, the result of Connectivity is an incremental
value of a connectivity object created using Holms dynamic spanning trees,
inheriting from the same abstract base class. This methods gets as an input an
incremental value for the vertices in the graph and an incremental value for
the method describing the outgoing edges. This object will react on changes
in the vertices appropriately by adding or removing edges in the dynamic
forest. If for example the value for the parameter edges changes entirely, it
may also simply return a new Connectivity object, meaning that the present
dynamic forest is discarded.

The method AreConnected of the incremental dynamic spanning tree im-
plementation compares the root nodes for both involved trees and looks
whether they match. Furthermore, it hooks an event handler to react on
changes to the dynamic forest and reruns the check afterwards. The result-
ing incremental boolean value represents whether this has any effect on the
connection between vertices a and b.

This can be seen as a separation of concerns in the otherwise query-and-
command like interface of fully dynamic algorithms. In this version, the
functionality is exposed in a purely functional manner whereas the state
management is entirely hidden from the developer when the analysis is run
in incremental mode.

4.3. An Extensible Implicit Incremental

Computation System

The basic idea of NMF Expressions is to implement incremental expression
evaluation by creating a DDG where each executed instruction is reflected by
a node in the DDG. As usually many instructions are necessary to compute an
analysis, these graphs become very large and may easily consume enormous
amounts of memory. This makes the integration of manually incrementalized
functions tremendously important to avoid that graph traversal outweighs
the savings in terms of incremental computation.
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In the remainder of this section, we first introduce the overall concept in
Section 4.3.1, discuss the incrementalization at instruction-level and its cor-
rectness in Section 4.3.2, incrementalization of higher-order functions in
Section 4.3.3 and the extensibility in Section 4.3.4.

4.3.1. Overview

To implement an incremental computation system, one of the first decisions
to make is how state changes in ΔΩ should be mapped to the type system in
order to provide an implementation of the apply transformation. We have
chosen an implicit representation through an event. That is, whenever a
state change occurs, all DDG nodes execute apply, immediately.

In a modeling environment, the state changes in ΔΩ are model changes that
can be recorded using standard notification APIs. NMF reuses the notification
API that is common in the .NET platform, available through the interfaces
INotifyPropertyChanged and INotifyCollectionChanged. Because the im-
plementation only makes use of these two interfaces, it can also be used
with model classes that are not generated from a metamodel but written
directly31.

Our implementation uses a generic interface INotifyValue for the map-
ping of types to decouple the monad32 as much as possible from concrete
implementations. Interfaces in .NET offer support for covariance. Thus, in-
heritance is transported to the monad in a type-safe way which is important
given the hard implementation of generics in .NET33.

The transformations 𝜂 and 𝜇 are straight-forward to implement as extensions
methods. The unit transformation 𝜂 simply converts a value to a constant;
the transformation 𝜇 simplifies an incremental value of an incremental value
essentially by chaining the 𝑣𝑎𝑙𝑢𝑒- and 𝑎𝑝𝑝𝑙𝑦-transformations. The functor

31 The support for these two interfaces can even be generated automatically using aspect-
oriented programming [68]
32 The unit transformation of an incrementalization system is not natural, therefore incremen-
talization is not a monad in the sense of category theory, only a functor. However, monads
are often defined slightly different in functional programming where the naturality of the
unit transformation is not required.
33 As a consequence of this hard implementation, the machine code for a generic method may
depend on the generic type parameters which makes it necessary to know them.
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Binary operator&&
false

Binary operator ! =
true

Constant𝑛𝑢𝑙𝑙
null

MemberAccess 𝐸𝑛𝑡𝑟𝑦
{Semaphore}

Constant 𝑟𝑜𝑢𝑡𝑒
{Route}

Binary operator ==
false

Constant GO
GO

MemberAccess 𝑆𝑖𝑔𝑛𝑎𝑙
STOP→ FAILURE

MemberAccess 𝐸𝑛𝑡𝑟𝑦
{Semaphore}

Constant 𝑟𝑜𝑢𝑡𝑒
{Route}

Figure 4.1.: The DDG for the predicate 𝑟𝑜𝑢𝑡𝑒.𝐸𝑛𝑡𝑟𝑦!=null && 𝑟𝑜𝑢𝑡𝑒.𝐸𝑛𝑡𝑟𝑦.𝑆𝑖𝑔𝑛𝑎𝑙 ==
𝑆𝑖𝑔𝑛𝑎𝑙 .𝐺𝑂 and nodes that must be reevaluated when changing the signal to FAILURE in
red and dashed.

itself is not as easy. In our implementation, we decompose methods into
their abstract syntax trees and incrementalize every element of it separately,
making use of the law that I(𝑓 ◦ 𝑔) = I(𝑓 ) ◦ I(𝑔).

For this to work, we require a decomposition of the model analysis into
instructions. We obtain this decomposition at run time through the feature
of the C# language to compile methods to expression trees (cf. Section 2.3.1).
The usage of this language feature to build internal DSLs has been discussed
first by Martin Fowler [67, p. 455] under the term Parse Tree Manipulation.

The resulting DDG is essentially a copy of the expression tree34 and contains
a node for each executed instruction, including the type of instruction as
well as the data passed in. It is therefore much larger than comparable DDGs
created by self-adjusting computation [1] that uses explicit incrementaliza-
tion primitives to make the nodes as big as possible. However, it has the

34 Unlike the original expression tree that we obtain from the compiler, the DDG nodes have
generic types to optimize performance and type safety.
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advantage that we have a direct representation of a method call which makes
it easier to exchange such nodes with an explicit incrementalization for the
given method.

If any node in the expression tree changes its value, this change is propagated
up to the root of the tree that represents the value of the whole tree. Along
this way, the propagation is stopped as soon as the value for a sub-expression
does not change.

For example, the expression route != null && route.Entry.Signal ==

Signal.GO does not change its value if the entry semaphore of the route
has a failure while showing STOP (depicted in Figure 4.1). The member
access node to the entry semaphore does not change because the identity
of the semaphore is still the same. However, the signal property of that
semaphore changed. This change raises an event, fetched by the member
access node and further propagated through the dependency graph. The
node for the binary operator == is registered for this event and now gets
notified. However, the signal still does not show GO and thus the change is
no longer propagated.

4.3.2. Incrementalization at Instruction Level

We implemented an incrementalization for each instruction type, each rep-
resented in its own class. If a change affects an incremental value, we do
not exchange the instance of the DDG node but issue an event such that
dependent nodes treat the incremental value as new. The expression tree
is then converted using a visitor pattern. For each of the instruction types,
their incrementalization has to respect the naturality of 𝑣𝑎𝑙𝑢𝑒 and 𝑎𝑝𝑝𝑙𝑦
transformations.

The naturality of 𝑎𝑝𝑝𝑙𝑦 simply means that 1. the creation of the DDG can be
done before or after a given change is done to the model without affecting
the DDG after the change and 2. the change notification is issued after each
event. The former statement is true for all nodes of our implementation,
as the implementation is entirely sequential and therefore the creation of
a DDG node cannot interfere with the change propagation. As soon as
a change happens, all DDG nodes that are affected by this change adapt
themselves to the change. The latter statement and the naturality of the 𝑣𝑎𝑙𝑢𝑒
transformation have to be discussed for each instruction type individually.
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This means that at any given global state, the 𝑣𝑎𝑙𝑢𝑒 transformation of a
DDG node must match the instruction applied to the 𝑣𝑎𝑙𝑢𝑒 of the input DDG
node and if this result has changed since the last model manipulation, a
change notification must have been issued. This change notification may
contain detailed information on the change that may help to propagate it.
An implementation for the most common types of instructions is described
below.

Constants Constants never change. Thus, the event to inform clients that
the value changed is not used. The 𝑣𝑎𝑙𝑢𝑒 transformation is also a
constant, which is clearly natural.

Member access A member access potentially changes either if the target
model element for the member access changes or any change of the
target element’s properties is recorded through the notification API.

Unary expressions The considered unary expressions are type casts, conver-
sions, unary plus and minus of numbers, logical negation and bitwise
inverse. These operators only change their value when their inputs
change.

Binary expressions The value of a binary expression potentially changes
if either of the operand’s values changes. An exception to this rule
are the logical shorthand operators. In case of the conditional short-
hand && operator, the right operand must not be evaluated if the left
operand evaluates to false, as it might throw an exception. Thus, the
right operandmust be attached or detached from themodel, depending
on the value of the left operand.

Conditional expressions Conditional expressions keep a DDG for the test
expression, the true expression and the false expression. Depending
on the current value of the test DDG, the DDGs for the true or false
expression are dynamically detached. The value of the conditional
expression only changes if the value for the attached sub-DDG root
node changes.

Method calls, constructors In case we have an abstract syntax tree of the
method available such as for Lambda expressions, we recursively
deduce a dependency graph template from it. In all other cases, we
assume that a method return value only changes if either of its ar-
guments changes, at least unless we are told otherwise, i.e. if the
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developer has specified an explicitly incrementalized version. This as-
sumption is reasonable for immutable types, particularly for platform
functions like string length or the sinus function to which we do not
have access.

Lambda expressions Nested lambda expressions are problematic. Because
the function types of the .NET platform are fixed, using a custom
function type loses the inherited compiler support35. Therefore, the
approach of NMF is to perform a lazy incrementalization of lambda
expressions. In particular, the lambda expression is only incremental-
ized when actually needed. If this is the case, the body expression of
the function is recursively transformed into the monad as well.

Dynamic dependency graphs consume a lot of memory and are the main
reason for incremental computation to have a large memory overhead. There-
fore, approaches like the implicit self-adjusting computation by Chen et al.
[43] argue that constant operations that do not change their value should not
go into the functor since they unnecessarily increase the size of the DDG. To
solve this problem, their approach generates methods for each combination
of an incremental value36 and constant value. To circumvent this problem,
we introduced a constant propagation, i.e. we do create nodes in the dynamic
dependency graph if a value is constant (i.e. there is no change notifica-
tion provided for it) but reduce operations made on constants to constant
values.

Converting the abstract syntax trees at runtime yields the decision whether
or not we apply the monad. If so, we can apply the monad and obtain an
incremental evaluation. If we do not apply the monad, we can simply use
the .NET built-in expression compiler and get a batch mode version of the
analysis with low overhead: Because the type of all expressions are already
known, it is straight forward and thus very fast to compile an expression
tree to intermediate language code37.

35 One may circumvent this problem by extending the compiler. Using technologies such as
Roslyn, this seems possible and technically viable, even though one then also has to extend
the Integrated Development Environment (IDE) support.
36 called modifiable reference in [43]
37 However, the generated method should be stored in order to avoid repeated JIT-compilation.
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Binary operator&&
Value: false

Binary operator ! =
Value: true→ false

Constant𝑛𝑢𝑙𝑙
Value: (null)

MemberAccess 𝐸𝑛𝑡𝑟𝑦
Value: {Semaphore}→ (null)

Constant 𝑟𝑜𝑢𝑡𝑒
Value: {Route}

Binary operator ==
Value: false

Constant GO
Value: GO

MemberAccess 𝑆𝑖𝑔𝑛𝑎𝑙
Value: FAILURE

MemberAccess 𝐸𝑛𝑡𝑟𝑦
Value: {Semaphore}

Constant 𝑟𝑜𝑢𝑡𝑒
Value: {Route}

Figure 4.2.: The DDG for the predicate 𝑟𝑜𝑢𝑡𝑒.𝐸𝑛𝑡𝑟𝑦!=null && 𝑟𝑜𝑢𝑡𝑒.𝐸𝑛𝑡𝑟𝑦.𝑆𝑖𝑔𝑛𝑎𝑙 ==
𝑆𝑖𝑔𝑛𝑎𝑙 .𝐺𝑂 and nodes that are disconnected if the entry semaphore is changed to null.

4.3.3. Incrementalization of Higher-order Functions

Many model analyses such as the detection of wrongly set switches in the
running example include the usage of higher-order functions, i.e. functions
that take functions as arguments. This immediately raises the question how
an incremental value of a function should look like.

To solve this problem, we use templates of DDGs. The DDG is created
for the body of the function, using placeholders whenever an argument is
accessed. Upon creation, the entire DDG for a function is in a disconnected
state. If arguments are passed to the system, the DDG template is copied,
replacing the argument placeholders with the provided DDG nodes. If all
parameters are satisfied, the DDG is connected. Otherwise, the copied DDG
stays disconnected and realizes the exponential mate, also known as the
curried version of the original method.

DDG templates are also used for conditional and shorthand binary expres-
sions. For example, the right side of a shorthand && operator must not
be evaluated if the left side already evaluates to false. Therefore, in that
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case we deactivate the subgraph. For the predicate 𝑟𝑜𝑢𝑡𝑒.𝐸𝑛𝑡𝑟𝑦!=null&&
𝑟𝑜𝑢𝑡𝑒.𝐸𝑛𝑡𝑟𝑦.𝑆𝑖𝑔𝑛𝑎𝑙 == 𝑆𝑖𝑔𝑛𝑎𝑙 .𝐺𝑂 of the running example, this is depicted
in Figure 4.2.

However, as an incremental analysis is usually meant to run continuously, it
is very important that the algorithm is elastic in its memory consumption.
This means, the memory of DDG nodes is released once they are no longer
needed.

In our implementation, each DDG node has a separate counter to determine
whether it should be connected or disconnected, because a DDG node gener-
ally does not know where it is used. If this reference counter is incremented
to 1, the node automatically connects which means that it increments the
reference counter for all of its prerequisite nodes and attaches to the model
notification API if necessary. Conversely, if the reference counter is decre-
mented to 0, the DDG node disconnects from the model and decrements the
reference counters of prerequisite nodes. However, the implementation still
holds a strong reference to the DDG nodes such that they are not collected
by the garbage collector. This is because otherwise it would not be possible
to connect to the model again.

4.3.4. Extensibility

As a key advantage of the proposed incrementalization system, we enable
developers to provide an explicit incrementalization of a given function. If
such an explicit incrementalization is provided, the function is no longer
seen as a composition of instructions but rather treated as a primitive. For
methods that do can change meanwhile the identity of their arguments stays
the same, providing such an explicit incrementalization is even mandatory.

We allow users to use different variants of specifying a proxy. For a function
𝑓 : 𝐴 → 𝐵, the user may either provide a function I(𝑓 ) : I(𝐴) → I(𝐵)
or a function 𝑓 ′ : 𝐴 → I(𝐵). In case of the latter, we lift the provided
function to the monad by a node type that changes if either the value of
the argument changes or the incremental result for the current argument
changes. The rationale behind this decision is that for many functions such
as aggregates, it is much easier to specify the latter and does not cause
additional overhead since the internal memory has to be reset entirely when
the original arguments change.
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For the actual specification of the manual incrementalization, we use an
annotation called ObservableProxy. This annotation specifies a type and a
method name, identifying a method that realizes the given extension point.

A problematic situation arises if the method is recursive. Creating a DDG
template that contains a recursive method, we have to avoid recursively
calling the proxy method. Here we make use of the fact that the DDG
template for the method is only needed when the method is actually called.
In particular, we use a proxy node that only copies the DDG template for the
required method as soon as the node is connected to the model. As this proxy
node means additional memory, we require the user to specify whether the
proxy method is recursive.

4.4. Incremental Queries as an Example Extension

This section presents an implementation of our concepts for incremental
queries. As queries are very popular, this implementation is also part of NMF
but separated in its own assembly, proving that the incremental computation
system is independent from the query implementation.

Queries can be seen as an extension of collections into a monad [77]. Thus,
we only refine this monad to represent changes, i.e. combine them with the
INotifyCollectionChanged interface commonly used in the .NET platform
for collection changes. That is, instead of the usual IEnumerable interface,
we created a new INotifyEnumerable interface for incremental computa-
tion and the IEnumerableExpression that allows users to switch between
batch mode and incremental mode. IEnumerableExpression behaves like the
IEnumerable monad but allows to switch to the INotifyEnumerable monad
through a method call.

The extension of collections to a monad is supported on the .NET platform
through the SQO methods (cf. Section 2.3). For each of these methods, we
have defined a manual functor implementation that enables to use them in-
crementally. The INotifyEnumerable monad is already fixed to incremental
execution so that we only created proxy implementations for the IEnumer-
ableExpression monad or when methods leave the collection monad such

99



4. Efficient Incremental Computation Systems

as aggregations. The proxies for the IEnumerableExpression monad sim-
ply switch to the INotifyEnumerable monad and thus enable incremental
execution.

The INotifyCollectionChanged interface yields a high-level change repre-
sentation of collections, similar to the proposal of Cai et al. [41], making
abstractions from the concrete collection implementation. This change rep-
resentation enables us to abstract from the index of a changed element in
a collection or even the collection implementation. In the example of the
average calculation, we use this change notification to update the running
sum and element count accordingly.

We implemented the following extension methods that are part of the SQO
both for the INotifyEnumerablemonad and for the IEnumerableExpression
monad: All, Any, Average, Cast, Concat, Contains, Count, Distinct, Except,
FirstOrDefault, GroupBy, GroupJoin, Intersect, IsProperSubsetOf, IsProperSu-
persetOf, IsSubsetOf, IsSupersetOf, Join, Max, Min, OfType, OrderBy, OrderBy-
Descending, Select, SelectMany, SetEquals, Sum, ThenBy, ThenByDescending,
Union andWhere. The semantics of these extension methods match their def-
initions from the SQO which are reflected by their names. We implemented
the overloads that do not consider element indices that are thus not available
on either of our monads. If element indices are considered, an insertion of an
element often results in too many changes for incremental execution to be
beneficial. In particular, adding or removing an element from a collection of
𝑛 elements in the average leads to 𝑛2 index changes, meanwhile if indices are
not considered, only the removed element needs to be adjusted. Furthermore,
these overloads are not considered in C# for the query syntax and are thus
rather rarely used.

The explicit incrementalizations of higher-order methods such as the Select
or Where operators internally manage DDGs for any element in the underly-
ing collection. If an element in the collection is added, a new DDG is created
to obtain an incremental value for the predicate the operator is using. If the
element is removed from the collection, the DDG is no longer needed and
removed from the node38. If the result of one of the element DDGs change,
the corresponding change of the operator is deduced and then propagated.

38 The implementations are aware of cardinalities larger than 1 so that effectively, the DDG is
removed if the cardinality of the removed element is 0.
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4.5. Distributed Incrementality

using Virtual Actors

Saving intermediate results of a prior computation and managing the events
appropriately requires a memory overhead. Depending on the complexity
of the analysis, this memory overhead may exceed the memory capabilities
of a single machine. One solution is to distribute the incremental analysis
across multiple machines.

An essential result of this chapter is that the incremental semantics of a
method can be annotated to a method. This section investigates how this
approach can be extended to also describe the distribution of incremental
methods in the same way. For this, the classes realizing the incremental
analyses are mapped to the concept of virtual actors, as this model allows
a simple distribution, with many features such as dynamic load adaptation
and autotuning available.

This section summarizes the results of a master thesis by Benjamin Wanner
[214] that I supervised. Further information can be found in the original
thesis. The remainder of this section is structured as follows: The decision
and strategy to map incremental analyses to virtual actors is explained in
Section 4.5.1. Section 4.5.2 discusses the resulting application model. Section
4.5.3 explains how the mapping to virtual actors is carried out.

4.5.1. Distributed Incremental Analyses

through Virtual Actors

The core idea is to distribute an incremental query using a virtual actor model.
The actor model simplifies distributed and concurrent software development.
Because the actor implementations are single-threaded, many problems often
attached to concurrent programming such as data races and deadlocks can
be avoided by construction. Furthermore, the virtual actor model allows a
simple abstraction on which node a particular actor is executed.

For the implementation, we decided to use the Microsoft Orleans framework
[38, 39] for virtual actors for the following reasons:
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Fully transparent communication with actors: The communication with a
virtual actor (called grain in Orleans) is the same regardless of its physical
location, so the client does not need to know on which host (silo) a specific
grain is executed. Requests are automatically re-routed to the correct silo.

Streamsworkuniformlyacross silos andgrain client: The code to send data
via a stream stays the same, independent of the communication target’s
location. Thus, for communication purposes only one interface has to be
maintained.

Cloud deployment capabilities: For reproducible benchmarking, Orleans
can easily be deployed to Microsoft Azure. The Azure tools available allow
debugging of the developed Orleans application in many virtual compute
nodes even on a local machine, which simplifies debugging.

Stateful actors with persistent storage: It is transparent to the application
which grains are inmemory andwhich ones have to be loaded from persistent
storage. This gives additional scalability, as the amount of data stored in
grains is not limited by the amount of main memory available. The only
constraint is that each grain instance has to fit in a single machines main
memory since the same grain activation always needs to be executed within
one machine.

Further, Microsoft Orleans is completely open source and actively main-
tained.

4.5.2. Application Model

Same as with incrementality, the goal of this section is to hide the complexity
of distributed computing from the user which in our case is the analysis
developer. His task remains to specify a model analysis in a batch fashion as
if it were executed locally with the exception that a cluster configuration is
provided and a source where the cluster gets the model from. Furthermore,
any changes to the model are also sent to the cluster so that the analysis may
update its results incrementally.
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Orleans Cluster

Local .NET Application

Master
Model Grain

SQO
Aggregate Grain

SQO
Aggregate Grain

SQO
Aggregate Grain

Orleans 
Application

<<allocates>>
<<defines>>

Figure 4.3.:Workflow of a distributed incremental analysis offloading incremental analysis to a
Microsoft Orleans cluster (cf. [214])

The application model for such a distributed incremental model analysis is
depicted in Figure 4.3.

For this purpose, the cluster defines a master model grain that stores the
model and makes it available to grains that perform the incremental analysis.
As a reason, the incremental processing of a SQO operator is stateful, i.e.
the results may change even though the inputs did not. Since such a model
access is required on each silo, the model has to be replicated for each silo.

Multiple distributed implementations of SQO operators connect with the
master model to obtain the data and process changes. The exact set of
these operator grains and their configuration (i.e. the used predicates) is
determined by the client application that initially defines the query and thus
implicitly the grains that process the query.
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Finally, the grain representing the entire model analysis offers an Orleans
stream of updated analysis results. The client application then may subscribe
to this stream and read the results.

4.5.3. Mapping Incremental Analyses to Virtual Actors

Applying the virtual actor model to incremental model analyses yields the
problem that it is unclear how the nodes in a dynamic dependency graph
should be mapped to actors. A naive approach would map every node in the
dependency graph to an actor. However, the communication between actors
induces a certain amount of overhead: In the used Microsoft Orleans frame-
work, this overhead consists of checking whether the referenced actor resides
on the same machine and then possibly creating a new TCP connection. This
is significantly more overhead than a simple in-memory method call. Given
that most nodes in the dynamic dependency graph are inexpensive, this
yields the risk that any advantages drawn from the incrementality may be
lost by the distribution model39.

Therefore, a more coarse granularity is required in which model analyses can
be distributed. Particularly for queries, such a more coarse granularity can be
offered by the SQO methods. In the implementation of Benjamin Wanner40,
an SQO call returns a grain, called aggregate grain. To process multiple items
in parallel, this aggregate grain has only administrative tasks and organizes
other node grains that perform the actual incrementalization of the SQO.
Each of these node grains processes a subset of the input collection. This
multiplexing is only done for the first SQOmethod call. Any further SQO call
automatically connects its worker grains to worker grains of the previous
SQO aggregate grain using the aggregate node as dispatcher.

This architecture is depicted in Figure 4.4. The resulting architecture for a
given query is referred to as a stream processing chain.

The node grains realize the incremental processing by connecting to a per-
silo model grain from which they receive model change notifications. These
per-silo model grains are automatically synchronized from a master model
grain to which client applications issue model changes.

39 A more detailed analysis and performance studies can be found in the original thesis [214].
40 https://github.com/NMFCode/NMF/tree/distributed-expressions-orleans
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WhereMaster

Observable-
WherePartial
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WherePartial
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C4: Name=“Ida“, Revenue = 3000

C5: Name=“Winston“, Revenue = 400

C6: Name=“Kim“, Revenue = 100

C1: Name=“Anton“, Revenue = 500

C2: Name=“Ada“, Revenue = 1300

C3: Name=“Kurt“, Revenue = 2000
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(further nodes)

Figure 4.5.:Dispatching collection items between node grains (cf. [214])

The connection of node grains between each other is visualized in Figure 4.5
for a hypothetical example that realizes the query that selects the revenue
of customers and selects those that are higher than 1000. For the selection,
an aggregate node called ObservableSelectMaster is created that receives
the incoming collection of customer objects and dispatches these collection
items to its node grains, denoted with the implementation names Observ-
ableSelectPartial. These nodes contain the dynamic dependency graphs
of the subset of the input collection they are responsible for. For instance,
the node grain on the left is responsible for the customers with names Anton,
Ada and Kurt.

106



4.6. Summary

A subsequent SQO call, such as the where operator that comes next in the
example, then has to take the processing results as inputs and distribute them
among its worker grains. To avoid creating a bottleneck collecting the results
of multiple node grains, the aggregate grain creates as many node grains as
the aggregate before and establishes a 1:1 connection. Instead of enumerating
the resulting (incremental) collection from the previous aggregate grain, the
aggregate dispatches the node grains directly such that any updates of the
previous node grain is sent to the subsequent node grain directly.

In the example of Figure 4.5, if the revenue of the customer named Anton
changes from 500 to 1100, the corresponding node grain for the select opera-
tion issues a change notification that the element 500 has been replaced by
the value 1100 via an Orleans stream. This change notification is sent directly
to the node grain of the where operator (the ObservableWherePartial on
the left of the figure) that processed the mapping of this customer before. If
the where operator was the last SQO call in the query, the aggregate grain
(the ObservableWhereMaster instance) collects the current result set from its
node grains into a stream and pass any changes to the client.

4.6. Summary

In this chapter, we introduced a novel approach to formalize incremental com-
putation systems as functors from category theory. This formalization allows
us to generically prove the correctness of integrating custom method incre-
mentalizations. Such an incrementalization only has to respect the naturality
of the 𝑣𝑎𝑙𝑢𝑒 and𝑎𝑝𝑝𝑙𝑦 transformations. If this is the case, incrementalizations
of any analysis using this method are correctly incrementalized.

From this formalization, we deduced amethodology how implicit incremental
computation systems can be made extensible. Thus, they can make use
of abstractions incorporated in analysis frameworks also for incremental
computation, encouraging modular analyses reusing analysis frameworks.
Our approach gives framework developers a tool at hand which they can use
to offer implicit incrementality to their users that is tuned to their framework.
For the developer of an analysis, this combines the understandability of a
batch specification with the efficiency gained from framework abstractions.
This saves the error-prone process of manual incrementalization and keeps
the analysis more readable, thus maintainable.
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The theory of incrementalization gives an answer to RQ I.2 because it clearly
and formally define on a high abstraction level what requirements a user
extension has to fulfill to be integrated into an incrementalization system.
Theorem 1 shows the correctness of such an integration, i.e. a correct incre-
mentalization of analyses that use a method that is manually overridden.

In abstract terms, the interface for such a user extension consists of provid-
ing developers a way (our implementation uses an annotation) to manually
override the incrementalization of a given method. This manual incremental-
ization has to use the same implementation of the incrementalization functor
I with regard to the types, but apart from that, the algorithmic decision how
to implement such a user extension is not restricted. In particular, developers
may use entirely different algorithms for the implementation than those
they would use for a batch implementation. However, this may require a
reification of the algorithm to match the incrementalization process. Applied
to a fully dynamic connectivity algorithm, our approach reduces the API
to the purely functional specification, hiding the state management from
analysis developers. This part of this chapter is our answer to RQ I.1.

Furthermore, we have shown that the general approach of this chapter, to
enrich the metadata of methods with information on how to incrementalize
them, can also be used to combine incrementality with distributed computing
and therefore ovecome memory limitations caused by large DDGs.

To give a complete answer to RQ I, we need to evaluate our approach since
RQ I.3 is still open. This evaluation is done in Chapter 9.
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5. Using Containments

to Optimize Incremental

Model Analyses

In Chapter 4, we introduced a concept how function calls can be incremen-
talized in terms of the function instead of in terms of its implementation.
While this is helpful in case the analysis uses many generic methods such
as higher-order functions, the approach is not applicable for analyses that
are composed of many inexpensive operations such as arithmetic operations.
However, the latter case is a frequent pattern for complex domain logic.
Here, the dependency graph is still large and requires a lot of memory if not
contracted. Such a contraction is the goal of C I.2 that is presented in this
chapter.

To achieve such a contraction automatically, the goal of this chapter is to
take parts of the model analysis in the original batch implementation and
recompute these parts when relevant parts of the model change. In order
to decrease the memory consumption, the detection of these model parts
must be fast when changes are to be propagated. However, it may rely
on static analysis results gathered when the analysis is introduced into the
system. To simplify this detection process, we take the containment hierarchy
of the model into account: Elementary model changes propagate along
the containment hierarchy up to the root element and the rationale of the
approach presented in this chapter is to statically analyze a function whether
these change notifications suffice to detect all model changes that may affect
a given function and what types of elementary changes are required.

If it does not, then we propose several incrementalization strategies how
such a situation can be mitigated.

However, the contraction also is a conservative approximation to the changes
that happen in the model. As a possible consequence, larger parts of the
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analysis may have to be recomputed for too many changes. Thus, the con-
traction may lead to slower response times to changes, depending on the
usage scenario of the incremental analysis. Since we lack the tools to accu-
rately predict when which type of contraction or no contraction leads to the
best results, we present an approach to perform an automated design space
exploration of possible configurations. This approach is implemented in a
tool called Incerator that is also part of NMF.

The remainder of this chapter is structured as follows: Section 5.1 formally
presents the contraction strategy and gives a proof on its correctness. Sec-
tion 5.2 explains our approach to generalize changes along the composition
hierarchy and its implementation. Section 5.3 proposes an algorithm to ob-
tain an approximate trigger coverage in the presence of generalized change
notifications. Section 5.4 presents the incrementalization strategies based on
triggers and coverages. Section 5.5 explains our approach to optimize the
performance of incremental model analysis through systematic design-space
exploration of available incrementalization configurations. Section 5.6 briefly
introduces an implementation of this approach in Incerator. Lastly, Section
5.7 summarizes the insights and achievements of this chapter.

5.1. Covering Triggers for Incremental Values

In this section, we present the formal methods to contract the dependency
graph.

This means, we try to extract an explicit incrementalization of a given
method automatically through conservative approximation. Ideally, the
non-functional properties of this generated explicit incrementalization are
better than the instruction-level one. Here, conservative means that we may
reevaluate an entire function more often then necessary. On the contrary, as
a result of the contraction, the function is only represented as a single node in
the DDG instead of one for each instruction which is why this conservative
approximation may be advantageous for the overall system.
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To ensure correctness, we need to study when an incremental value is
changed. Hence, for a particular type 𝐴 in a MTC C we consider the re-
lation 𝐶ℎ ⊂ ΔΩ × I(𝐴) defined as follows:

Δ𝜔 𝐶ℎ 𝑎 :⇔ (Δ𝜔, 𝑎) ∈ 𝐶ℎ

:⇔ ∃𝜔 ∈Ω𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎,𝜔) ≠ 𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎𝑝𝑝𝑙𝑦𝐴 (𝑎,𝜔,Δ𝜔)).

Informally, a global state change Δ𝜔 changes an incremental value 𝑎 if Δ𝜔
must be propagated to 𝑎 as its value with respect to the 𝑣𝑎𝑙𝑢𝑒 transformation
may have changed. If the state change does not change 𝑎, then 𝑎𝑝𝑝𝑙𝑦 does
not have have to be executed at all since it only returns its argument. Thus,
a goal in the implementation will be to make as sparse as possible conserva-
tive approximations to 𝐶ℎ. We obtain these approximations through static
analysis.

To get to such approximations, we analyze the consequences of a state change.
We begin with simple property changes as in the following definition.

Definition 31. Let 𝑓 : 𝐴 → 𝐵 be a morphism, 𝑎 ∈ 𝐴 be an instance of 𝐴
and Δ𝜔 ∈ ΔΩ be a state change. We say that the property access 𝑓 of 𝑎 is
affected by Δ𝜔 (through state 𝜔) if there is a global state 𝜔 ∈ Ω such that
𝑓 (𝑎,𝜔) ≠ 𝑓 (𝑎,Δ𝜔 (𝜔)).

Definition 31 only captures single-valued properties well. Changes ofmutable
collections, where changing the contents of a collection does not change the
identity of the collection, are not reflected. We take this into account with
the next definition.

Definition 32. Let 𝑐 ∈ M(𝐴) be a bag of type 𝐴 and Δ𝜔 ∈ ΔΩ be a state
change. We say that the collection 𝑐 is affected byΔ𝜔 (through state𝜔) if there
is a global state 𝜔 and an element 𝑎 ∈ 𝐴 such that 𝑐 (𝜔) (𝑎) ≠ 𝑐 (Δ𝜔 (𝜔)) (𝑎).

In manymodeling frameworks, collections are no model elements themselves
but model elements in a collection are rather connected to another model
element (through a reference). Therefore, we combine Definitions 31 and 32
in another definition:

Definition 33. Let 𝑓 : 𝐴 →M(𝐵) be a multi-valued morphism, 𝑎 ∈ 𝐴 be
an instance and Δ𝜔 a state change. Then we say that 𝑓 is collection-affected
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by Δ𝜔 for 𝑎 through state 𝜔 if either 𝑓 itself is affected by Δ𝜔 through state
𝜔 or the collection 𝑓 (𝑎,𝜔) is affected by Δ𝜔 through state 𝜔 .

Remark 17. In most cases, collection properties of model elements are state-
less, meaning that they always return the same collection. In that case,
saying that 𝑓 is collection-affected for 𝑎 by Δ𝜔 means that the collection
implementing 𝑓 for 𝑎 is affected by Δ𝜔 .

Proposition 19. Amorphism 𝑓 : 𝐴→ 𝐵 is affected by a global state change
Δ𝜔 ∈ ΔΩ for an object 𝑎 if and only if its embedding 𝜇M ◦ 𝑓 : 𝐴→M(𝐵)
is affected by Δ𝜔 for 𝑎.

Proof. Let 𝜔 be the global state such that 𝑓 (𝑎,𝜔) ≠ 𝑓 (𝑎,Δ𝜔 (𝜔)). Then,

𝜇M(𝑓 ) (𝑎,𝜔) (𝜔) (𝑓 (𝑎,𝜔)) = 1,

but

𝜇M(𝑓 ) (𝑎,𝜔) (Δ𝜔 (𝜔)) (𝑓 (𝑎,𝜔)) = 0

since the latter collection only contains 𝑓 (𝑎,Δ𝜔 (𝜔)). This proves "⇒".

Conversely, let 𝜔 be the global state such affects the collection 𝜇M ◦ 𝑓 for
the object 𝑎. Since 𝜇M is stateless, Δ𝜔 must have affected the collection
implementing 𝑓 . However, this collection contains only at most one element
and therefore, we deduce that 𝑓 (𝑎,𝜔) ≠ 𝑓 (𝑎,Δ𝜔 (𝜔)) which concludes "⇐".

Remark 18. As a consequence of Proposition 19, in the remainder we will
restrict our consideration to multi-valued morphisms. Nevertheless, it may
be more efficient to keep these two artifacts separated in an implementation,
since single-valued morphisms are a very frequent and thus important special
case for which dedicated optimization are very useful.

In implementations, it is usually easy to decide that a state change affects
a given property. We want to use this knowledge to decide when a more
complex function needs to be reevaluated. We define such an indicator for a
reevaluation as a trigger according to the following definition.
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Definition 34. Let 𝑓 : 𝐴 → M(𝐵) be a morphism. We say that 𝑓 is
covered by morphisms 𝑓1 : 𝐴1 → 𝐵1, . . . , 𝑓𝑛 : 𝐴𝑛 → 𝐵𝑛 with selectors
𝑠1 : 𝐴 → 𝐴1, . . . , 𝑠𝑛 : 𝐴 → 𝐴𝑛 if we have for all 𝑎 ∈ 𝐴 and global state
changes Δ𝜔 ∈ ΔΩ that

𝑓 is collection-affected by Δ𝜔 for 𝑎 through state 𝜔

⇒

Any of the 𝑓𝑖 is collection-affected by Δ𝜔 through state 𝜔 for 𝑠𝑖 (𝑎,𝜔).

In case 𝑓 : 𝐴→ 𝐵, we say that 𝑓 is covered by the 𝑓𝑖 through selectors 𝑠𝑖 if
the embedding of 𝑓 into𝑀𝑜𝑟 (𝐴,M(𝐵) is covered by these morphisms. The
collection of morphisms 𝑓1, . . . , 𝑓𝑛 and selectors 𝑠1, . . . , 𝑠𝑛 is called a trigger
coverage. We denote the space of these trigger coverages as 𝑻 .

The problem with this definition is that we need to keep track of the selectors
𝑠𝑖 . Therefore, a reasonable goal in an implementation is to find a coverage
where the 𝑠𝑖 are simple, for example stateless. This includes identities and
projections, in case 𝐴 is a tuple type. As a consequence, the indicator objects
selected by 𝑠𝑖 stay the same even when the global state changes and can be
simply computed when the object 𝑎 is created.

If this is not the case, the principle idea behind this chapter is to approximate
when a global state change Δ𝜔 changes any of the 𝑠𝑖 (𝑎,𝜔) for a given state
𝜔 . We present multiple strategies to find suitable coverages and present an
approach to automatically construct the Pareto-optimal strategy for a given
morphism.

However, before these approximation strategies are discussed, the next couple
of propositions explain how coverages can be extracted for composite model
analyses. The propositions 20-23 are easy, yet very technical consequences
from the definitions above, so that their proofs are omitted to save space.

Proposition 20. Any morphism 𝑓 : 𝐴 → 𝐵 is covered by itself through
selector 𝑖𝑑𝐴.

Proposition 21. Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be morphisms such that
𝑓1, . . . , 𝑓𝑛 cover 𝑓 with selectors 𝑠1, . . . , 𝑠𝑛 and 𝑔 is stateless. Then 𝑓1, . . . , 𝑓𝑛
also cover 𝑔 ◦ 𝑓 with selectors 𝑠1, . . . , 𝑠𝑛 .
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Proposition 22. Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐶 be morphisms such that

𝑓1, . . . , 𝑓𝑛 cover 𝑓 with selectors 𝑠
𝑓
1 , . . . , 𝑠

𝑓
𝑛 and 𝑔1, . . . , 𝑔𝑚 cover 𝑔 with selec-

tors 𝑠𝑔1, . . . , 𝑠
𝑔
𝑚 . Then we have that (𝑓 , 𝑔) is covered by 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚

with selectors 𝑠 𝑓1 , . . . , 𝑠
𝑓
𝑛 , 𝑠

𝑔
1, . . . , 𝑠

𝑔
𝑚 .

Proposition 23. Let 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 be morphisms such

that 𝑓1, . . . , 𝑓𝑛 cover 𝑓 with selectors 𝑠
𝑓
1 , . . . , 𝑠

𝑓
𝑛 and 𝑔1, . . . , 𝑔𝑚 cover 𝑔 with

selectors 𝑠𝑔1, . . . , 𝑠
𝑔
𝑚 . Then we have that𝑔◦ 𝑓 is covered by 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚

with selectors 𝑠 𝑓1 , . . . , 𝑠
𝑓
𝑛 , 𝑠

𝑔
1 ◦ 𝑓 , . . . , 𝑠

𝑔
𝑚 ◦ 𝑓 .

Remark 19. One may think that the selectors in Proposition 23 are problem-
atic because they contain 𝑓 which may be complicated. However, this is
not problematic because the cover of 𝑔 ◦ 𝑓 generated by Proposition 23 also
include a cover of 𝑓 that does not require 𝑓 .

The basic idea behind trigger coverages is to use them for an implementation
of an incrementalization functor I. The idea for this functor implementation
is that it maps a morphism 𝑓 to a morphism from I(𝐴) to I(𝐴) × 𝐵 × 𝑻
that consists of an incremental source value, the morphism and a trigger
coverage to provide a conservative approximationwhen themorphism should
be recomputed. This morphism is a candidate for I(𝑓 ), expressed in the
following theorem.

Theorem 2. Let 𝑓 : 𝐴→ 𝐵 and (𝑠1, . . . , 𝑠𝑛 ; 𝑓1, . . . , 𝑓𝑛) be trigger coverage of
𝑓 . Let

𝑓 :I(𝐴) → I(𝐴) × 𝐵

(𝑎,𝜔) ↦→ (𝑎, 𝑓 (𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎,𝜔)), 𝜔)

a morphism that pairs an incremental value 𝐴 with the result of 𝑓 under the
current state 𝜔 . Further, let

𝑣𝑎𝑙 :I(𝐴) × 𝐵 → 𝐵

(𝑎, 𝑏, 𝜔) ↦→ (𝑏,𝜔)

𝑎𝑝𝑝 :(I(𝐴) × 𝐵) × ΔΩ → I(𝐴) × 𝐵

(𝑎, 𝑏, 𝜔,Δ𝜔) ↦→

{
(𝑎′, 𝑓 (𝑣𝑎𝑙𝑢𝑒 (𝑎,𝜔 ′)), 𝜔 ′) 𝑓 is collection-affected

(𝑎′, 𝑏, 𝜔 ′) else
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where (𝑎′, 𝜔 ′) = 𝑎𝑝𝑝𝑙𝑦𝐴 (𝑎,𝜔,Δ𝜔) is the state change applied to 𝑎. In the
definition of 𝑎𝑝𝑝 , collection-affected is with regard to Δ𝜔 for 𝑎 in state 𝜔 .
Then the following two diagrams commute:

𝐼 (𝐴) I(𝐴) × 𝐵

𝐴 𝐵

𝑓

𝑣𝑎𝑙𝑢𝑒𝐴

𝑓

𝑣𝑎𝑙

and

I(𝐴) × ΔΩ (I(𝐴) × 𝐵) × ΔΩ

I(𝐴) I(𝐴) × 𝐵

(𝑓 , 𝐼𝑑Ω)

𝑎𝑝𝑝𝑙𝑦𝐴

𝑓

𝑎𝑝𝑝

As a consequence, 𝑓 is a valid implementation choice for I(𝑓 ) if elements of
I(𝐴) × 𝐵 are elements of I(𝐵) or isomorphic to such elements. In that case,
𝑣𝑎𝑙𝑢𝑒𝐵 can be implemented as 𝑣𝑎𝑙 and 𝑎𝑝𝑝𝑙𝑦𝐵 as 𝑎𝑝𝑝 .

Proof. The commutativity of the first diagram is clear because the 𝑣𝑎𝑙 func-
tion simply is a projection to the second argumentwhich is exactly 𝑓 (𝑣𝑎𝑙𝑢𝑒 (𝑎,𝜔)).

To see the commutativity of the second diagram, let (𝑎,𝜔,Δ𝜔) ∈ (I(𝐴) ×
Ω) × ΔΩ. We have that

𝑓 (𝑎𝑝𝑝𝑙𝑦𝐴 (𝑎,𝜔,Δ𝜔)) = 𝑓 (𝑎′, 𝜔 ′)

= (𝑎′, 𝑓 (𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎
′, 𝜔 ′)), 𝜔 ′).
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Meanwhile,

𝑎𝑝𝑝 ((𝑓 , 𝐼𝑑Ω) (𝑎,𝜔)) = 𝑎𝑝𝑝 (𝑎, 𝑓 (𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎,𝜔)), 𝜔,Δ𝜔)

=

{
(𝑎′, 𝑓 (𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎,𝜔

′)), 𝜔 ′) 𝑓 is collection-affected

(𝑎′, 𝑓 (𝑣𝑎𝑙𝑢𝑒𝐴 (𝑎,𝜔)), 𝜔
′) else

.

In case that 𝑓 is collection-affected with regard to Δ𝜔 for 𝑎 in state 𝜔 , the
equality is clear. In

Remark 20. The 𝑎𝑝𝑝 morphism in the last theorem essentially applies the
state change to the underlying incremental value for the passed argument
and then checks whether the state changes could make it necessary to update
the cached value for 𝑓 .

5.2. Generalization of Model Changes

To the best of our knowledge, most nowadays object-oriented programming
languages do not directly support the compositionality from object-oriented
design, i.e. when working with an object model, one has no information
about composition as there is no distinction between associations and compo-
sitions. This is different when working with models. Since their metamodel
is available, one can easily retrieve the composition hierarchy of a given
model element. Further, a model element usually knows its parent in the
containment hierarchy as this information is necessary for various purposes,
including serialization. The goal of our approach is to use this information
to coarsen the granularity of the dynamic dependency graph created for a
model analysis.

Current approaches to implicit incremental computation operate on ele-
mentary model changes [166, 43]: Each feature of a model element that is
used somewhere in the analysis is represented as a node in the dynamic
dependency graph as well as all the intermediate results that are based on
them. This node changes when the feature of this particular model element
changes.

We can see batch programs as a scenario where there is a degenerated graph
consisting only of a single node that holds the analysis result and changes
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whenever any elementary change is made in any model element contained
in or referenced by the model. This batch semantics has the advantage
that the dynamic dependency is much smaller but on the other hand a lot
of elementary model changes must be considered when trying to keep an
analysis result updated. Our approach aims to find compromises between
these extremes. Thus, instead of a single batch semantics or an alternative
instruction level incremental semantics, we want to find the remaining design
alternatives in between.

Therefore, we propose a notification that informs clients when an elementary
model change happened in the containment hierarchy rooted at the current
model element. This notification is straight-forward to implement if model
elements know their parents in the containment hierarchy. Starting with the
model element where the elementary model change originates from, every
element has to issue this notification and then ask its parent to so as well, if
any.

In our implementation, we call this notification BubbledChange, inspired
by the equally named bubbled change events known from user interface
technologies such as theWindows Presentation Foundation (WPF). The event
data of this BubbledChange event still carries information about the type of
elementary model change and the details, i.e. the name of the property that
has changed. This allows the incremental change propagation to ignore
elementary model changes that statically cannot have an influence on a
given function.

Furthermore, as the propagation of the event can be expensive in comparison
to simple elementary changes, we manage a flag in each model element
whether any ancestor has a client subscribed to the BubbledChange event
and only propagate elementary changes if necessary. This minimizes the
overhead in case the BubbledChange is not used.

The benefit of having such a notification mechanism is that for a morphism 𝑓 ,
we may allow also compositions (of projections) as selectors in the situation
of Definition 34 without any computational overhead. As a reason, if any
change affects a trigger morphism or its selector, this change is propagated
automatically to the projection of the input value from where it can be con-
sumed without tracking overhead. This is because the value of a projection
in this case simply is the according parameter (from the set of parameters
which form a tuple).
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To make an example, we reconsider the lambda expression in Line 2 of Listing
1.1 on page 23, again depicted in Listing 5.1.

1 route => route.Entry != null && route.Entry.Signal == Signal.GO

Listing 5.1: The example predicate to check whether a routes entry semaphore shows GO

By default, NMF Expressions generates the dynamic dependency graph
depicted in Figure 4.1 on page 93 where each instruction is turned into a
node in the dynamic dependency graph. However, graph traversal may
become a bottleneck if the DDG becomes too large and consume too much
memory. The basic idea of this chapter is to contract the dynamic dependency
graph of Figure 4.1 to use the entire predicate in Listing 5.1 as a single node.
The correctness of this incrementalization is implied by Theorem 2.

In the example, the predicate in Listing 5.1 only changes when either the
Entry of the given route changes or the Signal of that entry semaphore.
Formally, the predicate is covered by the trigger morphism 𝑆𝑖𝑔𝑛𝑎𝑙 with
the selector 𝐸𝑛𝑡𝑟𝑦 ◦ 𝑟𝑜𝑢𝑡𝑒 and another trigger for 𝐸𝑛𝑡𝑟𝑦 with the selector
𝑟𝑜𝑢𝑡𝑒 where 𝑟𝑜𝑢𝑡𝑒 is the projection of the input arguments to the 𝑟𝑜𝑢𝑡𝑒
parameter. Because the predicate in Listing 5.1 only has a single input
parameter, this happens to be equivalent to the identity41. In the example,
the entry semaphore of a route may be contained in the route element and
thus changes to its signal will be propagated to the route as well. This makes
it possible to simply collect generalized changes at the 𝑟𝑜𝑢𝑡𝑒 argument and
reevaluate the predicate only if the collected change has happened either at
the 𝐸𝑛𝑡𝑟𝑦 or 𝑆𝑖𝑔𝑛𝑎𝑙 property.

If the entry was contained in a route, this leads to the dynamic dependency
graph shown in Figure 5.1 which uses significantly less nodes and thus less
memory than the graph of Figure 4.142.

41 The algebraic point of view that a function with multiple input parameters simply is a
function with a tuple as single input is usually not used in programming. Therefore, a
projection is just a reference to a parameter, same as the identity in case of a single input.
42 In the metamodel used in the Train Benchmark, the entry semaphore of a route is not
contained in a route (cf. Figure 1.5). We discuss strategies to handle such a scenarion in
Section 5.4.
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Lambda 𝑟 ⇒ 𝑟 .𝐸𝑛𝑡𝑟𝑦! = 𝑛𝑢𝑙𝑙 && 𝑟 .𝐸𝑛𝑡𝑟𝑦.𝑆𝑖𝑔𝑛𝑎𝑙 == GO
false

Parameter 𝑟𝑜𝑢𝑡𝑒
{Route}

Figure 5.1.: The contracted DDG for route.Entry != null && route.Entry.Signal ==

Signal.GO and effects of changing the signal to FAILURE (affected nodes in red and dashed)

Since only model elements along the composition hierarchy will receive such
notifications, the propagation overhead only depends on the composition
height of the model which often is only logarithmic.

5.3. Obtaining Approximate Trigger Coverages

In this section, we briefly explain how trigger coverages as defined in Defini-
tion 34 can be constructed efficiently in order to create contracted dynamic
dependency graphs as shown in Figure 5.1. For that, also the structure of the
selectors is analyzed, in particular for the involved property accesses.

The algorithm is based on the following three main ideas:

• We represent triggers using lists in which we store the elementary
morphisms that have been used along this path as well as projections.
The head of this list forms the trigger morphism while the tail
represents the property accesses along the selector.

• We maintain a linked list of property accesses that cover primitive
expressions.

• We combine covering triggers to obtain covering triggers for the
entire analysis in a divide-and-conquer fashion.

With these ideas in mind, the trigger coverage can be obtained inductively
from the expressions, e.g., using a visitor-pattern. The result of the visitor is a
linked list of lists that represent the triggers that we refer to in the remainder
as triggers. In the remainder of this section, the algorithm is described for
each node type separately:

119



5. Using Containments to Optimize Incremental Model Analyses

Parameters: A parameter access is a projection from the input tuple type
to the given parameter or an identity in case it is the only parame-
ter. Therefore, we add a new list to triggers that only contains the
parameter projection.

Constants: Constants never change and therefore, the trigger list for them
is empty.

Unary expressions: The considered unary expressions are stateless and there-
fore do not have a consequence on the triggers.

Binary expressions: The binary expressions supported by most languages
such as arithmetics, logical operators or bitwise operators, are stateless.
Therefore, the triggers do not change as a consequence of Proposition
21. However, a binary expression implicitly also implies a product of
its arguments. Therefore, we compute the trigger coverage for each
argument separately and combine them, according to Proposition 22.
This can be done efficiently in 𝑂 (1) using linked lists.

Conditional expressions: The conditional operator is also stateless but im-
plicitly contains a ternary product. Therefore, we compute the triggers
for the test expression, true expression and false expression again sep-
arately and combine them, applying Proposition 22 twice.

Property Access: When a property access is made, we assume that the prop-
erty access may target an element of any current trigger. We thus
simply add the property access to each current trigger list. On the other
hand, if this property access makes it impossible to obtain notifications
for the selector, e.g. because the selector contains a cross-reference,
we still have the exact selector available because it is the target of the
currently visited property access.

Method Calls: For method calls, we require annotations, similar to the an-
notations needed for the incrementalization. These annotations steer
which data accesses are required by a given function. For higher-order
functions, an implementation is provided that uses the triggers of pro-
vided lambda expressions to obtain the triggers of the higher-order
function.
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5.4. Incrementalization Strategies

In this section, we explain how generalized change notifications presented
in Section 5.2 can be used to contract the dependency graph. We do this
contraction at the level of methods. In particular, this includes lambda
expressions such as the filter conditions and selectors in Lines 2-4 of Listing
1.1.

However, the generalized model changes only suffice to properly catch trig-
gers when the selectors of coverages are projections or compositions. There-
fore, we need to have strategies when the selectors include cross-references.
Indeed, many predicates rely not only on the identity of cross-referenced
elements but also its properties, such as in the filter predicate depicted in
Line 4 of Listing 1.1, where the CurrentPosition of a cross-referenced switch
is accessed. Here, changes to this current position will not be propagated
to the SwitchPosition element because the switch is not contained in it. In
particular, we cannot be sure that the sub-models spanned by the contain-
ment hierarchies started by the parameters of the predicate contain all model
elements necessary to compute the predicate. Therefore, other strategies are
necessary to find out when this predicate needs to be reevaluated.

We propose several strategies that are presented in the subsequent subsec-
tions.

5.4.1. Instruction-Level

In any case, we can fall back to instruction-level incrementality (cf. Section
4.3) and ignore the information about containment references entirely. While
this approach has an optimal computational complexity, memory consump-
tion and time used to traverse the dependency graph may outweigh the
advantages by incremental computation.

5.4.2. Argument Promotion

One approach to resolve this situation is to extract the access to the cross-
referenced model element into a new parameter of the predicate. For an
example, consider the (true) case that the entry semaphore of a route is
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Lambda 𝑟, 𝑟_𝑒𝑛𝑡𝑟𝑦 ⇒ 𝑟_𝑒𝑛𝑡𝑟𝑦! = 𝑛𝑢𝑙𝑙 && 𝑟_𝑒𝑛𝑡𝑟𝑦.𝑆𝑖𝑔𝑛𝑎𝑙 == GO
false

Promotion 𝑟 ⇒ (𝑟, 𝑟 .𝐸𝑛𝑡𝑟𝑦)
({Route}, {Semaphore})

MemberAccess 𝐸𝑛𝑡𝑟𝑦
{Semaphore}

Parameter 𝑟𝑜𝑢𝑡𝑒
{Route}

Figure 5.2.: The contracted DDG for route.Entry != null && route.Entry.Signal ==

Signal.GO if the entry semaphore is not contained in a route and effects of changing the
signal to FAILURE (affected nodes in red and dashed)

not contained in the route. In that case, the dependency graph in Figure
5.1 is invalid because elementary changes of a routes entry signal are not
propagated to the route. Therefore, the expression route.Entry is extracted
as an additional formal parameter. As an immediate consequence, all ele-
mentary model changes that may require a reevaluation of the predicate are
propagated to the formal parameters of the predicate.

In the case of the check for route entries with signal GO, this means that we
extract a new predicate

(route, route_entry) => route_entry != null &&

route_entry.Signal == GO.

For this predicate, we have the situation that every change that affects the
predicate is an elementary change in any of the parameters. However, this
leaves the problem that we must convert any invocation of the original
predicate into an invocation of the new predicate. Here, we make use of that
route_entry = route.Entry.

If we do this for all cross-references, we arrive again at a method that does no
longer contain property accesses to cross-referenced model elements. Since
we assume a side-effect-free language such as fully functional 𝜆-expressions,
we can also combine multiple accesses to the same property into a single
parameter.
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We have to encapsulate the resulting predicate in a new predicate which
derives the parameters of the new predicate from the original parameters
(incrementally). Since this parameter derivation by construction requires
several accesses to cross-references, it is unlikely that benefits can be drawn
from the containment hierarchy and thus, this derivation is done using
instruction-level incrementality. In the example of an entry semaphore not
being contained in a route, this means we arrive at the DDG depicted in
Figure 5.2. This graph contains four nodes which still is an improvement
over the DDG from Figure 4.1.

Since this strategy reduces the dependency graph of a potentially complex
predicate to the dependency graph of subexpressions that break the contain-
ment hierarchy, it should be very useful in case of predicates with a complex
Abstract Syntax Tree (AST) that consists mainly of computationally inex-
pensive operations. The premier area of application are binary expressions
such as arithmetic or logical operators. Here, this strategy should give a
significant improvement.

5.4.3. Reaction to Repository Changes

Any changes that affect the cross-referenced element will ultimately end
up in the repository where the model elements are registered in. Therefore,
we can listen to this event but still filter on the property names. However,
this means to recompute the method for a large set of elementary model
changes.

The big advantage of this strategy is that it adds a very low overhead in terms
of memory usage and initialization. Its disadvantage is that it is limited to
a static dependency analysis. This is useful either if predicates for a given
input hardly change their value or the predicate is called with a very limited
set of input values. The former may be the case for example if the changes
that would affect the predicate result to change do not occur in practice.
Whether this is the case or not cannot be judged without context: it depends
heavily on the usage scenario under which the model analysis is used.

In the scenario of checking whether a given switch position is satisfied, this
strategy means that this check is reevaluated whenever the position of any
switch in the repository is changed, regardless of whether this switch is the
one referred to by the switch position or not. However, change types where
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we can be sure they do not affect the predicate value such as a changed
semaphore will not cause the predicate to be reevaluated. Because we use
the results of static analysis, we can discard such changes as soon as we see
that the changed properties cannot affect the current predicate.

5.4.4. Tree Extension

An approach that in some way combines the latter two is tree extension
where the goal is to navigate the predicate arguments up in the containment
hierarchy until we arrive at model arguments that cover all the arguments.

In many cases, cross-references have a scope more narrow than the entire
model. Consider the railway network contains a notion of districts and let
routes as well as switches be contained in districts. In this case, the switch
reference of a switch position would certainly not leave the district the route
is contained in. If we augment the cross-reference Switch of the SwitchPo-
sition model element with this information, we navigate from the switch
position to the district it is contained in and listen to elementary change
notifications of this district. This has the advantage that elementary model
changes from other districts do not cause a reevaluation of the predicate.

To implement this annotation, we propose a slight extension of the meta-
metamodel to annotate cross-references with an anchor class. The semantics
of a reference 𝑟 : 𝐴→ 𝐵 to have an ancestor type 𝐶 is that for any instance
𝑎 of 𝐴, the least common ancestor of 𝑎 that is an instance of 𝐶 is also an
ancestor of 𝑟 (𝑎). In particular, if𝐴 = 𝐶 , then 𝑟 remains inside the containment
hierarchy of 𝑎.

5.5. Finding Pareto-Optimal Configurations

Comparing the dependency graphs in Figure 4.1 and Figure 5.1, the latter
consists of significantly less nodes (two instead of ten). However, the nodes
in Figure 5.1 are computationally more complex and have to be reevaluated
on more change events. Through static analysis, one can restrict the changes
that should trigger reevaluation to elementary changes of Signal or Entry
members. However, this static analysis loses the context and we would
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Model Analysis
Basic 

Configuration
Pareto-optimal 
Configurations

Example change 
sequence

Example model

Static Analysis Automated Design-
space exploration

Figure 5.3.: Finding pareto-optimal incrementalization configurations using genetic search
algorithms

therefore have to reevaluate the predicate if any of the semaphores contained
in the analyzed subtree changes its signal.

Thus, even in the absence of cross-references, it is not obvious that it is
beneficial to contract the DDG. Hence, the application of this contraction
is a strategy which may or may not be beneficial for the performance of
the analysis. We would expect a contraction to always save memory, but
listen to too many change notifications. Whether or not this results in better
response times to changes depends on the scenario.

As a result from the strategies to contract the dependency graph, we have a
(potentially large) space of configurations how the DDG for a given model
analysis can be implemented. Each configuration has a different impact on
how much effort must be undertaken to update the analysis for a certain
change and on the memory consumption of the model analysis. In this
section, we present our approach to find the (Pareto-)optimal configuration
with regard to memory consumption and response time to changes through
a search-based approach. An overview of the entire approach is depicted in
Figure 5.3.

The configurations are essentially assignments of incrementalization strate-
gies to parts of the analysis (methods or predicates). Therefore, in a first step,
we have to explore the degrees of freedom that we have for a given analysis,
i.e. the methods that the analysis consists of. This can be done easily through
static analysis that finds an initial configuration, for example configuring all
methods for instruction-level incrementality.
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A model analysis already contains executable semantics. Therefore, to decide
between given configurations which one is the fastest, we simply run the
model analysis on a predefined model with predefined set of changes and use
the measurement result. Changes to the analyzed model can be represented
as models again by generating a metamodel of elementary model changes
[34]. We play these changes on the analyzed model and record the response
times from playing an elementary model change to the updated analysis
results.

The optimal configuration of the model analysis regarding the granularity
of the DDG depends on several aspects such as the size and structure of the
model, the frequency in which what parts of the models change and how,
the memory availability on the target machine that should run the model
analysis and its processing speed. Therefore, we demand from the analysis
developer an example model and an example change sequence as well as
access to the target machine that should run the analysis in production.

However, such a full design-space exploration requires 𝑠𝑛 measurements
for 𝑠 different strategies (in our case 𝑠 = 4) and 𝑛 different predicates in the
analysis. Therefore, we try to prune the design-space. Heuristically, we can
always use instruction-level incrementality if a predicate or method only
consists of a single property access. Further, we heuristically exclude the
tree extension strategy if no anchors are defined. Still, a full design space
exploration is only feasible for small analysis with few predicates.

If the number of predicates gets too high, we propose to use genetic algo-
rithms to automatically optimize the granularity of the dependency graph
according to these response times and the memory consumption of the model
analysis. As objective functions, we use memory consumption and the time
to run the given example change sequence on the given initial model when
executed on the target machine.43 We expect these artifacts to be provided by
the developer. The outcome of the search tool is then a set of Pareto-optimal
configurations to incrementalize the model analysis for the given scenario
which the developer can use in production environments.

43 Compared to other automatically optimizing algorithms, a genetic search algorithm needs
less assumptions but requires more metric evaluations. Since in our case, a metric is an
expensive benchmark execution, other search algorithms such as Simplex optimization
algorithms may result in faster optimization but we have not tried this, yet.
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Optimizing the granularity of incremental systems can yield important in-
sights on how well particular applications fit for incrementality. In some
scenarios, it might be possible that the best granularity of for the dependency
graph may be the degenerate DDG that simply reevaluates the analysis af-
ter every change. In this case, we gain an insight that this type of model
analyses would not be suitable to be incrementalized at all, for example due
to butterfly-effects. Thus, the optimization gives us tools at hand to reason
about the potential for incrementality of a given model analysis under a
particular situation in a much better way.

5.6. Incerator

We have implemented our approach into a new tool called Incerator, part
of NMF. In particular, Incerator automates the workflow depicted in Figure
5.3 based on an adapter implementation that runs a given analysis with an
example model.

This adapter implementation only has to implement a single method Run that
runs the model analysis and change sequence for a given model repository.
The adapter implementation is passed to Incerator as the assembly-qualified
name of the class. Incerator loads this type and the container assembly and
instantiates the type. Thus, the typemust exist andmust have a parameterless
constructor.

The tool then records the variation points and explores the design space either
using full design space exploration or genetic search. As benchmark, the
tool by default records the runtime and memory consumption of dedicated
per-configuration analysis processes. Alternatively, a custom benchmark
can be supplied.

The recording of variation points works by running the analysis in a special
incrementalization system that statically chooses instruction-level incremen-
tality for each analysis predicate, but records all variation points in a static
variable. Incerator reads out this variable to obtain the design-space for the
incrementalization of the model analysis that is run in the Run method of the
analysis adapter.
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5. Using Containments to Optimize Incremental Model Analyses

In a next step, Incerator traverses the design-space. At the moment, the user
has the choice to either explore the full design space or perform a genetic
search.

The genetic search algorithm uses 5% elites of the populations, a double-
point crossover operator with probability 85% and mutation operator with
probability 8%. The rationale to use a double-point crossover instead of a
single-point crossover is that we think that it is more reasonable to assume
that only a chunk of configuration entries should be exchanged for a new
generation. However, we have not performed an adequate analysis which
configurations for the genetic search algorithm produce the best results. The
size of the population as well as the number of generations can be specified by
the user as they have a massive impact on the duration of an optimization.

By default, Incerator measures the time to run a child Incerator process
that starts up and runs the specified analysis in a passed in configuration.
However, this means that the time measurement is inflated by the time to
start the process, load the model, load the changes, load the configuration
and initialize the analysis. This overhead is applied to each configuration
in the same way and therefore the results should be valid with regard to
the pareto-optimality. Furthermore, Incerator measures the peak memory
consumption of the spawned process.

To minimize the influence of overhead for the time measurements, Incer-
ator further supports to specify a custom benchmark. Like the analysis
adapter class, this benchmark can be provided in the form a string noting
the assembly-qualified name of the benchmark implementation class. With
this class, the user can influence exactly how the measurement of time and
memory consumption is performed.

The main Incerator process, i.e. the process that was started by the user from
the command line, then collects the results and optionally collects the set of
Pareto-optimal candidates with respect to time and memory consumption.
The results are returned in the form of a CSV file. Each entry of this table
consists of the path to the corresponding configuration and all measured
values for the benchmark metrics44.

44 Although only the peak memory consumption and the response time are considered in the
Pareto-filter, the default benchmark also collects other performance metrics such as the
working set. Custom benchmarks are free to define the benchmark metrics as long as they
contain time and memory consumption.
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5.7. Summary

In this chapter, we presented an approach to contract the DDG and adjust
it to the actual change sequences. The approach automatically tunes the
incremental execution of a given analysis by selecting among different in-
crementalization strategies on the level of methods and predicates45. This
tuning depends on the given example input, an example change sequence
and the given target machine. It utilizes the composition hierarchy of the
input model. The approach is implemented in Incerator, which is a part of
NMF.

The partition of models using their containment hierarchy seems a natural
choice, but it is in fact only one option. Therefore, the approach presented
in this chapter can be seen as a proposal for RQ II.1, other approaches may
also be viable. Likewise, the partition of model analyses to methods and
predicates has the characteristics of a proposal for RQ II.2. Therefore, the
thesis leaves many open questions left as future work in this area.

For the proposed combination of model partition strategy and analysis parti-
tion strategy, we propose four different incrementalization strategies. First,
this shows that RQ II.3 has not unique answer, not even if the metamodel
and the analysis is fixed. Rather, we are confronted with a (search) space
of possible answers. Our approach tries to select the most appropriate solu-
tion with regard to non-functional properties by an automated design space
exploration, supported by our tool Incerator. This tool can be seen as an
answer to RQ II.4.

As the search space is exponential with the number of predicates, it quickly
becomes infeasible to perform a full design space exploration. Besides heuris-
tic improvements, we propose a genetic search algorithm to prune the search
space more efficiently, but there are many open questions in this line of
research.

The actual suitability of our approach, in particular the improvements that
can be achieved using Incerator for a practical model analysis, is discussed
in Section 9.3.5.

45 The formalization included in this chapter is actually agnostic of the choice how model
analyses are partitioned, but our implementation is not.
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Transformations

In this chapter, we introduce an approach to apply the incrementalization
system proposed in Chapter 4 for uni-directional or bidirectional, incremental
model transformations. We first introduce a running example for this chapter,
before the synchronization formalism using synchronization blocks (C II) is
introduced and an implementation in an internal DSL is presented.

The contents of this chapter have been accepted for publication at the
Springer Software and Systems Modelling journal [98].

The remainder of this chapter is structured as follows: Section 6.1 intro-
duces the running example for this chapter, a synchronization of finite state
machines and Petri nets. Section 6.2 introduces the formal concept of synchro-
nization blocks and proves some important properties. Section 6.3 explains
how synchronization blocks can be implemented in an internal DSL. Section
6.4 shows how the language is applied to the running example and how this
language related to Triple Graph Grammars. Lastly, Section 6.5 summarizes
the insights and achievements of this chapter.

6.1. Finite State Machines to Petri Nets

Throughout the chapter, we use the example of the transformation of Finite
State Machines to Petri Nets, two well-known formalisms in theoretical
computer science. Both of them are well suited to describe behaviors but
each of them has its advantages. Therefore, both of them are widely used.
Finite state machines can be easily transformed to Petri nets.

However, for model synchronization the example of Finite State Machines
and Petri Nets is a rather synthetic one as usually only one of these formalisms
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FiniteStateMachine

+ Id : String

State

+ IsStartState : Boolean
+ IsEndState : Boolean
+ Name : String

Transition

+ Input : String

states 1..* transitions 0..*

source

1

outgoing

0..*
target

1

incoming

0..*

(a) The metamodel for finite state machines

PetriNet

+ Id : String

Place

+ Id : String

Transition

+ Input : String

places 1..* transitions 0..*

from

0..*

outgoing

0..*
to

0..*

incoming

0..*

(b) The metamodel for Petri Nets

Figure 6.1.: The metamodels of finite state machines and Petri nets

is used. Nevertheless, we use it as our running example because the involved
metamodels are rather simple and structurally similar but yet different.

The metamodel that we use for finite state machines is depicted in Figure 6.1a.
Finite state machines consist of states and transitions where transitions hold
a reference to the incoming and outgoing states and states hold a reference
to the incoming and outgoing transitions. States can be start or end states.

The metamodel of Petri Nets is depicted in Figure 6.1b. Petri Nets consist
of places and transitions. Unlike state machines where states are modeled
explicitly, the state of a Petri Net is the allocation of tokens in the network.

The transformation from finite state machines to Petri Nets transforms each
state to a place. Transitions in the finite state machine are transformed to
Petri Net transitions with the source and target places set accordingly. Final
states are transformed to a place with an outgoing transition that has no
target place and therefore ‘swallows’ tokens.
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Transformation

Created

Paused Started

initialize

start

pause

reset

stop

stop

created

initialize

paused
start

pause started

stop

stopped

reset

stop

Figure 6.2.: Illustration of the considered example transformation from finite state machines to
Petri nets exemplified for a simulation lifecycle.

An example of this transformation is illustrated in Figure 6.2 where the state
machine to manage the lifecycle of a simulation is depicted. The advantage
of a Petri net is here that using tokens, Petri nets allow to represent the state
of multiple simulations in the same diagram while in state machines, only
one state can be active at a time.

The backward transformation from Petri Nets to finite state machines is not
always well defined since Petri Net transitions may have multiple source or
target places. However, if the Petri Net is an image of a finite state machine
under the above transformation, then the backward transformation is useful
to have.
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6.2. Model Synchronization with

Synchronization Blocks

In this section, we present our model synchronization approach. First, we
introduce the underlying synchronization theory our implementation is
built upon. We then explain synchronization blocks as the synchronization
primitives of our approach and how these primitives are composed to model
synchronizations.

6.2.1. Combining Bidirectionality and Change Propagation

To combine incrementality and bidirectionality, one must find a suitable
formalization able to describe both of them. On the one hand, we have
incrementality which can be described as functors (cf. Chapter 4). On the
other hand, we have bidirectionality, where Foster et al. have proposed
the lens approach [64] for bidirectional computation. In this section, we
present our approach for such a common formalization through incremental
lenses.

To do that, we use that both approaches can be described in terms of category
theory. However, there is an important difference of what entities are mod-
eled in the categories: While the objects in Croles categories reconstructed
from algebraic type theory are types, lenses often consider entire models as
objects [57].

There have been many different versions of lenses with close correlations
[119]. Diskin, Xiong and Czarnecki argue that the original lenses have
problems as they do not know the change sequence and propose delta-lenses
as a solution [58]. However, this problem only arises when the difference
between two states is not distinct as shown by Johnson and Rosebrugh [119].
As Diskin uses categories where objects represent entire models [57]46, deltas
require model differencing which in general has no unique solution.

In our case, the objects of the category consist of identities of model elements
or simple values. Thus, the differencing is easy and unique: A change

46 also referred to as model-at-a-time, as opposed to object-at-a-time
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sequence is uniquely described by the previous model element identity and
the new identity. Therefore, state-based lenses suffice.

Therefore, we can simply use in-model lenses such as introduced in Definition
23. However, we would also like to transfer the composition properties of the
original lens definition by Foster et al. (cf. Definitions 6 and 8) to in-model
lenses.

Proposition 24. There is a composition operator ◦ that maps a lens 𝑓 :
𝐴 ↩→ 𝐵 and a lens 𝑔 : 𝐵 ↩→ 𝐶 to a combined lens (𝑔 ◦ 𝑓 ) : 𝐴 ↩→ 𝐶 if 𝑔↗ is
stateless by the following definition:

(𝑔 ◦ 𝑓 ) ↗ : (𝑎,𝜔) ↦→ 𝑔↗ (𝑓 ↗ (𝑎,𝜔))

(𝑔 ◦ 𝑓 ) ↘ : (𝑎, 𝑐, 𝜔) ↦→ 𝑓 ↘ (𝑎,𝑔↘ (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔)), 𝑐, 𝜔)).

The latter is defined on its canonical domain.

Proof. (𝑔 ◦ 𝑓 ) ↗ is side-effect free as concatenation of side-effect free mor-
phisms. Let 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 and 𝜔 ∈ Ω. We first proof GetPut:

(𝑔 ◦ 𝑓 ) ↘ ((𝑔 ◦ 𝑓 ) ↗ (𝑎,𝜔))

= 𝑓 ↘ (𝑎,𝑔↘ (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔)), (𝑔 ◦ 𝑓 ) ↗ (𝑎,𝜔)))

= 𝑓 ↘ (𝑎,𝑔↘ (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔)), 𝑔↗ (𝑓 ↗ (𝑎,𝜔))))

= 𝑓 ↘ (𝑎, 𝑓 ↗ (𝑎,𝜔)) = (𝑎,𝜔).

Here, we first applied GetPut for 𝑔 and then for 𝑓 .

To see PutGet, we note that

(𝑔 ◦ 𝑓 ) ↗ ((𝑔 ◦ 𝑓 ) ↘ (𝑎, 𝑐, 𝜔))

= 𝑔↗ (𝑓 ↗ ((𝑔 ◦ 𝑓 ) ↘ (𝑎, 𝑐, 𝜔)))

= 𝑔↗ (𝑓 ↗ (𝑓 ↘ (𝑎,𝑔↘ (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔)), 𝑐, 𝜔))))

= 𝑔↗ (𝑓 ↗ (𝑓 ↘ (𝑎,𝑔↘ (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔)), 𝑐, 𝜔))))

= 𝑔↗ (𝜋𝐶 (𝑔↘ (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔)), 𝜔)), 𝜔̃)

= (𝑐, 𝜔̃) for some 𝜔̃ ∈ Ω.

Here, we first applied PutGet for 𝑓 . However, 𝑓 ↘ may change the state
from whatever 𝑔 ↘ returned to some state 𝜔̃ . Because we do not know
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anything about 𝜔̃ , we have to demand that 𝑔 ↗ returns the same result
regardless of the global state. As we have that, we know that 𝑔↗ returns
the same result as in the case of the PutGet of 𝑔 and since we know that 𝑔↗
is side-effect free, we even know that the final state is 𝜔̃ .

Remark 21. The composition operator ◦ is closely related to the concatenation
operator ;, with the exception of the parameter order. In category, it is
common to read 𝑔 ◦ 𝑓 as ‘𝑔 after 𝑓 ’ whereas the original lens concatenation
(𝑓 ;𝑔) means ‘𝑓 , then 𝑔’. Intuitively, this is the same.

Example 23. An example of lenses where the Get morphism is stateless are
arithmetic operations because the information what has changed is already
encoded in the reference to the number. Consider for example the lens
+𝑐 : Z→ Z given by +𝑐 ↗: (𝑖, 𝜔) ↦→ (𝑖+𝑐, 𝜔) and +𝑐 ↘: (𝑖, 𝑗, 𝜔) ↦→ ( 𝑗−𝑐, 𝜔)
for some 𝑐 ∈ Z. Informally, the lens simply adds a constant number.

Example 24. An example of an operation beyond arithmetics is FirstOr-
Default that returns the first item of a collection or the default value of a
type (null for a reference type and zero for numeric types) if the collec-
tion is empty. If we were to assign 𝑥.𝐹𝑖𝑟𝑠𝑡𝑂𝑟𝐷𝑒 𝑓 𝑎𝑢𝑙𝑡 () = 𝑦, i.e., evaluate
FirstOrDefault↘ (𝑥,𝑦, 𝜔), we can distinguish the following cases:

1. The collection 𝑥 contains 𝑦 and 𝑦 is the first element. In this case, we
do not have to change 𝑥 since the assignment is already satisfied.

2. The collection 𝑥 contains 𝑦 but not as the first element (if the
collection is ordered). In this case, we have multiple options. We
could either move 𝑦 to be the first element (matching the semantics
of getting the literally first element) or leave the collection
unchanged (with the semantics of getting any element, e.g. in an
unordered collection). This is because a single functional
implementation can implement multiple semantics that need
different reversability behaviors.

3. The collection 𝑥 does not contain 𝑦. In this case, we add 𝑦 to the
collection 𝑥 . We can either add it as first element if 𝑥 is an ordered
collection or add it to 𝑥 at all if 𝑥 is unordered.

4. The element 𝑦 is the element type default value. In this case we again
have multiple options. In our implementation we clear the collection
𝑥 .
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Man

+ Name : String

Woman

+ Name : String
wife

0..1

husband

0..1

Figure 6.3.:A simple metamodel of men and women

H: Woman

Name = "Hillary"

B: Man

Name = "Bill"

M: Woman

Name = "Monika"

:husband:wife

Figure 6.4.:An example instance of men and woman at state 𝜔0

The main learning point from this example is that the same operational
implementation of an operator can match multiple lens semantics. In the
example of FirstOrDefault, we have two versions (with different names)
realizing the two options in case 2. On the other hand, this limits the pos-
sibility for implicitly inferring a reversibility semantics from existing code
since there we do not know how a particular operator has been used. Thus,
we decorate each operator with its reversability behavior explicitly.

Example 25. An example that breaks PutGet for composed lenses is the
following: Consider a very simplemetamodel of old-fashioned47 relationships
depicted in Figure 6.3. It consists only of two classes Man and Woman that have
a bidirectional reference to each other. A man may or may not have a wife
and a woman may or may not have a husband.

In most metamodeling languages such as Ecore or NMeta, such a bidirec-
tional reference is modeled as two separate references with a set opposite.
This means, as soon as the developer sets this reference, implicitly also the
opposite reference is set. We refer to these references as lenses 𝑤𝑖𝑓 𝑒 and
ℎ𝑢𝑠𝑏𝑎𝑛𝑑 . We will consider their concatenation (𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑).

Now consider the example instance depicted in Figure 6.4.

The example instance consists of three model elements 𝐻, 𝐵 and𝑀 . In state
𝜔0, 𝐻 is the wife of 𝐵 and conversely, 𝐵 is the husband of 𝐻 . 𝑀 has no
husband. We want to see whether PutGet holds for the tuple (𝐻,𝑀,𝜔0) and
the concatenation (𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑).

47 In the sense that homosexual relationships are ignored
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H: Woman

Name = "Hillary"

B: Man

Name = "Bill"

M: Woman

Name = "Monika"

:husband :wife

Figure 6.5.:An example of men and women at state 𝜔1

For this, we first have to evaluate (𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑) ↘ (𝐻,𝑀,𝜔0). Because
𝑤𝑖𝑓 𝑒 ↘ will keep the identity of the model element it is based on, it will
return 𝐵 but change to a new state:

(𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑) ↘ (𝐻,𝑀,𝜔0)

= ℎ𝑢𝑠𝑏𝑎𝑛𝑑 ↘ (𝐻,𝑤𝑖 𝑓 𝑒 ↘ (ℎ𝑢𝑠𝑏𝑎𝑛𝑑 ↗ (𝐻,𝜔0)︸�������������������︷︷�������������������︸
𝐵

, 𝑀,𝜔0))

= ℎ𝑢𝑠𝑏𝑎𝑛𝑑 ↘ (𝐻, 𝐵,𝜔1).

This new global state is depicted in Figure 6.5. As a side-effect of𝑤𝑖𝑓 𝑒 ↘,
also the reference ℎ𝑢𝑠𝑏𝑎𝑛𝑑 has changed both for 𝐻 and for𝑀 : Because𝑤𝑖𝑓 𝑒
has a maximum cardinality of 1, 𝐻 is no longer a 𝑤𝑖𝑓 𝑒 of 𝐵 which in turn
resets the ℎ𝑢𝑠𝑏𝑎𝑛𝑑 reference. On the other hand,𝑀 now is a wife of 𝐵 and
therefore the ℎ𝑢𝑠𝑏𝑎𝑛𝑑 reference is set appropriately.

If we go on and evaluate ℎ𝑢𝑠𝑏𝑎𝑛𝑑 ↘ (𝐻, 𝐵,𝜔1), this again sets the 𝑤𝑖𝑓 𝑒
reference of 𝐵 because it is an opposite of the ℎ𝑢𝑠𝑏𝑎𝑛𝑑 reference. Because
𝑤𝑖𝑓 𝑒 still has a maximum cardinality of 1, 𝑀 is no longer a 𝑤𝑖𝑓 𝑒 of 𝐵 and
we finally arrive back in state 𝜔0.

The problem is now that in state 𝜔0, we have that (𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑) ↗
(𝐻,𝜔0) = (𝐻,𝜔0) whereas PutGet would demand this to be𝑀 . Even worse,
because 𝑤𝑖𝑓 𝑒 and ℎ𝑢𝑠𝑏𝑎𝑛𝑑 are opposite references, there must not be a
state 𝜔 ∈ Ω such that (𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑) ↗ (𝐻,𝜔) = (𝑀,𝜔). In particular,
evaluating (𝑤𝑖𝑓 𝑒 ◦ ℎ𝑢𝑠𝑏𝑎𝑛𝑑) ↗ for 𝐻 in state 𝜔1 even throws an exception
because ℎ𝑢𝑠𝑏𝑎𝑛𝑑 (𝐻,𝜔1) returns a null-reference.

Remark 22. We do not yet have a clear criterion to automatically decide
whether a given Get morphism is stateless or not. Furthermore, the fact that
a given Get morphism is not stateless does not immediately imply that the
resulting pair of morphisms breaks PutGet. Therefore, our implementation
currently assumes that the developer is aware.
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6.2.2. Synchronization Blocks

Before we describe synchronization blocks, we need a further definition.

Definition 35. A lens 𝑙 : 𝐴 ↩→ 𝐵 is called persistent if for all 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵
and 𝜔 ∈ Ω, we have that 𝜋𝐴 (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = 𝑎. This means that the Put
operation only changes the state but not the identity.

Example 26. A property access is a persistent lens as we have shown in
previous examples.

Proposition 25. Let 𝑓 : 𝐴 ↩→ 𝐵 a persistent lens and 𝑔 : 𝐵 ↩→ 𝐶 a lens such
that (𝑔 ◦ 𝑓 ) fulfills the PutGet law and therefore is a lens. Then, (𝑔 ◦ 𝑓 ) is
persistent.

Proof. The proof follows straight from the definition of (𝑔 ◦ 𝑓 ) ↘.

The very basic idea behind our approach is to describe the correspondence
between elements of heterogeneous models through isomorphisms that are
incrementally build up during a synchronization through synchronization
blocks as in the following definition:

Definition 36 (Synchronization Block). A (single-valued) synchronization
block 𝑺 is an octuple (𝐴,𝐵,𝐶 , 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) of four types with two iso-
morphisms and two persistent lenses. Here, 𝐴, 𝐵, 𝐶 and 𝐷 are types for
which a correspondence isomorphism Φ𝐴−𝐶 is defined between 𝐴 and 𝐶 and
likewise Φ𝐵−𝐷 between 𝐵 and 𝐷 . The types𝐴 and 𝐵 originate from a mutable
type system C𝐿 meanwhile 𝐶 and 𝐷 originate from a type system C𝑅 . We
further have persistent lenses 𝑓 : 𝐴 ↩→ 𝐵 and 𝑔 : 𝐶 ↩→ 𝐷 in their respective
type systems C𝐿 and C𝑅 to navigate through the models.

A schematic overview of a synchronization block is depicted in Figure 6.6.
We call the isomorphism Φ𝐴−𝐶 the base isomorphism of 𝑺 , denoted as 𝑺𝑠 and
say that Φ𝐴−𝐶 depends on Φ𝐵−𝐷 through 𝑺 . Likewise, the morphism Φ𝐵−𝐷 is
called the target isomorphism and is denoted as 𝑺𝑡 .

A multi-valued synchronization block is a synchronization block where the
lenses 𝑓 and 𝑔 are typed with collections of 𝐵 and𝐷 , for example 𝑓 : 𝐴 ↩→ 𝐵∗
and 𝑔 : 𝐶 ↩→ 𝐷∗.
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𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 6.6.: Schematic overview of synchronization blocks

Remark 23. The semantics of such a synchronization block is to declaratively
specify validation constraints that must hold for any elements 𝑎 ∈ 𝐴 and
𝑐 ∈ 𝐶 when they have a correspondence (𝑎, 𝑐) ∈ Φ𝐴−𝐶 . The lenses allow us
to enforce these constraints in one direction or the other.

Remark 24. Kleene closures in this formalization are immutable, ordered
collections. In an implementation, one would also like to allow mutable
collections that may not be ordered. In Section 3.4, we discussed the different
collection monads for mutable collections. For a synchronization block to
support other types of collections, one simply has to exchange the usage
of Kleene closures with the respective collection monad. However, the
formalism for these other collection types is much more complicated, though
the insights from them are limited. Therefore, in the remainder of this chapter,
the full theory of single-valued synchronization blocks and multi-valued
synchronization blocks using ordered, immutable collections is presented
but the equivalent definitions and propositions for other types of collections
is omitted to save space.

Remark 25. The type of the collection, i.e. the used collection monad, must
be the same for both left and right side. This is necessary because the trans-
formations between the different collection monads are only natural for
some (few) cases (cf. Section 3.4). If this is not the case, for example because
the left side usesM and the right side uses K , then the synchronization is
only performed for the weaker (in terms of the existence of natural trans-
formations) monad. In the example, this means that the synchronization
engine ignores the order of elements (because such an order does not exist
in unordered collections).
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FiniteStateMachine PetriNet

State∗ Place∗

ΦAutomataToNet

.States .Places

Φ𝑆𝑡𝑎𝑡𝑒𝑇𝑜𝑃𝑙𝑎𝑐𝑒

Figure 6.7.: Synchronization of the states of a finite state machine with the places of a Petri net

Example 27. As a first example, we want to synchronize the states of a finite
state machine with the places of a Petri net. This can be realized through the
synchronization block depicted in Figure 6.7.

The synchronization block in Figure 6.7 states that for each state of a state
machine, there should be a place in the Petri net (and vice versa).

Example 28. An important special case is when 𝐵 = 𝐷 and we can simply
use the identity as Φ𝐵−𝐷 . This case is particularly relevant for the syn-
chronization of attributes as their data types are typically used in many
independent models. However, this can also be interesting when models
have an overlap in model classes.

In the following definitions and propositions, we show how a synchronization
block is used.

Definition 37 (Consistency with respect to single-valued synchronization
blocks). Let 𝑺 = (𝐴, 𝐵,𝐶 , 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) be a single-valued synchroniza-
tion block. We denote the state spaces of the type systems C𝐿 and C𝑅 with
Ω𝐿 and Ω𝑅 , respectively. Let further 𝜔𝐿 ∈ Ω𝐿 and 𝜔𝑅 ∈ Ω𝑅 . We say that the
state pair (𝜔𝐿, 𝜔𝑅) is consistent for a tuple (𝑎, 𝑐) ∈ Φ𝐴−𝐶 regarding 𝑺 if

(𝑓 ↗ (𝑎,𝜔𝐿), 𝑔↗ (𝑐, 𝜔𝑅)) ∈ Φ𝐵−𝐷 .

We say that the state tuple (𝜔𝐿, 𝜔𝑅) is consistent regarding 𝑺 if it is consistent
for all tuples (𝑎, 𝑐) ∈ Φ𝐴−𝐶 .
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Definition 38 (Consistency with respect to multi-valued synchronization
blocks). In case 𝑺 is a multi-valued synchronization block in the last defini-
tion, we say that the states (𝜔𝐿, 𝜔𝑅) are consistent for the tuple (𝑎, 𝑐) with
respect to 𝑺 if the following conditions hold:

• 𝑓 ↗ (𝑎,𝜔𝐿) and 𝑔↗ (𝑐, 𝜔𝑅) have the same length and

• for each index 𝑖 for 𝑓 ↗ (𝑎,𝜔𝐿), we have that
(𝑓 ↗ (𝑎,𝜔𝐿)𝑖 , 𝑔↗ (𝑐, 𝜔𝑅)𝑖 ) ∈ Φ𝐵−𝐷 .

Example 29. With respect to the synchronization block from Figure 6.7,
two states 𝜔𝐿 and 𝜔𝑅 are consistent if for each pair (𝑓 , 𝑝) of a state machine
and a petri net, there is an isomorphism between the states of 𝑓 and the
places in 𝑝 , namely the isomorphism ΦState2Place restricted to the states of 𝑓 .

Definition 37 clearly can be used to check whether two models that should be
treated equally (meaning that they are treated as isomorphic) but the more
interesting use case of synchronization blocks is to repair inconsistencies.
This is captured in the following propositions.

Definition 39. Let 𝑺 = (𝐴, 𝐵,𝐶, 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) be a single-valued syn-
chronization block. The right repair operator R𝑅 : 𝐴 ×𝐶 × Ω𝐿 × Ω𝑅 → Ω𝑅

for 𝑺 is defined as

R𝑅 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅) := 𝜋Ω𝑅 (𝑔↘ (𝑐,Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))), 𝜔𝑅)).

In case 𝑺 is a multi-valued synchronization block, we exchange
Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))) with ¯Φ𝐵−𝐷 (𝜋𝐵 ∗ (𝑓 ↗ (𝑎,𝜔𝐿))) where

¯Φ𝐵−𝐷 : 𝐵∗ → 𝐷∗, (𝑏1; . . . ;𝑏𝑛) ↦→ (Φ𝐵−𝐷 (𝑏1); . . . ;Φ𝐵−𝐷 (𝑏𝑛)) .

This means, we convert the items in the collection separately through the
isomorphism.

Definition 40. Let 𝑺 = (𝐴, 𝐵,𝐶, 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) be a single-valued syn-
chronization block. The left repair operator R𝐿 : 𝐴 ×𝐶 × Ω𝐿 × Ω𝑅 → Ω𝐿 is
defined as

R𝐿 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅) := 𝜋Ω𝐿 (𝑓 ↘ (𝑎,Φ−1𝐵−𝐷 (𝜋𝐷 (𝑔↗ (𝑐, 𝜔𝑅))), 𝜔𝐿)).
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In case 𝑺 is a multi-valued synchronization block, we exchange
Φ−𝐵−𝐷1(𝜋𝐷 (𝑔↗ (𝑐, 𝜔𝑅))) with ¯Φ−𝐵−𝐷1(𝜋𝐷 ∗ (𝑔↗ (𝑐, 𝜔𝑅))) with the closure
of the isomorphism defined as above.

Proposition 26. Let 𝑺 = (𝐴, 𝐵,𝐶, 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) be a synchronization
block and 𝜔𝐿 ∈ Ω𝐿, 𝜔𝑅 ∈ Ω𝑅 be states such that the tuple (𝜔𝐿, 𝜔𝑅) is not
consistent for a tuple (𝑎, 𝑐) ∈ Φ𝐴−𝐶 with respect to 𝑺 . Then, the operator R𝑅
can repair this inconsistency. This means, the tuple (𝜔𝐿,R𝑅 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅)) is
consistent for (𝑎, 𝑐) with respect to 𝑺 .

Proof. Assume that 𝑺 is single-valued. We need to check that

𝜋𝐷 (𝑔↗ (𝑐,R𝑅 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅))) = Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))) .

To see this, we have that

𝑔↗(𝑐,R𝑅 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅))

= 𝑔↗ (𝑐, 𝜋Ω𝑅 (𝑔↘ (𝑐,Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))), 𝜔𝑅)))

= 𝑔↗ (𝑔↘ (𝑐,Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))), 𝜔𝑅))

= (Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))), 𝜔̃) for some 𝜔̃ ∈ Ω𝑅 .

The 𝜔̃ is precisely the result from the repair operator R𝑅 and hence the result
of the Put operation of 𝑔.

Here, we used that 𝑔 is persistent and we therefore know that 𝜋𝐶 (𝑔 ↘
(𝑐, . . .)) = 𝑐 . The rest follows from the PutGet for 𝑔. The projection of the
resulting tuple is exactly what is requested. The proof for the multi-valued
case is exactly equivalent.

Remark 26. It may be possible that there is not yet a corresponding element
for 𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿)) while resolving Φ𝐵−𝐷 . In that case, the engine may de-
cide whether or not to extend the isomorphismΦ𝐵−𝐷 dynamically by creating
an entry for the tuple (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿)), 𝜋𝐷 (𝑔↗ (𝑐, 𝜔𝑅))). Whether or not
this is intended is usually application-specific. In our implementation, we
deny creating such a trace entry if either of the elements is a null-reference.
Otherwise, a new model element is created. However, this behavior can be
easily overridden. In case of collections, the reconstruction of Φ𝐵−𝐷 is done
element-wise.
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Example 30. To give an example to the last remark, consider again the
synchronization block from Figure 6.7 that synchronizes the states of a state
machine with the places of a Petri net. Consider that we start to synchronize
two consistent models but the isomorphism Φ𝑆𝑡𝑎𝑡𝑒2𝑃𝑙𝑎𝑐𝑒 is not yet populated,
for example because the synchronization is run in an offline scenario. In
that case, the engine has two options: It could either create entirely new
places and discard the existing ones or it could try to reuse the existing
places. Because creating new model elements may lead to information loss,
our implementation always tries to reuse existing model elements. To match
the states to the existing places, we request the developer to specify when a
new trace entry should be created. Therefore, we may specify that creating
such a new correspondence tuple is permitted if the names of the state and
place match (cf. Section 6.3.2).

Proposition 27. Let 𝑺 = (𝐴, 𝐵,𝐶, 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) be a synchronization
block and 𝜔𝐿 ∈ Ω𝐿, 𝜔𝑅 ∈ Ω𝑅 be states such that the tuple (𝜔𝐿, 𝜔𝑅) is not
consistent for a tuple (𝑎, 𝑐) ∈ Φ𝐴−𝐶 with respect to 𝑺 . Then, the operator R𝐿
can repair this inconsistency. This means, the tuple (R𝐿 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅), 𝜔𝑅) is
consistent for (𝑎, 𝑐) with respect to 𝑺 .

Proof. The proof is exactly symmetric to the proof of Proposition 26 as
synchronization blocks are entirely symmetric.

Proposition 28. The right repair operator R𝑅 is hippocratic in the sense
that if the states (𝜔𝐿, 𝜔𝑅) are consistent for the tuple (𝑎, 𝑐) ∈ Φ𝐴−𝐶 (with
respect to 𝑺), then R𝑅 (𝑎, 𝑐, 𝜔𝐿, 𝜔𝑅) = 𝜔𝑅 .

Proof. Again, we proof this proposition only for single-valued synchroniza-
tion blocks as the proof for multi-valued synchronization blocks is equivalent.
We have that

Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))) = 𝜋𝐷 (𝑔↗ (𝑐, 𝜔𝑅)).

Therefore,

𝑔↘(𝑐,Φ𝐵−𝐷 (𝜋𝐵 (𝑓 ↗ (𝑎,𝜔𝐿))), 𝜔𝑅)

= 𝑔↘ (𝑐, 𝜋𝐷 (𝑔↗ (𝑐, 𝜔𝑅)), 𝜔𝑅)

= 𝑔↘ (𝑐, 𝑔↗ (𝑐, 𝜔𝑅)) = (𝑐, 𝜔𝑅) .
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This is because 𝑔↗ is side-effect free and therefore always returns the same
state it was executed with – in this case 𝜔𝑅 . The last line is a consequence of
GetPut. The projection of the resulting tuple is 𝜔𝑅 as requested.

Proposition 29. The left repair operator R𝐿 is also hippocratic.

Proof. The proof is once again exactly symmetric to the proof for R𝑅 .

Remark 27. If one of the input model changes, reflected by a state change,
then all synchronization blocks must be revisited to check whether the states
of the input models are still consistent with respect to this synchronization
block. Depending on the size of the base isomorphism but also the complexity
of the involved lenses, this can be very time-consuming (which is not reflected
in the formalization). Therefore, we use the incrementalization to accelerate
this process.

In particular, the synchronization engine may keep an incrementalization

𝑖 = I(𝑓 ↗)(𝜂𝐴 (𝑎)).

In this case, calling 𝑓 ↗ (𝑎,𝜔) is replaced by 𝑣𝑎𝑙𝑢𝑒 (𝑖, 𝜔) which yields the
same result due to Theorem 1. In case the model state 𝜔 ∈ Ω𝐿 is updated,
the system may use the 𝑎𝑝𝑝𝑙𝑦 transformation to apply the model change
sequence Δ𝜔 ∈ ΔΩ𝐿 that lead to the new state directly to the incremental
value of the lens.

We observed that it sometimes comes in very practical to be able to also
have synchronization blocks that only allow to repair inconsistencies in one
direction. This may be because one of the models contains not invertible
analysis results from the other model, the transformation should be only uni-
directional or such a one-way synchronization block accounts for a flaw in
some other synchronization block where the lens does not respect the PutGet
law in some cases48. After all, the design-aim of one-way synchronization
blocks is to give the developer a choice what information he would like to
have synchronized and which information should not be synchronized. In

48 This may be acceptable because the – let us call such a thing for the moment a semi-lens –
can be specified much more generic in this way. An example of such a construct is given in
Section 6.4

147



6. Incremental Model Transformations

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

(a) from left to right

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

(b) from right to left

Figure 6.8.: Schematic overview of unidirectional synchronization blocks

the latter case, the synchronization engine may still be used to detect any
inconsistencies. This is the subject of the next two definitions:

Definition 41 (One-way synchronization block). A one-way synchroniza-
tion block 𝑺 is an octuple (𝐴,𝐵,𝐶 , 𝐷 ,Φ𝐴−𝐶 ,Φ𝐵−𝐷 ,𝑓 ,𝑔) like a regular synchro-
nization block with either of the following exceptions:

• 𝑓 is not a lens, but a regular morphism 𝑓 : 𝐴→ 𝐵 (single-valued) or
𝑓 : 𝐴→ 𝐵∗ (multi-valued). In this case, we call the one-way
synchronization block a Left-to-Right synchronization block.

• 𝑔 is not a lens, but a regular morphism 𝑔 : 𝐶 → 𝐷 (single-valued) or
𝑔 : 𝐶 → 𝐷∗ (multi-valued). In this case, we call the one-way
synchronization block a Right-to-Left synchronization block.

The consistency for one-way synchronization blocks is the same as for regular
synchronization blocks except that the missing lens’ Get has to be replaced
by the respective regular morphism.

A diagrammatic overview of unidirectional synchronization blocks is de-
picted in Figure 6.8.

Remark 28. The advantage of a one-way synchronization block is that the
choice of the function is more liberal and the transformation developer may
also chose non-invertible functions.

Proposition 30. The consistency repair operator R𝑅 is also applicable for
Left-to-Right synchronization blocks and in that case is also hippocratic.

Likewise, the consistency repair operator R𝐿 is also applicable for Right-to-
Left synchronization blocks and in this case, is also hippocratic.
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Proof. The proof is equivalent to the case of regular synchronization blocks
where we again exchange the Get operation of the missing lens by the
regular morphism.

6.2.3. Composition of Synchronization Blocks

A synchronization block is made to define how an isomorphism should
be populated based on the knowledge of another one. In the implemen-
tation, these isomorphisms are usually synchronization rules so that the
synchronization block in Figure 6.7 specifies how to build up the isomor-
phism StateToPlace from the isomorphism AutomataToNet. This stacking
process is the subject of the next definition:

Definition 42 (Model Synchronization). A model synchronization is a set
of synchronization blocks 𝑆 with an entry isomorphism 𝑠 such that for each
𝑺 ∈ 𝑆 , we have that either 𝑺𝑠 = 𝑠 or there is another synchronization block
˜𝑺 ∈ 𝑆 such that 𝑺𝑠 = ˜𝑺𝑡 .

Remark 29. The synchronization blocks of a model synchronization can be
regarded as a graph where the nodes are the isomorphisms and the edges
are the synchronization blocks. A synchronization block 𝑺 then points from
𝑺𝑠 to 𝑺𝑡 . This graph may be an arbitrary directed graph. It is not required to
be free of circles. Rather, circles are required to handle composite structures
such as expressions.

The start isomorphism 𝑠 of a model synchronization determines the signature
of the model synchronization, i.e. what model elements it can synchronize.
Usually, this isomorphism is defined between the root model class of the Left
Hand Side (LHS) and the root model class of the Right Hand Side (RHS).

Definition 43. Because the synchronization blocks having a given isomor-
phism Φ as their base isomorphism describe validity constraints for tuples
in this isomorphism, we associate them with Φ and refer to them as the
synchronization blocks of Φ.

In particular, within a model synchronization (𝑆, 𝑠), we have that

𝑏𝑙𝑜𝑐𝑘𝑠𝑆 (Φ) := {𝑺 |𝑺𝑠 = Φ}.
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Remark 30. In practice, the isomorphisms are created and dedicated for a
given model synchronization scenario. Therefore, we omit the subscript in
the last definition.

Definition 44. Let (𝑆, 𝑠) be a model synchronization, 𝑺 ∈ 𝑆 a single-valued
synchronization block with source isomorphism 𝑺𝑠 : 𝐴 → 𝐶 and target
isomorphism 𝑺𝑡 : 𝐵 → 𝐷 . We call a tuple of states (𝜔𝐿, 𝜔𝑅) ∈ Ω𝐿 × Ω𝑅 fully
consistent for a tuple (𝑎, 𝑐) ∈ 𝑺𝑠 with respect to 𝑺 in 𝑆 , if

• the states are consistent for the tuple (𝑎, 𝑐) with respect to 𝑺 and

• the states are fully consistent for the tuple (𝑓 ↗ (𝑎,𝜔𝐿), 𝑔↗ (𝑐, 𝜔𝑅))

with respect to all synchronization blocks of 𝑺𝑡 in 𝑆 .

If 𝑺 is a multi-valued synchronization block, then the states have to be fully
consistent for all tuples spanned by 𝑓 ↗ (𝑎,𝜔𝐿) and 𝑔 ↗ (𝑐, 𝜔𝑅) with
respect to all synchronization blocks of 𝑺 in 𝑆 .

Definition 45. Let (𝑆, 𝑠) be a model synchronization. We call a tuple of
states (𝜔𝐿, 𝜔𝑅) ∈ Ω𝐿 × Ω𝑅 consistent for a tuple (𝑎, 𝑐) ∈ 𝑠 with respect to
(𝑆, 𝑠) if the states are fully consistent for the input tuple with respect to all
synchronization blocks in 𝑠 within 𝑆 .

Remark 31. Like for synchronization blocks, one would like to obtain generic
consistency repair operators R̃𝑅 and R̃𝐿 that are able to repair any possible
inconsistency. Such a repair operator could be obtained by repeatedly exe-
cuting R𝑅 or respectively R𝐿 for all inconsistencies that arise. However, we
have no guarantee that repairing one consistency does not open a new one.

Remark 32. To repair an inconsistency, the synchronization blocks only
change the respective model through Put operations. This means that in
case of heterogeneous models, any information not contained in the other
model simply is ignored, meaning that it is not propagated to the other model
but left intact.

Example 31. Consider a metamodel with just a single class 𝐴 that has an
integer-valued property called 𝑖 which we extend to a lens (cf. Example 23).
We look at synchronizing two copies of this metamodel with the following
two synchronization blocks:
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𝐴 𝐴 𝐴 𝐴

int int int int

Φ𝐴−𝐴

𝑖 𝑖

𝐼𝑑int

Φ𝐴−𝐴

𝑖 + 1 𝑖

𝐼𝑑int

It is clear that no state tuple can be consistent for any pair of instances of
𝐴 because the 𝑖 property of both copies must be the same and different at
the same time which is not possible. If we go ahead and start repairing
inconsistencies, then each repair will create a new inconsistency, which is
why the synchronization does not terminate.

Proposition 31. If the model synchronization terminates to apply R𝑅 and
R𝐿 , it returns a new consistent state.

Proof. This proposition is an immediate consequence from the fact that the
non-existence of further inconsistencies is used as the termination criterion.

Proposition 32. The model synchronization is hippocratic, i.e. if applied to
consistent changes, the model synchronization does not change the states.

Proof. This proposition is an immediate consequence from the fact that the
repair operator(s) for the individual synchronization blocks is hippocratic.

Remark 33. As the last example shows, repairing the inconsistencies between
two states may not be terminating. To find a suitable theory to proof termina-
tion is subject of future work. To us, it is unclear whether such a theory may
even exist, in particular, whether or not the construct of synchronizations as
presented in this paper is Turing-complete.

Nevertheless, we have a formal tool that is able to repair inconsistencies one
by one. If only finitely many new inconsistencies arise from fixing existing
ones and the synchronization only consists of regular (two-way) synchro-
nization blocks, then any inconsistency can be repaired automatically.
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Problems as in Example 31 can be avoided if the properties used in synchro-
nization blocks are mutually exclusive. In that case, it is unlikely that the
repairing an inconsistency just produces another inconsistencies.

Furthermore, in an implementation, one can easily detect situations as pre-
cisely in Example 31 by detecting whether the executing the Put operation
is reentrant, i.e. whether changing a value in the leads to a consequence to
change that same value again.

Remark 34. Propositions 31 and 32 are independent of the order in which
inconsistencies are resolved. In practice, this order may be important. This is
because very often, isomorphisms are defined based on other isomorphisms,
such as for example Listing 6.6 in Section 6.4. Our implementation uses the
literal order in the transformation specification. The fact that the correctness
of the synchronization process is independent of this order also means that
the transformation developer can play with it to make sure that all elements
are available when the synchronization is executed.

6.3. Implementation in an Internal DSL

In this section, we present our approach for implementing model synchro-
nization through synchronization blocks in an internal DSL. For this, we first
describe how the primitives that are used in synchronization blocks, lenses,
morphisms and isomorphisms are represented in the language before we
describe the synchronization modes and how the model synchronization is
executed.

6.3.1. Lenses and Morphisms

To support multiple transformation modes, we need to operate on incremen-
talizable lenses. However, most general-purpose programming languages
only provide predefined operators or simple method calls, combined in com-
piled code – an artifact which is usually very hard to analyze. To solve
this problem, we operate on a model of the code. This could be created for
example by a fluent syntax [66].
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In our implementation, we use a feature of our host language C# to retrieve
this model of the code even simpler. C# allows us to obtain the abstract syntax
tree (called expression tree) from an expression instead of compiled code (cf.
Section 2.3). This means that the transformation developer writes regular
C# code but the compiler does not compile this code down to intermediate
language. Instead, the compiler generates code to create a model of the
abstract syntax tree. Fowler calls this construction principle of an internal
DSL Parse Tree Manipulation [67, p. 455].

The rationale behind this decision is that 1. the language adoption problem is
mitigated because the transformation developer writes regular C# code, 2. the
understandability is improved because the code does not contain syntactic
boilerplate and 3. the tool support is maintained: The compiler still checks
the correct types and the editor offers support such as code completion or
navigation.

This ability to step into the compilation process is the one and only syntax
feature that we use from C# that makes our language in this form impossible
to implement in many other languages (apart from Visual Basic). However,
we believe that other languages such as Java or in particular Xtend will
soon adapt this feature as well, making our approach applicable to other
languages.

For operators built into the host language, we implement default Put opera-
tors if they can be considered as lenses. For example, consider the expression
𝑥 + 𝑐 for some incremental values 𝑥 and 𝑐 . Through the incrementalization
system, we know that whenever 𝑥 changes its value, also the value of the
sum may change. For the lens, the expression resembles the Get function.
The lens allows us to assign a value, say 42 to the sum given that the ref-
erence 𝑐 is constant (cf. Example 23). This is applied by setting 𝑥 = 42 − 𝑐 ,
the Put function of the respective lens. The lens is represented by its Get
function which we expect to be decorated with a Put function reference. In
our implementation, this reference is realized through an annotation.

Other operators such as value equality cannot be reverted in general. It is
unclear how to set an expression 𝑥 == 𝑐 to false, in particular, what value
to assign to 𝑥 . This can be solved by additional parameters that are only
taken into account when reversing the operation such as a method Equal-
sOrDefault providing the missing information with a third parameter.
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To reconstruct the lens from a method call, we decorate each allowed method
with an information how this method can be inverted – the developer may
annotate the respective Put operation. Since this decoration is publicly
accessible, this even allows developers of our approach to extend the API
that can be used to specify a model synchronization.

For an example, consider the FirstOrDefault function that has been considered
previously in Section 6.2.1. Ideally, one would like to define this function in
a generic way such that for each type 𝐴, FirstOrDefault𝐴 : 𝐴∗ → 𝐴. To make
this a lens, the developer has to specify a Put method FirstOrDefault𝐴 ↘:
𝐴 ∗ ×𝐴 → 𝐴∗. Alternatively, we also allow the developer to specify an
operation FirstOrDefault𝐴 ↘

′: 𝐴 ∗ ×𝐴 → ⊥ to specify that the lens is
persistent.

This method is specified using a type (or type template) and a method name.
The problem here is that the method may be generic but method annotations
must not be generic. However, if the Get method is generic, the Put method
must also be generic with the same type arguments. Therefore, the imple-
mentation collects generic type arguments in the Get method and applies
them automatically also to the selected method. The system also checks the
selected method that shall be used as Put operation for type conformance.

In the .NET platform, for a given type𝐴, the Kleene closure is represented by
the array type 𝐴[], as long as indices of the array are not changed directly.
The Put annotation is called LensPut in NMF. This annotation has to be
put on a given method to specify its corresponding Put operation. In the
example, the Put operation of FirstOrDefault is PutFirst. Therefore, an
implementation for a FirstOrDefault lens for arrays is the one depicted in
Listing 6.1.

When the framework is asked to build a lens of a given expression, it uses
the abstract syntax tree of that expression and tries to apply Proposition 24
repeatedly to it. Our implementation currently does not enforce yet that
𝑔 from this proposition is indeed stateless, but this is currently left to the
transformation developer. However, it is usually not a problem because
most synchronization blocks that we have come across so far either are very
simple, most of them only consist of a single property access.

The ability to extend the language with custom lenses gives the transforma-
tion developer the possibility to extend the capabilities of the synchronization
language whenever necessary.
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1 static class Helpers

2 {

3 [LensPut(typeof(Helpers), "PutFirst")]

4 public static T FirstOrDefault<T>(this T[] array)

5 {

6 return array != null && array.Length > 0 ? array[0] : default(T);

7 }

8
9 public static T[] PutFirst<T>(this T[] array, T element)

10 {

11 if (array != null && array.Length > 0) {

12 array[0] = element;

13 return array;

14 } else if (EqualityComparer<T>.Default.Equals(element, default(T))) {

15 return array;

16 } else { return new T[] { element }; }

17 }

18 }

Listing 6.1: Implementation of a FirstOrDefault lens for arrays

If the lens is to be used also in an incremental setting, we also require to
specify a function I(FirstOrDefault) : I(𝐴∗) → I(𝐴), though the imple-
mentation is actually able to lift a function FirstOrDefault′ : 𝐴∗ → I(𝐴) by
reevaluating the latter when the input changes. Similar to the Put operation,
we annotate this manual incrementalization using an annotation Observ-
ableProxy. If this function is not provided, then the system automatically
assumes that the function only changes when the input reference changes.

In the case of the FirstOrDefault function, such an annotation is not required
because the length of an array is fixed. If the collection type was mutable,
then such a proxy method must be available. As an example, Listing 6.2
contains the same lens for generic lists. For the incremental evaluation,
we simply reuse the incrementalization system of NMF through the class
ObservingFunc.

6.3.2. Isomorphisms

To represent isomorphisms, we distinguish between two cases: Identities and
isomorphisms between model classes. The case of an identity isomorphism
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1 static class Helpers

2 {

3 private static ObservingFunc<IList<T>, T> firstOrDefaultFunc =

4 ObservingFunc<IList<T>,T>.FromExpression(list =>

5 list != null && list.Count > 0 ? list[0] : default(T));

6
7 [LensPut(typeof(Helpers), "PutFirst")]

8 [ObservableProxy(typeof(Helpers), "FirstOrDefault")]

9 T FirstOrDefault<T>(this IList<T> list) {

10 return firstOrDefaultFunc.Evaluate(list);

11 }

12 INotifyValue<T> FirstOrDefault<T>(this INotifyValue<IList<T>> list) {

13 return firstOrDefaultFunc.Observe(list);

14 }

15 T[] PutFirst<T>(this IList<T> list, T element) {

16 ...

17 }

18 }

Listing 6.2: Implementation of a FirstOrDefault lens for lists

is easy since the model synchronization engine does not have to do anything
as the identity of an object is easy to compute.

In the latter case, we realize the isomorphism using two unidirectional NTL
transformation rules Φ← and Φ→, one for transforming the models in each
direction. Thus, the relationship (𝑎, 𝑐) ∈ Φ is manifested in two trace entries
(𝑎, 𝑐) ∈ Φ← and (𝑐, 𝑎) ∈ Φ→. This of course implies a 1:1 relationship
between synchronized elements, but the transformation developer is free to
define arbitrarily many other isomorphisms for the same element(s)49.

The implementation of synchronization blocks as NTL transformation rules
also has another advantage: As we expose the underlying transformation
rules, dependencies may be added to them which may result in executing a
model transformation each time a new correspondence is set. This behavior
is used for example in the TTC 2015 Java Refactoring case (cf. Section 9.7).

In case custom lenses do not suffice for a given task, we allow opaque syn-
chronization blocks where we give the transformation developer full control.

49 We do not support dynamic creation of isomorphisms, the isomorphisms must be given at
compile time.

156



6.3. Implementation in an Internal DSL

In this case, the transformation developer may hook in arbitrary C# code but
has to manage all the operation modes and change propagation modes by
himself.

Based on the experience we collected with the syntax of the non-incremental,
unidirectional transformation language NTL [100, 101], we decided to apply
a similar strategy and represent synchronization rules as generic classes.
However, the body of such a synchronization rule consists of synchronization
blocks rather than compiled code. We therefore use a dedicated method to
create these synchronization blocks through method calls.

Synchronization rules may also serve as containers for helper methods,
should they be necessary for the definition of a synchronization block. The
concrete syntax is presented for our motivational example in Section 6.4.

As a further consequence, we also inherit the modularization techniques as
discussed in earlier work [106, 101]. We can therefore offer the transformation
developer advanced modularization techniques, such as version conflict
detection, integrity checking, creating model synchronization libraries and
model synchronization rule templates.

6.3.3. Synchronization Modes

As an advantage of the declarative specification of synchronization blocks,
they are not tied to specific operation modes and therefore can be reused
in many scenarios. We have seen that we always have a choice whether
to fix inconsistencies at the left or right side of the synchronization blocks.
Furthermore, in some scenarios, it may be desirable to allow certain inconsis-
tencies. We refer to the strategies of selecting the appropriate repair operator
as synchronization modes and discuss them in the following.

We support six different synchronization modes that can be combined with
three different change propagation modes where we adapted the terminology
from Triple Graph Grammars and refer to type systems C𝐿 as the LHS and
similarly C𝑅 as the RHS. The synchronization modes are as follows:

LeftToRight: the transformation ensures that all model elements on the LHS
have some corresponding model elements on the RHS. However, the
RHS may contain model elements that have no correspondence on
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the LHS. This means, we apply R𝑅 as long as we find inconsistencies
but do not propagate null-values.

LeftToRightForced: the transformation ensures that all model elements on
the LHS have some corresponding model elements in the RHS. All
elements in the RHS that have no corresponding elements in the LHS
are deleted. In this mode, we apply R𝑅 as long as possible and also
propagate null-values.

LeftWins: the transformation ensures that all model elements on the LHS
have some corresponding model elements in the RHS and vice versa.
Synchronization conflicts are resolved by taking the version at the
LHS. This means, we applyR𝑅 as long as possible but do not propagate
null-values. Instead, these inconsistencies are resolved using R𝐿 .

RightToLeft, RightToLeftForced, RightWins: same as the above but with in-
terchanged roles of RHS and LHS

The change propagation modes are the following:

None: no change propagation is performed. In this case, also no dynamic
dependency graphs for any expressions are created as they are not
necessary.

OneWay: change propagation is only performed in the main synchronization
direction, i.e. LHS to RHS for the first three synchronization modes
and RHS to LHS otherwise.

TwoWay: change propagation is performed in both directions, i.e. any
changes on either side will result in appropriate changes in the other
side.

Usage examples in the TTC 2015 Java Refactpring case [94] (cf. Section 9.7)
have shown that there are some cases where also the remaining operation
mode to propagate updates from the target side of the synchronization back
to the origin model are useful in some application scenarios but we decided
not to support this operation mode in our implementation as we believe that
these are rare corner-cases. Conceptually, there is no limitation.

Furthermore, there may be even more operation modes such as a check-only
mode that only tests whether the selected constraints hold, but would not
enforce these constraints.
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The applicable synchronization direction and change propagation mode is
specific to a synchronization run and is provided together with the input
arguments, i.e. LHS and RHS initial models. At this initialization, we generate
code to minimize the performance impact when no change propagation
should be performed, i.e. the synchronization should run with a performance
comparable to a transformation without change propagation as e.g. pure
NMF Transformations.

6.3.4. Execution

In this section, we explain the bidirectionality a synchronization engine
implementation can support based on the concept of synchronization blocks.
Throughout this section, we will use the synchronization block from Figure
6.7 from page 143 as example.

For example, assume that the synchronization block from Figure 6.7 was
the only synchronization block in our model synchronization and the syn-
chronization engine was asked to execute this synchronization for a given
finite state machine and Petri net model. The engine finds the synchroniza-
tion rule to start with based on the synchronization rule types, in this case
ΦAutomataToNet and executes this rule (and therefore all of its synchronization
blocks) for the given direction.

When executing the synchronization block from Figure 6.7, the synchro-
nization engine uses the Get operation to obtain the states of the finite
state machines and the places of the Petri net. Then, it tries to find a corre-
sponding place for each state of the finite state machine, thereby executing
the synchronization rule ΦStateToPlace. Synchronization rules are required to
determine whether elements of LHS and RHS should correspond. For the
synchronization rule ΦStateToPlace, a reasonable definition is that a state and a
place should correspond when their names match. Once the correspondence
has been established, it is saved in the trace. Because a subsequent query
for the corresponding element of a given LHS element (or RHS element, re-
spectively) results in a trace access, this guarantees that the correspondence
relation stays bijective.

The result of this matching are three sets: a set𝑀↔ of tuples of states and
places that correspond according to the ΦStateToPlace isomorphism, a set𝑀→∅
of states with no corresponding place and similarly a set𝑀∅← of places with
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no corresponding state. In all direction modes, the set𝑀↔ is traversed and
the synchronization engine makes sure that each synchronization block for
the dependent synchronization rule is executed for each pair.

The fact that trace entries in NTL are keyed not only by their source elements
but also by their transformation rules means that a model element on the
LHS may easily mapped to multiple elements of the RHS (or vice versa) by
just specifying multiple synchronization rules for that element.

For the contents of the two sets 𝑀→∅ and 𝑀∅←, the next step depends on
the synchronization direction:

LeftToRight : In this direction, the set 𝑀∅← is ignored. The engine only
traverses the set𝑀→∅ and creates a new element in the RHS, in the ex-
ample a place, and establishes a correspondence, including to execute
the synchronization blocks of the dependent synchronization rule.
The newly created element is then added to the Petri net using the Put
operation of the RHS lens .𝑃𝑙𝑎𝑐𝑒𝑠 . Since this is a collection-valued
lens, this results in adding the element to the collection.

LeftToRightForced : In this direction, the RHS must look exactly like the
LHS, up to isomorphism. Therefore, additionally to the processing of
𝑀→∅ as in the LeftToRight direction, the engine removes elements in
𝑀∅←, again using the collection interface of .𝑃𝑙𝑎𝑐𝑒𝑠 .

LeftWins : In this direction, the set𝑀∅← is similarly to the set𝑀→∅ as the
synchronization engine creates new states, establishes a correspon-
dence and adds the newly created states to the state machine using
the Put operation of the .𝑆𝑡𝑎𝑡𝑒𝑠 lens which again means to add the
state to the collection. The direction LeftWins is therefore almost
symmetric as the sets 𝑀∅← and 𝑀→∅ are treated equally. The only
difference is in case of conflicts, e.g. when the lenses are single-valued.
This is very often the case for attributes such as an elements name.
Here, setting a new name also means to delete the old one and there-
fore, the synchronization engine must only apply at most one of the
lenses. Here, the direction LeftWins specifies that in such a scenario,
the engine should always apply the LHS to the RHS.

The directions RightToLeft, RightToLeftForced and RightWins are equivalent
except for exchanged roles of LHS and RHS.
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To process the sets, the synchronization engine makes sure that there is a
corresponding element in the trace, if necessary by executing the forward or
backward rule of the respective synchronization rule. Executing this NTL
rule, the synchronization engine essentially executes all synchronization
blocks of that rule. The precise way of how the synchronization rules are
executed is determined by the change propagation mode.

The easiest case for change propagation is of course disabled change propaga-
tion (None) since in this case, the synchronization does not have to perform
any lifting. This means, the transformation can simply use the lense 𝑓 to
obtain the affected source elements and uses 𝑔 to store them in the target
model. Afterwards, it may forget about the synchronization block as it has
been processed.

If the change propagation is set to OneWay, the synchronization engine must
react on changes causing the selecting lense 𝑓 to have a different result.
Therefore, it applies the incrementalization system I which for a given
source element 𝑎 ∈ 𝐴 yields an incremental value for the result I(𝑓 ) (𝜂 (𝑎)).
The engine can then use the value of this element and proceed as if there
was no change propagation switched on. However, the incremental value is
stored and event handlers are registered for the event that it changes its value.
In that case, these changes are transmitted to the RHS with a dedicated flag
that the change must be processed regardless of the original synchronization
direction. Both initially and in case of change notifications, the target value
is stored using the Put method of 𝑔.

Formally, if we have again the situation of Figure 6.6 and 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 such
that (𝑎, 𝑐) ∈ Φ𝐴−𝐶 and the system is in state 𝜔 ∈ Ω. If change propagation
is enabled for the direction LHS to RHS in the current configuration, we
actually store a reference to the incrementalized getter 𝑓 . We refer to this
variable as 𝑓 := I(𝑓 ↗)(𝜂 (𝑎,𝜔)).

Now, consider that some global state change Δ𝜔 ∈ ΔΩ occurs. The first step
to perform is to check whether this state change actually has any effect on
the synchronization block, i.e. whether

𝑣𝑎𝑙𝑢𝑒 (𝑓 ) ≠ 𝑣𝑎𝑙𝑢𝑒 (𝑎𝑝𝑝𝑙𝑦 (𝑓 ,Δ𝜔)) .

In the implementation, this check is implemented by an event raised by 𝑓 if
a state change happened that changes the current value. Should that be the
case, 𝑓 is assigned the new value 𝑎𝑝𝑝𝑙𝑦 (𝑓 ,Δ𝜔) which in the implementation
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can be neglected since the objects realizing I(𝑓 ↗) are mutable and adjust
their state automatically. Afterwards, the change is propagated by R𝑅 as in
the non-incremental case.

Compared to a repeated execution of the same model synchronization with-
out change propagation or alternatively, a repeated execution of an unidi-
rectional regular model transformation, the activated change propagation
may lead to speedups. The speedup, however, depends on the used lenses,
their performance characteristics and also the change sequences in which
the models are changed. As we are striving for an extensible approach where
developers can simply implement a lens, if they feel that the language misses
one, a speedup can, however, not be guaranteed. Rather, the incrementaliza-
tion is best effort.

The change propagation mode TwoWay works very similar, except that for
both sides, the refined incrementalization functor I is applied and the 𝑠𝑡𝑜𝑟𝑒
transformation is used as a replacement of the Put operation. The synchro-
nization engine registers for change notifications on both incremental values
and enforces the changes with direction LeftToRightForced or RightToLeft-
Forced, respectively.

6.3.5. Inheritance and Superimposition

In practice, many metamodels use inheritance to avoid duplication of con-
cepts in the metamodel. This poses a challenge for model synchronization
because isomorphisms between more abstract concepts often are required to
be broken down to isomorphisms that are more specific, i.e., have a smaller
domain. Based on the more specific isomorphisms, more synchronization
blocks may apply.

In our running example, consider the case that we added a composite struc-
ture both to finite state machines and Petri Nets. This means, states may
either be simple states or composite states and likewise, places may either
be simple places or composite places50. Clearly, we would like to keep syn-
chronizing states of a state machine with the places of a Petri net, but in
case the state is a composite state, a composite place shall be created and

50 If this concept was added in only one of the metamodels, the information simply would not
be propagated but no additional synchronization would be required.
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the inner state machine should be synchronized with the inner Petri net of
that composite place. However, one would still like to continue using the
abstract isomorphism between states and places, but be able to refine this
isomorphism in case of more specific elements.

In the implementation, we use a concept we call synchronization rule in-
stantiation, very similar to the transformation rule instantiation concept
used in NTL [92, 106]. Thus, whenever the synchronization engine is asked
to create a new element for a given synchronization rule, it looks out for
instantiations of that synchronization rule to create the element, because the
target concept may also be different according to the true type of the source
element. In case of the example above, a composite place should be created
if the source model element was a composite state. Such a rule instantiation
may be mandatory in case the targeted class is abstract.

To implement synchronization rule instantiation, we simply reuse the rule
instantiation concept of the underlying NTL transformation rules. That is, if
a synchronization ruleΦconcrete is instantiating a synchronization ruleΦabstract,
then simply Φ←concrete instantiates Φ

←
𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

and Φ→concrete instantiates Φ
→
𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

.
Note that rule instantiation can be stacked, i.e., there may be another rule that
instantiates Φconcrete for more concrete classes. With this feature, also more
complex inheritance hierarchies can be supported. In TGGs, rule refinements
are an equivalent concept.

Furthermore, we also adopted the superimposition implementation of NTL,
which in turn is adopted from Atlas Transformation Language (ATL) [213].
That is, synchronization rules may be easily overridden in refined model
synchronizations, one may create a library of synchronization rules or create
synchronization rule templates51. In particular, the considerations on inher-
ited modularization concepts as described in previous work can be reused,
but it is yet unclear to which extend this is useful also for incremental and
bidirectional model synchronizations. However, a detailed analysis is out of
the scope for this thesis and subject to future work.

51 We have not yet used synchronization rule templates in practical use cases, yet. We suspect
that they are harder to create than transformation rule templates because there is fewer
support for abstract incrementalizable lenses than for regular abstract methods.
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6.4. Synchronization of Finite State Machines

and Petri Nets

In this section, we apply our concepts to the motivational example of syn-
chronizing finite state machines with Petri nets. In parallel, we also describe
how the proposed model synchronization would be specified in TGGs in
order to draw a comparison. Because there is a textual language available
that is easier to compare with and our impression is that it is the most actively
developed TGG tool, we have chosen eMoflon [8] as concrete language.
However, the results should be similar to any other TGG tool as well.

Like a model transformation in NMF Transformations that consists of
multiple transformation rules represented by public nested classes inherit-
ing from a TransformationRule base class, model synchronizations of NMF
Synchronizations consist of synchronization rules. These synchronization
rules implicitly define two transformation rules for NMF Transformations,
one for each direction. A minimal example for a model synchronization is
therefore depicted in Listing 6.3.

1 public class FSM2PN : ReflectiveSynchronization

2 {

3 public class AutomataToNet : SynchronizationRule<FiniteStateMachine,

PetriNet> {}

4 }

Listing 6.3:A model synchronization in NMF Synchronizations

This defines the isomorphism ΦAutomataToNet between finite state machines
and Petri nets but without any synchronization block. Synchronization rules
in NMF Synchronizations define the LHS and RHS model elements they
operate on through the generic type arguments of the SynchronizationRule
base class they need to inherit from. Details of the execution semantics such
as in particular synchronization blocks are specified by overriding certain
virtual methods.

In particular, unlike eMoflon, we do not require a correspondence declara-
tion. To declare the used metamodels, it suffices entirely that the compiler of
the host language knows the metaclass implementations. The latter may be
either in the same assembly or in a referenced assembly.
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1 public override void DeclareSynchronization()

2 {

3 SynchronizeMany(SyncRule<StateToPlace>(),

4 fsm => fsm.States, pn => pn.Places);

5 SynchronizeMany(SyncRule<TransitionToTransition>(),

6 fsm => fsm.Transitions, pn => pn.Transitions.Where(t => t.To.Count > 0));

7 SynchronizeMany(SyncRule<EndStateToTransition>(),

8 fsm => fsm.States.Where(state => state.IsEndState),

9 pn => pn.Transitions.Where(t => t.To.Count == 0));

10 Synchronize(fsm => fsm.Id, pn => pn.Id);

11 }

Listing 6.5: The DeclareSynchronization method of AutomataToNet

The most important method to override in the definition of a synchronization
rule is the method to determine when an element of the LHS should match an
element of the RHS. For the AutomataToNet-rule, we simply return true since
both RHS and LHS model elements are the root elements of their respective
models and should be unique.

1 public override bool ShouldCorrespond(FSM.State left, PN.Place right,

ISynchronizationContext context)

2 {

3 return left.Name == right.Id;

4 }

Listing 6.4:Definition that states and places should correspond based on their names

Other synchronization rules may have other strategies. For example, the
correspondence of the StateToPlace-rule is based on comparing the names
as depicted in Listing 6.4.

The second most important method to override is the DeclareSynchroniza-
tion method. Here, we define what synchronization blocks the synchroniza-
tion rule consists of. The DeclareSynchronization method of AutomataTo-
Net looks as depicted in Listing 6.5.

The specification of synchronization blocks follows the Object Scoping design
principle for internal DSLs [67, p.385]. The statements in Listing 6.5 create
synchronization blocks: Lines 3 and 4 create the synchronization block we
depicted earlier in Figure 6.7. When handling the synchronization of a finite
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state machine with a Petri Net, the synchronization engine should establish
correspondences between the states and the places using the StateToPlace
rule, synchronizing the states of the finite state machine with the places of a
Petri Net. This synchronization rule is straight forward, matches states and
places based on their names (cf. Listing 6.4) and synchronizes them after-
wards. For a given state of a state machine, the synchronization engine only
looks for corresponding places in the Places reference of the corresponding
Petri Net.

The advantage of synchronization blocks over eMoflon is here that the speci-
fication can bemuchmore concise. Consider for example the synchronization
block in Lines 3 and 4, also depicted in Figure 6.7. This synchronization block
is able to repair inconsistencies arising from adding or removing states from
a state machine. TGGs usually require an entire rule for such a specification
which is usually does not fit in a single line of code52. In eMoflon, this rule
consists of 36 lines. These savings are possible because a lot of declarations
have to be done explicit in a TGG rule, while they can be inferred in NMF
Synchronizations because of the synchronization rule a synchronization
block belongs to.

Please note that the lenses at the Petri Net side violate the PutGet law in
case a new transition has to be added because the count of the To collection
is not reversible. The Where-operator is currently implemented to silently
ignore this inconsistency and we oblige this to the transformation developer
to take care about such cases. This is fine for all the cases that we have come
across but if this should not match the transformation developers needs, he
can simply override this behavior by extending the respective lens. Because
it is usually only the Put operation that is problematic, the language also
has some overloads to provide a custom Put method.

Similarly, the transitions of the finite state machine should be matched with
the transitions of the Petri Net but only with those that have at least one
target place. Therefore, lines 5 and 6 of Listing 6.5 create the synchronization
block depicted in Figure 6.9. Note that although a synchronization block is
an octuple, only three elements must be specified by the developer. The base
synchronization rule and all of the types can be inferred. The developer only
specifies the target lens and the two selectors.

52 We ignored the linebreak in the Listing because editors usually allow 85 characters or more
in a single line
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FiniteStateMachine PetriNet

Transition∗ PN.Transition∗

ΦAutomataToNet

.Transitions
.Transitions

.Where(t => t.To.Count > 0)

ΦTransitionToTransition

Figure 6.9.: Synchronization of the transitions of a finite state machine with the transitions of a
Petri net

In particular, the synchronization block depicted in Figure 6.9 implies that if
a new transition is added to the Petri Net transitions or an existing transition
is assigned a first target place, then the synchronization engine will try to
match this transition to an existing finite state machine transition. If con-
versely, a transition is added to the finite state machine, the synchronization
engine will add the corresponding transition to the Petri Net, hoping that
it satisfies the condition that the count is greater than zero. To find the
corresponding transition on the respective other side, the ShouldCorrespond
method depicted in Listing 6.6 is used.

This method uses the trace abilities of NMF Transformations that is still
accessible in NMF Synchronizations, i.e. it accesses the corresponding
place for a given state in the transformation rule Φ→

StateToPlace
from LHS to RHS

and uses it to decide whether the transitions should match. This trace entry
exists regardless of the synchronization direction as the synchronization
engine always creates both trace entries.

In eMoflon, the synchronization blocks to synchronize the transitions of
a finite state machine as well as the synchronization blocks to synchronize
the start and end states of such a transition all can be expressed in a sin-
gle TGG rule, plus a second rule if self-transitions should be supported. In
terms of lines of code, however, these rule still have 57+51 lines whereas the
implementation in NMF Synchronizations requires 24 lines for the syn-
chronization rule plus one for the synchronization block in the ΦAutomataToNet

synchronization rule. However, the latter also propagates partial changes
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1 public class TransitionToTransition : SynchronizationRule<FSM.ITransition, PN

.ITransition>

2 {

3 public override bool ShouldCorrespond(FSM.Transition left, PN.Transition

right, ISynchronizationContext context)

4 {

5 var stateToPlace = SyncRule<StateToPlace>().LeftToRight;

6 return left.Input == right.Input

7 && right.From.Contains(context.Trace.ResolveIn(stateToPlace, left.

StartState))

8 && right.To.Contains(context.Trace.ResolveIn(stateToPlace, left.EndState

));

9 }

10 public override void DeclareSynchronization()

11 {

12 Synchronize(t => t.Input, t => t.Input);

13 Synchronize(SyncRule<StateToPlace>(),

14 t => t.StartState,

15 t => t.From.SingleOrDefault());

16 Synchronize(SyncRule<StateToPlace>(),

17 t => t.EndState,

18 t => t.To.SingleOrDefault());

19 }

20 }

Listing 6.6:Matching transitions

while the respective eMoflon rule would propagate everything at once or
not at all53. Which of these strategies is better depends on the application.

Lines 7–9 of Listing 6.5 create the synchronization block depicted in Figure
6.10 and indicate that the remaining transitions should be synchronized with
the end states of the state machine. The symmetric correspondence check
fails in this case because the synchronization engine will look for a suitable
state in the end states of the machine. If the state is not yet marked as an end
state, the synchronization engine will not find it. Thus, we have to override
this behavior and particularly look for the state which is corresponding to
the transitions origin.

53 We believe that a partial propagation is also possible in TGGs but requires many more rules
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FiniteStateMachine PetriNet

State∗ PN.Transition∗

Φ𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑎𝑇𝑜𝑁𝑒𝑡

.States

.Where(s =>

s.IsEndState)

.Transitions

.Where(t =>

t.To.Count == 0)

ΦEndStateToTransition

Figure 6.10.: Synchronization of the end states of a finite state machine with swallowing transi-
tions of a Petri net

1 public override void DeclareSynchronization()

2 {

3 SynchronizeLeftToRightOnly(SyncRule<StateToPlace>(),

4 state => state.IsEndState ? state : null,

5 transition => transition.From.FirstOrDefault());

6 }

Listing 6.7:One way synchronizations

Next, it is necessary to connect or disconnect the Petri Net transition to the
correct place. This only has to be done in the LHS to RHS direction since this
information is already encoded in the IsEndState attribute in the finite state
machine state. We have to limit the scope of this synchronization job because
the synchronization initialization otherwise raises an exception since the
conditional expression of the LHS is not a lens (we do not detect that there
is a partition of values for true and false branch). This is depicted in Listing
6.7.

FiniteStateMachine PetriNet

String String

Φ𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑎𝑇𝑜𝑁𝑒𝑡

.Id .Id

𝐼𝑑

Figure 6.11.: Synchronization of the names of a finite state machine and a Petri net
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Line 10 in Listing 6.5 specifies that the identifiers of both finite state machine
and Petri Net should be synchronized. This creates a simple synchronization
block as shown in Figure 6.11. The dependent synchronization rule is simply
the identity on strings. In the syntax, this is expressed by omitting the
synchronization rule. This means that both passed 𝜆-expressions must have
the same result type such that the synchronization engine may use the
identity as isomorphism.

In eMoflon, the synchronization of end states and respective transitions
also requires a single TGG rule that consists of 48 lines where the solution in
NMF Synchronizations requires a synchronization block in ΦAutomataToNet

and a synchronization rule ΦEndStateToTransition consisting of 21 lines.

The presented synchronization is a bijection, i.e. there is no information loss.
In case there was, for example if we introduced multiple types of places (for
example queueing places) with no equivalent information in the finite state
machines, the synchronization would still be exactly the same, similar to
the synchronization mode of eMoflon. The only difference would be that
the information about the type of a place would not be transmitted to the
state machine. In case the user adds a state to the state machine, the default
place type would be used54. The information of the type of existing places is
retained because NMF Synchronizations first tries to reuse an existing place
to create a correspondence. This is decided based on the ShouldCorrespond
method, so in this case based on the place name. More complex heuristics
are possible but must be implemented by the transformation developer.

The entire synchronization between finite state machines and Petri nets
in NMF Synchronizations consists of 4 synchronization rules in a single
file with 92 lines of code in the usual C# coding style55. A functionally
equivalent56 implementation in eMoflon required 5 TGG rules 217 lines in
total57, plus a correspondence definition with 32 lines. The coding style in
both languages is similar to some degree such that these numbers are roughly
comparable, even though the lines in the NMF Synchronizations solution

54 If the type for places was abstract, the synchronization would have to be changed to specify
a default place type for this case.
55 This includes 14 blank lines and 28 lines with only braces.
56 Up to propagation of partial changes as discussed above
57 This includes 41 blank lines and 47 lines with only braces.
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tend to contain more words and more boilerplate code as for example method
signatures of overridden methods must be repeated.

Both solutions are also available online58.

Our synchronization language is extensible since transformation developers
may easily implement new lenses as discussed in Section 6.3.1 and store them
anywhere. eMoflon also allows the developer to extend the transformation
framework but this requires the developer to switch the language and im-
plement the extension in pure Java. Here, internal languages such as NMF
Synchronizations have the benefit that developers do not have to switch
the language as the integration of host language code usually can be done
much more easily. In particular, as discussed in Section 6.3.1, extensions are
simply methods with an annotation. These extensions can be made directly
at the synchronization rule, in case it is only used in one place, or can be
extracted into a library.

6.5. Summary

In this chapter, we introduced the concept of synchronization blocks, a
formalism to describle declarative, incremental and bidirectional model syn-
chronization that is suitable to be implemented in textual transformation
languages. The formalism is sound in that we can prove that any inconsis-
tencies can be repaired in both directions and the repair operator for both
directions is hippocratic.

Further, we presented NMF Synchronizations, an internal DSL for bidirec-
tional model transformation and synchronization that implements incremen-
tal model transformation using synchronization blocks in an internal DSL
hosted in C#.

Besides the formal properties and the friendlyness for an implementation in
an internal DSL, we think that a major advantage is that the formalism and
the implementation in NMF Synchronizations unify the different types

58 eMoflon rules: https://github.com/NMFCode/SynchronizationsBenchmark/tree/master/e
Moflon/FiniteStatesToPetriNets/src/org/moflon/tgg/mosl/rules, NMF Synchroniza-
tions: https://github.com/NMFCode/SynchronizationsBenchmark/blob/master/Transfo
rmations/SynchronizationsImplementation.cs
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of model transformation problems. In particular, the formalisms tackles RQ
III.1, RQ III.2 and RQ III.3 alike. Besides exchanging a lens with a normal
morphism59, the only difference is in the way the transformation is exe-
cuted. This makes it easier to extend an unidirectional model transformation
into a bidirectional one and also makes it easier to mix these two types of
transformation paradigms.

The flexibility of our solution is even more than the variety of research
questions in RQ III: NMF Synchronizations is able to deduce 18 different
operation modes based on a single specification. These synchronization
modes are entirely symmetric, because synchronization blocks like TGGs
draw no conceptual difference between LHS and RHS of a bidirectional
transformation.

However, a formalization is only as good as it can be applied to practical
problems and thus, we need to explore the practical applicability in Chapter
9.

59 The research presented in Section 9.6 also indicates that this difference is characteristic as a
large part of the most commonly used unidirectional model transformation language can be
directly translated to synchronization blocks.
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7. Using type system guarantees

for model analyses

The goal of Part II was to improve the scalability of model analyses. The
evaluation in Chapter 9 also shows good results but nevertheless, the analyses
still need to be checked. However, we found that several analyses are not
at all specific to a domain but rather compensate for accidental complexity
in the metamodel. This accidental complexity is often due to inappropriate
modeling facilities given by the metamodel. Several of such analyses can be
made superfluous by extending the expressiveness of the meta-metamodel.
In that case, the analysis result can be guaranteed statically and therefore,
the analysis does not require any resources at runtime.

The contents of this chapter have been submitted to the MODELSWARD
2018 conference together with Kiana Busch and Robert Heinrich [99]. The
contribution from the author of this thesis is the concept of refinements and
structural decomposition, Kiana Busch and Robert Heinrich provided the
case study.

The analyses we are interested are analyses that check whether models are
consistent across multiple levels of abstraction: The metamodel defines the
level of abstraction followed in the system model. However, it is often a
challenge to choose the most appropriate level of abstraction for such a
metamodel. If the metamodel is too general, it may easily allow instance
models that do not correspond with the real system. In such case, model
validation rules may help to reduce this risk. If features are specified in too
specific subclasses, it gets hard to specify analyses because of case distinc-
tion. Therefore, it is often necessary to model an information on multiple
abstraction levels simultaneously. However, this introduces the problem that
the information has to be consistent. Therefore, one typically aims that a
modeler only enters the information once and this information is used on all
applicable levels of abstraction, consistently.
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To compensate for this problem, the UML [156] has introduced concepts of
refinements between associations in the form of subsetting, specialization
and redefinition. This specification is also reused in the CMOF standard
[151] but disallowed in EMOF and its most common implementation Ecore.
Though the semantics of these declarations is not clear from the standard,
several works [155, 48, 80] have defined semantics of these definitions and
implemented them in OCL constraints. However, the interaction of these
subsetting, specialization and redefinition with other constraints such as
multiplicity constraints have been a source of various problems [144, 143] as
the semantics turns out to be inconsistent.

Furthermore, OCL constraints need to be checked. This has mainly two
disadvantages: It takes time and constraints may be temporarily violated.
As consequences, we see a higher overhead for model manipulation tasks
(because the constraints must be checked) and a higher implementation
effort for model analysis tasks (because the case that a constraint is violated
has to be taken into account).

In commonly used meta-metamodels such as Ecore, the most popular work-
around is to create a feature in the most general concept and create derived
features in more specific classes. An example for this is in Ecore itself where
ETypedElements simply have a type. More specific classes such as EAttribute
or EReference inherit this reference, even though they could be more specific:
The type of an attribute must be a data type or enumeration while a reference
always must be typed with a class. The metamodeler has to enforce this
using a model validation constraint.

In an industrial context such as automated production systems, we see a very
similar effect where sensors are generally equipped with a power supply but
some kinds of sensors only accept certain power supplies. Here, one would
like to gain the expressiveness to specify the correct power supply type with-
out having to use case distinctions in the analyses. Because a wrong power
supply may have dramatic consequences in the physical sensor, this con-
straint should be enforced as early as possible. On the contrary, we also see
the case that the exact type of the sensor is not known, for example because
the sensor is supplied by a vendor. Therefore, very specific model elements
may be mixed with more general model elements and hence, the information
must be available on multiple levels of abstraction simultaneously.

Existing approaches to simplify the metamodel in this regard such as VPM
[208], Deep Modeling tools [11, 54] or CORE [181] require completely new
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modeling paradigms that mostly break existing tools. However, the availabil-
ity of stable tools is one of the major factors for the lack of industry-adoption
of MDE [187, 153]. In addition, Meyerovich et al. [149] have shown that
most developers only change their primary language when either there is a
hard technical project limitation or there is a significant amount of code that
can be reused. Therefore, we suspect that many metamodelers would still
like to use their usual meta-metamodel.

In this chapter, we propose a formal approach how refinements of associa-
tions can be implemented in a non-invasive way into an Ecore-like meta-
metamodel. The proposed approach is able to guarantee the correctness of
the refinement, i.e. the consistency of the model in multiple levels of abstrac-
tion, through guarantees of the target platform type system. In the power
supply example above, the modeler gets an immediate feedback in the form
of an exception as soon as he tries to add a non-appropriate power supply
to a sensor. Information that is exposed on multiple levels of abstraction
simultaneously only has to be specified once, at the most concrete level of
abstraction. We implemented our approach in NMeta and discuss its advan-
tages over alternative metamodel fragments in the domain of production
automation.

The remainder of this chapter is structured as follows: Section 7.1 intro-
duces the domain of production automation more closely and defines the
running examples. Section 7.2 defines the concepts of refinements and struc-
tural decomposition and applies them to the running example. Section 7.3
explains how refinements and structural decomposition are implemented
in the NMeta meta-metamodel. Section 7.4 presents our approach how to
guarantee the correctness of refinements through type system guarantees.
Section 7.5 demonstrates how these concepts can be implemented using
NMeta and compares it with alternative modeling strategies. Finally, Section
7.6 summarizes insights and achievements of this chapter.

7.1. Running Examples

This section introduces the domain of automated production systems that is
used as a running example in the remainder of this chapter.
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Sensor

ACCurrentSensor

PhotoelectricSensor

SensorWithoutPowerSupply

PowerSupply

AC DC

powerSupply

0..1

0..1

Figure 7.1.: Sensor example

We use this system hereafter as a running example to illustrate the idea
of our approach. The domain of automated production systems involves
software, as well as mechanic and electric parts. For the running example
we use the example of sensor and power supply. In general, a sensor has a
power supply. Several types of power supply exist, for example Alternating
Current (AC) or Direct Current (DC). Additionally, there are several types of
a sensor such as photoelectric, capacitive, or AC current sensors. Consider
the example, that an AC current sensor must have an AC power supply, as
illustrated in Fig 7.1. This fact must be specified either through an OCL
constraint or using derived features in an Ecore model. However, we cannot
be sure whether the constraints are enforced. The metamodel itself is able
to express that an AC current sensor has a DC power supply. Our goal is to
enforce such constraints already through the underlying type system. For
example, we can guarantee that a model where an AC current sensor has
a DC power supply, may not exist. Consider the example of a sensor, that
does not need any power supply (SensorWithoutPowerSupply). For example,
a surface acoustic wave sensor [164] obtains its energy from piezoelectric
and pyroelectric effects. We want to ensure that the type system does not
allow to model a case in which a sensor with no power supply has an AC or
DC power supply.

On the other hand, we often face the problem that we do not know the details
of every element that should appear in the model. Therefore, it is desirable
to keep classes such as Sensor non-abstract, in order to model that we have
a sensor where there is no information on technical details, yet still, we want
to be able to reference its power supply.

For references with higher cardinality, we face the problem that very general
references can be decomposed in more specific subclasses. As an example,
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Motor

3PhaseSquirrelCageMotor

Connection

StarConnection DeltaConnection

connected

1..2

deltaConnected

1

starConnected

1

Figure 7.2.: Star and delta connections in motors

consider the power supply of a motor in a star or delta connection, as il-
lustrated in Fig. 7.2. The star-connected motors have a central point where
the similar ends of the wires are connected whereas in the delta-connected
motors the opposite ends of wires are connected. Thus, the delta connection
results in a higher torque and a higher motor speed. However, some motors
require both connections. For example, a three phase squirrel cage motor60

has to be started in a star connection. After the normal speed is reached, it
has to be switched from a star to a delta connection.

7.2. Refinements and Structural Decomposition

In this section, we want to discuss and formalize the notion of structural
decomposition.

To do this, we again apply the theory of mutable type theories introduced
in Chapter 3. In the running example of this chapter, the features are the
attributes and references in the metamodel. For example, we may consider
the reference 𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 a lens Sensor ⇀ PowerSupply. Its Get method
returns for a given sensor the assigned power supply at a given model state.
The Put modifies the model state by setting the power supply of that sensor
to the desired value. The Put may also perform additional side-effects, for

60 http://www.pcbheaven.com/userpages/check_the_windings_of_a_3phase_ac_motor/, re-
trieved 10 Jul 2017
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example in order to also set the opposite feature or to cascade amodel element
deletion, in case a model element has been removed from its container.

The domain of 𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 in this context is the set of allowable power
supplies for each sensor in each model state. For example, for an ACCur-
rentSensor element, this set should only contain instances of AC.

Refinements and structural decompositions can be easily modeled in a MTC
as a relation between morphisms, as shown in the following definitions.

Definition 46 (Structural Decomposition of Lists). Let 𝐴 and 𝐵 be types. A
set of features 𝑓1, . . . , 𝑓𝑛 : 𝐴 ↩→ K(𝐵) for types 𝐴 and 𝐵 and an 𝑛 ∈ N is a
structural decomposition of a feature 𝑓 : 𝐴 ↩→ K(𝐵) if we have that for each
global states 𝜔, 𝜔̃ ∈ Ω and 𝑎 ∈ 𝐴 that

𝑓 ↗ (𝑎,𝜔) (𝜔̃) = 𝑓1 ↗ (𝑎,𝜔) (𝜔̃); 𝑓2 ↗ (𝑎,𝜔) (𝜔̃); . . . ; 𝑓𝑛 ↗ (𝑎,𝜔) (𝜔̃); .

We say that 𝑓 is made of 𝑓1, . . . , 𝑓𝑛 and call the 𝑓𝑖 components of a composition
𝑓 .

Since there is an embedding from 𝐴 × Ω → 𝐵 into 𝐴 × Ω → K(𝐵), we will
also allow the features used for decomposition to be single-valued where
we depict an element ⊥ ∈ 𝐵 that corresponds to an empty string in K(𝐵).
Likewise, we allow compositions to be single-valued. In this case, the value
of the composition has to match the only component value that is not null.

Likewise, we define structural decomposition also for multisets.

Definition 47 (Structural Decomposition of Multisets). Let𝐴 and 𝐵 be types.
A set of features 𝑓1, . . . , 𝑓𝑛 : 𝐴 ↩→M(𝐵) for types 𝐴 and 𝐵 and an 𝑛 ∈ N is
a structural decomposition of a feature 𝑓 : 𝐴 ↩→M(𝐵) if we have that for
each global states 𝜔, 𝜔̃ ∈ Ω, 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 that

𝑓 ↗ (𝑎,𝜔) (𝜔̃) (𝑏) =
𝑛∑
𝑖=1

𝑓𝑖 ↗ (𝑎,𝜔) (𝜔̃) (𝑏).

Example 32. In our running example, the connections of a three phase
squirrel cage motor can be structurally decomposed into the star connection
and the delta connection: At any time, we would like the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference
of a given three phase squirrel cage motor to only consist of the model
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elements referenced by the 𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference and the 𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
reference.

The next proposition shows that the definitions are consistent.

Proposition 33. Let 𝐴 and 𝐵 be types. Let 𝑓1, . . . , 𝑓𝑛 : 𝐴 ↩→ K(𝐵) be
components of 𝑓 : 𝐴 ↩→ K(𝐵). Then we have that for every 𝜔, 𝜔̃ ∈ Ω, 𝑎 ∈ 𝐴
and 𝑏 ∈ 𝐵 that

𝚤K𝐵 (𝑓 ↗ (𝑎,𝜔)) (𝜔̃) (𝑏) =
𝑛∑
𝑖=1

𝚤K𝐵 (𝑓𝑖 ↗)(𝑎,𝜔) (𝜔̃) (𝑏) .

Proof. In the above situation, we have that

𝑛∑
𝑖=1

𝚤K𝐵 (𝑓𝑖 ↗)(𝑎,𝜔) (𝜔̃) (𝑏)

=
𝑛∑
𝑖=1

|{ 𝑗 ∈ {1, . . . , 𝑛𝑖 }|(𝑓𝑖 ↗ (𝑎,𝜔) (𝜔̃))𝑗 = 𝑏}|

= |{(𝑖, 𝑗) ∈ {1, . . . , 𝑛} × N| 𝑗 ≤ 𝑛𝑖 ∧ (𝑓𝑖 ↗ (𝑎,𝜔) (𝜔̃))𝑗 = 𝑏}|

= 𝚤K𝐵 (𝑓 ↗ (𝑎,𝜔)) (𝜔̃) (𝑏).

We combine structural decomposition with a notion of refinement as per the
following definition:

Definition 48 (Refinement). Let 𝐴, 𝐵, 𝐴 and 𝐷̄ be types with 𝐴 � 𝐴 and
𝐵 � 𝐵. Further, let 𝑓 : 𝐴 ↩→ 𝐵 and 𝑓 ′ : 𝐴 ↩→ 𝐵 be lenses. We say that 𝑓 ′ is a
refinement of 𝑓 if 𝑓 ↗ and 𝑓 ′ ↗ are the same on 𝐴 × Ω and the setters are
the same for elements of 𝐴, i.e. the following equations hold for all 𝑎 ∈ 𝐴,
and 𝜔 ∈ Ω:

𝑓 ′ ↗ (𝑎,𝜔) = 𝑓 ↗ (𝑎,𝜔)

D(𝑓 ′ ↘) = D(𝑓 ↘)∩𝐴 × 𝐵 × Ω ⊂ 𝐴 × 𝐵 × Ω
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and if (𝑎, 𝑏, 𝜔) ∈ D(𝑓 ′ ↘), then we have that

𝑓 ′ ↘ (𝑎, 𝑏, 𝜔) = 𝑓 ↘ (𝑎, 𝑏, 𝜔).

Example 33. In the running example, the sensor type ACSensor should
always have an AC power supply, as discussed above. Therefore, wemay think
of a reference 𝑎𝑐𝑃𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 : ACSensor ↩→ AC that refines 𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦
because for all elements of ACSensor, the power supply is in fact an AC
element.

Remark 35. Example 32 actually combines structural decomposition and
refinements: Using only structural decomposition, we could model that a
three phase squirrel cage motor has a separate star connection and delta
connection. Together with refinements, we may express the star connection
cannot be an arbitrary connection, but must be a StarConnection, likewise
for the delta connection.

Remark 36. The advantage of the information that a feature 𝑓 ′ : 𝐴 ↩→ 𝐵
refines a feature 𝑓 : 𝐴 ↩→ 𝐵 is twofold. If we want to use the Get of 𝑓 for
an instance from which we know that it is an element of 𝐴 (e.g. through
static analysis), then the refinement gives us that the result will be in 𝐵. In
implementations, this can aid the static analysis of the code. Conversely,
if we want to use the Put of 𝑓 , then we know that this operation is only
defined if the element to set is in 𝐵. This is important to know because
most implementation type systems cannot express that a function is only
defined for a subset of its parameter spaces. Thus, D(𝑓 ) will typically be
implemented by throwing an exception if the given parameters are not in the
domain (depending on the current state). Here, the (static) knowledge that
𝑓 ′ refines 𝑓 means that we can statically proof that the setter of 𝑓 will fail if
the value of a setter is not of type 𝐵. This may result in a compiler warning.

Remark 37. An important special case here is the refinement by a constant
reference 𝑔 ≡ 𝑏 for some constant element 𝑏 ∈ 𝐵61. Usually, constant
features are not explicitly modeled as they do not contain any information
specific to an instance, but in combination with a refinement, they may carry

61 Here, the ≡ symbol means that the getter function always returns the same element 𝑏 and
the setter is only defined where necessary for (PutGet), i.e., if the value is 𝑏.
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information that is known for some subtypes, but not in the general case for
a given type 𝐴.

Example 34. For the last remark, consider again the passive sensor that
does not require a dedicated power supply. Modeling a connection of such a
sensor with a physical power supply cannot reflect the physical sensor and
therefore should be forbidden. Using refinements, we canmodel this situation
with a constant reference 𝑝𝑎𝑠𝑠𝑖𝑣𝑒𝑆𝑢𝑝𝑝𝑙𝑦 : PassiveSensor → PowerSupply

that always returns ⊥.

Remark 38. An effect of refinements is that in some operations may raise
exceptions in subtypes where they do not raise exceptions in their parent
classes. According to the Liskov’ Substitution Principle (LSP) [140], if type 𝑆
is a subtype of𝑇 , then any property provable about an instance of𝑇 must be
provable for an instance of 𝑆 as well. The goal of this principle is to guarantee
desirable properties of a program like correctness or termination when
instances of 𝑇 are replaced by instances of 𝑆 . While this strong behavioral
subtyping is undeniably beneficial for operations that are side-effect free,
it limits the application of objects when the state of this object must be
changed such as changing the value of an attribute or reference. In this case,
sometimes the complete state of the model element must be considered as
the true model type may have introduced additional validation constraints.

For example, meanwhile an AC sensor is a sensor – expressed by an inher-
itance relation of the Sensor class – and therefore theoretically may have
an arbitrary power supply, attaching a DC power source to such a sensor
often causes a failure62. However, the knowledge that a AC power supply is
required is not necessary when querying the power supply of a sensor, only
if the sensor should be notified.

As a reason, the power supply inheritance hierarchy is covariant to the
inheritance hierarchy of the sensors. This is not problematic for methods like
queries that return covariant instances such as more specific power supplies.
It does become a problem when changing the state of the sensor since strong
behavioral subtyping demands a contravariant inheritance hierarchy but the
sensor’s power supply is an instance of a subtype of the PowerSupply class.

62 A failure also occurs when a AC sensor is attached to a wrong type of AC power supply,
for example with a higher voltage than supported. Therefore, one may want to model the
different types of AC power supplies on a further level of detail.
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The solution in classic object oriented programming would be to design the
sensor class as an interface where the power supply can be queried from
but cannot be modified. This way, being able to add a power supply to a
sensor without an exception being thrown is not a provable property and the
Liskov’ Substitution Principle is maintained. However, we argue that this
is an implementation detail that should not be part of the metamodel since
the purpose of a metamodel is to describe the domain on a high abstraction
level. This excludes implementation details to comply with the LSP.

7.3. Implementation in NMeta

We have implemented refinements and structural decomposition in NMeta
through the additional references and classes that enable references to refine
other references and likewise for attributes. Further, additional classes Ref-
erenceConstraint and AttributeConstraint are added. The changes are
depicted in Figure 7.3, highlighted with double lines.

If multiple references refine a reference, that reference is structurally decom-
posed and the components are refined63. Therefore, the refined reference
must be declared in an ancestor of the current class and the reference type of
the refinement reference must be a descendent of the refined references type.
A reference may also refine a reference that is already refined in an ancestor
class. In that case, the original reference is structurally decomposed by all
references that refine the original reference. In other words, a decomposition
is always scoped for a given class.

Additionally, the metamodeler can add a constant reference into this struc-
tural decomposition through a dedicated model element called Reference-
Constraint. This means that the reference is also refined by a constant
model element or a collection thereof, in case the reference is typed with
a collection. Only a single ReferenceConstraint is allowed per class and
reference.

The class ReferenceConstraint is only necessary because NMeta has no
support for derived features, yet, because it lacks a support for OCL. Using
derived features such as in Ecore, one could use a derived reference instead

63 This definition is consistent because a single feature is a structural decomposition of itself.
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7. Using type system guarantees for model analyses

that simply returns a constant value, therefore making the ReferenceCons-
traint class obsolete.64

For attributes, structural decomposition works the same but the types must
match exactly because the inheritance hierarchy of value types is not mod-
eled.

For any composition of attributes or references, the multiplicity of the com-
position must be compatible with the multiplicity of the original feature.
This means that the lower bound of the original feature must be smaller or
equal to the sum of the lower bounds of components. Likewise, the upper
bound of the original feature must be larger or equal to the sum of upper
bounds of the components. Furthermore, we require that refinements of
compositions are compositions. If a reference with an opposite is refined, we
require that any refining reference has an opposite that refines the opposite
of the original reference.

Reference refinement is used within NMeta for the Type reference that at-
tributes and references inherit from TypedElement (the blue arrows in Figure
2.1). Similar to Ecore, a reference is only valid when the type assigned to
it is a reference type, e.g., a class. Conversely, an attribute must be typed
with a value type. In Figure 2.1, this relation is denoted with a dotted arrow
from the ReferenceType or DataType reference of Reference and Attribute
to the Type reference of TypedElement.

The semantic behind this assignment is that the Type of a Reference is
refined by its ReferenceType. Conversely, if we set the Type of a reference,
the setter internally sets the ReferenceType. However, this only works if the
set value is an instance of ReferenceType. If it is not, an exception is thrown
because a reference whose type is not a reference type cannot be valid. As a
consequence, the validation that types of references must be reference types
is already checked by the type system, making a constraint, e.g. written in
OCL, obsolete. This semantics is very similar to UML redefinitions with the
important difference that the TypedElement type does not have to be aware
that its Type reference is refined in another class.

A reference may be constrained and refined at the same time. In that case, the
reference consists of some referenced elements determined by the reference
constraint and others determined by refinement references.

64 The reason for NMeta to not support OCL is an incompatible code generation infrastructure.
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Besides a reference of base classes, classes in NMeta are allowed to restrict
inheritance to instances of a given class through the InstanceOf reference.
This reference may only be specified for abstract classes. If a class 𝐴 is an
instance of class 𝐵, then only instances of 𝐵 may inherit from 𝐴. Consider 𝑎
an instance of type 𝐶 which inherits from 𝐴. Because 𝐵 was declared as an
instance of 𝐴, 𝐶 must be of type 𝐵. Thus, the type of 𝑎 is an object of type 𝐵.
Since this is known at compile-time, the generated code contains a refined
method to obtain the model elements type of type 𝐵.

If the InstanceOf reference is left blank, this has the same effect as spec-
ifying that a class is an instance of Class. This is because the base class
ModelElement is marked as an instance of Class. Moreover, when classes
define an instance-of relation and one of its base class also specifies an
instance-of relation, then the new instance-of class must be a subtype of the
base class instance-of class. As an immediate consequence, all classes used
in the instance-of reference must be subtypes of Class.

The class DataType describes simple structures of values such as vectors or
complex numbers that are typically edited as a whole. The differentiation to
normal classes, they are treated as values, are thus immutable and are not
addressable through a global URI.

7.4. Code Generation

Similar to EMF, NMF provides a code generator for metamodels [96]. Because
the meta-metamodel allows multiple inheritance, the code generator gener-
ates both an interface and a default implementation class for each class in the
metamodel, again similar to the EMF code generator. To keep the generated
code small, the code generator reuses default implementation classes for
subclasses as much as possible.

For any attribute or reference (feature in the remainder), a property and
a change event is generated. If the feature is not refined, this property is
backed by a field. In case a feature is refined, a private getter and setter
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7. Using type system guarantees for model analyses

implementation65 is generated instead that composes or decomposes the
property on the fly.

The consistent representation of information simultaneously modeled in
multiple levels of abstraction is an immediate consequence: Any information
is only stored on the lowest level of abstraction, only. Representations in
higher abstraction levels are generated upon request.

As a consequence, an implementation of a metamodel class must not contain
backing fields of a refined reference. Therefore, refinements impact the
inheritance hierarchy of the implementation base class. In case a feature is
refined, the code generator may no longer reuse any implementation class
that contains a backing field for this feature.

«interface»
IMetaElement

+ Name : String
+ Summary : String
+ Remarks : String

«interface»
ITypedElement

+ LowerBound : Integer
+ UpperBound : Integer = 1
+ Type : IType

«interface»
IReference

+ IsContainment : Boolean
+ ReferenceType : IReference-
Type

«abstract»
MetaElement

+ Name : String
+ Summary : String
+ Remarks : String

«abstract»
TypedElement

+ LowerBound : Integer
+ UpperBound : Integer = 1
+ Type : IType

Reference

+ LowerBound : Integer
+ UpperBound : Integer = 1
+ IsContainment : Boolean
+ ReferenceType : IReference-
Type

implements

implements

implements

implements

Figure 7.4.:Generated model representation class and interface for references

65 .NET allows classes to privately implement an interface which means that the implementation
is not visible from the class API but only through this interface.
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For example, Figure 7.4 shows the interfaces and classes generated for meta-
classes MetaElement, Reference and TypedElement of NMeta. For all classes,
a class and an interface is generated. In accordance to .NET nomenclature, the
generated interfaces are prefixed with the letter I. Because there is an inheri-
tance relation between themetaclasses, the generated interface for Reference
does inherit from the generated interface for TypedElement. However, the
generated implementation type Reference does not inherit TypedElement,
in order to avoid inheriting the Type reference backing field.

On the other hand, the code generatormay still reuse the class MetaElement as
a base class for Reference to avoid generating properties for name, summary
and remarks again.

Furthermore, we may encounter diamond problems. If, for the sake of the
example, a class inherited from both Attribute and Reference, the code
generator must not reuse the implementation class of either Reference or
Attribute because the decomposition of the feature Type is different to the
one in Attribute or Reference where only one feature refines Type.66

As soon as an appropriate base class is found, we simply copy the gener-
ated code for the features that cannot be inherited and copy them into the
generated type, as long as they are not refined.

To find such a base class, we propose the abstract algorithm depicted in
Algorithm 1. It is essentially based on a reversed topological order of strongly
connected components in a dedicated graph that is induced by inheritance
relations and refinements. The result of Algorithm 1 for a class 𝑐 , if not ⊥, is
a class 𝑐𝑏 that

• is a base class of the class to be generated (𝑐 � 𝑐𝑏 ).

• only contains properties that have not been refined by classes 𝑐 with
𝑐 � 𝑐 ≺ 𝑐𝑏 .

• that does not contain a decomposition that is no longer valid. Here,
an invalid decomposition refers to a decomposition of a feature 𝑓

66 One may suspect that any class that inherited both from Attribute and Reference must
cause an error because the sum of the upper bounds for the structural decomposition of
the Type reference is 2 and thus greater than the upper bound of the refined Type reference.
However, the implementation in NMF actually explicitly allows such a construct.
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into 𝑓1; . . . ; 𝑓𝑛 in the scope of a class 𝑐 with 𝑐 ≺ 𝑐 , but 𝑓 is
decomposed in 𝑐 by a larger list of features.

Algorithm 1 Find implementation base class

function AllFeatures(𝑐)
return

⋃
𝑐�𝑐𝑏 𝑐𝑏 .𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ∪

⋃
𝑐�𝑐𝑏 𝑐𝑏 .𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠

end function

function Refinements(𝑐)

return {𝑔 |𝑓 ∈ 𝑐.𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ∪ 𝑐.𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠, 𝑓
�𝑟𝑒 𝑓 𝑖𝑛𝑒𝑠�
−−−−−−−−−→ 𝑔}

end function

function Edge(𝑐𝑠 , 𝑐𝑡 )
return 𝑐𝑠 � 𝑐𝑡 ∨ (Refinements(𝑐𝑠 ) ∩AllFeatures(𝑐𝑡 ) ≠ ∅∧𝑐𝑡 � 𝑐𝑠 )

end function

function FindBaseClass(𝑐)
𝑠ℎ𝑎𝑑𝑜𝑤𝑠 ← ∅

𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 ← TransitiveHull(𝑐, 𝑐𝑙 ↦→ 𝑐𝑙 .𝐵𝑎𝑠𝑒𝑇𝑦𝑝𝑒𝑠)
for all 𝑙𝑎𝑦𝑒𝑟 in ReverseTopologicalOrder(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠, Edge) do

if |𝑙𝑎𝑦𝑒𝑟 | = 1 ∧ 𝑙𝑎𝑦𝑒𝑟 ≠ {𝑐}∧
𝑠ℎ𝑎𝑑𝑜𝑤𝑠 ∩ AllFeatures(𝑙𝑎𝑦𝑒𝑟 [0]) = ∅ then
return 𝑙𝑎𝑦𝑒𝑟 [0]

end if

for all 𝑙 in 𝑙𝑎𝑦𝑒𝑟 do
𝑠ℎ𝑎𝑑𝑜𝑤𝑠 ← 𝑠ℎ𝑎𝑑𝑜𝑤𝑠 ∪ Refinements(𝑙)

end for

end for

return ⊥

end function

In Algorithm 1, the function AllFeatures simply computes the set of all
attributes and references available in a given class, including inherited and
transitively inherited. The function Refinements returns those attributes
and references that are refined by attributes or references of the given class.
More interesting is the function Edge that defines the edges in the graph the
topological order is created for. This graph shall contain edge from a class 𝑐𝑠
to a class 𝑐𝑡 if the generated code for class 𝑐𝑠 obsoletes the generated code
for 𝑐𝑡 . This may either be because 𝑐𝑠 � 𝑐𝑡 or because 𝑐𝑠 refines a property
of 𝑐𝑡 . The latter case is not problematic for the case that 𝑐𝑡 � 𝑐𝑠 , because in
that case, the generated code for 𝑐𝑡 is aware of this refinement.
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The reversed topological order guarantees us that there is no incoming
edge from ancestor classes not yet considered for the given class. It can
be easily implemented by reversing the output of Tarjan’s algorithm [199].
In Algorithm 1, we assume the latter to return a list of strongly connected
components, each represented as set of classes.

The graph may contain cycles. Because inheritance is acyclic and we only
allow features to refine features of base classes, such a cycle must come from
a set of classes that refine features of a common base class, i.e. we are facing
a diamond-shaped inheritance. Because the generated code for the bottom
of the diamond must respect all refinements made in any of its base classes,
no generated code for a class contained in a cycle must be reused. However,
there still may be a common ancestor class whose features have not been
refined, such as for example MetaElement in the example of Reference.

Applied to the class Reference, the reverse topological sort returns the
strongly connected components {TypedElement}, {MetaElement}. TypedE-
lement is not chosen because its property Type is refined but MetaElement
is because it is the only element in its component and does not contain a
refined property.

Because the class Reference does not inherit an implementation of ITypedE-
lement, it implements this interface directly by duplicating the implementa-
tion of non-refined attributes and references. This code duplication is not
problematic since the code is generated. In the metamodel, the duplication
is avoided. The Type-reference is implemented in private where the getter
simply returns the ReferenceType reference and the setter tries to cast the
value appropriately and sets the ReferenceType reference, if applicable and
throws an exception otherwise.

For decomposition, the setter will assign the value to the first component
property that fits. This affects the default implementation class as any imple-
mentation class containing a backing field for a decomposed property must
not be reused. However, it does not affect the generated interface. Thus,
the substitution principle is maintained for any analysis that consumes the
model and just relies on the interface.

Artifacts that modify model elements such as editors would rather operate
on the real type of the model elements and therefore only see the public
properties which are exactly the non-decomposed properties.
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By default, the generated XMI code for a serialized model will not contain
any information on decomposed features since they can be reconstructed
by its components. If information about refinements is cut off (e.g. by
exporting the metamodel to Ecore), the serialization simply needs to be
configured to serialize also refined features and then tools not aware of
structural decomposition are able to read the model just like any other model.
Conversely, when reading the model, the refined features are just ignored
in the deserialization such that models created by tools not enabled for
structural decomposition can be loaded – the only problem here is that these
tools may unnecessarily demand the modeler to specify features that are
otherwise refined.

Therefore, existing tools not aware of structural decomposition and refine-
ments can be reused without changes, though they may not offer the best
convenience.

7.5. Alternatives to Model Production Automation

In this section, we show the applicability and advantages of using struc-
tural decompositions and refinements to model the domain of production
automation. For this purpose, we take the running examples from Section
7.1 with their formal insights from Examples 32, 33 and 34 and discuss the
implementation in NMeta in comparison to modeling alternatives supported
by Ecore.

7.5.1. Sensors with an AC Power Supply

There are multiple options to model that sensors have a power supply but
more specific kinds of sensors may have an AC power supply only using
existing modeling technology:

Constraint + derived reference: We add a constraint that the power supply
of an AC sensor must be an AC power supply. With this constraint, we can
automatically check the model for consistency. If required in applications,
we may add a derived reference that returns the power supply of the given
sensor as an AC power supply.
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The main problem that we see with this approach here is that the constraint is
only enforced upon request, or the constraint needs to be checked before the
model manipulation is performed. In the former case, the modeler explicitly
has to validate the model in order to see that the constraint is broken. In the
latter case, the constraint must be checked before any model manipulation
which may be a costly operation. The type system and also the API allow
the model to have an invalid reference. Furthermore, creating the constraint
and the derived reference may be much more work than the assignment of a
refinement.

Reference in concrete type+operation: Another possibility is to only create
the reference in the specific class, in our case ACCurrentSensor. There, we
already know that the power supply has to be a AC power source which also
buys us type-system guarantees that the power supply is an AC source.

However, this approach is also problematic because it is unclear on which
level of abstraction to set the power supply type. There might be a more
concrete sensor type that requires an even more specific power supply type.
Moreover, we also have other sensors than the AC sensors such as sensors
bought by vendors or sensors that may accept different power supplies. As
the generic Sensor class does not have a reference to the power supply, we
have to create a subclass to specify the power supply type. Further, because
we still want to capture the knowledge that every sensor has to have a power
supply, we would need to add an operation to obtain the power supply of
a concrete sensor. However, this is problematic since not all tools work
with operations well. As an example, incremental tools cannot cope with
operations as they cannot see inside the operation body.

In some scenarios, there is a further problem that one does not want to
modify the base class just because of an additional constraint in a derived
class, to avoid changing all the other subclasses. This is especially the case
if the problematic reference is defined in an indirect ancestor such as for
example the eType is defined in ETypedElement which is the base class of the
base class of EReference.

Generic type: We could leave the concrete type of the power supply open
and make the sensor type accept a type parameter. This leaves the decision
for the used power supply type open until the sensor is used.
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This version has a similar problem as the last one: We do not know whether
there is a sensor that requires a more specific power supply type. Further, in
an application, we have to know the power supply type. Otherwise, we must
rely on Javas weak implementation of generics67 that allows developers to
essentially do not care about the concrete generic type argument as long
as it respects some type condition. This is not possible on other platforms
such as .NET that follow a hard implementation of generics68. Therefore,
this modeling option makes a portability to other platforms impossible.

Subsetting: In UML 2, we may specify that the AC supply of an ACCurrent-
Sensormust be a subset of the power sensors. As a consequence, the modeler
has to assign the AC source of such an element himself and the source is
not automatically assigned, unless the modeling system automatically sets
the power source in case the modeler assigns the AC source. However, even
in that case, we think it will be confusing for the modeler that there is a
semantic difference between setting the AC source and setting the power
source.

Specialization: According to Costal and others [48], specialization has the
same semantics as subsetting and therefore, the same disadvantages apply.

Redefinition: UML redefinition of associations matches our notion of re-
finements. However, they are not available in EMOF and not implemented
in metamodeling frameworks such as Ecore.

The modeling approach using refinements is depicted in Figure 7.5. We create
an additional reference called 𝑎𝑐𝑃𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 in the ACSensor class and set
it to refine the original 𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 reference69. As a result, the generated
implementation class for ACSensor will not inherit the more general power
supply field but includes a specific field to reference an AC element from
which the 𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 reference is populated upon request. Because the

67 Information of a types generic type parameters is only available at compile-time
68 The generic type parameters are still available and enforced at run-time. Type boundaries
are only supported in interfaces if type parameters are either used only as inputs or only as
outputs.
69 NMeta does allow refined references to have the same name as the original reference but we
use a different name for clarity.
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Sensor

ACSensor

PowerSupply

AC

powerSupply

0..1

acPowerSupply

0..1

� refines�

Figure 7.5.:Modeling that an ACSensor requires an AC power supply in NMeta. The inserted
refinement is printed in blue.

type system of .NET does not allow this field to hold a reference to an object
that does not fulfill the generated interface for AC, we can be sure that the
power supply of an ACSensor instance is valid without checking any validity
constraint. If the modeler tries to assign a DC power supply to such an
element, he gets an immediate feedback, telling him that it is not possible to
use this element as a power supply for an ACSensor.

7.5.2. Sensors without Power Supply

To model that sensors without a dedicated power supply do not have a
power supply in traditional modeling, one would add a validity constraint
saying that the 𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 reference of a PassiveSensor must be empty,
respectively OclUndefined. An alternative implementation could be that all
instances point to the same power supply element. In this case, the path to
this element has to be reconstructed in OCL which can be a brittle operation
because OCL has no language feature to reference a static model element.
Instead, one has to make sure the element can be uniquely identified based
on an allInstances operation, the only operation that references model
elements independently of the current context.

In both cases, the main drawback is that the constraint can be violated and
must be enforced manually. An entirely different approach would be to omit
the reference in the base class, but then, the same drawbacks as in Section
7.5.1 apply.
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Sensor

PassiveSensor

powerSupply = []

PowerSupplypowerSupply

0..1

Figure 7.6.:Modeling that a PassiveSensor must not have a power supply in NMeta. The
inserted reference constraint is printed in blue.

A viable alternative in the presence of redefinitions as in UML would be to
redefine the power supply reference by a new reference with multiplicity
070. In fact, this alternative is close to our implementation in NMeta.

The metamodel using NMeta is depicted in Figure 7.6. The notation of
an assignment in the attribute compartment of a class here indicates an
AttributeConstraint or ReferenceConstraint (depending on whether the
given feature is an attribute or a reference). In this case, we model that the
𝑝𝑜𝑤𝑒𝑟𝑆𝑢𝑝𝑝𝑙𝑦 reference is constrained to equal the contents of an empty
collection. This constraint has the consequence that the generated class for
PassiveSensor again does not inherit from Sensor but implements the power
supply reference privately by returning null. The setter checks whether
the assigned value is null and throws an exception that it is not possible
to use the passed element as a power supply for a passive sensor. In fact,
the error message is exactly the same as in the case of ACSensor because the
code generator does not distinguish between a structural decomposition and
a refinement, instead always assumes both.

7.5.3. Connections of a three phase squirrel cagemotor

Besides association redefinition, all modeling alternatives that exist for refin-
ing single-valued references as in Section 7.5.1 are also available to model
a scenario such as the three phase squirrel cage motor. However, as cre-
ating multiple derived attributes or references may be cumbersome, Ecore
has dedicated support for decompositions using feature maps. While these

70 An upper bound of 0 is explicitly allowed in the specification [156, p.34].
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Motor

3PhaseSquirrelCageMotor

Connection

StarConnection DeltaConnection

connected

1..2

deltaConnected

1

starConnected

1

� refines�
� refines�

Figure 7.7.: Star and delta connections in motors modeled in NMeta. The inserted structural
decomposition is printed in blue.

feature maps ease the specification of otherwise multiple OCL constraints,
derived references and can be used for an improved editing support, they do
not solve the problem that the constraints have to be checked and are not
guaranteed by the type system.

For association redefinition, the situation is less clear because the case that
multiple properties redefine a given property in the context of the same class
is not described in the specification and ignored e.g. by Costal and others
[48]. Here, our notion of structural decomposition may be adopted to specify
the semantics clearer.

Moreover, the implementation of keeping the refined reference and imple-
menting refinements as constraints on top of it does not necessarily work
with multiple redefinitions. For instance, consider the case we added a new
class that inherits both from StarConnection and DeltaConnection and the
motor is connected to an instance of such a class. Then, it is no longer clear
whether it should be referenced from the 𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 reference or the
𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 reference.

Using NMeta, the three phase squirrel cage motor can be modeled as in Figure
7.7. Here, we simply declare that both 𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 and 𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
references refine the general 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference.

As a consequence, the generated implementation class of 3PhaseSquirrel-
CageMotor does not inherit from the implementation class of Motor but imple-
ments the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference privately. This private implementation uses a
generated custom collection implementation that internally enumerates the
𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 and 𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 references. Because these references are
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the only ones that are backed by a field71, the type system guarantees that
the connections of a three phase squirrel cage motor cannot be anything else
than at most one StarConnection and at most one DeltaConnection. Since
these references have an upper bound of 1, we can even guarantee the upper
bound for the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference, at least for a three phase squirrel cage
motor.

Because the data is in the more detailed references, the refinement also works
if we used the same class Connection for both cases or we introduced a
derived class that inherits from both StarConnection and DeltaConnection.
In that case, the modeler simply has to use the correct reference, either
𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 or 𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 , to achieve the intended model.

Our implementation allows manipulations of refined collections such as
adding and removing elements. In case of adding an element, this is dis-
patched to add or assign the added element to the first reference that matches
the type. In the example, adding a StarConnection element to the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑
reference would implicitly set the 𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference. An element that
does not match any refining references causes an exception to be thrown.

In addition to the type, we also take the multiplicities and the current car-
dinalities into account. Therefore, if we assume for a moment that the
𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 and the 𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 references were typed with Connec-
tion and we added a new connection to the decomposed 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference,
the system would check whether the cardinality of the 𝑠𝑡𝑎𝑟𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 ref-
erence is already at its upper bound. If so, it would try to assign the added
element to the 𝑑𝑒𝑙𝑡𝑎𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 reference. If the latter is also set, an exception
is thrown because the upper bound constraint would be violated by adding
the connection element.

7.6. Summary

In this chapter, we have proposed a formal definition of refinements and
structural decomposition, how they can be implemented in a meta-metamo-
del and how a code generator can be designed to ensure them through type

71 Unless of course, they are themselves refined in a more specific subtype
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system guarantees, in line with RQ IV.1. This can make many validation con-
straints obsolete. We have shown the applicability of the proposed concepts
in a practical scenario and discussed the advantages of our approach over
alternative ways to model the same situation.

Our notion of refinements matches redefinition of properties as defined
in the UML. However, UML redefinitions do not consider the case that
multiple properties redefine the same property and currently, it is unclear
what the semantics should be in that case and even whether this should be
allowed at all. Here, our approach proposes a semantics by extending the
semantics of the refinement information to structural decomposition. As
our implementation shows, these semantics can be enforced by underlying
type-system guarantees in case the metamodel is generated to code.

Because refinements and structural decomposition can be stacked, these
concepts make it viable to model a system in a fine granularity in order to
ensure correctness while still being able to analyze themodel at a high level of
abstraction. We envision that metamodels may contain specific metaclasses
down to a low level of abstraction, basically down to a level of manufacturers
and makes of a certain type of component. While this allows very detailed
correctness checks, it also bloats the metamodel and demands for concepts
to specify the make of a component type in a different model. Therefore,
we aim to solve these problems through techniques of Deep Modeling in
Chapter 8.
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through Deep Modeling

In this chapter, we go one step further than in the last chapter and investigate
to what degree the proposed meta-metamodel extensions also support Deep
Modeling, i.e. the support for modeling instantiation relationships between
model elements.

Many of the most often used modeling formalisms, such as Ecore, do not
allow their users to model the relation that a model element is an instance
of another, except that all model elements are instances of their class [135].
This leads to accidental complexity as metamodels must be aided by helper
constructs. Instantiation relations must be described using references, for
example using some kind of connector classes. The semantics of instantiation
is then restored by introducing OCL constraints that ensure a valid usage to
mimic instantiation relations. While this solves the modeling problem in the
first place, it has a range of problem attached. First, it makes the creation
of instances more difficult as modelers cannot express their intend directly.
Further, it makes automated tool support difficult as such tool support has
to analyze the OCL constraints to reconstruct the original intention.

For model analyses, this accidental complexity yields more complex analyses
that have worse non-functional properties. In the context of incremental
execution, this added complexity is even more a problem because it induces
larger DDGs and a higher memory consumption. Moreover, the accidental
complexity in the metamodel also implies an accidental complexity for the
types of changes that may occur in the model which in turn results in a
worse incremental performance.

As pointed out by de Lara and others [135], a domain where instantiation
relationships between multiple model elements are rather common are archi-
tecture description languages of component-based systems. These languages
typically define a concept of components where the usage of a component
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in a softwae architecture can be seen as an instantiation of the component,
often called assembly [21]. The properties of such an assembly are partially
determined by the instantiated component because it needs to be connected
to other assemblies that provide interfaces required by the component.

Approaches that aim to directly support instantiation relations between
model elements are referred to as Deep Modeling or Multi-Level Modeling
concepts72. The latter term originates from the idea that such approaches
not only support the usual two levels of metamodels and models, but that a
model repository may contain non-transitive instantiation chains of arbitrary
length. This means that a model element 𝐴 can be an instance of another
model element 𝐵 which itself is an instance of model element 𝐶 . However,
unlike inheritance, instantiation is not transitive so that 𝐴 is not an instance
of 𝐶 .

If such an instantiation relationship between model elements is mimicked in
two-level modeling standards, for example using connector model elements
that assign a value for a given instance element for a given reference element,
then it gets more complex to obtain the actual value for a given reference.
In the case of software architectures for component-based systems, it may
be necessary to traverse a large part of the architecture model to find out
what assembly is connected to a given other assembly for a given required
interface.

For an incremental execution of such analyses, this is a problem becausemany
elementary model changes must be considered when an analysis traverses
such a reference. In the example of software architectures for component-
based systems, the assembly connected to a given assembly for a given
required interface may change either if a connector is added or deleted or if
any of the connectors change their connections. If, however, the assembly
was an instance of the component, then we could raise an event when the
connected assembly for a given requird interface changed and pick up this
event in an incremental model analysis.

Most existing approaches to describe these instantiation chains use the
concept of potencies [15] to describe these instantiations. Therefore, we tried
to apply potency concepts to create a Deep Modeling version of the Palladio

72 The terminology Deep Modeling was decided on at the MULTI 2014 workshop and we
adopted it in this thesis.
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Component Model (PCM). However, applying potency concepts to the PCM,
we hit a wall trying to model composite components as they may contain
instances of other components. This means that we cannot assign several
classes such as the component class a fixed level – which is problematic
for level-adjuvant languages for Deep Modeling in general. Furthermore,
developers usually stay with the technologies they are used to as far as they
can. Suchmentality was shown for general purpose languages byMeyerovich
[149] and we suspect that this is also true for modeling languages.

A further potential disadvantage is that all the subsequent tools such as
model transformations have to be adjusted for Deep Modeling, as e.g. done
by Atkinson [13] with an adjusted version of ATL called DeepATL. Given the
plethora of model transformation languages where even the most commonly
used ones havemuch smaller user bases thanmost general purpose languages,
we think that few transformation languages will be adopted and maintained
for Deep Modeling.

In particular, we would like to avoid having to adjust the incrementalization
system from Chapter 4 or the incremental model transformation approach
from Chapter 6 for Deep Modeling. Rather, we want to keep using these tools,
but take advantage from the availability of dedicated change notifications.

Therefore, we propose a pragmatic approach how Deep Modeling, i.e. instan-
tiation chains of arbitrary length, can be realized using only two non-invasive
extensions to meta-metamodels aligned with EMOF, such as Ecore. The
crucial advantage of this approach is that all the tools available for such a
meta-metamodel can be reused and existing metamodels do not have to be
changed. In particular, our approach allows us to use implicitly incremental
model analyses and transformations also for Deep Modeling. Thus, Deep
Modeling can be introduced in a stepwise evolution process and only where
it is beneficial.

To validate the latter statement, we apply our Deep Modeling approach
to PCM. Next to classical architecture description, the PCM also contains
several metaclasses to describe control flow on an abstract level. Control
flow can be described easily without the usage of instantiation relationships
such that Deep Modeling concepts are not required. We demonstrate and
explain the simplification of model analyses through a model analysis that
checks the deployment of connected assemblies.
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The remainder of this chapter is structured as follows: Section 8.1 discusses
the advantages but also challenges creating a Deep Modeling version of
an architecture-description language based on PCM. Section 8.2 introduces
our approach of realizing Deep Modeling through structural decomposition.
Section 8.3 applies our approach to create DeepPCM, a Deep Modeling
version of PCM, and compares DeepPCM with the original PCM to reason
on advantages and disadvantages taken. Section 8.4 discusses the interplay
of the proposed Deep Modeling approach with incremental model analyses.
Finally, Section 8.5 summarizes insights and achievements of this chapter.

8.1. Challenges and Potentials Applying

Deep Modeling for Architecture

Description Languages

In this section, we discuss the challenges and potentials when applying Deep
Modelling to model component-based system architectures. The discussion
is based on PCM, which we regard as an established architecture descrip-
tion language and analyze it for the spots where Deep Modeling could be
advantageous. Section 8.1.1 discusses the advantages that can be drawn from
Deep Modeling when implemented using the Potency concept by Atkinson
and others. Section 8.1.2 discusses how the concept of composite compo-
nents fits into this application and shows how the inclusion of this concept
breaks the fixed level architecture required by Potency-based Deep Modeling
approaches.

8.1.1. Architecture description languages using

Potency concepts

This section discusses the potential advantages that we see applying Deep
Modeling to reengineer architecture description languages such as PCM.
In particular, we discuss the usage of potency concepts as introduced by
Atkinson [14]. Throughout the rest of the chapter, we will refer to the
approach created as DeepADL.

To answer where to apply Deep Modeling, one has to look for concepts that
are best described with an instance-of relationship, for example using the

204



8.1. Challenges and Potentials Applying Deep Modeling for ADLs

Deep Modeling Language (@4)

DeepADL (@3)

Component Type Repository (@2)

System Architecture (@1)

Deployment (@0)

instance of

instance of

instance of

instance of

Figure 8.1.: Levels of DeepADL

patterns of de Lara et al. [135]. In PCM, we have identified several of these
instantiation relationships.

At first, there is of course the definition of DeepADL itself. In traditional
two-level metamodeling, one would usually have the metamodel as an in-
stance of the meta-metamodel and there are at least opinions that such a
self-description would be desirable for Deep Modeling approaches as well.
However, in many level-adjuvant languages that we see nowadays, the meta-
model is an instance of a Pan-Level-Metamodel (PLM) which is not equivalent
to the instance-of relation for the other levels. This is why we have drawn
this language box only dashed. All of these levels are labeled with a number,
as usual in level-adjuvant languages.

The first step in developing a component-based system is of course the
definition of components which are instances of the general component
concept. Thus, we have an instantiation relation between DeepADL itself
and the repository level.

Assembly contexts have been introduced by Becker and others as instantiated
components [21] and therefore, the next instantiation level would be from the
repository level that is instantiated by the system architecture level in which
developers use instantiated components to assembly a system architecture.
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Even below the system architecture, there is a further level of the systems
deployment. In this deployment, the assembly contexts of a given system
are assigned the resource containers to which they shall be deployed. This
information, that instantiated components will eventually get deployed, is
already clear at the level of assembly contexts and could be specified through
Deep Modeling constructs such as potencies.

These levels reflect the development process of a component-based system.
At first, a component model is created (or selected from the many already ex-
isting ones). Then, component types are created before they can be assembled
to a component-based system which in the end can be deployed.

Because PCM is modeled in the traditional two-level structure, this multi-
level development process is not reflected in the metamodel. Whereas the
concept of components spans all levels depicted in Figure 8.1 (except for
the modeling language), every occurrence of components in the model is
modeled with a separate class with a reference to the class a level above.
Further, additional classes such as connectors implement property slots that
lose type information such as the information on a provided interface. This
type system structure has to be preserved with OCL constraints.

Here, Deep Modeling languages and in particular level-adjuvant languages
can help to reduce accidental complexity because they allow the metamodeler
to express properties of components from all levels in a single class definition
through the specification of a potency. Such a potency defines the meta-level
on which a class may be instantiated. For example, one may give the class
Component a potency 3 to specify that this class can be instantiated three
levels deep. Likewise, references are assigned a potency to declare until what
level the reference must be assigned a value.

A sketch of how a component-based software architecture description lan-
guage similar to PCM based on level-adjuvant languages with potencies is
depicted in Figure 8.2. In this figure, we have modeled the required interface
of the encoding adapter from Figure 2.3 as well as the provided interfaces
from the database adapter and the encoding component.

In particular, level @3 declares the abstract definition of the modeling lan-
guage: It simply consists of the concepts of components, interfaces and
resource containers.
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In the next level@2, we define the component types such as the EncAdapter73,
DBAdapter, OggEncoder and the relevant interfaces. These component defi-
nitions are instances of the classes Component and Interface from the @3
level. In particular, the model allows us to model that a component requires
an interface multiple times without rather artificial helper model elements
such as roles.

Because Component and Interface have a potency greater than one, we can
instantiate their instances again. The instances of the component types are
the assemblies in level @1 that represents the system architecture. We instan-
tiate the references defined in @2 that make up the required interfaces.

Lastly, because Component has a potency 3, we are allowed to instantiate
the assemblies again in level @0 that represents the system deployment. In
Figure 8.2, we simply deploy all assemblies to the same resource container
called AppServer.

Figure 8.2 shows very nicely how Deep Modeling helps to avoid accidental
complexity: The component language in Figure 8.2 essentially is about as
expressive as the metamodels in Figures 2.4 and 2.5 taken together – with
just three metaclasses.

From the perspective of an end-user that wants to model a given system, the
Deep Modeling version is also potentially easier since much of the seman-
tics how component instances for example can be connected to a system
is already contained in the instantiation semantics and can thus be much
easier supported by tools. For example, a recurring problem creating system
architectures in PCM is that people forget some required interfaces when
assembling a system architecture. There is a constraint in the metamodel to
mark such a model as invalid, i.e. for each required interface of an assembly
contexts component type, the assembly context must have an assembly con-
nector that connects to an assembly realizing this interface. The constraint
is formulated at the level of a system because the assembly connectors are
not contained by the assembly contexts but rather by the enclosing system.
However, this means that without analyzing the structure of the constraint,
by default the system will give an error message to the modeler essentially

73 In Figure 2.3 and in [21], this component is called EncodingAdapter but we abbreviated the
name to make the figure more readable.
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saying that the constraint is violated, not necessarily giving the modeler an
insight why.

This is different for the Deep Modeling version because here, the same
constraint is expressed in a multiplicity such as the specification that an
EncodingAdapter needs exactly one connection to the IAudioDB interface.
Thus, when a modeler creates an architecture where he forgets to specify
an IAudioDB implementation for a given instance of EncodingAdapter, the
system will be able to conclude that the cardinality of the Database reference
of the assembly context is wrong (is 0 meanwhile there is a lower bound 1),
giving the modeler a much better insight where the problem is.

For these reasons, a Deep Modeling version of architecture description lan-
guages such as PCM would be highly appreciated.

8.1.2. Composite Components

Up to the version of Figure 8.2, DeepADL does not yet support composite
components. To decide on how to best integrate this concept into the Fig-
ure 8.2, we need to think about on which level composite components are
instantiated.

Unlike basic components that are the smallest unit of implementation, a com-
posite component bundles the functionality of multiple other components
(possibly composite components as well) but does not contain any implemen-
tation on its own. In fact, composite components act like a facade to their
inner component instances. They are very similar to software architectures in
that they contain some assembly contexts, i.e. instances of components, that
are assembled together (which is why composite components and systems
share common base classes in PCM).

Nevertheless, composite components are components and thus belong to
the repository level: the assembly of the inner components of a compos-
ite component is independent of the choice in which systems a composite
component is used if used at all.

For a level-adjuvant language, this raises a problem because using the sketch
from Figure 8.2, composite components require a reference to assembly
contexts that are on a lower modeling.
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CompositeN+1

CompositeN

Composite1

Inner
…...

Figure 8.3.:Nested composite components that imply an arbitrarily deep level structure

This level-crossing makes it very hard to model composite components with
level-adjuvant languages: Composite components may contain instances
of composite components but since an instance of a model element must
always be in a lower modeling level than its type, this immediately means
that the modeling level on which composite components may be instantiated
cannot be specified in advance. This also holds for the maximum number of
modeling levels.

In particular, it is easy to construct composite component types that span over
a given amount of modeling levels. We simply need an arbitrary component
and wrap it in composite components. A second composite component
then wraps the first one until we have a cascade of composite components,
depicted in Figure 8.3.

Furthermore, the innermost component can still be instantiated at the level
of any composite component and might as well be instantiated together with
the outermost composite component. Thus, components may get instanti-
ated at all levels, entirely contradicting the foundations of level-adjuvant
languages.

To solve this dilemma, we see two possible solutions. The first one would be
to discard the shared functionality of composite components and systems
and implement a traditional two-level version only for assembling composite
components. However, this implies many duplicated concepts which in turn
cause maintenance efforts. These efforts may even be higher than the current
two-level versions since both the two-level version for composite components
as well as the Deep Modeling version for systems have to be maintained.
Furthermore, we are sure that this approach would be confusing modelers,
because they would have to model a component differently, depending on
whether it is used in a composite component or directly. The other solution
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«abstract»
Dog

Poodle

BreedBreed

1

«instance-of»

Figure 8.4.: Poodle is both a class and an instance

is thus to discard Deep Modeling concepts at all and implement the same
two-level approach but this also means that all the benefits we have shown
in Section 8.3.1 would be lost.

The underlying problem here is that we have a composite pattern where the
composition crosses modeling levels which is why we refer to this situation
as composite instantiation. It consists of a model element that can contain
instances of other instances of its own type such as a composite component
may contain instances of other composite components. As noted above, this
pattern implies that the amount of levels can no longer be fixed.

Meanwhile a composite component may contain instances of composite
components, it must never (not even indirectly) contain an instance of itself
as this would lead to a an endless loop when determining the behavior that
should actually be executed, a paradox often attached to level-blind74 Deep
Modeling approaches [12].

8.2. Deep Modeling through

Structural Decomposition

In this section, we describe how non-transitive instantiation relationships
can be modeled using structural decompositions and refinements. Transitive
instantiations mean that there can be model elements𝐴, 𝐵 and𝐶 such that𝐴
is an instance of 𝐵 and 𝐵 is an instance of 𝐶 but 𝐴 is not an instance of 𝐶 .

74 The terminology of level-blind Deep Modeling approaches has been introduced by Atkinson
and others [12]. We use it here because we are not aware of another terminology.
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A prominent example depicted in Fig. 8.4 is that a concrete dog (a poodle)
can be an instance of Poodle which in turn is an instance of Breed. In this
example, Poodle acts both as model element (object) and as a class which is
why it is often called a clabject to express this duality [10].

Such a situation can be described using the powertype pattern first presented
by Odell [158]. However, many modeling environments such as Ecore cur-
rently do not support this pattern and even in the UML, it is an isolated
concept. This means, the UML specification has dedicated support for this
pattern, but powertypes are used nowhere in UML.

On the other hand, there is a very prominent example of a clabject even
in traditional two-level modeling with self-descriptive meta-metamodels,
namely the class Class which is an instance of itself. Its properties as a
class are described by the references and attributes of Class because the
meta-metamodel effectively describes a type system. Essentially, the class
Class describes that its instances can be instantiated, typically done through
a mapping to a platform class that we call code generation.

The core idea of this chapter is to reuse this duality of the Class element on
a broader scope. Thus, whenever we conceptually face a clabject, a metaclass
whose instances can be instantiated again, this metaclass should be a subtype
of Class.

In that sense, our approach is slightly related to UML stereotypes where
developers may attach a domain-specific stereotype to a class to express that
it is in fact a domain element. An often perceived problem with this usage
of stereotypes is that besides the stereotype, the class is still a class and the
properties as a class may be non-existent in a given domain.

However, unlike UML stereotypes, we hide the type system relevant infor-
mation by decomposing them into domain references. For example, the
base type references of a Breed can be decomposed into the reference to the
group a breed belongs to or refined by an empty reference which essentially
means to cut off the inheritance concept. Features that are not applicable or
are constant for all instances (like class-level variables) are cut off using a
refinement with a constant. In the poodle example, this includes attribute or
reference constraints.

But as the domain concepts are still classes as they (possibly indirectly)
inherit from the class Class, we can use the standard generators to generate
model representation code for them. With this generated code, the class
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nature of a clabject is represented by a mapping into the platform type system
while the object nature of it is represented as a model element.

This mapping of the type facet to the platform type system also yields the
consequence that an instance of a clabject 𝐴 cannot be in the same model as
𝐴 unless the model is manually bootstrapped such as done for Class. As a
consequence, a clabject cannot easily be an instance of itself unless the model
developer has explicitly expressed an intent that this behavior is desirable
by bootstrapping the model. This neglects the various paradoxa presented
by Atkinson et al. [12] for languages he referred to as level-blind.

On the other hand, the instantiation implies a stratification of the model and
divides it into levels as suggested by Atkinson [12]. However, these levels
can be crossed not only by instantiation relations. Our case study example
in Section 8.3.1 will give an example where this enables us to keep a level
structure in the presence of model elements that would otherwise break the
level structure. Basically, this is possible by binding user defined clabjects to
classes known in advance through the instance-of relation. These base classes
are known before any model for the deep metamodel is created and thus
can freely be referenced, including a usage for analysis or transformation
purposes.

Besides refinements and structural decomposition, we found that it is also
useful to be able to restrict inheritance to instances of a given class. In NMeta,
this is implemented through the InstanceOf reference already depicted in
Figure 7.3 on page 185. This reference may only be specified for abstract
classes. If a class 𝐴 is an instance of class 𝐵, then only instances of 𝐵 may
inherit from 𝐴. Consider 𝑎 an instance of type 𝐶 which inherits from 𝐴.
Because 𝐵 was declared as an instance of 𝐴, 𝐶 must be of type 𝐵. Thus, the
type of 𝑎 is an object of type 𝐵. Since this is known at compile-time, the
generated code contains a refined method to obtain the model elements type
of type 𝐵.

With this relation, we may specify that Dog is an instance of Breed, meaning
that the type of each dog element will be in turn an instance of Breed.
Thus, the Breed reference is just a converted type reference and hence, the
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InstanceOf relation can be seen as a formalization of the powertype pattern,
expressed with a single reference75.

The relationship to stereotypes is hardly surprising since Henderson and
Gonzalez-Perez have already shown a close connection of the powertype
pattern to UML stereotypes some years ago [89]. We will see the InstanceOf
reference being used later in Section 8.3.1 in a number of places.

If the InstanceOf reference is left blank, this has the same effect as spec-
ifying that a class is an instance of Class. This is because the base class
ModelElement is marked as an instance of Class. Moreover, when classes
define an instance-of relation and one of its base class also specifies an in-
stance-of relation, then the new instance-of class must be a subtype of the
base class instance-of class. As an immediate consequence, all classes used
in the instance-of reference must be subtypes of Class.

8.3. A Deep Modeling version of PCM

In this section, we apply the approach presented in Section 8.2 to the archi-
tecture description language PCM and obtain a new architecture description
language DeepPCM. We explain excerpts of its metamodel in Section 8.3.1
before Section 8.3.2 explains how it is used in an example and compares this
to the original PCM.

8.3.1. An architecture description language

using Deep Modeling

To validate our concept for Deep Modeling, we created DeepPCM as a lan-
guage for architectural description using our Deep Modeling approach. Deep-
PCM reuses major parts of PCM as is: The performance-relevant elements
of PCM such as service effect specifications or stochastic expressions are
untouched. Many of these concepts do not benefit from Deep Modeling and
are therefore not relevant for this thesis. However, our approach allows
us to simply copy them from a strict two-level metamodel of PCM into a

75 In the implementation, an instance-of relation does not imply a refinement of a classes base
types and therefore two model elements are required in this case.
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Deep Modeling metamodel of DeepPCM, making this approach attractive
for refactorings for Deep Modeling.

In this thesis, we only describe what we think is the core of an architecture
description language – the assembly of a component-based system from
several component instances. We show how this is modeled using the proto-
type of DeepPCM. The metamodel parts for other aspects such as modeling
resource demands using stochastical expressions has not been the focus of
our work. These aspects are modeled exactly the same way as the metamodel
parts have just been copied.

The DeepPCM prototype has been extended to cover the full functionality of
PCM in a bachelor thesis by Alexis Bernhard [27], supervised by the author
of this thesis.

We applied the level hierarchy from Figure 8.1 and tried to keep as close as
possible to the metamodel sketched in Figure 8.2, but show how our approach
is capable to model also composite components.

8.3.1.1. Modeling System Architectures

We first explain the metamodel excerpt for component types. Component
types are represented by the abstract class Component. Since component
types can be instantiated, they are clabjects and therefore Component must
inherit from Class. Same as PCM, DeepPCM supports two different kinds of
component types, basic components and composite components. Instances of
a component type are assembly contexts, so we create a reference constraint
to the base types of Class and fix it to the AssemblyContext class. Conversely,
we specify that AssemblyContext is an instance of Component.

Further, a component type is an implementation of its provided interfaces.
The most convenient way to model this is that the component types inherit
from the interfaces that they provide. Thus, Interface itself must be clabject
as well and the provided interfaces of a component type refine its base types.
Here, we introduced a subtle difference to PCM since components in PCM
are allowed to provide the same interface multiple times through multiple
roles. However, while the metamodel allows this, much of the tool support
currently assumes that an interface can only provided once per component
type so that this restriction is actually more accurate.
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For each required interface of its component type, an assembly context
must be assigned an assembly context whose component type provides the
required interface. In PCM, this is modeled through an AssemblyConnec-
tor. In DeepPCM, we wanted assembly contexts to have a strongly typed
reference for each required interface of the component type so that the
ontological property of required interfaces of a component type becomes
the linguistic element that the assembly context should have a reference.
Hence, the required interfaces refine the references of Component. Thus,
RequiredInterface must inherit from Reference. The ReferenceType refer-
ence of Reference must be refined since for a RequiredInterface element
to be valid, the type must be an Interface element.

Because component types are classes, we can map them to a platform class
and instantiate instances of component types. These instances are assembly
contexts since any component type as a class also inherits from Assembly-

Context. This makes the component type of an assembly a part of its identity
since the type of an object cannot be changed during its lifecycle. Thus,
unlike e.g. in PCM, the component type of an assembly cannot change and
assembly contexts cannot exist without a component type. Here, important
validation rules are ensured directly by the type system which we see as a
big advantage.

The signatures offered by an interface are not relevant at the system ar-
chitecture level since the fact that a component type provides a particular
interface already implies that a component provides services that implement
the interfaces signatures. As a consequence, the ontological properties of an
interfaces signatures or a component types offered services are no linguistic
properties and are therefore usual references, i.e. no refinement references.
Furthermore, also the disjunction of components into basic components and
composite components has no effect on the system architecture.

The entire metamodel up to this point can be seen in Figure 8.5 where we
again used blue, dotted lines to represent reference refinements. The classes
Class, Reference and ReferenceType are imported from NMeta and we have
omitted their details for brevity. Furthermore, the attributes compartment
of the classes also contain reference constraints and attribute constraints.
Note in particular the attribute constraint of the Interface class that sets
the IsAbstract attribute to True, meaning that instances of Interface as
classes are abstract.
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1 public interface IAssemblyContext : IModelElement, IReference {

2 IComponent GetComponent();

3 IAssemblyContext GetRequiredInterfacesValue(IRequiredInterface reference);

4 ...

5 }

Listing 8.1: The generated interface for an AssemblyContext

Because AssemblyContext is marked as an instance of Component, we can
generate a method that returns the component type of an assembly context.
Furthermore, as the references of a component type are decomposed into its
required interfaces, we statically know that each component instance will
have an assembly context assigned for each required interface. Therefore,
we can generate a method that takes a RequiredInterface and returns the
corresponding AssemblyContext element connected on the reference gener-
ated for the required interface. The name of this method is constructed using
the name of the reference that is used as a component for the references of a
Component as a class.

The interface for an AssemblyContext is depicted in Listing 8.1. Any class
generated for an instance of a component type implements this interface.
To implement the GetComponent method, the generated code for a particular
component is aware of the component it was generated for and resolves the
URI of that component. The implementation of GetRequiredInterfaces-
Value simply gets the value for the given reference and casts the result to
the statically known type. In this case, we know that the reference type of a
required interface is an instance of Interface and therefore must have the
base type AssemblyContext and must be single-valued.

We believe that these generated methods make the generated API even
simpler to use than with the workaround in traditional two-level modeling
where developers of a model transformation would have to iterate manually
through connector elements such as AssemblyConnectors in PCM to find the
assembly context connected for a given required interface.

Assembly contexts are composed in a system architecture where a modeler
instantiates components from a repository and connect them appropriately.
Such a system architecture can be deployed to multiple resource environ-
ments. This deployment can be seen as an instantiation where the deployed
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system is an instance of the abstract system architecture. Thus, we model
SystemArchitecture as a clabject, i.e. it inherits from Class. For each as-
sembly context in a system architecture, developers must assign a resource
container where the assembly context will be deployed to. Thus, the assembly
contexts of a software architecture form its references as a class. Each such
reference is typed with the resource container where the assembly context
shall be deployed to.

This deployment view can be seen in Figure 8.6. In this diagram, the sepa-
ration of the different modeling levels can be easily seen since the classes
related to the deployment on the left hand of Figure 8.6 have no connec-
tion (except InstanceOf) to the classes representing the system architecture
which are on the right hand.

A key observation here is that DeepPCM contains classes spanning all levels
involved in architecture description, i.e. repository, assembly and deploy-
ment. It is not restricted to the highest (repository) level. The purpose
of classes on lower levels such as AssemblyContext for the system archi-
tecture level is mainly to give them an application-independent structure
that is usable also for consumers of the model such as transformations or
analyses.

8.3.1.2. Composite Components

Next, we describe the representation of composite components. In Section
8.1.2, we discussed that composite components break a fixed level structure
because a composite component may consist of instances of components.

NMeta is agnostic of modeling levels and allows this. In particular, the
metamodel fragment supporting composite components is depicted in Figure
8.7. Composite components may contain arbitrarily many assembly contexts.
These assembly contexts form the assemblies that the component uses to
realize its functionality. A second reference ExposedAssemblies denotes the
subset of assemblies that are exposed to outside world, i.e. the components
that realize the interfaces that the component offers.

On the other hand, the component types of the assembly contexts used in the
composite component may require interfaces. In order to have a valid model,
all assembly contexts within the composite component must be connected to
an instance of some class implementing the interface. This may be another
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assembly context within the composite component but it may also be a
delegation to the required interface of the composite component. While the
first does not require any additional model elements, the latter requires to
model delegation connectors explicitly. These delegation connectors must
be instances of the interfaces which they delegate to. We model this as being
instances of a common Delegate class. These delegates act like delegate type
definitions in .NET that basically simply define a method signature. Likewise,
delegators in DeepPCM simply reference the interface which they delegate.
Since they can be instantiated in delegation connectors, they are clabjects as
well and thus inherit from Class.

This requires a new validity constraint as a delegation connector may only
use a port with a type that is referenced from its delegate type.

The downside of our approach unveils when compared to a potency-based
approach such as sketched in Figure 8.2. This sketch required as little as just
three metaclasses to model the components in a component-based system,
their assembly in a software architecture and their deployment. For each
of these metaclasses, DeepADL requires roughly one metaclass per level
on which the metaclass can be instantiated. For the class Component in
the potency-based sketch, DeepADL requires the metaclasses Component
and AssemblyContext. In this case, a third class can be saved because the
instances of an assembly appear as references in the deployment.

8.3.2. Example Usage: A Media Store in DeepPCM

To evaluate the advantages of DeepPCM over architectural languages using
traditional two-level modeling, we consider a concrete example. In particular,
we modeled a simple e-commerce application called the MediaStore. This
e-commerce application lets users upload and download media files that are
persisted in a database. Uploaded media files are processed with a watermark
and saved to the database. This system has been used as a case study for
PCM already in 2009 [21]. The implementation of DeepPCM along with
models and the generated code for all levels can be obtained online76.

76 Prototype: http://github.com/georghinkel/DeepModelingDemo, Full implementation by
Alexis Bernhard: https://github.com/ghmanager/DeepPCM/, retrieved 2 Aug 2017
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«abstract»
IAudioStore

«abstract»
IUserManagement

«abstract»
IAudioDB

«abstract»
AssemblyContext

AudioStore UserManagementEncodingAdapter

DBAdapter SystemArchitecture

UserManagement

1AudioDB

1

Assemblies

1..*

Figure 8.8.: Excerpt of the implied DeepPCM metamodel to specify the architecture of a Media-
Store system based on a repository of component types

An overview of the MediaStore is depicted in Figure 2.3 on page 41. This
figure contains all three levels that have been discussed above. The com-
ponents and the interfaces of the MediaStore form the repository. These
repository components are then used to create the system architecture by
composing them together. Finally, Figure 2.3 also shows the deployment that
all components are deployed to a single application server except for the
database component and the web browser.

In the component repository, the differences between PCM and DeepPCM
are small. This is reasonable since components are instances of the DeepPCM
metamodel just as they would be using two-level metamodeling.

If we take a look to the next level, the situation is different. In PCM, assembly
connectors are very generic (cf. Figure 2.4 on page 42). The fact that in a
valid system architecture, each component must have an assembly connector
for each required interface must be specified through an OCL constraint.
Consequently, if a user forgets to add an appropriate assembly connector, he
gets an error message saying that not all interfaces are connected unless a
more appropriate error message is deduced from the OCL constraint or man-
ually implemented. Conversely, one also needs to ensure that all assembly
connectors of an assembly context are valid.
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In the DeepPCM version the assemblies are much more specific to the com-
ponent repository of the MediaStore. Since they are in fact classes, we can
visualize them in a class diagram. An excerpt of this class diagram around
the AudioStore component is depicted in Figure 8.8. Here, each required
interface is turned into a reference because in fact a RequiredInterface
model element is a reference. Each of these references has a multiplicity
of 1, therefore implying a constraint that for example an AudioStore must
have an AudioDB assigned. This constraint is enforced by the type system
disallowing the modeler to connect assemblies if the interface types do not
match. The error message that can be presented to the user if this contraint
is violated, that the AudioDB of an AudioStore cannot be null, is much more
specific and likely to be more helpful.

At the same time, the number of model elements required is drastically re-
duced. While in PCM, each component instance requires one model element
for the assembly context plus one for each required interface of the instanti-
ated component type, DeepPCM has only one model element per component
instance where all relevant information for this assembly is combined and
correctly typed.

The NMF code generator for classes generates us a model representation
code for the AudioStore component type, i.e. a generated API. We use this
API to (currently programmatically) create instances of this component type.
This generated API only allows us to set domain-specific properties like the
referenced IAudioDB component but it does not show us class characteristics
like references or attribute constraints. The reference of references has been
refined whereas the attribute constraints reference has been constrained.
In fact, the AudioStore class does not inherit from Class and explicitly
implements its interface.

A similar statement is true for the deployment. Here again, the solution in
two-level modeling such as applied in PCM is to introduce a generic con-
cept of an allocation context. Whereas the deployment in PCM consists of
an allocation connector per assembly, DeepPCM concentrates all required
information in a single model element. However, in this case the type sys-
tem does not bring an advantage since the type of a resource allocation is
independent of the assembly. An excerpt of the PCM metamodel regarding
the deployment can be found in Figure 2.5.

On the other hand, the deployment for the MediaStore in DeepPCM is
depicted in Figure 8.9. Because we created a SystemArchitecture called
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ResourceEnvironment ResourceContainer

MediaStoreSystem

Containers

0..*

Environment 1 AudioStore 1

Figure 8.9.:Deployment of the MediaStore in DeepPCM

MediaStoreSystem, we can instantiate this clabject for the deployment of the
MediaStore. Because an assembly context is a reference, we get a reference
for every assembly context that is used inside the system.

Of course, all of this tool support can also be provided with two-level model-
ing techniques. However, to the best of our knowledge, there is no satisfying
solution yet that analyzes the OCL constraints and uses this analysis to
provide tool support up to such a level and instead, the tool support has to
be created manually. The problem is that this information is widespread
among multiple OCL constraints. In PCM, the metamodel excerpt of Figure
2.5 needs one validity constraint, the excerpt from Figure 2.4 already four. In
DeepPCM, these validity constraints are already enforced by the type system
such that no additional constraint is required.

8.4. Incremental Model Analyses for Deep Models

By construction, the Deep Modeling formalism introduced in this chapter
is designed as an extension to existing modeling technology and therefore,
the theory of implicit incrementalization systems extends to deep models –
models with a chain of multiple instance-of relationships between different
model elements – without any further action required. However, the style
in which model analyses would be written for deep models often differs
entirely from the way analyses are written for traditional models because
the concrete type of the model elements are not known – usually even do
not exist – at the time the model analysis is specified.

Consider again the domain of component-based software architectures; a typ-
ical model analysis that one would like to specify is the validation constraint
that assemblies connected to each other should be deployed on the same
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1 public IEnumerable<Tuple<IAssemblyContext, IRequiredInterface>>

GetFaultyContainers

2 (ISystemAllocation allocation) {

3 return from ass in allocation.GetSystemArchitecture().AssemblyContexts

4 let container = allocation.GetAssemblyContextsValue(ass)

5 from req in ass.GetComponentType().RequiredInterfaces

6 let connected = ass.GetRequiredInterfacesValue(req)

7 where allocation.GetAssemblyContextsValue(connected) != container &&

8 !allocation.Environment.Links.Any(link =>

9 link.ConnectedContainers.Contains(container) &&

10 link.ConnectedContainers.Contains(

11 allocation.GetAssemblyContextsValue(connected)))

12 select Tuple.Create(ass, req);

13 }

Listing 8.2:Amodel analysis whether assemblies are deployed to the same or connected resource
containers in DeepPCM

resource container or otherwise there is a link between these resource con-
tainers specified. In a Deep Modeling scenario such as described in Section
8.3, the concrete types of the involved model elements are the component
types and system specifications. The latter are specific for a concrete system
described in a model and therefore unknown at the time the model analysis
is specified.

As a consequence, such an analysis is specified relying on the reflection
API of the generated code. For example, an implementation for the analysis
whether connected assemblies are deployed to the same or connected com-
ponents using DeepPCM is depicted in Listing 8.2. To navigate through the
involved levels, the implementation uses reflection APIs such as GetSystem-
Architecture, a type-safe version of GetClass that return the type of the
current model element (which in case of a system allocation is a system archi-
tecture). Furthermore, the analysis requires access to referenced elements for
a given reference such as GetRequiredInterfacesValue, a type-safe version
of GetReferencedElement that returns the referenced element for a given
reference.

From an incrementalization point of view, it is noteworthy that there is
no action to be done to support the correct incrementalization of GetClass
and its type-safe derivatives – they return the type of a model element that
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cannot be changed during the lifetime of a model element77. This is different
for GetReferencedElement because the model element referenced by a given
reference may indeed change during the lifetime of the model element.

Therefore, the code generator generates a manual incrementalization of these
methods along with their implementation. This generated incrementalization
takes advantage of the change events generated for a given reference and
therefore only issues a change notification when the value of the respective
reference is changed.

The fact that the reflection methods simply use the generated events to notify
clients when their return value changes also makes such calls very effective
in an incremental setting.

On the contrary, consider the same analysis written for a strict two-level
metamodel such as the original PCM. To yield a good comparison, we im-
plemented the analysis from Listing 8.2 for a simplified version of PCM
that in particular use the same reference names where applicable78. This
implementation is depicted in Listing 8.3.

The first insight from a comparison of the analyses in Listings 8.2 and 8.3
is that they almost exactly have the same size in terms of number of lines
and even number of characters. The reason for that is that the Deep Mod-
eling version of the analysis has to navigate to the required interfaces of a
component while the two-level analysis can make a shortcut and stay on
the system architecture and deployment levels: The Deep Modeling version
iterates the assemblies of a system and uses the repository level to find con-
nected assemblies meanwhile the two-level analysis directly operates on the
connections between assemblies.

Both analyses share that they require to find the resource container to which
a given assembly has been deployed to for a given deployment model of a
system architecture. While the Deep Modeling version of the analysis uses
the generated level-crossing reflection API for that (the call GetAssembly-
ContextsValue), the two-level analysis picks the first allocation context that

77 At least not in NMF. Other modeling environments more inspired by ontologies where
elements do not necessarily have a type at all may support changing the type of an object at
any time.
78 All references in PCM are suffixed with the class name that defines these references which
unnecessarily degrades the understandability of the analysis.
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1 public IEnumerable<IAssemblyConnector> GetFaultyContainers(IAllocation

allocation) {

2 return from connector in allocation.AllocatedSystem.Connectors

3 let providingAllocation = allocation.AllocationContexts

4 .FirstOrDefault(c => c.Assembly == connector.

ProvidingComponent)

5 let requiringAllocation = allocation.AllocationContexts

6 .FirstOrDefault(c => c.Assembly == connector.UsingComponent)

7 where providingAllocation.Container != requiringAllocation.Container

&&

8 !allocation.Environment.Links.Any(link =>

9 link.ConnectedContainers.Contains(providingAllocation.Container)

&&

10 link.ConnectedContainers.Contains(requiringAllocation.Container)

)

11 select connector;

12 }

Listing 8.3:An analysis whether components are correctly allocated

references the required assembly. In batch execution, the difference between
these two ways to query the resource container is almost negligible since the
generated reflection API internally simply checks the name of the provided
assembly (which exists because all references have a name) and returns the
first that fits, very similar to the FirstOrDefault function.

However, in an incremental execution, the difference is much more signif-
icant. When executed incrementally, the function GetAssemblyContexts-
Value does not only return the value for the given reference (typed as an
assembly) but also picks up the change event generated for that reference.
This event fires when the value for the given reference changes, which pre-
cisely describes when the value of GetAssemblyContextsValue called with
that reference as argument changes. This is in contrast to the incrementaliza-
tion of FirstOrDefault which has to create a DDG for each element of the
underlying collection to incrementally evaluate the given predicate: Because
the allocation context elements are not tightly bound to an assembly, same
as connector elements, a model manipulation that changes the assembly of a
given allocation context or the ends of a connector potentially changes the
deployment information for any assembly. This has the consequence that a
DDG has to be created for every pair of assembly connector and allocation
context to evaluate the predicates in lines 4 and 6 of Listing 8.3. Thus, the
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1 public IEnumerable<Tuple<IAssemblyContext, IRequiredInterface>>

GetFaultyContainers2

2 (ISystemAllocation allocation) {

3 return from ass in allocation.GetSystemArchitecture().AssemblyContexts

4 let container = allocation.GetAssemblyContextsValue(ass)

5 from req in ass.ReferencedElements.OfType<IAssemblyContext>()

6 where allocation.GetAssemblyContextsValue(req) != container &&

7 !allocation.Environment.Links.Any(link =>

8 link.Connects.Contains(container) &&

9 link.Connects.Contains(allocation.GetAssemblyContextsValue(req)))

10 select Tuple.Create(ass, req);

11 }

Listing 8.4: Alternative analysis whether assemblies are deployed to the same or connected
resource containers in DeepPCM

incrementalized analysis has to listen to 𝑛 DDGs generated for distinct allo-
cation contexts where 𝑛 is the number of allocation contexts, approximately
the number of assemblies in a software architecture.

One could argue that these DDGs only cause a memory overhead but not
affect the response times to changes as long as the assembly of an allocation
context or the ends of a connector are not changed. This is possible by pre-
ferring to add new connectors instead of modifying existing ones. However,
still, adding a connector requires to instantiate 𝑛 new DDGs which eliminates
the chance for an efficient response.

Notably, the level shortcut that we took in the two-level version of the
analysis is also available in DeepPCM and is depicted in Listing 8.4. Instead
of iterating over the required interfaces that make up the references of a
given assembly context, one can also directly iterate over the referenced
elements and filter them according to the type. In comparison to the version
in Listing 8.2, this saves a let operator. This reduces the overhead of the
Deep Modeling version of the analysis further.

8.5. Summary

In this chapter, we have proposed an approach how Deep Modeling can
be achieved with a slight and non-invasive extension to existing and well-

229



8. Simplify model analyses through Deep Modeling

accepted meta-metamodel such as Ecore. This brings us into the comfortable
situation that we can apply Deep Modeling techniques such as non-transitive
instantiation chains of arbitrary length with a self-describing and thus sound
meta-metamodel and at the same time reuse all available tools to work with
the models such as model transformation languages.

In particular, we can easily apply implicit incremental analyses and transfor-
mations to deep models.

At the same time, our approach circumvents paradox situations level-blind
approaches to Deep Modeling have been blamed for in the past. We have
applied our approach to the realistic scenario of creating a Deep Modeling
version prototype of the popular Palladio Component Model (PCM) where
we could simplify the generated API for the model and reduce the number
of constraints necessary.

The approach does not only allow us to use our incrementalization system in
the context of deep models, it also makes model analyses using this approach
faster because the incrementalization can make use of dedicated change
notification when a value for an instance reference changes instead of having
to match and filter a multitude of changes of artificial connector elements.
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9. Validation and Evaluation

The goal of this chapter is to validate and evaluate the approaches and
implementations of Parts II and III using several case studies. In particular,
the goal is to demonstrate both the applicability of the presented approaches
to a wide area of problems and to evaluate the approaches with regard to
performance. Here, the most important metric is the response time from a
model change to get an updated analysis result. The characteristics of the
analysis result but also those of the changes made to the source model are
specific to the case study.

The remainder of this chapter is structured as follows: At first, Section 9.1
introduces the goals of the validation. Section 9.2 briefly discusses how
the case studies of this chapter achieve these goals. Section 9.3 discusses a
case study on incremental queries in the railway domain, taken from the
TTC 2015. Section 9.8 discusses a case study in the Smart Grid domain,
submitted to and accepted at the TTC 2017. Section 9.4 discusses a case
study for an incremental dataflow language, taken from the TTC 2016 Live
Contest. Section 9.5 discusses the incrementalization of a bidirectional model
transformation between state machines and Petri Nets. Section 9.6 presents a
systematic analysis on the expressiveness of unidirectional synchronization
blocks through a mapping from the ATL transformation language to NMF
Synchronizations. Section 9.7 discusses a case study on model-based
refactoring of Java code using a bidirectional model transformation to a
simplified Program Graph model, taken from the TTC 2015. Section 9.9
presents a case study on bidirectional model transformations, taken from
the TTC 2017. Section 9.12 discusses internal and external threats to validity.
Finally, Section 9.13 summarizes the results of the validation.
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9.1. Validation Goals

The correctness of the concepts for incremental model analyses and incre-
mental model transformations has been formally proven, based on an abstract
representation of these systems. Therefore, the correctness of the case study
solutions is not in the center of the validation. Because the presented contri-
butions work implicitly, we do not validate that they minimize the effort for
developers.

The validation goals are thus as follows:

Applicability A formalism is only beneficial to developers if it can be ap-
plied to practical problems. For the incremental computation system, the
applicability is clear, as the approach is based on a Turing-complete calculus.
Nevertheless, we want to validate whether the usage is practical for common
problems.

For model transformations, the situation is different as the concept of syn-
chronization blocks is new. Therefore, it is not clear what kinds of model
transformations can be expressed.

A similar statement holds for the presented approaches for meta-metamodel
extensions. Even though refinements and structural decomposition are in-
spired by UML redefinitions and their applicability can be drawn from there,
the lack of other implementations of this concept in the UML means that the
applicability in practical problems is not well understood.

Performance The response time from an elementary model change to an
updated analysis result is critical for incremental tools: Especially when
change notifications are not of importance, the theory of incrementalization
becomes useless if it is cheaper to recompute the entire analysis after each
model change. Therefore, it is highly interesting to see whether the usage
of incrementality actually improves the performance in the selected case
studies.

For the meta-metamodel extensions, performance is with regard to the per-
formance of model analyses based on metamodels that use these extensions.
As argued in Chapter 7, several kinds of model analyses practically do not
consume any time because they can be guaranteed through type system
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guarantees. For others, it is questionable what the impact of refinements
and structural decomposition to the performance of (incremental) model
analyses is.

Memory Consumption Incrementality comes at the cost of memory that is
required to save previously computed intermediate results of the analysis.
Therefore, a goal of the validation is to find out howmuchmemory is required.
This again also holds for analyses based on metamodels that use the proposed
modeling extensions.

Understandability One of the main goals of this thesis is to ensure an
incremental evaluation of an analysis or transformation while maintaining
the understandability of the batch specification. Therefore, it is an important
validation goal to evaluate the understandability of our approach.

For the proposed meta-metamodel extensions, the goal to validate the under-
standability is twofold: For once, we want to validate whether model analyses
built for metamodels using these extensions are more understandable, but
secondly, we are also interested how understandable these metamodels are.

Correctness Even though the correctness is guaranteed by proofs, we use
correctness indicators where available to make sure that the implementation
is correct, at least with respect of what the used correctness indicators can
tell.

Relaxation of Assumptions To validate the assumptions from Section 1.2,
we are also interested how the contributions depend on these assumptions.

9.2. Validation Strategy

To tackle the validation goals, we use multiple cases that have been part
of the Transformation Tool Contest (TTC). For these cases, solutions using
other modeling technologies are available, often written by developers of the
respective tools. Therefore, it is a reasonable assumption that these solutions
are the best solutions possible with these tools, which therefore allows a
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comparison of the tools. However, the cases at the TTC do not cover all
aspects of this thesis and therefore, we added additional case studies.

For the proposed meta-metamodel extensions, we seek a comparison with
other tools, in particular Deep Modeling tools, using the MULTI 2017 mod-
eling challenge. Here, models according to multiple modeling standards
could be submitted based on a common domain description. Additionally,
we evaluate the incremental Deep Modeling analyses introduced in Section
8.4.

In the following, we present the strategy for all of the properties that we
want to validate and evaluate.

Applicability For the applicability, it is important to have a broad range
of problems in a multitude of different application areas. In particular, the
multitude of cases from the TTC fulfill this criterion. In addition, the fact
that all TTC cases except the Smart Grids case are not authored by the author
of this thesis, a bias towards the approaches of this thesis can be excluded.

For the model transformation approach, we essentially picked all TTC cases
from the most recent years that match the definition of a model transforma-
tion problem or a model analysis as in Section 1.2. In addition, we picked the
live contest of the TTC 2016 that concentrates on creating a new transforma-
tion engine with a tightly defined execution semantics and an incremental
execution.

To further validate the applicability of the model transformation approach
from Chapter 6, we show that the language has roughly the same expressive-
ness as the declarative part of ATL, presumably the most common model
transformation language in the community [203].

For the applicability of the meta-metamodel extensions, we created a solution
to the Bicycle Shop modeling challenge at the MULTI workshop 2017. For
this modeling challenge, similar to the TTC, a call for solutions was issued
such that multiple models using other tools are also available.

Performance As indicated before, the most important performance metric
in the context of this thesis is the response time from a model change to an
updated analysis or transformation result. This metric is captured for all
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input sizes if applicable. As the input sizes are hard to compare between the
cases, we capture the following metrics in addition:

1. Speedup ranges with respect to batch execution

2. Speedup ranges with respect to other tools (incremental or
non-incremental)

We then take the performance results of all case studies together to reason
on the advantages and pitfalls of incremental computation.

To compare the results among case studies, all performance results are col-
lected with an Intel i7-4710 CPU clocked at 2,50Ghz on a system with 16GB
RAM. The only exception here are the performance measurements for the
distributed incremental queries which are collected on a Microsoft Azure
cloud cluster. All benchmarks are publicly available such that the results
are reproducible. In most cases, the benchmark repositories also contain
the R scripts that automatically reproduce diagrams such as depicted in this
thesis.

Memory Consumption Similar to performance, we also measure the mem-
ory consumption for the case studies. Here, we are interested in the relative
memory overhead caused by incremental computation. However, there are
also many metrics available to measure memory consumption: peak main
memory, average main memory, memory allocations or the working set size.
The problem with average and peak main memory is that they are difficult to
measure as they require a close monitoring of the process, which is often im-
practical. Furthermore, these metrics are inflated by the lazyness of garbage
collection: Unless the system is under memory pressure, a process may easily
consume more memory than necessary. Therefore, we have decided for the
working set size as it is easy to measure and stable across multiple runs of a
benchmark.

On the contrary, memory is always tied to a process which makes mem-
ory measurements hard in case multiple solutions run in the same process.
Therefore, we do not measure the memory consumption in all case studies.
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Understandability One of the merits of the TTC is that all solutions for a
given case are presented at the TTC workshop and participants are given a
short questionnaire about these solutions. The questionnaires are made by
the TTC organizers, so there is little influence that solution authors have to
these questionnaires79. Nevertheless, the responses often enable to reason
on attributes such as understandability that are otherwise hard to manifest.
Therefore, we review the available data from the open peer reviews and the
questionnaire responses at the workshops for all of the TTC case studies.

The used questionnaires are available in the appendix for reference.

Correctness We expect all case studies to produce correct results. In fact,
all correctness indicators in all case studies indicated correct solutions.

It is clear that these correctness indicators do not prove correctness of the
system as they only show that at least in the considered cases, the case study
solutions did not contain failures captured by these correctness indicators.
Nevertheless, we think that checking these correctness indicators is better
than not doing so. However, a complete formal proof of correctness of the
implementation is left for future work.

To maximize the types of failures captured by the correctness indicators,
we often use randomly generated change sequences such that a mixture
of different types of changes occur, making the correctness checks more
expressive.

Relaxation of Assumptions In order to apply the approaches presented in
this thesis to the selected case studies, the problems in the case studies fit
well into the assumptions made in Section 1.2. However, one case study
leverages these assumptions, incrementalizing an imperative data flow with
side-effects. Therefore, we analyze the effects when these assumptions are
violated in the TTC 2016 Live Contest case study described in Section 9.4.

For an overview, we depict the validation goals of all case studies in Table
9.1 where checkmarks indicate that the validation goal was tackled by the
respective case study.

79 A negative example is the TTC 2015 where the questionnaire consisted only of a single
question asking for the overall evaluation of the solution.
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9.3 Railway Pattern Matching TTC 2015 � � � � �
9.4 multiple HOT TTC 2016 � � – – �
9.5 synthetic BX – � � – – �
9.6 multiple HOT – � � – – �
9.7 Java refactoring BX TTC 2015 – – – � �
9.8 Smart Grids Model Views TTC 2017 � � � � �
9.9 synthetic BX TTC 2017 � � – � �
9.10 synthetic Metamodels MULTI 2017 – – – – –
9.11 synthetic Pattern Matching – � � – – �

Table 9.1.: Summary of the case studies presented in this thesis

In the following sections, we present the case studies. Most case studies have
the same structure. At first, they present the benchmark setup, i.e. briefly
introduce the problem and the tasks that had to be solved by benchmark
solutions. Next, we explain the validation goals for the respective case
study. Then, the NMF solution is presented before results from open peer
reviews, questionnaire responses at the TTC workshop and performance
measurements are discussed. Lastly, the presentation of each case study
concludes with a summary of the case study.

9.3. Case Study: Incremental Queries

on Railway Models

In this section, we analyze the Train Benchmark case [197] at the TTC 2015 to
which an NMF solution was submitted [105]. This benchmark consists of five
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analysis queries. The only incremental tools that participated in this contest
were VIATRA Query80 from the case authors and the NMF solution.

At the TTC 2015, solutions to the benchmark were submitted using NMF
[105], FunnyQT [114], ATL [211], VIATRA Query [194] and Sigma [130].

9.3.1. Benchmark Setup

In the scope of this case study, we only investigate the TTC version of
the Train Benchmark [197] that covers only a subset of the entire Train
Benchmark [196]. We briefly describe the benchmark setup here, but further
details can be found in these papers.

Besides the SwitchSet query briefly introduced in Section 1.6, the benchmark
included four other queries: PosLength queries the segments in the railway
network that have length 0 or less. SwitchSensor looks for switches without
a corresponding sensor. RouteSensor looks for switch positions along a route
that refer to switches that are not part of a sensor that is defined within
that route. The most complex SemaphoreNeighbor query searches for routes
that end at given track segment (which means that the next track segment
belongs to a different route), but the exit semaphore of the route is not the
entry semaphore of the route that starts with the connected segment.

The benchmark consists of four phases depicted in Figure 9.1: Read, Check,
Repair and Recheck. In the Read phase, solutions of the benchmark simply
load the model of the respective size. In the Check phase, the number of
invalid elements is computed, i.e. the number of pattern matches where each
pattern match represents a constraint violation. In the Repair phase, several
of these (either 10 or 10% of all, determined by the parameter Change set size)
constraint violations are fixed. After that, the number of invalid elements
is refreshed in a Recheck phase of the benchmark. For each combination of
input model (size) and change set size, the benchmark is run five times for
each solution. Within each run, phases Repair and Recheck are repeated ten
times.

During the execution of these phases, the benchmark collects metrics on
execution time, number of invalid elements and memory usage.

80 In 2015, VIATRA Query was called EMF-IncQuery.
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Figure 9.1.: Phases of the Train Benchmark [197]

In the scope of this case study, we are specifically interested in incremental
revalidation, i.e. the time for Repair and Recheck.

To evaluate Incerator, we had to slightly modify the benchmark. By default,
the only changes that are done during the benchmark execution are fixes of
the constraint violations of the respective queries, resulting in very homo-
geneous change sequences. However, in a real world application, changes
to the model are rather heterogeneous: switch positions, semaphore signals
and lengths of segments might change arbitrarily. Therefore, we adapted the
benchmark to fix constraint violations only in 20% of the changes. Other-
wise, we perform random changes in the model. As we think that changes to
switch positions or semaphore signals are the most common in this scenario,
they also occur most often in the benchmark.

9.3.2. Validation Goals

This case study aims to evaluate the following aspects:

Applicability The case study is conducted in the railway domain, which is
a very interesting example of a cyber-physical system. Furthermore, pattern
matching is very interesting as this kind of analyses is typical in many
domains.

Performance The case study yields a very good opportunity to evaluate the
performance that can be achieved for incremental model analyzes using the
incremental SQO implementations presented in Section 4.4. In particular, it
allows us a comparison with VIATRA Query, a tool dedicated to incremental
pattern matching.
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Furthermore, we use this case study to validate whether distributed com-
puting through Orleans or Incerator can give any additional performance
benefits.

Memory Consumption We use the Train Benchmark to also measure the
memory consumption induced by incremental computation. In particular,
we are interested in the memory overhead required to run incremental
computations. Further, we want to know how the memory requirements of
our approach relates to other approaches, in particular VIATRA Query.

Furthermore, we want to evaluate whether and to what degree the memory
consumption can be reduced by Incerator automatically.

Understandability As a TTC case study, the Train Benchmark case gives us
the possibility to evaluate qualities of our solution that are hard to measure
other than through perception. In particular, we are interested to see how
the understandability of our approach compares to other solutions.

Correctness The Train Benchmark has a correctness indicator: The number
of constraint violations after each Check or Recheck phase. We use these
indicators to check correctness. To reproduce the exact same sequence of
randomnumbers, the solution uses a randomnumber generator that produces
the exact same numbers as the random number generator built into Java.

9.3.3. The NMF Solution

The description of the NMF solution to the Train Benchmark is based on the
original submission to the TTC 2015 [105].

In the solution, we use NMF Expressions to incrementally query the source
model and cache the invalid elements continuously. However, this means
that the phases Repair and Recheck get merged as the model manipulation
automatically updates the incremental query result. In particular, the Recheck
phase get meaningless as the updated results are always available and could
be used for immediate feedback, while more computational effort is put to
the model manipulation tasks in the Repair phase.
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The implementations of the five tasks described in [197] is described be-
low81.

In the following we present the solution to the tasks, following the structure
of the case description, though with omitted sort keys.

Please note that the parameter names such as pattern or action are optional,
we only included them for better understandability.

1 Fix(pattern: rc.Descendants().OfType<Segment>()

2 .Where(seg => seg.Length <= 0),

3 action: segment => segment.Length = -segment.Length + 1);

Listing 9.1:NMF implementation of the PosLength query

The implementation of the PosLength query is depicted in Listing 9.1. It uses
the Descendants operation of NMF to iterate all models contained somewhere
in the railway container. To this collection of model elements, a type filter is
applied that restricts the collection to instances of Segment. This collection
of segments is finally filtered to those that have a length below 0. The repair
operation simply sets the length as suggested in the case description 1.6.

1 Fix(pattern: rc.Descendants().OfType<Switch>()

2 .Where(sw => sw.Sensor == null),

3 action: sw => sw.Sensor = new Sensor());

Listing 9.2:NMF implementation of the SwitchSensor query

The implementation of SwitchSensor is depicted in Listing 9.2 and works very
similar, though this time, elements of type Switch are selected and filtered
for those where no sensor is attached. The repair operation creates a new
sensor and assigns this to the Sensor property of the selected switch. Note
that because Sensor is a container property, this moves the switch out of the
model.

81 The original NMF solution as depicted in [105] is slightly different. The difference between
these versions is analyzed in Section 10.1.
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1 var routes = rc.Routes.Concat(rc.Invalids.OfType<Route>());

2 Fix(pattern: from route in routes

3 where route.Entry != null

4 && route.Entry.Signal == Signal.GO

5 from swP in route.Follows

6 where swP.Switch.CurrentPosition != swP.Position

7 select swP,

8 action: swP => swP.Switch.CurrentPosition = swP.Position);

Listing 9.3:NMF implementation of the SwitchSet query

The implementation of the SwitchSet query was already explained in Section
1.6. We depict it again in Listing 9.3. This query (and all of the below)
is based on a collection of routes. Because routes can only appear in two
places, namely their correct location in the containment hierarchy and in
the invalids reference, we make this more explicit to only look in these
two places than traversing the entire containment hierarchy. Note that this
does hardly make any difference for the incremental runtime because the
containment hierarchy of the model is not touched in most queries. The
repair operation of the SwitchSet query simply sets the current position of
the switch to the position required by the route.

1 Fix(pattern: from route in routes

2 from swP in route.Follows

3 where swP.Switch.Sensor != null &&

4 !route.DefinedBy.Contains(swP.Switch.Sensor)

5 select new { Route = route, Sensor = swP.Switch.Sensor },

6 action: match => match.Route.DefinedBy.Add(match.Sensor));

Listing 9.4:NMF implementation of the RouteSensor query

The implementation of RouteSensor is depicted in Listing 9.4. It iterates
through all routes and all switch positions defined by these routes and selects
those where sensor of the corresponding switch is not defined in that route.
The repair action simply adds the sensor to the collection of sensors of that
route. Because DefinedBy is a containment reference, this again moves the
sensor within the model.
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1 var connectedRoute = ObservingFunc<IRoute, IRoute>.FromExpression(

2 route => (from sensor1 in route.DefinedBy

3 from te1 in sensor1.Elements

4 from te2 in te1.ConnectsTo

5 where te2.Sensor != null && te2.Sensor.Parent != route

6 select te2.Sensor.Parent as IRoute).FirstOrDefault());

7
8 Fix(pattern: from route1 in routes

9 let route2 = connectedRoute.Evaluate(route1)

10 where route2 != null && route2.Entry != route1.Exit

11 select new { Route1 = route1, Route2 = route2 },

12 action: match => match.Route2.Entry = match.Route1.Exit);

Listing 9.5:NMF implementation of the SemaphoreNeighbor query

The implementation of the SemaphoreNeighbor query is twofold as depicted
in Listing 9.5. We use a helper function to compute the route that follows the
current route of a route provided as input. For this, we iterate through the
sensors of the route, iterate through all of its track elements, iterate through
the connected elements and to those where the connected element is defined
in a different route than the current one. The railway network allows at most
one of such next routes. In the actual pattern, we then iterate through the
routes, find the candidate for the next route and save it as a local variable,
then filter this pair of routes to check that the entry of that route is not the
same as the exit of the first route. The repair operation simply sets the entry
of the second route to the exit semaphore of the first route.

The solution for the SemaphoreNeighbor query as depicted here differs from
the one originally published [105]. We discuss the differences of the original
and the improved version in Section 10.1.

The solutions to SwitchSet, RouteSensor and SemaphoreNeighbor use the
query syntax of C# (cf. Section 2.3). This syntax is translated to the method
chaining syntax by mapping the query keywords like from or where to SQO
method calls supported by NMF Expressions. The let expression in the
SemaphoreNeighbor query is converted to a Selectmethod that maps a route
to a pair of routes, represented by an anonymous type.

Because NMF Expressions allows to use the same specification both in a clas-
sic batch manner as also incrementally, our solution can also be configured
to run in batch mode without any changes to the patterns. When executed
in batch mode, NMF Expressions simply forwards the call to the Language
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1 public void Fix<T>(IEnumerableExpression<T> pattern, Action<T> action) {

2 var patternInc = pattern.AsNotifiable();

3 foreach (T element in patternInc) {

4 action(element);

5 }

6 patternInc.CollectionChanged += (o,e) => {

7 if (e.NewItems != null) {

8 foreach (T element in e.NewItems) {

9 action(element);

10 }

11 }

12 }

13 }

Listing 9.6:A simplified implementation of the Fix function

Integrated Query (LINQ) to objects implementation. Besides a negligible
runtime compilation effort, this utilizes the highly optimized platform LINQ
implementation.

The patterns are enumerable expressions where developers can choose at
runtime whether the pattern should be executed in batch mode or whether
NMF Expressions should register for elementary change notifications to
keep a cache of the result up to date. To specify patterns, we created a small
method Fix that captures them.

The easiest implementation for the Fix function repairing any validation
error as soon as they occur would be the one presented in Listing 9.6. In Line
2, we tell NMF Expressions that we want to obtain incremental updates
for the given pattern. Line 3 repairs all occurences existing so far and Lines
4-8 handle new pattern matches. For the benchmark, we adopted the Fix
function to account for the benchmark phases. In particular, the implemented
version takes a third parameter to allow us to sort matches. Since these sort
keys offer little insight, we omit them in the pattern presentation.
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Tool
Correctness &

Conciseness Readability
Completeness

ATL/EMFTVM 15 12 13
VIATRA Query 12.5 12.5 12.5
FunnyQT 15 15 12.5
NMF 12.7 13.3 15
SIGMA 15 13.3 13.3

Table 9.2.: Results from the open peer review of the TTC 2015 Train Benchmark

9.3.4. Benchmark Results

The number of pattern matches is correct after each iteration.82

The results from the open peer reviews83 are depicted in Table 9.2.

For the understandability, the NMF solution was the only solution at the TTC
2015 contest that received full points for understandability from all open
peer reviewers. In particular, the solution was evaluated to be more under-
standable than all batch solutions written in FunnyQT [114], ATL/EMFTVM
[211] or Sigma [130].

The performance measurements for the revalidation for all queries are de-
picted in Figure 9.2. We use the same size notation as in the Train Benchmark
where a size 1 corresponds to about 1,300 model elements. In the largest
considered size 1024, the model contains about 1.5 million model elements.

The NMF solution supported two execution modes, incremental and batch
mode. In the batch mode, the analysis is rerun on the entire model in each
step whereas the incremental version maintains intermediate results and
invalidates them whenever elementary changes appear in the model.

The results show that the incremental version of the NMF solution was able
to keep up with specialized tools such as VIATRA Query for many model
sizes and queries and even beat VIATRA Query by roughly a magnitude

82 The open peer review refers to a preliminary version that had a minor flaw. Therefore, the
scores for correctness are lower in the open peer reviews.
83 https://docs.google.com/spreadsheets/d/1WepbTGB8XbXFV6tYKDsdOn9kFvai8c4q_Eosze

V3FsI/edit?usp=sharing, retrieved 26 Sep 2017
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Figure 9.2.: Performance results for revalidation. The graph compares the NMF solution (batch
and incremental mode) with the reference solutions in Java and VIATRA Query. Both axes are
logarithmical.
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Figure 9.2.: Performance results for revalidation. The graph compares the NMF solution (batch
and incremental mode) with the reference solutions in Java and VIATRA Query. Both axes are
logarithmical (cont.).

in the SwitchSet query that we used in the motivational example. In other
scenarios, our implementation eventually gets slower than the VIATRA
Query solution.

Figure 9.2 also shows that for model sizes up to roughly 100,000 model
elements (size 64), the incremental NMF solution was the fastest for all
queries depicted.

To explain why the NMF solution is faster than VIATRA Query for the
SwitchSet query, we depicted the Rete network created by VIATRA Query for
the SwitchSet query introduced as running example for this thesis in Figure
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Figure 9.3.: Rete network created by VIATRA Query for the SwitchSet query of the Train
Benchmark (cf. [195])

9.3. In the running incremental analysis, each node depicted in this graph
represents a list of partial pattern matches. The network combines simple
references and attribute accesses through Join nodes to pattern matchers.
In the contrary, nodes in the DDG of NMF Expressions only represent an
evaluation of an attribute or reference for a single model element.

Besides the different granularity, the path in the data structure for a given
change is different. In the NMF solution, a change of a signal position only
affects the respective attribute evaluation node, the binary expression node
that checks equality, the node for the where operator and lastly the node
for a compiler-generated select operator. Meanwhile, the same change in
the Rete network depicted in Figure 9.3 has to be propagated through seven
nodes where each node handles much more data and therefore has a higher
computational complexity.
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Figure 9.4.: Performance Results for batch validation of the NMF solution versions compared to
the reference solutions in Java and VIATRA Query (both axes logarithmical)
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Figure 9.4.: Performance Results for batch validation of the NMF solution versions compared to
the reference solutions in Java and VIATRA Query (both axes logarithmical) (cont.)

The results for the batch validation are depicted in Figure 9.4. Both NMF
solutions had a relatively low constant overhead, indicated by the fact that
the solutions were much faster than VIATRA Query or Java solutions. For
larger models, the overhead of the incremental algorithm to set up caches for
immediate results and register event handlers is similar to the query effort
done in the batch mode.

In the SemaphoreNeighbor query, the overhead of creating the DDGs for the
incremental revalidation is slightly higher than in the other cases due to the
higher complexity of the query.

The incremental version has a drawback against the batch version: memory
consumption. We experienced that the incremental version did not allocate
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more memory than the batch version (since batch analysis has to reallocate
memory for each evaluation run) but the DDG that is responsible for most of
the memory consumption is continuously required and cannot be released
until it is detached from the model. When the analysis is run in batch mode,
the memory allocated to compute the analysis can be released once the
analysis result is available.

However, since both the .NET runtime and the Java Virtual Machine employ
garbage collection, the memory consumption is difficult to measure because
memory no longer used may still be allocated because the exact time of a
garbage collection is not known. To at least get an impression on the memory
consumption, we depicted the working set of the benchmark queries in Figure
9.5.

The results show that the working set was within half an order of magnitude
difference as the Java or VIATRA Query solution, at least for the queries
SwitchSensor, SwitchSet and RouteSensor. The working set also remained
within the limit of 2GB even for the largest models which is why we think
that the memory requirements are feasible for this scenario.

For the PosLength query, the memory consumption is very high, simply
because of the large amount of segments that are contained in the model. For
each segment, a DDG to check whether its length is less or equal to zero has
to be instantiated. On the contrary, the model manipulation performed for
the PosLength query is computationally inexpensive. Therefore, the overhead
due to incremental computation is relatively higher.

For the SemaphoreNeighbor query, this result is different. Rather, the memory
consumption of the incremental execution mode is about an order of magni-
tude higher than the memory consumption of the batch mode execution and
all solutions required much larger amounts of memory. We guess that this
is due to the different query operators used, as especially the SelectMany
operator turns out to be very memory intensive in the incremental setting.

9.3.5. Incerator Results

In this section, we present the results applying Incerator to the NMF solution
of the TTC version of the Train Benchmark.
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Figure 9.5.:Working sets in the Train Benchmark against relative model size (both axes loga-
rithmical).
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Figure 9.5.:Working sets in the Train Benchmark against relative model size (both axes loga-
rithmical) (cont.).

The original NMF benchmark solution lets users choose based on configu-
ration whether the analysis should be run incrementally or in batch mode.
In the scope of the evaluation of Incerator, we always use the incremental
setting as otherwise the configuration does not have any effect. However,
this means that the query operators in the benchmark queries are always
executed incrementally and the configuration only influences the predicates
used in the query operators. As a result, the design space of most queries is
rather small (≤ 27 configurations) as they contain only a limited number of
query predicates and thus, we can perform a full design space exploration.
Only the SemaphoreNeighbor query contains 10 predicates, making up a
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design space of 59,049 configurations, though the implementation reduces
this search space to 2,187 configurations through heuristics84.

To apply Incerator, we created an adapter that executes the Train Bench-
mark for a given configuration and extracts the revalidation times from the
benchmark output. Our optimization tool then uses this adapter to first run
the benchmark collecting variation points for the incrementalization and
then runs this analysis again for different configurations.

To evaluate the influence on different configurations to the performance
of the benchmark, we first ran Incerator on the smallest benchmark input
model with 1,311 model elements. To evaluate the influence of the model
size, we then repeated the measurements on a medium-sized input model
with 50,765 model elements (size 32) and compared the results to size 1. For
each configuration, we recorded the Recheck and Revalidation phase of the
benchmark that are the most interesting in our setting.

Figures 9.6 and 9.7 show the results for the smaller input size.

The PosLength query is very simple and therefore, the dependency graph
of instruction-level incrementality is rather small. Instruction-level and
argument promotion strategies yield very similar results. The strategy to
reevaluate the segments on repository changes yields significantly worse
results since all segments have to be reevaluated, not only the changed ones.
This effect is more drastic in size 32 where listening to repository changes
yields worse response times by a factor of almost 8000.

For the SwitchSensor query with size 1, the strategy to listen for repository
changes is not as bad, simply because the model contains 1,010 segments
but only 44 switches. However, the truely incremental strategies yield better
results. While instruction-level incrementality is fastest for input size 1,
argument promotion is slightly faster for size 32 but only by a factor 1.03.

The SwitchSet query contains five degrees of freedom and we thus see more
data points (27). Incerator detects that indeed, the dynamic dependency
graph of Figure 4.1 can be contracted into the dependency graph of Figure
5.1, similarly for the predicate in Line 4 of Listing 1.1. This yields a speedup

84 Predicates that only consists of a single property access are directly set to instruction-level
incrementality.
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Figure 9.7.:Design space of different configurations for the SemaphoreNeighbor query of the
Train Benchmark run with size 1 (1,311 model elements)

of 1.15 compared to instruction-level incremental solutions, both in size 1
and 32.

For the RouteSensor query with 27 possible configurations, the configuration
with the best performance is the instruction-level incrementality for size 1
but for size 32, the argument promotion strategy is better by a speedup factor
2.22. This cannot be seen in the diagram, because the usage of inappropriate
tuple types by the C# compiler causes many configurations to have an ex-
traordinarily bad performance. However, Incerator is able to detect such a
pitfall.

The design space of the SemaphoreNeighbor query depicted in Figure 9.7 is
the largest from the queries of the TTC Train Benchmark. While we can
see a lot of configurations that produce sub-optimal results, there is clearly
visible front of pareto-optimal configurations. The fastest configuration for
size 1 is faster than pure instruction-level incrementality by a factor of 1.23
but consumes slightly more memory. For size 32, the fastest configuration is
faster than instruction-level incrementality by a factor 1.20 but only consumes
34% of the memory.
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9.3. Case Study: Incremental Queries on Railway Models

Figure 9.8.:Histogram of the revalidation times for the SemaphoreNeighbor query of the Train
Benchmark run with size 1 (1,311 model elements)

Interestingly, themost configurations of the SemaphoreNeighbor query achieve
similar revalidation times. To visualize this fact, we plotted a histogram of
the revalidation times only in Figure 9.8. Roughly half of the configurations
achieve similar revalidation times between 0.9 and 1.0 milliseconds, mean-
while the fastest configuration is only slightly below 0.8. Therefore, the
differences within the configurations is much smaller than in the simpler
queries such as the RouteSensor.

To visualize the influence of the input model size, we have plotted the ranks
in the average times in Figure 9.9.

The results show that for the PosLength query, the order remained essentially
the same. In the SwitchSensor query, the order of instruction-level and
argument promotion strategies is exchanged, but the latter is only 3% faster
for size 32. For the SwitchSet and RouteSensor queries, we can see that the
worst configuration for size 1 are also the worst configurations for size 32.
This does not always hold for the configurations that achieved the best
(lowest) average revalidation times.

The reason here is that there are some configurations with very bad per-
formance characteristics, shown in the upper right corners of Figure 9.6.
Many of these configurations have the problem that the compiler-generated
tuple types do not override the equality operators and therefore, tuples of
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9. Validation and Evaluation
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Figure 9.9.: Ranks of average revalidation times for size 1 (1,311 model elements) and 32 (50,765
model elements).
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Figure 9.10.: Ranks of average revalidation times for size 1 and 32 for the SemaphoreNeighbor
query

the same elements appear differently. This often causes dramatically worse
revalidation times, quite regardless of the size of the input model.

For the configurations that are not affected by these effects, there seems to
be a threshold amount of elements for which generating a dedicated DDG
node type through the argument promotion strategy is beneficial or not.

For the SemaphoreNeighbor-query, depicted in Figure 9.10, we see that the
rank for size 1 is mostly uncorrelated with the rank for size 32, except for
the worst configurations that imply a bad performance both for size 1 and
32. This implies a limited validity for the obtained configurations for input
models of a different size.

Concluding this analysis of results, we see that Incerator has a great potential
to further improve non-functional properties of incremental model analyses,
but one has to be very careful with these results as they are specific not only
to the characteristic of the model analysis and the change sequences applied
to the input model, but also even depend on the size of the input models.

9.3.6. Distributed Computing

We used the Train Benchmark to also evaluate the performance properties of
the extension of NMF Expressions to incremental computing. This section
presents the most important results. For more details, the interested reader is
referred to the master thesis of Benjamin Wanner [214], the original source
of this evaluation.
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1 await Fix(

2 modelPattern: await

3 modelContainerGrain.SimpleSelectMany(

4 model => model.RootElements.Single().As<RailwayContainer>()

5 .Descendants().OfType<ISegment>(),

6 factory, scatterFactor)

7 .Where(seg => seg.Length < 0, GetScatterFactor(scatterFactors, 1))

8 .ToNmfModelConsumer(),

9 action: seg => modelContainerGrain.ExecuteSync(

10 (container, elementUri) =>

11 {

12 var localSegment = (ISegment)container.Resolve((Uri)elementUri);

13 localSegment.Length = -localSegment.Length + 1;

14 }, seg.RelativeUri));

Listing 9.7: The solution to the PosLength query adapted for distributed computing

We deployed multiple silos and a client as an Azure cloud service. Unless
stated otherwise, we used three D2 V2 nodes for the grain silos and another
one for the client. Each instance has two cores on a 2.4 GHz Intel Xeon
E5-2673 v3 CPU and 7 GB of memory available. However, because resources
in Azure are shared, other virtual machines may put load on the hardware
or the network.

The code for evaluation has been published to GitHub85. It uses an adapted
version of NMF Expressions that allows a distribution in Microsoft Orleans.
This adapted version is also available online86.

The implementation of the PosLength query is depicted in Listing 9.7. It
shows that the distributed implementation adds some boilerplate code in
order to specify scatter factors and specify a borderline what code should be
run in a distributed manner. Also the action as a result of a fix has to resolve
the local element before actually performing a change.

In particular, the Orleans framework requires developers to use asynchronous
methods, in C# supported through the await statement. Further, the fact that
we need to specify scatter factors and a factory of stream implementations
means that the query syntax is no longer available and we have to use the

85 https://github.com/bwanner/TrainBenchmarkNMFOrleans
86 https://github.com/NMFCode/NMF/tree/distributed-expressions-orleans
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method chaining syntax. Further, the border of responsibilities between the
Orleans cluster and the local .NET application must be defined explicitly
with a call to ToNmfModelConsumer in Line 8. The model manipulation must
be performed in the Orleans master model instead of a local copy of the
model. This complicates the model manipulation done as part of the Repair
phase as depicted in Lines 9-14 of Listing 9.7.

The distributed implementation of the queries SwitchSensor, SwitchSet and
RouteSensor is very similar to Listing 9.7. The simplicity of these queries
allowed the benchmark to execute model sizes 2048 in a single node. For
larger models, the main memory of the nodes does not suffice for the nodes.

This is different for the distributed version of the SemaphoreNeighbor query
that is based on the original NMF implementation (cf. Section 10.1) and has
a very high memory consumption. This case essentially emulates the case
that a DDG gets too large to fit into the main memory of a single node. The
implementation of this query is depicted in Listing 9.8.

The performance results in terms of turnaround times for the entire bench-
mark execution is depicted in Figure 9.11 for different model sizes.

In the PosLength query, it is easy to see that the distributed implementation
is more than a magnitude slower than the local implementation. This is due
to the communication overhead: For each grain, the system has to query the
master grain on which silo a connected grain is currently activated. This
unnecessarily slows down the computation as also the grains themselves
are rather computationally simple (they only contain a very simple filter
condition).

This is different for the SemaphoreNeighbor query where the grains have
a larger size. As a larger part of the query – lines 7-23 of Listing 9.8 –
is condensed into a single grain, a higher proportion of computation is
processed locally. Therefore, the difference between the local implementation
and the distributed implementation is much smaller. Due to the utility of
parallel resources in the distributed setting, the distributed implementation
is also slightly faster.

More importantly, the distributed setting supports a larger model size. The
original NMF solution to the SemaphoreNeighbor query used a DDG with
more than 6 million nodes for the model size 8, growing quadratic with the
model size. Therefore, a distribution to three nodes allows to execute the
benchmark with model size 16.
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(a) PosLength query

(b) SemaphoreNeighbor query

Figure 9.11.: Performance results for the Train Benchmark in incremental setting
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1 modelContainerGrain.SelectMany(

2 model => model.RootElements.Single().As<RailwayContainer>()

3 .Descendants().OfType<IRoute>(),

4 (model, route) => new ModelElementTuple<Model, IRoute>(model, route),

5 factory, multiplex)

6 .ProcessLocal(enumerable =>

7 {

8 var routePairs = enumerable.SelectMany(

9 tuple => tuple.Item1.RootElements.Single().As<RailwayContainer>()

10 .Descendants().OfType<IRoute>(),

11 (tuple, route) => new {r1 = tuple.Item2, r2 = route});

12
13 var res = from tuple in routePairs

14 where tuple.r1 != tuple.r2 && tuple.r2.Entry != tuple.r1.Exit

15 from sensor1 in tuple.r1.DefinedBy

16 from te1 in sensor1.Elements

17 from te2 in te1.ConnectsTo

18 where te2.Sensor == null || tuple.r2.DefinedBy.Contains(te2.Sensor)

19 select new ModelElementTuple<IRoute, IRoute, ITrackElement,

20 ITrackElement>(tuple.r1, tuple.r2, te1, te2);

21
22 return res;

23 })

24 .ToNmfModelConsumer();

Listing 9.8: The solution to the SemaphoreNeighbor query adapted for distributed computing

9.3.7. Summary

The queries and repair transformations demonstrate why we have sticked to
the C# language. We think that it is very hard to get a more concise textual
solution for this case and this opinion has been confirmed by a very good
evaluation of the understandability for the NMF solution. At the same time,
developers get the full tool support from e.g. Visual Studio and the query
syntax that we use is used by thousands of developers already and widely
understood.

The performance figures shows that the incremental version of our solution
outperforms the batch mode execution of the same solution in all cases,
often by multiple orders of magnitude. Compared to the incremental pattern
matching tool VIATRA Query, we see that the performance is about as good
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for most of the queries. Especially for medium-sized models, the revalidation
times are better for all queries.

Another advantage of our solution is that it gives both a batch mode solution
and an incremental solution our of the same pattern specifications. Thus, the
same analysis code can be used in the case setting where incrementality is a
clear advantage, or in a batch mode, e.g. when memory is a sparse resource
or the analysis results are only required once.

Applying Incerator to the NMF solution of the benchmark, we were able to
further improve the performance for heterogeneous change sequences. The
evaluation shows that even for such simple analyses, further performance
improvements of factor 2.2 are possible. In other cases, we were able to find
configurations that are both faster and more memory efficient than pure
instruction-level incrementality. However, the evaluation also shows that
the choice of configurations is also sensitive to the size of the input model.
Therefore, it is very important that developers provide example models of a
realistic size.

The evaluation of the distributed computing abilities shows that the predi-
cates are too simple for a distributed environment to be advantageous. Only
in a purposely sub-optimal query, we ran into memory problems. However,
the evaluation showed that in these cases, these memory problems can be
solved using our approach for distributing the DDGs through a virtual actor
implementation.

9.4. Case Study: Incremental Data Flow

Transformations

In this case study, taken from the TTC 2016 Live Contest [69], the task was to
create an interpreter for a model transformation language FlowM2M roughly
inspired by block diagrams. Ideally, the interpreter should allow an incre-
mental execution. An interpreter using Epsilon was provided. At the TTC,
submissions using SIGMA [129], ATL [121], Mofongo87 and NMF were sub-
mitted. After the TTC, solution authors were asked to revise their solutions,

87 http://mofongo.readthedocs.io/en/latest/, retrieved 25 Jul 2017
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supporting incremental execution where possible. The resulting paper was
submitted to the ICMT 2017, but unfortunately rejected, partially because
the NMF solution was the only one to support an incremental execution,
despite some attempts for other tools.

9.4.1. Benchmark Setup

As the name shall suggest, the FlowM2M language resembles a data flow
oriented model transformation language similar to block diagrams. An
excerpt of the language primitives is depicted in Figure 9.12.

These primitives describe a model transformation as a data flow. In particular,
each Element specifies how the interpreter should handle a given data row.
This row may contain an arbitrary number of dynamically typed fields.
An element may add fields, replicate the data row or perform side effects,
depending on the type of element. For example, an Evaluate node computes
an arbitrary expression based on fields saved in a data row and adds the
computed expression as a new field. An AllInstances element replicates an
incoming data row for every instance of a given type. The instance is saved
as a field in each replica of the data row.

The exact semantics of all types of elements is not important in the scope of
this thesis, but can be obtained from the live contest case description [69].
However, we want to describe elements that may perform side-effects here
because they are important for the remainder of this section:

NEWINSTANCE: The purpose of this element is to create a new instance of
a given type and add it to a field of the data row. However, this is based
on a key: If an object has already been created for this key (e.g. by a prior
NewInstance element), then the field should be set to this object rather than
creating a new object. Therefore, this element implicitly accesses and builds
up a trace.

ADDTOCONTAINER: This elements adds a model element in a field of a data
row to another element specified by a data row.
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Model

Element

name : EString

AllInstances

eld : EString

model : EString

packageName : EString

typeName : EString

NewInstance

instanceField : EString

model : EString

packageName : EString

typeName : EString

Filter SetFeature

objectField : EString

feature : EString

AddToContainer

listField : EString

ForEach

listField : EString

itemField : EString

positionField : EString

Evaluate

eld : EString

Expression

[0..*] elements

[0..1] target

[1..1] key

[1..1] lterBy

[0..1] rejectTarget

[0..1] value

[0..1] value [0..1] position

[1..1] expression

Figure 9.12.: Primitives of FlowM2M (simplified)

SETFEATURE: This element sets a feature of a model element saved in a field
to a value stored in another field.

With these primitives, one can already describe model transformations such
as the Families2Persons transformation from the ATL examples website88 as
depicted in Figure 9.13a.

88 http://www.eclipse.org/atl/atlTransformations, retrieved 25 Jul 2017
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AllInstances 
"AllMembers"

Evaluate 
"ComputeFullName"

Filter "SplitByGender"

NewInstance 
"NewMale"

NewInstance 
"NewFemale"

SetFeature 
"SetPersonName"

rejected selected

(a) The Families2Persons transformation in FlowM2M

The task of the TTC live contest 2016 was simply to create an interpreter for
this transformation language, i.e. a program that is able to apply transforma-
tion models to given input models. The authors of the live case especially
asked for an incremental execution of the transformation specification.

9.4.2. Validation Goals

The goals of this case study are as follows:

Applicability The application area of this case study rather is unusual. How-
ever, the applicability of our approach to this case study shows its flexibil-
ity.

Performance In the context of this case study, performance is measured in
terms of the time to process a model transformation together with its input

269



9. Validation and Evaluation

model. Further, we evaluate the incremental performance for some example
model transformations to investigate for how many changes, an incremental
change propagation is advantageous.

Relaxation of assumptions A large part of this thesis is built upon working
hypothesis A1. This case study allows us to investigate what happens if this
assumption is not fulfilled, which problems arise and how they can or cannot
be managed.

9.4.3. NMF Solution

The (improved)89 NMF solution is a compilation solution and consists of:

1. Transforming Ecore metamodels to NMeta.

2. Generating model representation code for the metamodels in C#.

3. Generating model transformation based on the FlowM2M language.

4. Compiling the generated code

5. Running the model transformation with the given models.

The results of steps 1–4 can be reused for subsequent runs of the transfor-
mation, like compiled Python files are reused by Python interpreters. The
code generation is mainly necessary because NMF does not have an option
to load metamodels dynamically.

To achieve incrementality, the NMF solution converts a dataflow into amostly
functional representation. This means, each dataflow node is understood
as a function converting a sequence of input data rows into a sequence of
output data rows. A dataflow node to compute the full name of a person is
thus generated into the code depicted in Listing 9.9.

1 var computeFullNameFunc = ObservingFunc<...>.FromExpression(row =>

2 (((Families.Member)row["member"]).FirstName + " " +

3 ((Families.Family)((Families.Member)row["member"]).Parent).LastName));

4 var computeFullName = new DataflowNode(source =>

89 Due to a misunderstanding of the semantics, the original NMF solution did not target
incremental execution.
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Binary operator +

Value: "Jane Jones"→ "Jane Smith"

MemberAccess 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒
Value: Jane

Argument𝑚𝑒𝑚𝑏𝑒𝑟
Value: {Member}

Binary operator +

Value: " Jones"→ " Smith"

Constant " "
Value: " "

MemberAccess 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒
Value: "Jones"→ "Smith"

MemberAccess 𝑃𝑎𝑟𝑒𝑛𝑡
Value: {Family}

Argument𝑚𝑒𝑚𝑏𝑒𝑟
Value: {Member}

Figure 9.14.: The dynamic dependency graph template for the function in listing 9.9 applied to
a member "Jane Jones" and the propagation of changes to her last name.

5 source.Select(row => row.With("fullName", computeFullNameFunc.Observe(row)))

);

Listing 9.9:An evaluate node in the incremental NMF solution to compute the full name of a
person

In this listing, the class ObservingFunc implements the incremental deriva-
tion of the given expression. This means, when passing an argument such
as done in Line 4, the result will be an incremental value of string. For this,
the system automatically registers event handlers when for instance the
FirstName of a person changes.

In particular, NMF creates a dynamic dependency graph such as depicted in
Figure 9.14. The nodes in this graph are specific to the model operations and
register to elementary changes: The member access nodes register to the
event that is fired when the respective member is changed. These changes
are then propagated through the node.

The implementation of the With function in Line 5 contains an optimization
that the incremental result is stored in the data row instead of the value itself.
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As a consequence, the resulting output data row never changes for a given
input data row but the current value of the fullName column may do so.

Problematic for the incrementalization are those dataflow nodes that cause
side-effects, SetFeature, AddToContainer and NewInstance. The general
approach of the NMF solution to handle these cases is to run the side-effect
whenever the data rows of such dataflow nodes should be processed. This
processing has to account for the fact that the input for these side-effects may
change over time as for example fullName column of a data row may change
because the FirstName of the respective person changed. Furthermore, it has
to correctly handle the case that a row is withdrawn, for instance because it
no longer passes a filter condition.

The side-effect introduced by NewInstance is an insertion of an element
into a trace if no appropriate such element exists in there. This can be
incrementalized by adding a counter to each element in the trace such that
this counter can be decremented when a data row is removed for a dataflow
node, for instance because a prior filter condition is no longer met. If the
counter reaches zero, the element is removed from the trace.

Here, the incrementalization makes use of an important property of the
trace entries created by a NewInstance-node: The order in which the system
created trace entries does not matter. Performance-wise, this is a highly
relevant insight as the position of a trace entry does not have to be tracked.
Further, approaches for incremental computation that cope with side-effects
in a generic way, such as Hammers self-adjusting stack machines [83], have
to unroll the entire computation from the point a trace entry is revoked. A
good understanding of the side-effect, though, allows to react to changes
very fast. In case of a deletion, only the data rows affected by the deleted
element are revoked while the transformation result for other elements stays
intact.

The problematic node types are AddToContainer and SetFeature. For AddTo-
Container, the natural inverse operation seems to be to remove an element
from its container. However, in NMF, removing an element from its con-
tainer means to delete it and therefore to reset all references to this element.
This behavior must be switched off which is currently not possible. For
the SetFeature node, the problem is even more tremendous because it is
unclear to what value a feature should be reset to when a data row should
no longer be processed by a node as any previous value may be wrong. In
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Tool Language Initial Improved

Reference EOL, Java 293 + 97 N/A
ATL ATL, Java 104 + 30 100 + 123
Mofongo Python 189 N/A
NMF C# 682 1229
SIGMA Scala 227 309

Table 9.3.:Complexity of the data flow transformation solutions, measured in lines of code

the implementation, we therefore do not reset a feature to any value if a data
row is no longer processed by a SetFeature node.

An alternative implementation to reset the feature to the last value before
the side-effect was applied may seem a better choice at the first glimpse but
has severe problems. Consider the case where a Filter element is followed
by a SetFeature such that the latter will invert the previous filter condition.
In this case, the implementation to reset the feature to a value before the
side-effect was applied will trap an incremental solution in an endless loop.

To produce correct results, the incremental NMF solution rests on an impor-
tant assumption: Whenever a data row of a SetFeature or AddToContainer
node is withdrawn, there is a NewInstance node that created the affected
element for which the data row is also withdrawn. If this is the case, then the
withdraw implementation in AddToContainer and SetFeature do not matter
because the element will be discarded, anyways. Therefore, this assumption
ensures the correct incrementalization of the side-effects.

9.4.4. Results

An overview of the lines of code for the different solutions is depicted in
Table 9.3. From a conciseness point of view, the NMF solution was the least
concise solution, particularly because operators that included side-effects
had to implemented explicitly.

To evaluate the advantage of DDGs for incremental change propagation,
we analyze the time to apply and propagate generated changes to the input
model. We compare these times with the time necessary to recompute the
output model from scratch, either by using the batch or incremental NMF
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solution. In particular, for 𝑛 ∈ {1, 10, 100, 1000}, we repeated the following
process 20 times for each of the provided example models:

1. Run the batch solution for the unchanged model

2. Run the incremental solution from the unchanged model, measure
the time, introduce 𝑛 random changes, propagate the changes and
serialize the changed source model,

3. Run the batch solution for the changed synthetic model.

4. Check that the resulting models are equivalent, up to the order of
elements

The introduced random changes fall into one of the following categories:

• Change the last name of a random family (20%)

• Change the first name of a random family member (40%)

• Remove a random family (5%)

• Add a new family, consisting of Homer, Marge, Bart, Lisa and Maggie
Simpson (35%)

The results for the NMF solution for this benchmark are depicted in Figure
9.15. The plots show the time for the initial transformation and for propagat-
ing a set of changes (either by recomputing the entire transformation or by
propagating the updates).

However, the provided example models were very small. The familyGS
model only consists of 17 model elements, familyGM of 800 and familyGL of
15,000 model elements.

The times for the batch execution are depicted in Figure 9.15a. For all models,
running the transformation in incremental mode and thereby creating the
necessary DDGs for incremental change propagation is about three times
slower than executing the transformation in batch mode.

The results for the incremental change propagation suggest that the dataflow
transformation developed in this case study is already fully incremental – the
runtime to propagate changes does depend on the size of the change (depicted
as color in Figure 9.15b) rather than the size of the model. In the contrary,
this does not hold for the batch strategy to recreate the transformation result
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● ●

●

●

(a) Initial run

● ●

●

●

(b) Propagate updates

Figure 9.15.: Performance results for the NMF solution of the TTC 2016 Live Contest

after all changes have been applied: Recomputing the largest example model
familyGL takes much longer than recreating the smaller models.

Besides these effects for large models, the results also show that in cases
that the target model only has to be consistent with the source model rarely,
recreating the target model from scratch may be faster. This is because for
the smaller models, very large parts of the model are changed, in case of
the smallest model familyGS more model elements are introduced than the
original model had before the changes.

9.4.5. Summary

The case study shows, that the incrementalization system NMF Expressions
is very flexible in the sense that it can be beneficial to use it also in contexts
that violate basic assumptions such as the referential transparency assump-
tion A1. However, the usage of NMF Expressions in such a scenario may
require extra work to support the side-effects that the analysis has to perform.
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In the scope of this case study, the side effects span the creation of an entire
target model, meanwhile the actual result, the final set of data flows, is rather
meaningless.

Other incremental solutions such as the AOF [20] or the incremental version
of ATL implemented in ReactiveATL [122] were apparently not as flexible.
At least, the author of ATL, Frederic Jouault, did not manage to come up with
an incremental interpreter of the data flow language. For other incremental
tools such as primarily VIATRA, there was no attempt for an incremental
solution of the data flow case, so we cannot compare in this case study.

The case study also demonstrated the problems attached to side-effects in
the context of incremental execution: It is not clear how a side-effect should
be undone such that unintended consequences can be avoided, even if the
side-effects are well-known. The incrementalization system simply cannot
distinguish between changes caused by the user and changes caused by
reverting a side-effect and thus, it is easy to trap it in an infinite loop.

The performance results obtained for a sequence of changes in the Families to
Persons example regarding performance shows that the incremental change
propagation of a single change is faster than rerunning the transformation
by more than an order of magnitude for the selected example input.

9.5. Case Study: Incremental Model

Transformation of Petri Nets to State Charts

In this section, we explore the performance gains that can be achieved
using the incrementalization system integrated into the incremental model
transformation approach presented in Chapter 6.

9.5.1. Benchmark Setup

To analyze the response time from elementary changes in the finite state
machine to the updated Petri Net, we designed a benchmark where we
generate a sequence of 20 elementary model changes to the finite state
machine. After each model change, we ensure that the Petri Net is changed
accordingly, either by performing change propagation or by regenerating
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the net fresh from scratch. To take the different sizes of finite state machines
into account, we performed our experiment for different sizes (10, 20, 50, 100,
200, 500, 1,000, 2,000, 5,000, 10,000, 20,000 and 50,000 states). The generated
workload on these finite state machines shall reflect edit operations as done
by a user. In particular, we generate the following elementary changes
(percentage on the overall change workload in brackets):

• Add a state to the finite state machine (30%)

• Add a transition to the finite state machine with
random start and end state (30%)

• Remove a random state and all of its incoming
and outgoing transitions (10%)

• Remove a random transition from the finite state machine (10%)

• Toggle end state of a random state (5%)

• Change the target state of a randomly selected
transition to a random other state (5%)

• Rename a state (9%)

• Rename the finite state machine (1%)

The evaluation works as follows: For every run of our benchmark, we gen-
erate a finite state machine of a given size 𝑛 representing the number of
states. We then generate a sequence of 20 elementary model changes acting
on randomly selected model elements of the finite state machine. For each
of these actions, the action itself must be performed and the Petri Net must
be updated or newly created appropriately.

We compare four implementations of this task. The first solution is using
NMF Synchronizations in batch mode, i.e. the synchronization is run as a
transformation from its left side to its right side with change propagation
switched off. Next, we use the same synchronization code without any
modification and use it in incremental mode, i.e. from left to right with change
propagation mode switched on to OneWay. Third, we use an implementation
for this transformation task in NTL, basically taken from previous work [92].
This solution works similar to the batch mode version but lacks some of the
overhead implied by the NMF Synchronizations implementation. NMF
Transformations used with NTL showed good performance results compared
with other (batch mode) model transformation languages at the TTC 2013
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[103, 102] so we think it is a fair comparison. Lastly, we compare the NMF
solutions with a solution in eMoflon, which has been discussed in Section
6.4.

We did two runs of the experiment. In the first run, we check the generated
Petri Net after each workload item in order to test the correctness of NMF
Synchronizations. Here, we basically assume the implementation in NTL
correct. In a second run of the experiment, we evaluated the execution time
to apply all the elementary model changes in sequence and updating the Petri
Net accordingly after each change (either by rerunning the transformation or
by propagating changes). The application of 20 elementary model changes
and updating the Petri Net is still a matter of milliseconds but this way the
precision gets in a reasonable scale.

To compare with eMoflon, we transformed the generated changes into
delta specifications that can be understood by eMoflon. We then start a
Java process running the eMoflon solution for the initial transformation.
Afterwards, we subsequently load the delta specifications one after another
and integrate them to the target model. Here, the time for transforming
the changes into the delta specifications, serializing them in the benchmark
driver and deserializing them in the eMoflon process is not taken into
account. Rather, we only measure the time for the integration. However, this
also means that we sum up 20 time measurements which means that these
results are not as accurate.

9.5.2. Validation Goals

The goals of this case study are as follows:

Applicability The application domain of this case study is rather synthetic.
However, we believe the synchronization of structurally similar yet different
metamodels is an important use case. A remarkable feature of the transfor-
mation is that the existence of model elements in the RHS depends on an
attribute value in the LHS.
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Performance Also in this case study, we seek to compare the performance
of incremental model transformations in NMF Synchronizations with their
batch equivalent, but also with traditional non-incremental transformations
such as a transformation written in NTL. However, we also implemented the
model transformation of this case study in the incremental and bidirectional
model transformation tool eMoflon to compare the performance to this
tool.

Correctness We implemented a custom method to check the correctness
of the model transformation by performing an in-depth comparison of the
transformed Petri nets from the NMF Synchronizations implementation in
batch or in incremental mode.

9.5.3. Results

Figures 9.16 and 9.17 show the performance results. The code for our used
benchmark is available as open source on Github90 so that the interested
reader can obtain results for any other machines as well. In particular, Figure
9.16 shows the results for the initial transformation, Figure 9.17 shows the
time to run the 20 generated changes.

For the initial run of the transformation, we can see that NTL and the batch
mode of NMF Synchronizations are much faster than the incremental
NMF Synchronizations or the eMoflon solution. The NMF Synchro-
nizations implementation running in batch mode is about as fast as the
unidirectional implementation using NTL while the incremental mode adds a
slight overhead. This is because the engine has to create dependency graphs
for all lenses but as these lenses are rather simple, this overhead is not very
large. eMoflon also has to create data structures to perform incremental
change propagation and is even slower than the incremental mode of NMF
Synchronizations.

For incremental change sequences, the results indicate that even for very
small models such as a finite state machine with just 20 states, it is already
beneficial to use the change propagation built into NMF Synchronizations:
Recreating the Petri net after every change takes more than 18 times as long

90 http://github.com/NMFCode/SynchronizationsBenchmark/
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Figure 9.16.: Performance results for the initial transformation
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Figure 9.17.: Performance results running 20 randomly generated changes

as propagating the change. Compared to NMF Synchronizations in batch
mode, the factor is even at 25. For larger models, the speedup gets higher and
for the largest models with 50,000 states, the change propagation is factor
2,750 faster than recreating the Petri net using NTL or factor 3,800 faster
than NMF Synchronizations in batch mode. This is because the time to
propagate a change merely depends on the size of the change, rather than
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the overall model size: The curve for incremental change propagation in blue
is almost flat in a logarithmic plot.

However, there are some operations such as the model change operations
themselves, that have a linear complexity91, which is why the speedup does
not grow linearly with the size of the model. As a consequence, the distance
between the blue and the purple curve in Figure 9.17 becomes smaller the
change propagation overhead becomes smaller in relation to actual model
changes: While for 20 states, the actual model changes only take about 8% of
the time for incremental change propagation, this share is at 28% for 20,000
states. Given that the incremental change propagation includes a roughly
similar model manipulation in the RHS, this means that the overhead for
change propagation becomes very small.

Comparing the results with eMoflon, we can see that eMoflon is slower
than the incremental NMF Synchronizations implementation and for most
model sizes also slower than the implementations in NTL or in batch mode.
The eMoflon solution also does not scale well with an increasing model
size: While the curve for the incremental NMF Synchronizations solution
is almost flat for up to 2,000 states, indicating a fully incremental solution,
the curve for eMoflon is steeper already for smaller model sizes, indicating
a worse scalability.

However, the performance of the synchronization depends on many factors.
Indeed, even in the very small example of the synchronization between
finite state machines and Petri nets, some types of changes such as name
changes are much faster to propagate than others such as adding or removing
states. As a reason, the propagation for the latter includes the execution of a
transformation rule meanwhile the propagation of a name change simply
means to copy the new name over to the target model.

Nevertheless, the evaluation shows that the overhead for change propagation
stays approximately at a constant level, indicating that NMF Synchroniza-
tions is fully incremental in the terminology of Giese and Wagner [74].
Especially for large models, the overhead is small. We see this as a conse-
quence of the fact that changes to the RHS can be directly constructed from
the model changes: The definition of the repair operators in Definitions 39
and 40 are straight and explicit.

91 For example, deleting an element from an ordered list is a𝑂 (𝑛) operation.
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9.5.4. Summary

The main objective of this case study was to obtain insights to the perfor-
mance characteristics of NMF Synchronizations. Besides a comparison
of the incremental version batch execution, we were particularly interested
in a comparison of performance properties with other incremental model
transformation tools, especially eMoflon after a comparison with regard to
syntax and semantics has been already performed in Section 6.4.

With regard to the applicability of NMF Synchronizations, the case of
state machines to Petri Nets also shows that NMF Synchronizations is
able to handle a case that has limited support in TGG implementations:
For example the considered approach eMoflon has no support to react on
attribute changes.

The performance results indicate that the presented has a significantly better
performance than recreating the target model from scratch. For large input
models, propagating the changes is faster than recreating the target models
by multiple orders of magnitude. The results also suggest that NMF Syn-
chronizations is significantly faster than eMoflon in this case. For large
models, the overhead to propagate changes to a target model even decreases.
For large models with 60,000 model elements92, performing the actual model
change took 28% of the total time to perform the change and propagate it.

9.6. Case Study: Incremental ATL transformations

Model transformations are not always bidirectional. In particular, model
transformations often contain some degree of information loss, e.g. some
details in the source model may not be represented in the target model.
Therefore, in such a case, a backward transformation is often very difficult
but may not be required. In fact, ATL, the probably most popular [203] textual
model transformation language in the community, by default only supports
unidirectional, by default non-incremental model transformations.

92 20,000 states plus 40,000 transitions
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Synchronization blocks do support unidirectional model transformations
beyond just forgetting the backward transformation. However, the expres-
siveness of unidirectional synchronization blocks and also their performance
compared to popular model transformation languages is unclear. Because
unidirectional synchronization blocks are very similar to regular bidirectional
synchronization blocks, one may be tempted to guess that the expressive-
ness of unidirectional synchronization blocks is roughly the same as for
bidirectional synchronization blocks.

To demonstrate the applicability of synchronization blocks but also to be able
to compare the performance of their implementation in NMF Synchroniza-
tions, we created a Higher-order Transformation (HOT) that maps model
transformations in ATL to an incremental model synchronization specified
in NMF Synchronizations.

The transformation is based on a master thesis by Nicolas Pätzold [161] to
which the interested reader is referred for further details.

9.6.1. Validation Goals

With this case study, we follow the following validation goals:

Applicability Whereas on a first sight, it may seem that synchronization
blocks are only expressive enough to cover the transformation of almost
identical structures, this case study aims to show that it is expressive enough
to cover many practical model transformations. In particular, we want to
show that the formalism is expressive enough to cover the declarative part
of ATL.

Performance The performance of the actual HOT is not of interest for this
case study, but we are rather interested in the performance of the generated
model synchronizations. As this performance depends on the exact transfor-
mation, the input model and a change sequence (in case of an incremental
execution), we use the performance for some example model transforma-
tions, example models and example change sequences. In particular, we are
interested to see whether the generated incremental model transformations
are faster than rerunning the original ATL transformations after each model
change.
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Correctness We compare the resulting models for a series of example model
transformations and instances taken from the ATL website.

9.6.2. Transforming ATL to Synchronization Blocks

In this section, we will describe in detail how ATL transformations are
transformed in our approach called ATL2NMFs. For this, we describe how
rules, bindings, helpers, OCL expressions and variables are transformed, how
the matching phase is emulated and how multiple input or output pattern
elements are processed.

A prototypical implementation of this transformation is publicly available
online93.

9.6.2.1. Rules

There are three different kinds of declarative ATL rules: matched rules, lazy
rules, and unique lazy rules. Listing 9.10 shows an example of a matched
rule (for simplicity without any bindings). The rule takes source model
elements of the type Element, defined in the source metamodel XML, and
transforms them into target model elements of the type Book, defined in
the target metamodel Book. This happens only under the condition that the
name of the element is ’book’.

Lazy rules and unique lazy rules are defined similarly but use the additional
keywords lazy, or unique lazy respectively. Each rule has one or multiple
source pattern elements defined after the from keyword. For each source pat-
tern element, the source type of the element, as well as its source metamodel,
in which the type can be found, are declared. Each rule has also at least one
target pattern element that is declared right after the to keyword. Every
target pattern element specifies the type and the metamodel of the target
model element that is created for the source model element for which the
rule is called. Additionally, by declaring one or more bindings, it is possible
to specify how the created target model element is initialized.

93 https://github.com/NMFCode/ATL2NMFS
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1 rule BookRule {

2 from

3 e : XML!Element ( e.name = ’book’)

4 to

5 b : Book!Book (...)

6 }

Listing 9.10:ATL matched rule without bindings

The difference between the three kinds of declarative ATL rules lies in their
execution semantics. While NMF Synchronizations requires the transfor-
mation developer to explicitly call any rule, ATL has a matching phase in
which matched rules participate. Thus, they are called automatically for each
suitable source model element, whereas the lazy and unique lazy rules have
to be explicitly called from a binding for any source model element that they
should transform.

ATL2NMFs maps all three kinds to synchronization rules that are created
equally, because the difference of the rule type only has an impact on how
the rules need to be called.

The name of the rule can be used as the name of the synchronization rule,
implemented as a public nested class of the synchronization. As such, the
generated rule needs type parameters for the source and target model el-
ement’s type. First, we assume only one source and target element, other
cases are described in Sections 9.6.2.8 and 9.6.2.7. The result of the mapping
of the matched rule from Listing 9.10 can be seen in Listing 9.11 below. Since
no bindings are shown in the ATL rule, the corresponding synchronization
blocks (which are defined in the DeclareSynchronization method) are not
shown either.

1 public class BookRule : SynchronizationRule<XML.IElement, Book.IBook> {

2 public override void DeclareSynchronization() { ... }

3 }

Listing 9.11:NMF Synchronizations rule without synchronization blocks

A lazy rule creates a new target model element each time it is executed, even
if the rule is called multiple times for the same source model element. Instead,
a unique lazy rule creates the target model element only once for each source
model element, even if the rule is called multiple times for the same source
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model element. The execution behavior of an ATL unique lazy rule conforms
to the default behavior of a NMF Synchronizations rule. The behavior of
non-unique lazy rules can be enabled in NMF Synchronizations with a
simple switch.

ATL rules may have guards attached to the rules. In NMF Synchronizations,
guards are defined as filters whenever the rule is called. The developer has
the freedom to decide when and if the filter should be applied for a source
model element. It is even possible that different filters are used for the same
rule.

In ATL2NMFs, ATL guards are transformed similarly to helpers. Each filter is
mapped to a C# extension method that is defined for the input type of the
particular ATL rule. The extension method is called whenever the specific
rule is called. That way, code duplication is avoided and the code readability
remains high. The filter condition, which is expressed by a boolean OCL
expression, is mapped to a C# expression (cf. Section 9.6.2.5).

Rule inheritance of ATL can be mapped to rule instantiation of synchroniza-
tion rules in NMF Synchronizations directly. However, there is a limitation
because the current engine of NMF Synchronizations still does not support
if the filter condition actually changes.

9.6.2.2. Emulation of the ATL Matching phase

The ATL matching phase is emulated by generating a main synchronization
rule that also serves as an entry point for the synchronization.

Each synchronization in NMF Synchronizations needs a synchronization
rule which serves as an entry point for the synchronization process. This
synchronization rule usually declares the synchronization between the root
element at the source model and the root element at the target model. In
ATL, such a root rule often does not exist. Instead, the model elements in
the source model are matched in the ATL matching phase.

The main rule is defined as synchronizing the input models with the output
models, all typed as XMI containers.

To emulate the matching, ATL2NMFs creates various synchronization blocks
for the main synchronization rule. For each matched rule, a synchronization
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block is generated to call the rule for any elements contained somewhere in
the source model(s).

A problem arises when a rule is called for a source model element from a
synchronization block of the main rule, if this rule has already been executed
for this particular source model element from another synchronization block.
Because a model element can only have at most one parent model element,
it would be removed from the correct position in the target model and again
added as top-level element.

The problem can be solved by using a special collection proxy used in every
synchronization block of the main synchronization rule. As before, the
elements stored in the list represent the top-level elements of the target
model. However, elements are only added to the list if they do not have a
parent model element assigned, i.e. are not contained anywhere else in the
target model. If the element already has a parent element, then this means
that it is already contained in the target model and must not be moved.

None of the lazy or unique lazy rules have to be called from one of the
synchronization blocks of the main synchronization rule, because these rules
should only be called from a synchronization block where the corresponding
binding calls the specific rule directly.

9.6.2.3. Bindings

A major difference between the two languages lies in the way rules are
connected with each other, and how rule calls to transform model elements
are specified. In an ATL transformation, dependencies between rules are
specified implicitly – bindings are resolved using the traceability links created
in the model element matching phase, or a suitable lazy rule is called. The
decision which rule has to be called is not specified explicitly in the binding.

In a NMF synchronization, dependencies have to be declared explicitly in
a synchronization block. Each binding of an ATL rule has to be mapped to
synchronization blocks where the possible synchronization rules that have
to be called to transform the model element must be declared explicitly. Pos-
sibly, multiple synchronization rules match a binding and therefore multiple
synchronization blocks have to be generated, each with a respective filter
condition. This is necessary, since only one synchronization rule can be
called from a synchronization block.
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1 b : Book!Book ( ...

2 chapters <- e.childrenXml->select(c | c.oclIsKindOf(XML!Element))->

asSequence()

3 )

Listing 9.12:An exemplary ATL binding

1 public override DeclareSynchronization() {

2 SynchronizeManyLeftToRightOnly(SyncRule<ChapterRule>(),

3 e => e.ChildrenXml.OfType<XML.IElement>().Where(x => x.ChapterRuleFilter()

),

4 b => b.Chapters);

5 }

Listing 9.13: The synchronization block generated for the binding in Listing 9.12

To generate the synchronization block for a binding, we first analyze the
type of the expression that should be bound and compare it with the type
of the target pattern element member to which the expression should be
bound. If these types match or can be easily converted (through a built-in
type conversion such as from integers to floating-points), we use the identity
as target isomorphism for the generated synchronization block. Otherwise,
the synchronization rule for the applicable ATL rule is selected. In case there
are multiple applicable rules, a synchronization block is created for each of
them with an appropriate filter when this rule applies.

Furthermore, we require information on the multiplicity of the binding, i.e.,
whether a single-valued or multi-valued synchronization block has to be
created. This information can be easily extracted from the binding target.

As an example, consider the binding of chapters depicted in Listing 9.12. The
binding completes Listing 9.10 from above.

ATL2NMFs statically resolves the rule(s) applicable for the given binding and
generates the synchronization block(s) depicted in Listing 9.13 in the gener-
ated synchronization rule BookRule. In this case, only one synchronization
block is generated. Due to filters, there could be multiple synchronization
rules applicable.
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Figure 9.18.: Synchronization block from Listing 9.13

In Listing 9.13, Line 3 defines a predicate in the source model element to
obtain themodel elements to transform. This is a translation of the expression
that should be bound, i.e. the right part of Line 2 in Listing 9.12. We explain
details of this transformation in Section 9.6.2.5. Line 4 defines the feature of
the target model where the transformed elements should be stored, i.e. the
member that should be bound. In Listing 9.12, this corresponds to the left
part of Line 2.

A graphical representation of this synchronization block is depicted in Fig-
ure 9.18. If the chapter rule filter was invertible, NMF would be able to
invert the selector and thus, the synchronization block could be executed
bidirectional94. However, currently ATL2NMFs does not perform this check
and always generates an unidirectional synchronization block, as specified
in Line 2 of Listing 9.13.

9.6.2.4. Helpers

Helpers can be used in any OCL expression in the ATL transformation, even
in the body expression of another helper. In ATL, one can define two different
kinds of helpers: functional and attribute helpers95. Each helper is defined
with a name, a return value type, a body (which is an OCL expression), an
optional context, and parameters, which have to be passed to the helper
when called. Listing 9.14 shows the definition of a simple helper.

94 A filter condition such e.name = ’chapter’ is currently thought of as not invertible, because
it is unclear how it should be set to false.
95 Also known as operation and property helpers

289



9. Validation and Evaluation

1 helper context FSM!State def :

2 nameOfState() : String = self.name;

Listing 9.14:Definition of a simple ATL functional helper

For this helper, ATL2NMFs generates a C# extension method that is specified
for the type of the context of the particular helper. When the extension
method is called on an element, this element is automatically passed as a
parameter to the extension method, similar to ATL. To further simplify the
mapping process, the variable of this parameter has the name self, used
in ATL as keyword to reference the context object. The return value of the
extension method is a type of the source metamodel or an OCL type. In case
of an OCL type, the corresponding C# built-in types, such as int, bool, or
string are used. Also more complex OCL types such as maps, sets, sequences
and ordered sets are supported.

Because NMF Expressions that is used in NMF Synchronizations is not
able to look inside a compiled method, we also need to create a proxy method
to properly incrementalize the helper. For the implementation of the proxy
method, we may use the abilities of NMF Expressions to create a dynamic
dependency graph template which just needs to be instantiated for the
given input. The replication of the code is only required such that the non-
incremental version does not have to load the dependency graph template.

The proxy method is referenced using a type and the method name. The
generated type is used for the method proxies of all helper functions and is
not visible from outside the class where the extension method is defined.

The result of the mapping process for the ATL helper from Listing 9.14 is
shown in Listing 9.15.

To hide the implementation detail that we annotate the generated methods
with proxies such that they can be used in an incremental setting, we generate
all proxy methods into a private class Proxies that is shared for all helpers.
The purpose of this class simply is to make the proxy methods invisible for
developers.
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1 [ObservableProxy(typeof(Proxies), "NameOfState")]

2 public static string NameOfState(this FSM.State self) {

3 return self.Name;

4 }

5 private class Proxies {

6 private static ObservingFunc<FSM.State, string> nameOfStateFunc =

7 new ObservingFunc<FSM.State, string>(self => self.Name);

8 public static INotifyValue<string> NameOfState(INotifyValue<FSM.State>

self) {

9 return nameOfStateFunc.Observe(self);

10 }

11 }

Listing 9.15:C# version of the simple ATL helper of Listing 9.14 with attribute and proxy

9.6.2.5. ATL-OCL

ATL uses a tailored version of OCL expressions in many different places:
as body expression of a helper, as filter condition of a rule or in a binding
of a target pattern element. Therefore, the analysis and mapping of OCL
expressions is an important topic in the concept of the ATL2NMFs HOT. The
counterpart of OCL expressions which is used in NMF Synchronizations
to define expressions are the SQOs.

Even though the ATL language is based on the OMG OCL standard, its
implementation of OCL is different in a few points in comparison to the
standard OCL definition [16]. Therefore, every time we mention OCL in this
section, we refer to the OCL implementation of the ATL language.

We transform OCL expressions based on their abstract syntax tree repre-
sentation. Each OCL expression element is transformed to a corresponding
expression in C#, partially using SQOs:

Types: The different primitive types of the OCL language, such as String,
Integer, Boolean can be represented by the corresponding built-in types of
the C# language. The model types, which are specified in one of the used
metamodels, are mapped to C# classes by the EcoreInterop tool of NMF.
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Primitive Expressions: References to numeric literals or arithmetic expres-
sions can be mapped to equivalent C# operators.

Conditional Expressions: Conditional expressions in OCL can be mapped
to the C# ternary operator.

Model Navigation or Attribute Helper Expressions: Model Navigation Ex-
pressions, such as references to attributes or references, are converted to
property expressions to the generated property of the respective feature.
However, OCL also allows access to properties which are not defined in the
static type of the source element, but rather in one of its subtypes. Such an
access would not be type-safe and is thus not allowed in the type-safe C#
language. Therefore, it is necessary that ATL2NMFs adds a type cast which
casts the element to the correct subtype before the property access is made.
To prevent runtime errors, a check is added to verify if the cast is valid before
the property is accessed. Otherwise, null as the equivalent of OclUndefined
is returned. An expression that calls a helper is converted to a method call
to the respective helper function.

Operation Expressions: OCL defines several different operations that can
be used. Most of them have a semantic equivalent in C#, Akehurst and
others even state that the more recent versions of C# make OCL redundant
[5]. A short list of example operations and their mapping by ATL2NMFs
is depicted in Table 9.4. The source and arguments keywords in the table
are placeholders for the specific OCL expressions, respectively the mapped
versions of them. Depending on the operation, the arguments expression can
either be empty, consist of one argument expression, or consist of multiple
argument expressions.

Few operations, such as operations based on collection indices (at, indexOf,
last), are not supported because the underlying NMF Expressions frame-
work currently does not support indices in an incremental setting. The
well-known iterate expression is not supported because the operation that
is applied to the accumulator is not invertible in general. As a consequence,
the engine would have to recompute the iterate statement for the entire
underlying collection, which is slow and therefore not supported.
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OCL Operation C# expression

source.oclIsKindOf(arguments) source is arguments

source.oclIsUndefined() source == null

source.implies(arguments) !(source) || (arguments)

source.sum() source.Sum()

source.first() source.FirstOrDefault()

source.includes(arguments) source.Contains(arguments)

source.flatten() source.SelectMany(x => x)

source.union(arguments) source.Union(arguments)

source.select(body) source.Where(body)

source.collect(body) source.Select(body)

source.exists(body) source.Any(body)

source.forAll(body) source.All(body)

source.any(body) source.FirstOrDefault(body)

source.sortedBy(body) source.OrderBy(body)

Table9.4.:Example ATL-OCL operations and their mapping to the corresponding C# expressions

An operation call expression may also be used to call a functional helper. In
this case, ATL2NMFs generates a call to the extension method generated for
the helper.

OCL Collections: OCL defines the collection types Bag, Set, OrderedSet,
Sequence and Map. Besides Bag, all of these collection types have a corre-
sponding class in NMF. Furthermore, C# defines a syntax to initialize a
collection with members, an example is depicted in Listing 9.16. This syntax
is supported by NMF Expressions and therefore available in NMF Synchro-
nizations.

1 var orderedSet = new ObservableOrderedSet<int>() { 0, 8, 15 };

Listing 9.16:Collection initialization in C#

However, our tool ATL2NMFs does not have full support for collection initial-
izations, yet.
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1 rule BookRule {

2 from

3 e : XML!Element ( e.name = ’book’)

4 using

5 name : e.name

6 to

7 b : Book!Book (...name...)

8 }

Listing 9.17:ATL matched rule with a variable

9.6.2.6. Variables

ATL rules may define variables to simplify the specification of bindings. An
example of such a variable is given in Listing 9.17.

We suggest to simply expand the variables to their full definition in the
binding. This works provided that the variable initialization is deterministic.
However, there is currently no further support for variables in synchroniza-
tion rules.

9.6.2.7. Multiple Output Pattern Elements

It is possible that an ATL rule declares multiple target pattern elements.
Each target pattern element creates one target model element for each rule
execution. This behavior cannot be easily achieved with one NMF Synchro-
nizations synchronization rule.

Thus, ATL2NMFs creates separate synchronization rules for each target pattern
element of an ATL rule. Each synchronization rule is declared with the stated
source type of the source pattern element of the ATL rule, where the target
type of the synchronization rule is declared with the type of the particular
target pattern element for which it was created.

The first declared target pattern element of an ATL rule has the special role of
being the default target pattern element. Whenever a source model element
is referenced in a binding, the rule created for the default target pattern
element is used to for the binding (cf. Section 9.6.2.3).
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An ATL developer also has the possibility to reference a specific target pattern
element which should be used to initialize a binding (using the resolveTemp
function). In such a case, the target model element created by the referenced
target pattern element is used in the binding instead of the default target
pattern element rule.

To make sure that all rules created from an ATL rule are called, we replicate
the calls of the default rule. We omit this step for every output pattern element
that is referenced in a binding. If the rule is a matched rule, this means that
we replicate the call of this rule in the emulated matching phase.

In case other target pattern elements are used in a binding, we create a
synchronization block that uses the identity as left selector and the synchro-
nization rule created for that target pattern element as child synchronization
rule.

9.6.2.8. Multiple Input Pattern Elements

ATL rules may have multiple input pattern elements. In a called rule, the
arguments are simply passed into the rule. In a matched rule, the rule guard
is applied to the Cartesian products of the input model elements.

In many cases, the Cartesian product is inappropriate because the filter
condition filters out most of the tuples. Therefore, it appears that other
transformation languages such as SimpleGT are more suitable in such a case
[211]. Thus, we think that this feature of the ATL language is not commonly
used and we did not give particular attention to it.

Hence, the support for multiple input pattern elements is not fully imple-
mented in ATL2NMFs, but the transformation is only sketched here.

In NMF Synchronizations, the support for multiple input pattern elements
is also rather limited. As a reason, we experienced with NTL [92] that
multiple input elements is a rare case, but required a tremendous amount of
code to support it. At the same time, the advantages of a true support for
multiple input elements over transformation of tuples is limited.

Therefore, the easiest way to support multiple input pattern elements in
NMF Synchronizations is to simply use tuples as inputs. Then, the model
matching has to be adapted to match tuples instead of elements. Compared
to a dedicated support of multiple input elements, this has the drawback that
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rule instantiation does not work because tuples are no covariant with the
tuple types.

While a strict 1:1 mapping to a filter of the Cartesian product is possible, it
is not desirable for performance reasons. NMF Expressions currently does
not optimize queries for incremental execution and therefore, the generated
transformation would also create a Cartesian product and create a filter. In
an incremental setting, every tuple of the Cartesian product had to be kept
in memory at all time, which would be very costly in terms of memory.

Using a manually optimized query based on model navigation or joins to
find model element tuples in the source model, also a much faster pattern
matching is possible than in ATL. For the example mentioned above where
SimpleGT was used, the appropriate NMF expressions for the patterns are
discussed in [105].

Implementing multiple input model elements similar to the implementation
of multiple output elements, i.e. to create multiple synchronization rules,
is not a good option. One the one hand, this is because usually multiple
input elements are used in each output element (but not vice versa) and
more importantly, it is much more difficult to get the source element for a
given target than the other way round. This is not because of the lacking
information, but rather because it inclines a change of the the transformation
direction. This cannot be done in NMF Synchronizations without losing
the advantages of declarative incrementality.

9.6.3. Limitations

ATL2NMFs is not designed to support complete ATL. In the following enu-
meration, a rough overview of the unsupported ATL concepts, or constructs
respectively, is given with the reason why they are not supported:

Imperative constructs: Only declarative constructs are supported. Every
single imperative construct of the ATL language, such as called rules or
imperative code blocks, are excluded. An incremental execution of imperative
code blocks is not supported in NMF. Although there are some approaches
to incrementally execute imperative code [83], these approaches are not
implemented in NMF Expressions yet and are therefore not available in
NMF Synchronizations.
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Refining mode: The supported subset of the ATL language is restricted
further by excluding the refining mode. The main problem with the refining
mode in the context of an incremental execution is that it is difficult to
differentiate the changes performed in the course of the transformation from
changes that the transformation needs to react to.

Iterative Target Pattern Elements: A noteworthy, but not critical limitation
is, that iterative target pattern elements, which are represented by the dis-
tinct foreach keyword, are not supported. Their behavior, respectively
their usage will not be described here, because they are deprecated since ATL
version 2.0 [16]. It is recommended to use unique lazy rules instead, which
are supported by the Atl2NmfS HOT. However, it is noteworthy, since itera-
tive target pattern elements are still used in many example transformations
of the ATL zoo.

Nodefault Rules: The ATL language also offers some constructs, which
are very subtle, to influence the behavior of the ATL engine. Some of their
repercussions must first be fully analyzed to be able to give a final assessment
about the complexity of their mapping. An example for such a construct is e.g.
the nodefault keyword. A matched rule can be marked with this keyword
to influence the ATL matching phase. Normally, a transformation results in
an error, if a source model element is matched for multiple possible rules
in the ATL matching phase. By using the nodefault keyword, it is possible
to allow such a situation. The ATL engine is in a position to choose one of
the possible rules based on the nodefault keyword to transform the specific
element. The mapping of this keyword must be considered in the created
main synchronization rule, where the ATL matching phase is simulated.
However, the mapping is not that simple, since the information can not be
determined statically and thus is only known during runtime if a specific
source model element matches multiple rules. It must be ensured, that the
specific source model element is only synchronized by one synchronization
rule, which was also chosen by the ATL engine.

Queries: Queries are not of any interest for this case study since they cannot
be invoked from an ATL transformation and thus are invoked completely
separate from the actual ATL transformation.
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Variables: As mentioned above, we assume that variables are initialized
deterministically.

Bidirectional Transformation: Synchronization blocks theoretically sup-
port bidirectional transformations. However, a synchronization created by
the ATL2NMFs HOT only uses one-way synchronization blocks, which is why
the backward transformation cannot repair any inconsistencies by changing
the source model. In the future, we plan to check whether selectors can be
inverted and use bidirectional synchronization blocks in that case.

Custom Isomorphisms: NMF Synchronizations allows users to override
the rules that determine when existing target model elements should be
reused to create new correspondences. For this, we require the transforma-
tion developer to specify when such a correspondence should be established,
for example based on names or element IDs. We see no way to extract this
information from an ATL specification, and thus, the generated transforma-
tion is not able to operate on existing target model elements. However, this
specification can be added by the transformation developer, even separate
from the generated code.

Notably, existing offline model synchronization engines for ATL such as
SyncATL also need to decide when two elements are identical. They solved
this problem by adding a requirement that all metamodels used with Syn-
cATL have to have a mandatory identifier attribute for all classes of the
metamodel(s).

9.6.4. Results

To test the correctness of the presented approach, ATL2NMFs has been applied
to 21 example model transformations from the ATL examples website96 or
adapted to cover more ATL language features. The generated model trans-
formations in NMF Synchronizations have been executed with available
example models and the resulting target models were compared to the target
models generated using the original ATL transformation. The comparisons

96 http://www.eclipse.org/atl/atlTransformations, retrieved 15 Feb 2017
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have been performed manually as diff tools such as EMF Compare produced
phantom differences.

The chosen example transformations are Families2Persons, XML2DXF, XML2-
Book, Make2Ant, PetriNet2PathExp, PetriNet2Grafcet, PetriNet2PNML, PortV2,
PortV3 and PortV4. These transformations cover matched rules, lazy rules,
filters, multiple target pattern elements, attribute helpers and functional
helpers. Additional adapted versions also cover unique lazy rules, libraries,
multiple input models and multiple output models.

To evaluate the performance of the generated transformations, we extended
three example transformations into a benchmark. We chose the Fami-
lies2Persons example as it is well known, the Make2Ant example as it is
supported by SyncATL and a simplified version of the Class2Relational as
this is supported by Reactive ATL. For these transformations, we randomly
generated change sequences of 20 elementary changes based on generated
input models of different sizes. We assume that after each change, we need
an updated target model. Thus, we either re-run the model transformation or
simply propagate the change to the target model in case of the incremental
NMF Synchronizations version.

To reduce the influence of chance, we repeated every measurement ten times.
All NMF implementations work entirely online, so that no serialization or
deserialization of models is involved. The ATL transformations run in a
single process to reduce JVM warmup. For the ATL implementations, model
serialization and deserialization is excluded from the time measurements.
However, the measurements for NMF Synchronizations include the model
manipulation97, while the measurements for ATL only include the transfor-
mation. The introduced bias towards ATL is only marginal since the time
for pure model manipulation can be neglected.

The benchmark is also publicly available online98.

97 Because NMF Synchronizations works online, it is hard to separate the time for change
propagation from pure model manipulation.
98 https://github.com/georghinkel/atlbenchmark

299

https://github.com/georghinkel/atlbenchmark


9. Validation and Evaluation

9.6.4.1. Families to Persons

The Families2Persons example is perhaps one of the most often studied exam-
ple transformations in the MDE community. Both input metamodel, output
metamodel and the transformation itself are entirely synthetic. With only 46
lines of ATL code, the transformation is also very small. Nevertheless, the
transformation showcases a common model transformation problem: Both
input metamodel and output metamodel represent people, but the represen-
tation of gender is fairly different. In the Families metamodel, the sex of a
person is encoded through the containment hierarchy, i.e. a person is female
if and only if it acts as a mother or a daughter of a family. Meanwhile, the
Persons metamodel has a direct representation of gender using inheritance.

In terms of language features, the Families2Persons transformation consists of
two matched rules with guards and helpers. Both transformation rules only
have a single input pattern element and a single output pattern element.

As input, we randomly generate Families models of given sizes. For size 𝑛,
we generate 𝑛

10 families each consisting of a father, a mother, two sons and
two daughters. Afterwards, we randomly fill existing families with new sons
or daughters until the desired number of elements is reached.

The change sequences are also generated based on the generated inputmodels
and consist of the following types of elementary changes (percentages in
parentheses denote the probability of these changes):

• Add a new family consisting of a father, a mother, a son
and two daughters (2% or if no family is present)

• Remove a son from a randomly selected family (10%)

• Remove a daughter from a randomly selected family (10%)

• Add a new son to an existing family (25%)

• Add a new daughter to an existing family (25%)

• Rename an existing son of an existing family (10%)

• Rename an existing daughter of an existing family (10%)

• Remove an existing family (8%)

300



9.6. Case Study: Incremental ATL transformations

10 50 100 500 5000 50000

1e
−0

1
1e

+0
1

1e
+0

3

Number of model elements

P
ro

pa
ga

te
 u

pd
at

es
 [m

s]

●

●

●

●

●

●

●

●

● NMF Synchronizations (Batch)
NMF Synchronizations (Incremental)
ATL Default
ATL EMF/TVM
Changes only

Figure 9.19.: Response times of a generated change sequence in the Families2Persons example
for input sizes between 10 and 50,000 persons, both axes logarithmic.

The results for the Families2Persons example are depicted in Figure 9.19
with logarithmic scales in both axes. We depicted the runtime of NMF
Synchronizations in batch mode and incremental mode, ATL in the default
VM and in the EMFTVM and the time to only apply the changes to the source
model.

The results show that already for very small input sizes, the incremental
change propagation leads to smaller response times. For larger models, the
gap between the incremental NMF Synchronizations solution and the batch
solution increases, i.e. the speedup grows. For the largest considered model
size of 50,000 model elements, the incremental NMF Synchronizations
transformation is faster than reexecuting the original ATL transformation
by a factor of 480 (EMFTVM) or 1074 (default VM). While the time for
repeated transformation scales with the model size99, the incremental change
propagation scales with the size of the changes which is why the curves for
model manipulation only and model transformation are roughly parallel on

99 The execution of the ATL transformations seems to have a slight constant overhead. Probably,
there is a more efficient way to automate running the ATL transformation. However, that
overhead becomes negligible for large model sizes.
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a logarithmic axis. Therefore, the results suggest that the generated NMF
Synchronizations synchronization is fully incremental in the terminology
of Giese and Wagner [74].

9.6.4.2. Make files to Ant build scripts

The Make2Ant transformation is about transforming between models of two
different yet similar technologies for writing build scripts: Make and Ant.
The difference between these models is only that the used metamodel for
Make scripts has a boolean attribute denoting whether a shell line is shown
to the user or not. The Ant model does not have this option but distinguishes
more generally between code execution and informational messages to the
user. The model transformation therefore has two different transformation
rules depending on whether a shell line should be displayed or not. In the
latter case, only an Exec element is created that executes the shell line. In the
former case, both an Echo and an Exec element is created. With 88 lines of
code, this transformation is slightly more elaborate than the Families2Persons
example, but still very small.

In terms of language features, the transformation consists of five matched
transformation rules, partially with guards and multiple output elements.

Similar to the Families2Persons transformation, we use generated models as
inputs. To create 𝑛 model elements, we generate 𝑛

10 macros,
𝑛
4 rules with

a file dependency and a shell line. Then, we randomly add shell lines and
file dependencies to randomly selected rules until the desired number of
elements is reached.

The generated change sequences consist of the following elementary changes
(again, probabilities in parentheses):

• Remove a random macro (4%)

• Add a new macro (7%)

• Change the name and the value of an existing macro (7%)

• Add a new file dependency to a randomly selected rule (10%)

• Change a randomly selected file dependency (10%)

• Remove a randomly selected file dependency (5%)
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Figure 9.20.:Response times of a generated change sequence in theMake2Ant example for input
sizes between 10 and 50,000 elements, both axes logarithmic.

• Add a shell line to a randomly selected rule (10%)

• Change a randomly selected shell line command (10%)

• Remove a randomly selected shell line command (5%)

• Add a new rule with a file dependency and a shell line (15%)

• Rename a randomly selected rule (10%)

• Remove a randomly selected rule (5%)

• Change a comment (3%)

The results of the Make2Ant example are depicted in Figure 9.20. They con-
firm the results of the Families2Persons example. For all model sizes, the
incremental change propagation of the generated NMF Synchronizations
transformation is significantly faster than reexecuting the ATL transforma-
tion after every model manipulation. For the largest model size of 50,000
model elements, we see a speedup of the incremental NMF Synchroniza-
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Figure 9.21.: Response times of a generated change sequence in the Make2Ant transformation.
Time axis is logarithmic.

tions transformation of 5,175 compared to ATL executed in the EMFTVM
or 11,367 compared to the default VM.100

Lastly, we compared the results with existing extensions to ATL that also
aim at incremental processing. Unfortunately, both of these approaches are
in a very early state such that it was not possible to compare the tools for a
multitude of transformations.

For SyncATL [219], we were able to run the Make2Ant transformation. Simi-
lar to the last comparison, we randomly generated change sequences of 20
elementary changes and propagated them individually. For a fairer com-
parison101 and because SyncATL works offline, we deserialize the last input
model and serialize the result after each change propagation.

The results are depicted in Figure 9.21. Because the serialization overhead is
added to both NMF Synchronizations solutions, the difference between

100 There is an outlier for model manipulation only at 5000 model elements. We think this
partially due to the low accuracy for time measurements below 0.1ms and due to confounding
effects such as garbage collection.

101 Still, SyncATL needs to compare the models before each change propagation. However, we
did not get SyncATL to compile and therefore used the compiled version from their website.
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the two of them is marginal and the performance benefits of incremental
computation are almost lost. However, still, SyncATL is roughly two orders
of magnitude slower.

9.6.4.3. Class Diagrams to Relational Database Structures

The ClasdsDiagrams2Relational transformation takes a simple model of a
class diagram as input and creates a relational database scheme capable to
store instances of this class model. That is, a table is created for each class and
all single-valued attributes are turned into columns. Multi-valued attributes
are transformed into separate tables. In the scope of this benchmark, we
had to use a minimalistic version of the example transformation in order to
stay within the subset of the ATL language supported by Reactive ATL. In
particular, unlike the original example transformation, this simplified version
does not create a primary key column for each class. Columns with foreign
keys do not have a type. Tables for multi-valued columns are not created.

In terms of used language elements, the used version of this example trans-
formation is simplistic. It only consists of six matched transformation rules
with guards and a helper, though the latter is not used.

As inputs, we again use generated input models. These input models consist
of a package with primitive types and a set of randomly generated packages.
We then generate 𝑛2 classes and

𝑛
2 attributes where the attributes are randomly

assigned to classes.

The generated change sequences consist of the following changes:

• Change the type of a randomly selected attribute (20%)

• Add a new attribute to a randomly selected class (20%)

• Rename a randomly selected attribute (20%)

• Remove a randomly selected attribute (10%)

• Rename a randomly selected class (10%)

• Remove a randomly selected class (5%)

• Add a new data type (5%)

• Add a new package (8%)
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Figure 9.22.: Response times of a generated change sequence in the Class2Relational transfor-
mation for input sizes between 50 and 50,000 model elements, both axes are logarithmic.

• Remove a randomly selected package and all of its contents (2%)

Originally, we also planned to add classes or rename packages, but for some
reason Reactive ATL threw a runtime error for these two change types.

The results achieved for the benchmark are depicted in Figure 9.22. Like NMF
Synchronizations, the curve for Reactive ATL is flat, indicating that the
response time to update the target model does not depend on the size of the
model. However, the curve is above the curve for NMF Synchronizations
with a constant distance. On a logarithmic scale, this indicates a constant
factor: NMF Synchronizations appears to be roughly 2-5 times as fast as
Reactive ATL. The average speedup of the incremental NMF Synchroniza-
tions version against the incremental version using Reactive ATL is 3.6 with
a standard derivation of 1.4. Even though we achieved the fastest speedup
of 6.0 for the largest model with 50,000 model elements, we do not think
that there is a trend that the speedup is growing with the size of the input.
Both incremental versions are much faster than repeatedly executing the
transformation in a batch manner.
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9.6.5. Summary

In this section, we presented a structured transformation from declarative
ATL transformations to one-way synchronization blocks in NMF Synchro-
nizations. This suggests that synchronization blocks are at least as expres-
sive as the declarative parts of the ATL language. Most of this mapping is
supported by our open-source tool ATL2NMFs.

Our approach is fundamentally different in comparison to already existing
approaches to obtain an incremental execution of ATL transformations such
as Reactive ATL and SyncATL. In these approaches, an incremental model
synchronization for the ATL language is introduced by altering the ATL
compiler, respectively extending the ATL VM. In this paper, an incremental
model synchronization is introduced for ATL transformations by mapping
the different concepts of the ATL language to NMF Synchronizations. The
advantage of this approach is the support of incremental change propaga-
tion, which leads to better performance in the presence of small incremental
changes to the source model. Further, the resulting transformation can be
extended by the transformation developer to also account for offline syn-
chronizations with appropriate heuristics when to create a correspondence
between existing model elements.

The evaluation shows that our transformation can be used to gain a transfor-
mation that runs fully incremental and therefore is up to four magnitudes
faster than a repetitive execution of the original ATL transformation run in
the default VM or more than 5,000 times faster than repetitive execution of
the original ATL transformation run in the EMFTVM. Compared to other
approaches that execute ATL transformations incrementally, our approach
has a speedup of roughly 3-4.

9.7. Case Study: Refactoring of Java Code

This section presents results based on the Transformation Tool Contest 2015
Java Refactoring case [131]. The idea behind this case is that most refactorings
can be specified on a more abstract level than code. The case defined such
a more abstract format and demanded solution authors for a bidirectional
synchronization between this model and the Java code, represented in an
arbitrary metamodel.
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Figure 9.23.: Sketch of the Transformation Chain for the Java Refactoring case at the TTC 2015
[131]

At the TTC 2015, solutions to this case were submitted using FunnyQT [113],
Spoon [160], NMF [94], VIATRA [189], eMoflon [163] and SDMLib [78].

9.7.1. Benchmark Setup

The benchmark intended three steps: Based on a Java model, at first a
Program Graph (PG) model should be created. Then, refactoring operations
should be performed based on this simplified PG model. Afterwards, the
refactored PG model should be transformed back to a Java program. The
transformation chain is depicted in Figure 9.23.

The PG model is somehow optimized for the proposed refactoring tasks as
it already draws a very close connection between methods that have the
same name (though defined in different classes with no inheritance relation
between them). In particular, the PG model merely defines a method through
its name and allows such a method to have different definitions in multiple
classes.

A metamodel class diagram of the PG model is depicted in Figure 9.24.

The proposed refactoring operations are Create Superclass and Pull UpMethod.
The latter essentially assumes method definitions in two classes with a shared
base class identical and replaces them by a method definition in the common
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base class. The Create Superclass refactoring simply creates a new superclass
for all classes that have no superclass, yet.

Details on the benchmark setup can be obtained in the original benchmark
description [131].

9.7.2. Validation Goals

The goals of this case study are as follows:

Applicability The reason that this case study is interesting in the scope
of this thesis is that it is meant for bidirectional model transformations. In
particular, a RHS model is created from a given LHS model and afterwards,
changes to the RHS model should be propagated back to the LHS model. The
application scenario of refactoring tasks is also interesting, though we think
that the practical use of the suggested PG model is limited.

Understandability As a case study taken from the TTC, we have access to
the open peer reviews, i.e. expert opinions from external researchers about
the solutions. Therefore, we can compare the understandability of the NMF
approach in relation to other solutions.

Correctness Again, we check the correctness indicators as indicated by the
case description.

Unfortunately, the NMF solution could not be run in the ARTE framework
thatwas used to record the performance of the solutions. Therefore, we do not
compare the NMF solution with other solutions with regard to performance
in this case study.

9.7.3. NMF Solution

The description of the NMF solution is based on the original solution sub-
mission [94].
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1 class JavaPGSynchronization : ReflectiveSynchronization {

2 public class Class2Class : SynchronizationRule<IClass, ITClass> {

3 public override void DeclareSynchronization() {

4 Synchronize(cl => cl.Name, cl => cl.TName);

5 SynchronizeMany(SyncRule<Member2Member>(),

6 cl => cl.Members.Where(m => m is ClassMethod || m is Field),

7 cl => cl.Defines);

8 Synchronize(this,

9 cl => cl.Extends as IClassifierReference != null

10 ? (cl.Extends as IClassifierReference).Target as IClass

11 : null, RegisterNewBaseClass,

12 cl => cl.ParentClass);

13 }

14 }

15 }

Listing 9.18: Synchronization of classes in JaMoPP and the PG metamodel

We use JaMoPP [86] to load and write Java files and translate them into a
model representation. Since the NMF meta-metamodel NMeta is compatible
with Ecore, we can easily transform the JaMoPP metamodel to an NMeta
metamodel and consume the JaMoPP generated XMI representations of the
input files directly. In between, we use NMF Synchronizations for the
transformations and regular C# code for the actual refactorings in the PG
model.

To ensure that the refactoring operations performed in the model manip-
ulation have an effect to the code model, we run the transformation from
the JaMoPP model to the PG model with two-way change propagation. We
actually do not require changes from the JaMoPP model to the PG model
because we do not intend to change it, but NMF Synchronizations does
not support a change propagation from the target to the source model of a
model transformation, only.

Listing 9.18 shows an excerpt of the model synchronization that synchronizes
classes.

In line 3, we declare that Class2Class is a synchronization rule synchronizing
JaMoPP classes with PG classes. Line 7 specifies that whenever we found
such two classes that correspond (decided by the method ShouldCorrespond),
their names should be synchronized. Line 8-10 specify that each member of
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a JaMoPP class should correspond to a definition in the PG. The details for
this correspondence are left to the Member2Member rule.

Lines 11-15 specify that the base classes should be synchronized. The current
rule Class2Class should be used to identify corresponding base classes as
well, explaining the this parameter in Line 11. However, whereas the base
class of a Java class in the PG metamodel is available directly as a reference,
the base class in JaMoPP is encoded in a classifier reference, making the
expression to obtain the base class slightly more complex. As a consequence,
NMF Synchronizations is not able to infer how to revert the expression
and we have to specify this (how a JaMoPP class is assigned another class as
a base class) through another method, namely RegisterNewBaseClass. With
this method, the behavior how to assign a JaMoPP class a new base class is
implemented in regular imperative code.

The implementation of Member2Member in case of methods is presented in
Listing 9.19. In this listing, again Line 1 declares Method2MethodDefinition
as a synchronization rule from JaMoPP methods to PG method definitions.
A JaMoPP method should correspond to a PG method definition in a given
scope if the methods have the same name here. We specify the exact behavior
in lines 3-10. Since the structure of the PG metamodel is very different to
JaMoPP in this regard, the method is a few lines long.

Line 13 marks the synchronization rule instantiating for the Member2Member
rule. This means, if a member is a method, then the rule Method2MethodDe-
finition should be used to synchronize members, regardless of the trans-
formation direction. Field2FieldDefinition is in place for synchronizing
fields.

Line 14 denotes that the name of a method in JaMoPP should be kept con-
sistent with the name of the method in the PG model. Here, the two way
change propagation has enormous consequences. If we changed the name of
a method in JaMoPP, the change is propagated to the PG TMethod element.
However, this change is propagated back to the JaMoPP model causing all
methods that are connected to this PG method to change their name accord-
ingly, regardless of their declaration scope or signature. So we have specified
a very powerful rename refactoring in just a single line of code. While this
behavior is consistent with the case description, we argue that it is hard
to foresee. However, this is not a drawback of our approach but rather a
consequence from the simplistic point of view of the PG model.
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1 public class Method2MethodDefinition : SynchronizationRule<IMethod,

ITMethodDefinition> {

2 public override bool ShouldCorrespond(IMethod left, ITMethodDefinition

right, ISynchronizationContext context) {

3 var sig = right.Signature;

4 if (sig == null) return false;

5 var meth = sig.Method;

6 if (meth == null) return false;

7 return left.Name == meth.TName;

8 }

9 public override void DeclareSynchronization() {

10 MarkInstantiatingFor(SyncRule<Member2MemberDefinition>());

11 Synchronize(meth => meth.Name, meth => meth.Signature.Method.TName);

12 LeftToRight.Require(Rule<Method2MethodSignature>(), meth => meth.Name,

13 meth => meth.Parameters.Select(p => GetBaseClass(p.TypeReference)).

AsItemEqual(),

14 (meth, signature) => meth.Signature = signature);

15 }

16 }

Listing 9.19: The synchronization rule for method definitions

Since the underlying NTL transformation rules of a synchronization rule in
NMF Synchronizations are still accessible, we can add a dependency to
the Method2MethodSignature that creates a TMethodSignature element for
the given name and parameter list. For a given name and parameter list,
the transformation engine ensures that only one method signature element
is created. This transformation rule calls another rule Method2Method that
creates a method element for each string that appears as a method name in
the JaMoPP model.

These transformation rules Method2Method and Method2MethodSignature are
called any time the LeftToRight rule of the synchronization rule Method2Me-
thodDefinition are called. That is done either initially for each method in
the JaMoPP model (restricted to at most once per input names and parameter
lists) and as well for any new JaMoPP method that is added to the JaMoPP
model afterwards.

The refactoring part of our solution uses straight forward imperative code
to achieve the refactoring operations. As the Create Superclass is straight
forward to implement in classic C# code, we omit a description. The imple-
mentation of the Pull Up Method refactoring is shown in Listing 9.20.
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1 public bool PullUpMethod(TypeGraph typeGraph) {

2 foreach (var method in typeGraph.Methods) {

3 foreach (var signature in method.Signatures) {

4 var methodsGroupsToPull = from def in signature.Definitions

5 where def.Overriding == null

6 group def by (def.Parent as TClass).ParentClass into

methods

7 select methods;

8 foreach (var methodGroup in methodsGroupsToPull.Where(group => group.

Count() >= 2)) {

9 if (methodGroup.Key != null) {

10 var first = methodGroup.First();

11 var firstParent = first.Parent as ITClass;

12 methodGroup.Key.Defines.Add(first);

13 firstParent.Defines.Remove(first);

14 foreach (var m in methodGroup.Skip(1)) {

15 (m.Parent as ITClass).Defines.Remove(m);

16 }

17 }

18 }

19 }

20 }

21 }

Listing 9.20: The implementation of Pull Up Method

In this listing, we iterate through all methods and their signatures. For each
signature, we query the method definitions that follow this signature and
group them by parent classes. If there is a group with at least two items,
which means that a method definition is present in at least two subtypes of
a given class, then we pick the first method definition and add it to the base
class. All other method definitions are removed.

Given the conciseness of this specification based on the TypeGraph meta-
model, we see no reason to use a specialized language for the refactoring.
However, due to the online synchronization, we have to be careful to al-
ways keep the model in a consistent state, we must not discard the method
that should stay as otherwise the connected implementation in the JaMoPP
model would be lost. This is very important because in the PG model, there
is no information on how a method is implemented, this information is only
stored in the original JaMoPP model. Using for example a new TMethodDef-

inition object in the PG model would be sufficient for the PG model, but
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Tool Comprehensibility Readability

eMoflon [163] 4.5 5
FunnyQT [113] 3 4
NMF [94] 5 5
SDMLib [78] 4 3
Spoon [160] 4.5 4.5
VIATRA [189] 3.5 3.5

Table 9.5.:Open Peer Review Results for the TTC 2015 Java Refactoring Case

NMF Synchronizations would not be able to trace that new model element
to existing code. By reusing the existing method definition, we allow the
synchronization engine to trace the code for that method definition.

9.7.4. Results

Because the NMF solution could not be integrated into the benchmark frame-
work, the tests executed by the framework ARTE have been checked manu-
ally.

Furthermore, the questionnaire given to attendees of the TTC workshop
2015 only contained a single question asking to which degree people liked
the respective solution. The results are not publicly available and even if they
were, their expressiveness is unclear because it is not possible to separate an
evaluation of the tool from personal bias towards a technology or the quality
of presentation.

However, the results of the open peer reviews are indeed publicly available102.
The open peer review form included specific questions to the quality com-
prehensibility and readability. The average values for the open peer reviews
is depicted in Table 9.5.

The table shows that the NMF was the only solution that got the maximum
points for comprehensability and readability. This may be because the NMF
solution was the only solution that implemented the intended behavior of a

102 https://docs.google.com/spreadsheets/d/1k1IOjjlXoldu9OLF6KlVXmRAdUoxBf6FOC3fJx

mIe1c/edit?usp=sharing, retrieved 26 Sep 2017
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backpropagation of changes of the RHS model to the LHS. However, there
were only two responses for each solution, so the results are not significant.
The reference solution presented in [131] was not evaluated in the open peer
reviews.

9.7.5. Summary

As the open peer reviews show, the NMF solution to this case is easy to read
and comprehend. The open peer review results even suggest that it is easier
to comprehend than other solutions to this case.

The main insight from the Java Refactoring case for us is that the bidirectional
model synchronization of structurally different models is a powerful yet
dangerous tool. Powerful because it allows to specify some refactoring
operations like renaming in a very concise way. It is dangerous because
it is opaque to the developer that the code model is synchronized with a
refactoring model. This synchronization yields that when someone changes
the name of a method in the code model, automatically all methods with
the same name are renamed as well. On the other hand, if a methods name
is changed into one that already exists, then the method elements in the
program graph model are not merged, leading to an inconsistent behavior.
In particular, as soon as this operation is performed and one changes the
name of such a method in the JaMoPP model, some methods are renamed
but others are not as they are synchronized with a different method element
in the program graph model.

This is of course a more general problem of unclear semantics synchroniz-
ing structurally and semantically heterogeneous models with overlapping
semantics. It not only related to our solution. A solution for this dilemma
would be to disable two-way synchronization but restrict to one-way syn-
chronization against the transformation direction, i.e. that changes in the
target model are propagated back to the source. This is not implemented
in NMF Synchronizations because we think that it is a rather exotic use
case.
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9.8. Case Study: Incremental Views

in the Smart Grid Domain

The complexity of cyber-physical systems makes it inevitable to divide the
system into multiple subsystems that operate in different domains. In many
of these domains, standards exist that the respective subsystem has to comply
with or for which a lot of tools can be reused.

For example, the smart grid is a cyber-physical system that spans the physical
structures of the electricity network and the system of software systems that
monitor, control, and repair the system in case of outages. Currently, many
heterogeneous systems and standards have to interoperate to achieve the
desired reliability, stability, and efficiency of the electricity network.

Because each of these standards describe different aspects of the system,
models according to these standards often have to be combined if multiple
aspects are required to gain insights about the system. Applying model-
driven engineering, model views are a tool to extract information from
multiple models without confronting the user with unnecessary information
for a particular analysis.

In the area of smart grids, an additional challenge is the size of the models and
the frequency of changes. In combination, this means that very large amounts
of data have to be processed in a very short amount of time. However, the
changes usually only affect small proportions of the model which is why an
incremental view computation appears beneficial.

This case study was submitted to the TTC 2017 [97] and accepted as a contest
case. Two solutions have been submitted, the NMF solution [95] and a
solution using eMoflon [162].

9.8.1. Benchmark Setup

In the area of smart grids, the relevant standards are IEC 61970/61968, IEC
61850 and IEC 62056. A description of these standards can be found in the
master thesis of Victoria Mittelbach [150] and is replicated here for self-
containment of this dissertation.
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IEC 61970/61968 The IEC 61970 standard defines the Common Information
Model (CIM)which is used to describe the physical components, measurement
data, control and protection elements. It is defined in UML notation. The
IEC 61968 standard is an extension of the CIM for the distribution network
[116]. It is also called distributed CIM (DCIM)

IEC 61850 The IEC 61850 standard is a series of standards for substations
with the purpose of supporting interoperability of intelligent electronic
devices (IED) in substation automation systems. It defines the Abstract
Communication Service Interface with a mapping to concrete communication
protocols, the XML-based Substation Configuration Description Language
(SCL), and the Logical Node (LN)model that describes power system functions
[115].

IEC 62056 COSEM (Companion Specification for Energy Metering) is the
international standard for data exchange for meter reading, tariff and load
control in the domain of electricity metering. It works together with the
Device Language Message Specification (DLMS). Together, they provide a
communication profile to transport data from metering equipment to the
metering system and to define a data model and communication protocols
for data exchange [9].

While these standards are useful in their domain, one has to combine the
information represented by these standards to detect and prevent outage
situations. Burger, Mittelbach and Koziolek presented a model-based outage
management system based on the master thesis of Victoria Mittelbach that
synchronizes models of these standards and consists of a set of 15 views to
help operators to manage outage situations [150, 37].

In the scope of the proposed benchmark, we focus on two model views
contained in the model-based outage management system. A rather simple
view is created to detect outages while a second slightly more complex view
supports the prevention of outages.

For both tasks, we present the implementation of the view in ModelJoin [36],
a language to specify both the view type and the view definition in a single
specification. From the ModelJoin specification, an idiomatic QVT-O model
transformation is generated. Due to space limitations, we do not show the
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PhysicalDevice

ID : EString

COSEMRoot

ElectricityValues

ApparentPowermL1 : EDouble = 0.0

AutoConnectObject

Connection : EBoolean = false
[0..*] PhysicalDevice

[0..1] ElectricityValues

[0..1] AutoConnect

Figure 9.25.: Excerpt from the COSEM metamodel relevant for task 1

generated transformation but it is available in the benchmark resources103

for reference.

9.8.1.1. Task 1: A simple view to detect outages

To detect an outage, we use the fact that a smart meter cannot send any
data when it is cut off power supply. If this happens, the system can try to
reach the meter but will receive a connection failure notification. A single
cut off smart meter might be the result of a failure but if many smart meters
in a closely connected area fail, this may indicate an outage. This is used to
detect outages without relying on customer feedback.

The information that a connection to a smart meter is lost is depicted in the
COSEM model. The relevant excerpt for this task is depicted in Figure 9.25.
It has to be matched with the corresponding physical devices in the CIM
model where its location is stored. A relevant excerpt of the latter is depicted
in Figure 9.26.

An implementation of this view in ModelJoin is depicted in Listing 9.21. It
consists of a single join statement that specifies that information from the
MeterAsset elements in the CIM model and PhysicalDevice elements in the
COSEM model should be joined based on their IDs. For each such a match,

103 https://github.com/georghinkel/ttc2017smartGrids
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UUID : EStringCIMRoot

IdentifiedObject

Asset

AssetContainer

EndDeviceAsset

MeterAsset

ServiceDeliveryPoint

EnergyConsumer Location

PositionPoint

[0..*] IDobject

[0..*] Assets

[0..1] AssetContainer

[0..*] EndDeviceAssets
[0..1] ServiceDeliveryPoint

[0..*] ServiceDeliveryPoints

[0..1] EnergyConsumer

[0..*] Assets

[0..1] Location

Position
[0..1] Location

[0..1]

Figure 9.26.: Excerpt from the CIM metamodel relevant for task 1

the connection and electricity values from the COSEM model should be kept
in the view as well as the location from the CIM model.

This reference to location and position point shall respect referential integrity.
This means, if two meter assets in the CIMmodel reference the same location,
their joins in the view should also reference the same Location element in
the view.

Based on the view specification in Listing 9.21, the view type in Figure 9.27
is generated.
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1 theta join CIM.IEC61968.Metering.MeterAsset with COSEM.PhysicalDevice where "

CIM.IEC61968.Metering.MeterAsset.mRID = COSEM.PhysicalDevice.ID" as

jointarget.EnergyConsumer {

2 keep calculated attribute "COSEM.PhysicalDevice.AutoConnect.Connection" as

EnergyConsumer.Reachability:Integer

3 keep calculated attribute "COSEM.PhysicalDevice.ElectricityValues.

ApparentPowermL1" as EnergyConsumer.PowerA:Double

4 keep calculated attribute "COSEM.PhysicalDevice.ElectricityValues.

ApparentPowermL2" as EnergyConsumer.PowerA:Double

5 keep calculated attribute "COSEM.PhysicalDevice.ElectricityValues.

ApparentPowermL3" as EnergyConsumer.PowerA:Double

6 keep calculated attribute "CIM.IEC61968.Metering.MeterAsset.

ServiceDeliveryPoint.EnergyConsumer.mRID" as EnergyConsumer.ID:String

7 keep calculated attribute "if CIM.IEC61968.Metering.MeterAsset.

ServiceDeliveryPoint.EnergyConsumer->oclIsKindOf(CIM.IEC61970.

LoadModel.ConformLoad) then CIM.IEC61968.Metering.MeterAsset.

ServiceDeliveryPoint.EnergyConsumer.ConformLoadGroup.SubLoadArea.

LoadArea.ControlArea.mRID else CIM.IEC61968.Metering.MeterAsset.

ServiceDeliveryPoint.EnergyConsumer.NonConformLoadGroup.SubLoadArea.

LoadArea.ControlArea.mRID endif" as Consumer.ControlAreaID:String

8 keep outgoing CIM.IEC61968.Assets.Asset.Location as type jointarget.

Location {

9 keep outgoing CIM.IEC61968.Common.Location.Position as type jointarget.

PositionPoint {

10 keep attributes CIM.IEC61968.Common.PositionPoint.xPosition,

11 CIM.IEC61968.Common.PositionPoint.yPosition,

12 CIM.IEC61968.Common.PositionPoint.zPosition

13 }

14 }

15 }

Listing 9.21: Task 1 realized in ModelJoin

9.8.1.2. Task 2: A view to prevent outages

The analysis algorithms to detect system disturbances proposed in [37] work
on phasor measurement data:

Their basic concept is to compare the current phasor data of the
traveling voltage wave with a historic set of normal phasor data
and calculate an equality indicator like a correlation coefficient.
This is compared with a certain benchmark. If it lies above, a
failure is indicated. To enable this, the following information is
necessary: a historic set of normal phasor data of that section, a
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EnergyConsumer

Reachability : EInt
PowerA : EDouble = 0.0
ID : EString

Location

PositionPoint

[0..1] Location

[0..1] Position

Figure 9.27.: The Viewtype for the Outage Detection Task

matrix of the current phasor data and a calculation mechanism
to compare the two followed by a comparison mechanism to
decide if it is a failure or not. [150]

Task 2 requires to match elements from all three domain standards. For
the COSEM standard, the used metamodel excerpt is very similar to Task 1.
The relevant metamodel excerpts for CIM and the substation standard are
depicted in Figure 9.28 and Figure 9.29, respectively.

The analysis viewtypes will not provide the analysis result but only the
matrix of phasor data for the comparison. Six queries were defined in [150]
that all have the same structure and provide the three-phase measurements
of voltage, frequency, current, active power, reactive power and apparent
power.
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CIMRoot
UUID : EString

IdentifiedObject PositionPoint TieFlow

Asset Location

ControlArea

Terminal

PowerSystemResource

Equipment

ConductingEquipment

AssetContainer

EndDeviceAsset

MeterAsset

[0..*] IDobject

[0..1] Location[0..1] Position

[0..*] Assets

[0..1] Location

[0..*] TieFlow

[0..1] ControlArea

[0..*] TieFlow

[0..1] Terminal

[0..1] Location

[0..*] PowerSystemResources

[0..*] Assets

[0..*] PowerSystemResources

[0..*] Terminals

[0..1] ConductingEquipment

Figure 9.28.:An excerpt from the CIM metamodel relevant for Task 2

Such analysis viewtypes can be used together with a basic net-
work topology view to calculate the exact location of a failure.
Phasors are traveling waves in the system, which means that
the failure travels with the wave through the grid. Therefore it
is important to find its origin. The topology viewtype includes
the length of the transmission line segments. They can be used
together with the timestamp of the measured phasor to calcu-
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Substandard

LPL

IdNs : EString

AnalogueValue

i : EInt
f : EFloat = 0.0

CMV

DomainLN

 Mode : INC

 Behaviour : INS

 Health : INS

Vector

WYE

 angRef : AngleReference

GroupM

MMXU

EEHealth : 
HealthStateKind = ok

[0..*] NamePlt
[0..*] LPL [0..*] LN

[0..*] WYE

[0..*] AnalogueValue

[0..*] CMV

[0..*] Vector
[1..1] instCVal[1..1] cVal

[1..1] NamePlt

[1..1] mag

[1..1] ang

[1..1] phsA

[1..1] phsB

[1..1] phsC

[1..1] neut
[1..1] net

[1..1] res

[1..1] PhV

Figure 9.29.:An excerpt from the Substation standard relevant for Task 2

late from where the wave came and where it was when the
failure started. This is its origin [167]. [150]

The view type generated from the ModelJoin specification of the query is
depicted in Figure 9.30.

The biggest difference to Task 1 besides the increased complexity (the Mod-
elJoin specification used as reference is more than four times as long) is the
fact that this view definition keeps subtypes of some model elements. If an
energy consumer in a service delivery point is a ConformLoad, then the view
computation should be different to the case when the energy consumer is a
NonConformLoad because the control area should be included in the view, but
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Asset

ConductingEquipment

ConformLoad

ConformLoadGroup

ControlArea

EndDeviceAsset

EnergyConsumer

LoadAreaLoadGroup

Location

NonConformLoad

NonConformLoadGroup

PMUVoltageMeter

VoltageAMag : EDouble = 0.0
VoltageAAng : EDouble = 0.0
VoltageBMag : EDouble = 0.0
VoltageBAng : EDouble = 0.0
VoltageCMag : EDouble = 0.0
VoltageCAng : EDouble = 0.0
VoltageNeutMag : EDouble = 0.0
VoltageNeutAng : EDouble = 0.0
VoltageNetMag : EDouble = 0.0
VoltageNetAng : EDouble = 0.0
VoltageResMag : EDouble = 0.0
VoltageResAng : EDouble = 0.0

PositionPoint

PowerSystemResource

PrivateMeterVoltage

ID : EString
VoltageA : EDouble = 0.0
VoltageB : EDouble = 0.0
VoltageC : EDouble = 0.0

ServiceDeliveryPoint

SubLoadArea

Terminal

TieFlow

[0..1] Location

[0..*] Terminals

[0..1] LoadGroup

[0..1] SubLoadArea

[0..1] ServiceDeliveryPoint

[0..1] ControlArea

[0..1] Position

[0..*] PowerSystemResources

[0..1] LoadGroup

[0..1] EnergyConsumer

[0..1] LoadArea

[0..*] TieFlow

[0..1] ControlArea

Figure 9.30.: The Voltage Three-Phase Measurement Matrix

the path to the control area in the CIM model depends on the type of this
energy consumer.

9.8.2. Validation Goals

The validation goals of this case study are as follows:

325



9. Validation and Evaluation

Applicability The Smart Grid as another example of a cyber-physical sys-
tem is again an interesting industry-relevant application area. The type
of transformation, model views that match model elements from multiple
models and combine the information from both, is also a highly relevant
area for model transformations.

Performance Because elementary changes in a smart grid environment
happen very frequently, the response time from a model change to an up-
dated view is again very important. In particular, we want to compare the
response time with the reference solution in ModelJoin as well as with other
solutions.

Memory Consumption Similar to the Train Benchmark, we measure the
impact of incremental execution to the memory consumption of the bench-
mark.

Understandability As the Smart Grid case also is a case study presented
at the TTC contest, we use the responses from open peer reviews and from
questionnaires at the workshop to evaluate the understandability of the
solutions.

Correctness The correctness indicators in this case study are purely the
number of elements in the output model. Nevertheless, we intend to use
these indicators as correctness indicators of our solution.

9.8.3. NMF Solution

The description of the NMF solution is based on the original solution sub-
mission to the TTC 2017 [95].

We discuss the solutions to the outage detection and the outage prevention
tasks separately in Sections 9.8.3.1 and 9.8.3.2.

326



9.8. Case Study: Incremental Views in the Smart Grid Domain

𝐶𝐼𝑀𝑅𝑜𝑜𝑡 ×𝐶𝑂𝑆𝐸𝑀𝑅𝑜𝑜𝑡 𝑀𝑜𝑑𝑒𝑙

(𝑀𝑒𝑡𝑒𝑟𝐴𝑠𝑠𝑒𝑡 × 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒)∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟∗

Φ𝑀𝑎𝑖𝑛𝑅𝑢𝑙𝑒

(join)
.RootElements

.OfType<EnergyConsumer>

Φ𝐴𝑠𝑠𝑒𝑡𝑇𝑜𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟

Figure 9.31.: The join in the outage detection task formulated in a synchronization block

1 public class MainRule : SynchronizationRule<Tuple<CIMRoot, COSEMRoot>, Model>

{

2 public override void DeclareSynchronization() {

3 SynchronizeManyLeftToRightOnly(SyncRule<AssetToConsumer>(),

4 sg => from pd in sg.Item2.PhysicalDevice

5 join ma in sg.Item1.IDobject.OfType<IMeterAsset>()

6 on pd.ID equals ma.MRID

7 select new Tuple<IMeterAsset, IPhysicalDevice>(ma, pd),

8 target => target.RootElements.OfType<IModelElement,

OutageDetectionJointarget.IEnergyConsumer>());

9 }

10 }

Listing 9.22: The implementation of the main rule for outage the outage detection task

9.8.3.1. Outage Detection

In NMF Synchronizations, the support for multiple input pattern elements
is rather limited. Therefore, the easiest way to support multiple input pattern
elements in NMF Synchronizations is to simply use tuples as inputs. Then,
the model matching has to be adapted to match tuples instead of elements.
Therefore, the main rule synchronizes a tuple of the CIM model and the
COSEM model with the resulting view model.

In a synchronization block, the main join of meter assets with physical
devices is depicted in Figure 9.31, where we abbreviated the join expression.
The implementation of this matching is depicted in Listing 9.22.
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1 public class AssetToConsumer : SynchronizationRule<Tuple<IMeterAsset,

IPhysicalDevice>, IEnergyConsumer> {

2 public override void DeclareSynchronization() {

3 SynchronizeLeftToRightOnly(

4 asset => Convert.ToInt32(asset.Item2.AutoConnect.Connection),

5 e => e.Reachability);

6 SynchronizeLeftToRightOnly(

7 asset => asset.Item2.ElectricityValues.ApparentPowermL1,

8 e => e.PowerA);

9 SynchronizeLeftToRightOnly(

10 asset => asset.Item1.ServiceDeliveryPoint.EnergyConsumer.MRID,

11 e => e.ID);

12 SynchronizeLeftToRightOnly(

13 asset => asset.Item1.ServiceDeliveryPoint.EnergyConsumer is ConformLoad

?

14 ((ConformLoad)asset.Item1.ServiceDeliveryPoint.EnergyConsumer)

15 .LoadGroup.SubLoadArea.LoadArea.ControlArea.MRID :

16 ((NonConformLoad)asset.Item1.ServiceDeliveryPoint.EnergyConsumer)

17 .LoadGroup.SubLoadArea.LoadArea.ControlArea.MRID,

18 e => e.ControlAreaID);

19 SynchronizeLeftToRightOnly(SyncRule<LocationToLocation>(),

20 asset => asset.Item1.Location, e => e.Location);

21 }

22 }

Listing 9.23: Implementation of kept attributes and references in the outage detection task

Because .NET has a hard implementation of generics104, a type filter can be
easily specified by passing generic type arguments. NMF also contains an
overload of the OfType type filter that accepts two type arguments and keeps
the collection interface.

In particular, the incrementalization system NMF Expressions that is under-
lying NMF Synchronizations does support joins, available also through
the query syntax of C#. A second synchronization rule then implements the
kept attributes for every such a tuple, as depicted in Listing 9.23.

In particular, for each attribute that should be synchronized, the synchro-
nization rule contains a synchronization block that is responsible for the
synchronization of this attribute. As an example, the synchronization of the

104 This means that the generic type arguments are still available at runtime.
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reachability information converted to an integer value is depicted in Lines 3
to 5 of Listing 9.23.

Because these synchronization blocks are unidirectional, also more complex
patterns such as the synchronization block in Lines 7 to 15 are possible where
the selector obtains the control area differently according to the type of the
energy consumer at the service delivery point.

Two further synchronization rules synchronize location and position point.
They are omitted in this thesis to save space.

9.8.3.2. Outage Prevention

In the implementation of the outage prevention task, the principle approach
to use tuples to synchronize multiple inputs is the very same approach as in
the outage detection task. The implementation of the main rule is depicted
in Listing 9.24.

In this listing, we used the alternative method chaining syntax for the join.
Both syntaxes are equivalent, as the compiler converts the query syntax into
the method chaining syntax.

To handle the different transformation of the various subtypes of a power
system resource, we utilize the rule instantiation feature of NMF Synchro-
nizations. With a rule instantiation, the isomorphism represented by a
synchronization rule can be refined for a subset of model elements.

An example of synchronization rule instantiation for conducting equipment
is depicted in Listing 9.25. Thismeans that whenever a power system resource
is a conducting equipment, also its terminals are synchronized.

9.8.4. Results

Unfortunately, only one solution other than the NMF solution was submitted
to the TTC contest, created Sven Peldszus et al. [162] using eMoflon. This
solution tried to use the incrementalization capabilities of eMoflon but
unfortunately, the matching could not be done incrementally with eMoflon
such that this solution is also working in a batch manner, i.e. the views are
recomputed after each change sequence from scratch.
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1 public class MainRule :

2 SynchronizationRule<Tuple<CIMRoot, COSEMRoot, Substandard>, Model> {

3 public override void DeclareSynchronization() {

4 SynchronizeManyLeftToRightOnly(SyncRule<MMXUAssetToVoltageMeter>(),

5 dr => dr.Item1.IDobject.OfType<IMeterAsset>()

6 .Join(dr.Item3.LN.OfType<IMMXU>(),

7 asset => asset.MRID,

8 mmxu => mmxu.NamePlt.IdNs,

9 (asset, mmxu) => new Tuple<IMeterAsset, IMMXU>(asset, mmxu)),

10 model => model.RootElements.OfType<IModelElement, IPMUVoltageMeter>());

11
12 SynchronizeManyLeftToRightOnly(SyncRule<DeviceAssetToPrivateMeterVoltage

>(),

13 dr => dr.Item1.IDobject.OfType<IEndDeviceAsset>()

14 .Join(dr.Item2.PhysicalDevice,

15 asset => asset.MRID,

16 pd => pd.ID,

17 (asset, pd) => new Tuple<IEndDeviceAsset, IPhysicalDevice>(

asset, pd)),

18 model => model.RootElements.OfType<IModelElement, IPrivateMeterVoltage

>());

19 }

20 }

Listing 9.24: The implementation of the main rule in the outage prevention task

1 public class PowerSystemResource2PowerSystemResource

2 : SynchronizationRule<IPowerSystemResource, IPowerSystemResource> {

3 public override void DeclareSynchronization() {}

4 }

5 public class ConductingEquipment2ConductingEquipment

6 : SynchronizationRule<IConductingEquipment, IConductingEquipment> {

7 public override void DeclareSynchronization() {

8 SynchronizeManyLeftToRightOnly(SyncRule<Terminal2Terminal>(),

9 conductingEquipment => conductingEquipment.Terminals, equipment =>

equipment.Terminals);

10 MarkInstantiatingFor(SyncRule<PowerSystemResource2PowerSystemResource>());

11 }

12 }

Listing 9.25: Transforming power system resources
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Because there is only one other solution, there is only one peer review of the
NMF solution which is why we do not discuss the results of the open peer
reviews. Further, also only three responses were returned for the smart grid
case at the TTC, possibly due to other parallel sessions at the STAF 2017.

The performance results for propagating 100 change sequences is depicted
in Figure 9.32 for the Outage Detection task and in Figure 9.33 for the Outage
Prevention task. The diagrams show the change propagation times on a loga-
rithmic plot against the iterations for the reference solution in ModelJoin,
eMoflon and the NMF solution in batch and incremental mode.

For the Outage Prevention task, the reference solution in ModelJoin unfortu-
nately ran out of memory during the updates. Thus, no performance times
can be depicted.

The results indicate that the NMF solution in batch mode is already the
fastest among the batch implementations. Furthermore, if one switches the
execution mode to incremental, then this yields another speedup of roughly
more than a magnitude.

The performance curve for the incremental change propagation ismore rough
than the performance for the batch execution. This is because propagating
the change depends much more on the actual changes than rerunning the
view computation on the entire (changed) model. However, interestingly, we
see some spikes in the otherwise smooth curve for the batch execution. We
think that this is due to garbage collection taking place.

The memory measurement for the solutions is depicted in Figure 9.34. It
shows the average working set size for the different change sequences, de-
pending on the view task. Because the memory measurement is performed
before and after each transformation step, we also see amemory consumption
of the ModelJoin solution for the OutagePrevention case.

The result may seem surprising as the memory consumption for the incre-
mental NMF solution is lower by multiple orders of magnitude. The reason
for this effect is that although more memory may be required to store assets
such as DDGs or trace entries, non-incremental batch solution have to load
the models after each modification from persistent storage and discard the
old memory. However, the garbage collector typically only starts to free
memory as soon as the main memory gets to its capacity limits. Therefore,
we see a significantly higher memory consumption for non-incremental
solutions.
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Figure 9.34.:Working set sizes solving the Smart Grid benchmark

At the TTC 2017, the NMF solution won the awards for the best overall
solution and the best performance. The award for the best understandable
solution went to the eMoflon solution.

9.8.5. Summary

The case study shows that model transformation using synchronization
blocks can be used to join information from multiple model elements into
a single model – a feature that only few model transformation languages

334



9.9. Case Study: Bidirectional Transformation from Families to Persons

support. Perhaps as a consequence, there was only one submission to the
corresponding TTC contest besides the NMF solution and hence the case
study only offers limited insights with regard to a comparison to other
tools. This solution in eMoflon did not manage to achieve an incremental
execution.

From the results, we see that an incremental execution using NMF is signifi-
cantly faster than running the NMF solution in batch mode or running either
of ModelJoin or eMoflon. In addition, the incremental solution also has the
lowest memory consumption, indicating that although a memory overhead
is required for incremental computation, the overall memory consumption
may be lower because fewer models have to be created anew.

The fact that only two solutions were submitted to the Smart grid case for
the TTC 2017 has the consequence that we can hardly make a statement on
the understandability of the NMF solution in comparison with other tools.

9.9. Case Study: Bidirectional Transformation

from Families to Persons

According to the general model theory of Stachowiak [185], models always
have a purpose. However, in many practical applications, models shall be
used for multiple purposes while existing metamodels should be reused,
usually because valuable instrastructure is built on top of it. However, be-
cause the different purposes require different abstractions, the information
concerning an entity is often split among multiple of these models, which
makes a pure transformation approach infeasible. Instead, the models must
be synchronized to make sure that they are consistent with regard to some
correspondence rules.

The Families to Persons case at the Transformation Tool Contest (TTC) 2017
[7] demonstrates this problem in the scenario of a well known example model
transformation, the Families to Persons transformation. Here, a structured
model of family relations shall correspond to a flat model of persons where
the information of a persons family is encoded only through that persons full
name. The information contained in one model cannot be fully reconstructed
using the other model. Nevertheless, there is a clear correspondence as there
should be a family member for each person and vice versa.
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FamilyRegister

name : String

Family

name : String

FamilyMember

0 ..* families

0 ..* sons

0 ..1 father

0 ..1 mother

0 ..* daughters

(a) The Families metamodel

PersonRegister

birthday : Date

name : String

Person

0 ..* persons

Male Female

(b) The Persons metamodel

Figure 9.35.: Source and target metamodel in the FamiliesToPersons case study [7]

At the TTC 2017, solutions to the Families to Persons case were submitted us-
ing NMF [93], UML-RSDS [134], SDMLib [222], FunnyQT [112], EVL+Strace
[179] and Yage [62].

9.9.1. Benchmark Setup

In this section, we briefly introduce the Families to Persons benchmark. The
Families to Persons transformation is a well known example transformation
from the ATLwebsite, already used in Section 9.6. However, in this case study,
we are using a version extended by Anthony Anjorin, Thomas Buchmann
and Bernhard Westfechtel, specifically designed to compare bidirectional
tools [7].

The metamodels in this case study are depicted in Figures 9.35a and 9.35b.
They represent similar information in different manner: Whereas the full
name of a person is separated in its first name and surname in the Families
model, this information is combined in the Person model in the format “Sur-
name, Firstname”. Whereas the information on gender is explicitly modeled in
the Persons metamodel, this information is implicitly encoded in the contain-
ment hierarchy in the Families metamodel. Lastly, the Families metamodel
contains a family structure that is missing in the Persons model, meanwhile
the birthday information is only present in the Persons metamodel.
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Since no model can be reconstructed entirely from the other, the task for solu-
tions is to create a bidirectional transformation between both models. Mean-
while the direction from the Families metamodel to the Persons metamodel is
straight forward, the backwards transformation is indeterministic. Therefore,
the behavior of the backward transformation has to be controlled by two flags
PREFER_CREATING_PARENT_TO_CHILD and PREFER_EXISTING_FAMILY_TO_NEW.
Although the naming conventions of these configurations suggest that they
are constant, they actually may change during a synchronization.

The benchmark case study is equipped with a rich benchmark suite available
online105, where also reference implementations in eMoflon [138], BiGUL
[126], Medini-QVT106 and BXtend [31] are available.

Furthermore, the benchmark framework contains a set of test cases to com-
pare bidirectional model transformation tools with regard to their expres-
siveness and correctness as well as a further set of test cases to compare
solutions with respect to performance. The benchmark reports on the num-
ber of failures (unexpected test failures according to the specification of the
tool) and limitations (expected failures according to the specification of the
tool).

The scalability test cases work as follows:

Batch Forward: In this test case, a Families model with an increasing num-
ber of families is created. The benchmark then measures the time of solutions
to create a corresponding Persons model.

Batch Backward: This test case is exactly symmetric to the Batch Forward
test case. The benchmark creates a Persons model of increasing size and
measures the time that tools need to create a corresponding Familiesmodel.

Incremental Forward: In this test case, the benchmark framework creates
a Families model of an increasing size and let the solutions create a corre-
sponding Persons model. Then, a new family member is inserted into the

105 https://github.com/eMoflon/benchmarx
106 http://projects.ikv.de/qvt, retrieved 27 Sep 2017
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model and the benchmark measures how long solutions needs to propagate
this added family member to the Persons model.

Incremental Backward: This test case is again exactly symmetric to the
Incremental Forward test case.

9.9.2. Validation Goals

The goals of this case study are as follows:

Applicability While the application scenario of this case study is clearly
synthetic, the case study offers to gain insights on model transformations
with custom backwards transformation and an integration of configuration
variables.

Performance As the goal of this case study is to compare the incremental
performance of bidirectional model transformation tools, we are particularly
interested in the results of the incremental scalability test cases Incremental
Forward and Incremental Backward.

Understandability As for all TTC case studies, the case study offers to draw
a comparison with respect to understandability to other tools.

Correctness Correctness is the main emphasis of the original benchmark
by Anjorin and others. Correctness is indicated by a series of tests that
solutions have to pass.

9.9.3. NMF Solution

The description of the NMF solution is based on the original solution as
submitted to the TTC 2017 [93].

To solve the FamiliesToPersons case, we see two correspondences that need
to be synchronized:
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𝐹𝑎𝑚𝑖𝑙𝑦𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟 𝑃𝑒𝑟𝑠𝑜𝑛𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟
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𝐹𝑎𝑚𝑖𝑙𝑦𝑀𝑒𝑚𝑏𝑒𝑟𝑠 () .𝑃𝑒𝑟𝑠𝑜𝑛𝑠

Φ𝑀𝑒𝑚𝑏𝑒𝑟𝑇𝑜𝑀𝑒𝑚𝑏𝑒𝑟

Figure 9.36.: Synchronization block to synchronize family members with person elements

𝐹𝑎𝑚𝑖𝑙𝑦𝑀𝑒𝑚𝑏𝑒𝑟 𝑃𝑒𝑟𝑠𝑜𝑛

string string

Φ𝑀𝑒𝑚𝑏𝑒𝑟𝑇𝑜𝑀𝑒𝑚𝑏𝑒𝑟

.𝐺𝑒𝑡𝐹𝑢𝑙𝑙𝑁𝑎𝑚𝑒 () .𝑁𝑎𝑚𝑒

𝐼𝑑string

Figure 9.37.: Synchronization block to synchronize names

1. All family members contained in a family need to be synchronized
with the people in the Persons model and

2. The full name of family members that consists of the name of the
family and the name of the family member needs to be synchronized
with the full name of the corresponding person.

Using synchronization blocks, these correspondences can be formulated in
the diagrams of Figure 9.36 and Figure 9.37. The implementation in NMF
Synchronizations is depicted in Listing 9.26.

While NMF is able to convert the simple member accesses for the persons
into lenses, this does not hold for the helpers FamilyMemberCollection and
GetFullName that we used in this implementation – these lenses are highly
specific to the given scenario, indicated by the fact that their implemen-
tation depends on the flags PREFER_CREATING_PARENT_TO_CHILD and PRE-
FER_EXISTING_FAMILY_TO_NEW. Therefore, we have to explicitly provide an
implementation of Put for these two lenses.

For the GetFullName-method, the Put operation needs to be specified through
an annotation. In addition, because NMF does not parse the contents of
a method (only of lambda expressions), we need to specify an explicitly
incrementalized version of the given helper method. To do this, we can reuse
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1 public class FamilyRegisterToPersonRegister : SynchronizationRule<

FamilyRegister, PersonRegister> {

2 public override void DeclareSynchronization() {

3 SynchronizeMany(SyncRule<MemberToMember>(),

4 fam => new FamilyMemberCollection(fam),

5 persons => persons.Persons);

6 }

7 }

8 public class MemberToMember : SynchronizationRule<IFamilyMember, IPerson> {

9 public override void DeclareSynchronization() {

10 Synchronize(m => m.GetFullName(), p => p.Name);

11 }

12 }

Listing 9.26: Implementation of main synchronization blocks

1 private static ObservingFunc<IFamilyMember, string> fullName =

2 new ObservingFunc<IFamilyMember, string>(m => m.Name == null ? null : ((

IFamily)m.Parent).Name + ", " + m.Name);

3
4 [LensPut(typeof(Helpers), "SetFullName")]

5 [ObservableProxy(typeof(Helpers), "GetFullNameInc")]

6 public static string GetFullName(this IFamilyMember member) {

7 return fullName.Evaluate(member);

8 }

9 public static INotifyValue<string> GetFullNameInc(this IFamilyMember member)

{

10 return fullName.Observe(member);

11 }

12 public static void SetFullName(this IFamilyMember member, string newName) {

13 ...

14 }

Listing 9.27: Implementation of the GetFullName lens

the implicit incrementalized lambda expression and also use that for the
batch implementation to avoid code duplication. A sketched implementation
is depicted in Listing 9.27.

In Listing 9.27, we create an ObservingFunc for the function to obtain a
family members full name. This syntax allows NMF to get a model of the
actual function and therefore, NMF Expressions is able to incremental-
ize it. In Lines 6–11, we use this object to represent the actual extension
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1 private class FamilyMemberCollection : CustomCollection<IFamilyMember> {

2 public FamilyRegister Register { get; private set; }

3 public FamilyMemberCollection(FamilyRegister register)

4 : base(register.Families.SelectMany(fam => fam.Children.OfType<

IFamilyMember>()))

5 { Register = register; }

6
7 public override void Add(IFamilyMember item) { ... }

8 public override bool Remove(IFamilyMember item) { ... }

9 public override void Clear() { ... }

10 }

Listing 9.28: Implementation of the FamilyMemberCollection

method and its incrementalization, which essentially forwards to the same
ObservingFunc object. The incrementalization is connected with the original
function through the annotation in line 5. Furthermore, we annotate the Put
method also using an annotation in line 4 where we reference the SetFull-
Name method in line 12–14. The return type void of this method makes it
clear that this is a persistent lens. This method may contain arbitrary C#
code and is called when NMF Synchronizations needs to write a value, for
instance as a consequence of an update in the Persons model where the last
name of a person changed.

In the case of FamilyMemberCollectionwhich as the name implies is a collec-
tion, we only have to provide the query how the results of this collection are
obtained and implement the methods Add, Remove and Clear. NMF Expres-
sions is able to automatically incrementalize the query when this is necessary
and uses the provided model manipulation methods in case a model element
has to be added to the collection. A schematic implementation is depicted in
Listing 9.28.

Again, the model manipulation methods Add, Remove and Clear may contain
arbitrary C# code. Our implementation uses them to add the family member
to the family register depending on the current configuration of the flags
PREFER_CREATING_PARENT_TO_CHILD and
PREFER_EXISTING_FAMILY_TO_NEW.

However, to add a family member to a family, the Add method has to know
the family name of a person as well as its gender – information that is
encoded using the containment hierarchy in the Families model and therefore
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1 public class MemberToMale : SynchronizationRule<IFamilyMember, IMale> {

2 public override void DeclareSynchronization() {

3 MarkInstantiatingFor(SyncRule<MemberToMember>(),

4 leftPredicate: m => m.FatherInverse != null || m.SonsInverse != null)

;

5 }

6 protected override IFamilyMember CreateLeftOutput(IMale input, ...) {

7 var member = base.CreateLeftOutput(input, candidates, context, out

existing);

8 member.Extensions.Add(new TemporaryStereotype(member) {

9 IsMale = true,

10 LastName = input.Name.Substring(0, input.Name.IndexOf(’,’))

11 });

12 return member;

13 }

14 }

Listing 9.29: The MemberToMale-rule

unavailable before the element is added to a family. Therefore, we carry this
information over from the corresponding element of the Person metamodel
using a temporary stereotype: In NMF, all model elements are allowed to
carry extensions. We use this to add an extension that specifies the last name
and whether the given element is male. The stereotype is deleted as soon as
a family member is added to a family.

Furthermore, the fact that different genders are modeled through different
classes in the Persons model, the synchronization rule MemberToMember needs
to be refined to allow NMF Synchronizations to decide whether to create a
Male or Female output element. This can be done in NMF Synchronizations
through an instantiating rule.

The implementation of both of these concepts is depicted in Listing 9.29.

In particular, lines 3 and 4 mark the synchronization rule MemberToMale as
instantiating for the rule MemberToMember on the condition that the family
member is either a father or a son of a family. Further, we override the
creation of an output model element for the LHS by overriding the method
CreateLeftOutput. This method calls the base implementation which simply
uses the default constructor to create a new FamilyMember element. Then,
it adds a case-specific extension called TemporaryStereotype that carries
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the information on the gender (through the IsMale attribute) and the last
name.

9.9.4. Results

Several solutions submitted to the TTC 2017 Families to Persons case, us-
ing the languages NMF, UML-RSDS [134], SDMLib [222], FunnyQT [112],
EVL+Strace [179] and Yage [62]. In addition, the case provided reference
solutions in eMoflon, MediniQVT and BXtend.

However, not all solutions have been integrated into the benchmark frame-
work. Therefore, we only present performance results for BiGUL, eMoflon,
MediniQVT, BXtend, FunnyQT and NMF.

The performance results for the scalability test cases of the benchmark
framework that comes along with with case resources [7] are depicted in
Figure 9.38. The graphs show the time for the benchmark solutions against
the size of the model in terms of the number of families. Both axes are
logarithmic.

The results for the batch scenarios Batch Forward and Batch Backward de-
picted in Figures 9.38a and 9.38b show that the NMF solution is among the
faster solutions, slightly faster than BiGUL and eMoflon and significantly
faster than MediniQVT and FunnyQT. The solution is slower than BXtend.
We think that this is because the NMF solution always runs in an incremen-
tal model and creates DDGs even though they are not used in the batch
scenario.

The results for the incremental scenarios Incremental Forward and Incremental
Backward depicted in Figures 9.39a and 9.39b show that in these scenarios,
the DDGs created by NMF Synchronizations are indeed useful as they
make the solution faster than any of the other solutions by multiple orders
of magnitude.

However, the model sizes depicted in Figure 9.38 are still relatively small as
otherwise, running the benchmark would take too much time for the slower
benchmark solutions. Therefore, we repeated the incremental scenarios for
the three tools that were fastest in Figure 9.38, eMoflon, BXtend and NMF.
This time, we scaled up the model sizes up to more than 40,000 families in
order to obtain information on the runtime for larger model sizes.
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Figure 9.38.: Performance results for the scalability tests in the FamiliesToPersons case study

In the results for the Incremental Forward scenario, we can see that the
resulting curve for the NMF solution is flat meanwhile the curve for eMoflon
and BXtend is not. This indicates that unlike the other two, the NMF
solution is the only fully incremental solution as the time to add a new family
member does not depend on the size of the model. Furthermore, even for
the smallest model with only 10 families, the incremental update is faster
than recomputing the Persons model from scratch. For the largest size that
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Figure 9.39.: Performance results for the scalability tests in the FamiliesToPersons case study
(cont.)

includes a total number of more than 900,000 model elements in Families
and Persons model together107, this leads to a speedup of more than three
orders of magnitude.

107 The number is computed by the benchmark framework and also includes the number of
edges between model elements.
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Figure 9.40.:Performance results for the scalability incremental forward tests in the FamiliesToP-
ersons case study
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Figure 9.41.: Performance results for the scalability incremental backward tests in the Fami-
liestoPersons case study

As a confirmation of the results achieved in Section 9.5.3), the eMoflon
solution does not appear to be fully incremental. It is even slower than the
BXtend solution even though the latter is admittedly not incremental. The
scalability seems exactly the same since the curves are parallel for the larger
models, indicating a constant factor between these two solutions.
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EVL+Strace 4.17 4 4.17 4.5
FunnyQT 3.86 3 3.86 3.83
NMF 3.38 3.13 4.13 3.33
SDMLib 4 4 4.17 4.5
UML-RSDS 3.5 4.17 4.5 3.6
Yage 2.17 2.17 4 2.5

Table 9.6.: Responses from the open peer reviews and from the live evaluation at the TTC 2017
for the FamiliesToPersons case study. The questions asked to evaluate the presented properties
in a scale from 1 to 5.

The results for the Incremental Backward benchmark in the opposite direc-
tion are depicted in Figure 9.41. Unlike the incremental forward where the
scalability tests inserts a new family member and the propagation simply
adds the corresponding person which can be done in amortized 𝑂 (1), the
incremental backward test has to look for a suitable family, which implies a
Ω(𝑛) complexity. Therefore, the speedups in this case do not grow equally
with the size. Instead, a saturation happens at a speedup of slightly more
than one order of magnitude.

For an evaluation of the understandability, we rely on the questionnaire
responses collected at the TTC workshop. At the workshop, 29 responses for
the evaluation questionnaire that was given to attendeeswere collectedwhere
each response evaluates one solution by one attendee. The responses are
publicly available108. The results for the average evaluation of the solutions
is depicted in Table 9.6.

108 Open Peer Reviews: https://docs.google.com/spreadsheets/d/1w3VBZJGe9nhwcrHn_RDn
5YunR9ZNicJJ0t77WwlzaPc/edit?usp=sharing

Live evaluation: https://docs.google.com/spreadsheets/d/1hOidjd_WKVT-faNHXPVpToyR
QIzxkdfrIMrFqgDtuY8/edit?usp=sharing
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1 context Families2Persons!FamilyMemberSourceEnd{

2 guard: not self.isRemoved() and not self.refFamilyMember2Persons.

endTypeIsRemoved()

3 constraint nameIsModified{

4 check: not self.nameIsModified()

5 message: ’name of ’+self+’ is modified’

6 fix{

7 title:’Propagate the modification’

8 do{ self.namePropagates(); }

9 }}}

Listing 9.30: Repairing an inconsistent names in EVL+Strace

The results indicate that the NMF solution was less understandable than
the solutions in EVL, SDMLib or UML-RSDS. Based on comments from
the open peer reviews and from the presentation, this is mainly due to a
lack of understanding of the theory of synchronization blocks. We think
that this is due to the fact that there was little information on the theory
of synchronization blocks available because at the time of the TTC 2017,
there was no publication available on this theory to explain the concepts.
Furthermore, the NMF solution, like the FunnyQT solution, could not be
presented in person but only with a recorded video presentation.

On the other hand, the NMF solution was rated as being slightly more
understandable than the FunnyQT solution that also provides declarative
bidirectionality and quite more understandable than the Yage solution.

Interestingly, the EVL+Strace solution had a very high score for under-
standability and even got the audience award for the best overall quality.
This is interesting mainly because this solution is neither very declarative
nor bidirectional but follows a different paradigm: It keeps a trace model
between the synchronized model and detects inconsistencies within the trace
model.

As an example, we depicted the EVL+Strace solution to repair name incon-
sistencies of a family member. The constraint specifies that if the name of
a person is modified (computed in the operation nameIsModified), then the
operation namePropagates should be called to fix the constraint violation.
Such a declaration is necessary for every possible change that could cause
an inconsistency. In the example, this is necessary for the a change of the
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first name of a family member, the change of the name of the family and a
change of the name of the person.

Using synchronization blocks, the same semantics of three constraints is
expressed in a single synchronization block with an additional lens for Get-
FullName. As a result, the EVL+Strace solution is much less concise, using
2,077 lines of code as opposed to 198 lines of code for the NMF solution.

A declarative specification always comes at the cost that developers lose
their overview on the control flow. In particular, a developer quickly has
an intuition how the system processes a specification such as the one in
Listing 9.30 because analysis of inconsistencies and their repair operations
are strictly separated. In particular, the developer has a full control on the
model manipulation that is performed in the synchronization process.

This is not true for synchronization blocks specified using NMF Synchro-
nizations: Here, the analysis of inconsistencies and the operations per-
formed as repair operations are intertwined as both are deduced from lenses.
Further, if developers are not used to the declarative support of C#, they may
simply see the function and not understand that NMF Synchronizations
lifts this specification to a lens and also runs an incrementalization system
over it. Therefore, developers may assume that the code is only used to check
consistency constraints, but not to enforce them.

The last problem is also more general: the C# language is not very common
to the general TTC audience and we think that many people still compare
C# closely with Java. However, this impression is wrong, at least if the C#
language is used declaratively. We suspect that the understandability is easier
for developers more familiar with the C# language. For users of LINQ, the
idea that C# code is not executed but analyzed and then something else is
executed based on a model of the code is not new: For LINQ, the code model
is transformed to a database query. NMF Synchronizations uses the model
to construct a synchronization block. However, if a developer does not know
the declarative syntax capabilities of C#, then the NMF solution must puzzle
him.

Solutions using external languages such as for example UML-RSDS do not
have this problem. Similar to NMF Synchronizations, the UML-RSDS
solution works by letting users specify consistency constraints, in UML-
RSDS as post-conditions of a transformation but does not support incremental
change propagation. However, because the language is external, developers
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expect that the constraint is not only tested but that the system can deduct
an execution semantics from it. For C# code, the expectation is usually that
it is only executed, not as much analyzed.

There was no evaluation of the solution in eMoflon or BXtend because
these solutions counted as reference solutions.

9.9.5. Summary

Even though the use case of this case study is rather artificial, the case study
allows a detailed comparison, especially with regard to performance, with
state-of-the-art BX tools. The comparison shows that significant advances
in the incremental execution of model transformations could be achieved,
meanwhile the solution allows a very flexible customization with regard
to resolving indeterminism in the case description through configuration
entries.

The evaluation of the understandability showed that our solution was less
understandable than solutions in EVL+Strace, SDMLib or UML-RSDS. Com-
paring our solution with the EVL+Strace solution that received the best
understandability assessments, we think that this is mainly due to an un-
awareness of the audience that C# allows to specify functions declaratively.

Developers have to know the details of the C# language and also details of
NMF Synchronizations in order to understand the NMF solution. This
is not the case for EVL+Strace where the solution is rather intuitive. In
particular, we think that the implementation of NMF Synchronizations as
an internal DSL has pointed the audience towards a false assumption that
the functions specified in the synchronization blocks can only be executed
while in truth, they are lifted to in-model lenses and incrementalized.

Therefore, the case study shows that developers that shall comprehend model
transformations using NMF Synchronizations should be trained both in its
underlying theoretical concepts, but also very importantly the declarative
usage of the C# language that NMF Synchronizations is built upon.
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9.10. Case Study: Modeling a Bike shop

Many existing approaches for Deep Modeling require entirely new concepts
such as potencies [15] that are often incompatible with existing modeling
standards common in model-driven engineering such as Ecore. Therefore,
these languages have to create their own languages to process these models
auch as DeepATL [13].

Because many of the existing approaches define their own concepts, it is hard
to make a comparison. Therefore, the Bicycle Challenge in the scope of the
MULTI 2017 workshop was suggested to foster this comparison and to reach
a common understanding what the general concepts of these approaches
are.

In this section, we take this challenge as a case study to see how the presented
approaches to simplify metamodels as presented in Part IV can be applied to
this modeling challenge.

9.10.1. Task

For self-containment of the thesis, we replicate the case description from the
MULTI website109 here:

A configuration is a physical artefact that is composed of com-
ponents. A component may be composed of other components
or of basic parts. There is a difference between the type of a
component and its instances. A component has a weight. A
bicycle is built of components like frame, a handle bar, two
wheels . . . A bicycle component is a component. A frame, a
fork, a wheel, etc. are bicycle components. Frames and forks
exist in various colors. Every frame has a unique serial number.
Front wheel and rear wheel must have the same size. Each bi-
cycle has a purchase price and a sales price. There are different
types of bicycles for different purposes such as race, mountains,
city .. A mountain bike or a city bike may have a suspension.
A mountain bike make have a rear suspension. That is not the

109 https://www.wi-inf.uni-duisburg-essen.de/MULTI2017/#challenge, retrieved 4 Sep 2017
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case for city bikes. A racing fork does not have a suspension.
It does not have a mud mount either. A racing bike is not
suited for tough terrains. A racing bike is suited for races. It
can be used in cities, too. Racing frames are specified by top
tube, down tube, and seat tube length. A racing bike can be
certified by the UCI. A racing frame is made of steel, aluminum,
or carbon. A pro race bike is certified by the UCI. A pro race
frame is made of aluminum or carbon. A pro racing bike has a
minimum weight of 5200 gr. A carbon frame type allows for
carbon or aluminum wheel types only. „Challenger A2-XL“ is
a pro racer for tall cyclists. The regular sales price is 4999.00.
Some exemplars are sold for a lower price. It is equipped with a
Rocket-A1-XL pro race frame. The Rocket-A1-XL has a weight
of 920.0 gr. A sales manager may be interested in the average
sales price of all examplars of a certain model. He may also be
interested in the average sales price of all mountain bikes, all
racing bikes etc.

To models of this domain, the following requirements were posed:

1. Knowledge about the domain, which may include particular aspects,
should be represented at the highest level possible.

2. It should be possible to use the model (or parts of it) as a foundation
for a software system that is suited for a wide range of general
bicycle stores. At the same time, it should allow for this software to
be refined into more specific systems like one for a specialized dealer
of professional racing bikes.

3. It should be possible to define associations between elements on
different levels. Alternatively, it can be shown that cross-levels
associations are not required.

4. As a consequence of req. 3, it should be possible to specify cross-level
constraints.

5. There should be mechanisms that protect the integrity of lower levels
of the model from changes that occur on higher levels.

6. There should be mechanisms to preserve the model semantics and
foster the synchronization of MLM-based models with code.
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Solutions were demanded to fulfill at least three requirements. Lack of infor-
mation or ambiguities in the description should be identified and removed
by making explicit assumptions.

9.10.2. Case Analysis

From our perspective, there are very few instantiation relations between
different model elements of the bicycle shop: As an example, a suspension
fork is still a component, regardless of the possibility that there may be
classes such as BicycleComponent or Fork in between in the inheritance
hierarchy.

For concrete components such as the Rocket-A1-XL racing frame, the ques-
tion whether these should inherit or instantiate RacingFrame is not as easy
to answer: A bike shop may have several of such racing frames in stock and
a question is whether they should all be modeled as instances of a Rocket-
A1-XL racing frame model element. The answer that we think is appropriate
here is no because there are no important properties that a frame has because
it is a Rocket-A1-XL racing frame but many properties are shared. There-
fore, it is better to model the Rocket-A1-XL racing frame as an instance of
RacingFrame as this makes it easier to specify shared properties.

A very similar question arises for bikes themselves: The bike store has many
Challenger A2-XL racing bikes in stock but should they be instances of
Challenger A2-XL racing bikes? In contrast to the racing frames, the bikes
have individual properties, namely the actual sales price. Even more, is it
necessary that we model not only instances of bikes but also the instances
of frames, forks and other components? If we do, then each instance of a
Challenger A2-XL racing bike has to be connected with an instance of a
Rocket-A1-XL racing frame. This means an additional overhead because the
modeler has to model each and every part of each bike sold. It also has some
advantages as it allows to put labels on each instance, though we hardly
think that this is necessary. After all, we assume that a bike store would
only sell bikes as a whole or components separately. A bike store would not
disassemble a bike and sell or exchange its components. Therefore, modeling
each component of a bike as a model element would unnecessarily bloat the
instance models, increase the effort to create instances and cause a lot of
complexity in the metamodel which is something that we try to avoid.

353



9. Validation and Evaluation

Further, we think that the actual sales price is something that is not at all
specific to bikes, but rather is a general concept of items in stock that may be
discounted and in that case are sold to a different price than the recommended
sales price. Thus, we think that it is more practical to insert a new class
of StockItem that refers to a configuration of components that is sold, but
perhaps for a different price. Because the domain description only foresees a
price for bikes rather than for components, we named the class BikeInStock
and reference the model of the bike in a dedicated reference.

The relationship of a bike in stock to the model of a bike can in fact be
described in a instantiation relationship. However, the properties of a bike
in stock are only marginally influenced by the specific bike instance – from
the domain description, only the sales price default value is different. This is
something that can be conveniently handled using classic two-level meta-
modeling. For us, the characteristics of deep modeling are rather cases where
the properties of instances are determined by properties of the model element
determing their type. For example, instances of components must be con-
nected to other instances of components according to the required interfaces
of the respective component, in addition to some general properties. For the
bicycle challenge, the only such case is that the default sales price of bicycles
is influenced by the type of bicycle. Therefore, we do not see a reason to
apply deep modeling concepts here.

9.10.3. Validation Goals

Unfortunately, the NMF solution was not submitted to the MULTI 2017
workshop due to logistics reasons and therefore, we do not have empirical
data to reason on the understandability of our approach. As a consequence,
we only rely on the reader to get his own impression and only use this
case study to validate the applicability of our refinements and structural
decomposition approach. Furthermore, we do compare our solution to the
only submitted solution to the modeling challenge by Macías et al. using
MultEcore [142] in terms of suitability for analysis purposes.
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Figure 9.42.:Configurations and components in a bike shop

9.10.4. NMF Solution

In this section, we develop how to model the bike shop according to the do-
main description presented in the challenge description. The model, the code
generated for it and a very simple client application are publicly available
on GitHub110.

Because the case description does not contain instantiation relationships
between model elements (cf. Section 9.10.2), we do not use the deep modeling
capabilities of NMF (cf. Chapter 8) for this case. Rather, we only use the
ability of NMF to implement refinements and structural decomposition.

The very basic classes in the domain are configurations and components.
They can bemodeled as one would expect to model them in a classic two-level
metamodel such as depicted in Figure 9.42. A Configuration is an abstract
class that consists of components. A Component in turn may consist of other
components or basic parts, which is why we added a common base class for
these two classes.

Much more interesting from a modeling perspective is the fact that bicycles
are a special form of configurations that consist of bicycle components such
as a forks, frames, wheels or handle bars. More precisely, a bicycle consists
of exactly one frame, exactly one fork, exactly two wheels and exactly one
handle bar. Moreover, these components are the components that the bicycle
consists of when viewed as a configuration.

110 https://github.com/georghinkel/BikeShop
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Through structural decomposition, NMeta has a dedicated built-in support
for this kind of relationships. The suggested model is depicted in Figure
9.43 where blue refinement arrows denote a structural decomposition. In
particular, we can specify that several references of Bicycle to all of its
components taken together refine the Parts reference of Configuration.
Thus, the components of a Bicycle are exactly its frame, its fork, its handle
bar and the wheels.

As a consequence of this assignment, the default implementation class of
Bicycle does not inherit from the default implementation class of Configu-
ration but implements the members required for the generated interface for
Configuration directly. Whereas the default implementation class contains
a field to store the parts of the configuration, the class implementing Bicycle
assembles this collection on the fly, based on the referenced elements for
each of the references that decompose the Parts reference in the scope of a
Bicycle.

This interface implementation is also private such that the Parts reference of
Configuration is no longer visible in the generated model API for Bicycle.
The user shall not see this reference any more because the data of this
reference is provided through the refining reference: Instead of specifying
that the frame (as a component) is a part of the bike, users have to assign
the frame as an instance of Frame to the corresponding reference directly.

We did not add a dedicated common base class BicycleComponent as we
think that the current model is much more precise. Furthermore, we do
not realize the constraint that both wheels must have the same size. Such a
constraint would be easy to specify in OCL based on the Bicycle class, but
as mentioned earlier, NMF has no support for such constraints.

Refinements can be stacked, i.e. a reference that refines another reference
can be refined itself in the scope of another class. This is used for example in
for the class MountainBike. According to the domain description, the fork
of a MountainBike must be a SuspensionFork. Therefore, we redefine the
Fork reference for MountainBike such that it is typed with a SuspensionFork.
This is depicted in Figure 9.44.

Furthermore, mountain bikes consist of an additional component, a rear
suspension. However, we already decomposed the Parts reference into
the frame, the fork, the handle bar and the wheels. Fortunately, this is
not a problem because a decomposition is always scoped. This means, the

357



9. Validation and Evaluation

«abstract»
Configuration

«abstract»
Component

+ weight

«abstract»
Bicycle

+ SalesPrice
+ PurchasePrice

MountainBike

Fork

+ Color

SuspensionFork

RearSuspension

Components

0..*

Fork

1

Fork

1

RearSuspension

0..1

�refines�

�refines�

�refines�

Figure 9.44.: Stacked refinements for MountainBikes

decomposition holds only as long as no other references take part in the
decompositon. That means, we can extend the decomposition of the parts of
a mountain bike by adding a rear suspension. This is also depicted in Figure
9.44.

Next, we need to model different types of bikes. Besides MountainBike,
there are further classes for CityBike, RaceBike and ProRaceBike where
ProRaceBike inherits from RaceBike. However, meanwhile a certification is
optional for a RaceBike in general, it is mandatory for a ProRaceBike.

Using refinements, this relationship can be implemented by refining the
Certified attribute of RaceBike with a constant attribute as depicted in
Figure 9.45. This is implemented using a AttributeConstraint element
and denoted in Figure 9.45 as an equation in the attributes compartment.
Similar to other refinements, this assignment has the consequence that the
generated default implementation type for ProRaceBike does not inherit from
the default implementation class for RaceBike but implements its interface
directly. In particular, the getter for the Certified attribute simply always
returns true.

Similarly, the purpose of bikes is available as an attribute in the Bicycle class
but refined in the subtypes with a constant attribute. Note that although a
RaceBike in general is allowed to be used for cities and races, a ProRaceBike
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«abstract»
Bicycle

+ SalesPrice
+ PurchasePrice
+ Purpose

MountainBike

Purpose = [’mountains’,
’city’]

CityBike

Purpose = [’city’]

RaceBike

+ Weight
+ Certified
Purpose = [’city’, ’race’]

ProRaceBike

Certified=[True]
Purpose = [’race’]

Figure 9.45.: Inheritance hierarchy of bicycle types

can only be used for races, as refinements by constant attributes or references
may be overridden.

For racing frames, we would model the material as a simple enumeration
because there is no additional information attached to these materials. How-
ever, NMeta does not allow to model an inheritance hierarchy for value types
such as enumerations. Therefore, one would need a constraint to specify
that the material of a ProRaceFrame must be either aluminum or carbon but
such constraints are not (yet) supported in NMF. A similar statement hold
for the minimum weight of 5200gr for pro racing bikes.

Instances of the class Bicycle represent a model of bicycles rather than a
specific physical bike. To account for a different sales price of some exemplars,
we need to model these exemplars also as model elements. However,

The code generator in NMF can use this model to generate classes to represent
instances of this model in memory. These classes have an API such they are
easy to use. For example, the code depicted in Listing 9.31 can be used to
create an instance model with the example pro racer bike Challenger A2-XL
model equipped with a Rocket-A1-XL pro racer frame and six exemplars of
this bike where one has a discounted price.
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1 var challengera2xl = new ProRaceBike

2 {

3 RaceFrame = new ProRaceFrame

4 {

5 Name = "Rocket-A1-XL",

6 Weight = 920.0

7 },

8 SalesPrice = 4999.0,

9 Name = "Challenger A2-XL"

10 };

11
12 var stock = new ObservableList<IBikeInStock>

13 {

14 new BikeInStock { Model = challengera2xl },

15 new BikeInStock { Model = challengera2xl },

16 new BikeInStock { Model = challengera2xl },

17 new BikeInStock { Model = challengera2xl },

18 new BikeInStock { Model = challengera2xl },

19 new BikeInStock { Model = challengera2xl, DiscountedPrice = 3999.0 }

20 };

Listing 9.31:Creating instances using the generated model API

1 var averagePrice =

2 (from bike in stock

3 where bike.Model is IRaceBike

4 select bike.DiscountedPrice.HasValue ? bike.DiscountedPrice.Value

5 : bike.Model.SalesPrice).Average();

Listing 9.32:Querying the average sales price for race bikes

Based on these models, one can use the C# query syntax to perform analysis
such as computing the average sales price of all race bikes in stock such as
in Listing 9.32. Because the discounted price is optional in the metamodel,
NMF generates a nullable type for the respective property whereas the sales
price is mandatory and therefore a double property is generated.

Also, note that the type filter uses the generated interface IRaceBike. This is
required because the default implementation type ProRaceBike of a pro race
bike does not inherit from the implementation type RaceBike in order to
avoid inheriting the Certified property – the model API does not offer to set
the Certified property of a ProRaceBike because a pro race bike is always
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certified: The property is implemented in private and thus only accessible via
the interface IRaceBike. Its getter simply returns true and the setter throws
an exception if the value passed in is not true.

Akehurst and others have shown that modern C# is as declarative as OCL
[5]. Indeed, NMF can support the incremental execution of such queries:
With very small changes to the code and an additional import statement, the
average sales price query from Listing 9.32 can be executed incrementally.
This is depicted in Listing 9.33.

1 var averagePriceInc = Observable.Expression(() =>

2 (from bike in stock

3 where bike.Model is IRaceBike

4 select bike.DiscountedPrice.HasValue ? bike.DiscountedPrice.Value

5 : bike.Model.SalesPrice).Average());

Listing 9.33:Querying the average sales price for race bikes incrementally

Using a DDG that tracks model change events for all affected properties such
as the model of a bike, the discounted price or the sales price of a model, we
obtain updates when the average sales price changes.

9.10.5. Results

Unfortunately, the MultEcore solution by Macías and others [142] was the
only solution submitted and accepted at the MULTI 2017 workshop. How-
ever, this solution is also very interesting because MultEcore [141] that
was created by the same authors follows very similar goals: To combine
the modeling expressiveness of Deep Modeling approaches with the mature
tooling of existing two-level modeling tools. Notably, the approach of Mul-
tEcore is also very different to the approach of NMF. While in MultEcore
the object and the class facet of a class are clearly separated (even in two
different physical files, though they are treated as one model).

The difference becomes obvious when comparing the amount of used model-
ing levels. While we argued in Section 9.10.2 why the NMF solution actually
does not make use of Deep Modeling features, the MultEcore solution is
indeed divided into six modeling levels: At level 0, the authors see Ecore as
the underlying meta-metamodel. Level 1 is the superstructure in components
and parts (the solution does not make a difference between components and
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Figure 9.46.: Level 2: Bicycle in the MultEcore solution of the MULTI 2017 modeling challenge
[142]

configurations). Level 2 contains Bicycles. Level 3 contains Racing Bicycles,
for instance. Level 4 contains Pro Racing Bicycles and lastly, level 5 contains
the example bike Challenger A2-XL.

As an example, the level 2 of this solution is depicted in Figure 9.46 where
the class of objects is denoted in a blue oval. The red boxes depict potencies.
Similarly, attributes are preceded with a potency. The potency of a class
means how many levels deeper the class may be instantiated.

The diagram in Figure 9.46 matches the class diagram shown in Figure
9.43 very closely. The difference is only that what is implemented as a
structural decomposition in NMF is implemented as a reference instantiation
in MultEcore. Likewise, the information that a bicycle is a special type of
configuration (or a special kind of component in the MultEcore solution) is
represented as an inheritance relation in Figure 9.43 but as an instantiation
relation in Figure 9.46.

This raises the question of what the impact of these differences are.

To answer this question, we have to go one level deeper. Therefore, we
depicted the model fragment of the MultEcore solution regarding racing
bikes in Figure 9.47. This level shows the assembly of racing bikes in the
MultEcore solution. Similar to the level above, inheritance in the NMF
solution is replaced by instantiation in the MultEcore solution.

In the Deep Modeling approach presented in Chapter 8, the most important
characteristic of instantiation relationships is that instantiation is a non-
transitive ‘is-a’-relationship. Applied to the example in Figures 9.46 and 9.47,
this means that a racing bike is not a component. One level deeper, this
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Figure 9.47.: Level 3: Racing Bicycle in the MultEcore solution of the MULTI 2017 modeling
challenge [142]

similarly implies that a pro racing bike is not a bicycle – a statement that
should be rejected from the domain perspective. Therefore, the usage of
instantiation in MultEcore breaks the non-transitivity we expect from an
instantiation relationship. However, the underlying concept of potencies
does rely on this non-transitivity.

As a consequence, we have that for example the color of all racing frames
must be the same, because the color attribute of racing frames is 1-1, i.e. the
color must be specified exactly one level below. However, some instances of
Frame are actually frames meanwhile other instances are conceptual elements
such as the concept of a racing frame that suddenly must have a color set.
This problem can be mitigated by making the potency a bit more flexible.
As an example, this is done in the Bicycle class in Figure 9.46 where for
example the purchasePrice has a potency 1-3, allowing that the purchase
price does not have to be specified at the level of a RacingBike but multiple
instances of RacingBike may have different purchase prices.

However, this workaround has multiple disadvantages. At first, it means
that bikes do not necessarily have to have a purchase price as theoretically,
the purchase price could be delegated to instances of instances of Bicycle,
whatever that could be, semantically. But even if we take this flaw into
account, we still have the problem that the required potency of attributes in
Bicycle depends on the height of the hierarchy. In particular, if we found a
further specialization of ProRacingBike, then would would have to change
the potency of attributes in Bicycle. In other words, we have to foresee the
classification scheme of bikes in the Bicycle class.
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Furthermore, the usage of non-transitive relationships causes problems when
it comes to model analysis: It is not possible to treat a racing bike as an in-
stance of Bicycle because it is an instance of an instance, namely RacingBike.
Therefore, when for example the average sales price has to be computed
such as suggested in the original case description, then the system has to
break the non-transitivity and collect all derivatives of Bicycle - whether
these are instances of Bicycle, instances of instances of Bicycle or even
instances of instances of instances, such as the Challenger-A1-XL pro race
bike.

In the NMF solution, these problem aremitigated because there, both Bicycle,
RacingBike and ProRacingBike are on the same modeling level, connected
through inheritance relations that reflect the transitive nature of their connec-
tion. Therefore, it is indeed possible to specify an analysis very convenient
using standard C# such as shown in Listings 9.32 and 9.33.

9.10.6. Summary

The Bicycle Challenge was created to compare existing multi-level or Deep
Modeling tools. However, at least with NMF, we do not see a reason to
use the Deep Modeling features of NMF for that case and rather solved the
Bicycle model using two-level modeling, though with an additional feature of
reference refinements and structural decomposition. Both of these concepts
proved very useful to model the Bicycle Challenge with NMF as they help to
model concepts at different levels of detail. We compared the NMF solution
with a solution in MultEcore [142] that used multiple levels, but discovered
severe problems of this usage that our solution is able to mitigate.

Besides the current limitations of NMF with regard to the lack of constraint
support and a lack of a user interface, we think that NMF and its meta-
metamodel NMeta are highly suitable to model the Bicycle Challenge. Be-
cause the meta-metamodel only introduces small extensions to classic EMOF
implementations such as Ecore, we think that the metamodel is very under-
standable for metamodelers. Furthermore, the compatibility of the generated
API with object-oriented concepts means that the models are easy to process
using the generated model API.

In particular, NMF is able to execute analyses based on such a model incre-
mentally, based on the pure batch specification.
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9.11. Case Study: Incremental Analyses for Deep

Architecture Description Models

In this last case study, we want to evaluate the performance of incremental
model analyses in the presence of Deep Modeling when the analysis is not
made obsolete by the Deep Modeling extensions. In particular, we want
to compare the speedups that can be achieved through incrementalization
with the speedup that can be achieved using the equivalent analysis for the
two-level model. To do this, we created a small benchmark to measure the
analyses presented in Section 8.4.

9.11.1. Validation Goals

The validation goals of this case study are thus as follows:

Performance In this case study, we are particularly interested in two things:
The speedup that can be achieved using implicitly incremental analyses in
the presence of Deep Modeling and to which that speedup is different to a
two-level analysis. The important metric that we are looking at is again the
average response time from a model change to an updated analysis result.

Correctness To check the correctness, we essentially compare the number
of result elements for the analyses as presented in Section 8.4. These always
have to match between incremental and non-incremental versions of the
analysis both in their two-level or Deep Modeling versions.

9.11.2. Benchmark Setup

To evaluate the three versions of the analysis for performance, the two-level
version in Listing 8.3, the Deep Modeling version in Listing 8.2 and the
alternative in Listing 8.4, we created a small benchmark. This benchmark
creates a model of the MediaStore example application used in Section 8.3.2
that is multiplied 𝑛 times where 𝑛 is an exponentially growing number from 1
to 64. Note that this replication of the model only affects the system assembly
and the deployment, we are not replicating the repository components.
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The benchmark consists of the following steps:

1. Generate a model of the MediaStore scaled by a given factor 𝑛 (no
time measurement). The model uses a shared component repository,
but all assemblies, allocations, resource containers and resource links
are replicated.

2. Initially run the given analysis on this generated model. There should
be no wrongly allocated assemblies.

3. Iteratively allocate the MySql database assembly to an isolated
component. For a given size 𝑛, this means to move 𝑛 assemblies. The
time measurement is done separately for each assembly. Each
reallocation should cause three elements in the analysis result
because there are three connections between the database adapter
assembly and database assembly.

4. Iteratively allocate the MySql database assemblies back to the
database assembly where they were before. Each reallocation should
eliminate three elements in the analysis result set.

5. Iteratively remove the database resource container from all of the
network links. Each such operation should again cause three new
matches in the analysis result set.

Initially and after every model manipulation done in steps 3–5, we compute
the number of elements in the analysis result set, i.e. how many assemblies
are incorrectly connected given that there is no link to the specified resource
container. The implementation of this benchmark and R scripts to generate
result images are publicly available online111.

9.11.3. Results

For each of the analyses, we run them both in batch mode and in incremental
mode.

The results for the initial runs of the analyses are depicted in Figure 9.48.
One can see that in the Deep Modeling analyses, the overhead to create
the DDGs is smaller: They are closer to their respective batch analysis

111 https://github.com/georghinkel/DeepModelingDemo
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Figure 9.48.: Initial analysis time to check the correct allocation of assemblies
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Figure 9.49.:Median response times for updates of the allocation model to updated analysis
results

results. Meanwhile, creating the DDG for the two-level analysis means
more overhead because the queries are larger. Furthermore, meanwhile in
batch mode, a FirstOrDefault query simply quits after the first element, the
incremental version always has to process all elements as a change could
make them first. Thus, the overhead for thw two-level analysis even increases
with an increasing model size.

367



9. Validation and Evaluation

The results for the median response times from an update operation in each
of the steps to an updated analysis result are depicted in Figure 9.49. One
can clearly see the difference between incremental and non-incremental
executions: Even the slowest non-incremental version of the analysis is
faster than the fastest non-incremental analysis by more than two orders of
magnitude.

However, the results also show a difference among the incremental solutions.
While the Deep Modeling versions of the analysis are slower for smaller
models, the results confirm a better scalability with larger models. For size
32 (which is an architecture model with 224 assemblies), the additional
overhead pays off. For size 64, the two-level version of the analysis is already
significantly slower.

Lastly, the changes that we applied to the software architecture models are
only at the lowest level, i.e. we were changing only deployment information.
If we were to change upper levels, this would be fine for the two-level version
of the analysis (though it has to account for temporarily broken validation
constraints) but in the Deep Modeling model, such a change would create a
need to regenerate and recompile the lowest level. In any case, this would
be much slower than a propagation of a change in the two-level analysis.

9.11.4. Summary

The results of this case study are twofold: They show that at least for the
model analyses depicted, there is indeed a speedup when using the Deep
Modeling version(s) of the analysis, in particular also in the incremental mode,
but that speedup is much smaller than the speedup that can be obtained by
using incremental computation at all. Therefore, the case study indicates that
whatever reasons there may be to apply Deep Modeling, the performance of
incremental model analyses may not be a good one.

9.12. Threats to Validity

In this section, the validity of the results obtained in the presented validation
are discussed. We separate this discussion in the internal validity in Section
9.12.1 and external validity in Section 9.12.2.
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9.12.1. Internal Validity

The internal validity of the case study results greatly depends on the type
of result. In particular, there is a huge difference between runtime measure-
ments, memory measurements and questionnaire results.

Common to all case studies from the TTC, we can safely exclude an experi-
menters bias as the cases have been authored by other researchers (with the
exception of the TTC 2017 Smart Grid case) and – more importantly – the
set evaluation criteria have undergone a peer-review process. The Bike shop
modeling case study is taken from the MULTI workshop. Therefore, we can
also exclude a bias from the case authors.

9.12.1.1. Performance

There is a threat of confounding factors for the performance measurements.
Other applications than the benchmark may be running on the machine such
that the measured performance times may not be perfectly accurate.

To compensate this threat, all background services have been terminated
where possible, including messengers, storage services and connection ser-
vices.

However, there are also some services that are inevitable connected to the
benchmarks such as the garbage collector and the just-in-time compiler. To
reduce the influence of the latter two, all measurements in all case studies
have been repeated at least ten times. Furthermore, most benchmarks use a
warmup that eliminates the influence of the just-in-time compiler.

The benchmark framework of the TTC Train Benchmark 2015 and the Smart
Grid Benchmark from the TTC 2015 do not consider such an elimination
such that the just-in-time compilation does influence the results. However,
this influence is only important for the smaller model sizes. For the larger
model sizes, the time for the just-in-time compilation can be neglected.

Less on the measurement itself, there is also a difference of the used technol-
ogy because other solutions generally use EMF instead of NMF. Therefore,
differences in response times may be due to the difference of the used frame-
work instead of difference in the used incremental tool. However, we think
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that the technologies are tightly coupled to the underlying model technolo-
gies such that this comparison is actually fair. Furthermore, clearing this
effect from the measurements required to reimplement the tools in another
platform, an overhead which is not justified by this confounding effect.

Overall, we think that the threats to internal validity are rather small. Due to
repetition of measurements, we think that the influence of garbage collection
and just-in-time compilation is much smaller than the observed differences
between incremental and non-incremental tools that are in the order of mul-
tiple magnitudes or roughly half an order of magnitude for the comparison
with VIATRA Query or Reactive ATL.

9.12.1.2. Memory Measurements

For the memory measurements, there is a large confounding factor because
we only measured the working set size. Therefore, the memory measurement
is confounded by the memory consumption of the modeling framework
as well as the memory consumption of any infrastructure code. Lastly,
the memory consumption also depends on the memory efficiency of the
underlying technology which is often different because NMF uses .NET
meanwhile other solutions usually use Java.

Furthermore, the garbage collector is a very important confounding factor
for the memory measurements because it makes a tremendous difference
whether the memory measurement is done before or after the garbage col-
lector frees memory for unused objects. Because it is not possible in .NET
to clearly identify when garbage collection has taken place or to manually
trigger it112, the influence of garbage collection cannot be avoided.

Therefore, what one would rather want to measure is the amount of memory
that is actually used by the incremental tool. However, this is not possible
easily with the current architecture. Therefore, the memory measurements
have a low accuracy.

112 It is indeed possible to suggest the system to perform a garbage collection but it is not
guaranteed when that happens.
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9.12.1.3. Understandability

We list and discuss the most important threats to internal validity of the
understandability below.

Confounding factors There are severe confounding factors in the data for
the understandability: NMF is yet a relatively unknown approach and in
general, the C# language is much less common than for example Java in
the model-driven community. Therefore, many participants of the TTC
are (sometimes even admittedly) not familiar with the technology, which
clearly confounds the understandability results. Therefore, the results on
the understandability have to be seen as a lower boundary: It is likely that
participants more familiar with the technology find the approaches more
understandable.

In the Families to Persons case study, another problem was that due to
logistics reasons, the solution could only be presented using a video while
other solutions were presented in person. We are not sure whether this had
an influence.

History For the open peer reviews, it is unclear in which order the assigned
solutions were reviewed. Therefore, an influence of history cannot be ex-
cluded. For the presentation at the TTC, there is a clear influence of history
since the solutions are presented in sequence.

Instrument change An instrumentation effect can be excluded. Both open
peer reviews and live contest questionnaire responses have been asked for
by the TTC organizers, not by the authors of this thesis.

Several common forms of internal threats to validity such as differential
attrition, ambiguous temporal precedence, maturation, diffusion or regres-
sion towards the mean do not apply because the understandability was only
evaluated once and not over a period of time.

Overall, the results for understandability are very inaccurate and have to
be taken with great care. This also explains the simultaneously very good
results for understandability in the Java refactoring case study meanwhile
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the results for understandability in the bidirectional Families to Persons case
study are rather bad.

Mainly for the unfamiliarity of the TTC audience both with NMF and .NET
in general, we think that the true understandability of the NMF solutions is
better than the understandability from the questionnaire responses.

9.12.2. External Validity

Again, we split the discussion of external threats to validity on the type of
validations. However, since both are hard metrics, the threats to external
validity are the same for performance and memory measurements.

9.12.2.1. Performance and Memory Measurements

For performance and memory measurements, we face the problem that it
is unclear to what degree the obtained results can be generalized for other
applications, input model characteristics and change sequences. Further, it
is unclear to what extend the opponent solutions represent the opponent
tools.

Though the change sequence used in the various case studies have been
generated, they depend on the selection of changes and their proportion.
To mitigate this threat, we tried to cover all possible elementary changes
and tried to create a realistic ratio between the different change types where
this was possible. However, these ratios are not based on empirical research.
Furthermore, in case of the TTC 2015 Train Benchmark and the TTC 2017
Families to Persons case study, we sticked to the original benchmark pro-
posals (with the exception of the inhomogeneous change sequences for
the evaluation of Incerator) that do only consist of homogeneous change
sequences. This is required to allow a comparison to other tools.

To mitigate the threat of a lacking generalization to other contexts and
other applications, we tried to include a diverse set of case studies involving
different types of artifacts and different domains. We think that the presented
case studies show a good variety of those and we therefore expect that the
results from the case studies generalize to a wide range of applications.
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For the comparison with opponent solutions, most of the solutions using
other tools have been authored by the authors of the respective tools. This
way, we can safely assume that these solutions are the best solutions possible
using these tools. As a consequence, we expect that the comparison to these
tools generalizes to other applications.

9.12.2.2. Understandability

The participants of the TTC cannot be seen as representative for the likely
users of incremental model analyses and incremental model transformations.
Rather, in the last years they represent the authors of solutions to the TTC
cases and perhaps a few other participants of the STAF event in which the
TTC is embedded. The solution authors may or may not be biased towards
their own solution, even though all of them are researchers and therefore
should give an unbiased opinion on all solutions.

A similar statement holds for the open peer reviews where reviewers may or
may not be biased towards their own solutions. Because in the open peer
reviews of the TTC, each solution is only reviewed by two reviewers, there
is an influence of chance whether the reviewers are biased.

However, the selection of reviewers and the selection of participants of the
solution presentations at the TTC is outside the control of the author of
this thesis. Therefore, similar to the validation of correctness, the threats
to validity limit the expressiveness of the validation data but as we cannot
influence the validation setup, we do not have an option to make the data
more conclusive.

Over all, we think that the results on the understandability are rather pre-
liminary and should be supported by future research to gain credibility.

9.13. Validation Summary

In the following, we summarize the insights obtained from the validation of
this section with regard to the validation goals as defined in Section 9.1.
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Applicability The variety of case studies shows a wide applicability of the
presented approaches for practical problems, particularly for cyber-physical
systems that are described in software models.

For model transformations, we obtained that incremental transformations
with synchronization blocks are at least as expressive as the ATL model trans-
formation language, considerably the most common model transformation
language.

Our notion of refinements and structural decomposition turned out to neatly
express the Bicyclemodeling challenge of theMULTI 2017workshop, whereas
we found severe problems in the models of the only actually submitted solu-
tion using MultEcore 9.13.

However, the problems presented in this chapter are rather small and the
approaches of this thesis have not yet been applied in a large industrial
application. Therefore, a validation on larger artifacts such as more complex
analyses or model transformations is subject to future work.

Performance The response times show that in all considered cases, the
response time from a model change to an updated analysis or transformation
result could be reduced significantly, often even multiple orders of magnitude.
The automated optimization from Chapter 5 show limited practical advances,
but we think this may also be due to the smaller size of the case studies.

For the incrementalization system introduced in Chapter 4, we have seen
that the annotations of explicit incrementalizations for the query operators
yields a performance for incremental analyses that is able to catch up with
state-of-the-art specialized incremental tools such as VIATRA Query. For all
five queries of the TTC version of the Train Benchmark, NMF Expressions
was faster than VIATRA Query for the medium-sized models and in the
SwitchSet query, even faster for the largest models considered.

The performance results for the incremental model transformation approach
is even better. In particular comparing our approach with bidirectional model
transformation languages, our approach is able to beat other incremental
model transformation tools such as primarily eMoflon by multiple orders of
magnitude. However, also for unidirectional model transformation languages
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such as ATL, our approach turned out to yield a great performance improve-
ment in comparison to repeated execution of the model transformations or
propagating changes using SyncATL.

For incremental analyses in the context of Deep Modeling, we were able to
manifest that the usage of Deep Modeling can lead to improved response
times, but these speedups are relatively small in comparison to the speedups
that can be achieved using incrementalization.

Memory Consumption The results with regard to memory consumption
show that the additional memory consumption required by the incremental
model analyses stays at a tolerable scale and is comparable to other ap-
proaches such as VIATRA Query. In other case studies, it turns out that the
working set of an incremental update propagation is even smaller than the
one for a batch solution, simply because the incremental solution does not
have to load and transform the same models over and over again.

Understandability As indicated in Section 9.12, the data that we have for
the understandability are the least accurate and in fact, the results differ a lot.
While the open peer reviews of the Java refactoring case study showed max-
imum points for understandability, the understandability in the Families to
Persons case was evaluated much worse, even though both solutions referred
to similar artifacts, namely bidirectional model synchronizations using NMF
Synchronizations. Especially taking the analysis of the rather bad result in
the Families to Persons case study into account, we interpret this as follows:
We believe that it is very understandablewhat a model synchronization using
NMF Synchronizations does but it is not very understandable how it does
that. We assume that this problem may be mitigated if more developers are
aware of the C# language features and their usage for declarative incremental
and bidirectional model transformations such as executed in this thesis.

Correctness In all case studies, the indicators for correctness indicated a
correct incrementalization. Thus, at least in the case studies, there were no
obvious bugs.
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Relaxation of Assumptions The incremental data flow transformation case
presented in Section 9.4 shows that the approach can also be applied beyond
its original scope, as side-effects can be tolerated if they can be controlled.
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10. Experiences and

Lessons Learned

The goal of this chapter is to reflect on the experiences and lessons learned
from the case studies including but not limited to those presented in Chapter
9. However, the findings did not fit into the discussion of these case studies.

10.1. Whether incremental execution is beneficial

depends on how an analysis is formulated

The original NMF solution of the Train Benchmark did not use the imple-
mentation of the SemaphoreNeighbor query as depicted in Listing 9.5 but
rather used the implementation depicted in Listing 10.1. The advantage of
the latter query is that it appears simpler. Furthermore, the complete pattern
match could be reconstructed from the match more easily, i.e. including the
elements te1, te2 and sensor1. In the more recent implementation, these
elements have to be reconstructed from a pattern match.

The old version of the analysis has a very bad performance, even for smaller
models. In batch mode, the analysis is already slower than the reference
Java solution (meanwhile it is faster for all the other cases), but in incre-
mental mode, the runtime is extremely slow. For model sizes up to 8 (which
corresponds to about 10,000 model elements), incremental execution was sig-
nificantly slower than the batch solution and moreover showed a much worse
scalability. For larger model sizes, the solution even ran out of memory.

The reason why the original solution depicted in Listing 10.1 has such a bad
performance is twofold: First, the solution iterates over every pair of routes,
regardless whether such a pair is a candidate for a pattern match. For the
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1 Fix(pattern: from route1 in routes

2 from route2 in routes

3 where route2.Entry != route1.Exit

4 from sensor1 in route1.DefinedBy

5 from te1 in sensor1.Elements

6 from te2 in te1.ConnectsTo

7 where te2.Sensor == null

8 || route2.DefinedBy.Contains(te2.Sensor)

9 select new { Route = route2, Semaphore = route1.Exit },

10 action: match => match.Route.Entry = match.Semaphore);

Listing 10.1: The original NMF solution of the SemaphoreNeighbor query in the TTC Train
Benchmark 2015.

larger models that contain thousands of routes, this causes a higher computa-
tional complexity. We think that this is also the reason that already the batch
mode version of the solution was slower than the reference solution in Java.
In the incremental execution mode, this higher computational overhead also
implies a much larger DDG. This causes a higher memory overhead.

Second and also very important for the incremental execution, the changes
done in the scope of the benchmark affect a much larger part of the analysis.
The elementary model changes are exclusively changes to fix some of the
constraint rule violations, i.e. setting a new entry for a given route 𝑟1. For
any route 𝑟2 that exits at the old entry of 𝑟1, this change causes the filter
condition of Line 3 in Listing 10.1 to pass. As a consequence, the pair (𝑟1, 𝑟2)
enters the remainder of the query in Lines 4-9. This means that the DDG
templates are instantiated for this pair and further elements created as a
result of SelectMany operations such as in Lines 4-6. This increases the
memory consumption. Furthermore, the overhead of instantiating a DDG
template in comparison to plainly executing the analysis in batch mode costs
time, though the created DDG template instantiations do not add any value
because changes of the network topology that they would be reacting to
simply do not occur during the benchmark.

Both problems are mitigated in the new implementation of this query as
depicted in Listing 9.5, using the fact that at most one other route may be
connected to a given route.

378



10.2. Speedup parallel vs. incremental

1 var parallelQuery = from route1 in routes.AsParallel()

2 from route2 in routes

3 where route2.Entry != route1.Exit

4 from sensor1 in route1.DefinedBy

5 from te1 in sensor1.Elements

6 from te2 in te1.ConnectsTo

7 where te2.Sensor == null

8 || route2.DefinedBy.Contains(te2.Sensor)

9 select new { Route = route2, Semaphore = route1.Exit };

Listing 10.2: The original NMF solution of the SemaphoreNeighbor query in the TTC Train
Benchmark 2015 run in parallel.

10.2. A good speedup in parallel execution

is not an indicator for a good speedup

in incremental execution

The similarity of parallelism and incrementalization in their common goal
to improve the performance of a given analysis may suggest that analyses
where incrementality achieves good results are the same as those where
parallelism allows large speedups. This is enforced by the literature where
both of these properties could be implemented using the same paradigm
[33].

However, during the validation performed for this thesis, we found that this
is not the case: There are analyses where parallelism achieves good results,
but incrementality does not.

As an example, consider again the original implementation of the Semaphore-
Neighbor query of the Train Benchmark as depicted in Listing 10.1. As
explained in Section 10.1, the incrementalization of this query is very ineffi-
cient, especially given the change sequences that are applied in the Train
Benchmark. However, it is actually straight-forward to run this query in
parallel: One just has to run the outermost loop in parallel.

To achieve this, one can simply reuse the parallel LINQ implementation
as provided by Microsoft and parallelize the SemaphoreNeighbor query as
depicted in Listing 10.2. All that is necessary for the developer is to add a

379



10. Experiences and Lessons Learned

call to the AsParallel extension method in the beginning of the query. The
rest of the query stays exactly the same.
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Figure 10.1.: Benchmark results for parallel execution of the original SemaphoreNeighbor query

For example, we depicted the times for running the queries in the parallel
and non-parallel version on the railway network models of different sizes in
Figure 10.1. The size axis is relative, same as in the original Train Benchmark.
This means that size 1 has about 1,300 model elements, size 32 has about
50,000.

As could be expected, the parallel execution times grows with the size of the
input models, very similar to the standard LINQ implementation. However,
one can clearly see that the parallel version is faster than the sequential
version by an almost constant factor. Only an initial overhead of the parallel
query causes the speedup for smaller models to be lower. For the largest
model size, the speedup of the parallel version against the sequential imple-
mentation is 2.68, a considerably good result for a machine with four cores,
particularly because given the low implementation effort to support parallel
execution in this case.

The reason for this is that the potential for a speedup in through parallelism
lies in the fact that multiple routes can be analyzed in parallel meanwhile
for the incremental evaluation, this is irrelevant because only one route is
affected by a given model change at a time.
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10.3. A good speedup in parallel execution

is not an indicator for a good speedup

in incremental execution

The previous section demonstrates a counter-example of an analysis that
achieves very good results in an incremental execution but is very hard to
incrementalize. One could think that at least the opposite is true, that an
analysis that has a good performance in an incremental execution should
also yield very good parallel execution results.

This is also not the case. An example of model analyses that achieve good
incremental execution results but are hard to run in parallel manner are
model transformations. As suggested in Sections 9.5 and 9.6, the incremental
execution of model transformations scales very well with an increasing
model size suggesting that the incremental model transformation approach
of this thesis is fully incremental.

However, it turns out that model transformations are often also very hard
to run in parallel. Meanwhile there are approaches that indeed try to run
model transformations in parallel [202]113, there is a major obstacle: A model
transformation uses the trace as a shared resource. In a parallel execution,
any access to the trace must be locked. This causes a high synchronization
overhead and leads to very small speedups in comparison with a sequential
execution of the model transformation.

In contrast, for the incremental execution this shared trace is highly valuable
as it allows to quickly find corresponding elements for a given model element
that is affected by an elementary change. This allows to identify necessary
corresponding changes in the target model very efficiently, leading to a
highly efficient incremental execution.

113 The proposed approach to run a ATL model transformation in parallel boils down to run the
model matching phase in parallel where the matches for each rule are computed in separate
threads.
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10.4. The influence of the order

An important insight regarding when incrementality yields good perfor-
mance results is the order of elements. As it turns out, whether or not an
incremental algorithm has to respect the order of elements in an analysis
has a massive influence on the performance gains that can be achieved using
incremental execution. At the same time, this information is mostly unim-
portant for batch analysis: Meanwhile a remove operation is significantly
more expensive in ordered collections114, this information is unimportant for
most query operators such as Select or Where as they preserve the order of
elements by default. This behavior is natural because these operators simply
iterate the source collection and perform filters or mappings on the fly.

For an incremental analysis, preserving the order of elements is much more
complicated as a single change of a collection results in multiple changes of
element positions.

Despite the importance in an incremental setting, it is not as easy to specify
that the order of elements in a particular collection does not matter for
an implicit incrementalization system. In a batch specification, developers
usually iterate through the elements of a collection sequentially, thus in the
order in which the elements appear in the collection. As a consequence,
an incrementalization system operating only on batch instructions has no
chance to detect whether the order of elements has an importance and must
assume that it is, although this makes the incrementalization much more
inefficient.

To avoid this, the existence of manually incrementalized functions that
express in their semantics that collections they are working with is of great
importance for an incrementalization system to produce efficient results.
The manual incrementalization can then take this fact into account and
implement the incrementalization accordingly.

114 In an ordered collection, removing an element has complexity𝑂 (𝑛) meanwhile a hash set
implementation of an unordered collection allows a remove in amortized𝑂 (1) .
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10.5. The influence of themodel and

the change sequence

Whether the incrementalization of an analysis produces good results does
not only depend on the characteristics of the analysis but also on the charac-
teristics of the model and the change sequence applied to it.

An example where this becomes very obvious is the application of Incerator
to the Train Benchmark. Meanwhile the characteristics of the PosLength
query and the SwitchSensor query are very similar, the difference between
the instruction-level strategy and the repository listening strategy produce
very different results, purely because there are more segments in the model
than switches115.

This insight also confirms in Section 9.5, the model transformation from
finite state machines to Petri nets. There, we also recorded the time that the
incremental model transformation takes to propagate a given change. As it
turns out, simple attribute changes of states or the state machine are much
faster to propagate than more complex changes such as adding or removing
states or transitions. This is because attribute changes are reflected in simple
property changes in the target model meanwhile for a newly added state,
the transformation engine has to process a rule execution, which means a
slightly higher computational overhead.

10.6. Usage of Deep Modeling

One of the main rationale behind Deep Modeling is to reduce the acciden-
tal complexity of models. An important experience that was made when
working with the approach from Chapter 8 is that removing accidental com-
plexity from the metamodel does not necessarily make the metamodel more
understandable. In particular, we found that the approach from Chapter 8
turns out to be surprisingly difficult to apply.

115 The fact that the model manipulation for the SwitchSensor query is more complex does not
matter in this case, because the model manipulation is the same regardless of the incremen-
talization configuration.
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As a reason, we assume that this is because the amount of assumptions that
instantiation causes in comparison to a reference or a containment. Referenc-
ing another model element does not imply any constraints, a containment
reference only implies the constraint that there may be at most one container
element at a time for a model element. Instantiation, however, causes a lot
more constraints because for each attribute or reference of the type element,
the instance has the possibility to assign a value (either value object in case
of an attribute or another model element in case of a reference) but con-
strains its type and multiplicity. While these implicit constraints have several
advantages over making these constraints explicit, one must be aware of
them.

10.7. Conclusions

The main result of this chapter is that although an implicit incrementalization
of model analyzes and transformations makes incrementalization more easy
and maintains the understandability of a batch specification, developers still
have to have a good understanding of how the incrementalization system
works and how they need to formulate the analysis to achieve the best
results.

In particular, despite the common goal of improving the scalability, the
necessary characteristics that allow a good speedup are different for incre-
mentalization and parallelism. Meanwhile parallelism achieves good results
if there are less dependencies to consider, incrementalization rather benefits
from a direct mapping of changes of the source model to changes of the
result. In case of model transformations, such a mapping can be provided by
the transformation trace, which we take as the reason that the results in this
area are so good.

The chapter also shows that the characteristics of a model analysis such that
good performance results can be achieved by incrementalization depends on
the model, the change sequence applied to it and how easily the changes of
the model can be mapped to changes in the result. In addition, constraints
such as the order that are implicitly encoded in a batch specification may be
toxic for the performance of incremental analyses.
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11. RelatedWork

This chapter briefly summarizes related work in the research field of this
thesis. The description is divided by research fields.

In particular, Section 11.1 reviews related research in the field of incremental
computation systems. Section 11.2 reviews research in model transforma-
tions. Section 11.3 compares the meta-metamodel extensions presented in
this thesis with other approaches.

11.1. Incremental Computation Systems

This section reviews the current state of the art in incremental computation
with a focus on model-driven engineering. We divided the existing tools into
general-purpose approaches applicable to any analysis through support of a
Turing-complete language and those specific to a smaller class of analyses.
We refer to the latter as specialized incremental tools. These tools do not have
a restriction in the domain but in the kinds of analysis that are supported,
e.g. only attribute grammars, queries or graph patterns. Further sections
review the related work in reactive systems, optimization and distribution of
incrementalization systems.

11.1.1. General-Purpose Incremental Computation Systems

Pugh and Teitelbaum [166] were the first to apply memoization to incremen-
tal computation. Memoization is applicable to any referential transparent
function but rests on the assumption that the data structures it operates on
is immutable. If this is not the case, a function result may become invalid
even though the arguments did not change. This makes memoization not
applicable for model analyses.
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Later, Acar and others created Self-Adjusting Computation (SAC), a frame-
work to support the development of incremental programs [1] using the
then newly introduced DDGs. A good overview on SAC is provided by Acar
[2]. While the framework originally supported functional languages, it has
been extended to imperative languages based on C [81]. SAC operates on the
batch specification of an analysis annotated with explicit incrementalization
primitives. From these primitives, a DDG is deduced that keeps track of
changes.

Closest to our approach in chapter 4, Tracable Data Types (TDTs) have been
integrated into SAC to allow developers to supply a custom incrementaliza-
tion of an algorithm in a dedicated data structure [3]. TDTs have an internal
virtual clock and work by allowing developers to explicitly revoke previous
operations and return the earliest inconsistent state, if any. These operations
include both state management and queries, which allow different states
during an analysis, but require the developer of an analysis to manage the
state of the data structures on their own. As a consequence, TDTs are limited
to their own data structures while our approach allows the incrementaliza-
tion of higher-order methods that are independent of data structures used in
predicates. Furthermore, TDTs require some boilerplate code to use them in
SAC [3]. Our implementation only requires a method annotation so that the
dynamic algorithm can be reused in its compiled form.

Based on SAC, Carlsson was the first to find that incrementalization can
be represented as a monad [42]. However, the paper concentrates mostly
on the advantages to implement such a system in Haskell rather than on
the conceptual benefits of integrating manually incrementalized versions
of functionality that we have proven in this thesis. In particular, as argued
in this thesis, incrementality is not a monad (in the original meaning from
category theory) because the unit transformation must not be natural – a fact
that Carlsson ignores because it is not strictly required for an implementation
in Haskell116. While Haskell makes it very easy and convenient to specify
a monad, it is very hard to manually exchange the incrementalization of a
given method.

Hammer and others introduced the idea of demanded computation graphs,
implemented in Adapton [84, 82]. Demanded computation graphs make sure

116 In the context of functional programming, monads are often defined without the requirement
that the unit transformation must be natural.

388



11.1. Incremental Computation Systems

that a change propagation is only performed if the result is actually needed,
a feature that we implemented using reference counters on the DDG nodes.
Similar to SAC, Adapton does not work implicitly, such that developers have
to think carefully about where to insert incrementalization primitives.

SAC and Adapton both have the problem that they work explicit: The pro-
grammermust give a hint which parts of an analysis can be saved for repeated
analysis runs. Furthermore, the mutation of the input must be done through
a dedicated mutator component in SAC or through refreshing computation
thunks in Adapton. Our approach is able to pick up change notifications
from the generated model API and works entirely implicit, i.e. the program-
mer does not have to change the code at all. This makes it possible to use
incrementalization in mainstream technologies.

Chen et al. have developed an approach to transform programs written in
purely functional Standard ML into SAC [43], allowing developers to omit
incrementalization primitives. Hence, the approach works implicit. However,
we are not aware of any research that integrates the usage of TDTs into this
framework to make them more efficient. Therefore, this technique has the
problem that incrementalizations of collection operators are inefficient.

On a rather technical level, neither Adapton nor SAC are currently available
to be used withMOFmodels. While there is no publicly available implementa-
tion of SAC, Adapton has a freely accessible and maintained implementation
in Rust117. However, Rust has very limited support for object-oriented de-
sign. In particular, Rust only allows inheritance and dynamic binding for
traits, but trait objects cannot be downcasted. However, this is a mandatory
requirement for many metamodels of the case studies from Chapter 9.

Other approaches to incremental computation include entirely new pro-
gramming models that allow an easy incrementalization or parallelization.
An example of these approaches is revision-based computing [33]. How-
ever, here the developer has to explicitly think about where to insert such a
revision concept.

117 http://adapton.org/, retrieved 18 Jul 2017
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11.1.2. Specialized Incremental Approaches

Incrementality is a desirable property as it promises to save computational
effort when analyses are computed repeatedly. Therefore, it has been a
subject of research for decades [170], prominently for example with the
search for incremental compilers [174]. Common to all of these approaches
is that they make advantage of abstractions they make on the analysis to
perform at the cost of limited applicability. As soon as one formalism alone
is no longer capable of expressing an analysis, multiple approaches must
be integrated, causing a large integration overhead [24]. This is especially
important in maintenance scenarios where perfective changes require to
extend an analysis such that it no longer suits the given formalism.

Among the first incrementalization systems specialized on a limited class
of problems is the approach by Reps [175] for attribute grammars. This
approach works by using a static dependency graph for attribute evaluations
for which Reps has shown that an optimal-time reevaluation strategy can
be found by reevaluating the attributes in a topologically sorted order of a
static dependency graph. This approach rests on the assumption that the
data processed by the attribute grammar is immutable. As Reps applies this
technique for parse trees, this assumption is reasonable, but it does not hold
for models in general.

Willis et al. have achieved convincing results for an implicitly incremental
execution of the Java Query Language [217]. In their approach, they find
all the places where caches may be invalidated through aspect-oriented
programming. As a consequence, all these places must be known at compile-
time. Thus, model manipulation and analysis are tightly coupled and cannot
be separated into different modules.

On the .NET platform, a range of non-academic projects aimed to provide
change notifications for queries, sometimes with an incremental execution.
Among the rather mature are Continuous LINQ [107], Bindable LINQ118

and Obtics119. However, the example query we present in Section 1.6 only
works with Bindable LINQ where the runtimes are far worse than rerunning
the query for each elementary change because the approach requires a
compilation for each model change.

118 http://bindablelinq.codeplex.com/, retrieved 2 Aug 2017
119 http://obtics.codeplex.com/, retrieved 2 Aug 2017
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A similar problem to the incremental queries appears in relational databases
when maintaining materialized views [29]. An overview on the research can
be found in [79]. These approaches have also been applied to object-oriented
databases, as for example in [132]. Some approaches like notably LINQ
or SQuOpt [71] have ported this database technology to object-oriented
languages, in case of SQuOpt Scala.

A popular approach to specify queries, especially in graph transformation,
are Graph Patterns. Bergmann et al. have created IncQuery, an incremental
pattern matching system for Graph Patterns [26, 25]. This approach uses a
Rete network [63], a static dependency graph, whose nodes are primitive
filter conditions or joins of partial pattern matches. Each node represents a
set of (partial) pattern matches. This approach can support mutable models
because the notification API of models can be used to determine when
matches must be revoked or new matches arise. Unlike NMF Expressions
that requires a dynamic dependency graph, this means that queries as in
the Train Benchmark can be incrementalized using only a static dependency
graph.

IncQuery was integrated to EMF models as VIATRA Query [205]. This
system was also used to evaluate queries [172] and certain OCL expressions
[23]. We evaluated NMF Expressions against VIATRA Query in Section
9.3.

An incremental execution of OCL has also been subject of research for
incremental constraint checking [40, 173, 204]. These approaches are either
limited to boolean-valued constraints or limited to static analysis. The latter
is the same as the repository change incrementalization strategy in Chapter
5.

Lastly, in the field of algorithmics, a whole class of algorithms is dedicated to
process incremental changes, dynamic algorithms. Prominent examples from
this field include the dynamic spanning forests by Holm et al. for connectivity
analysis [109] and King and Sagerts approach for dynamic transitive closures
[125]. These algorithms often have a sub-optimal runtime in absence of
changes but can update their data structures according to changes. Our
approach does not compete with these dynamic algorithms but provides a
way how they can be used to specify incremental analyses using a batch
specification. An overview of dynamic algorithms, particularly for dynamic
graph algorithms was provided by Ramalingam and Reps [169].
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A generic theory of changes applicable in a wider range of applications was
developed in the scope of the SCuOpt project by Cai et al. [41]. While this
approach has a wider applicability than just a single class of analyses, the
authors do not yet have a concept how to mix several of such analysis kinds.
Thus, it serves as a foundation for the development of specialized incremental
tools. In the paper, Cai et al. applied the approach to a map-reduce technique,
which is a small subset of incremental queries.

11.1.3. Reactive Programming

A very related paradigm to incremental computation is reactive program-
ming where the goal is to get notifications for changes. An overview of
15 languages for reactive programming was created by Bainomugisha [18].
According to the taxonomy suggested in this survey, NMF Expressions is
based on events with a push-based evaluation model and implicit lifting.

Our approach can be interpreted as a way with a formal foundation how
implicit lifting can be overridden to gain performance. Most approaches in
reactive programming circumvent this problem as they apply explicit lifting
[18]. Even if the lifting works implicit, the approaches do not incrementalize
methods using their structure but rather execute a given predicate as is.

In reactive programming, the developer has to explicitly declare signals
to which the analysis should react. Our approach makes this implicit as
the incremental algorithm automatically attaches to the model as required.
Notable exceptions are FrTime [47] and FlapJax [148].

Particularly on the .NET platform, Reactive Extensions (Rx) have been intro-
duced to support reactive programming [146]. Similar to our approach Rx
uses the query syntax to combine several streams of data.

Reactive programming approaches are built upon an important assumption,
namely that signals do not change once they are processed. That is, they
operate on an (potentially infinite) sequence of immutable data. This is a
contrast to model analysis where the model usually has an approximately
constant size, but is mutable.
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11.1.4. Scenario-specific optimization

We are not aware of any other incrementalization approach that tries to
systematically optimize the performance for a given scenario.

11.1.5. Distributed Incremental Tools

The only incremental computation tool that we are aware of is the distributed
version of EMF-IncQuery: IncQuery-D [195]. This systems works by dis-
tributing the partial matchers typically for a RETE-network onto multiple
machines. The distribution is therefore static (a Rete-network is a static
dependency graph) in the sense that it depends on the pattern to be matched,
but not on the data. Our distribution mechanism is potentially more fine-
grained as it allows a distribution based on the actual data but the finer
granularity also causes additional overhead. The fine-grained distribution
in combination with the Orleans auto-scaling abilities may cause a better
elasticity. However, we did not do a detailed performance comparison with
IncQuery-D.

11.2. Model Transformations

The thesis touches a multitude of model transformation topics. In the follow-
ing subsections, related work in different aspects of model transformations
are discussed.

11.2.1. Incremental Model Transformations

There are several different approaches for model synchronizations. For a
range of approaches, Kusel and others have created a survey [133].

TGGs are a mature approach for incremental model synchronizations. TGGs
are a graphical, declarative, and bidirectional approach, based on graph
transformations [182]. Leblebici et al. created a survey of using TGGs for
incremental model synchronizations [139]. A detailed comparison between
NMF Synchronizations and the TGG implementation eMoflon is made in
Section 6.4. A performance comparison is done in Sections 9.5, 9.8 and 9.9.
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Jouault and Tisi [122] introduced Reactive ATL, an approach for incremental
model synchronization based on the ATL language that works online (the
model elements must be kept in memory when changes are made to them).
To accomplish this, they only support a subset of the ATL language and
make changes to the ATL compiler. They also implemented a prototype of
their incremental execution algorithm for ATL, but since it only supports
a small subset of the ATL language, the usage of their prototype is limited.
They do not support imperative statements, helpers, lazy rules, queries,
the refining mode and variables in rules. This restricts the supported ATL
transformations considerably, especially since helpers are widely used in
ATL transformations.

SyncATL, a similar approach of Xiong et al. [219] also introduces incre-
mental model synchronizations for the ATL language. This is achieved by
extending the ATL Virtual Machine (VM). Their prototype works offline and
therefore operates differently. To identify the differences in two versions
of a model, both have to be compared first. Afterwards, the changes can
be propagated. The exact subset of the ATL language supported by their
approach is unclear. After analyzing the example transformations that can
be used by their approach, it seems as if they at least support matched rules,
helpers and different OCL constructs. However, SyncATL statically relies on
identifiers to match model elements, whereas our approach is able to use
custom developer-supplied heuristics as well.

Varró and others created VIATRA, which in its latest form is a reactive trans-
formation platform built on incremental queries [206]. With this platform,
developers can declaratively specify graph patterns that can be used in in-
cremental model transformations [171], but in the latest version of VIATRA
the actual transformation has to be specified by the developer. Therefore, we
rather see VIATRA, in particular VIATRA Query [205] as an alternative to
NMF Expressions, not to NMF Synchronizations that combines the latter
with declarative model transformation concepts.

Beaudoux and others presented the Active Operations Framework (AOF)
[20], which is slowly getting applied to model transformations to make them
incremental [120]. The transformation language proposed in the latter paper
is actually very similar to NMF Synchronizations, both in terms of the
syntax and in terms of concepts. Therefore, we think that the mapping
presented in this paper can also be applied to make ATL incremental through
AOF.
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Lauder et al. provided an incremental synchronization algorithm that stati-
cally analyzes rules to determine the influence range while retaining formal
properties [136]. In contrast, we are using a dynamic dependency graph
such that we have a much more precise understanding which model changes
influence a transformation rule.

11.2.2. Bidirectional Model transformation languages

A good overview on bidirectional model transformation languages, including
a classification scheme, was created by Steven [190] or Hidaka et al. [90]. In
this classification of the latter, our approach operates on the technical space
of models (MDE) and consists of both forward- and backward-functional
correspondences with a Turing-complete (through extensions), bidirectional
specification. It reacts on live delta-based changes120 and all operations are
supported through change translation, though the enforcement of these
translated changes are only checked dynamically. The explicit trace is only
available in memory and we leave it to the user to persist it, if necessary.

Among the existing bidirectional model transformation languages is the
standardized QVT Relations language [168], though Stevens has identified
some semantic issues with it [191]. To the best of our knowledge, there
is also no approach that executes QVT-R transformations incrementally.
Nevertheless, Section 9.9 contains a performance comparisonwith theMedini
implementation of QVT-R.

The most prominent incremental and bidirectional transformation languages
may be Triple Graph Grammars, originally introduced by Schürr [182]. Mul-
tiple tools implemented this paradigm [91] and Giese et al. even implemented
them incrementally [75]. Triple Graph Grammars are usually specified graph-
ically or through external languages. As we have shown, we can express
some TGG rules in a single line of code, which we believe is not easily possi-
ble for TGGs. Furthermore, our approach is extensible with user-supplied
lenses as executed in Section 9.9.

Kramer has presented a series of languages for consistency preservation
[128] in the context of the Vitruvius framework [35]. From these, the

120 Although our formalization uses state-based lenses for simplicity, the implementation actually
works delta-based, which is important for multi-valued synchronization blocks.
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Mapping language is closest to NMF Synchronizations as it also defines
correspondences between elements that can be enforced automatically in
both directions. Similar to our approach, it specifies how the properties of
model elements should be synchronized based on isomorphisms and lenses.
These rules may relate to base isomorphisms. However, the synchronization
properties of this approach are not formally proven and it is not clear how
this formalism can be implemented in an internal language.

The internal transformation language FunnyQT [110] has a bidirectional
execution mode that uses the core.logic library that implements relational
programming in Clojure. A performance comparison with FunnyQT is
available in Section 9.9.

Lastly, Wider has created a bidirectional model transformation language as
an internal DSL in Scala [216] that is based on lenses, similar to our approach.
However, the approach uses pure lenses that are conceptually limited to
tree-based structures.

Other approaches to bidirectional transformation include putback-based sys-
tems such as BiGUL [126]. Here, the forward transformation is automatically
reconstructed from the backward transformation with the rationale that the
latter may require more attention. In comparison to these approaches, our
approach is completely symmetric and therefore also supports the synchro-
nization of heterogeneous models. BiGUL is also implemented as an internal
language in Agda and Haskell. However, these languages are no mainstream
languages and therefore, the language adoption problem cannot be tackled
by these languages. Section 9.9 contains a performance comparison with
BiGUL.

11.2.3. Lenses

Based on the original approach by Foster et al. [65], a multitude of lens
variants have been proposed such as delta-lenses [58], symmetric lenses [59]
or edit-lenses [108]. An overview and a great comparison can be found by
Johnson and Rosebrugh [119]. The main difference from these approaches to
our notion of lenses is the different scope of application. While to the best
of our knowledge, all other applications of lenses so far have applied them
on a model space where an object is an entire model, we apply lenses at a
mutable object space where an object is a set of object identities that share a
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common global state. Essentially, we apply lenses not between models but
within models. They are used as a form of model navigation that remembers
where it came from such that changes can be persisted.

Because of the different application area, the problems we face are different.
The objects we are working with are much simpler (model element identities
instead of models), but the shared global state causes us some problems
which is why we have to suitably restrict the formalism and weaken the
PutGet law. As a consequence, the compositionality of lenses breaks. To
solve this problem, we do not strive to see an entire model synchronization
as a big lens but rather use several small lenses and combine them to obtain
a model synchronization.

We believe that the idea we employed in Chapter 6, to use lenses as a gener-
alization of model references, may also be beneficial for other bidirectional
approaches such as TGGs. In essence, synchronization blocks are simply
very simple TGG rules and the complexity comes in with more sophisticated
lenses. The same lenses could also be made available to generalize the defini-
tion of TGG rules in that direction. However, we leave a detailed analysis up
to future work.

11.2.4. Model Transformation Languages

as Internal Languages

Some experiences exist with creating model transformation languages as
internal languages like RubyTL [51], ScalaMTL [70], FunnyQT [110] or
SDMLib121. The goals to use an existing language as host language are
diverse and range from an easier implementation [19], reuse of the static type
system [70], inherited tool support [92], reusing the expression evaluation,
easier integration into the host language up to mitigated language adoption
[104]. A detailed analysis on how an internal model transformation language
should be designed to inherit tool support is discussed in previous work
[101]. The degree in which these goals can be met depends very much on
the selected host language, as e.g. tool support can only be inherited if some
tool support exists but a concise syntax can usually only be achieved with
host languages having a rather flexible syntax.

121 http://sdmlib.org/, retrieved 27 Sep 2017
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An example of the former is SDMLib [221], which provides an internal DSL
embedded in Java and uses the Fujaba [154] tool internally. Transformations
are specified in a fluent method chaining syntax operating on generated
code for each metamodel. As the language essentially builds up a model for
Fujaba, it could inherit change propagation support from Fujaba. Here, we
think that our solution is more easy to use since we are working directly on
the abstract syntax tree, which is transparent for the developer.

An example of an internal language that is capable of change propagation
is VIATRA Query [205], which is implemented as an internal DSL in Xtend.
More precisely, VIATRA Query is a tool for incremental graph pattern match-
ing. However, transformations written in this way cannot be inversed. Fur-
thermore, Xtend is not as popular as for example C# such that the language
adoption problem remains.

11.2.5. Higher-order Transformations

Greenyer and Kindler presented an approach, in which concepts of QVT and
TGGs are compared and a part of the QVT-Core is mapped to TGGs [76]. The
objective of their work is firstly to identify essential concepts of a declarative
model transformation by finding common concepts of QVT-Core and TGGs.
Secondly, they want to show the similarities of both by mapping concepts
of QVT-Core to TGGs, so that a transformation specified in QVT-Core can
be transformed to TGG rules and executed by a TGG transformation engine.
Thirdly, they intend to discuss how both technologies can benefit from the
concepts of each other by analyzing their differences.

Richa et al.[176] transform ATL transformations into the Algebraic Graph
Transformation (AGT) framework. The focus is on the declarative features of
the ATL language and the HOT is used to make an easier theoretical analysis
of ATL transformations possible [176]. They implemented the HOT in a
Java-based tool called ATLAnalyser.

Büttner et al.[32] presented a HOT that is used for a verification of ATL
transformations. The HOT is implemented as an ATL transformation that
takes the ATL transformation which should be verified and transforms it
into a transformation model. A transformation model is a specific kind of
trace model and is used as a starting position for the verification [32]. Again
the HOT only supports the declarative subset of the ATL language.
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A further example is the work from Troya and Vallecillo [203] that defines a
HOT in the ATL language which transforms an ATL transformation model
into a model of the Maude language. Among others, the objective is the
formal analysis of ATL programs.

Not exactly a HOT, but at least a slight transformation of semantics of ATL
transformations was also presented by Wagelaar and others where they run
ATL in the EMFTVM instead of the default VM [212] with slight adaptions
in the semantics of rule inheritance, but no support for incrementality.

None of the HOTs that were mentioned in this section has the same goal as
ATL2NMFs. They all have the purpose of analyzing or verifying the source
transformation in contrast to ATL2NMFs that has the purpose of introduc-
ing the functionality of incremental model synchronizations for its input
transformation. To the best of our knowledge, no previous work proposed a
transformation into synchronization blocks.

11.3. Metamodeling Improvements

There are three fields of metamodel improvements in the literature: Other
aproaches to define refinements and structural decomposition as well as con-
ceptually different approaches to realize instantiation relationships between
model elements. For the latter, Atkinson and others introduced the classi-
fication in level-adjuvant and level-blind languages [12]. While the name
of this classification seems biased, it it useful to categorize the approaches.
Igamberdiev and others created a survey of Deep Modeling approaches
[117].

11.3.1. Refinements

The idea to use refinements for modeling is not new as in particular Back
and von Wright have written a whole book on refinement calculus with a
strong mathematical foundation based on lattices and set theory [17]. A
usage in a model-driven context has been proposed by Varró and Patarisza
in 2003 [208] or by Pons [165]. In contrast to our approach, they break with
existing modeling paradigms. Furthermore, they do not seem to enforce the
refinements through the type system.
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The specifications of UML and CMOF also know refinements, as redefinitions
and subsets. However, the actual semantics of these constructs is not detailed
in the specification [151].

In particular, UML defines three methods to refine associations: redefinition,
specialization and subsetting, though as mentioned, the semantics and espe-
cially their interplay are not clearly defined. In particular, these definitions
have some correctness problems in connection with other constraints such
as multiplicity constraints as shown by Maraee and Balaban [144, 143]. To
some degree, our approach tackles the necessity of the three of those: Our im-
plementation of refinements matches redefinition quite closely, but we show
that through the interplay of refinements of the same features, we can sup-
port many more modeling scenarios. We also consider the interconnection
of refinements with multiple inheritance.

There have been a couple of works to define the semantics of UML association
refinements through OCL constraints [155, 48, 80]. Closest to our approach,
Nieto et al. [155] propose a semantics for association redefinition and use
a similar notation. However, they also implement refinements through a
constraint of the more general reference and therefore do not inherit type-
system guarantees same as we do. Furthermore, their approach is limited in
that only a single reference may refine another reference.

Further, tools that use OCL to check the validity of models are usually
dynamic in the sense that they represent models and metamodels in memory.
Our approach uses a generative approach where code is generated from a
metamodel to represent models in memory. A generative approach usually
has a faster model API at the cost of higher maintenance efforts.

We are not aware of any solutions that considered UML redefinition in
combination with diamond-shaped inheritance and how these situations can
be resolved.

11.3.2. Level-adjuvant languages

Level-adjuvant approaches typically use a level-agnostic meta-metamodel
[14] describing themodel structure. Many of these approaches aremuchmore
mature than ours and already provide rich tool support [11, 54]. However, we
believe the case of composite components as in PCM is a case that inherently
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asks for support for level-crossing references as we presented in Chapter 8
which is typically not supported by level-adjuvant languages.

On the other hand, Rossini et al. have created a comparison where they
compare the level-adjuvant MetaDepth language with strict two-level mod-
eling for cloud-based applications [177]. We believe that their solution using
potencies is much simpler than a solution using structural decomposition
could be, mainly because the potencies allow attributes clear when designing
the first level to span multiple modeling levels more easily. Thus, there seems
to be a trade-off decision between our approach and level-adjuvant languages
when to apply which strategy.

11.3.3. Level-blind languages

In contrast to level-adjuvant languages, level-blind languages have no ex-
plicit notion of levels. Rather, they are helping constructs as the result of
stratification. As our approach shows, this still allows to cross the boundaries
of modeling levels. Atkinson et al. have presented some paradoxa for level-
blind languages [12] for which they regarded these approaches to be logically
inconsistent but because our approach requires an explicit mapping from
a clabject to the platform type system, paradox situations like the quoted
phenomena of being his own baby simply do not apply to our approach.

Our approach is not the first one to be level-less. Henderson, Clark and
Gonzalez-Perez have been working on an approach involving basically only
objects and slots [88, 46]. However, this approach is not compatible to
existing two-level metamodels such as Ecore and less convenient in terms of
a generated API.

11.3.4. Deep Modeling compatible with EMOF

We supported Deep Modeling directly through a small set of non-invasive
extensions of the EMOF modeling standard. However, there have been other
approaches with the common goal to reuse tooling for EMOF metamodels in
the past, typically the tooling provided in the EMF ecosystem.

The earliest we are aware of are Kainz and others [123] who propose a model
transformation from a model to a metamodel. A similar approach is used by
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Macías and others [141] that generate the metamodel from a higher level
instance model.

Kimura and others [124] have a slightly different approach as they essentially
designed an object-slot-value metamodel very similar to the approach from
Hendersen, Clark and Gonzales-Perez [88, 46].

11.3.5. Aspect-orientedmodeling

Refinements are only one possibility to simplify the modeling of recurring
patterns. Another possibility is to model the pattern once and very explicit,
including possible constraints that have to be implemented, and weave this
pattern implementation into a concrete use case using aspect-oriented mod-
eling techniques. An example is CORE122. However, once applied, concerns
have a fixed level of abstraction, while refinements allow to model multiple
levels of abstraction concurrently. In our scenario, this is important in the
case of bought components where their inner structure is not known.

122 Concern-Oriented REuse [181]
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In this chapter, important limitations of the presented approaches are listed
that will constitute future work. For this, the remainder of this chapter
mimics the contents of the thesis and each section discusses the limitations
and future work based on a given chapter.

12.1. Incremental Model Analyses

As explained in Section 10.1, there are many methods, particularly in queries,
that are very efficient to process in a batch implementation, but very inef-
ficient in an incremental setting. However, because the initialization time
of an incremental analysis is rather unimportant in many applications, this
opens space for automatic query optimization. In particular, we want to
review how the research results from the automatic optimization of database
queries can be used for the optimization of incremental queries.

Further, the validation of the incremental model analysis approach presented
in this thesis is currently done using rather simple analyses. This makes it
unclear what the maximum complexity of an analysis is such that incremen-
talization yields efficient results. Therefore, we want to apply the incremen-
talization system to larger case studies. The results that were achieved so
far look promising such that also more complex analyses may profit from
implicit incrementalization techniques.

So far, there is also hardly a validation against Self-adjusting Computation
or the Adapton system. This is partially due to the sparse availability of
these tools and fact that the most recent implementation of Adapton is based
on Rust that makes it hard to implement model-driven benchmarks for its
intentional lack of inheritance concepts. Here, a comparison is left open for
future work.
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Lastly, meanwhile our evaluation of the distributed computing approach
has let us gain a fair understanding of the performance characteristics of
this approach, it also suggested that the Train Benchmark was not a good
example of when to apply this approach, particularly because the analyses
and their predicates were rather simple. Therefore, we want to evaluate this
approach also in a larger case study and compare it with IncQuery-D.

The distributed version of incremental computation currently also suffers
from the fact that the models themselves cannot be distributed but must be
present in all silos. This also limits the maximum model size that can be
processed as each copy of the model has to fit into each nodes main memory.
However, distributing a model in NMF is complicated at the moment as NMF
has no support for a proxy mechanism such as present in EMF. Such a proxy
mechanism is also subject of future work.

12.2. Contraction of Dependency Graphs

The evaluation results performed in Section 9.3.5 only give a first (promising)
impression on what one is able to achieve using the automated optimization
of incremental queries, particularly once again because the query predicates
are rather simple. An evaluation of the dependency graph contraction in a
larger case study is left as future work.

A larger case study then likely raises the need for an improvement of the
genetic optimization strategy suggested in Section 5.5 and better heuristics
to prune the search space. The proposed genetic algorithm rather is a proof
of concept. Perhaps also other optimization techniques such as a Simplex
algorithm achieve better results.

12.3. Incremental Model Transformations

Currently, we assume in our implementation that a correspondence between
model elements once established will not change during the lifecycle of both
objects. This has an impact mainly on synchronization rule instantiation in
the presence of filter conditions.
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For example, if in the Families2Persons case study the gender of an object
should change, for example because in the family model, a member is moved
from a father reference to a mother reference, this is currently not supported
by NMF Synchronizations. The implementation actually does allow filters
to be set on synchronization rule instantiations, but the current engine
implementation throws an exception as soon as any change would cause the
correspondence relation to break or silently ignores the error. This issue can
of course be worked around by simply creating separate synchronization
rules but the lack of a generalized isomorphism may hamper the conciseness
in other parts of the model synchronization.

Though the implementation currently does not support these cases, this
is only a technical problem. The formalization is fine with this: The syn-
chronization blocks of the broken correspondence have to stop pushing
incremental updates and the new correspondence link has to be created.

To solve the technical problem, we plan to extend NMF with a generic replace
operator. This operator will also replace the Delete method as a deletion
simply is the same as a replacement by null. It is further required for proxy
elements such that the proxies can easily be replaced by the actual model
elements.

12.4. Meta-metamodel extensions

and Deep Modeling

The meta-metamodel extensions proposed in this thesis are only validated
using a comparison to existing modeling technologies but it yet unclear
how well users understand and accept these new metamodeling capabilities.
Furthermore, besides that these extensions make several model analyses
obsolete, it is interesting to see whether and how these extensions have an
influence on model analyses that are still required.

To reason on the acceptance of the modeling extension, we are planning to
create a modeling tool that allows to create models graphically. So far, all
models using these modeling extensions have been created programatically.
Such an editor would of course also allow to create metamodels without the
proposed meta-metamodel extensions, opening an opportunity to compare
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metamodels created by developers with or without these extensions. How-
ever, also a comparison with other modeling tools would be interesting.

After all, the EMOF standard only is a post-priori standardization of the MOF
subset implemented in EMF.
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This thesis presents several approaches to reduce the time from a model
change to an updated model analysis or transformation results with a min-
imal set of changes necessary for the developer. Rather, an incremental
evaluation strategy is deduced automatically from the batch specification
of the analysis or from the declarative specification of the model transfor-
mation. For the first time, this incremental derivation process is available
in a mainstream general-purpose programming language where good tool
support for the developer is available. Furthermore, the incrementalization
process is formally described in terms of category and this formalization
allows to prove important correctness properties.

The presented approaches optimize incremental execution using a dynamic
dependency graph in multiple ways: For the first time, the incrementalization
system is able to reuse explicit knowledge how commonly used functions
can be executed incrementally, it can contract the dynamic dependency
graph in the presence of complex domain logic and automatically decide for
which parts of an analysis a fine-grained incrementalization yields the best
performance.

Applied to a query framework, the explicit incrementalization shows very
good results in multiple case studies where the incremental execution is
often an order of magnitude faster than other incremental tools or multiple
orders of magnitude faster than repetitive batch execution. Furthermore, the
results indicate that our implicit approach reusing the C# query syntax for
developers to specify queries is very understandable.

The presented model transformation approach reuses this incrementalization
system to enable fully incremental model transformations. The correctness
and hippocraticness of the inconsistency repair operator used in these model
transformations is formally proven using the newly introduced algebraic
construct of synchronization blocks. As model transformations based on the
declarative part of the ATL transformation language – considerably the most
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common model transformation language in the community [203] – can be
transformed into unidirectional synchronization blocks, the transformation
language presented in the thesis is also widely applicable. In a community
benchmark for bidirectional model transformation languages, we could con-
firm the applicability and achieved the best incremental performance by
multiple orders of magnitude. Meanwhile, the implementation of this lan-
guage as an internal language in C# also means that a very good tool support
is available.

Further, the evaluation shows that the model transformation approach is very
concise. However, the analysis of the understandability suggests that the com-
prehension of model transformations created with NMF Synchronizations
requires an understanding of the declarative usage of the C# programming
language and the underlying theory of synchronization blocks.

Taken together, the presented approaches are able to execute a wide range of
model processing operations incrementally without or with very few changes
by the developers to the batch specification. However, this incrementalization
still has to remain in the borders of the metamodel.

To shift these borders without the need of radically new meta-metamodels,
we proposed several meta-metamodel extensions. These extensions make
multiple classes of model analyses obsolete because the analysis result can be
guaranteed by the underlying platform type system. In other cases, we could
show that much less changes have to be considered to update a given analysis
when models contain instantiation relationships between model elements.
Because the presented Deep Modeling approach integrates seamlessly with
traditional two-level modeling as it only requires a couple of non-invasive
modeling extensions, we are able to reuse our results on incremental model
analyses and transformations. This is a unique feature compared with any
other Deep Modeling approach.

Taken together, all these approaches make it possible to update analysis
and transformation results very efficiently once the input model of these
artifacts changes. In many cases, in particular in model transformations, the
time to obtain these updated results depends only on the size of the change
rather than the size of the model and is therefore much faster than repetitive
execution. Meanwhile, the understandability of these artifacts is not affected
as the incrementalization works implicitly.
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Appendix

Here, we list the questionnaires used in the case studies from the TTC
to obtain the scores of submitted solutions. All questionnaires have been
reformatted to fit the format of this thesis, but the questions have not been
changed123. The questionnaires depiected here also contain the original
description texts.

For the TTC 2015, the open peer review questionnaires are depicted, mean-
while for the TTC 2017, we depicted the Live Contest Questionnaire. As a
reason, the live questionnaire at the TTC 2015 only consisted of a single
question how the participants liked the tool, but the results of that question-
naire are not publicly available. For the TTC 2017, the questionnaire used for
the open peer reviews is a superset of the questionnaire for the live reviews
and contains additional questions that are not evaluated in the scope of this
thesis.

Transformation Tool Contest 2015 Java Refactoring

Open Peer Review Questionnaire

Reviewed solution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

123 The open peer review questionnaires are not anonymous and contain a question for the
author of the feedback. This question is omitted in the remainder as it is only relevant for
organizational purposes.
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Appendix

Solution Details

Only the first two questions are mandatory. The detailed questions thereafter
serve as further feedback in case the answer was accessible to the reviewer.

Does the solution fit to the challenge requirements? *

© Yes. It can be validated using ARTE.
© Yes, but it has to be validated manually.
© No, the solution structure is not compatible with the case.

Which version of the case has been solved? *

© Basic challenge
© Extended challenge
© None of these

Does the solution generate a Program Graph according to the case

description?

Yes © © No

Are the refactoring changes synchronized in an incremental fash-

ion?

Yes © © No

Does the solution generate refactored Java code?

Yes © © No
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Solution Quality Aspects

Only the first question (overall reviewer score from 1 to 15) is mandatory.
The detailed points thereafter are not necessary for submitting a review and
serve merely as additional feedback for the developer.

Reviewer Score

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comprehensibility

The question if a solution works with an understandable mechanism is of
high importance, especially in the scope of the Transformation Tool Contest
where such a comprehensible solution facilitates discussion and contributes
to a profitable event.

lowest © © © © © highest

Readability

In contrast to comprehensibility, this aspect refers to the outer appearance of
the tool - whether it has a nice and/or user-friendly interface, can be easily
operated, maybe even with custom-tailored commands or a DSL, ...

lowest © © © © © highest

Communication with the user

Although related to readability, this aspect refers to the quality, informa-
tiveness and level of detailedness of the actual messages given to the user.
In other words: Am I as user informed that everything went smoothly? In
case of some failure or malfunction, am I thoroughly informed what actually
went wrong?

lowest © © © © © highest

Conciseness (if applicable) How many LOC does the solution have?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extensions

Extension score (if applicable, 1-15)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Score motivation If there have been some extension points
awarded, please give a short textual motivation of your score.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Further comments Here, you can give us feedback about your answers
and/or the evaluation procedure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Transformation Tool Contest 2015 Train Benchmark

Open Peer Review Questionnaire

Reviewed solution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Completeness & Correctness

The goal of the correctness check is to determine if the different model
query and transformation tasks are correctly and fully implemented in the
submitted solutions. Each task and extension task is scored independently
0–3 points by the following rules:

• 0 points: The task is not solved.

• 1–2 points: The task is partially solved, the solution provides the
subset or the superset of the expected results.

• 3 points: The task is completely and correctly solved.

Minus 1 point if only the query is implemented, but the transformation is
not.

Task 1: PosLength

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 2: SwitchSensor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 3: SwitchSet

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Task 1: RouteSensor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Task 2: SemaphoreNeighbor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Conciseness

The validation rules are frequently changed and extended, therefore it is
important to be able to define queries and transformations in a concise
manner. These properties are scored based on the following rules:

• 0 points: The task is not solved.

• 1 point: The task is solved, but the solution is not significantly more
concise than it would be in a general-purpose imperative language
(e.g. Java), or the task is partially solved and the result set needs
additional processing.

• 2 points: The task is solved, the query and the transformation is
defined in a declarative, visual or other query language, but the
specification is hard to formulate.

• 3 points: The solution is compact, the query and the transformation
are defined in a concise manner.

Minus 1 point if only either the query or the transformation is imple-
mented.

Task 1: PosLength

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 2: SwitchSensor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 3: SwitchSet

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Task 1: RouteSensor
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Task 2: SemaphoreNeighbor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Readability

The readability and descriptiveness of each query and transformation is
scored with respect to a model validation use case. The score represents
how well model queries are used as model constraints, and how well repair
operations can be expressed by model transformations. The score is given
based on the following rules:

• 0 points: The task is not solved.

• 1 point: The task is solved, but the solution is not significantly more
readable than it would be in a general-purpose imperative language
(e.g. Java), or the task is just partially solved. For example, a typical
EMF validator should get 1 point.

• 2 points: The task is solved, the query and the transformation
follows the description of the constraint and repair rule, but it is
difficult to comprehend the meaning of the solution. For example, a
foreign key constraint checked by a query formulated in SQL should
get 2 points.

• 3 points: The solution could be presented in the documentation of
the modeling domain, and it is easier to comprehend than a textual
description in natural language. For example, a solution similar to the
graphical notation used in this paper should get 3 points.

Minus 1 point if the language is only able to express either the constraint
(e.g. OCL) or the repair operation.

Task 1: PosLength
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 2: SwitchSensor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Task 3: SwitchSet

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Task 1: RouteSensor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Extension Task 2: SemaphoreNeighbor

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Usability

SHARE image

Did the SHARE solution work as expected?

© Yes
© No
© Other

Running the solution

How easy did you find to run the solution? Did the documentation cover the
required steps?
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Setting up the solution

If you set up the solution on a local system, please share your experience.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Additional Feedback

You may provide some additional feedback on the reviewed solution that did
not fit into the questions above.

Strong points

Highlight some strong points of the solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Weaknesses

Highlight some weaknesses of the solution (if applicable).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

445

Appendix



Further comments

You may provide further comments for the authors to improve their tool or
solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TTC 2017 Smart Grid Live Evaluation Questionnaire

The goal of this questionnaire is to evaluate quality attributes of the pre-
sented solutions that are not well captured by metrics. The results of this
questionnaire is intended to be used for further research.

Which solution are you reviewing?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

How do you rate the overall quality of the solution?

Very poor © © © © © Very good

How do you rate the understandability of the Outage Detection

task?

The solution is not
understandable at all

© © © © ©
The solution is very
understandable

How do you rate the understandability of the Outage Prevention

task?

The solution is not
understandable

© © © © ©
The solution is very
understandable
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How confident are you about your evaluation?

Not confident © © © © © Expert

How did you like the solution presentation?

very poor © © © © © very good

What did you like about the solution?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What did you dislike about the solution?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Do you have other comments about the solution?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thanks for your feedback!

TTC 2017 Families to Persons Live Evaluation

Questionnaire

The goal of this questionnaire is to evaluate quality attributes of the pre-
sented solutions that are not well captured by metrics. The results of this
questionnaire is intended to be used for further research.

Which solution are you reviewing?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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How do you rate the overall quality of the solution?

very poor © © © © © very good

How do you rate the understandability of the solution?

not suitable © © © © © very suitable

How confident are you about your evaluation?

Not confident © © © © © Expert

How did you like the solution presentation?

very poor © © © © © very good

What did you like about the solution?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

What did you dislike about the solution?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Do you have other comments about the solution?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thanks for your feedback!
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Acronyms

ADL Architecture Description Language.

API Application Programming Interface.

AST Abstract Syntax Tree.

ATL Atlas Transformation Language.

CMOF Complete MOF.

DDG Dynamic Dependency Graph.

DSL Domain Specific Language.

EMF Eclipse Modeling Framework.

EMOF Essential Meta Object Facility.

HOT Higher-order Transformation.

IDE Integrated Development Environment.

LHS Left Hand Side.

LINQ Language Integrated Query.

LSP Liskov’ Substitution Principle.

M2M Model-to-Model.

M2T Model-to-Text.
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Acronyms

MDE Model-driven engineering.

MOF Meta Object Facility.

MTC Mutable Type Category.

MTL Model transformation language.

NMF .NET Modeling Framework.

NTL NMF Transformations Language.

OCL Object Constraint Language.

OMG Object Management Group.

PCM Palladio Component Model.

PG Program Graph.

QVT Query View Transformation.

RHS Right Hand Side.

SQO Standard Query Operator.

TGG Triple Graph Grammar.

TTC Transformation Tool Contest.

UML Universal Modeling Language.

URI Unique Resource Identifier.

XMI XML Metadata Interchange.
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Glossary

NMF EXPRESSIONS NMF Expressions is the implementation of an incremen-
lization system used in NMF (cf. Chapter 4).. 79, 91, 118, 242, 245, 246,
250, 261, 262, 275, 290, 292, 293, 296, 328, 340, 341, 374, 391, 392, 394

NMF SYNCHRONIZATIONS NMF Synchronizations is the implementation of
synchronization blocks used in NMF (cf. Chapter III).. xxv, 164, 166,
167, 170–172, 233, 277–283, 285, 286, 290, 291, 293–296, 298, 299, 301–
304, 306, 307, 311–313, 315, 316, 327–329, 339, 341–343, 349, 350, 375,
393, 394, 396, 405, 408

NMF TRANSFORMATIONS NMF Transformations is the model transforma-
tion framework that is part of NMF [92].. 159, 164, 167

EMOFLON eMoflon is an implementation of TGGs [8].. 164, 166–168, 170,
171, 278, 279, 281, 282, 308, 315, 317, 329, 331, 334, 335, 337, 343, 344,
346, 350, 374, 393

API The Application Programming Interface (API) of a software artifact is
the set of publicly visible methods through which clients can use and
extend that artifact.. 37, 87, 90, 92, 95, 98, 108, 154, 218, 224, 226–228,
230, 357, 360, 364, 389, 391, 400, 401

AST The Abstract Syntax Tree (AST) of a method is the representation of
the methods source code in a tree structure.. 123

ATL The Atlas Transformation Language is a model transformation language
initially developed by Frederic Jouault [121].. 163, 233, 236, 240, 266,
268, 273, 276, 282–291, 294–299, 301, 303–305, 307, 336, 370, 374, 375,
394, 398, 399

CMOF The Complete Meta-Object Facility (CMOF) refers to the MOF stan-
dard [151] in its complete form, as opposed to EMOF that refers to a
reduced subset.. 16, 17, 28, 32, 176, 400
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Glossary

DDG A Dynamic Dependency Graph (DDG), also known as Incremental
Dependency Graph, is a graph that tracks the dependencies of a given
computation in order to decide when the computation must be invali-
dated.. 6, 14, 91–100, 108, 110, 118, 119, 122, 123, 125–127, 129, 201,
228, 229, 250, 252, 253, 261, 263, 266, 273, 274, 331, 343, 361, 366, 367,
378, 388, 389

DeepPCM DeepPCM is an adaption of PCM that follows deep modeling
principles described in Chapter 8.. xix, xxv, 204, 214–217, 219–226,
229

DSL A Domain-specific Language (DSL, [66]) is a small language usually
developed for a purpose.. 8, 9, 29, 93, 133, 152, 165, 171, 350, 396, 398

Ecore Ecore is the meta-metamodel used in EMF. It is an implementation of
EMOF.. 8, 31, 32, 139, 176, 184, 186, 201, 270, 351

EMF The Eclipse Modeling Framework (EMF) is a widely used framework
in the model-driven community to represent models in memory.. 28,
31, 187, 369, 391, 401, 404, 406

EMFTVM The EMF Transformation VM (EMFTVM) is a virtual machine
specifically developed to provide a uniform and fast platform for
model transformations using EMF to access models [212]. 301, 304,
307

EMOF The Essential Meta Object Facility (EMOF) standard is a subset of the
MOF standard implemented by Ecore.. 5, 8, 16, 17, 28, 73, 176, 194, 203,
364, 401, 406

FlowM2M Amodel transformation language based on explicit data flow. The
language was specifically developed for the TTC 2016 Live case by
Antonio Garcia-Dominguez and others.. xix, 266–270

HOT A Higher-order Transformation (HOT) is a model transformation that
either takes model transformations as input, produces model transfor-
mations as output or a combination of both [207].. 283, 398, 399

IDE An Integrated Development Environment (IDE) is a program that pro-
vides rich tools to develop software.. 96
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Glossary

Incerator Incerator is a command-line tool as part of NMF that allows to
automatically optimize the granularity of the incrementalization for a
given model analysis, input model, change sequence and the target
machine (cf. Chapter 5).. 110, 127–129, 241, 242, 253, 255, 256, 258,
261, 266, 372, 383

JaMoPP The Java Printer and Parser (JaMoPP) is a framework to parse Java
code in an EMF model and on the contrary print this model back to
Java code [87]. 311–314, 316

LINQ Language Integrated Query (LINQ) is a framework on the .NET plat-
form that allows users to specify queries directly in C# and execute
them on arbitrary targets (as long as there is a provider for this target).
This can include object sources, but also relational databases. As LINQ
sticks to the SQO, several languages offer dedicated support.. 246, 349,
379, 380

LSP The Liskov’ Substitution Principle (LSP) is a principle from behavioral
subtyping introduced by Barbara Liskov [140]. It states that any
property provable about a type must also be provable on each of its
subtypes.. 183

MDE Model-driven Engineering (MDE) is an engineering approach that
puts formal models described by metamodels at the center of any
development.. 27, 177, 300

MOF The Meta Object Facility is a standardized modeling foundation.. 8, 16,
28, 59, 389, 406

MTC A Mutable Type Category (MTC) is a type system formalization based
on category theory. It is introduced in Section 3.. 58, 59, 61–63, 65, 69,
72, 74, 80, 82, 83, 85, 111, 180

MTL A Model Transformation Language (MTL) is a DSL specialized on the
specification of model transformations.. 29

NMeta NMeta is the meta-metamodel used in NMF.. xviii, 27, 31, 32, 139,
177, 184–187, 189, 192, 194–197, 213, 217, 219, 270, 311, 357, 359, 364

NMF The .NET Modeling Framework (NMF, [96]) is an open-source mod-
eling framework implemented on the .NET platform to which the
implementations of this dissertations contribute to.. xxv, xxvi, 17,
22, 31, 32, 92, 96, 99, 110, 127, 129, 154, 155, 187, 189, 224, 227, 239,
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240, 242–245, 247–253, 255, 263, 265–267, 270–275, 277, 278, 287, 289,
291, 293, 296, 299, 308, 310, 311, 315–317, 326, 328, 329, 331, 334–336,
338–340, 342–344, 347–350, 354, 355, 359–362, 364, 369–372, 377–379,
404, 405

NTL The model transformation language used in NMF [92]. Unlike NMF
Synchronizations, it is only used for unidirectional, non-incremental
transformations. The largest NTL transformation that exist is the code
generator transformation used to generate model code.. 31, 156, 157,
160, 161, 163, 277–281, 313

OCL The Object Constraint Language (OCL) is a standard by the OMG
originally built to express constraints. However, it has also been used
for model transformation, either through ATL [121] or directly.. 7, 28,
43, 176, 178, 184, 186, 195, 197, 201, 206, 223, 225, 284, 292, 293, 361,
391, 400

OMG The Object Management Group (OMG) is a standardization entity.. 28

PCM The Palladio Component Model (PCM, [21]) is an Architecture Descrip-
tion Language (ADL) used to predict several quality attributes of a
software system at design time.. 21, 40–43, 203–206, 208, 209, 214, 215,
217, 218, 222–225, 227, 230

SQO The Standard Query Operators (SQOs) are a set of standardized API
methods for monads to which several languages on the .NET platform
offer dedicated syntax support. An example is the language C# where
the syntax support is called query syntax. The most prominent SQO
methods are the higher-order methods select and where that usually
perform mapping and filter tasks.. 37, 38, 70, 79, 90, 99, 103, 104, 107,
241, 245, 291

TGG Triple Graph Grammars (TGGs) are a formal approach to describe bidi-
rectional model transformations. Several transformation languages
implement TGGs and are often graphical.. 7, 163, 164, 166–168, 170,
172, 282, 393, 395, 397, 398

TTC The Transformation Tool Contest (TTC)124 is an academic contest with
the goal to compare model transformation tools through solutions to
individual cases.. 20, 22, 156, 158, 235, 236, 238–240, 242, 247, 253, 266,

124 http://www.transformation-tool-contest.eu
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269, 275, 308, 310, 315, 317, 326, 329, 331, 334–336, 338, 343, 347–349,
369, 371–374, 378, 379, 437

UML The Universal Modeling Language (UML) is a standard by the OMG
to define the syntax, notation and semantics of modeling elements to
describe software systems. For the notation, UML defines a set of 14
diagrams.. 32, 176, 186, 194, 196, 199, 212, 214, 234, 400

URI A Unique Resource Identifier (URI) is an identifier for any kind of
resource independent of its physical location. The format of a URI is
standardized by the W3C.. 31, 32, 218

VIATRA Query VIATRA Query [205] (formerly named EMF-IncQuery) is
a framework for incremental graph pattern matching based on the
incremental pattern matching algorithm by Bergmann [26].. 240–242,
247–253, 265, 370, 374, 375, 391, 398

XMI The XML Metadata Interchange (XMI) OMG standard defines how MOF
models should be serialized to XML [220].. 28, 31, 32
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When models of a system change, any analyses based on these models have to 
be invalidated and thus have to be reevaluated again in order for the results to 
stay meaningful. In many cases, the time to get updated analysis results is criti-
cal. However, as most often only small parts of the model change, large parts 
of this reevaluation could be saved by using previous results but such an incre-
mental execution is barely done in practice, as it is non-trivial and error-prone.

This work proposes an approach that allows implicit, formally justifi ed, auto-
matically tuned incrementalization of model analyses and a new formalism how 
this incrementalization system can be used to empower incremental, uni- or 
bidirectional model transformations in a hippocratic manner. The advantages of 
these approaches regarding performance are validated using seven case studies. 

An extension of the modeling language can help further simplifying model 
analyses, thereby also improving their performance characteristics.
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