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Abstract

Mobile robot teleoperation has been widely employed when it is impractical or infeasible
for humans to be present, yet still requires human judgment and decision-making skills.
However, it is frustrating and stressful for human beings to merely simply teleoperate a robot
without assistance due to time delay and absence of Situational Awareness (SA). On the other
hand, fully autonomous robots, despite recent achievements, cannot yet execute tasks alone
based on the current perception and control models. Consequently, both the human and the
robot have to remain in the control loop, simultaneously contributing intelligence to the task
executions, i.e. the human has to share autonomy with the robot during operation. But the
challenge is how to best coordinate the two sources of intelligence from the human and the
robot, to guarantee a safe and efficient task execution in remote.

Therefore, a novel strategy is proposed in this thesis. It models the user intention as a
contextual task to complete an action primitive, and provides appropriate motion assistance
to the human operator upon the task recognition. In this way, the robot copes intelligently
with the on-going tasks based on the contextual information, relieves the workload of the
human operator and improves the task performance. To implement this strategy and account
for the uncertainties in acquiring and processing environment information and user input,
i.e. the contextual information, a probabilistic shared autonomy framework is presented
to infer the contextual task the human operator performs with uncertainty measurements,
and appropriately assist the human operator with the task execution according to these
measurements. Since the way the human operator performs a task is implicit, it is non-trivial
to model the motion pattern of the task process manually, thus a set of data-driven approaches
are adopted to derive the policies of various task executions from human demonstrations, to
adapt to the needs of the human operator in an intuitive way over long time. The feasibility
and scalability of the proposed framework and techniques have been extensively evaluated
in a variety of experiments both in simulation and on real mobile robot. With the proposed
approaches, the teleoperator can be actively and appropriately assisted by increasing the
cognition capability and the autonomy flexibility of the robot.





Kurzfassung

Die Teleoperation vom mobilen Roboter wird in großem Umfang eingesetzt, wenn es für
Mensch unpraktisch oder undurchführbar ist, anwesend zu sein, aber die Entscheidung
von Mensch wird dennoch verlangt. Es ist für Mensch stressig und fehleranfällig wegen
Zeitverzögerung und Abwesenheit des Situationsbewusstseins, ohne Unterstützung den
Roboter zu steuern einerseits, andererseits kann der völlig autonome Roboter, trotz jüngsten
Errungenschaften, noch keine Aufgabe basiert auf die aktuellen Modelle der Wahrnehmung
und Steuerung unabhängig ausführen. Deswegen müssen beide der Mensch und der Roboter
in der Regelschleife bleiben, um gleichzeitig Intelligenz zur Durchführung von Aufgaben
beizutragen. Das bedeut, dass der Mensch die Autonomie mit dem Roboter während des
Betriebes zusammenhaben sollte. Allerdings besteht die Herausforderung darin, die beiden
Quellen der Intelligenz vom Mensch und dem Roboter am besten zu koordinieren, um eine
sichere und effiziente Aufgabenausführung in der Fernbedienung zu gewährleisten.

Daher wird in dieser Arbeit eine neuartige Strategie vorgeschlagen. Sie modelliert die
Benutzerabsicht als eine kontextuelle Aufgabe, um eine Aktionsprimitive zu vervollständi-
gen, und stellt dem Bediener eine angemessene Bewegungshilfe bei der Erkennung der
Aufgabe zur Verfügung. Auf diese Weise bewältigt der Roboter intelligent mit den laufenden
Aufgaben auf der Grundlage der kontextuellen Informationen, entlastet die Arbeitsbelas-
tung des Bedieners und verbessert die Aufgabenleistung. Um diese Strategie umzusetzen
und die Unsicherheiten bei der Erfassung und Verarbeitung von Umgebungsinformationen
und Benutzereingaben (i.e. der Kontextinformationen) zu berücksichtigen, wird ein prob-
abilistischer Rahmen von Shared Autonomy eingeführt, um die kontextuelle Aufgabe mit
Unsicherheitsmessungen zu erkennen, die der Bediener mit dem Roboter durchführt, und
dem Bediener die angemesse Unterstützung der Aufgabenausführung nach diesen Messun-
gen anzubieten. Da die Weise, wie der Bediener eine Aufgabe ausführt, implizit ist, ist es
nicht trivial, das Bewegungsmuster der Aufgabenausführung manuell zu modellieren, so
dass eine Reihe von der datengesteuerten Ansätzen verwendet wird, um das Muster der
verschiedenen Aufgabenausführungen von menschlichen Demonstrationen abzuleiten, sich
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an die Bedürfnisse des Bedieners in einer intuitiven Weise über lange Zeit anzupassen. Die
Praxistauglichkeit und Skalierbarkeit der vorgeschlagenen Ansätze wird durch umfangreiche
Experimente sowohl in der Simulation als auch auf dem realen Roboter demonstriert. Mit
den vorgeschlagenen Ansätzen kann der Bediener aktiv und angemessen unterstützt werden,
indem die Kognitionsfähigkeit und Autonomieflexibilität des Roboters zu erhöhen.
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Chapter 1

Introduction

1.1 Motivation

Teleoperation is “to operate a vehicle or a system over a distance” [54], which usually
comprises a robotic technology where a human operator controls a robot in remote. Tele-
operation has been widely applied to situations where the onsite operation of the human is
infeasible, yet requiring human judgment and decision-making skills. Typical examples are
the handling of nuclear materials, control of small models, space and underwater exploration,
and telepresense for social needs in domestic scenarios.

Due to time delay and absence of SA [54], it is grueling for the human operator to simply
teleoperate the robot without any assistance. On the other hand, fully autonomous robot
cannot yet carry out complex tasks alone based on the current perception and control models
though a lot of efforts have been made [119]. Even when autonomous operation is possible in
some situations, there are operators preferring to be in the loop to quickly obtain and interpret
the information gathered by the robot [130]. Therefore, in spite of recent advances in robot
autonomy, teleoperation remains an indispensable modality for mobile robot operation.

Therefore, a teleoperation system is supposed to provide the human operator with com-
prehensive information regarding both surrounding and state of the robot, including layout
information of environments, location and status of physical components of the robot by
improving the SA during teleoperation. Moreover, to relieve the workload of the human
operator and efficiently improve the remote task performance, it is ideal during the teleop-
eration that the robot copes intelligently with the on-going tasks utilizing the contextual
information, i.e. the user inputs and the environmental perceptions. In [75], it is demonstrated
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that putting the human and the automaton in a collaborative control loop improves the task
performance: the human is able to focus on a given task while the automaton takes care of
routine tasks or disturbances that would otherwise distract the human away from the on-going
task. The close coupling of user and robot in actually controlling the robot facilitates the
user to perceive the robot actions while allowing the human operators to contribute their
intentions simultaneously. Although this is a promising concept, the major challenge is how
to best coordinate the two sources of intelligence from the human and the robot, to guarantee
a safe and efficient task execution in remote. This lies at the core of the research focus in the
field of shared autonomy [170].

In the following sections, the key terms involved in this thesis and the research problem
this thesis addresses will be firstly explained. An overview of the proposed concept will then
be presented.

1.2 Problem Statement

This thesis aims to realize a novel Context-aware Adaptive Shared Autonomy system to assist
mobile robot teleoperation. To help understand such core concept, and propose the research
problem this thesis addresses, the involved key terms are explained in this section.

Term “Shared Autonomy”. Autonomy refers to the capability of reasoning about and
mapping inputs from the environment into a variety of actions [74]. Considering teleoperation
as a control process, Shared Autonomy means that both the human operator and the robot
exert actions to influence the control process during teleoperation by reasoning about the
environment and making decisions to fulfil certain goals of the process.

Depending on the authority of the autonomy source during the process, there are three
different perspectives when designing a shared autonomy system, i.e. human-centered
[14], robot-centered [151], and equal-authority (i.e. multi-agent system [51]). Considering
the highly unstructured nature of many teleoperation missions, which till now still require
the human operator to always remain in the control loop to provide cognitive judgments
and decision-makings with the highest authority, a human-centered perspective is taken to
implement the shared autonomy system to assist mobile robot teleoperation in this thesis.

Term “Adaptive”. By taking a human-centered perspective to design shared autonomy
system in this thesis, being Adaptive refers to that the robot is able to appropriately adapt its
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behaviors to fulfil the needs of the human operator during task executions, in either short
or long term. Therefore, the robot is supposed to assist the human operator by seamlessly
switching the autonomy authority in a task-appropriate way during operation (i.e. being
adaptive in short term). Moreover, the robot should not be limited on performing certain
autonomous tasks during its life of deployment, rather even a non-professional user can
customize such robot system in an intuitive way (i.e. being adaptive in long term). This holds
true especially considering the trend that robotic systems are becoming ubiquitous in human
society.

Term “Context”. In teleoperation, from the perspective of robot, Context refers to certain
situation in remote, which is associated with a set of environment information, including its
structure and semantic elements, together with user inputs to exert actions on the hardware of
the robotic system. Such combined contextual information vaguely indicates the operational
intentions of the human user, and which semantic element is relevant to the intention of the
human operator during the task process, since it is assumed that the human operator makes
action decisions based on both the reasoning of the environment information and the task
requirements in mind.

Term “Context-aware”. With the explanation of the term context above, Context-aware
means that the robot is able to capture and understand the situation from gathering the
contextual information from its sensors, i.e. the environment perceptions and the user inputs,
thus the the robot is able to further provide appropriate assistance to the intentional task
the human operator performs, i.e. the robot is ideally supposed to assist “what the human
operator intends to do”, instead of “what the human operator is doing”. This is critical for
an efficient remote task execution when the robot assists the human operator in a shared
autonomy system.

With the above defined terms, the research problem, where this thesis addresses, can be
precisely formulated as below:

While both human and robot remain in the control loop, how can the robot appro-
priately assist the human operator with the teleoperation for efficient task executions,
and adapt its behaviors to fulfil the needs of the human operator during task process,
in both short and long terms, by capturing and understanding contextual situations in
remote?

To answer this question, a set of approaches are developed in this thesis to interpret the
contextual situation and provide adaptive context-aware assistance to promote the perfor-
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mance of mobile robot teleoperation in unstructured indoor scenarios. Their concepts will be
briefly presented in the following section.

1.3 Concept Overview

As inspired by the fact that human beings are capable of independently coordinating their
joint actions with each other by inferring the others’ action intentions [199], an appealing
strategy is to recognize the user intention [1, 206, 24, 82]. With this strategy, the robot
estimates the user intention with raw inputs and selects its action to optimize the desired task.
This strategy is promising because it decouples the overall shared autonomy problem into
two sub-problems: intention recognition and motion assistance [82]. With the prediction of
the user intention during operation, this strategy can also improve the task performance even
in the presence of time delays [21].

According to this strategy, this thesis focuses on recognizing the intentional task of the
human operator with the contextual information, i.e. to infer the contextual task the human
operator intends to perform, and provide assistance to the estimated contextual task. More
specifically, the notion task refers to a metric representation of the user intention for a robot
to complete an action primitive, i.e. a sequence of time-instant actuator movements lasting
for a short period to achieve a target. Therefore, a contextual task refers to an action primitive
associated with certain semantic component of the environment, e.g. to operate the robot
to cross a nearby doorway, or control it to inspect a close object in the environment, etc.
Modeling the user intention as contextual task to complete an action primitive is based on
the following considerations.

A sequence of action primitives can constitute a long time complex task on the higher
level. Consequently, recognizing action primitives performed by the human operator lays the
foundation to infer a complex task over a long period the human operator executes, which is
computationally more efficient than directly modeling and estimating a long time complex
task on the high level. Additionally, when the human operator needs immediate assistance
locally, it is more effective to use action primitives to represent such need than a complex
task model across a long time. Last but not least, action primitives are more flexible and
meaningful in describing the human behaviors than reactive actions on the lower level, which
mostly pertains to either obstacle avoidance or collision stopping.
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Fig. 1.1 Overall architecture of the proposed contextual-task aware shared autonomy system
to assist mobile robot teleoperation. The concept of the CTRM is illustrated besides: a human
operator teleoperates a mobile robot with joystick for task execution. The robot perceives the
environment with its sensors, such as 2D laser scanners, and receives user inputs. The CTRM
is responsible for recognizing the on-going contextual tasks the human operator performs
with user inputs and environment perceptions. A contextual task refers to an action primitive
the human operator executes via the robot, and is associated with a semantic component of
the environment. Examples of it are Doorway Crossing, Object Inspection, Wall Following
and Object Bypass, as shown at the bottom from left to right, and the arrows denote the
movement directions of the robot.

The overall architecture of the shared autonomy system proposed in this thesis is depicted
in Fig. 1.1. It is assumed that, the human operator teleoperates a mobile robot with a
joystick-like device, and performs intentional tasks to complete action primitives based
on the environment perceptions, yet the human operator does not communicate his/her
task intentions explicitly to the robot during operation. Being abstracted from specific
robotic hardware configurations, the proposed shared autonomy system receives user inputs
and environment observations from the robotic sensors, and reasons about the contextual
information to make inference regarding the task the human operator intends to execute,
i.e. the Contextual Task Recognition Module (CTRM) shown in the architecture figure.
This module is the cornerstone of the proposed shared autonomy system, and its concept
is illustrated besides. Being embedded into certain robotic motion controller, the proposed
system provides motion assistance to the human operator by blending the user input and
the autonomous motion commands generated by the motion controller to safely execute the
estimated task, i.e. the Motion Command Arbitration Module (MCAM) shown in Fig. 1.1.

Although this is an appealing strategy, inferring the contextual task the human operator
performs is challenging. Firstly, the way the human operator executes a contextual task to
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complete an action primitive is implicit, so it is non-trivial to manually derive a general
and flexible computational model to describe various task processes. Secondly, there can
exist multiple targets at the same time in real applications, each of which corresponds to a
hypothesis to interpret the intentional task of the human operator, e.g. there could be multiple
traversable doorways nearby in an indoor scenario where the robot is deployed, thus the
approach to recognize contextual task should consider such situation, and be able to find
out the correct target and associated task type1 from multiple hypotheses. Last but not least,
the observations of the robot, including environment perceptions and user inputs, which
are obtained from the on-board sensors of the robot, are decorated by noise. Therefore, the
contextual task estimation method is supposed to account for such uncertainties, when it
uses the data to make inference. In this thesis, a set of innovative solutions are proposed to
address these challenges, which will be detailed in the following section as the scientific
contributions.

1.4 Contributions

The contributions of this thesis are as follows:

Because of the uncertainties in contextual task recognition, a probabilistic shared auton-
omy framework is proposed to assist mobile robot teleoperation. It infers the intentional
task of the human operator with the contextual information in a probabilistic way, and
provides corresponding motion assistance to the human operator based on the probability of
the estimated task. In this way, the level of autonomy is seamlessly switched between the
manual control (when the probability of the task recognition is low) and the autonomous
control (when the probability of the task recognition is high) in a task-appropriate way during
operation. To build the models for describing various task executions, a set of data-driven
approaches are employed to learn how the human operator performs contextual tasks from
demonstrations, in order to render the proposed framework adaptive to the needs of the
human operator in the long run in an intuitive way. They constitute the major parts of the
scientific contributions of this thesis, and are presented respectively in below.

1In this thesis, a task is an instance of the corresponding task type, while a task type represents a group of
motions sharing similar patterns associated with certain semantic target. For example, “doorway crossing” is a
task type, while “cross the doorway in front” is a task of this type. Therefore, a task type can have multiple
instances due to the existence of multiple semantic targets in a scenario where the robot is deployed.
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In the first approach, Gaussian Mixture Regression (GMR) models are employed to learn
the motion patterns of various task types from human demonstrations in a batch way, where
each task type to be estimated is described with a set of simple and salient task features.
To incorporate the uncertainty of estimating multiple contextual tasks during operation, a
Recursive Bayesian Filter (RBF) is adopted as the base framework, which is combined with
the learned GMR models to stably and smoothly infer the most probable operational intention
of the human operator among multiple candidates over time. Furthermore, the system is
extended to learn the motion patterns online and incrementally from the demonstrations
by proposing a fast online and incremental contextual task learning approach. With the
incrementally incorporated demonstration dataset of each task type, a state-of-art Fast
Approximate Nearest Neighbours (FANN) search algorithm is employed to retrieve a small
training dataset closest to the current robot state, and a GMR model with a very few number of
the mixture components is built online and combined with the RBF to estimate the likelihoods
of the corresponding candidates.

In the second approach, contextual task recognition is formulated as classification prob-
lem. Envisioning a life-long active learning scenario, Gaussian Process (GP) regression
model is used to learn from demonstrations and classify multiple contextual task types with
the corresponding task features. Using Gaussian regression model results into closed-form
solutions of the posterior predictive distribution and the model evidence respectively. By
maximizing the closed-form model evidence, the hyper-parameters of the model can be
optimized. In comparison with other state-of-art classifiers, such as Support Vector Machine
(SVM), probably the most popular approach on this topic, GP Classifier possesses a superior
introspective capability by expressing high uncertainty when facing previously unknown
patterns due to the predictive mean and variance obtained from the posterior predictive
distribution. This property is significant for mission critical decision making in the long run,
such as motion assistance by task recognition during mobile robot teleoperation in this thesis.
To keep the model sparse to limit the amount of storage and computation required, full GP
is approximated with a state-of-art Sparse Online Gaussian Process (SOGP) algorithm, to
maintain scalability to large datasets without compromising classification performance.

The last approach aims to relieve the workload of manually labeling the demonstration
data into task types for robot to learn. To achieve this, an unsupervised contextual task
learning and recognition approach is proposed, consisting of two phases. First, Dirichlet
Process Gaussian Mixture Model (DPGMM) is applied to cluster the human motion patterns
performing multiple contextual task types from unannotated demonstrations, where the
number of possible motion modes is inferred from the data itself instead of being manually
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specified a priori or determined through model selection. Post clustering, the SOGP classifier
is employed to classify the learned motion patterns during operation, due to its superior
introspective capability over other state-of-art classifiers and scalability to large datasets. By
applying the proposed fast online GMR approach to the classified motion cluster with the
recognized contextual information, it is able to predict local trajectory the human operator
intends to follow in the short term to perform corresponding contextual task in a data-driven
manner. This is critical, since it links the task recognition part and the motion assistance
part of the proposed shared autonomy framework: the inferred trajectory can be used as the
reference model by the state-of-art mobile robot motion controller to generate feasible motion
commands, which are blended with the user inputs according to the estimation confidence, to
assist the human operator to carry out the intentional tasks actively and appropriately.

The final contribution in this thesis is that the proposed framework is extensively eval-
uated and validated with a variety of experiments both in simulation and on real robot in
various indoor scenarios. The results demonstrate the scalability and effectiveness of the
proposed shared autonomy framework in learning, recognizing and utilizing the motion pat-
tern knowledge of the human operator in data-driven manners from human demonstrations.
A carefully controlled and repeatable user study is conducted and verifies with rigorous
statistical analysis that, the proposed system outperforms the baseline control modes in safely
and efficiently assisting the human operator to execute remote tasks both in terms of objective
and subjective metrics. This result further confirms the merit of the contributions of this
thesis.

1.5 Generalization to Other Applications

Although the subject of this thesis is to assist mobile robot teleoperation, the proposed
framework generalizes to assist the teleoperation of a broad range of robot systems, e.g.
telepresense robot, undersea vehicle and flying robot etc., considering that it is abstracted
from specific robotic hardware configurations, and is data-driven. Modification is only
necessary in very specific parts of the architecture, such as in the interfaces between human
and robot, or in the set of available robot actions.

The proposed approach can also be interesting for sharing autonomy between human
and robot locally, such as the driving of a semi-autonomous vehicle on road or a truck for
construction, and the operation of an intelligent wheelchair in indoor scenarios. In these
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situations, different kinds of mobile robots are operated in either semi-structured (on-road
vehicle) or unstructured environments. Under the help of the robot, the human operator
can either avoid dangerous maneuvers resulting from fatigue over long driving or overcome
handicaps, and complete intentional actions efficiently. Moreover, in such situations, there
still exists context influencing the human operational actions, and the associated motion
patterns can be extracted from the environment observations and user inputs, and utilized by
the robot to provide corresponding assistance to the human user appropriately. This is the
strategy explicitly adopted and implemented in the proposed framework of this thesis. In
assisting the driving of a semi-autonomous vehicle, the use of a joystick versus a steering
wheel and gas pedal is considered to be a difference in user interface, yet this is abstracted
away from the rest of the framework. Furthermore, in construction equipment, the widely
use of joystick simplifies the integration of the proposed framework with real robots.

1.6 Document Outline

This thesis is organized as follows: Chapter 2 presents an overview of related works and
discusses the pros and cons of different approaches. Existing research gaps are indicated
to motivate the proposed approaches. Chapter 3 mathematically formalizes the proposed
probabilistic shared autonomy system for assisting mobile robot teleoperation through
contextual task recognition, facilitating a better understanding of the detailed introductions
of the proposed scientific contributions afterwards. Additionally, a reactive shared autonomy
system based on Bayesian Network (BN) is also reported in this chapter. Even though it
is not among the major contributions, its technical limitations in assisting mobile robot
teleoperation reveal possible improvements and lead to an alternative, Bayesian contextual
task recognition approach, including the methods for learning the motion patterns of various
task executions from human demonstrations in both batch and incremental ways. This
approach is described in Chapter 4. Chapter 5 introduces how to utilize the SOGP algorithm
to learn and classify multiple contextual tasks from human demonstrations. Chapter 6 reports
the technique details of the approach to achieve unsupervised learning and recognizing the
contextual tasks from unlabeled demonstration data, and the algorithm to predict the local
trajectory the human operator intends to follow in the short term to perform the corresponding
task with the recognized contextual information. Finally, Chapter 7 presents the experiments
which have been carried out to extensively evaluate the proposed approaches. The thesis is
closed with a conclusion in Chapter 8, where the limitations are analyzed and the outlook for
future research is indicated.



Chapter 2

State of the Art

This chapter introduces the state-of-art research achievements in the field of shared autonomy
between human and robot for assisting human with collaborative task execution. Firstly, the
involved themes of this thesis, including the concept of shared autonomy and its background
in the context of human-robot interaction, are clarified based on the related works, and the
criteria to categorize the studies conducted in this field are proposed, with the focus on how
the human operator is assisted by the robot for task execution during interaction. Following
that, an overview of approximately 80 related works from 2000 to 2016 is presented to
provide a comprehensive view of the achievements in this field. Then several noteworthy
studies are individually introduced and discussed in detail. Finally, the chapter is closed with
a summary and a discussion on the existing research gaps in this field.

2.1 Themes Clarification

Shared Autonomy is a concept for system design, also named mixed-initiative interaction [7]
or adjustable autonomy [181] in the literature. Regarding human-robot interaction, Shared
Autonomy referes to distributing intelligence to man and machine for solving problems
cooperatively during operation [20]. It also refers to the full or partial replacement of a
function that has to be carried out by the robot [151], to combine the strengths of the robot
(normally in data acquisition, navigation and planning) and those of the human (in cognition
and reasoning), to perform a complex task cooperatively, which is hardly to achieve with
either human or robot alone, such as teleoperation in unknown and hazardous environments.
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The benefits of employing the concept in implementing human-robot system by making
robots and humans work as partners haven been clearly pointed out in [56, 97, 152].

Depending on the level of automation, Sheridan proposed in [170] that the spectrum of
control modes in a man-machine system spans between manual control and fully automatic
control, and supervisory control bridges the gap between the two extremes, which is further
divided into two modes according to the level of the authority of the automaton: control
trading and control sharing. Control sharing means that a human operator (supervisor)
exerts control on some control variables of an automaton while the automaton itself has
control over the remaining variables in contrast to the control trading where the supervisor
issues a command to initiate a task, and the automaton performs the task autonomously
having full control on all control variables during the procedure leading to the relatively
higher involvement in the control loop with control sharing than with control trading for the
supervisor. Machine autonomy represents the automatic exertion of control on the automaton
entity itself, and since shared autonomy and supervisory control are both characterized by the
level of involvement of autonomy during control flow (i.e. from control sharing to control
trading), the two concepts share the same implications and will be used interchangeably in
the following parts of this chapter.

In the field of shared autonomy between human and robot, a majority of the state-of-art
works deal with teleoperation [46] (including telepresence robot [126]) to address the leading
challenge on best coordinating the two sources of intelligence from human and robot to
maximize the task performance of the whole system. But there are still many important
works addressing the same challenge from that the human shares autonomy with the robot
locally, such as with intelligent wheelchair [111], walking assistant for the elderly [171] and
the driver-assisted automotive (usually refers to semi-autonomous vehicle) [150]. Therefore
the related works from both situations, i.e. the autonomy is shared locally and remotely, will
be introduced together below.

Autonomy sharing is not a concrete approach for human-robot system design but rather an
identified concept from observations. Hence this concept has to be transformed into a practical
paradigm to achieve a specific human-robot system. Goertz [71] presented manipulators for
dealing with radioactive material that are able to turn cranks based on imprecise operator
inputs in 1963, introducing one of the first instances of assistive teleoperation. In 1992,
Hirzinger et al. [84] introduced the ROTEX experiment – the flight of a small multi-sensory
robot on space shuttle Columbia. To deal with the large communication delay in space
robotics, they tested the idea of Tele-Sensor Programming (TSP), distributing the robot to
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the independent execution of partial low-level tasks based on local sensory feedback, and the
human operator to the handling of coarse planning activities on a high task-oriented level,
which is one of the first studies proposing the notion shared autonomy to describe the concept
for the human-robot system design. Since then, state-of-art studies in this field have provided
a great variety of implementations of the concept on different human-robot systems thanks to
the advances in science and technology and the broad integration of robot into the human
society in the last decades.

Unfortunately, till now there are no review works regarding this research field. Goodrich
et al. [74] presented a survey of human-robot interaction in 2007, but it does not include the
works conducted in the last decade. Moreover, the survey focuses on presenting a general
overview about human-robot interaction by trying to cover all points of the field, instead of
specifically discussing the research achievements and existing gaps in the field of shared
autonomy between human and robot for assisting human with task execution. To facilitate
the analysis of the state-of-art works in this field, certain criterion is needed to categorize
them.

It is noticed that to assist task executions, the ultimate goal of a robotic system is to
exert action, which is formulated by its autonomy, including information acquisition and
process, decision making and action generation. Following the statements in [10], the robotic
action can be approximately grouped into three control levels based on the complexity and
the time span of the action: low-level actions (instantaneous and reactive), middle-level
actions (often referred to action primitives) and complex behavioral actions for high-level
control. The higher level action consists of the elementary actions at the lower level, and
requires higher autonomy level for information acquisition and process, decision making
and action generation. Depending on the level of the autonomy the robot contributes to
the control loop during autonomy sharing, most state-of-art works in the field of shared
autonomy between human and robot can be categorized into three groups: the robot operates
with High Level Autonomy (HLA); the robot assists the human operator with Middle Level
Autonomy (MLA); and the robot participates with Low Level Autonomy (LLA). Regarding
reasoning about when and how to share autonomy between human and robot, the state-of-art
works can be further indexed by whether they adopt a model-based approach, i.e. the shared
autonomy policy is explicitly handcrafted, or a data-driven approach, i.e. such model is
learned with the given demonstration data, to achieve it. Another indispensable factor to
categorize them is the mechanism/device they employ for the information exchange between
human and robot1, such as mechanical joystick, haptic device, Brain-Computer Interface

1The focus is how the user issues commands to the robot.
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(BCI), dialogue, 2D mouse, and multi-modal interface (including gesture and speech), since
the interaction modality relates to how the user input is modeled and integrated into a shared
autonomy system.

In the next section of this chapter, an overview of approximately 80 related studies
will be presented following these criteria, aiming to provide a comprehensive view on the
achievements in the last decades in this research field.

2.2 Overview of Related Works

This section provides a comprehensive overview of the state-of-art research achievements in
the field of shared autonomy between human and robot for assisting human with collabo-
rative task execution. Table 2.1 lists approximately 80 related works using the criteria for
categorization proposed in the previous section, together with the year of the works. Next
to the category, there is a short introduction regarding the motivation, e.g. the research aim
or the targeted application scenario of the proposed approach, and the employed strategy of
each referred study in the table. Resulting from the lack of the common database and that the
experiments were conducted with different subjects in different scenarios, it is unfortunately
impossible to compare the performances, e.g. running time and user preferences, across the
proposed shared autonomy systems/approaches in the table.

Regarding reasoning about when and how to share autonomy between human and robot,
as shown in Table 2.1, most works incorporating the robotic autonomy at high level (HLA) or
low level (LLA) employ model-based approaches to implement it by programming the robot
with the state-of-art techniques in perception and control in advance, e.g. using prefedined
metrics to evaluate and blend user inputs together with the behavior-based approach [11] or
the potential field approach [89] to achieve robotic assistance at low level [194, 185, 113].
There are also works in the group of MLA adopting model-based approaches to build shared
autonomy policies, such as [162] and [140]. Data-driven approaches are broadly employed
by the works in the group of MLA, to devise shared autonomy models for the robot by
learning from demonstration data, such as GMR [82], Hidden Markov Model (HMM) [142],
Linear Regression (LR) [41], GP [87], Dynamic Bayesian Network (DBN) [201] or SVM [1].
There are still works in the group of HLA or LLA adopting data-driving approaches, such as
Partially Observable Markov Decision Process (POMDP) [179] or Case-Based Reasoning
(CBR) [193]. Two referred works [73, 159] incorporate the robotic intelligence on all three
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action levels with model-based approaches, yet the human user needs to explicitly issue
command or requirement to switch between the different autonomy levels through the user
interface.

Regarding the mechanism of how the human and the robot exchange information during
interaction, dialogue is widely employed between the human supervisor and the robot in
works in the group of HLA. In these works, the robotic autonomy handles the whole procedure
of executing a complex task, and the human supervisor is responsible to provide suggestions
or corrections through the user interface to intervene the process to fulfil the task aim when
deviation exists. Various communication channels/devices are employed by works in the
groups of MLA and LLA. The prevailing one is continuous mechanical joystick. Such device
is easy to model and inexpensive, yet provides no feedback to the human during operation.
An alternative interface to the mechanical joystick is the haptic joystick, which is hard to
model and expensive, yet capable of providing force feedback to the human user. Appropriate
force feedback can greatly enhance the SA of the user during the task process, and efficiently
assist the user with the task execution [141, 4, 58], but delicate control models are needed to
achieve this. Another emerging and exciting user device is BCI. It transforms the mind of the
human operator to the task command for the robot without hand movement. Due to the high
computational demand and the limitations in the computational models for decoding human
mind, the BCI currently yields only discrete low-level motion commands from human, such
as left, right, front and back. Therefore, many works adopting BCI incorporate the robotic
intelligence at low level (LLA) [120, 185, 28, 31, 29], e.g. assisting obstacle avoidance
during operation. In the group of MLA, there are several works assisting the goal-based
actions captured by BCI [91, 158, 48]. In addition to the above channels/devices, multi-modal
interface is also a popular choice for information exchange in shared autonomy between
human and robot, including gesture and speech/voice, to increase the interaction efficiency
by facilitating a natural interaction between human and robot [55, 149, 172, 90, 47].

Category Motivation and Approach
2000 [107]
MLA
Data-driven
Force-torque handle

Assist the operation of an intelligent walker for the frail blind.
The manually devised BN combines user input with elementary
semantic information of the environment derived from the sensors,
e.g. the doorway position, the structure of the corridor, to provide
a context-aware estimate and assistance of the current navigation
goals of the user in indoor scenarios.

Continued on next page
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Category Motivation and Approach
2001 [55]
HLA
Model-based
Multi-modal Interface

Assist mobile robot teleoperation. This paper presents the design
of a multi-modal user interface to supervise the mobile robot
teleoperation. The data from a variety of 3D sensors (ladar, sonar,
stereo vision) are fused for display to increase the SA of the human
operator, and the robot is able to query the suggestions from the
human operator through dialogues during task execution. The
human operator can also command the robot with gestures, yet
without speech recognition.

2001 [39]
MLA
Model-based
Haptic device

Assist an undersea manipulation task (the connector-mating task
in this paper) in remote. Within the proposed shared control ap-
proach, the connector automatically rotates to the estimated socket
orientation, and the operator retains the control of the translational
motion of the remote robot to perform the connector insertion. The
effectiveness of the propose approach is evaluated together with
various display sources.

2002 [172]
LLA
Model-based
Multi-modal Interface

Assist wheelchair driving. Within the proposed approach, the voice
of the human operator is used to control an intelligent wheelchair
in an intuitive way. The user drives the robot with discrete verbal
commands, e.g. go forward, turn soft/hard left, etc., and the
robot provides safety assistance during command execution, e.g.
obstacle avoidance.

2002 [36]
LLA
Model-based
Joystick

Assist mobile robot teleoperation. This work employs the potential
field algorithm to blend the user input and obstacle information
from the depth sensor (sonar in this paper), to guarantee a safe
execution of the user command.

2003 [56]
HLA
Model-based
Dialogue

Assist mobile robot teleoperation. A collaborative control ap-
proach is proposed, where the robot asks questions to the human
operator by launching a dialogue, in order to obtain human assis-
tance in cognition and perception when it encounters difficulties in
executing remote tasks. This approach enables the human supervi-
sor to function as a resource for the robot and help compensate for
limitations of autonomy. A user study is performed to evaluate the
effectiveness of the proposed method.

Continued on next page
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Category Motivation and Approach
2003 [112]
MLA
Data-driven
Haptic device

Assist telemanipulation. The proposed approach employs HMMs
to automatically segment and recognize user motions in a com-
bined curve following and object avoidance task, and the segmen-
tation results are used to provide appropriate assistance in the form
of a virtual fixture.

2003 [121]
MLA
Model-based
Haptic device

Assist telemanipulation. This work describes and demonstrates
control algorithms for developing motion constraints. They are de-
signed to enhance the accuracy and speed of a user manipulating in
an environment with the assistance of a cooperative or telerobotic
system. The proposed method uses a pool of preferred directions
created off-line or in real-time with sensor data, to generate virtual
fixtures both in open loop and closed loop.

2003 [200]
LLA
Model-based
Force-torque handle

Assist operation of an intelligent walker for the elderly people.
This work infers the desired navigation heading of the human user
from measuring forces and moments applied to the handles of
the walker, then the robotic walker assists the user intention (the
desired driving heading) while taking safety into consideration by
perceiving the environment during operation.

2003 [204]
LLA
Model-based
Force-torque handle

Assist operation of a personal aid for mobility and health moni-
toring for the elderly people. A bi-level shared control system is
reported. Its first level employs a six-axis force/toque sensor to
provide a natural and intuitive human-robot interface by mapping
the user force input into the robot motion command. The second-
level implements a shared controller to blend the control inputs of
the user and the robot based on metrics evaluating the efficiency
of the user tracking a pre-planned trajectory.

2004 [145]
MLA
Model-based
Virtual keyboard

Assist wheelchair driving. This work presents a shared control
approach incorporating human inputs in motion planning for a
smart wheelchair. Depending on whether the user input leads to
the goal target, or is going to result into obstacle collision, it will
be used to fully or partially control the robot during the execution
of a plan or behavior.

Continued on next page
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Category Motivation and Approach
2005 [75]
MLA
Model-based
Haptic device

Assist vehicle teleoperation. This work investigates the use of
haptic interface to realize and test the idea of a human driver
sharing control of vehicle heading with an automatic controller in
the task of path following. This work demonstrates the benefits
of the proposed haptic shared control approach in improving the
execution performance of not only the primary driving task, but
also the secondary task.

2005 [90]
HLA
Model-based
Multi-modal interface

Facilitate natural programming of a mobile service robot in domes-
tic environments. This work presents a multi-modal user interface,
which allows user to employ gestures and speeches to program a
cleaning robot interactively for executing a sequence of tasks in
indoor scenarios in a natural way.

2005 [1]
MLA
Data-driven
Haptic device

Assist telemanipulation. A HMM/SVM hybrid state sequence
analyser is reported to obtain an online state estimation regarding
which sub-trajectory the human operator is performing, hence the
assistance can be provided adaptively to the inferred subtask in the
form of virtual fixture.

2005 [104]
MLA
Model-based
Gesture

Assist remote object manipulation. A traded/shared control ap-
proach is introduced to assist object manipulation in remote using
non-contacting vision-based human-robot interface, where the hu-
man operator firstly guides the robot arm to the target object, then
transfers control to the robot for performing fine alignment and
centering of the gripper with the object. After the alignment, the
human operator controls only the motion of the end-effector in
one of its degrees of freedom, while the robot controls the other
degrees of freedom of it.

2005 [206]
MLA
Data-driven
Haptic device

Assist telemanipulation. HMM is used with the decomposed ve-
locity vector during trajectory following using the end-effector,
to classify and recognize three kinds of user motion intentions,
i.e. following the preplanned path, aligning target and avoiding
previously unknown obstacles, and designs different assistance
functions for the three subtasks respectively, attempting to pro-
vide appropriate assistance upon consideration of the user motion
intentions during operation.

Continued on next page
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Category Motivation and Approach
2006 [141]
MLA
Model-based
Haptic device

Assist teleoperation task with force feedback. A haptic shared
control approach is reported, where the haptic device contributes
to task execution via force commands from an automatic controller.
The proposed haptic shared control assistance is compared to
passive virtual fixtures and no assistance to assess performance
enhancement for a dynamic manual target-hitting task.

2007 [194]
LLA
Model-based
Joystick

Assist mobile robot teleoperation. This work proposes a method to
share control between human operator and robot at reactive level,
where the user inputs are blended with the autonomous commands
from the robot at each point of a given trajectory by estimating
their respective local navigational efficiencies at each time instant.

2007 [41]
MLA
Data-driven
Joystick

Assist wheelchair driving. This work models the wheelchair driver
as path tracking controller, and employs RBF and linear regression
to learn and recognize which trajectory the wheelchair driver is
following, hence the corresponding assistance can be provided to
help with the trajectory following during operation.

2007 [6]
MLA
Data-driven
Joystick

Assist wheelchair driving. A probabilistic framework is pre-
sented for adaptive plan recognition and shared control to assist
wheelchair driving. Users are modeled as path tracking controllers
steering the wheelchair based on their mental trajectories. As
users might not have a constant driving performance, or since they
might suffer from various forms of disabilities, a personalized
driving profile is introduced to account for these effects. It relates
the actual driving behavior of the user to a reference, idealized
user corresponding to the previously mentioned path tracking con-
troller. With the estimated user plan, an adaptive decision approach
is taken to assist the wheelchair driver to track the fine path by
incorporating the uncertainty on the estimated plan.

Continued on next page
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Category Motivation and Approach
2007 [96]
HLA
Model-based
GUI

Assist remote environment recognition with a group of heteroge-
neous mobile robots. This work reports to build a shared envi-
ronment representation by a human-robot team, including ground
and flying robots. Two probabilistic fusion models, i.e. geometric
and visual, are used to describe outdoor environment features, and
both are able incorporate observations from robotic platforms and
human operators. Hence, humans and robots form a heterogeneous
sensor network.

2008 [87]
MLA
Data-driven
Joystick

Assist wheelchair driving. SOGP is employed to learn and rec-
ognize the user plan (modeled as the mental trajectory of the
wheelchair driver for tracking in this work), which can be adapted
online to any type of driving style.

2008 [24]
MLA
Model-based
Joystick

Assist wheelchair driving. A computational model is proposed to
describe the action of the wheelchair driver crossing doorways.
The proposed shared control system provides assistance to the
user upon recognizing the doorway-crossing action with the model
from the user inputs and robot states in the environment, e.g. robot
poses regarding candidate doorways.

2008 [3]
MLA
Data-driven
Force-torque sensor

Assist teleoperation. A layered HMM is employed to model human
manipulation skills in the form of trajectory tracking hierarchi-
cally, aiming to provide appropriate assistance to telemanipulation
upon recognition of the human motion intentions with the learned
models.

2008 [179]
HLA
Data-driven
Joystick

Assist wheelchair driving. This paper presents a POMDP-based
shared control system, in order to predict the intended semantic
destination of the user in a typical office arena, e.g. kitchen,
bathroom, etc., with minimal user input obtained from a standard
wheelchair joystick, and provide navigation assistance towards the
estimated destination.

Continued on next page
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Category Motivation and Approach
2008 [189]
LLA
Model-based
Head-movement sensor

Assist wheelchair driving. A shared control strategy is introduced
to assist wheelchair driver in performing obstacle avoidance tasks.
The proposed system uses a head-movement sensor as the use
interface, which outputs discrete motion commands. The deci-
sions are made from the proposed shared control approach, which
blends user motion commands, accessible space of the environ-
ment from the laser scanner, and motion smoothness to provide
goal directions for safe navigation based on cost functions.

2009 [153]
LLA
Model-based
Joystick

Assist mobile robot teleoperation. This paper presents a reactive
shared control approach. It blends user inputs with autonomous
commands from the robot according to the navigation efficiency
of the human operator and the robot respectively. The navigation
efficiency of the human operator and the robot is computed from
a set of manually devised criteria at every time instant given a
trajectory to follow. Hence, the proposed approach guarantees
the operation safe while respecting the control authorities of the
human user. The autonomous commands are generated with the
potential field algorithm.

2009 [193]
LLA
Data-driven
Joystick

Assist wheelchair driving. To improve the user acceptance of the
assistance from the robot, this work employs CBR to learn how
the user drives the wheelchair beforehand. Then the learned model
generates corresponding motion commands to be blended with
the user inputs, when similar situations are encountered during
operation.

2009 [120]
LLA
Model-based
BCI

Assist wheelchair driving. This paper presents a BCI shared con-
trol system, where the wheelchair driver issues four discrete motor
commands (turning left and right, and going forward and back)
through the BCI, and an autonomous navigation system safely
executes the issued commands.

2009 [91]
MLA
Model-based
BCI

Assist wheelchair driving. A BCI shared control approach is re-
ported, where a desired location is selected from a list of predefined
locations from a BCI, and then sent to an autonomous system. The
autonomous controller then drives the wheelchair to the desired
locations safely.

Continued on next page



2.2 Overview of Related Works 21

Category Motivation and Approach
2009 [190]
MLA
Model-based
Joystick

Assist wheelchair driving. This work considers to recognize and
assist three kinds of tasks a wheelchair performs, i.e. general
obstacle avoidance, corridor and wall following, and door passing,
within a RBF. According to the proposed filter model, the user
inputs and the environment perceptions are considered separately
when recognizing the three tasks, instead of being used together,
then if there is a door nearby, the intended task is highly door
passing, without taking user input into consideration. Such ap-
proach can yield problem when there exists multiple candidate
environment components simultaneously.

2010 [191]
LLA
Model-based
Joystick

Assist wheelchair driving. The proposed approach estimates how
much help the user needs in a reactive manner, and continuously
blends the user inputs with the robot motion commands based
on their navigation efficiency. Such efficiency of both sides is
evaluated with a set of manually devised criteria. To improve the
stability and smooth the motion blending, instant commands are
modulated by a factor depending on human efficiency in a shifting
time window.

2010 [185]
LLA
Model-based
BCI

Assist mobile robot telepresense. The human operator issues
discrete motion commands from BCI, e.g. turn left or right, and
the proposed shared control approach will modify the user input
with the highest priority by turning the robot towards the opposite
direction where the obstacle is detected until the path is free.

2010 [140]
MLA
Model-based
Joystick

Assist the teleoperation of tracked vehicles. Based on the con-
tinuous three-dimensional terrain scanning, the proposed shared
autonomy system assists the control of the flippers of the robot
to relieve the workload of the human operator, when the robot is
teleoperated to traverse rough terrains.

2010 [158]
HLA
Model-based
BCI

Assist wheelchair driving. Within the proposed system, the user
can select a destination amongst a list of predefined semantic
locations in an indoor scenario, then the wheelchair is guided on
the planned paths which are ensured smooth and safe. The user
can modify the global plan by stopping the robot using BCI, and
selecting a new destination again.

Continued on next page
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Category Motivation and Approach
2010 [98]
HLA
Model-based
Dialogue

Assist mobile robot teleoperation. The human operator supervises
the autonomous navigation of a mobile robot from its sensor data.
The operator functions as remotely located, valuable information
sources, and the robot decides when to query the operator based on
the Value-Of-Information theory within a manually designed in-
ference diagram during operation by launching a dialogue, i.e. the
operator is only queried if the expected benefit of the observation
exceeds the cost of obtaining it.

2010 [148]
HLA
Model-based
Low-throughput device

Assist wheelchair driving. The proposed approach is designed for
low-throughput interfaces, e.g. BCI. During operation, the robot
keeps suggesting the most probable action, as analyzed from the
environmental context with a BN, to the user through movement.
The user can either accept or reject the proposition by issuing the
feedback through the input device.

2010 [73]
LLA+MLA+HLA

Model-based
Multi-modal Interface

Assist the operation of an intelligent shopping trolley. The control
of the robot is shared or traded between the robot and its dedi-
cated user ranging from closely coupled haptic-based interaction
up to loosely coupled command-based interaction. Four opera-
tional modes, i.e. the manual steering, following, guiding and
autonomous mode, are implemented, and the transitions between
them are achieved with the associated interaction modalities.

2011 [192]
LLA
Model-based
Joystick

Assist wheelchair driving. This paper presents a reactive shared
control approach, where the motion commands from the robot
and the user become different goals in a Potential Field. Then the
attractors of the robot and the user are weighted by their respective
local efficiency at each time instant, and the proposed approach
blends both inputs according to their weights.

2011 [113]
LLA
Model-based
Joystick

Assist wheelchair driving. The user inputs are evaluated against a
set of manually devised criteria, and a mini-max multi-objective
optimization algorithm is employed to decide the weights of the
user inputs for combination with the automatic motion commands
during operation at every time instant given a global trajectory.

Continued on next page
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Category Motivation and Approach
2011 [147]
LLA
Model-based
Joystick

Assist wheelchair driving. This work extracts a disability profile
from a wheelchair user from the way the user drives. This profile
is then used to increase or decrease the amount of help provided
by the wheelchair depending on the user driving skills. The profile
is extracted by means of hierarchical clustering of traces captured
from a large number of volunteers driving the wheelchair in a real
indoor environment. The proposed shared control model blends
user and robot commands at reactive level after weighting them by
their corresponding local efficiency computed from their expected
performance at each situation.

2011 [30]
LLA
Model-based
Mechanical Button

Assist wheelchair driving. The wheelchair user issues discrete mo-
tion commands from two temporally-constrained discrete buttons,
and the robot is responsible for obstacle avoidance. Two reactive
shared control strategies, i.e. a simple discrete policy and a more
dynamic proportional policy, are compared with an intelligent
wheelchair in two indoor scenarios with different clutter levels.

2011 [151]
HLA
Model-based
GUI

Assist remote mobile manipulation task. Within the proposed
shared autonomy system, the robotic mobile manipulator is re-
sponsible for executing most tasks to perform an assigned fetch
task in remote autonomously, and the human operator is queried to
provide perception assistance to the robot, when it fails to detect
the desired manipulation target in a cluttered environment. In this
way, a shared autonomy system at high level is realized.

2011 [118]
HLA
Model-based
BCI

Assist wheelchair driving. Since BCI-actuated commands are
issued sparsely, this paper proposes a two-layer shared controller
for assisting navigation. One of the layers enables BCI inputs from
the wheelchair driver according to certain situations, and the other
layer blends the user inputs with the robot motion commands to
generate a smooth shared motion command to drive the robot.

2012 [4]
MLA
Model-based
Haptic device

Assist automotive driving. This work discusses several realizations
of haptic shared control in literature, e.g. haptic shared control with
fixed or variable authority, and conducts case studies in the context
of automotive driving, e.g. for lane keeping and curve negotiation,
to demonstrate the effectiveness of haptic shared control approach
for assisting automotive driving in general.

Continued on next page
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Category Motivation and Approach
2012 [46]
MLA
Data-driven
Gesture

Formalize assistive teleoperation to consist of intention prediction
of user intention and its arbitration with the user input. This
paper employs simplified assumptions to derive the model for
user intention recognition. The efficiency of assistance regarding
various factors, e.g. the arbitration type, the prediction correctness
and the task difficulty, is evaluated within a user study.

2012 [82]
MLA
Data-driven
2D Mouse

Assist telemanipulation. This paper reports a shared autonomy
approach applied to the problem of controlling a 6D robot manip-
ulator using 2D mouse input. The proposed system recognizes
and predicts the free-form tasks the human operator performs, i.e.
the tasks associated with no semantic components in the working
space, with a RBF and a learned GMR model. A cooperative mo-
tion planner continuously updates the robot trajectories to achieve
the inferred tasks by repeatedly solving optimal control problems.

2012 [58]
MLA
Model-based
Haptic device

Assist teleoperation of multiple quadrotors. This paper presents
a bilateral shared control architecture. It consists of a topologi-
cal motion controller for the mutual interactions in the quadrotor
formation, and a human assistance module to accept human inter-
vention. It increases the telepresence of the human operators with
the force-feedback.

2012 [162]
MLA
Model-based
Joystick

Assist the human operator to safely control a quadrotor to inspect
a vertical infrastructure, such as a utility pole on the street. This
paper reports a shared control model. Within the proposed model,
the robot is responsible to keep safe distance to the target for
inspection, and assist the human operator to always face the target,
while the human operator can focus on inspection task by issuing
just approximate motion commands without worrying about the
safety of the robot during operation.

2012 [48]
MLA
Model-based
BCI

Assist mobile robot telepresence. The human operator selects
visible target destinations or exploration areas using the BCI, and
the robot executes the motion commands autonomously in remote.

Continued on next page
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Category Motivation and Approach
2012 [27]
LLA
Model-based
Keyboard

Assist mobile robot teleoperation. The human operator issues
discrete motion commands, e.g. turn left or right, to simulate the
BCI outputs, and the robot is responsible for obstacle avoidance.
This paper designs a set of task-dependent performance metrics
to adapt the assistance level from the robot during operation, i.e.
to quantitatively decide how much assistance the human operator
needs.

2012 [26]
MLA
Model-based
Joystick

Assist wheelchair driving. The proposed collaborative control
system employs a multi-hypotheses method to predict the navi-
gation intentions of the human operator, e.g. which door to pass,
and if necessary, adjusts the control signals to achieve the desired
goal safely. This work conducts a comprehensive evaluation in
indoor scenarios to demonstrate the effectiveness of the proposed
approach to improve performance on not only primary driving task
but also secondary task during operation.

2012 [123]
MLA
Model-based
Haptic device

Assist mobile robot teleoperation. Within the proposed shared
control system, the robot takes charge of executing cyclic motions,
while the human operator concentrates on modifying online some
geometric properties of the desired path. This modification from
the user is processed by the robot in order to produce an available
trajectory respecting tracking feasibility, obstacle avoidance, close-
ness to the desired trajectory of the human operator, and proximity
to some points of interest. The human operator is informed of the
global deformation of the path with force feedback.

2012 [70]
MLA
Model-based
Haptic device

Assist road vehicle teleoperation in urban environments. Within
the proposed shared autonomy system, the human operator takes
charge of situation analysis, behavioral decision making, and pro-
vides a sequence of trajectories to command a robotic road vehicle
for path following in remote. The generated trajectories consist
of parameterized curves overlain by velocity control. The robot
executes the commanded trajectory autonomously.

Continued on next page
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Category Motivation and Approach
2012 [202]
HLA
Model-based
Joystick

Assist mobile robot teleoperation. This paper presents a quantita-
tive measure that infers the degree of trust of the human operator in
the robot autonomy, as well as an adaptation strategy for adjusting
the robotic autonomous behaviors to accord with the expectations
of the human operator after receiving intervening commands from
the human team member. The application scenario is that a human
operator supervises an autonomous flying robot to do boundary
tracking in remote.

2012 [165]
HLA
Model-based
GUI

Assist telemanipulation. A telemanipulation task is executed
within a state machine autonomously, and supervised by a hu-
man operator. A generalized logic recovery algorithm is reported
to decide when to query the human intervention for state machine
recovery, if certain state fails during operation, e.g. fails to de-
tect or manipulate the target object in a cluttered environment,
balancing the system performance and work load of the human
supervisor.

2013 [88]
MLA
Data-driven
Joystick

Assist wheelchair driving. A probabilistic framework is proposed
based on RBF to recognize local navigation trajectories of human
user driving an intelligent wheelchair, aiming to provide assis-
tance to the execution of the estimated local plan. The proposed
probabilistic framework employs GP Regression to learn the like-
lihood model of the filter, and a DBN with a probabilistic distance
likelihood to calibrate the transition model of the filter.

2013 [173]
LLA
Data-driven
Joystick

Assist wheelchair driving. The proposed shared autonomy system
employs GP to learn when how to help a wheelchair user with
the difficult tasks from expert demonstrations. The decision to
provide assistance is solely made by the expert knowledge, and
the environment is described by using simply all the laser data
without further process, which may render the proposed approach
constrained to a specific scenario.

Continued on next page
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Category Motivation and Approach
2013 [201]
MLA
Data-driven
GUI

Assist remote object grasping. This paper reports a collaborative
human-robot system. It takes advantage of the semantic knowledge
of a human co-worker who provides additional context information
and interacts with the robot through a GUI. A BN is employed
to learn and encode the dependencies between the information
provided by the user. The output of this model generates a ranked
list of grasp poses best suitable for a given task, which is then
passed to the motion planner.

2013 [29]
LLA
Model-based
BCI

Assist wheelchair driving. A shared control architecture with BCI
is presented, where the wheelchair driver issues discrete motion
commands from a BCI, and the proposed shared control system
safely executes the user motion commands by taking obstacle in-
formation into consideration, which is obtained from a occupancy
grid.

2013 [164]
MLA
Model-based
Haptic device

Assist automotive driving for lane keeping on wheel steering. This
paper presents a shared control approach derived from an H2-
Preview optimization control problem based on a global DVR
system. The DVR model adopts a cybernetic driver model to take
into account any driver-vehicle interactions.

2013 [83]
MLA
Model-based
Data glove

Assist remote object grasping. Within the proposed shared auton-
omy approach, the human operator issues open/close commands
from finger movements to initialize an automatic grasping of the
target object. This work also conducts a user study evaluating the
grasping performance and perceived workload of the human oper-
ator with the proposed shared autonomy approach when working
with different assistance modes and hand kinematics.

2013 [175]
MLA
Data-driven
Haptic device

Assist remote repairing task for a broken hard drive. This paper
reports a haptic shared control system employing a discrete HMM
to recognize the actions of the human operator from the haptic
data. It designs context-specific assistance functions to assist the
human operator upon action recognition.

Continued on next page
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Category Motivation and Approach
2013 [35]
MLA
Model-based
BCI

Assist remote grasping with a brain-controlled robot hand. The
proposed shared control approach extends the traditional virtual
fixture concept to coordinated motion in high-dimensional control
spaces, i.e. to guide both translational and rotational degree-of-
freedom of the robotic hand towards whole sets of robot poses
that would allow an object to be grasped. The proposed approach
allows for irregular fixture shapes.

2013 [72]
MLA
Data-driven
Joystick

Assist wheelchair driving. The proposed shared control approach
employs GMR model to learn task variability from demonstration
examples, and extracts allowable user command constraints from
the variance. This variance is then used to blend user and robot
control in challenging navigation scenarios, like door passing. The
human operator needs to explicitly indicate the start of the task
execution to activate the proposed approach.

2013 [8]
MLA
Model-based
Haptic device

Assist vehicle teleoperation. A shared control approach is pre-
sented to assist semi-autonomous vehicle teleoperation for hazard
avoidance and stability control based on the design and selective
enforcement of constraints. It identifies safe trajectory homotopies,
and allows the operator to navigate freely within them. It exerts
control action only as necessary to ensure that the vehicle does not
violate the pre-defined safety constraints.

2014 [142]
MLA
Data-driven
Force-torque handle

Assist the operation of an intelligent walker for the elderly. This
work employs HMM to analyze the walking patterns of the human
user, i.e. the gaits, from demonstration data collected from a LRF,
aiming to provide context-based support, and intuitive assistance
to the user of the device, i.e. mainly the elderly people, in domestic
environments.

2014 [177]
LLA
Model-based
Joystick

Assist mobile robot teleoperation. A MPC shared control frame-
work is reported to blend human inputs with autonomous motion
inputs to assist mobile robot teleoperation with obstacle avoidance.
The proposed framework also considers that how the human input
differs from that of an autonomous controller in addition to threat
of collision. It is applied to a high speed differential drive robot
moving through an obstacle field.

Continued on next page
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Category Motivation and Approach
2014 [116]
LLA
Model-based
Virtual joystick

Assist teleoperation of an omni-directional mobile robot. The
proposed shared control system decides the human and robot
interactive gains by computing user’s confidence factor from a
set of manually devised criteria. The robot assists a user with the
remote motion control by compensating local insufficiency of the
human control.

2014 [207]
LLA
Model-based
Joystick

Assist wheelchair driving and human following. The proposed
shared control system blends the user inputs, from either manual
driving commands or the pose of the target human to follow, with
the autonomous motion commands using virtual field force prin-
ciple taking obstacle information into account, to generate a safe
shared control command to drive the robot.

2014 [197]
LLA
Model-based
Haptic device

Assist operation of a load carrying robot for the elderly people.
The proposed shared controller blends the user inputs with the
autonomous motion commands from the user tracking controller
and the obstacle avoidance controller according to their weights
computed from the system stability analysis, to generate a new
shared control output to command the robot.

2014 [124]
MLA
Model-based
Haptic device

Assist mobile robot teleoperation. This paper presents a haptic
shared control approach, where the human operator can modify the
shape of the navigation path of the robot by controlling the motion
of a finite number of control points. An autonomous controller
corrects in real time the human inputs in order to facilitate path
tracking for the mobile robot, and ensures the safety, regularity of
the generated path, and its attraction to nearby points of interest.

2014 [9]
MLA
Model-based
Haptic device

Assist vehicle teleoperation. The proposed shared control ap-
proach identifies path homotopies, bounds a desired homotopy
with constraints, and allocates control as necessary to ensure that
these constraints remain satisfied without unduly restricting the
human operator.

Continued on next page
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Category Motivation and Approach
2014 [203]
HLA
Model-based
Joystick

Assist mobile robot operation for collaborative task, e.g. the
human-robot team is assigned with covering or patrolling over
multiple terrain boundaries such as coastlines and roads. This pa-
per introduces a shared autonomy framework to quickly adapt the
autonomous behavior of the robot with simple intervening com-
mands from human operators. During operation, it continuously
explores the space of all possible parameter configurations for the
robot system online, using the information deduced from the latest
intervening commands of the human team member, attempting to
quickly configure the robot autonomy with respect to changes in
task objectives and conditions.

2014 [15]
HLA
Model-based
GUI

Assist telemanipulation. This paper presents a knowledge-driven
tablet computer application for commanding a robot on a high
level of abstraction. The application guides an operator to make
decisions based on the current world state of the robot, and enables
the operator to command object-centered actions. These actions
are interpreted symbolically and geometrically by the robot au-
tonomously.

2015 [169]
HLA
Model-based
Haptic device

Assist teleoperation of surgical robot. This paper reports a paced
shared-control framework for teleoperated surgical systems. It
includes a dominance factor to set the authority of the human
operator and autonomous agent over the slave robot, as well as
an aggressiveness factor to set the performance pace of the au-
tonomous agent according to the state of the slave robot.

2015 [205]
HLA
Model-based
Haptic device

Assist mobile robot teleoperation. This paper proposes the admit-
tance and impedance models to smoothly blend user inputs with
robot autonomy, and this is enabled by the force feedback capabil-
ity of the haptic interface. With the proposed haptic shared control
approach, the human operator can provide flexible assistance to the
robot upon observation of its difficulty in remote task execution
through the GUI, e.g. the robot gets stuck during navigation, with
the grasp motion on the haptic device.

Continued on next page
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2015 [159]
LLA+MLA+HLA

Model-based
GUI

Assist mobile robot teleoperation. This paper presents an assistive
robot vehicle prototype in the context of a smart environment. It
allows the human operator with physical disability to interact with
a smart environment by means of hand-free devices. The proposed
system also integrates four control strategies ranging from low
level to high level, i.e. manual control, shared control with assis-
tance to obstacle avoidance, point to go, and fully autonomous.
The human operator is required to explicitly select one of the four
modes to control the client vehicle in remote.

2015 [198]
LLA
Model-based
Haptic device

Assist telemanipulation. This paper proposes a shared control
model, where the human operator is made to concentrate on the
motion of the end-effector of the manipulator, while the robot ma-
nipulator takes charge of avoiding obstacle without compromising
the motion performance of the end effector.

2015 [94]
MLA
Data-driven
Gesture

Assist remote object grasping. This paper formulates the shared au-
tonomy problem of assisting remote object grasping as a POMDP
with uncertainty over the goal of the human operator. It employs
the maximum entropy inverse optimal control to infer a distribution
over the goal of the human operator with the input history. Since
it is intractable to solve the POMDP to select the optimal action,
the hindsight optimization is used to approximate the solution.

2015 [59]
HLA
Model-based
Un-specified

Research on the theory of control switching in a general shared
autonomy system under temporal logic specifications. This paper
presents a two-stage policy synthesis algorithm for generating
Pareto efficient coordination and control policies with respect
to user specified weights. The proposed algorithm is applied to
a cooperative motion planning problem for a mobile robot in a
stochastic environment in simulation.

Continued on next page
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Category Motivation and Approach
2016 [34]
HLA
Model-based
Joystick

Assist mobile robot teleoperation. This paper introduces a straight-
forward shared autonomy approach, where the human operator
decides either to take full control of the robot, or simply indicate
a target for the robot to autonomously navigate to during opera-
tion. Such strategy is called Human-Initiative in this work. This
approach and the other two control modes for comparison, i.e. the
manual mode and the fully autonomous mode (where the user can
only assign navigation targets to the robot), are evaluated in a user
study in simulation. The experimental results confirm the effective-
ness of the proposed Human-Initiative approach in enhancing the
performance of the human operator on the primary task compared
with the other two modes.

Table 2.1 Category and short introduction (motivation and approach) of the related works in
the field of shared autonomy between human and robot for assisting human with collaborative
task execution from 2000 to 2016.

2.3 Detailed Introduction and Discussion of Several Rep-
resentative Works

In this chapter, several representative related works will be discussed in details.

1. Formalization of Assistive Teleoperation [46]

By summarizing the related works in the field of assistive teleoperation, this paper for-
malizes assistance under the general framework of policy blending, and presents a principled
analysis of the main components of an assistive teleoperation system: prediction of user
intention and its arbitration with the user input (the conceptual depiction is shown in Fig. 2.1).
In this work, it is emphasized that the robot is supposed to predict the user intention, and assist
to accomplish it, rather than directly execute the user input, due to the interface inadequacies.
The authors define the prediction problem, discuss about simplifying assumptions that make
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Fig. 2.1 (Top) The user provides an input U. The robot predicts their intentions, and assists
them to achieve the task. (Middle) Policy blending arbitrates user input and robot prediction
of user intentions. (Bottom) Policy blending increases the range of feasible user inputs (here,
α = 0.5). Cited from [46].

it tractable, and test the built model on data from users teleoperating a robotic manipulator
under various configurations in a user study.

The formalization unifies prior work, and provides common ground for future methods
and comparisons of assistive teleoperation, offering a valuable reference for the research
conducted in this field. More specifically, the authors made an interesting user study on
the relations between the arbitration methods based on the intention prediction, the task
difficulty, and the efficiency of the assistance in terms of task completion time and user
preferences. Two arbitration methods were evaluated : timid, i.e. the assistance increases
with the confidence of the intention prediction till a predefined maximal value, preventing
the robot from taking the full charge of the control process; and aggressive, i.e. the robot
eagerly takes charge as soon as the confidence exceeds a threshold, which presents a valuable
guidance for the choice of arbitration strategy adopted by the assistance system. However,
this paper focuses on the telemanipulation task: it only considers to predict and assist the
motion pattern of reaching the grasp target, while the teleoperation of a mobile robot involves
more types of motion patterns, such as moving around a target for inspection or following a
wall segment in indoor navigation. Meanwhile, focusing on the formalization of the concept
of assistive teleoperation, this paper employs simplified assumptions for ease of deriving the
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model for intention prediction, e.g. the user intention is to track optimal trajectories towards
the grasp objects. Although the paper mentions the data-driven approaches to address this
problem, it does not introduce them in detail.

2. Recognition and Prediction of Freeform Tasks to Assist Telemanipulation [82]

Fig. 2.2 The overall architecture of the system proposed in [82]. Cited from [82].

To assist the human operator more intuitively and responsively, this paper proposes the
notion of free-form tasks that encode an infinite number of possible goals (e.g. desired target
positions) within a finite set of types (e.g. reach, pick up) to model the user intention, and
employs the data-driven approach to derive the models for the considered free-form tasks
(the overall architecture of the proposed system is depicted in Fig. 2.2). The proposed system
was evaluated in simulation within the problem of controlling a 6D robot manipulator using
2D mouse input in the context of two tasks: static target reaching and dynamic trajectory
tracking.

This paper achieves an impressive state-of-art in the field of assisted teleoperation by
sharing autonomy, and inspires part of the contributions made in this thesis. However, the
authors consider only free-form tasks which involve with no contextual information of the
environment in this paper, while in practice a teleoperation task is mostly associated with
certain semantic components of the environment, e.g. an object to grasp, a doorway to cross
and a wall segment to follow, etc. Therefore, such contextual information is supposed to
be integrated when interpreting the user intention, and further contributions are needed to
recognize the user intention with contextual information, i.e. to correctly infer the on-going
contextual tasks instead of simple free-form tasks, in order to provide context-dependent
assistance for efficient task execution in remote. Such point is also mentioned in this paper
as one of its future work.

3. User-adapted Shared Control by Recognizing User Intention as Trajectory to Track to
Assist Wheelchair Driving [41]
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Fig. 2.3 House-like environment where experiments with the intelligent wheelchair have
been conducted. The figure depicts the wheelchair along with calculated paths to possible
goal poses at a certain moment in time. The paths are computed with a planner in the (x,y,θ)
configuration space. The planner takes the robot geometry and kinematic constraints into
account. Also shown are subgoals on the paths, which are used to predict the user signals.
Cited from [41].

This paper presents a novel framework based on Bayesian approach for the recognition
of the user driving plan and sharing control in a probabilistic way, to assist the human user,
mostly elderly and physically impaired people, to efficiently drive an intelligent wheelchair
in indoor scenarios. Its main innovation with respect to previous approaches is to estimate
the user driving intention in order to provide adaptive driving assistance that is able to be
tailored to the driving skills of individual users. Towards this aim, the user driving intention
is modeled as a goal pose and goal twist together with a trajectory to achieve the goal pose
and twist. The wheelchair user is then modeled as a path-tracking controller that outputs
uncertain control signals (the concept is illustrated in Fig. 2.3). In this manner, the proposed
framework is able to model and estimate even complex maneuvers. Intention paths are
calculated in the framework with a fine-motion planner that takes the geometry and kinematic
constraints of the robotic platform into account, such that the framework can be adapted
to different wheelchair types. Additionally, the decision making is modeled as a POMDP,
allowing to execute informed assistance decisions. Experiments have been conducted to
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demonstrate the feasibility of the novel framework both in simulation and on a real robotic
wheelchair.

This work contributes significantly to the field of shared autonomy with mobile robotics,
which is based on and lays the foundations for a group of works concentrating on the
trajectory recognition to assist wheelchair driving [42, 43, 40, 6, 87, 88]. However, it is
assumed by the proposed approach that the user tracks optimal trajectories to the designated
goal states, where the candidate trajectories for estimation and tracking (referred to plan
hypotheses in this paper) were generated by the Voronoi graph search and a geometric fine
motion planner, which largely limits the assistance provided by the system to the generated
plan hypotheses, and hinders the flexibility of the whole assistive system. Consequently,
further contributions are required to enhance the flexibility of the assistance provided by the
system.

4. Perceptual Shared Autonomy to Assist Mobile Manipulation [151]

Fig. 2.4 The perceptual shared autonomy system model for robotic manipulation. A human
is included to close the perception loop through collaborative object selection. Cited from
[151].

This paper presents a shared autonomy system capable of solving the perceptual infer-
ence in cooperation with a human, such that a human operator is considered as a valuable
and reliable resource by the robot and helps to compensate for limitations of autonomy,
aiming to demonstrate that how a human-robot team can work together effectively to solve
complex perception tasks in telemanipulation, because reliable perception is one of the most
challenging problems in such task for robot. More specifically, the proposed system asks a
human operator to identify objects it doesn’t recognize or find, by drawing rectangles and
performing simple strokes to separate objects from background areas in color images (the
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proposed system is depicted in Fig. 2.4). Various experiments with the PR2 robot confirms
that this shared autonomy system performs more robustly than the robot system alone.

This paper proposes to incorporate human assistance for complex perception tasks re-
quested by the robot from time to time, while the robot handles the whole process for a
complex mobile manipulation task autonomously. It impressively demonstrates the effective-
ness of a human-robot team working together, thus clearly makes an important contribution
to the field of shared autonomy. However, to implement an autonomous robot to execute
a complex task, the robot needs to be programmed with the advanced knowledge of the
state-of-art robotic perception and control techniques beforehand. Such requirement brings
about a serious limitation to the system for real applications in the long run, i.e. the system is
limited to execute the pre-programmed task. Unfortunately, to determine all the needed task
functions users would like a robot to have in advance is hardly possible due to many social
and economic factors. So if the robot is needed to execute new task types different from those
already being programmed, to implement the adaptation, the human user is supposed to have
a highly professional programming skill and a deep understanding of the robotic techniques,
which definitely prevents the average users from incorporating such system into everyday
life. To address the issue to promote the applicability of the robotic assistive system in the
long period, data-driven approaches are worth considering to derive the models for the tasks
from demonstration data in the further contributions.

5. Modelling and Recognition of Human Operational Motions with Layered HMM to
Assist Telemanipulation [3]

Fig. 2.5 A two level layered hidden Markov model, modeling gestemes at level 2 and a task
at level 1. Cited from [3].

This work presents a data-driven approach to acquire, represent and model human skills
in the context of assisted telemanipulation, with the aim of providing motion assistance upon
skill/task recognition. It proposes to use a Layered Hidden Markov Model (LHMM) to model
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human skills. Three different HMM models are employed and compared to derive the models
for the basic action primitives (referred to gestemes in the paper) from the demonstration
data at the low level, in order to account for the temporal property of the gestemes, then the
gesteme classifiers are further used in LHMM to model a complex task at the high level (the
used model is illustrated in Fig. 2.5). The online and off-line classification performance
of the three gestemes models was evaluated with respect to the number of gestemes, the
influence of the size of training samples, the noise factor and the effect of the number of
observation symbols. The LHMM was also applied to data recorded during the execution
of a trajectory tracking task in 2D and 3D with a mobile manipulator in order to provide
qualitative as well as quantitative results for the proposed approach.

Although this work certainly achieves an interesting state-of-the-art in the field of assisted
telemanipulation and shared autonomy, the considered action primitives are fixed trajectory
patterns involving with no objects in the environment, i.e. the end-effector of the manipulator
was force-moved by a human operator simply in either straight line or circle, limiting the
flexibility of the proposed approach for broader deployments, especially when it is applied
to model and recognize the tasks of mobile robot teleoperation, since it is inadequate to
describe these tasks simply with fixed trajectory patterns without considering the contextual
information of the environment. Therefore, further contributions are needed to propose
novel approaches to model and derive the policies of various teleoperation tasks taking the
contextual information into consideration. Moreover, the employment of HMM requires
that the number of unobservable hidden states must be specified a priori or chosen via
model selection, which is prone to over-fitting. This severely limits the usefulness of HMM
inference when dealing with unstructured data.

6. Reactive Shared Autonomy with Efficiency-weighted Strategy for Fusing Human and
Robot Inputs to Assist Wheelchair Driving [153]

To assist the human user to efficiently execute global trajectories when teleoperating
a mobile robot in indoor scenarios, this paper presents a novel approach to share control
between mobile robots and humans. The key idea of this paper is to measure the efficiency
of both sides at each sampling time in a reactive way with the predefined evaluation criteria.
With the metric results, the motion commands from human and robot can be weighted and
linearly blended into a single motion command (the proposed approach is illustrated in
Fig. 2.6). The authors aim to combine the advantages of both sides in a seamless way,
by continuously blending their motion commands. The proposed method was evaluated
with a real robot and 13 volunteers, and results showed the effectiveness of the proposed
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Fig. 2.6 Combination of robot and human commands. Cited from [153].

approach in improving the driving performance of the human operator in most cases, and the
navigation performance of the robot in many cases, e.g. when pure reactive control failed,
such as crossing doors or approaching close obstacles.

This work contributes significantly to the field of shared autonomy with mobile robotics,
and lays the foundations for a group of works focusing on the efficiency based reactive
shared autonomy to assist mobile robot operation, especially robotic wheelchair driving
[193, 52, 191, 192, 147, 113]. Though being intuitive and fast, the proposed approach
requires a planned trajectory to work on in advance, which by default restricts the user
on the given global trajectory during operation. Another limitation is that the professional
knowledge is needed to design the criteria manually, which is the cornerstone of the proposed
approach. Therefore, it is hard to envision that the proposed approach is able to scale with
more complex situations in assisting robot operation, when the existing criteria need to be
adapted.

2.4 Summary and Discussion of Research Gaps

This chapter presents a comprehensive analysis of the state-of-art works in the field of shared
autonomy between human and robot for assisting human with collaborative task execution.
Shared autonomy is a valuable and promising concept for system design, attracting more
research attentions in robotics, thanks to the deeper integration of the robotic system within
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the human society. To efficiently implement it on a specific human-robot system, a major
challenge needs to be addressed, i.e. how to best coordinate the two sources of intelligence
from human and robot, to achieve an adaptive and flexible assistance and maximize the
performance of the human-robot team through interaction in real applications. Attributed to
the advances in perception and control techniques in the last two decades, the state-of-art
works in the field of shared autonomy provide a great variety of solutions. These studies focus
on various robotic applications, such as telemanipulation and mobile robot teleoperation, and
incorporate the robotic intelligence at different control levels: from that the robot handles
most parts of the task procedure autonomously, to that the robot provides only time-instant
assistance reactively.

However, this challenge remains unsolved, preventing the shared autonomy system from
being widely deployed in real applications, especially in those considered for life-long time,
where the robots measure their life-time in years instead of minutes. Incorporating the
robotic intelligence at the high control level can significantly reduce the human involvements
to supervisory actions from time to time, e.g. providing feedback or corrections to the
robotic system by request, but a profound knowledge of the robotic techniques and computer
programming is required to implement the autonomous controller with high level autonomy
for certain complex task beforehand. This extremely limits the adaptability of such system
to new task types in the long run. Meanwhile, based on the current achievements in the
perception and control techniques, it is still impossible to program the robot to execute many
complex tasks with high level autonomy in real applications. On the other hand, though
being intuitive and fast, providing time-instant assistance can largely restrict the human
operator to certain fixed plan the reactive controller of the robot follows, ignoring the human
intentions during task executions, which can substantially reduce the assistance efficiency
by essentially increasing the human rejections to the robotic assistance in many complex
situations. A promising research direction is thus to incorporate the robotic intelligence at
the middle control level, i.e. providing assistance to action primitives, for two reasons: 1)
a sequence of action primitives can constitute complex tasks on the higher level; 2) human
intention can be modeled as action primitive to execute, so the robot is able to assist what the
human intends to do instead of what the user is currently doing.

However, it is non-trivial to devise the control models for all required action primitives
from scratch before deploying the robotic system in real applications. Therefore, data-
driven approaches are employed in the literature to derive the control policies for action
primitives from demonstration data. Nevertheless, the state-of-art works conducted in this
direction either assume the action primitives to be fixed motion patterns, e.g. following a
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certain trajectory segment, or do not take the contextual information of the environment,
e.g. objects to be manipulated, into consideration, when deriving the policies for modeling
action primitives. To provide adaptive and flexible assistance during operation by efficiently
modeling task intention of the human operator, further contributions are needed to encode
the contextual information into the models, and learn the motion patterns with the contextual
features without making assumptions a priori.



Chapter 3

System Formalization

This chapter firstly describes the proposed contextual-task aware shared autonomy system
mathematically, introducing the mathematical symbols used throughout the following parts
of the thesis. Notably, the problem tackled in this thesis is formalized, leading to the
major contributions of this thesis presented in the following three chapters. In addition to the
formalization, a reactive shared autonomy system based on BN is also reported in this chapter.
Although it is not among the major contributions, the discussions regarding its technical
limitations in assisting mobile robot teleoperation reveal possible improvements, inspiring
the author of this thesis to propose an alternative Bayesian contextual task recognition
approach. Such approach learns the motion patterns of various task executions from human
demonstrations, and will be detailed in the next chapter.

3.1 Mathematical Description of the Proposed System and
Problem Formalization

During mobile robot teleoperation, the human operator observes environment perceptions
z obtained by the robot sensors through certain GUI, and issues user input u with an input
device, e.g. a mechanical joystick considered in this thesis, in the form of velocity sent to the
robot for execution, attempting to complete an action primitive to fulfil a contextual task i
latent in the mind of the human operator. Examples of i include “cross the doorway in front”,
“inspect the object on the right side of the robot”, etc. Meanwhile, with z, the robot is able to
generate efficient motion commands g to autonomously execute i based on the state-of-art
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works in perception and control. The robot then assists the human operator by blending the
user input u and the robot motion command g according to an arbitration factor β to achieve
the ultimate motion command v for execution:

v = (1−β )u+βg, (3.1)

where 0 ⩽ β ⩽ 1.

To express that the combination is calculated in each sampling cycle of the robot, and
the arbitration factor β is not fixed during operation, the time index t is appended to each
variable of Eq. (3.1):

vt = (1−βt)ut +βtgt . (3.2)

Eq. (3.2) mathematically describes the proposed shared autonomy framework, which
is abstracted from and hence independent of any specific robotic hardware configuration.
In this way, the level of autonomy is seamlessly switched between the manual control (i.e.
βt = 0) and the autonomous control (i.e. βt = 1) during operation. As can be noticed, to
achieve an efficient assistance for the human operator, the key is to decide an appropriate
arbitration factor βt . In this work, βt is modeled as the measure of confidence in recognizing
the task it latent in the mind of the human operator at the time t, aiming to provide motion
assistance in a task-appropriate way.

To compute βt and account for the uncertainty in data acquiring and processing, with
the contextual information, i.e. the user input ut and the environment information zt , it is
necessary to solve the following probability problem to infer the latent task it the human
operator is likely to execute:

p(it |ut ,zt) =? (3.3)

Considering that there exists possibly multiple candidate task instances for inference
during operation, βt is finally obtained by maximizing Eq. (3.3):

βt = max p(it |ut ,zt). (3.4)

Hence Eq. (3.4) closes the loop of the proposed shared autonomy system (Eq. (3.2)).

Eq. (3.3) formalizes the research problem to be tackled in this thesis, i.e. given the
contextual information, how can the on-going task the human operator performs be estimated
in a probabilistic manner? In the following section, a reactive shared autonomy approach will
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be introduced, which assists the human operator by recognizing a set of pre-defined simple
situations encountered during operation within a BN, to provide a preliminary solution for
this problem. This approach was proposed in the initial phase of the study conducted in this
thesis and inspired the major contributions afterwards.

3.2 Reactive Shared Autonomy by Situation Recognition
with BN

This section reports a reactive shared autonomy system whose architecture is depicted in Fig.
3.1. The human operator observes the surrounding environment through the robot sensors,
and issues the control command via joystick according to the perceived information and the
task context (unknown to the robot). The proposed approach identifies possible situations
encountered during teleoperation, and provides the corresponding motion assistances at
reactive level. A classical design paradigm called situated-action [11] is employed to blend
the motion commands from the human operator and the robot. The problem is simplified by
using the “divide and conquer” strategy to identify the situation and execute the corresponding
assistive action exclusively. A BN is used to implement the situation identification to account
for the uncertainties of acquiring and processing user inputs and environment information,
while assisting the human operator implicitly: each assistive action is like a robot-providing
“button” for handling the corresponding situation; within the proposed probabilistic situation
identification framework, the robot is able to implicitly switch between the “buttons” to assist
the human operator correspondingly, while the human operator is not required to do the
switch manually. The implementation of the proposed reactive shared autonomy method is
detailed below.

3.2.1 Method Implementation

This sub-section begins with the introduction of the definitions of the situations and their
corresponding assistive actions, then the probability model used to identify the situations
will be presented in detail. In the framework of the proposed method, the robot is required
to equip with sensors capable of producing a 2D depth map of obstacles surrounding the
robot. The most common kinds of such sensors are sonar and 2D LRF. Since the proposed
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Fig. 3.1 Architecture of the reactive shared autonomy system

method is reactive, the process of situation identification and corresponding action execution
is repeated for each sensor update without considering the past information.

3.2.1.1 Set of situations and corresponding actions

The situated-action paradigm is used to design the reactive shared autonomy method. This
paradigm is based on defining a set of situations that describe the relative state of the shared
autonomy entities (i.e. the robot, the obstacle distribution, and the user input), and the
actions associated with each of the candidate situations. During the execution phase, the
environment information and the user input are captured to identify the current situation,
then the associated action is carried out.

Three situations are considered: Free Travel (FT), Object Approach (OA) and General
Obstacle Avoidance (GOA). They are among the most possible situations encountered by
teleoperating a mobile robot without manipulation capability. The symbols introduced in
Sec. 3.1 are also used to describe the corresponding actions in this part.

FT: The system is in FT when there are no obstacles within a security zone around the
robot bounds. Then the user input will be fully executed by the robot, as the robot assumes
that it is safe enough to do so in this situation. The corresponding action can be described as:

vt = ut . (3.5)
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OA: The system is in OA when the user controls the robot towards an object that is within
the security zone of the robot. The robot should keep a safe distance from the facing object
when being controlled to approach it. The corresponding action is described as:

vt = αtut , (3.6)

where:

αt =

exp(− 1
dt−dsafe

) if dt > dsafe;

0 otherwise,
(3.7)

is the attenuation coefficient for decreasing the motion command of the robot, dt is the closest
distance between the robot and the facing obstacle measured by the range finder of the robot
at time t, and dsafe is the predefined safe distance that the robot must keep away from the
approaching object.

GOA: The system is in GOA when there are obstacles within the security zone of the
robot, and the user operates the robot in the free area among the obstacles. The corresponding
action is realized by using the Dynamic Window Approach (DWA) [57], which is a reactive
obstacle avoidance strategy for mobile robots. The action can be concisely described as:

vt =gt

=DWA(ut ,zt) (3.8)

The OA mainly aims to handle the situation when the user drives the robot to approach a
certain object and stop at a certain distance from it, e.g. for inspection. The GOA, however,
deals with the situation that the user considers the surrounding objects as obstacles, and
demands to bypass them to avoid the potential collisions actively. Meanwhile, the normal
reactive controller, e.g. DWA, tries to find a free movement direction among the obstacles
to control the robot to bypass the obstacles safely, but does not allow the robot to go nearer
towards the obstacle. Therefore it is reasonable to distinguish the two situations and address
them separately in a shared autonomy system design.

The overview of the BN used for the probabilistic situation identification will be intro-
duced in the next part.
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3.2.1.2 BN for the probabilistic identification

From the view of the human operator, the candidate situation is decided by the user ac-
tion according to the environment observation, and the candidate situation equals to its
corresponding action in the situated-action paradigm. Therefore, the probabilistic situation
identification is based on the action recognition, meaning that, when a certain action is
recognized, its corresponding situation is identified.

The BN used for the probabilistic situation identification is shown in Fig. 3.2. It is
assumed that the human operator takes the action1 by observing the environment from the
robot sensor capture (zt), then the user issues the control command (ut) to the robot based on
both the action (decides what to do) and the sensor observations (decides how to do).

Fig. 3.2 The Bayesian Network (BN) for the situation identification

According to the Bayes Rule and the BN (Fig. 3.2), given the environment observation zt

and the user input ut , the formula for the situation identification is:

p(at |ut ,zt) = η p(ut |at ,zt)p(at |zt), (3.9)

1An action taken at time t is denoted with the symbol at ∈ A, where A represents a set of candidate actions
for execution, i.e. FT, OA and GOA.
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where η = 1
p(ut |zt)

is the normalization factor. The recognized action ar
t is selected through

the Maximum a Posteriori (MAP) method:

ar
t = argmax

at∈A
p(at |ut ,zt). (3.10)

Consequently, following Eq. (3.2) to get the final motion command, from the proposed
reactive shared autonomy system, the arbitration factor βt is obtained:

βt = max p(at |ut ,zt), (3.11)

and the robot motion command gt generated from the recognized action ar
t .

The technical details of the environment model and the user input model used in the BN
will be presented in the following parts.

3.2.1.3 Environment model

The node Environment Information of the BN (Fig. 3.2) is modelled with a local occupancy
grid map centered at the robot. The map is updated using the range finder data based on
the method described in [183]. The angle range of the range finder is divided equally into
N sectors, and each sector is set to cover 5◦. The j-th sector is denoted as s j. Within the
border of the occupancy grid map, each angle sector s j covers a set of occupancy grid cells
M j = {m jk}, where the index k denotes the k-th grid cell of the sector. Let S denote the local
occupancy map, then S = {s j}.

For each occupancy grid cell m jk, it has two states: Occupied (including the unknown
state) and Free. Each state will be assigned a cost value:

f (m jk) =

 1 if m jk = Occupied or Unknown

0 if m jk = Free
(3.12)

It is assumed that the sectors are independent from each other respecting the measurements
of the range finder. Therefore, the probability of the occupied situation of each angle sector
can be calculated as:

p(s j = Occupied) =
∑k f (m jk)

|M j|
(3.13)
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The probability p(s j = Occupied) encodes the belief of the robot about the movement
safety in the direction indicated by the angle sector s j. p(S = Occupied) represents the
probability of the existence of the obstacles around the robot within the update radius of the
map:

p(S = Occupied) = max
j

p(s j = Occupied) (3.14)

An example of the occupied probability p(Occupied) is illustrated in the following figures.
Fig. 3.3(a) shows a captured scene of a simulated quadrotor equipped with a 2D LRF facing
several obstacles. Fig. 3.3(b) exhibits the occupied probability p(Occupied) calculated from
this scene. In Fig. 3.3(b), the X-axis represents the angle range of the LRF, where the 0◦

represents the straight ahead direction of the LRF (and also the robot, indicated by the arrow
in Fig. 3.3(a)), and the positive angles result from the counter-clockwise rotation centered at
the LRF. Each bar denotes the occupied probability of the corresponding angle sector. Note
that in Fig. 3.3(b), the occupied probabilities of all angle sectors are displayed together for
convenience, although the angle sectors are independent from each other respecting their
occupied states.

(a) (b)

Fig. 3.3 Example of the occupied probability: (a) The virtual quadrotor is facing obstacles
around it; (b) The occupied probability of each angle sector.

The next part will describe the implementation of the user input model of the BN.

3.2.1.4 User input model

The user input is in the form of an angle calculated from the joystick displacement. This
angle can be transformed into the velocity commands along x and y directions of the local
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coordinate system fixed on the robot center to drive the robot. Hence the user input is
expressed as a scale instead of a vector in the following parts of this sub-section.

During mobile robot teleoperation, it is normally struggling for the human user to
precisely issue the displacement corresponding to his/her operational intention by pushing a
mechanical joystick, while the human user is focusing on the GUI to compute appropriate
robot action other than joystick operation. Meanwhile, due to possibly imprecise calibration,
the displacement is usually measured with errors by the sensor of the joystick. To account
for these uncertainties, the user input is modelled with a normal distribution in the proposed
approach:

p(θu) = εN (θu;θ
∗,σ2), (3.15)

where ε is the normalization factor, θ ∗ is the real user input, and θu is the output of the
joystick that results from θ ∗ with the influence of noise σ .

For each angle sector s j of the local occupancy map S, let θistart and θiend denote the
start angle and the end angle of it respectively, and it is assumed that θistart ⩽ θiend. The
probability of a given user input u pointing at a certain angle sector s j is calculated as:

p(ut ∈ s j) =
∫

θiend

θistart

p(θu), (3.16)

where p(θu) is defined by Eq. (3.15). Therefore, the probability of a given user input pointing
at an occupied angle sector s j is defined by:

p(ut ∈ s j,s j = Occupied)

= p(ut ∈ s j)p(s j = Occupied), (3.17)

where p(ut ∈ s j) is defined by Eq. (3.16), and p(s j = Occupied) is defined in Eq. (3.13).
Then the probability of the user input pointing at a free angle sector s j is defined by:

p(ut ∈ s j,s j = Free)

= p(ut ∈ s j)[1− p(s j = Occupied)] (3.18)

The final part of this sub-section will detail the probabilistic model for each candidate
situation, i.e. the user action node of the BN.
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3.2.1.5 Probabilistic models of the situations

The FT is identified when it is highly probable that there is no obstacle within a predefined
security zone of the robot (the a-priori probability of the action), and the user input points at
a probably free angle sector (the likelihood probability of the action). The probability of no
obstacle surrounding the robot is the negate of the occupied probability p(S = Occupied),
therefore, based on Eq. (3.9), the probability model of the FT is:

p(at = FT|ut ,zt) = η p(ut |at = FT,zt)p(at = FT|zt)

= η max
j
[p(ut ∈ s j,s j = Free)] · [1− p(S = Occupied)] (3.19)

The OA is generated when it is highly probable that there are obstacles within the
security zone of the robot, and the user input points at a probably occupied angle sector. The
probability model of the OA is:

p(at = OA|ut ,zt) = η p(ut |at = OA,zt)p(at = OA|zt)

= η max
j
[p(ut ∈ s j,s j = Occupied)] · p(S = Occupied) (3.20)

The GOA is captured when it is highly probable that there are obstacles within the
security zone of the robot, and the user input points at a probably free angle sector. The
probability model of the GOA is:

p(at = GOA|ut ,zt) = η p(ut |at = GOA,zt)p(at = GOA|zt)

= η max
j
[p(ut ∈ s j,s j = Free)] · p(S = Occupied) (3.21)

3.3 Discussion

The proposed reactive shared autonomy system considers three situations for assistance
during operation, and identifies them with a BN in a probabilistic manner to account for
the uncertainty in the data acquiring and processing, then provides motion assistance to
the recognized situation with the corresponding reactive controller. It realizes the prelim-
inary strategy for designing an adaptive shared autonomy system to assist mobile robot
teleoperation. However, its major technical limitations are two folds. Firstly, the employed
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BN is manually designed, including the edges (the probabilistic relationships) between the
nodes within the network, which heavily hinders the scalability of the proposed framework
for further extension, i.e. to include more situations, since for each new situation to be
considered, an estimation model has to be manually indicated correspondingly. Secondly,
the provided instantaneous/reactive action mostly pertains to either obstacle avoidance or
collision stopping, as the proposed system relies on a naive environment model to generate
safe motions by distinguishing simply obstacle from free space in the environment. This
is far from efficiently describing the motion patterns of the human operator controlling the
robot for various task executions, since such task patterns usually comprise a spatial-temporal
sequence associated with certain semantic component of the environment, e.g. doorway
to cross, object to inspect, wall segment to follow, etc. To improve this, it is supposed to
recognize and assist action primitives of the human operator with the contextual information.
Such contextual action primitives are more flexible and meaningful in describing the human
motion intentions than reactive actions. In addition to this, it might also be needed to employ
data-driven approaches to learn motion policies for describing various task executions from
human demonstrations in an intuitive way instead of manually deriving them. This is essential
for the flexibility and scalability of the system.

3.4 Summary

This chapter firstly presented the mathematical description of the proposed contextual-task
aware adaptive shared autonomy system, and formalized the research problem of this thesis
from the mathematical description. After that, a reactive shared autonomy approach was
reported as a preliminary implementation of the proposed shared autonomy system. The
situated-action paradigm and the “divide and conquer" strategy were employed to design
the system. Three situations were defined, i.e. Free Travel, Object Approach and General
Obstacle Avoidance. During the operation, one of the pre-defined situations is identified
based on the sensor information of the robot and the user input, then the corresponding
reactive controller generates the motion commands to move the robot safely. To account
for the uncertainties of acquiring and processing user inputs and environment perceptions,
a BN was applied to identify the situations in a probabilistic manner, which enables the
proposed system to assist the human operator implicitly. The probability models of the
environment, the user input and the candidate situations were presented and implemented to
realize the proposed system. Finally, the major technical limitations of the proposed system
were discussed, inspiring the author of this thesis to further propose an alternative approach
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to recognize and assist human action primitive based on contextual information instead of
instantaneous/reactive action to address the problem in a data-driven manner. This approach
will be introduced in the next chapter.



Chapter 4

Multiple Contextual Task Recognition
Using GMR and RBF

This chapter presents a novel multiple contextual task recognition approach, to address the
research problem formalized in the previous chapter. The approach proposed in this chapter
focuses on recognizing the intentional task the human operator performs to complete an action
primitive with the contextual information, which comprises a spatial-temporal sequence with
uncertainty for data processing. A RBF is adopted to smoothly and robustly handle this.
To implement the RBF, a data-driven approach is employed, i.e. GMR model to learn the
motion patterns the human operator executes various task types from demonstrations, rather
than manually devising the models for describing various task executions from scratch.

This chapter is structured as following. The proposed approach is concisely introduced in
Sec. 4.1 with more details. Sec. 4.2 describes the task features obtained from the contextual
information, with the aim of encoding the motion patterns the human operator executes
various task types, to model the motion policy with the data-driven approach from the human
demonstrations afterwards. Sec. 4.3 details the RBF, which is used as the base framework
in the proposed approach to smoothly and robustly estimate the contextual task the human
operator executes over time. The RBF consists of the User Model and the State Transition
Model after derivation, and these two components need to be implemented respectively. Sec.
4.4 reports the implementation of the User Model by employing the batch GMR model to
learn the motion patters from human demonstrations, including the model selection approach,
which is the cornerstone of the proposed framework. Sec. 4.5 presents the realization of the
State Transition Model, including the important assumptions made in the proposed approach.
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Sec. 4.6 introduces how to integrate the proposed task recognition approach within the
proposed shared autonomy system by arbitrating motion commands from the human operator
and the robot based on task estimation.

Moreover, in order to favour an online learning scenario to enhance the flexibility of the
proposed approach in real applications, a fast online GMR approach is proposed in Sec. 4.7
to encode and recognize various human motion patterns, to replace the batch GMR model
in the User Model of the RBF. With such method, the robot is capable of adapting to the
new task types on the fly while being interactively taught by the demonstrator. Finally, this
chapter is summarized with the discussions regarding the proposed approach in Sec.4.8.

4.1 Approach Overview

The proposed approach aims to recognize multiple contextual tasks during mobile robot
teleoperation with simple and/or noisy input devices1. It considers the setting of a human
operator using joystick to control the robot in an indoor environment. By observing the
information of the robot and the environment displayed in a GUI, the user issues motion
commands which vaguely indicate the user intentions for operating the robot, such as avoiding
obstacles. As clarified in Chapter 1, a task refers to a metric representation of the user
intention for a robot to complete an action primitive, such as crossing a doorway, inspecting
an object, or following a wall segment. Correspondingly, a task type indicates a group of
tasks which share similar action targets or patterns. Therefore, a shared autonomy system
integrating the proposed task recognition approach can properly assist the human operator by
estimating the task the user performs. This chapter focuses particularly on contextual tasks
which rely on the information of related objects in the environment. Following the symbols
used in [82] and Chapter 3, it ∈ 1, ...,m denotes a task type at time t. An instance of a task
type (called a task in this chapter) is described by a task feature φφφ t ∈ Rn. In this chapter,
without the loss of generality of the proposed approach, m = 4 task types are considered:
Doorway Crossing, Object Inspection, Wall Following and Robot Docking. These four task
types are representative and important action primitives for teleoperating a mobile robot
without manipulation capabilities.

1As indicated in Sec. 3.2.1.4, the noise of an input device, e.g. a mechanical joystick, results from two
major aspects: 1) it is normally challenging for the human user to precisely issue the command corresponding
to his/her operational intention via the input device, while the human user is focusing on the GUI to compute
appropriate robot action other than manipulating the device during mobile robot teleoperation; 2) due to possibly
imprecise calibration, the user command is usually measured with errors by the sensor of the input device.
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The user input ut from a mechanical joystick is in the form of velocities along x and y
directions in the robot’s local coordinate frame ut = (vx,t ,vy,t). The input velocity value of
each direction is normalized to the range of (−1,1), where the positive sign indicates that
the input is along the positive direction of the corresponding axis.

The proposed task recognition approach infers a time series of the task types (it) with the
corresponding task features (φφφ t) from a streaming series of the user inputs ut , t = 1,2, . . . .. It
adopts a RBF to estimate a distribution over candidate tasks. The RBF is implemented by
exploiting the GMR technique, which uses Gaussian Mixture Model (GMM) to learn and
represent the implicit user model required by the RBF. In the following parts of this chapter,
the definitions of the task features used in each task type are firstly be described, then the
technical details of the proposed multiple contextual task recognition framework are covered
respectively.

4.2 Task Feature

The task feature φφφ embodies an instance of a specific task type with the task descriptors
obtained from the contextual information. The selected task descriptor should be intuitive
and representative to describe a task type with the context information. In this section, a set
of simple, compact but highly distinctive task features will be introduced to describe each
task type.

If not specified otherwise, the term distance used in the following part of this section
refers to the Euclidean distance, and all the feature descriptors are calculated in the local
coordinate frame fixed on the robot center.

4.2.1 Doorway Crossing

The center point of the doorway qc is considered as the key element to describe a doorway,
and the following three variables according to qc are chosen as the feature descriptors for
such task type (Fig. 7.2(a)): 1) the distance dq between the robot center and qc; 2) the angle
ψq between the robot heading and qc; 3) the angle θq between the user input vector u and
the vector rq from the robot center to qc. ψq implies whether the human operator rotates
the robot to face the doorway, which is usually observed to preliminarily indicate whether
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(a) (b) (c) (d)

Fig. 4.1 The task features for each of the four task types: (a) Doorway Crossing; (b) Object
Inspection, an circular object is used here as an example; (c) Wall Following; (d) Robot
Docking.

a certain doorway is the semantic target. θq represents whether the user moves the robot
towards a doorway in reality.

4.2.2 Object Inspection

The object considered in this task type is segmented from a 2D occupancy grid map of
the environment. For each candidate object which is extracted, the surface points of it are
maintained:

S = {s|s ∈ ((x1,y1), ...,(xn,yn))}. (4.1)

The nearest surface point of an object to the robot center smin during operation is employed
as the key element to describe this task type, since the surface points of an object have already
implicitly encoded the shape information of the object.

The following three variables based on smin are chosen as the descriptors for this task
type (Fig. 7.2(b)): 1) the distance dsmin between the robot center and smin, which indicates
the relevance of a certain object as the inspection target; 2) the angle ψsmin between the robot
heading and smin, since a holonomic mobile robot will be used to evaluate the proposed
approach (see Chapter 7), the robot is reasonably assumed to be facing the target object
during inspection, thus this angle implies such action; 3) the angle θsmin between the user
input vector u and the vector rsmin from the robot center to smin. dsmin , ψsmin and θsmin together
indicate whether the user drives the robot to approach an object and then moves it closely
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around the object for inspection (in either clockwise or counter-clockwise direction), which
is observed to be the usual motion pattern of this task type.

4.2.3 Wall Following

The wall is also segmented from a 2D occupancy grid map of the environment. For each
segmented wall, the surface points of it are maintained:

W = {w|w ∈ ((x1,y1), ...,(xn,yn))}. (4.2)

The nearest surface point of a wall to the robot center wmin during operation is used as the
key element to describe this task type, and the following three variables according to wmin is
selected as the descriptors for this task type (Fig. 4.1(c)): 1) the distance dwmin between the
robot center and wmin; 2) the angle ψwmin between the robot heading and wmin, since when
following a wall, the robot moves approximately along the surface of the wall, this angle
ought to be around 90°; 3) the angle θwmin between the user input vector u and the vector
rwmin from the robot center to wmin. dwmin , ψwmin and θwmin together indicate whether the user
drives the robot to approach a wall and then moves the robot approximately along the wall to
follow it (on either left or right side), which is observed to be the usual motion pattern of this
task type.

4.2.4 Robot Docking

The user usually executes this type task to drive the mobile robot to dock into a recharging
station, or a table for further inspection, which can be quite difficult for the mobile robot
teleoperation, especially when the gap of the docking area is narrow. The center point of a
docking area oc is used as the key element to describe this task type, and the following three
variables based on oc are employed as the descriptors for this task type (Fig. 4.1(d)): 1) the
distance do between the robot center and oc; 2) the angle ψo between the robot heading and
oc; 3) the angle θo between the user input vector u and the vector ro from the robot center to
oc. ψo indicates whether the human operator rotates the robot to face a docking target. θo

represents whether the user moves the robot towards a docking target in reality.
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Although Robot Docking and Doorway Crossing share the similar motion pattern, the
former one has different application cases and requires different contextual information, thus
it is considered as a separate task type to recognize besides the latter one in this chapter.

Based on the definitions of the task features for each task type, the following part describes
the RBF and the GMR implementation of the filter.

4.3 RBF for Task Recognition

The task recognition problem is to estimate the distribution over the task parameters it and φφφ t

with the user input ut . To achieve this, a RBF is employed to filter this distribution over time,
with the task parameters being its state variable: xt = (it ,φφφ t). A RBF is a first-order Markov
model, whose belief of the state variable bt = P(xt |u1, ...,ut ,z1, ...,zt ,m) is maintained
during operation, where m stands for the map of the environment, and zt represents the
sensor measurement vector at time t. Such a model is shown in Fig. 4.2.

Fig. 4.2 Graphical model of the contextual task recognition system

The RBF is updated to derive the belief over xt+1 using the recursive manner as follows:

bt+1(xt+1) =p(xt+1|u1, ...,ut+1,z1, ...,zt+1,m)

=η · puser(ut+1|xt+1,zt+1,m)

·
∫

xt

pprocess(xt+1|xt ,ut ,zt+1,m)bt(xt)dxt , (4.3)

where:
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1. puser is the user model, which describes the likelihood that the user issues the mo-
tion command ut+1 to execute a specific task indicated by the state variable xt+1 =

(it+1,φφφ t+1) and the sensor measurement zt+1. It is the cornerstone of the proposed
approach, since it encodes the implicit task execution process of the user.

2. pprocess is the state transition model, which predicts the distribution over xt+1 based on
zt+1 and the prior information of the system xt , ut .

3. η is the scale factor to normalize the probability distribution.

Since the model is a first order Markov chain, it is reasonable to assume that: the task
feature φφφ encodes the necessary information from the sensor measurements z for the task
inference, and the state variable x is complete to represent the user intention in the context of
task inference. Therefore, the sensor measurements z and the map m will be left out both in
the user model and the state transition model for notation simplicity:

bt+1(xt+1) =η · puser(ut+1|xt+1)

·
∫

xt

pprocess(xt+1|xt ,ut)bt(xt)dxt . (4.4)

The implementation of the GMR based user model and the state transition model are
introduced in the following two parts respectively.

4.4 GMR based User Model

The derivations of GMR from GMM are common knowledge in machine learning[178]. To
smooth the presentation of the proposed approach in this chapter, the symbols and derivation
results in [82] are employed to briefly introduce the knowledge in below. For more technique
details of GMM and GMR, the readers are kindly referred to [82] and [178]. In the following
part of this section, x and y denote two random vectors, and they are assumed to jointly
distribute to a GMM with h components. Given x, p(y|x) is a GMM by applying the Gaussian
conditioning operation to each component in the GMM, and re-weighting the components
accordingly. The final model is a GMR model:

GMR(y|x) = 1
z

h

∑
c=1

ωc,xN (y; µµµc,y|x,ΣΣΣc,y|x) (4.5)
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where z is a normalization factor and ωc,x is the recalculated weight for the component c:

ωc,x = πc p(x|c) (4.6)

where πc is the weight for the component c in the joint GMM, and

p(x|c) = N (x; µµµc,x,ΣΣΣc,x) (4.7)

is the marginal probability that x is drawn from the component c in the joint GMM. Each
component p(y|x,c) in the GMR model has the mean µc,y|x and the covariance ΣΣΣc,y|x respec-
tively:

µµµc,y|x = µµµc,y +ΣΣΣc,yxΣΣΣ
−1
c,x(x−µµµc,x)

ΣΣΣc,y|x = ΣΣΣc,y−ΣΣΣc,yxΣΣΣ
−1
c,xΣΣΣc,yx

(4.8)

which are determined using the Gaussian conditioning operation from the joint GMM.

For different task types it , a separate GMR model is used for each of them. Therefore,
the user model puser is represented as:

puser(ut |xt) = puser(ut |it ,φφφ t)

= GMRi(ut |φφφ t).
(4.9)

The task features encode the contextual information from both environment and the user
input, and it is assumed that the GMR model will encode the high variance in the angle
parameters seen when facing and approaching the target. To leverage this in the probability
computation, d is used as the input data, and ψ and θ as the output data for regression2

within different task types i to further implement the User Model of the RBF:

puser(ut |xt) = puser(ut |it ,φφφ t)

= GMRi(ψ
i
t ,θ

i
t |di

t).
(4.10)

For training a GMM, the Expectation-Maximization (EM) algorithm [44] is used. To
decide the optimal number of components h of a GMM, the Bayesian Information Criterion
(BIC) [166] is employed for its simplicity and satisfying performance. Specifically, multiple
models are firstly estimated with an increasing number of components, and the BIC score of

2For Doorway Crossing, d = dq, ψ = ψq, θ = θq; for Object Inspection, d = dsmin , ψ = ψsmin , θ = θsmin ; for
Wall Following, d = dwmin , ψ = ψwmin , θ = θwmin , and for Robot Docking, d = do, ψ = ψo, θ = θo, respectively.
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each model is calculated to select the best among candidates:

sBIC =−l +
np

2
log(k) (4.11)

where k is the number of d−dimensional datapoints, l =∑
k
j=1 log(p(ξξξ j)) is the log-likelihood

of the model using the demonstration data {ξξξ j| j = 1, ...,k} as the test set, and np is the num-
ber of free parameters required for a GMM with h components and full covariance matrix:

np = (h−1)+h
(

d +
d(d +1)

2

)
. (4.12)

As can be seen from its definition, the BIC score trades off between optimizing the model’s
likelihood and minimizing the number of parameters required to encode data.

4.5 State Transition Model

For the state transition model pprocess, since the human operator issues the input based on the
contextual task to be executed, the evolution of the user intention x is independent from the
user input:

pprocess(xt+1|xt ,ut) = p(xt+1|xt). (4.13)

During the operation, it is assumed that before an intentional task is completed, the user
will not switch to other tasks, which means that the user has only one clear intention in mind
during the task execution. Therefore, the state transition model can be described as follows3

pprocess(xt+1|xt) =

σ if xt+1 = xt = γ

1−σ if xt+1 ̸= xt = γ,
(4.14)

where γ represents an intentional contextual task, and σ is the transition coefficient, which
is a time scale factor and decides how fast the intention distribution switches back to the
uniform distribution. Considering the above assumption and to get a balance performance, σ

is set to 0.95 in this work.
3The equality between two contextual tasks performed sequentially (xt and xt+1) indicates that they both: 1)

belong to the same task type, i.e. “cross a doorway”; 2) are executed with the same semantic target, i.e. “cross
the doorway in front” (instead of other doorways in the scenario).
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Combined with the user model stated above, the complete task recognition framework
(Eq. (4.4)) proceeds as follows: each time a set of candidate tasks is firstly predicted using
pprocess, then the observed user inputs are applied to update the belief distribution with puser

and the Bayes rule.

The next section introduces how to integrate the proposed contextual task recognition
approach into the proposed shared autonomy system.

4.6 Motion Command Arbitration

Based on the filtered belief over task variables bt(it ,φφφ t), the most probable on-going task
can be determined using the MAP method:

(it,max,φφφ t,max) = argmax
(i,φφφ)

(bt(it ,φφφ t)). (4.15)

The corresponding probability of this task is denoted as pmax.

Hence the arbitration factor: βt = pmax is obtained. The robot motion command gt can
be generated using the state-of-art motion controllers with the recognized task type and the
associated task features: (it,max,φφφ t,max). Then the user input is combined with the robot
motion command according to the arbitration factor (see Eq. (3.2) in Chapter 3) to be sent
for execution, and in this way the proposed task recognition approach is integrated within the
proposed shared autonomy system.

To enhance the flexibility of the proposed system by enabling it to learn new tasks on
the fly while being interactively taught by the demonstrator, the next section reports the fast
online GMR algorithm and its application in the proposed RBF framework.

4.7 Fast Online and Incremental GMR Algorithm

To provide demonstration online, the human operator firstly inputs the task type and selects
the associated semantic target (e.g., a doorway or an object) to demonstrate via a graphical
user interface, then the operator drives the robot to complete the demonstration, finally the
demonstration data of each task type i are stored in the form of the corresponding task
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features (denoted as Di). This framework is inspired by [78], which favours an incremental
adaptation of robot action through demonstration on the fly.

During task recognition, the task feature of each candidate semantic target φφφ t (see Sec.
4.2 of this chapter) is firstly obtained based on the current information of the environment,
robot and user command, then the FANN search algorithm presented in [128] is applied to
the demonstration dataset of the corresponding task type i to extract a local database Di(φφφ t)

consisting of the k points closest to φφφ t . Di(φφφ t) is now used by the EM algorithm to train the
GMM4 with a very few number of the mixture components (denoted as h, which is usually 2
or 3).5 Finally, an online GMR model is derived accordingly from the trained GMM, which
is employed together with φφφ t by the User Model (Eq. (4.10)) to predict the likelihood of the
corresponding candidate task type and the associated semantic target. An overview of the
proposed fast online GMR algorithm and its application in the proposed RBF framework can
be seen in Alg. 1.

The FANN algorithm has already shown to be quite efficient in updating the retrieval of
high-dimensional computer vision data. Through some off-line tests, it is noticed that it costs
just a few milliseconds for the EM algorithm to build a GMM consisting of 2 or 3 mixture
components with around 25 points on a standard PC, which is enough for the application
of this thesis, and the process speed of the proposed approach will be further investigated
in the experimental section. Since the motion pattern of each task type is supposed to be
distinctively described with the corresponding task feature (will be evaluated in Chapter 7), h
and k need not to be altered when the new demonstration is introduced, thus it can always
quickly build the model online and on-demand without heavy re-computations within this
framework.

4.8 Summary

This chapter reported a multiple contextual task recognition approach to address the research
problem of this thesis. To overcome the challenge of modeling the implicit way the user
executes a certain task and incorporate the uncertainty of the user intention, a batch GMR
model combined with a RBF was adopted to infer the on-going tasks based on the raw user
inputs and the environmental information, i.e. the contextual information. The proposed

4In order to simplify the computation, a diagonal matrix is employed to implement the covariance matrix of
each Gaussian component of the model.

5k is typically larger than h multiplied by the state dimensionality of the GMM.
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Algorithm 1 Fast Online GMR Algorithm for the User Model of the RBF
1: for each task type i ∈ 1, ...,m do
2: Given incrementally accumulated demonstration dataset Di
3: Given user input ut at time t
4: for each corresponding candidate semantic target o ∈ O do
5: φφφ t ← ut and o following Sec.4.2
6: Di(φφφ t)← by applying FANN algorithm to Di with φφφ t
7: GMMi← by applying EM algorithm to Di(φφφ t)
8: GMRi← GMMi according to Eq. (4.5)
9: GMRi is used by the User Model of the RBF in Eq. (4.10) to predict the likelihood

of i and o at time t
10: end for
11: end for

approach was applied to the problem of operating a mobile robot in the context of four
representative task types: doorway crossing, object inspection, wall following and robot
docking. A set of simple, compact yet highly distinctive task features were introduced
to describe the motion patterns of the human operator executing different contextual task
types. Such task features scale with multiple candidate targets and properly encode the user
intentions from demonstrations. The task features are adopted by a GMR model combined
with a RBF to infer the most probable task the human operator executes across multiple
candidates during operation in a batch way. The BIC was employed to select the best GMR
model. To realize the RBF, the State Transition Model of the RBF was implemented, and the
associated assumptions to simply the implementation were reported. After this, this chapter
showed how to integrate the proposed task recognition approach within the proposed shared
autonomy system by motion arbitration with the task estimation results.

In the final part of this chapter before conclusion, a fast online GMR algorithm was
introduced to render the proposed approach possible to learn and recognize contextual tasks
online and incrementally. The demonstration data for different task types were assumed to be
stored incrementally in the form of task features when the user introduced new demonstrations
on the fly. During the task recognition, the FANN algorithm was firstly employed to obtain a
small training dataset which was closest to the current robot state, then a small GMR model
was quickly built by the EM algorithm with the dataset. The proposed fast online GMR
algorithm can be seamlessly integrated with the proposed RBF to stably and smoothly infer
the most probable contextual task the human operator executes across multiple hypotheses.

To successfully apply the proposed contextual task recognition approach in reality, the
critical time scale factor σ in the State Transition Model of the proposed RBF has to be
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carefully tuned and decided. To avoid this, the contextual task recognition problem is to be
formulated as classification problem, and the classification technique is employed with the
feature data to obtain the task recognition result. This will be presented in the next chapter.



Chapter 5

Sparse Contextual Task Learning and
Classification using SOGP

This chapter formulates the task recognition problem as a classification problem, and reports
to use GP, a Bayesian non-parametric model, to learn and classify human motion patterns
performing various contextual task types from demonstrations. Due to Gaussian predictive
posterior distribution, GP provides superior informative uncertainty estimations in predicting
class labels over other state-of-art classification techniques, such as SVM, which is probably
the most popular approach on this topic to date. Such outstanding introspective capability
makes GP an appealing approach for a life-long active learning framework [95, 188, 187],
where it is not required that all classes are represented beforehand, but instead the system
is able to adapt its knowledge as it enters new environments, and learns during operation
by actively selecting unknown data to ask human for annotation and adding to the training
data, which is significant to fulfil the envision of a life-long adaptive assistive robotic system.
Meanwhile, to keep the model sparse to limit the amount of storage and computation required,
full GP is approximated with a state-of-art SOGP [37], to maintain scalability to large datasets
without compromising classification performance.

GP is gaining popularity on the topic of learning from demonstration in robotics [10].
Grollman et al. [79, 80] apply SOGP regression to learn and replay control policies from
demonstration for robot soccer. Paul et al. [146] employ a multi-class GP classifier to learn
to categorize the semantic information of outdoor scenes from 3D point cloud data with the
human labels. Berczi et al. [13] use a binary GP classifier to learn to assess the traversability
of the terrain from human demonstration. However, both works have to approximate the
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predictive posterior distribution obtained from GP with e.g. Laplace method, since they use
non-Gaussian likelihood model, such as probit regression model, to suppress the discrete
labels into continuous function values. In contrast, this chapter directly takes the labels as
the function values, and models the classification problem as a GP regression, resulting into
a closed-form solution for both the posterior distribution and the marginal likelihood (i.e.
the evidence of the model). Although Kapoor et al. [95] apply GP regression to classify
the objects from images, they achieve it with the full GP, where the amount of storage and
computation required can become extremely huge in the long run. To improve this, full GP
is approximated with a state-of-art SOGP [37] in this chapter, to maintain scalability to large
datasets.

The remainder of this chapter is organized as follows. Sec. 5.1 introduces the task
features to encode the motion patterns of the human operator executing various task types
from the contextual information. With the defined task features, Sec. 5.2 details the proposed
approach. Finally, the chapter is summarized in Sec. 5.3.

5.1 Task Feature

Without loss of generality, four contextual task types are considered to illustrate the proposed
approach: Doorway Crossing (DC), Object Inspection (OI), Wall Following (WF) and Object
Bypass (OB). To employ data-driven approach to learn the task execution patterns from
human demonstrations, these contextual task types are encoded with a set of task features.

As introduced in Chapter 4, a task feature1 q embodies an instance of a specific task type
with the task descriptors obtained from the contextual information, and is calculated in the
local coordinate frame fixed on the robot center. Fig. 5.1 illustrates concisely the scenarios
of the four task types and their task features respectively.

The user input u is issued from a mechanical joystick (Logitech F710 wireless gamepad),
which consists of translational velocities along x and y axes, and rotational velocity around z
axis in the robot’s local coordinate frame: u = (vx,vy,vω). Each input channel is normalized
to the range of (−1,1), where the positive sign indicates that, for the translational velocities,
the input is along the positive direction of the corresponding axis, and for the rotational
velocity, it is in the counter-clockwise direction around z axis.

1In this chapter, q is used instead of φφφ to denote a task feature, since φ(·) is adopted to represent the
Cumulative Density Function (CDF) of a standard normal distribution.
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The environmental information is encoded using the intentional target point to define
a task feature, which is extracted from the semantic components of indoor scenarios, i.e.
doorway, object and wall segment. More specifically, for the task type DC, the center point of
a doorway is selected as the intentional target point for the robot to reach or to cross. For OI
and OB, the nearest surface point of a segmented object to the robot center during operation
is chosen to be the intentional target point for the robot to follow, since the surface points of
an object implicitly characterize the shape of the object. Likewise, for WF, the intentional
target point refers to the nearest surface point of a wall segment to the robot center during
operation. In this chapter, a 2D LRF is employed to perceive the environment, hence the
intentional target point is denoted by a two-dimensional coordinate in the local frame of the
robot: s = (xη ,yη), but it is straightforward to extend the definition to 3D configuration.

According to the above introductions, a task feature can be expressed as q = (s,u). The
following part of this chapter is going to present in detail the proposed approach to learn and
recognize multiple contextual task types using the SOGP classifier.

5.2 Methodology

During operation, together with user input, each candidate environmental target reports a
query task feature q(c)

∗ , where c ∈ {1, ...,C}, and C denotes the number of the task types2.
By following the one-vs-all classification formulation, it is attempted to infer:

p(t(c)∗ |q∗,QL, t
(c)
L ), (5.1)

where t(c)∗ and t(c)L indicate the predictive label of q∗ (i.e. task type), and the labels of the
demonstration data QL respectively, with t(c) ∈ {−1,1}n representing the observation vector
of binary labels for the task type c with the dimension n.

To formulate the multiple contextual task classification problem using GP, a latent
function f is employed to generate a discrete label t for a data point q, which is represented
by a GP. Under the Bayesian paradigm, it is obtained:

p(t(c)∗ |q∗,QL, t
(c)
L ) ∝

∫
f
p(t(c)∗ |f)p(f|q∗,QL, t

(c)
L ), (5.2)

2The ∗ mark used in this subsection denotes that the corresponding variable is obtained during operation as
the query value, to distinguish it from the training data.
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(a) (b)

(c) (d)

Fig. 5.1 Four contextual task types for learning and recognition, and their corresponding
task features (q): (a) Doorway Crossing; (b) Object Inspection; (c) Wall Following; (d)
Object Bypass, where q = (s,u), s denotes the intentional target point extracted from the
corresponding semantic components, and u represents the user input issued from a mechanical
joystick.
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where the latent posterior p(f|q∗,QL, t
(c)
L ) can be written as:

p(f|q∗,QL, t
(c)
L ) ∝ p(t(c)L |f)p(f|q∗,QL). (5.3)

This equation probabilistically combines the smoothness constraints imposed via the
GP prior (p(f|q∗,QL)) and the information provided in the likelihood model (p(t(c)L |f)). By
assuming that the observed values t(c)L of the latent function f are corrupted with independent
Gaussian noise with variance σ2

(c), the Gaussian noise model is applied to compute the
likelihood:

p(t(c)L |f) =
1√

2πσ2
(c)

exp(−
(t(c)L − f)2

2σ2
(c)

). (5.4)

Since this likelihood model is Gaussian, it renders the latent posterior (Eq. (5.3)) Gaussian,
and further leads to a closed-form solution for the predictive posterior distribution (Eq. (5.2))
for inference:

p(t(c)∗ |q∗,QL, t
(c)
L ) = N (t(c)∗ ; µ

(c)
∗ ,σ2

∗(c)). (5.5)

Although it is originally developed for regression, Gaussian noise model has proven ef-
fective for classification [157, 95], whose performance typically matches the more expensive
likelihood models proposed for GP classification, such as probit and logit models which
require approximate inference due to non-Gaussian property.

It is assumed that f is zero-mean, and it can be obtained:

µ
(c)
∗ = kT

∗ (K+σ
2
(c)I)

−1t(c)L , (5.6)

where k∗ = κ(QL,q∗) and K = κ(QL,QL) denote the kernel values of the training set and
the query point, which are computed with the Square Exponential (SE) kernel :

κSE(q,q
′
) = exp(

||q−q′||2

2l2 ), (5.7)

where l is the characteristic length scale (a hyperparameter of the model). Hence the final
score of the multiple contextual task classifier is achieved by taking the maximal predictive
posterior mean across all task types:

µ
mc
∗ = max

c=1...C
µ
(c)
∗ , (5.8)
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and returning the corresponding task type3 c.

As indicated in Eq. (5.5), in addition to the predictive posterior mean µ
(c)
∗ , the posterior

variance from the classifier prediction for the task type c can also be computed:

σ
2
∗(c) = k∗∗−kT

∗ (K+σ
2
(c)I)

−1k∗+σ
2
(c), (5.9)

where k∗∗ = κSE(q∗,q∗). µ
(c)
∗ is unconstrained continuous value, thus in order to obtain

the probability estimation about the predictive label t(c)∗ of the query point q∗, it is needed
to consider the value p(t(c)∗ ⩾ 0), since the sign of t(c)∗ decides the binary label: t(c)∗ →±1.
GP classification provides with both the posterior mean as well as the posterior variance
when making prediction, hence these two values can be combined to compute the probability
estimation as:

p(t(c)∗ ⩾ 0) = φ(
µ
(c)
∗

σ∗(c)
), (5.10)

where φ(·) denotes the CDF of a standard normal distribution.

Regarding embedding the SOGP classifier into the proposed shared autonomy system
to assist mobile robot teleoperation: from Eq. (5.8) and Eq. (5.10), it is able to obtain
the probability of the maximal a posterior task type. This probability computed at each
sampling cycle of the robot corresponds to the arbitration factor βt . Thus the user input and
the robot motion command are blended according to βt to achieve motion assistance within
the proposed shared autonomy system, as described in Chapter 3.

Although GP is non-parametric, i.e. there is no explicit computation of model parameters
in the training step compared with the parametric models, e.g. GMM, it is still needed to
select appropriate set of the hyperparameters, e.g. the characteristic length scale for each
input dimension of the SE kernel (Eq. (5.7)), and the noise variance of the model, to improve
the performance of the GP classifier. Let Θc denote the hyperparameters of the binary
classifier for the task type c following the one-vs-all formulation. Θc is tuned based on
the concept of Empirical Bayes [157], where Θc are determined to maximize the marginal
likelihood or the evidence of the model: Θ̂c = argmaxΘc

log(p(t(c)L |QL,Θc)). Thanks to the

3If there exist multiple semantic components, the SOGP classifier returns both the task type label and the
associated semantic component with the highest score for each query point.
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Gaussian noise model, log(p(t(c)L |QL,Θ)) can be computed in closed form:

log(p(t(c)L |QL,Θc)) =−
1
2
(t(c)L )T (σ2

(c)I+K)−1t(c)L

− 1
2

log|σ2
(c)I+K|−Const. (5.11)

In this work, gradient-descent is used to maximize Eq. (5.11) to perform the model selection.

The full GP classification requires O(kN2) memory and O(kN3) time to perform inference
[157], where k is the number of the classes, and N is the size of the training datasets. These
high costs make it infeasible for the long-term robot learning scenario. To limit the amount
of storage and computation required, full GP is approximated with SOGP [37], where
only a subset of training samples, termed Basis Vectors (BVs), are selected to minimize
the Kullback-Leibler (KL)-divergence between the full GP, and one based on the BVs.
With suitable enlargement and deletion procedures, the maximum size of BVs (refers to
the capacity the SOGP) is maintained fixed, hence the required storage and computation
resources for processing the GP (for training and inference) are limited, which is significant
to scale with large datasets in the long run. Please refer to [37] for extensive technique details
of the algorithm.

5.3 Summary

This chapter formulated the contextual task recognition problem as one-vs-all classification
problem. The SOGP classifier, a Bayesian non-parametric model, was presented to learn and
classify human motion patterns performing various contextual task types from demonstrations,
due to its superior introspective capability and sparsity, which favours a lifelong active
learning scenario. Four representative contextual task types for mobile robot teleoperation, i.e.
Doorway Crossing, Object Inspection, Wall Following and Object Bypass, were considered
to explain the proposed approach, and the task features were defined to encode the motion
patterns of the human operator performing them, which are extracted from the environmental
information and the user inputs. To classify the query task feature with the demonstration
data during operation, the Gaussian noise model was employed to compute the likelihood
of the GP, resulting into the closed-form solutions of the predictive posterior distribution
and the model evidence of the GP. By maximizing the closed-form model evidence, the
hyper-parameters of the model can be optimized. To measure the similarity between the
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query feature data and the training data, the SE kernel was used to compute the covariance
matrix of the GP. To keep the model sparse to limit the amount of storage and computation
required, the full GP was approximated with the SOGP algorithm, to maintain scalability to
large datasets without compromising classification performance.



Chapter 6

Unsupervised Contextual Task Learning
and Recognition with DPGMM and
SOGP

This chapter will propose a novel approach to learn and recognize multiple contextual tasks
in an unsupervised manner. Since the way the human operator performs a contextual task to
complete an action primitive is implicit, the supervised learning approaches were employed
in the previous two chapters to derive the human motion patterns for various task executions
from labeled demonstrations. However, it is difficult for the human expert to manually
segment a demonstration into meaningful action primitives for the robot to learn, and in the
long run, the manual annotation will be error-prone to limit the applicability of the system,
when demonstration data for more and more task types need to be labeled.

To scale with such situation, an unsupervised contextual task learning and recognition
approach is reported, consisting of two phases. In the first step, DPGMM is used to cluster the
motion patterns of task executions from demonstrations without labels. The major advantage
of applying DPGMM for clustering is that the number of possible motion modes (i.e. motion
clusters) is inferred from the data itself instead of being manually specified a priori or
determined through model selection, which is required by using e.g. GMM and K-Means on
this topic. Moreover, it is able to discover both overlaps and distinctions of the task execution
patterns through clustering, and this can be used as the knowledge base for interpreting the
query patterns later on. Post clustering, a sparse non-parametric Bayesian method, i.e. the
SOGP classifier (introduced in Chapter 5), is used to classify the query feature point with
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the learned motion clusters during operation. Fig. 6.1 illustrates the concept of the proposed
approach.

Fig. 6.1 By manually operating a holonomic mobile robot, the demonstration trajectories of
the human operator performing various contextual tasks without labels for task types (top)
are collected. The demonstrations are transformed into a set of task features and provided to
DPGMM for clustering to represent the knowledge of the robot regarding the human task
execution patterns (bottom left). Then with the SOGP classifier trained using the learned
motion clusters, the aim is to interpret the motion patterns of the human operator performing
certain tasks during operation (bottom right). Example demonstrations for Doorway Crossing,
Object Inspection, Wall Following and Object Bypass are shown respectively (top), with the
arrows indicating the movement direction of the robot.

Furthermore, this chapter introduces an algorithm to predict local trajectory the human
operator intends to follow in the short term to perform corresponding contextual task in a
data-driven manner. Each motion cluster implicitly represents certain motion pattern of the
human operator for contextual task execution from demonstration. The proposed algorithm
works by utilizing this knowledge from the classified motion cluster, to formulate motion
assistance. It applies the proposed fast online GMR approach (please refer to Chapter 4) to
classified motion cluster with recognized contextual information. To regulate the prediction
accuracy, the Mahalanobis distance of each estimated trajectory way point is computed,
since each motion cluster is normally distributed. By thresholding the distance, the trajectory
prediction can be achieved within a predefined tolerance bound regarding the regression
outliers. The predicted trajectory for the corresponding contextual task execution is local,
because the user intention is modeled in this thesis as an action primitive to perform a
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contextual task, with the aim of providing immediate efficient motion assistance to the human
operator locally.

This algorithm bridges the task recognition part and the task motion assistance part in the
proposed shared autonomy framework, since the predicted trajectory is to be employed as the
reference model by the state-of-art mobile robot motion controller to generate safe motion
commands, which are blended with the user inputs according to the classification confidence,
to assist the human operator to carry out the intentional tasks actively and appropriately.
Fig.6.2 briefly illustrates this concept.

Fig. 6.2 In an example scenario, the robot is being operated to cross a doorway in front
(middle), where the target doorway is recognized with high confidence indicated by the bar
height. The proposed approach does regression on the classified motion cluster (the red bar)
with the user input and the recognized semantic target to predict the local trajectory (in blue)
the human operator intends to follow in the next steps for the corresponding task execution
(right). The estimated trajectory is to be employed by the state-of-art mobile robot motion
controller to generate safe motion command, which is blended with the user input according
to the classification confidence to achieve an adaptive task-aware motion assistance.

Regarding the application of unsupervised learning approaches on the topic of robot learn-
ing from demonstration [10], Krishnan et al. [106] propose to use hierarchical DPGMM to
segment the demonstration trajectories from robot-assisted surgeries in an unsupervised man-
ner. Later Murali et al. [129] extend this work by employing DPGMM and Deep Learning
to leverage video and kinematic data for task-level segmentation. Niekum et al. [136, 135]
report to apply the Beta-Process Autoregressive Hidden Markov Model (BP-AR-HMM) to
segment subtasks from demonstrated finite state machines without labeling them beforehand,
aiming to replay complex, multi-step manipulation tasks from demonstrations. This chapter



78 Unsupervised Contextual Task Learning and Recognition with DPGMM and SOGP

focuses on clustering and recognizing human motion patterns performing contextual task
types from unlabeled demonstrations, where DPGMM is used to achieve clustering without
manually indicating the number of possible task types a priori or determining it via model
selection. With the learned motion clusters, SOGP is employed to classify the query feature
point during operation, taking advantage of its superior introspective capability and scala-
bility to large datasets. Regarding the intentional trajectory prediction, although there are
state-of-art studies dealing with trajectory inference in the context of assisting wheelchair
user by sharing control [40, 41, 87, 88], they assume a set of candidate trajectories to reach
certain targets in the environment beforehand, and the inference is fixed to these candidates.
In contrast, the algorithm proposed here infers the intentional trajectory totally from the
human demonstration data with the contextual information, without making any assumptions
regarding the property of the trajectory a priori.

The remainder of this chapter is organized as follows. Sec. 6.1 describes the task
features to encode the human motion patterns for various task executions from the contextual
information. Sec. 6.2 introduces the proposed methodology in details. Finally, the chapter is
summarized in section 6.3.

6.1 Task Feature

Following the introduction and symbols in 5.1, a task feature q used in this chapter is built
with the intentional target point s and the user input vector u. In addition to s and u, the
angle θ between the partial user input vector uxy = (vx,vy) and the vector rs from the robot
center to s is also computed to be part of a task feature. θ represents the user input direction,
hence the movement direction of the robot, relative to s, which bridges two sources of
contextual information: environmental perception and user input, and vaguely indicates the
user intention for operating the robot regarding the corresponding semantic components.
Based on the above introduction, a task feature can be expressed as q = (s,θ ,u).

Although just doorway, object and wall are considered to construct task feature here, it is
intuitive to obtain task feature from more types of semantic components of the environment,
such as docking place, where the intentional target point is the center point of the docking
area, and the human target, e.g. when the task is to follow a human during telepresence, the
intentional target point of which can be the position of the detected human.
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The following section of this chapter details the proposed unsupervised approach to learn
and recognize multiple contextual tasks with the introduced task features.

6.2 Methodology

6.2.1 Motion Clustering with DPGMM

During demonstration, the task features q are computed from the target semantic components
of the scenario, which are described with no specific task type, i.e. unlabeled.

Traditional clustering approaches, such as GMM and K-Means, require that the number
of clusters must be specified a priori, or chosen via model selection, which is prone to under-
fitting or overfitting. This severely limits their usefulness when dealing with unstructured
data. However, recent work in Bayesian nonparametrics offers a principled way to overcome
these limitations.

To discover possible clusters of motion patterns (i.e. modes) from the unlabeled demon-
stration data, the Dirichlet Process (DP) prior is used on the dataset, which allows an infinite
collection of modes, and an appropriate number of modes is inferred directly from the data
in a fully Bayesian way, without the need for manual specification or model selection [16].
Mathematically, the DP is described with the stick-breaking process:

G∼ DP(α0H),

G ≜
∞

∑
k=1

λkδφk ,

vk ∼ Beta(1,α0),

λk = vk

k−1

∏
l=1

(1− vl).

Where G is an instance of the DP consisting of an infinite set of clusters/mixture compo-
nents, and λk denotes the mixture weight of the component k. Each data item n chooses an
assignment according to wn ∼ Cat(λ ), and then samples observations qn ∼ F(φwn). Since
qn is multi-dimensional real-valued data, F is taken to be Gaussian. φk is the data-generating
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parameter for the component k, which is drawn from the normal-Wishart distribution H with
natural parameters ρ0, facilitating the full-mean, full-covariance analysis.

At the heart of DPGMM is the inference technique, whose goal is to recover stick-
breaking proportion vk and data-generating parameters φk for each mixture component k, as
well as discrete cluster assignment w= {wn}N

n=1 for each observation from the demonstration
dataset, which maximizes the joint distribution:

p(Q,w,φ ,v) =
N

∏
n=1

F(qn|φwn)Cat(wn|λ (v))

∞

∏
k=1

Beta(vk|1,α0)H(φk|ρ0). (6.1)

A variational Bayesian variant inference algorithm, named Memoized Online Variational
Inference [86], is employed to infer the posterior (Eq. (6.1)). It scales to large yet finite
datasets while avoiding noisy gradient steps and learning rates together, and allows non-local
optimization by developing principled birth and merge moves in the online setting. For more
details regarding the algorithm, please refer to [86].

Each learned motion cluster is considered as an action primitive, it can be used with the
estimated semantic target to interpret the motion patterns of the human operator performing
certain contextual tasks in the form of trajectory the human operator intends to execute (will
be detailed in the last part of this section). Hence the robot can efficiently help with the
task execution by assisting the human operator to safely follow the intentional trajectory in
remote. From this perspective, it is supposed to classify the query task features obtained
from multiple candidate semantic components to the learned motion clusters, in order to find
the most probable cluster and the associated semantic component during operation. SOGP
classifier is employed to achieve this, and it will be covered in the following part.

6.2.2 Motion Classification with SOGP

To recognize which motion patterns (including the associated semantic targets) the human
operator executes, the SOGP classifier is employed to classify the query task features to the
learned motion clusters. How to adapt it to the application of this chapter will be briefly
introduced in this subsection. For more technical details regarding the SOGP classifier, please
refer to Chapter 5.
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Specifically, by following the one-vs-all formulation, it is attempted to infer:

p(t(c)∗ |q∗,QL, t
(c)
L ), (6.2)

where t(c)∗ and t(c)L indicate the predictive label of a query task feature q∗ and the labels of the
motion cluster data QL respectively, with t(c) ∈ {−1,1}n representing the observation vector
of binary labels for cluster c ∈ {1, ...,M}, where M is the number of the clusters. With this
problem formulation, the classification can then be achieved by following Eq. (5.6) - (5.8).

Although the motion clusters are not semantically labeled, they implicitly represent
the human motion patterns for performing certain contextual tasks from demonstrations.
Meanwhile, to formulate motion assistance for task execution, a reference model is needed
by the state-of-art mobile robot motion controller to command the robot to carry out the
desired task efficiently. Since it is non-trivial to manually devise reference model for each
candidate task, especially for those which are not yet considered, a data-driven approach
will be introduced in the following part to solve this issue, in order to bridge the task
recognition module and the task motion assistance module within the proposed shared
autonomy framework.

6.2.3 Trajectory Prediction with Fast Online GMR

Although the fast online GMR approach was initially presented in Chapter 4, it was aimed
for contextual task recognition in a supervised learning framework instead of trajectory
estimation by regression. In this part, the approach is applied to predict local trajectory
the human operator intends to follow in the short term for corresponding task execution by
regression with associated contextual information, to utilize the motion pattern knowledge
from the classified motion cluster. Moreover, the fast online GMR approach is extended by
considering the regulation of the prediction accuracy to suit the application. Such predicted
trajectory is to be used as the reference model by the state-of-art mobile robot motion
controller (e.g. work done in [160]) to formulate the corresponding motion assistance by
generating efficient motion commands.

During operation, a query task feature is computed with each candidate semantic compo-
nent in the environment. By applying the proposed SOGP classifier to classify each query
task feature into the learned motion clusters, the most probable query task feature is obtained
together with the assigned motion cluster cmax and the associated semantic component, by
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taking the maximal predictive posterior mean across all clusters and query task features (Eq.
(5.8)).

For the purpose of presentational completeness, the fast online GMR approach is briefly
summarized as follows. Given the learned training dataset D and the query value of the
regressors xt at time t, the FANN algorithm is firstly applied to D with rt to obtain a small
and local database D(rt) consisting of the k points closest to rt . D(rt) is then employed
by the EM algorithm to train a GMM with a very few number of the mixture components
(usually 2 or 3). Finally, an online GMR model is derived accordingly from the trained GMM
to predict the value of the dependent variables yt . The approach is listed in Alg. 2.

Algorithm 2 Fast Online GMR Algorithm
1: Given learned trained dataset D
2: Given query value of the regressors xt at time t
3: D(rt)← by applying FANN algorithm to D with xt
4: GMMrt ← by applying EM algorithm to D(rt)
5: GMRrt ← GMMrt

6: yt ← GMRrt (rt)

With the fast online GMR approach, the proposed local trajectory prediction algorithm is
listed in Alg. 3. In each iteration of the prediction, the query intentional target point s∗ is
firstly computed with the associated semantic component and the robot pose (i.e. the way
point along the trajectory). Then the fast online GMR approach is applied to cmax with s∗,
to obtain the predictive motion command for the robot (i.e. the user input u∗). The next
way point the human operator intends to drive the robot to reach (i.e. the robot pose in the
next iteration) is computed by applying the Robot Kinematic Model (RKM) with u∗, the
simulation time ∆t and the current pose of the robot.

Although such extrapolation procedure can be iterated forever, to achieve certain pre-
diction accuracy, an approach is proposed to terminate it reasonably. At each iteration, the
corresponding task feature qestimated is computed with the query intentional target point s∗
and the estimated user input u∗. Since each motion cluster, which consists of task features
q, is obtained with the proposed DPGMM method, it is assumed to be normally distributed,
thus its mean vector and covariance matrix can be easily computed beforehand. Then the
Mahalanobis distance for qestimated with respect to the assigned motion cluster cmax at each
iteration can be obtained. Use q̄cmax

and ΣΣΣcmax to denote the mean vector and the covariance
matrix of the assigned motion cluster cmax respectively, the Mahalanobis distance dmh for



6.2 Methodology 83

qestimated is computed according to its definition as:

dmh =
√

(qestimated− q̄cmax
)T ·ΣΣΣ−1

cmax
· (qestimated− q̄cmax

). (6.3)

Mahalanobis distance [38] is a measure of the distance between a query point and a
distribution, which is unitless and scale-invariant, and takes into account the correlations of
the data set. It is a usual measurement to detect outliers in regressions. Hence by thresholding
dmh, the trajectory prediction iteration can be terminated within a predefined tolerance bound
regarding the regression outliers. The choice of the fast online GMR approach for regression
is advantageous because of its outstanding performance over the batch GMR algorithm (will
be demonstrated with evaluations in Chapter 7) and simplicity for hyper-parameters tuning.

Algorithm 3 Trajectory Prediction with Recognized Contextual Information
1: Given the classified motion cluster with the highest score cmax
2: Given the semantic component associated with the most probable query task feature
3: Given the current robot pose pr
4: Given the RKM(vt ,∆t ,pt)
5: initialize pest← pr
6: initialize Traj_Pred←{}
7: initialize dmh← 0
8: while dmh < dmh_thres do
9: s∗← with the associated semantic component and pest

10: u∗ = (v∗x ,v
∗
y ,v
∗
ω)← by applying the fast online GMR model to cmax with s∗

11: qestimated← s∗ and u∗
12: dmh← Eq. (6.3) with qestimated
13: pt ← pest
14: pest← RKM(u∗,∆t ,pt)
15: Traj_Pred← Traj_Pred∪{pest}
16: end while
17: return Traj_Pred

The confidence of the predicted trajectory is represented by the confidence of the most
probable query task feature where the iteration begins, which is computed with Eq. (5.5).
Thus the robotic motion commands, which are generated by the state-of-art motion controller
using the predicted trajectory as the reference model, are blended with the human inputs
according to the classification confidence (please refer to Eq. (3.2) in Chapter 3). In this
way, a contextual-task-aware shared autonomy between human and robot is realized during
operation.
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6.3 Summary

Following the the strategy formalized in Chapter 3, this chapter reported an unsupervised
approach to learn and recognize human motion patterns performing various contextual task
types from unlabeled demonstrations, to facilitate autonomy sharing to assist mobile robot
teleoperation. The motion patterns were described with a set of intuitive, compact and salient
task features. The DPGMM was employed to cluster the motion patterns based on the task
feature data, where the number of potential motion components was inferred from the data
itself instead of being manually specified a priori or estimated through model selection.
Moreover, both overlaps and distinctions of the task execution patterns can be discovered
through clustering, which is used as a knowledge base for interpreting the query patterns
later on. Post clustering, the SOGP classifier was used to recognize which motion pattern the
human operator executes during operation, taking advantage of its outstanding confidence
estimation when making predictions and scalability to large datasets.

By applying the proposed fast online GMR approach to the classified motion cluster,
an algorithm was introduced in this chapter to predict local trajectory the human operator
intends to follow in the short term to perform corresponding task. In this way, the motion
assistance is formulated in a data-driven manner instead of being devised manually. To
calculate and threshold the Mahalanobis distance computed with each estimated way point,
the trajectory prediction can be achieved within a predefined tolerance bound regarding the
regression outliers. The predicted trajectory is to be employed as the reference model by
the state-of-art mobile robot motion controller to generate safe motion commands, which
are blended with the user inputs according to the classification confidence. In this way, the
proposed contextual-task-aware shared autonomy framework is realized.



Chapter 7

Evaluation

The previous chapters presented the proposed framework for sharing autonomy to assist
mobile robot teleoperation, and formalized the research problem to be tackled in this thesis.
To address the problem, a set of multiple contextual task learning and recognition approaches
were introduced, which serve as the major contributions of this thesis. This chapter exten-
sively evaluates these approaches, since they are the cornerstone of the proposed shared
autonomy system. The focus is on assessing the task recognition performance of these ap-
proaches in comparison with the baseline approaches in both simulation and with real robot,
in order to verify the scalability and effectiveness of the proposed approaches in contextual
task learning and estimation. The performance of the proposed shared autonomy system
in assisting the human operator with remote task execution in motion is also evaluated, to
demonstrate the merit of the proposed contributions in practice.

This chapter is structured as follows. Sec. 7.1 introduces the general settings of the
evaluations conducted in the following parts of this chapter. Sec. 7.2 evaluates the proposed
RBF framework (see Chapter 4) on multiple contextual task recognition with the GMR
models learned from human demonstrations in both simulations and real experiments. In
the same section, to evaluate the proposed fast online GMR algorithm, its task recognition
performance is compared with that of the batch GMR model, and its real-time property is
also tested.

In Sec. 7.3, the classification performance and the scalability to large datasets of the
proposed SOGP classifier (see Chapter 5) are investigated over the baseline classification
methods with real data. Meanwhile, the introspective capability of the proposed SOGP
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classifier in detecting potentially unmodeled classes in the test data is also examined. This
capability is critical for an active life-long learning scenario.

Sec. 7.4 reports the motion clustering and classification results with the proposed
DPGMM-SOGP approach (see Chapter 6) in real experiments, in order to evaluate its
effectiveness in learning and recognizing various contextual tasks in an unsupervised manner.
The same section also evaluates the performance of the proposed algorithm in estimating the
local trajectory the human operator intends to follow in the short term for corresponding task
executions.

Sec. 7.5 evaluates the proposed reactive shared autonomy approach (please refer to
Chapter 3) with a small user study in simulation, in order to demonstrate its effectiveness in
safely assisting the human operator with teleoperating a simulated quadrotor to navigate in
an indoor scenario.

In Sec. 7.6, a carefully controlled and repeatable user study with a significant number of
human test participants is conducted, in order to evaluate the performance of the proposed
contextual-task aware adaptive shared autonomy system over the baseline approaches in
assisting mobile robot teleoperation in a cluttered indoor scenario, and verify the necessity
and effectiveness of the most important concept proposed and implemented in this thesis:
providing proactive motion assistance by recognizing the motion intention and the associated
semantic components in a probabilistic way. Finally, this chapter is closed with summary in
Sec. 7.7.

7.1 Experiment Settings

The software of the proposed approaches is implemented within the Robot Operating Sys-
tem (ROS) framework due to its modularity. For simulation, the Gazebo Simulator was
employed. It is a 3D simulator with physics engines, and provides convenient interfaces
to the ROS framework. For real experiments, a holonomic mobile robot named Adaptive
Shared Autonomy Platform (ASAP) was used. As shown in Fig. 7.1, the robot consists of
two Segway-Omni 50 platforms, and employs two SICK LRFs for perceiving environments.
The on-board PC of the robot has an Intel Core i7 M620 Dual-Core processor, 4GB of RAM,
and is running Ubuntu 14.04, ROS (version: Indigo), Open Source Computer Vision library
(OpenCV), and the Point Cloud Library (PCL). A Logitech F710 wireless gamepad was
employed in both simulation and real experiments to issue user inputs and control the robot.
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Fig. 7.1 The test mobile platform ASAP

To facilitate providing demonstrations and evaluating the proposed contextual task recog-
nition approaches without the loss of generality of them, the registered information was used
throughout their evaluations in this chapter: the maps of the involved test scenarios were built
beforehand with the state-of-art Simultaneous Localization and Mapping (SLAM) algorithm
implementation [105] within ROS framework, since the robot adopts 2D LRFs for perceiving
environments, and it has already been open-sourced in the ROS framework. Then the global
positions of the robot in these maps were obtained with the state-of-art localization technique
available in the ROS framework.

Regarding the registered information of the candidate semantic components of the scenar-
ios, e.g. the global positions of doorways, objects and wall segments, there is unfortunately
no open-source solution for extracting and registering them during the SLAM process, neither
is such simultaneous mapping and semantic component localization the research topic of
this thesis. Therefore, the methods described in Appendix 8.2 were used to annotate the se-
mantic components of the scenarios afterwards. The proposed annotation approach treats the
constructed 2D occupancy grid map as an image, and applies OpenCV functions to process
such map image to propose the candidate semantic components for further annotations, to
reduce the manual workload to annotate a scenario from scratch. For more technique details
regarding these algorithms to process the map image, please refer to Appendix 8.2. Please
notice, the proposed contextual task learning and recognition approaches do not assume to
only work with the registered information.

Meanwhile, to evaluate the contextual task recognition performance of the proposed
approaches from learning the human demonstrations, the raw data were collected from the
human operator manually driving the robot to execute various predefined (yet unknown to
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the robot) contextual tasks with random initial poses, and the recorded data were processed
in a post-experimental stage, i.e. to analyse the data off-line.

During operation, each semantic component was associated with a candidate task to
be estimated in the proposed approaches, and in real applications, there usually exists
multiple candidate tasks, e.g. multiple doorways to cross, or multiple objects for inspection.
Accordingly, the proposed contextual task recognition approaches need to be capable of
robustly handling multiple hypotheses when inferring the on-going task the human operator
is performing. Consequently, a correct recognition of the contextual task refers to the correct
estimations of both the task type and its associated semantic components when evaluating
the task recognition performance of the proposed approaches in the following parts of this
chapter.

The next section focuses on evaluating the RBF and GMR based multiple contextual task
recognition framework proposed in Chapter 4 in both simulations and real experiments.

7.2 Evaluation of RBF Framework combined with GMR
on Multiple Contextual Task Recognition

To comprehensively evaluate the performance of the proposed RBF framework combined
with batch and online GMR models on multiple contextual task recognition, this section
starts with the experiments conducted in simulation with a sensor-equipped quadrotor, then
reports the evaluations with the holonomoic mobile robot ASAP in real scenarios. In the end,
the proposed fast online GMR algorithm is evaluated with the proposed RBF framework in a
variety of real tests.

7.2.1 Evaluation of RBF with Batch GMR in Simulation

A simulated quadrotor [125] was employed within the Gazebo Simulator to collect data for
further analysis. Apart from the basic sensors, e.g. an Inertial Measurement Unit (IMU) and
a sonar height sensor, the simulated quadrotor is also equipped with a 2D LRF, and a 2D
camera facing forward. The robot was controlled by the human operator with a joystick. Two
task types were considered, i.e. Doorway Crossing and Object Inspection, to evaluate the
proposed approach in simulation.
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As explained in Sec. 7.1, the maps of the involved test scenarios were built with the
state-of-art SLAM algorithm, and their semantic components, e.g. the doorways and the
object segments, were extracted and registered before the tests.

For simulation tests, more complex task features are adopted for describing the two task
types compared with those introduced in Chapter 4. To smooth the statements made in this
subsection, the employed task features for the two task types are concisely introduced in the
following part respectively.

7.2.1.1 Task Features for the Two Task Types adopted in Simulation

If not specified otherwise, the term distance used in the following part refers to the Euclidean
distance.

(a) (b)

Fig. 7.2 The task feature for each of the two task types: (a) Doorway Crossing; (b) Object
Inspection, an circular object is used here as an example, note that oc and smin are collinear
under this situation.

A. Doorway Crossing. The position of the center point of a doorway in the local coordinate
frame of the robot is denoted as qc = (xc,yc), and qea,qeb represent the two end points of the
doorway. The task feature for this type of task contains (Fig. 7.2(a)):

1. dq: the distance between the robot and qc.

2. θq: the angle between the robot heading and qc.

3. des: the smaller distance between the robot and qea,qeb.
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4. dem: the larger distance between the robot and qea,qeb.

B. Object Inspection. The related object for this task type is processed in 2D configuration.
For each candidate object which is segmented, its surface points are maintained:

S = {s|s ∈ ((x1,y1), ...,(xn,yn))}. (7.1)

The center point oc = (xc,yc) of the object is calculated as:

oc =
1
n

n

∑
i=1

si,si ∈ S. (7.2)

For each surface point s ∈ S, the unit tangential vector e at it can be decided by firstly
finding a straight line with s and its neighbouring surface points (four neighbouring points
were applied in the implementation) using Random Sample Consensus Algorithm (RANSAC)
[53], then taking the unit direction vector of the straight line as e. A task feature for this task
type consists of (Fig. 7.2(b)):

1. do: the distance between the robot and the oc.

2. θo: the angle between the robot heading and the oc.

3. dsmin: the distance between the closest surface point of the object smin and the robot.

4. vsmin: which is determined as:

vsmin = |esmin ·u|, (7.3)

where u is the normalized vector of the user input, esmin is the unit tangential vector at
the closest surface point smin. In practice, to obtain a smooth result and compensate
for the possible sharp change of the direction of the unit tangential vector, esmin was
computed by averaging the unit tangential vectors at smin and its neighbouring points
(four neighboring points were used in the implementation).

7.2.1.2 Training Data Gathering and Model Selection

For each task type, there is a corresponding environment scenario to provide demonstrations,
which is depicted in Fig. 7.7. The robot was controlled to execute a specific task type.
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For each task type, the demonstrations were done for eight times starting and ending with
different poses. The task features and the user inputs were collected to assemble into a single
training dataset for the corresponding task type: (i,φφφ ,u). A joint GMM is learned offline
for each task type, and the user model GMRi (Eq. (4.9) in Chapter 4) for the task type i is
derived accordingly, which is then applied online to update the RBF (Eq. (4.4) in Chapter 4).

(a) (b)

Fig. 7.3 The demonstration scenarios for two task types: (a) Doorway Crossing; (b) Object
Inspection, one possible demonstration is illustrated with the blue arrows.

For model selection, a set of candidate GMMs are computed with up to ten components
using the demonstration data, and the model with the best score are chosen according to Eq.
(4.11) in Chapter 4. Finally, the optimal model for the task type Doorway Crossing has five
components, while the one for the Object Inspection consists of four components.

7.2.1.3 Testing in More Complex Scenarios

To verify the effectiveness of the learned models, several more complex test scenarios are
applied. They contain more candidate targets compared to only one target in each of the
demonstration conditions. Due to its intuitiveness and simplicity, an exponential based
confidence function similar to [24] is adopted as the baseline method to compare with
the proposed approach (although in [24] the authors do not provide the evaluation results
regarding the intention recognition):

c = e−kα α·kβ β . (7.4)
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For the task type1 Doorway Crossing, α = dq, β = |θq|; for Object Inspection, α = dsmin ,
β = |1− vsmin|.

Five volunteers operated the robot to execute the task with the pre-specified goal(s)
(unknown to the robot) for two times in each of the test scenarios starting and ending at
random poses. To facilitate a clear intention expression, the test participants were provided
with the global view of the simulated world during the tests as shown in the following
scenario captures. The trajectory, the corresponding task features and user inputs along were
recorded during each test. Each user test trajectory is taken, and each of the two estimation
methods is applied with the corresponding task features and user inputs at every point along,
in a post-experimental stage. The percent of time (success rate) is measured across each
trajectory when the correct goal(s) is identified, obtaining ten test results for each of the
scenarios. The Wilcoxon matched-pairs signed rand test is chosen for the comparison of the
test data pairs without normal distribution.

After being tuned according to the experiment data with reasonable efforts, the scaling
factor kα of the baseline method is set to 0.05 for the doorway crossing task, and 0.3 for the
object inspection task, while kβ is set to 2.0 and 0.2 respectively.

A. Doorway Crossing with Two Doorways.

This test scenario consists of two doorways, and the robot was controlled to cross one of
them (the goal doorway), as illustrated in Fig. 7.4(a).

Fig. 7.4(b) shows the means and standard errors of the success rate for the proposed
approach vs. the baseline method. The Wilcoxon matched-pairs signed rank test confirms
that the success rate of the proposed approach is significantly higher than that of the baseline
approach (P < 0.0039).

Fig. 7.4(c) and Fig. 7.4(d) compare the two methods on one of the trajectories in this
scenario, colored in each case based on if the inference is correct (blue spheres), incorrect
(orange spheres) or unknown (yellow spheres). As can be seen from the figure, the proposed
approach is able to predict the goal earlier than the baseline method.

B. Object Inspection with Two Candidate Objects.

1dq, θq, dsmin and vsmin are defined in the task features of the corresponding task types in the subsection
7.2.1.1 of this chapter.
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(a) (b) (c) (d)

Fig. 7.4 The doorway crossing test with two possible doorways: (a) The scenario of the
test, the goal doorway is marked with the blue arrow; (b) Percent of time the estimation is
successful; (c) The recognition result of applying the proposed approach to one test trajectory,
correct estimations are depicted by blue spheres, incorrect situations by orange spheres
and unknown ones by yellow spheres respectively, the arrow indicates the point where the
successful recognition starts; (d) The recognition result of applying the baseline approach to
the same trajectory.

Similarly, in this test scenario there are two candidate objects (a circle and a rectangle),
and the robot was operated to move around one of them (the goal object), as shown in Fig.
7.5(a).

Fig. 7.5(b) shows the means and standard errors of the success rate for each of the two
approaches. The Wilcoxon matched-pairs signed rank test verifies that the correct estimation
rate of the proposed approach is significantly higher than that of the baseline approach
(P < 0.002).

Fig. 7.5(c) and Fig. 7.5(d) illustrate one of the trajectories in this scenario, colored in
the same way as the previous test scenario. As can be viewed, the proposed method can
recognize the correct goal earlier and much more stably than the baseline method.

C. Task with both Doorway Crossing and Object Inspection.

This test scenario aims to investigate whether the proposed approach can properly estimate
the user intention, when both task types: Doorway Crossing and Object Inspection are
possible. The robot was operated to firstly move around the object, then cross the doorway,
as depicted in Fig. 7.6(a). Therefore, the groundtruth of this test is Object Inspection at first,
then Doorway Crossing, and the test data collected along each trial trajectory were marked
in this way for the success rate calculation.
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(a) (b) (c) (d)

Fig. 7.5 The object inspection test with two candidate objects: (a) The scenario of the test,
the goal object is indicated with the blue arrow; (b) Percent of time the estimation is correct;
(c) The recognition result of applying the proposed approach to one test trajectory, correct
inferences are depicted by blue spheres, incorrect estimations by orange spheres and unknown
ones by yellow spheres respectively, the arrows display the movement direction of the robot
in this test trajectory; (d) The recognition result of applying the baseline approach to the
same trajectory.

Fig. 7.6(b) shows the means and standard errors of the success rate for the proposed ap-
proach vs. the baseline method. The Wilcoxon matched-pairs signed rank test acknowledges
that the success rate of the proposed approach is significantly higher than that of the baseline
approach (P < 0.002).

Fig. 7.6(c) and Fig. 7.6(d) display one of the test trajectories in this scenario, colored
in each case based on whether a certain task is clearly recognized (Object Inspection: the
cyan spheres; Doorway Crossing: the green spheres), or not (yellow spheres). The black
arrows illustrate the start of the task Doorway Crossing, while the orange ones display
the movement direction of the robot. As indicated in the figures, the proposed method
considerably outperforms the baseline method along this trajectory.

Considering the above results and discussions, and the fact that the baseline method
requires different parameters for different task types resulting from a fine tuning of the scaling
factors, the proposed approach can obtain an effective model with a relative small number of
demonstrations (eight per configuration), and provide the estimations in a unified framework.
Moreover, the results verify that the proposed approach fulfills the design goal for the system.
This further motivate the author of this thesis with high confidence to implement and evaluate
it on a real robot platform, which is reported in the next subsection.
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(a) (b) (c) (d)

Fig. 7.6 The combined test of the doorway crossing and the object inspection: (a) The
scenario of the test, the sequence of the task execution is marked with the blue arrows and
the numbers beside; (b) Percent of time the inference is correct; (c) The recognition result of
applying the proposed approach to one test trajectory, a cyan sphere represents the detection
of the object inspection task, a green sphere stands for the doorway crossing task, while
a yellow one means that no task is identified, the black arrow shows the split point of the
two tasks in this trajectory, while the orange ones display the movement direction; (d) The
recognition result of applying the baseline approach to the same trajectory.

7.2.2 Evaluation of RBF with Batch GMR using Real Robot

This subsection evaluates the proposed approach in a set of real scenarios with the holonomic
mobile robot ASAP introduced in Sec. 7.1. In addition to Doorway Crossing and Object
Inspection, two more task types were considered, i.e. Wall Following and Robot Docking,
for evaluation. More compact task features are adopted to describe the four task types, as
presented in Chapter 4. The involved scenarios were mapped and the corresponding semantic
components were extracted beforehand.

Similarly to simulation tests, for each task type, there is a corresponding environment
scenario for providing demonstrations, which is depicted in Fig. 7.7. The robot was controlled
to demonstrate each task type for five times starting from different poses. The models are
trained with the batch mode as introduced in Chapter 4.

To verify the learned models, the proposed approach was evaluated in a different scenario,
as illustrated in Fig. 7.14. It has one doorway, one table for docking, three objects for
inspection2 and two walls around the scenario (another side of the scenario is a long slope),
as indicated by the corresponding arrows respectively. It is a cluttered scenario and poses

2Note that these objects are different from the one (a dustbin) used to demonstrate the object inspection task
type in both shape and size.
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(a) (b) (c) (d)

Fig. 7.7 The demonstration scenarios for the four contextual task types: (a) Doorway
Crossing; (b) Object Inspection; (c) Wall Following; (d) Robot Docking. One possible
demonstration for each task type is illustrated with the blue arrows respectively.

challenge for estimating the intentional task of the human operator, since the recognitions of
the four contextual task types can confuse each other in this scenario.

(a) (b)

Fig. 7.8 The scenario used for the evaluation, which is captured from two angles. The
blue arrows indicate the candidate objects for inspection, the green one shows the table for
docking, the red one represents the doorway, and the violet ones denote the orientations of
the two walls. Note that another side of the scenario is a long slope.

Similar to the subsection 7.2.1, an exponential based reactive confidence function intro-
duced in [24] was employed as the baseline method to compare with the proposed approach:

C = e−kα α·kβ β . (7.5)



7.2 Evaluation of RBF Framework combined with GMR on Multiple Contextual Task
Recognition 97

For3 Doorway Crossing, α = dq, β = |ψq|; for Object Inspection, α = dsmin , β = |ψsmin|;
for Wall Following4, α = dwmin , β = ||ψwmin|−90°|; for Robot Docking, α = do, β = |ψo|.
The baseline approach is tuned experimentally with the reasonable efforts to achieve its
optimal performance.

During the tests, each of eight volunteers operated the robot to execute one task with
the pre-specified goals (unknown to the robot) in the test scenario (Fig. 7.14) starting from
random poses. The required task for each test participant was a sequence of two different task
types, e.g., to firstly inspect an object, then cross the doorway, or to firstly follow a wall, then
dock into the table, etc. The trajectory, the corresponding task features and user inputs along
were recorded during each trial, and finally eight groups of the test data had been recorded.

Each user test trajectory is taken, and each of the two estimation methods is applied with
the corresponding task features and user inputs at every point along, in a post-experimental
stage. The following values across each test trajectory are measured as the criteria to
comprehensively judge the recognition performance of different approaches: 1) Success Rate:
percent of time when the correct goal(s) is identified; 2) Error Rate: percent of time when
the wrong goal(s) is inferred; 3) Null Rate: percent of time when no target(s) is recognized.
The Wilcoxon matched-pairs signed rank test is employed to compare the success rates (the
most important criterion) of different approaches. It is appropriate for the comparison of the
test data without normal distribution.

Fig. 7.15 presents respectively the means and the standard deviations of the measured
three criterion values for the proposed approach against the baseline approach over all the
test trajectories. These results prove that the proposed approach has achieved the stable and
good performance to recognize all the required tasks in a cluttered scenario with multiple
candidates. The Wilcoxon matched-pairs signed rank test confirms that the success rates of
the proposed approach are significantly higher than those of the baseline approach (Eq. (7.5))
in all the test trajectories (P < 0.0006).

In the following parts of this subsection, to provide a qualitative comparison of the
performances of the two methods, the representative recognition results along four test
trajectories (which include all the four task types) by applying the two methods will be
illustrated respectively as examples, due to the page limits.

3dq, ψq, dsmin , ψsmin , dwmin , ψwmin , do and ψo are defined in the task features of the corresponding task types
in Chapter 4 respectively.

4When this task type is executed, |ψwmin | is supposed to be around 90°.
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Fig. 7.9 This figure illustrates the means and the standard deviations of the three criterion
values for the proposed approach against the baseline approach across all the test trajectories.

As shown in Fig. 7.10(a) and Fig. 7.10(b), the two methods are compared on one test
trajectory, where the robot was operated to firstly inspect an object, then cross the doorway,
colored in each case based on if the estimation was correct (blue spheres), incorrect (orange
spheres) or unknown (yellow spheres). The black arrows indicate the start point of the task
type Doorway Crossing, while the red ones show the movement direction of the robot. As
can be viewed from the figures, the proposed approach considerably outperforms the baseline
approach along this trajectory.

(a) (b)

Fig. 7.10 The recognition results of applying the proposed approach (a) and the baseline
approach (b) to one test trajectory, where the robot was moved to firstly inspect an object, then
cross the doorway. Correct estimations are illustrated by blue spheres, incorrect recognitions
by orange spheres and unknown ones by yellow spheres respectively. The black arrows show
the split point of the two task types in this trajectory, while the red ones denote the movement
direction of the robot along this trajectory.
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Fig. 7.11(a) and Fig. 7.11(b) illustrate respectively the recognition results along one
test trajectory by applying the two approaches, where the robot was controlled to firstly
follow wall, then inspect an object, colored in the same way as Fig. 7.10. As shown in
the two figures, the proposed method can correctly recognize the intentions of the human
operator with much shorter prediction time and better stability than the baseline method
along this trajectory, although at the very end of the trajectory the estimation performance of
the proposed approach declines due to the strong motion drifts of the robot when moving
sideways on the uneven floor of the scenario. Meanwhile, note that during the object
inspection phase, the inspection direction of the robot (in counter-clockwise direction) is
different from that depicted in Fig. 7.10 (in clockwise direction) when the robot was being
moved around the object, and the proposed approach can still correctly infer the action.

(a) (b)

Fig. 7.11 The recognition results of applying the proposed approach (a) and the baseline
approach (b) to one test trajectory, where the robot was operated to firstly follow wall, then
inspect an object. The color coding is the same as Fig. 7.10.

Fig. 7.12(a) and Fig. 7.12(b) display respectively the estimation results along one test
trajectory by employing the two methods, where the robot was operated to firstly inspect an
object, then dock into the table, colored in the same way as Fig. 7.10. As can be viewed
from the figures, the proposed approach considerably surpasses the baseline approach with
shorter prediction time and better stability along this trajectory. Note that, although the sizes
and shapes of the objects in Fig. 7.10 and Fig. 7.11 are different from the one (a dustbin)
used to demonstrate the object inspection task type (Fig. 7.7(b)), the proposed approach still
recognizes the action correctly and stably. This verifies the definition of the task features for
this task type.
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(a) (b)

Fig. 7.12 The recognition results of applying the proposed approach (a) and the baseline
approach (b) to one test trajectory, where the robot was moved to firstly inspect an object,
then dock into the table. The color coding is the same as Fig. 7.10.

Fig. 7.13(a) and Fig. 7.13(b) show respectively the recognition results along one
test trajectory by applying the two approaches, where the robot was controlled to firstly
follow wall, then cross the doorway, colored in the same way as Fig. 7.10. Although the
proposed approach performs better than the baseline approach along this trajectory, it does
not recognize the doorway crossing task type (i.e. the second part of the trajectory) as stably
as along the trajectory depicted in Fig. 7.10(a). The reason for this issue is that, in this part
of the trajectory, the robot was being moved along a big object which is so close to the wall
that it is perceived as part of the wall, thus the proposed approach recognizes such movement
more as wall following than doorway crossing. When the robot was being moved away from
the object, the proposed approach makes the correct estimations again. Meanwhile, note
that during the wall following phase, the robot followed the wall on the left side, while in
Fig. 7.11(a) it followed the wall on the right side, and the proposed approach can correctly
recognize the action in both situations. This validates the definition of the task features for
this task type.

In summary, the above results verify the effectiveness of the proposed RBF framework
combined with the batch GMR model for multiple contextual task recognition. It is trained
with a relative small number of demonstrations (five per task type), and considerably outper-
forms the baseline approach which requires a fine tuning of the parameters for recognizing
each task type, in a cluttered and challenging indoor scenario with a variety of real tests done
by different test participants.
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(a) (b)

Fig. 7.13 The recognition results of applying the proposed approach (a) and the baseline
approach (b) to one test trajectory, where the robot was moved to firstly follow wall, then
cross the doorway. The color coding is the same as Fig. 7.10.

The next subsection focuses on investigating the performance of the proposed RBF
framework combined with the proposed fast online GMR algorithm on multiple contextual
task recognition.

7.2.3 Evaluation of RBF with Fast Online GMR

The ASAP was employed to continue the experiments in this subsection. Three task types
were considered, i.e. Doorway Crossing, Object Inspection and Wall Following in this
subsection for evaluation. The same sets of task features as the previous subsection are used
to describe them. The involved scenarios were mapped and the corresponding semantic
components were extracted in advance.

The scenario used to evaluate the proposed approach is illustrated in Fig. 7.14. It contains
two candidate doorways, three candidate objects with different shapes and sizes, and two
walls around the scenario (another side of the scenario is a long slope), as indicated by
the corresponding arrows respectively. The scenario is cluttered and hence challenging for
estimating the intentional task of the human operator, especially considering that in this
scenario the inferences of the three task types can potentially confuse each other.

During the experiments, each of nine volunteers operated the robot to execute four tasks
with the pre-specified goal(s) (unknown to the robot) in the scenario (Fig. 7.14) starting
from random poses in such sequence: 1) to cross a doorway; 2) to inspect an object (in
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Fig. 7.14 The scenario used for the evaluation. The blue arrows indicate the candidate
objects for inspection, the red one represents the doorways, and the green ones denote the
orientations of the two walls. Note that another side of the scenario is a long slope.

random directions5); 3) to follow the wall (on either left or right side); 4) to firstly follow the
wall (on either side), then inspect an object (in random directions), finally cross a doorway.
The trajectories, the corresponding task features and the user inputs along were recorded
during each trial, and finally for each of the four tasks, nine groups of data had been recorded
respectively. The average speed of the robot during the experiments was approximately
0.3m/s. To compare with the proposed approach, the same method used in 7.2.2 is employed
as the baseline approach, and its parameters are tuned manually with reasonable efforts based
on the experiment data to achieve the optimal performance.

One group of the recorded data (till four groups) is randomly selected from each of the
first three tasks respectively as the demonstration data for the corresponding three task types
(all the recorded data of the fourth task are used for testing). Each of the remaining data
from the first three tasks after the demonstration selection and all the recorded data from
the fourth task are employed for testing, and each of the estimation methods is applied with
the corresponding task features at every point along, in a post-experimental stage6. The
same criteria as in the subsection 7.2.2 are adopted to comprehensively judge the recognition
performance of different methods, i.e. Success Rate, Error Rate and Null Rate. During each
incrementation, the Selection-Testing procedure is repeated three times.

Fig. 7.15 presents respectively the means and the standard deviations of the measured
three criterion values for the proposed approach7 against the baseline approach when execut-

5In clockwise or counter-clockwise direction after approaching the target object
6Before each test, the system is reset to eliminate the memory of the previous test.
7With the parameters: h = 3, k = 24, please refer to Chapter 4 for their definitions.



7.2 Evaluation of RBF Framework combined with GMR on Multiple Contextual Task
Recognition 103

ing the required four tasks, as the demonstration is incrementally added (from one to four).
As is shown, the proposed approach is able to incorporate new demonstrations incrementally
and correctly. These results also prove that, the proposed approach has achieved the stable
and good performance to recognize all the contextual tasks in a cluttered scenario with
multiple candidates, especially when more demonstrations are added, its performance has no
trend of degradation. The Wilcoxon matched-pairs signed rank test is employed to compare
the success rates (the most important criterion) across different approaches during each incre-
mentation. It is appropriate for the comparison of the test data without normal distribution. It
confirms that the success rates of the proposed approach are significantly higher than those
of the baseline approach across all the four tasks during each incrementation (P < 0.001).
Moreover, as is indicated in Fig. 7.15, by adopting only one demonstration, the proposed
approach has already obtained the high recognition scores for the four tasks. This affirms
the effectiveness of the task features for the corresponding task types, and also means that
the proposed approach is able to be quickly deployed, which is an important and valuable
advantage of the proposed approach for real applications.

Fig. 7.15 This figure illustrates respectively the means and the standard deviations of the three
criterion values for the proposed approach against the baseline approach when executing
the required four tasks, as new demonstrations were added incrementally (from one to four).
During each incrementation, the procedure of randomly selecting demonstration and testing
was repeated three times.
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Table 7.1 Average data process speed of the proposed online GMR algorithm during each
incrementation, together with the average numbers of the demonstration samples for all the
task types and the test samples over the four tasks respectively

Iteration
Average Numbers
of Demonstration

Samples

Average Numbers
of Test

Samples

Average Calculation
Time per Test

Point (ms)

Maximal Calculation
Time of All Test

Points (ms)
1x Demo 1893 27272 2.17618 18.3762
2x Demo 3266 25899 2.30633 16.4556
3x Demo 5347 23818 2.20749 16.6908
4x Demo 6833 22332 2.47746 17.1376

To investigate the process speed of the proposed approach, Table 7.1 reports during
each incrementation respectively the average numbers of the demonstration samples for
all the task types and the test samples over the four tasks, and the corresponding average
calculation time8 per test point and the maximal calculation time spent on all test points of
the proposed online GMR approach, since the Selection-Testing procedure is repeated three
times within each iteration. As is indicated, the proposed approach is able to be built and
filter the candidate tasks quite fast (averagely less than 2.5ms per test point, maximally below
18.5ms on one test point). This means that it is highly suitable for real time applications.

In the following parts of this subsection, to provide a qualitative comparison of the
performances of the two methods, the representative recognition results along one of the
test trajectories by applying the two methods after adopting four demonstrations will be
illustrated for each of the four tasks respectively as examples, due to the stable performance
of the proposed approach and the page limits.

As is shown in Fig. 7.16(a) and Fig. 7.16(b), the two methods are compared on one of
the test trajectories in the task of crossing a doorway, colored in each case based on if the
estimation was correct (blue spheres), incorrect (orange spheres) or unknown (red spheres).
Along the trajectory, the green arrows indicate the movement direction of the robot. As can
be viewed from the figure, the proposed approach is able to predict the goal much earlier
and more stably than the baseline approach, and it is not confused by the two objects nearby
during the recognition of this task, although the trajectory passes between them.

Fig. 7.17(a) and Fig. 7.17(b) illustrate respectively the representative recognition results
along one of the test trajectories by applying the two approaches in the task of inspecting the

8The calculation time refers to the total computation time spent on each test point to firstly train small GMR
models around the point (primarily resulting from the FANN and the EM algorithms) then to do the recognitions
for all the task types.
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(a) (b)

Fig. 7.16 The representative recognition results of applying the proposed approach (a) and
the baseline approach (b) to one test trajectory in the task of doorway crossing with four
demonstrations. Correct estimations are depicted by blue spheres, incorrect recognitions by
orange spheres and unknown ones by red spheres respectively. The green arrows denote the
movement direction of the robot along this trajectory.

target object, colored in the same way as Fig. 7.16. The proposed method can recognize the
correct action of the human operator with shorter time and better stability than the baseline
method along this trajectory, even when the recorded data are not smooth because of the
robot motion and the localization errors.

Fig. 7.18(a) and Fig.7.18(b) depict respectively the representative estimation results
along one test trajectory by applying the two approaches, where the robot was controlled
to follow the wall, colored in the same way as Fig. 7.16. As shown in the two figures, the
proposed method can correctly recognize the intention of the human operator with much
higher stability than the baseline method along this trajectory.

Fig. 7.19(a) and Fig. 7.19(b) display respectively the representative recognition results
along one of the test trajectories by employing the two methods in the task of firstly following
the wall, then inspecting an object, finally crossing a doorway, colored in the same way as Fig.
7.16. Along the trajectory, the black arrows indicate the start points of the following two task
types: Object Inspection and Doorway Crossing. As is shown in the two figures, the proposed
approach considerably outperforms the baseline approach along this trajectory. Note that
during the wall following phase, the robot followed the wall on the left side, while in Fig.
7.18 it followed the wall on the right side, and the proposed approach can correctly recognize
the action in both situations. Meanwhile, during the object inspection phase, although the
inspection direction of the robot (in clockwise direction) was different from that depicted in
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(a) (b)

Fig. 7.17 The representative recognition results of applying the proposed approach (a) and
the baseline approach (b) to one test trajectory in the task of object inspection after four
demonstrations were added. The color coding is the same as Fig. 7.16.

Fig. 7.17 (in counter-clockwise direction) when the robot was moved around the object, and
the shapes and the sizes of the two target objects are different from each other, the proposed
approach can still correctly infer this action in the two situations.

To further prove the proposed approach, the proposed online fast GMR approach9 is
compared against the batch mode based GMR approach10 over the dataset of the fourth
task assignment, which contains nine test trajectories, since it consists of all the three task
types. All the datasets of the first three tasks (nine trajectories per each task) are used as the
demonstration data for the corresponding task types. The above introduced three criterion
values are measured across each test trajectory to compare the recognition performance of
the two methods. Fig. 7.20 presents respectively the means and the standard deviations of
the three criterion values for the proposed approach against the batch mode based GMR
approach. It is confirmed with the Wilcoxon matched-pairs signed rank test that, the success
rates of the proposed approach are significantly higher than those of the batch mode based
GMR approach to recognize all the contextual tasks in this test (P < 0.001). It indicates
that, compared with the global model, the proposed online local model better encodes the
motion patterns of the human operator executing various contextual task types from the
corresponding demonstrations.

9With the parameters: h = 3, k = 24
10Within the batch mode, the GMM is trained and selected in the way introduced in Chapter 4. The trained

GMM uses the full covariance matrix.
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(a) (b)

Fig. 7.18 The recognition results of applying the proposed approach (a) and the baseline
approach (b) to one test trajectory, where the robot was operated to follow the wall, after four
demonstrations were added. The color coding is the same as Fig. 7.16.

In summary, a set of real tests are performed in a cluttered indoor scenario, and the results
verify the effectiveness of the proposed fast online and incremental approach for learning
and recognizing multiple contextual tasks the human operator executes.

The next section presents the evaluations of the SOGP classifier proposed in Chapter 5
on classifying multiple contextual tasks within a set of real tests.

7.3 Evaluation of SOGP on Classifying Multiple Contex-
tual Tasks

To evaluate the proposed SOGP classifier, the ASAP was still employed to collect data for
post-experimental analysis. Four task types were considered, i.e. Doorway Crossing (DC),
Object Inspection (OI), Wall Following (WF) and Object Bypass (OB), for evaluations, and
the task features introduced in Chapter 5 are adopted to describe them. The involved scenario
was mapped and the corresponding semantic components were annotated in advance, which
is shown in Fig. 7.26.

Seven volunteers operated the robot manually in the scenario, to execute each of four task
types for two times from random initial positions in random order respectively. Finally, 14
datasets (trajectories) were collected for each task type for further analysis, containing totally
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(a) (b)

Fig. 7.19 The representative recognition results of applying the proposed approach (a) and
the baseline approach (b) to one test trajectory in the task of firstly following the wall, then
inspecting an object, finally crossing a doorway, after four demonstrations were adopted.
Along the trajectory, the black arrows show the split points of the three tasks. The other color
coding is the same as Fig. 7.16.

2512,9841,5571 and 3416 way points11 for Doorway Crossing, Object Inspection, Wall
Following and Object Bypass respectively. Please notice, except Doorway Crossing, there
are two different movement directions for the other three task types recorded in the datasets:
Object Inspection (to inspect the target object in either clockwise or counter-clockwise
direction regarding the object), Wall Following (to follow the wall by either left or right side
of the robot) and Object Bypass (pass the target object by either left or right side of the robot).
This comprehensively represents the features of these task types and increases the complexity
of classification. The average speed of the robot during the evaluations was approximately
0.3m/s.

Apart from the SOGP classifier, SVM with SE kernel, K Nearest Neighbour (KNN) and
Random Forest (RF) are employed as the baseline classifiers for comparison. The LIBSVM
[33] implementation is used for SVM, and OpenCV implementation for RF. Across all
the following evaluations, the capacity of SOGP is chosen to be 500. In the following
experiments, two statements are to be verified. First, even being sparsified from the full
GP, the SOGP classifier outperforms the other classifiers in classification accuracy on real
data, and is capable of real-time update thanks to the adopted sparsity approximation (the
subsection 7.3.1). Second, the SOGP classifier provides considerably better uncertainty
estimation about the resulting class labels than the other classifiers, when being trained with
few classes (in the following evaluations two instead of four), demonstrating that the SOGP

11The data sampling rate was 5Hz, which was the sampling rate of the joystick.
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Fig. 7.20 This figure illustrates respectively the means and the standard deviations of the
three criterion values for the proposed approach against the batch mode based GMR approach
when estimating all the three contextual task types over the nine test trajectories. There
were nine demonstrations per each task type, which were adopted from the above introduced
experiments.

Fig. 7.21 The map of the scenario used for evaluation, where there are two candidate
doorways denoted by red arrows, three objects with different sizes and shapes indicated by
blue arrows, and two wall segments shown by violet arrows.

classifier is much more useful for detecting unknown classes in the training set, which is
promising for a life-long active learning system (the subsection 7.3.2).

7.3.1 Evaluation of Classification Accuracy And Process Speed

This subsection evaluates the classification performance of the four classifiers on the collected
datasets about their accuracies, which is the basic requirement for a classifier. Each classifier
is evaluated over the collected datasets with a five-fold cross validation, in a post-experimental
stage. Please notice, since each candidate semantic component of the scenario reports a
corresponding task feature q, a correct classification refers to the correct recognitions of
both the task type label c and the associated semantic target in the following evaluations.
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Table 7.2 Confusion matrix resulting from the SOGP classifier with the original test results
in numbers.

DC OI WF OB

G
ro

un
dt

ru
th DC 1550 102 286 84

OI 44 7226 2
WF 105 18 5020
OB 20 475 85 2329

Assigned Labels

In each fold, during training12, for SVM, KNN and RF, a grid-search is done on their
respective parameters over reasonable sets; while for SOGP, before approximation, the
(locally) optimized hyperparameters are obtained by maximizing the log evidence of the full
GP (Eq. (5.11) in Chapter 5) via gradient-descent.

Table 7.2 shows the confusion matrix of the SOGP classifier with the original test results
in numbers after the five-fold cross validation. Fig. 7.22 depicts the confusion matrix of
SOGP classifier, where values are normalized along rows. Thus the diagonal values represent
per-class recall. Fig. 7.23 visualizes its confusion matrix with values normalized vertically,
then the diagonal values represent precision. Overall, the SOGP classifier exhibits good
precision performance in the evaluations.
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Fig. 7.22 Confusion matrix (normalized) resulting from the SOGP classifier. Recall values
appear along the diagonal.

The confusion matrices of SVM, KNN and RF with the original test results in numbers
are shown in Table 7.3, Table 7.4 and Table 7.5 respectively. For further comparison, the
precision and the recall are combined into a Fβ -measure, as expressed in Eq. (7.6), where the
parameter β indicates the relative importance assigned to recall performance over precision.

12The training data are in the form of a set of task features computed from the groundtruth semantic
components.
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Fig. 7.23 Confusion matrix (normalized) resulting from the SOGP classifier. Precision values
appear along the diagonal.

Table 7.3 Confusion matrix resulting from the SVM with the original test results in numbers.

DC OI WF OB

G
ro

un
dt

ru
th DC 1223 520 279

OI 535 6825 15 233
WF 4686 457
OB 247 245 431 2189

Assigned Labels

Since the aim of the proposed approach is to provide motion assistance based on contextual
task recognition (i.e. the contextual-task aware shared autonomy), a high precision of
task classification is more critical for appropriate task motion assistance than a high recall
(i.e. it is better to provide no assistance than wrong assistance), thus β = 0.5 is chosen
to assign greater importance to precision over recall. Tab.7.6 compares the F0.5-measure
values of the classifiers after the five-fold evaluation. As can be viewed, the SOGP classifier
outperforms the other approaches in classification accuracy even being sparsified from the
full GP, meaning that the SOGP classifier is able to scale with large datasets in the long run
without compromising classification performance.

Table 7.4 Confusion matrix resulting from the KNN with the original test results in numbers.

DC OI WF OB

G
ro

un
dt

ru
th DC 1280 445 14 283

OI 478 6900 3 227
WF 20 4780 343
OB 347 262 554 1949

Assigned Labels
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Table 7.5 Confusion matrix resulting from the RF with the original test results in numbers.

DC OI WF OB

G
ro

un
dt

ru
th DC 1158 474 57 333

OI 514 6881 12 201
WF 11 4606 526
OB 370 174 425 2143

Assigned Labels

Table 7.6 F0.5-measure comparison for SOGP, SVM, KNN and RF after 5-fold cross valida-
tion.

Classifier SOGP SVM KNN RF
Doorway Crossing 0.87 0.61 0.61 0.57
Object Inspection 0.93 0.90 0.91 0.91

Wall Following 0.94 0.91 0.90 0.90
Object Bypass 0.84 0.70 0.68 0.67

Fβ =
(1+β 2)(precision× recall)

β 2precision+ recall
(7.6)

In addition to the classification accuracy, the speed of the SOGP classifier in data pro-
cessing is also very important, since it is demanded that the proposed approach possesses
real-time performance, in order to employ it in real applications. Towards this aim, 2500 way
points for each task type are (randomly) taken from the collected datasets, to incrementally13

update the SOGP classifier for each task type following the one-vs-all classification formu-
lation (see Chapter 5). The process speed of a SOGP classifier is measured as the average
data processed per second, including training and predication of a sample incrementally. The
process speed of the SOGP classifier is plotted for each task type in Fig. 7.24. As can be
viewed, the process speed of each SOGP classifier keeps above 100Hz, thus the proposed
SOGP classifier is demonstrated to possess the real-time performance.

13Due to its Online property, the SOGP algorithm is famous for the capability of being incrementally updated.
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Fig. 7.24 The sequential process speed of the SOGP classifier for each task type. For each
task type, there are 2500 positive samples, so there are totally 10000 samples per task type
used to update the corresponding SOGP classifier following the one-vs-all classification
formulation. The process speed of each SOGP classifier keeps above 100Hz, please note the
scale on y-axis.

7.3.2 Evaluation of Classification Uncertainty Estimation

In this subsection, the uncertainty estimates of the probabilistic classification output of the
four classifiers to new classes not used in training are compared with each other, since
the capability of a classifier to estimate the prediction uncertainty (i.e. the introspective
capability) is vital for robotic applications involving mission-critical decision making, such
as mobile robot teleoperation where this report focuses. It would not be expected that the
system is able to provide appropriate motion assistance to a previously unseen motion pattern
distinctive from the one used for training.

The classifiers are trained only on datasets from two classes (arbitrarily selected): Door-
way Crossing and Object Inspection. Data from Wall Following and Object Bypass are
presented for inference, resulting into a classification distribution over binary labels. The
normalized entropy value [76] of label distribution over each test point is computed. It
measures the uncertainty in the classification decision, hence characterizes the introspective
capacity of a classification framework:

hNE =
−∑c∈C p(q∗ ∈ c)logp(q∗ ∈ c)

hmax
, (7.7)

where hmax = log|C|, denoting the entropy of the |C|-dimensional uniform distribution
(|C|= 2 in this evaluation), and p(q∗ ∈ c) = p(t(c)∗ ⩾ 0). This value ranges between 0 and 1,
where a higher value expresses greater uncertainty in the classifier’s belief. For each way
point along each test trajectory in the following evaluations, the task feature of a way point
from the groundtruth semantic target is computed, and the four classifiers with this task



114 Evaluation

feature are queried to obtain its probability distribution over the binary labels, to facilitate
the computation of the normalized entropy value of this point, for ease of the introspection
comparison of the four classifiers.

The histogram of the normalized entropy values for each classifier is obtained, as depicted
in Fig. 7.25 respectively. As can be noticed, the SOGP classifier assigns clearly much higher
normalized entropy for a large majority of the inference points, while the other approaches
express comparatively much higher confidence in their classifications, by committing a
majority of the un-modelled points to one of the known classes with higher certainty (i.e.
lower normalized entropy). This signifies that, the SOGP classifier exhibits considerably
stronger indication of the presence of potentially un-modeled classes.
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Fig. 7.25 The normalized entropy histograms of the label distribution for SOGP, SVM, KNN
and RF respectively, where the black bars indicate the median normalized entropy for the
corresponding classifier. Please note the scale on y-axis.

In summary, the experimental results from a set of real tests confirm the statements
made in the beginning of this section: first, the SOGP classifier outperforms the baseline
classifiers in classification accuracy on the real data, and achieves real-time performance
during classification due to the adopted sparsity approximation; second, the SOGP classifier
provides considerably better uncertainty estimation over the resulting class labels than the
baseline classifiers, when being trained with few classes, affirming that the SOGP classifier
is much more useful for detecting potentially unknown classes in the training set, favoring an
active life-long learning scenario.
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The next section concentrates on investigating the performance of the DPGMM-SOGP
approach proposed in Chapter 6 on unsupervised learning and recognizing multiple contextual
tasks.

7.4 Evaluation of Unsupervised Learning and Recognition
of Multiple Contextual Tasks with DPGMM and SOGP

The ASAP was employed as the robotic platform to evaluate the proposed approach. The
average speed of the robot during the evaluations was approximately 0.3m/s. The involved
scenario was mapped and the corresponding semantic components were annotated before-
hand.

The following evaluations are made in a post-experimental stage. Since it is concerned
about whether the most probable semantic component estimated by the SOGP classifier
corresponds to the groundtruth target, the rate of the Correspondence Rate (CR) per test
trajectory is computed, and the Average Correspondence Rate (ACR) over all test trajectories
is obtained, to characterize the recognition performance of the SOGP classifier in the tests.
Additionally, to evaluate whether the most probable motion cluster found by the classifier is
able to appropriately interpret the motion patterns of a test trajectory, the average dissimilarity
of the most probable task feature to all points in the assigned motion cluster was computed
with each way point along each test trajectory, i.e. the Intra-cluster Average Dissimilarity
(ICAD), which measures the “tightness” of the most probable query task feature to the
assigned motion cluster. This metric is meaningful, since the tightness of the classifications
measures how well the proposed approach interprets the motion patterns of a test trajectory: a
good interpretation of motion patterns requires a low dissimilarity of the most probable query
point to the points in the assigned motion clusters. L2-norm was used as the dissimilarity
metric, and the Mean of Intra-cluster Average Dissimilarity (MICAD) over all way points
along all test trajectories was obtained, which was utilized together with ACR to evaluate
the performance of the proposed approach. Meanwhile, over the following evaluations post
clustering, the discriminative SVM classifier with the SE kernel was employed as the baseline
approach to compare with the generative SOGP classifier, and the capacity14 of the SOGP

14This choice is to make the SOGP classifier sparser than the SVM whose sparsity is denoted with the
number of support vectors after training, which will be shown in the following evaluations.
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classifier was set to be 500. The SOGP classifier has already been demonstrated to possess
the real-time performance in data processing in the subsection 7.3.1.

In the following evaluations, three statements will be verified to show that the proposed
approach serves as a generic framework for representing and exploiting the knowledge of
the contextual task executions from unlabelled demonstrations, with the aim of inferring the
contextual tasks the human operator performs. First, the proposed approach gives very good
recognition results on the test data sampled from the task types used for training in an indoor
scenario with multiple candidates, which satisfies the basic requirement for the approach (the
subsection 7.4.1). Second, the proposed approach is generalizable to appropriately interpret
the motion patterns of new task types not used for training (the subsection 7.4.2). Finally
and more importantly, the proposed approach is able to detect unknown motion patterns
distinctive from those used in the training set, due to the superior introspective capability of
the SOGP classifier (the subsection 7.4.3).

7.4.1 Performance Evaluation with Known Task Types

This subsection aims to evaluate the performance of the proposed approach on recognition of
the task types used for training in an indoor scenario with multiple candidates, which is the
basic criterion for the proposed approach.

The demonstration data were collected from six volunteers performing each of the four
contextual task types: Doorway Crossing (DC), Object Inspection (OI), Wall Following (WF)
and Object Bypass (OB) for two times, in an indoor scenario in random order with random
starting poses and semantic targets respectively. The map of the scenario is shown together
with the annotated candidate semantic components in Fig. 7.26. Totally, 12 trajectories
were obtained for each task type, and there were 2254 way points15 for Doorway Crossing,
6286 points for Object Inspection, 4104 points for Wall Following and 1827 points for
Object Bypass, respectively. Firstly, to show the motion clustering result qualitatively, all
the collected trajectories were employed as the training data16 to be clustered by DPGMM,
where the inference algorithm was applied iterating the initial number of clusters from 1 to
100, although the clustering results were generally consistent, the one with the highest log
likelihood (i.e. the evidence) was selected, to ensure good results. Fig. 7.27(a) displays the

15The data sampling rate was 5Hz, which was the sampling rate of the joystick.
16The trajectories used as the training data were transformed to the sequences of task features computed

from the groundtruth semantic components, while possessing no labels for the task types.
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discovered motion clusters and the feature data assigned to them in the form of a stacked
histogram, colored by the original task types. Moreover, the feature data with their first two
components (i.e. s = (xη ,yη)) are plotted on the joint space and colored according to the
original task types and the discovered clusters in Fig. 7.27(b) and Fig. 7.27(c) respectively.
As can be viewed, a majority part of Wall Following and Object Bypass feature data are
grouped into two sides, representing the motion patterns which are demonstrated in either left
or right side of the robot regarding the semantic targets for the two task types respectively.
Likewise, a majority part of Object Inspection feature data are assigned to two separate
clusters, although not evidently illustrated in in Fig. 7.27(b) and Fig. 7.27(c), corresponding
physically to the situations when the robot is demonstrated to inspect the target objects in
either clockwise or counter-clockwise direction. Upon consideration, they are reasonable
distinctions, and initially not thought of by the demonstrator. This property is critical, since
it allows the DPGMM to determine action primitives unknown even to the demonstrator.
Meanwhile, most motion clusters consist of a blend of feature data from multiple task types,
which represents the overlaps of the motion patterns of them, potentially resulting from
that the robot was always operated to firstly align with the target, then approach it during
demonstration. On the other hand, the split of the overlap feature data into a series of
clusters suggests that the DPGMM is finding too many distinctions, rather than not learning
to distinguish.

Fig. 7.26 The map of the scenario used for evaluations with different test fractions, and the
extracted semantic components, being denoted by arrows with different colors: doorways
(red), objects (blue), and wall segments (violet).

Then, to quantitatively evaluate the performance of the proposed approach, the collected
dataset was randomly split into test and training with test fractions varying as 0.25, 0.5
and 0.75 based on the trajectory number. In each test phase, the training data were firstly
clustered by DPGMM in the same way as above. Post clustering, the SOGP classifier and the
SVM classified each way point along each test trajectory with the learned motion clusters.
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Fig. 7.27 The qualitative result of motion clustering: (a) The stacked histogram shows the
discovered motion clusters and the feature data assigned to them, colored by the original task
types, please note the scale on y-axis; (b) The feature data, mapped into 2D with their first
two components and colored by the original task types; (c) The feature data, mapped into 2D
with their first two components and colored by the discovered motion clusters.

To determine the model parameters, for SVM, a grid-search was done on its parameters over
reasonable sets, while for SOGP classifier, the (locally) optimized hyper-parameters were
obtained by maximizing the evidence of full GP via gradient-descent. The test results within
different fractions are displayed in Table 7.7, including the numbers of the training samples,
the learned clusters and the support vectors used by SVM, the ACR and the MICAD of the
two classifiers, respectively. As can be viewed, the ACR of the SOGP classifier decreases
obviously compared between the test fraction 0.25 and 0.5, but maintains stable between the
fraction 0.5 and 0.75. The tightness measurements of the SOGP classifier keep stable across
the test fractions. In general, the SOGP classifier yielded very good recognition results even
being trained with much more clusters than the number of task types used for demonstration.
In comparison with SVM, being confirmed by the paired T test for the measurements of CR
and ICAD, the SOGP classifier performs considerably better than SVM in all test fractions,
even with a sparser representation denoted by the capacity size of the SOGP classifier and
the number of the support vectors used by SVM. This verified that the proposed approach is
able to correctly recognize the motion patterns it learns from the demonstrations.
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Table 7.7 The ACR and the MICAD comparison for the SOGP classifier and the SE SVM post
clustering with varying test data fractions, along with the numbers of the training samples and
the discovered clusters. The capacity size of the SOGP classifier and the number of support
vectors used by SVM are also listed in each test fraction for comparison of the sparsity of the
two classifiers.

Experiment Test Fraction 0.25 Test Fraction 0.5 Test Fraction 0.75
No. of Training Samples 10284 7718 3540
No. of Motion Clusters 14 16 12

Classifier SOGP SVM SOGP SVM SOGP SVM
Sparsity c: 500 sv: 1894 c: 500 sv: 896 c: 500 sv: 513

ACR 0.93 0.80 0.88 0.74 0.88 0.79
MICAD 0.88 1.11 0.87 1.16 0.87 1.32

7.4.2 Performance Evaluation with New Task Types

Apart from recognizing the learned motion patterns, it is also valuable to investigate whether
the proposed approach is generalizable to correctly capture new task types not used for
training. Therefore the test data from performing three new contextual task types were
collected: Wall Inspection, Robot Docking17 and Gap Crossing for two times each with
random initial poses respectively, in another cluttered indoor scenario whose map and the
corresponding semantic components are illustrated in Fig. 7.29. The whole dataset sampled
in the subsection 7.4.1, were provided for clustering (see Fig. 7.27) then training the SOGP
classifier and the SE SVM in the same manner, and the datasets collected in this subsection
were presented for inference. The ACR and the MICAD values of the two classifiers over all
test trajectories were computed to compare their recognition performance, which are listed in
Table 7.8, together with the numbers of the training samples, the discovered motion clusters
and the support vectors used by SVM.

It might be noticed that the ACR of the SOGP classifier achieved in this subsection is
obviously lower than that in the subsection 7.4.1. After analysis, it is found that it results
from the test trajectories for the task type Gap Crossing, where the groundtruth motion
pattern was to operate the robot to cross a small gap between two objects, and the SOGP
classifier was interfered by the two nearby objects when estimating the semantic targets along
the trajectory. Fig. 7.28 displays the most probable semantic targets estimated by the SOGP
classifier along one test trajectory (shown in Fig. 7.35(a)) from performing Gap Crossing,
which are denoted with star markers. The groundtruth target was “gap1”, which is indicated

17The robot was to be docked into a table.
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by a dashed line. As can be viewed, most incorrect estimations are caused by the two objects
forming the gap.
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Fig. 7.28 The most probable semantic targets estimated by the classifier along one test
trajectory (please refer to Fig. 7.35(a)), which are denoted with the star markers, and the
dashed line indicates the groundtruth target.

Overall, as confirmed by the paired T test for the measurements of CR and ICAD,
the proposed approach is able to recognize the new task types with considerably better
performance on the evaluation metrics using the sparser SOGP classifier than using the SVM.

Fig. 7.29 The map of the scenario used for evaluations with three new task types, and the
extracted semantic components, being denoted by arrows with different colors: gaps (red),
the docking target under the table (green), objects (blue), and wall segments (violet).

7.4.3 Introspection Evaluation with Distinctively Unknown Task Types

In real and long term applications, it is hardly possible to train the robot with all the needed
task types before deployment due to time and economic considerations on one hand. On the
other hand, as shown in the previous subsection, the robot is supposed to utilize the motion
clusters to generate autonomous motion commands, which assists the teleoperation by fusing
them with the user inputs based on the probability/confidence of the task recognition, thus
it would not be expected that the system can provide appropriate motion assistance to a
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Table 7.8 The ACR and the MICAD comparison for the SOGP and the SVM classifiers
post clustering on test data collected from performing three new task types, along with the
numbers of the training samples and the discovered clusters. The capacity size of the SOGP
classifier and the number of support vectors used by SVM are also listed for comparison of
the sparsity of the two classifiers.

No. of Training Samples 14471
No. of Motion Clusters 18

Classifier
Sparsity

SOGP
c: 500

SVM
sv: 2723

ACR 0.82 0.74
MICAD 0.90 1.11

previously unseen motion pattern distinctive from the one used for training, for example when
it is initially trained with Doorway Crossing and later applied to assist Object Inspection18,
even if the system correctly recognizes the corresponding semantic targets. Therefore,
for robotic applications involving mission-critical decision making, such as mobile robot
teleoperation where this report focuses, it is imperative to investigate a classifier’s capability
of uncertainty estimation when classifying the motion clusters for a query task feature, i.e.
the introspective capability [76] of the classifier. To characterize the introspective capability
of a classifier, the normalized entropy value [76] for each query point was computed based on
its discrete probability distribution over the discovered motion clusters. For each way point
along each test trajectory used in the following evaluations of this subsection, the task feature
of a way point from the groundtruth semantic target was computed, and the SOGP classifier
and SVM were queried with this task feature to obtain its discrete probability distribution
over the learned motion clusters, to facilitate the computation of the normalized entropy
value of this point, for ease of the introspection comparison of the two classifiers.

In this subsection, the dataset collected in the subsection 7.4.1 was used, where two task
types were arbitrarily selected for clustering then training the two classifiers: the SOGP
classifier and the SE SVM in the same way as the subsection 7.4.1, and the datasets from the
other two task types were used for inference, attempting to do the introspection evaluation
with distinctive motion patterns. In order to mitigate any influences of the specific training
and test data selected, such evaluation procedure was repeated across all possible task type
combinations for training, resulting into six groups of the normalized entropy values. The
mean and standard deviation normalized entropies of each of the six test groups are listed in

18Performing Doorway Crossing means to drive the robot to simply approach the target doorway, while
Object Inspection aims to not only approach the target object, but also move around it within certain distance
while facing it.
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Table 7.9 Mean and standard deviation normalized entropies from six iterations of training
and testing, where the datasets from two task types were used for training, and the rest data
were presented for inference. The total datasets are collected from performing four task types.
The MICAD measurements of the two classifiers in each test iteration are also listed.

Test Task Types Classifier Normalized Entropy
µ± std.err. MICAD

OI and WF SOGP
SVM

0.703 ± 0.402
0.498±0.351

1.30
1.52

OB and WF SOGP
SVM

0.900 ± 0.232
0.151±0.290

1.44
2.08

OB and OI SOGP
SVM

0.796 ± 0.369
0.354±0.215

1.52
1.56

DC and WF SOGP
SVM

0.550 ± 0.331
0.218±0.286

1.00
1.05

DC and OB SOGP
SVM

0.535 ± 0.367
0.304±0.332

1.01
1.12

DC and OI SOGP
SVM

0.857 ± 0.271
0.641±0.263

1.41
1.56

Table 7.9 respectively, together with the MICAD measurements of the two classifiers. As
confirmed with the paired T test, the mean normalized entropies for the SOGP classifier are
considerably higher than those of the SVM classifier, signifying that the former exhibited
greater uncertainty in the judgement, indicating strongly the presence of potentially un-
modelled motion patterns, which is also suggested by the high MICAD values (compared
with those in the subsection 7.4.1) across all test iterations, while the latter was extremely
confident in its classifications with lower values of the normalized entropy, even though the
high MICAD values imply a potential inappropriate interpretation of the motion patterns. In
practice, the robot can utilize this outstanding introspective capability of the SOGP classifier
to actively query for an update of the demonstration data without manual labels to increase
its knowledge regarding the uncertain motion patterns, which are potentially distinctive to
those already absorbed in its knowledge base. This property is vital to fulfil the vision of a
life-long adaptive assistive robot adopted by this thesis.
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7.4.4 Evaluation of Local Intentional Trajectory Prediction with Clas-
sified Motion Clusters and Recognized Contextual Information

This subsection focuses on evaluating the performance of the local intentional trajectory
prediction algorithm proposed in Chapter 6 with the classified motion clusters and recognized
contextual information. Regarding the parameters of the proposed algorithm, throughout the
following evaluations, the simulation time for extrapolation was set ∆t = 0.05s (i.e. 20Hz)
to be the same as the sampling period of the dataset, and the threshold of the Mahalanobis
distance of each predicted way point was set dmh_thres = 3.0 empirically. The fast online GMR
approach used 2 Gaussian components for regression, and employed diagonal covariance
matrix for each Gaussian component to simplify computation. Its training data size was 10.

The motion clusters obtained in the subsection 7.4.1 (please refer to Fig. 7.27) were
employed to train the SOGP classifier. The trained classifier was used to classify the motion
clusters and recognize the associated semantic components along the test trajectories. There
were three sources regarding the test trajectories, and all the test trajectories were recorded
from test participants manually driving the robot for certain predefined (yet unknown to the
robot) contextual tasks with random initial poses.

The first source was the nine trajectories collected from the human operator sequentially
performing three contextual tasks for nine times: firstly following the wall segment, then
inspecting an object, finally crossing a doorway. Such source contained the four contextual
task types used for clustering, i.e. Doorway Crossing, Object Inspection, Wall Following and
Object Bypass, and it was sampled from performing the fourth task assignment introduced in
the subsection 7.2.3. The second source was the six trajectories collected from the human
operator performing each of the three contextual tasks: Wall Inspection, Robot Docking
and Gap Crossing, for two times, and it was sampled from the evaluations made in the
subsection 7.4.2. These three task types were not demonstrated for clustering, but they share
motion similarity with the learned ones. Hence the aim of this source was to evaluate the
generalizability of the proposed approach. The last source was the five trajectories collected
in the same scenario as that used in the second source. They were recorded from two
volunteers manually driving the robot19 to execute a set of contextual tasks along the way in
the cluttered scenario, e.g. crossing a narrow gap, inspecting an object or a wall segment,
bypassing an object and docking into a table, with the aim of comprehensively evaluating the
proposed algorithm.

19Two test trajectories were obtained from one volunteer, while the rest three were collected from the other
one.
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Totally, there were twenty test trajectories, consisting of 15575 way points obtained from
different human operators controlling the robot to perform seven contextual task types20 in
different scenarios. Especially, they contained the samples collected from executing certain
task types in alternative ways, e.g. object inspection (in either clockwise or counter-clockwise
direction regarding the target object during inspection), wall following (to follow the wall
segment on either side of the robot), and object bypass (to pass the target object by either
side of the robot). Thus these twenty trajectories are the appropriate test datasets to evaluate
the scalability and effectiveness of the proposed approach (and the proposed DPGMM-SOGP
framework for unsupervised contextual task learning and recognition indirectly).

To comprehensively evaluate the proposed intentional trajectory prediction algorithm
(and also the proposed DPGMM-SOGP framework), the following tests are grouped into two
parts: the qualitative evaluations and the quantitative ones.

7.4.4.1 Qualitative Evaluations

In the qualitative evaluations, the proposed approach was applied to certain way points of
several test trajectories, to estimate local trajectories originating from them. The estimated
and the groundtruth trajectory segments starting from the same poses and possessing ap-
proximately the same length21 are drawn together, aiming to provide the visual comparisons
between the estimations and the groundtruth results. In the following comparison figures,
apart from the two trajectory segments with different colors, a bar is put on the most probable
semantic target recognized by the classifier at the applied way point, with its height indicating
the classification confidence. The footprint of the robot is also denoted with a pink polygon
in these figures.

Firstly, the performance of the proposed approach on estimating the four motion patterns
(including their possible variations) used for training are investigated. Fig. 7.30 illustrates
the four groundtruth trajectories adopted for these qualitative evaluations.

For Doorway Crossing, Fig. 7.31 depicts the comparison done at one way point of the
trajectory in Fig. 7.30(a). As can be noticed, the estimated trajectory matches the groundtruth
one quite well, and the correct semantic target is also recognized with high confidence,

20Doorway Crossing, Object Inspection, Wall Following, Object Bypass, Robot Docking, Wall Inspection
and Gap Crossing

21The length of a trajectory is obtained by accumulating the Euclidean distances (computed with x and y
coordinates of the recorded poses of way points) between its ordered pairs of way points.
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(a) (b)

(c) (d)

Fig. 7.30 The groundtruth trajectories for qualitatively evaluating the proposed approach
on estimating the four motion patterns used for training, where the robot was manually
operated to execute various contextual tasks in cluttered scenarios. The black arrows denote
the manually labeled split points of the sequentially performed tasks (when applicable), while
the green ones indicate the movement directions of the robot. (a) A sequence of tasks were
executed: the robot followed wall segment on its right side at first, then inspected target
object in counter-clockwise direction, finally crossed target doorway. (b) Similarly, the robot
followed wall segment on its right side at first, then inspected target object in clockwise
direction, finally crossed target doorway. (c) The robot moved among obstacles at first, then
inspected wall segment in one direction, finally docked into a table. (d) The robot moved
among obstacles to reach the other side.

demonstrating qualitatively the performance of the proposed approach in estimating this
motion pattern.

For Object Inspection, after approaching the target object, there are two operational
directions to inspect it, i.e. in either clockwise or counter-clockwise direction regarding the
target object. Fig. 7.32(a) compares the groundtruth trajectory segment (from the trajectory
in Fig. 7.30(a)) with the one estimated at the way point where the human operator was
driving the robot to approach the target object. Since the motion pattern of approaching
object has been learned from demonstrations, the execution of it can be captured with high

22The transparency of the groundtruth segment (in red) is increased to highlight the predicted one (in blue).
This practice is also applied to Fig. 7.36 and Fig. 7.37 for reader’s better understanding.
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Fig. 7.31 The estimated trajectory (blue) is compared with the groundtruth segment22 (red),
where the robot was being operated to cross doorway. The pink polygon represents the
footprint of the robot. A bar is put on the most probable semantic target estimated by the
classifier at this way point, with its height indicating the estimation confidence.

confidence and accuracy. With respect to the inspection phase, Fig. 7.32(b) and Fig. 7.32(c)
draw the comparisons done at the two way points (from the trajectories in Fig. 7.30(a)
and Fig. 7.30(b)) where the robot was moving along the target object while facing it in
counter-clockwise and clockwise directions respectively. In both situations, the human
motion patterns are correctly interpreted and estimated with high confidence, despite the
jitters of the recorded groundtruth way points resulting from the strong motion drifts of the
robot when moving sideways on the uneven floors of the scenarios.

(a) (b) (c)

Fig. 7.32 The estimated trajectories are compared with the groundtruth segments, where the
human operator was driving the robot to execute object inspection task. The color coding is
the same as Fig. 7.31. (a) The robot was approaching the target object. (b) It was inspecting
the object in counter-clockwise direction. (c) It was inspecting the object in clockwise
direction.

Regarding Wall Following, the robot can follow the target wall segment on either right
or left side of it. Fig. 7.33(b) and Fig. 7.33(c) depict the comparisons done at the two way
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points (from the trajectories in Fig. 7.30(a) and Fig. 7.30(b)) where the robot was following
the target wall segment on its right and left sides respectively. As displayed in both figures,
the results of the semantic target recognition and the local trajectory estimation qualitatively
demonstrate that, the human motion intentions are correctly interpreted and predicted with
high confidence in both situations. When executing Wall Following, the human operator
usually controls the robot to approach the target wall segment while aligning the robot with
its surface, especially when the robot is noticed to be not close enough to the wall. Such
motion pattern is included in the demonstration datasets from performing Wall Following,
and is learned by the proposed DPGMM-SOGP framework. Hence its execution can be
correctly recognized during operation, and the corresponding local trajectory is estimated
with high accuracy, as displayed in Fig. 7.33(a).

(a) (b) (c)

Fig. 7.33 The estimated trajectories are compared with the groundtruth segments, where the
human operator was driving the robot to perform wall following task. The color coding is the
same as Fig. 7.31. (a) The robot was aligning with the wall segment. (b) It was following the
wall segment on its right side. (c) It was following the wall segment on its left side.

Regarding Object Bypass, the human operator can execute it in alternative directions, i.e.
to pass the target object by either left or right side of the robot. Fig. 7.34(a) illustrates the
comparison (applied to the trajectory in Fig. 7.30(c)) where the robot was avoiding the object
on its right side, while Fig. 7.34(b) depicts the comparison (applied to the trajectory in Fig.
7.30(d)) where the robot was bypassing the object on its left side. As can be viewed, the
task motions of the human operator in both situations are correctly interpreted and predicted
with high accuracy. Interestingly, at some way points when performing Object Bypass, the
estimated trajectories are noticed to aim to guide the robot further away from the nearby
obstacle then the groundtruth trajectory segments, as shown in Fig. 7.34(c) and Fig. 7.34(d),
respectively. It is deduced that, by learning from demonstrations, the proposed approach
interprets such situations more conservatively than the human operator actually executing this
movement from the perspective of robot safety. How such action deviation between human
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and robot will influence the human-robot interaction within a shared autonomy system in
reality remains an attractive point for further investigation.

(a) (b)

(c) (d)

Fig. 7.34 The estimated trajectories are compared with the groundtruth segments, where the
human operator was controlling the robot to perform object bypass task. The color coding is
the same as Fig. 7.31.

The above qualitative evaluation results comprehensively confirm the performance of the
proposed approach on estimating the motion patterns (including their possible variations)
used for training. The following qualitative evaluations are focused on investigating the
performance of the proposed approach on estimating the motion patterns (including their
possible variations) not employed for training, yet sharing motion similarity with the learned
ones. Fig. 7.35 depicts the four groundtruth trajectories used for the following qualitative
evaluations.

For Gap Crossing, Fig. 7.36(a) draws the comparison (applied to the trajectory in Fig.
7.35(a)) where the robot was being controlled to cross a gap between two obstacles. As
can be seen, at this way point, the classifier correctly recognizes the semantic target with
high confidence, and the estimated local trajectory matches the groundtruth one quite well.
Fig. 7.36(b) illustrates another comparison applied to the same trajectory. Although the
recognized semantic target is incorrect (the object nearby instead of the gap), the estimated
trajectory still matches the groundtruth one quite well. The motion cluster assigned to the
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(a) (b)

(c) (d)

Fig. 7.35 The groundtruth trajectories for qualitatively evaluating the proposed approach on
estimating the three motion patterns not demonstrated during training. The color coding is
the same as Fig. 7.30. (a) The robot was crossing a gap between objects. (b) The robot was
docking into a table. (c) The robot approached wall segment at first, then inspected it in one
direction. (d) The robot inspected wall segment in another direction after approaching it.

starting way point is further examined (the 3rd cluster, please refer to Fig. 7.27(a)), and it is
noticed that it consists of the demonstrations from Wall Following and Object Bypass, hence
it is deduced that the proposed DPGMM-SOGP framework interprets the motion pattern at
this way point as to bypass the target object, which is reasonable for this situation.

For Robot Docking, Fig. 7.37 depicts the comparison (applied to the trajectory in
Fig. 7.35(b)) where the robot was docking into a table in front. The semantic target is
correctly recognized with high confidence, and the local trajectory is estimated with high
accuracy. Moreover, after checking the motion cluster assigned to the starting way point
(the 10th cluster, please refer to Fig. 7.27(a)), it is noticed that it mainly consists of the
demonstrations from Doorway Crossing. Therefore, it is posited that the proposed DPGMM-
SOGP framework interprets the motion pattern at this way point by generalizing from the
learned motion pattern of Doorway Crossing.

Regarding Wall Inspection, it can be executed in alternative directions after the robot
approaching the target wall segment. The comparisons depicted in Fig. 7.38(b) (applied to
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(a) (b)

Fig. 7.36 The trajectories estimated at two way points are compared with the groundtruth
segments, where the robot was being operated to cross a gap between obstacles. The color
coding is the same as Fig. 7.31.

Fig. 7.37 The estimated trajectory is compared with the groundtruth segment, where the
robot was being controlled to dock into a table. The color coding is the same as Fig. 7.31.

the trajectory in Fig. 7.35(d)) and Fig. 7.38(c) (applied to the trajectory23 in Fig. 7.35(c))
verify the very accurate estimation results of the proposed approach in both situations. This
means that, the proposed DPGMM-SOGP framework is able to distinguish the two situations,
and correctly interprets the human motion patterns and recognizes the associated semantic
target. With the information, the proposed intentional trajectory algorithm predicts the local
trajectory the human operator intends to follow in future steps with high accuracy. Meanwhile,
the human motion pattern of driving the robot to approach the target wall segment is also
estimated with high confidence and accuracy, as displayed in Fig. 7.38(a).

23Please notice the jitters of the recorded way points in this trajectory due to the strong motion drifts of the
robot when moving sideways on the uneven floor of the scenario.



7.4 Evaluation of Unsupervised Learning and Recognition of Multiple Contextual Tasks with
DPGMM and SOGP 131

(a) (b) (c)

Fig. 7.38 The estimated trajectories are compared with the groundtruth segments, where
the human operator was driving the robot to execute wall inspection task. The color coding
is the same as Fig. 7.31. (a) The robot was approaching the target wall segment. (b) It
was inspecting the wall segment in one direction. (c) It was inspecting the wall segment in
another direction.

The above qualitative evaluation results prove the performance of the proposed approach
in generalizing to the task types (including their possible variations) not used for training. In
summary, the overall qualitative results in this part verify the scalability and effectiveness of
the proposed DPGMM-SOGP framework and the proposed intentional trajectory prediction
algorithm. The next part of this subsection will present the quantitative evaluation results
with the baseline approaches.

7.4.4.2 Quantitative Evaluations

To further quantitatively evaluate the performance of the proposed algorithm, the batch
GMR and Locally Weighted Projection Regression (LWPR) [195] are employed as the
baseline regression approaches. LWPR is a popular machine learning algorithm seeking to
provide incremental, realtime inference and prediction for high-dimensional input-output
function approximation. Sharing the similar aim, it is poised to compete with the fast
online GMR approach. The library proposed in [103] is used for its implementation, and its
(hyper-)parameters are tuned according to the suggestions introduced in [102].

The batch GMR model uses full covariance matrix, and it is trained by the EM method
with up to ten components on each learned motion cluster beforehand. For each motion
cluster, the optimal model is selected among the candidate ones based on the BIC. The LWPR
model is also trained for each motion cluster in advance, and during training, ωgen = 0.2, an
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initial setting of d∗ = 2.0 and blending is enabled. The predictions made by both approaches
were also thresholded with dmh_thres = 3.0.

The three approaches are applied to estimate the local trajectory at each way point of
all test trajectories respectively. To characterize the estimation error in a straightforward
manner24, at each way point for examination, the pairwise Euclidean distance between
the estimated trajectory and its corresponding groundtruth one having the same number
of way points25 is computed. Finally, the means and the standard deviations of such error
measurement are obtained for the three approaches over all test trajectories respectively. They
are shown in Fig. 7.39. The results indicates that the fast online GMR approach outperforms
the baseline approaches in this test.
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Fig. 7.39 The means and the standard deviations of the trajectory prediction errors for the
three regression approaches.

In addition to the prediction accuracy, the prediction speed of the proposed approach is
also the concern of this thesis, since it performs the learning and prediction online during
operation. In the application of this thesis, the required process speed26 corresponds to
∼ 30Hz. Because in real applications, the estimation is made after the motion cluster
classification and semantic target recognition, it is meaningful to evaluate the process speed
of the whole pipeline (i.e. motion cluster classification, semantic target recognition and local
trajectory estimation). To test this, the three regression approaches combined with the SOGP
classifier are applied to each way point of all test trajectories respectively.

At each test way point, the process time of each combination consists of the time for
motion cluster classification and contextual information recognition by SOGP and the time

24For more information regarding trajectory similarity comparison, please refer to [186].
25The distance between two way points is computed with their recorded localized poses in the involved

scenario, i.e. pwp = (xwp,ywp,θwp)
26At least, it should be higher than the data sampling period which is 20Hz
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for trajectory prediction by the corresponding regression approach27. Such process time
of each combination is then recorded at each test way point respectively. In the end, the
means and the standard deviations of the process time of the three combinations per way
point over all test trajectories are obtained respectively, as shown in Fig. 7.40. The results
show that the combination using the proposed online GMR approach achieves the fastest
process speed (approximately 55Hz). Though it is not considerably faster than the baseline
approaches, no pre-training is needed to employ the proposed online GMR approach. Such
results further verify that the winning combination satisfies the realtime requirement of the
proposed application.
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Fig. 7.40 The means and the standard deviations of the process time of the three prediction
combinations at each test way point.

To summarize the evaluations made in this section, the experimental results acknowledged
that, the proposed DPGMM-SOGP approach serves as a generic framework for representing
and exploiting the knowledge of the contextual task executions from unlabelled demonstra-
tions in mobile robot teleoperation, with the aim of recognizing the motion patterns the
human operator performs based on the contextual information. Meanwhile, the results from
the qualitative and the quantitative evaluations confirmed the effectiveness of the proposed
intentional trajectory prediction algorithm, especially its realtime property in data processing
to efficiently learn and make predictions with high accuracy. This excellence renders the
proposed algorithm feasible for the online use, bridging the task recognition part and the
task motion assistance part of the proposed shared autonomy system. The overall evaluation
results in this section verified the scalability and effectiveness of the proposed approaches
in learning, recognizing and utilizing the motion pattern knowledge of the human opera-
tor in an unsupervised data-driven manner from human demonstrations, and the proposed
contextual-task aware adaptive shared autonomy system is realized with them.

27The SOGP classifier, the batch GMR model and the LWPR model are trained off-line on each motion
cluster, thus the training time of them is not considered in the process time.
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The next section reports the evaluations of the reactive shared autonomy presented in
Chapter 3 in simulation, to verify its effectiveness in safely assisting the human operator with
the teleoperation task.

7.5 Evaluation of Reactive Shared Autonomy System to
Safely Assist Teleoperation in Simulation

To evaluate the proposed approach, a teleoperation task was conducted in a simulated office
environment. The same simulated quadrotor as the subsection 7.2.1 was employed for
evaluations, and the task was to teleoperate the robot to complete a predefined path in an
indoor environment, as shown in Fig. 7.41. During the task, the operator was required to
control the robot to cross several narrow doorways and one narrow corridor using a Logitech
F710 wireless gamepad. The radius of the robot is 0.39m, and the controller frequency is
20Hz.

Five subjects (three males and two females, aged 22 to 28) were asked to finish this
teleoperation task under two operating modes: Manual mode and Adaptive Shared Autonomy
(ASA) mode. Under the Manual mode, there was no support from the robot, while the
proposed approach was activated under the ASA mode. To eliminate the biases, the order
of the two modes was unknown to the participants. A variety of important data were time-
logged during the tests, e.g. robot poses provided by the simulator, laser readings, joystick
commands etc.. They were used for the offline evaluation of the proposed method after the
tests.

Fig. 7.41 The navigation task in the simulated office environment
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The user interface of the simulation include the following components: the laser scan
reflections from the LRF with the robot model, as shown in the left part of Fig. 7.42; the
front camera image, as shown in the top right part of the same figure; and the tail camera
image displaying the back view of the robot, as shown in the bottom right part of Fig. 7.42.
The LRF has a 360◦ field of view. The camera image was not processed. During the task
execution, the operator had no access to the global view of the simulated environment, but
observed the environment only through the user interface.

Fig. 7.42 User interface of the simulation in ROS rviz: left: laser scan image, the arrow
starting from the robot represents the user input via joystick; top right: front camera image;
bottom right: tail camera image.

Fig. 7.43 shows the snapshots of the instant recognition probabilities of the three
situations obtained from the logged data of one test under the ASA mode. To provide
a simple view of the occupied situation of the environment around the robot, the local
occupancy grid map S is thresholded with the iterative dynamic threshold method, and
grouped into occupied and free sectors respectively. The thresholded occupancy grid map
is used only for the display. The occupied sectors of the map are illustrated with the green
blocks in the laser scan image, as shown in Fig. 7.43.

As can be viewed in Fig. 7.43(b), the user input points at an occupied sector of the map,
thus the situation Object Approach (OA) has the highest a-posteriori probability according to
the definition of the situation OA (Eq. (3.20) in Chapter 3). In Fig. 7.43(c), the user input
points at a free sector, therefore the situation General Obstacle Avoidance (GOA) has the
highest a-posteriori probability.

The two female subjects did not succeed to finish the task under the Manual mode because
of the collision leading to the crash of the quadrotor. All the male subjects finished the task
under the Manual mode successfully. This is partly because that the two female subjects have
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(a) (b)

(c)

Fig. 7.43 Snapshots of the instant recognition probabilities of the three situations in simulation.
The meanings of the bar graph’s colors: blue: FT, red: OA, green: GOA. (a) The situation
FT has the highest a-posteriori probability; (b) The situation OA has the highest a-posteriori
probability; (c) The situation GOA has the highest a-posteriori probability.

little computer game experience compared to the male subjects. All the subjects finished the
task successfully under the ASA mode.

When the robot was operated under the ASA mode, execution time was greater than that
under the Manual mode. In fact, on average the proposed system operates at approximately
65% the speed of the non-assisted mode, as can be seen in Fig. 7.44(a). It shows the average
execution time for all the successful tests (three subjects) under two modes respectively. The
main reason for this is that when designing the system, much greater emphasis is placed
on safety rather than speed. In practice, this means the robot will behave more cautiously,
perhaps slowing down considerably to make safe movements for crossing narrow spaces,
whereas a human may not decelerate to such an extent.

Fig. 7.44(b) illustrates the distribution of the minimum distances between the robot and
the obstacles under two modes in all tests except the two fail cases under the Manual mode.
These distances data were recorded by the LRF. As can be seen from the figure, a large part
of the distance records under each mode is around 0.4m−0.6m (approximately 58% under
the Manual mode, and 45% under the ASA mode). This results from that the operator was
required to control the robot to cross several narrow doorways in the task. Apart from this,
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Fig. 7.44 (a) The average time taken to manually operate the robot to finish the required task,
compared with that when using the assistance mode in all the successful tests; (b) Clearance
distribution graph under two modes in all tests except the two fail cases under the Manual
mode.

there are more data records under the ASA mode than the Manual mode over 0.7m, which
suggests that the ASA mode tends to keep the robot further away from obstacles than the
Manual mode. And even in the range of 0.4m−0.6m, there are less data records under the
ASA mode than the Manual mode. This implies that it is more possible that the ASA mode
can prevent the robot from collision when crossing the narrow doorways than the Manual
mode.

Table 7.10 Mean and standard deviation of clearance data

Subject No.
Task Clearance (MEAN/STD)

Manual ASA
1 0.622/0.160 0.688/0.189
2 0.612/0.199 0.699/0.215
3 0/0* 0.696/0.208
4 0/0* 0.676/0.174
5 0.629/0.184 0.632/0.158

* Due to the crash of the robot, the clearance is assumed
to be zero.

Table 7.10 shows the means and standard deviations of the recorded clearance data of
each subject in all tests under two modes respectively. Note that except two fail cases,
the average clearance distances for all the other three subjects are larger under the ASA
mode than the Manual mode, indicating that on average, the ASA mode maintains a larger
distance from obstacles than the Manual mode. The relative large standard deviations under
two modes partly result from the environment of the task, which contains both the narrow
doorways and the wide areas. In addition to this, the fact, that the ASA mode confirms the
full control authority of the human operator when in the Free Travel situation as expected
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from its definition, has also contributed to the large standard deviations under the ASA mode,
which implies that the robot assisted the human operator adaptively.

Therefore, the above results demonstrate that, with the assistance from the proposed
method, the chance of a collision is smaller than that with no assistance from the robot, and
the system is able to assist the human operator implicitly and adaptively.

To further confirm the necessity of the Object Approach situation and the advantages of
the proposed method over the pure DWA, an object approach test was explicitly made, where
the robot was operated to drive towards an object in front of it with the assistance from only
DWA and the proposed method respectively. The trajectories were recorded and shown in
Fig. 7.45. As can be seen, the robot tried to bypass the object with only the DWA, while
the proposed method stopped the robot at a certain distance from the object by correctly
recognizing the Object Approach situation in this test, which is potentially useful for the
object inspection task.
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Fig. 7.45 Comparison of trajectories in the object approach test, where the red lines represent
the object in this test.

The next section presents the evaluations of the proposed contextual-task aware adaptive
shared autonomy system over the baseline approaches in assisting mobile robot teleoperation
in a cluttered indoor scenario.
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7.6 Evaluation of Contextual-Task Aware Adaptive Shared
Autonomy System in Assisting Mobile Robot Teleoper-
ation

This section focuses on evaluating the performance of the proposed contextual-task aware
adaptive shared autonomy system in assisting mobile robot teleoperation. Such system is
the main contribution of this thesis. To achieve this, a carefully controlled and repeatable
user study with a significant number of human test participants was conducted. In this user
study, each test subject was primarily required to teleoperate the sensor-equipped holonomic
mobile robot (i.e. ASAP) to finish a navigation task in a cluttered environment. To increase
the cognitive load and degrade the performance of the human operator, a secondary task
was added during test to distract the human operator from the primary task, since in real
teleoperation applications, the human operator usually needs to concentrate on a secondary
task from time to time, thus this configuration aims to further increase the difficulty of
teleoperation.

The next part will introduce the design and protocol of the user study in detail.

7.6.1 Experiment Design and Protocol

While it is significant to demonstrate new approaches on real hardware, it was observed in
several pilot tests with the real robot that, using real hardware in tests can bring up difficult
confounding factors, which can further weaken the repeatability and the validity of the
experimental data. For example, there was often severe motion drift, when the robot was
moved sideways (e.g. to inspect an object). Such issue usually failed the test procedure. The
top speed of the robot varied slightly between test participants resulting from the different
load of battery during tests. This can further undesirably affect a critical evaluation metric
of the test, i.e. the primary task completion time of a test participant, since this metric is
assumed to be dependent solely on the human factors (e.g. driving skill, cognitive load, etc.)
and the interaction between the shared autonomy system and the test subjects. Additionally,
as mentioned in [34], the change of daylight levels in the evaluation scenario affected the
camera images observed by each test participant, when the tests were made at different times
of day. This factor will also introduce undesirable effect on the performance of the test
participants.
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Because the test focus of this user study is the proposed shared autonomy software
system and its interaction with the test participants, to eliminate these and other unnecessary
confounding factors to increase the repeatability and the validity of the test, the user study
was made in a high-fidelity 3D simulation in this section, and the Gazebo Simulator was
employed for the simulation.

The next part will present the simulated robot, the user interface and the evaluation
scenario used in the test.

7.6.1.1 Robot, user interface and test scenario

Fig. 7.46(b) shows the simulated mobile robot used in the test. It is equipped with two 2D
LRFs to perceive the environments, and a RGB camera to provide images of the surroundings
to the human operator28. Additionally, it is also installed with an IMU to improve the
localization. To emulate the real sensors, Gaussian noise is added to the observations
from the LRFs and the IMU during operation. For comparison, Fig. 7.46(a) displays the
corresponding real robot. Please notice, the 3D sensors on the real robot were not used in
the user study, hence they are not simulated here. During test, the translational speed of the
robot was limited to be within 1.0m/s, and the maximal rotational speed of the robot was set
to be within 1.2rad/s(i.e. around 70.0°/s).

(a) (b)

Fig. 7.46 (a) The real robot; (b) the simulated robot model used in the test.

28The camera is simulated with a very small black box at the height of around 0.9m to the ground, which is
hardly visible in the figure.
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The human subject had no direct access to the test scenario in this user study. Instead,
they observed the surroundings and the state of the robot only via user interface, as illustrated
in Fig. 7.47. The user interface consists of three components, offering the human operator
with: 1) camera images; 2) the map of the scenario, the position of the robot, and the laser
reflections of the robot against obstacles; 3) the secondary task to complete during operation
(will be detailed in the following parts of this section). To control the robot for navigation,
the test participants used a Logitech F710 wireless gamepad with the information perceived
from the user interface during test.

Fig. 7.47 The user interface presented to the test participants. Left: camera image. Right: 2D
occupancy grid map of the test scenario, the position of the robot, the laser data reflected
from the obstacles (red dots), and the window showing the secondary task.

Fig. 7.48(a) shows the simulated test scenario applied in the user study. It is a cluttered
indoor scenario with narrow29 doorways, gaps between obstacles and corridors. There is also
a table for the robot to dock into. To eliminate undesired confounding factors resulting from
the environmental model used by the human subject and the robot during test, all human
participants were provided with the identical and complete 2D occupancy grid map of the
scenario, generated before the trials by manually driving the robot around the scenario with
the state-of-art SLAM algorithm in ROS, as depicted in Fig. 7.48(b). Please notice, the noise
of the map results from the artificially generated sensor noise during operation.

The primary and secondary tasks in the user study will be detailed in the following part.
Additionally, the different control modes employed in the test for comparison will also be
introduced.

29There is only around 15cm in clearance considering the laser protective field of the robot.
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(a) (b)

Fig. 7.48 (a) The simulated test scenario; (b) the created 2D occupancy grid map of the test
scenario.

7.6.1.2 Primary and secondary Tasks, and evaluation modalities

As noted in Fig. 7.48(b), the primary task for each test participant was to control the robot to
navigate from point A to point B (i.e. to dock into the table), then back to point A. The path
between point A and point B is only one way available for the robot with no alternative routes.
Additionally, each test participant was instructed to inspect the red cylinder by moving the
robot sideways while facing the object, when the human subject observed it through the
on-board camera during navigation, as noted by the orange arrows in Fig. 7.48(b). Therefore,
to navigate through such test path, a test participant has to execute a set of contextual task
types, e.g. doorway crossing, gap crossing, wall following, object inspection and robot
docking, which is supposed to be recognized and appropriately assisted by the proposed
contextual-task aware adaptive shared autonomy system.

Whenever the robot entered the predefined area in the scenario, as noted by the blue
shaded region in Fig. 7.48(b), each test participant was required to consecutively do 20
secondary tasks in parallel to the primary task, which aimed to increase the cognitive load and
degrade the performance of the human operator during test. More specifically, a secondary
task was to judge whether an elementary arithmetic add or minus question with two two-
digit numbers was correctly answered, as exampled in Fig. 7.47. The human subject
simply pressed one of the two buttons on the joystick to indicate “Yes” or “No” during test.
Both question and its answer were randomly created each time, and the random answer
was restricted to be very close to the correct one30 to increase the difficulty of this task.
The design of such secondary task is based on the following two major considerations: 1)
elementary arithmetic operation is basic knowledge of an educated person; 2) nowadays most

30Too extreme answer was observed to over-simplify the task.
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of the time people use calculator to solve such question instead of doing it mentally, hence
forcing them to do it mentally can effectively increase their cognitive load and distract them
from the primary task.

Each test participant was assisted by the proposed contextual-task aware shared autonomy
system during the trial. Fig. 7.49 presents the extracted semantic components of the test
scenario to be used by the proposed approach, e.g. the positions of doorways, gaps and
docking table, and the point clouds of wall segments and objects. The trained DPGMM-
SOGP framework (obtained in the subsection 7.4.2) was employed to classify motion pattern
and recognize associated semantic component. Upon such information together with user
inputs, the local intentional trajectory of the human operator was predicted with the algo-
rithm introduced in Chapter 6. The robot motion command was generated by using the
ROS-Navigation framework with the predicted trajectory and the recognized semantic com-
ponents. The motion assistance was achieved by blending the user input and the robot motion
command according to the classification confidence of the motion pattern. To provide safety
assistance31, the motion command sent to the robot is checked and scaled to avoid potential
collision in the given motion direction by employing the dynamic window concept presented
in [57].

To benchmark the performance, two other control modes were also tested in the user
study. In manual mode, each test participant operated the robot with joystick to finish the trial
without any assistance from the robot. In reactive shared autonomy mode, the reactive shared
autonomy approach proposed in Chapter 3 was employed to assist the human operator. Such
approach is reactive in the sense that, it provides only instantaneous motion assistance mostly
pertaining to obstacle avoidance or collision stopping, since it relies on a naive environment
model to generate safe motions by distinguishing simply obstacle from free space in the
environment. In contrast, the proposed contextual-task aware shared autonomy approach
employs a more complex environment model containing the semantic components of the
environment, e.g. doorway, object and wall segment, which increases its cognition level.
Consequently, it offers proactive motion assistance that lasts for a sequence of time steps to
appropriately guide the human operator by recognizing the motion intention of the human
operator and the associated semantic component.

The next part will introduce the procedure of the whole user study.

31This configuration mainly aims to address the safety issue when the recognition confidence of the system
is very low, i.e. when the system does not yet appropriately capture the user intention.
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(a) (b)

(c)

Fig. 7.49 The extracted semantic components of the test scenario: (a) the positions of the
doorways, the gaps and the docking table (red: x direction, green: y direction, blue: z
direction); (b) the point cloud of the objects contained in the test scenario; (c) the point cloud
of the wall segments

7.6.1.3 Test procedure

A total of eighteen human subjects (aged between 24 and 32) were invited to participate
into a within-groups experiment, i.e. each test participant performed all three trials. All test
participants have at least university-level education, and an experience questionnaire before
the user study reported that the majority of the human subjects have experience in driving,
playing computer games or operating mobile robots.

Before the actual experiment, each test participant was briefed about this user study,
e.g. the hardware (a laptop and a joystick), the user interface, the simulated robot, the test
scenario, and the primary and secondary tasks. Then each test participant had a training
course to get familiar with the user study (including the three control modes), ensuring that
they possessed a common minimum knowledge regarding the test. When operating the
robot to navigate in the scenario during the training course, each test participant had the
direct access to the scenario when necessary (to help establish their mental model of the
robot driving via user interface), and was presented with the secondary task if entering the
predefined area. To proceed to the actual experiment, each test participant was required



7.6 Evaluation of Contextual-Task Aware Adaptive Shared Autonomy System in Assisting
Mobile Robot Teleoperation 145

to finish a practice obstacle task for one time with each of the three control modes, solely
with the user interface, within a specific time limit, without collision and being distracted
by the secondary task along the way. In addition to the training course, all human subjects
were instructed to do the secondary task (i.e. 40 randomly created elementary arithmetic
questions) separately without driving, to obtain their baseline performance.

During the actual experiment, the order of the three control modes was rotated between
different test participants32 following six different permutations, to prevent the mode bias
from bringing up undesired confounding factors into the test data. All human subjects were
instructed to perform the primary task as quickly and safely (i.e. try to avoid collision during
operation) as possible. When being presented with the secondary task, the test participants
were told to do it as quickly and accurately as possible, and they were explicitly instructed to
give priority to the secondary task over the primary task, so they were supposed to do the
primary task only if their workload supported it. Such configuration aims to prevent them
from intentionally ignoring the secondary task to weaken the whole test configuration, as
suggested in [34].

During each trial, a set of data and metrics were recorded to facilitate the evaluation of
the test performance of the human subjects in a post-experimental analysis, including: the
primary task completion time, the number of collisions during navigation, the answer time for
each arithmetic question and the number of errors made in the secondary task. Meanwhile,
at the end of each trial, each human participant was required to complete a NASA Task Load
Index (TLX) questionnaire [81]. This is a well-known, widely-used tool to quantify the
subjective workload post test, in order to evaluate a human-related technology or system.

The design and procedure of the user study have been detailed in the above parts. The
next part will then present the results of the experiment with the statistical analysis.

7.6.2 Experimental Results

In order to facilitate the discussions afterwards, this subsection concentrates on statistically
analyzing the recorded evaluation metrics. Since this user study is a within-groups experiment
with the different control modes as the only independent variable, the repeated measures
ANOVA is employed for a post-hoc analysis. After a null hypothesis is rejected by ANOVA,
Fisher’s Least Significant Difference (LSD) is applied for pairwise comparison to determine

32The applied control mode was unknown to the test participants during trials.
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the significant conditions in the data group, where the significant level is 0.05 in this statistical
analysis.

For the primary task, it is clearly shown by ANOVA that the control modes have significant
effects on both the primary task completion time (p < 0.001, Fig. 7.50(a)) and the number
of collisions (p < 0.001, Fig. 7.50(b)). The pairwise comparison further indicates that, the
human participants completed the primary task considerably faster with the manual mode
than with the proposed task aware shared autonomy mode (p < 0.0001) and the reactive
shared autonomy mode (p < 0.0001), and the proposed task aware shared autonomy mode
performs significantly better than the reactive shared autonomy mode in terms of the primary
task completion time (p < 0.01). Regarding the number of collisions, as observed from the
pairwise comparison, both the proposed task aware shared autonomy mode and the reactive
shared autonomy mode perform considerably better than the manual mode (p < 0.0001),
although no significant difference is confirmed between these two semi-autonomous control
modes in terms of safety. It was observed that within the manual mode, the test participants
often had collisions when crossing narrow gaps and doorways, and trying to do the secondary
task in parallel.

In order to comprehensively evaluate the primary task performance, it is required to obtain
a primary task score. With such metric, it is supposed to be able to compare the navigation
performances between different test subjects with the completion time and the number of
collisions, e.g. one completes the assigned task very fast but with many collisions, while
another one achieves a slower time yet with few collisions. Towards this aim, the primary
task score is obtained by adding a time penalty, i.e. 60 seconds for each collision in this
experiment (emphasizing the safety of the platform in remote), to the task completion time
of each test subject, following the similar practice adopted in [34]. The control modes have
been confirmed by ANOVA to have significant effects on the primary task scores (p < 0.001,
Fig. 7.50(c)). Furthermore, the pairwise comparison denotes that, in terms of the primary
task score, the proposed task aware shared autonomy mode outperforms considerably both
the manual mode (p < 0.001) and the reactive shared autonomy mode (p < 0.05), while
the reactive shared autonomy mode performs significantly better than the manual mode
(p < 0.05).

Regarding the secondary task performance, for the answer time (the average time a
human participant took to answer one arithmetic question per trial), ANOVA suggests that
there is a significant difference between the mean answer time with and without performing
the primary task in the baseline trial (p < 0.001, Fig. 7.51(a)). According to the pairwise
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Fig. 7.50 Primary task results of the three control modes. The means and standard deviations
of: (a) the primary task completion time, in seconds; (b) the number of collisions during
trials; (c) the task score combining the completion time and number of collisions, please
notice that a lower score is better.

comparison, the human participants performed considerably faster in the baseline trial than
with the navigation task in parallel (p < 0.0001), while there is no significant difference
between this metric within the three control modes. With respect to the number of errors made
in the secondary task, a significant difference is confirmed by ANOVA between the mean
errors with and without performing the primary task in parallel (p < 0.001, Fig. 7.51(b)).
The pairwise comparison shows that, the human participants achieved considerably fewer
errors in the baseline trial than with the three control modes (p < 0.001), while the three
control modes do not appear to have statistical differences between each other on this metric.
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Fig. 7.51 Secondary task results of the three control modes and the baseline trial. The means
and standard deviations of: (a) the time to answer each arithmetic question, in seconds; (b)
the number of errors.

For the overall NASA-TLX scores, ANOVA confirms that the three control modes have a
significant effect on such metric (p < 0.001, Fig. 7.52). The pairwise comparison denotes
that, the test subjects rated considerably lower workload with the proposed task aware shared
autonomy mode than with the manual mode (p < 0.0001) and the reactive shared autonomy
mode (p < 0.0001), while the other two control modes do not show statistical differences on
this metric.
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Fig. 7.52 The means and standard deviations of the overall NASA-TLX scores for the three
control modes. These results describe the workload of the whole test (the primary and
secondary tasks combined) being perceived and rated by the test subjects. Please notice that
a lower score is better.

7.6.3 Discussion

Regarding the primary task, the manual mode achieves the shortest completion time, but
with the cost of considerably more collision times than the other two semi-autonomous
control modes. For safety reasons, the two semi-autonomous control modes are conservative
on robot speed control, leading to an inherent cost of employing them in terms of the task
completion time. This phenomenon was also observed in [144, 24, 26], where it took the test
subjects longer time to complete the driving task with the equivalent semi-autonomous mode,
compared with the manual mode. When designing a human-robot shared autonomy system,
it often involves with a trade-off between speed and safety from a system perspective.

In terms of the overall primary task score, the proposed task aware shared autonomy mode
significantly outperforms the other two control modes. This result confirms the effectiveness
of the proposed task aware shared autonomy mode in enhancing the overall performance of
the human-robot team. Both the proposed task aware shared autonomy mode and the reactive
shared autonomy mode offer the collision avoidance as the basic safety guarantee, resulting
into equally few collisions during trials, hence they both perform considerably better than the
manual mode in terms of safety. However, the proposed task aware shared autonomy mode
is able to appropriately guide the human operator to carry out intentional action primitives
with the contextual information, while the reactive shared autonomy mode can only provide
instantaneous low-level motion assistance pertaining to either obstacle avoidance or collision
stopping. In essence, it is such difference in design strategy that results into the significant
difference in their primary task performances. Apart from the statistical analysis after test,
this judgement is also reinforced by observations during trials and informal conversations
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with test subjects after trials. After tests with the proposed task aware shared autonomy mode,
many test subjects mentioned that they clearly felt to be guided with the intentional actions,
especially when crossing doorways and following wall segments, while most participants
reported that they received no assistance other than actively slowing down the robot for
collision avoidance, when they worked with the reactive shared autonomy mode, and it took
them much effort to manually adjust the robot motions towards the target during trials.

For the secondary task, the test participants achieved significantly better performance (in
terms of both the task completion time and the number of errors) during the baseline trials (i.e.
doing the secondary task without driving). Because the test configuration required the human
subjects to concentrate on the secondary task with priority over the primary task whenever it
was presented, this result implies that the secondary task performance of the test participants
was negatively influenced by introducing the primary navigation task during actual trials.
Meanwhile, the fact that, there are no statistical differences regarding the secondary task
completion time and the number of errors among control modes, suggests two conclusions:
1) different control modes do not have explicit effect on secondary task performance; 2)
all the test participants performed the secondary task with the similar level of engagement
during trials, which is expected from the test instruction.

The statistical analysis of the NASA-TLX denotes that there is a considerable reduction
in workload with the proposed task aware shared autonomy mode compared with the other
two control modes, even there were distractions brought by the secondary task for all control
modes during all trials. This is because that the proposed task aware shared autonomy mode
provided the human operator with motion guidance for estimated contextual action primitives
during their executions, and the motion assistance was gradually and smoothly blended with
the user input according to the estimation confidence. If the estimation corresponded to the
intention of the human operator, the vague user input was compensated with more precise
and safe robot motion command to perform the intentional contextual task (action primitive),
hence the workload of the human operator was reduced. Even if sometimes the estimation
was not correct and the motion assistance was observed to be inappropriate, the human
operators were able to quickly adjust the robot towards the intentional track because of the
smooth blending and their driving experience obtained from the training course. Moreover,
the NASA-TLX results suggest that, during overall trials, the estimation corresponded to
the intention of the test participant and the motion assistance was positive. In contrast,
when working with the reactive shared autonomy mode and the manual mode, the human
operators had to concentrate on giving precise user input to command the robot to perform the
intentional contextual task all by themselves most of the time, which significantly increased
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their workload and the risk to the safety of the robot due to lack of SA during operation
(especially for the manual mode, as there was no assistance from the robot within this control
mode at all). For this reason, many human subjects reported their strong preference for the
proposed task aware shared autonomy mode over the rest two control modes after tests.

In summary, the test results from both objective and subjective metrics verify the effec-
tiveness of the proposed contextual-task aware adaptive shared autonomy system in safely
and efficiently assisting the human operator with the mobile robot teleoperation in a cluttered
indoor scenario, which further confirms the merit of the most important contribution of this
thesis.

7.7 Summary

This chapter extensively evaluated the proposed contextual-task aware adaptive shared auton-
omy system, with the focus on testing the multiple contextual task learning and recognition
approaches proposed in the previous chapters respectively, since they serve as the cornerstone
of this thesis. Specifically, it was to evaluate the task recognition performance of these
approaches in comparison with the baseline approaches in various indoor testing scenarios,
to verify that the proposed approaches are able to effectively learn human motion patterns
for various task executions from demonstrations, and correctly estimate the on-going tasks
the human operator performs with the contextual information and the learned models during
operation.

After introducing the general settings of the conducted evaluations, this chapter began
with the assessments of the proposed RBF framework combined with the batch GMR models
learned from human demonstrations in both simulations and real experiments. The results
with the statistical analysis proved that the proposed approach performed considerably better
than the baseline approach. Then the proposed fast online GMR algorithm combined with
the RBF framework for contextual task recognition was evaluated. The results demonstrated
that the proposed approach is able to make the proposed shared autonomy system efficiently
learn from the incremental demonstrations and recognize the intentional tasks of the human
operator in an online manner. Meanwhile, it was also showed that the proposed fast online
approach achieved superior task recognition performance over the batch GMR approach, and
possessed real-time performance during operation.
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In the following section, the effectiveness of the proposed SOGP classifier on classifying
multiple contextual tasks was verified using real robot in a set of tests, and two statements
were proved. First, even being sparsified from the full GP, the proposed SOGP classifier
outperformed the baseline classifiers in classification accuracy on the test data, and pos-
sessed real-time performance in data processing thanks to the adopted sparsity approximation.
Second, when being trained with few classes, the proposed SOGP classifier provided consider-
ably better uncertainty estimation about the resulting class labels than the baseline classifiers,
indicating that the proposed SOGP classifier is more suited to detect under-representation
classes without compromising classification power, and accordingly advanced a significant
step towards a life-long active learning assistive robot.

Afterwards, the performance of the proposed DPGMM-SOGP approach on unsupervised
learning and estimating multiple contextual tasks was evaluated. The experimental results
from the real data confirmed that, the proposed approach serves as a generic framework for
representing and exploiting the knowledge of the human motion patterns performing various
contextual task types without manual annotations, which is not only able to recognize the task
types seen during training, but also generalizable to appropriately interpret the motion patters
of task types not used for training. More importantly, the proposed approach is capable of
detecting unknown motion patterns distinctive from those used in the training set thanks
to the superior introspective capability of the SOGP classifier, which is highly appealing
for an active learning scenario. The same section also investigated the performance of the
proposed local intentional trajectory prediction algorithm with the classified motion cluster
and the recognized contextual information. The qualitative test results demonstrated that,
the proposed approach is able to predict with high accuracy the local trajectory the human
operator intends to follow in the short term to perform various task types by utilizing the
knowledge of the classified motion cluster from human demonstrations. The quantitative
experiment results verified that, the proposed approach outperformed the baseline approaches
in local trajectory prediction, while possessing the realtime property in learning and making
estimations during operation. These results are critical for the application of this thesis, since
the algorithm is supposed to generate online reference models employed by the state-of-art
mobile robot motion controller, in order to obtain safe robot motion commands to assist
various contextual tasks during operation. The overall evaluation results in this section
verified the scalability and effectiveness of the proposed approaches in learning, recognizing
and utilizing the motion pattern knowledge of the human operator in an unsupervised data-
driven manner from human demonstrations, and the proposed contextual-task aware adaptive
shared autonomy system is realized with them.
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In the following section, the proposed reactive shared autonomy approach was evalu-
ated with a small user study, which safely assisted the human operator with controlling a
quadrotor to perform a remote navigation task in simulation. With this approach, it led to the
considerable enhance of the operation safety compared with the purely manual control.

Finally, a carefully controlled and repeatable user study with 18 human test participants
was conducted, aiming to evaluate the performance of the proposed contextual-task aware
adaptive shared autonomy system over the baseline approaches in assisting mobile robot
teleoperation in a cluttered indoor scenario. In addition to the primary navigation task, the
test participants had to perform secondary tasks for some of the time simultaneously, which
increased their cognitive load and hence the difficulty of the whole test. With rigorous
statistical analysis, the results from both objective and subjective metrics demonstrated the
advantages of the proposed contextual-task aware shared autonomy approach over either
purely manual control mode or the proposed reactive shared autonomy approach for the tasks
involved in the test, and verified the necessity and effectiveness of providing proactive motion
assistance by recognizing the motion intention of the human operator and the associated
semantic components in a probabilistic way, which is the core idea and contribution of this
thesis.

In summary, the above experimental results confirmed the contributions of this thesis to
implement and evaluate a contextual-task aware adaptive shared autonomy system to assist
mobile robot teleoperation.



Chapter 8

Conclusion and Outlook

8.1 Conclusion

While being teleoperated for task execution in unstructured, unknown or even hazardous
environments, a mobile robot is supposed to assist the human operator with the intelligent
perception and control models in a task-appropriate way, to guarantee a safe and efficient
task execution in remote. This implies that the human and the robot have to share autonomy
with each other during operation. The major challenge is how to best coordinate the two
sources of intelligence from the human and the robot, to achieve an adaptive and effective
autonomy sharing in the context of mobile robot teleoperation. To address this challenge,
the fundamental strategy of this thesis is to recognize the on-going task the human operator
intends to perform to complete an action primitive based on the contextual information, i.e.
user inputs and environment perceptions, and provide appropriate motion assistance to the
human operator with the execution of the estimated task.

According to this strategy, and accounting for the uncertainties from acquiring and
processing contextual information, a probabilistic contextual-task aware adaptive shared
autonomy system was proposed. It infers the contextual task the human operator executes
with uncertainty measurements, and appropriately assist the human operator with the rec-
ognized task based on the estimation probability. In this way, the level of autonomy is
seamlessly switched between the manual control (when the probability of the task recog-
nition is low) and the autonomous control (when the probability of the task recognition is
high) in a task-appropriate way during operation. Chapter 3 mathematically formalized such
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framework, and indicated that the contextual task recognition is its cornerstone. In addition to
this, a reactive shared autonomy system based on BN was also reported in the same chapter.
Although it is not among the major contributions, its technical limitations in assisting mobile
robot teleoperation reveal possible improvements. This motivates the author of this thesis to
employ a set of data-driven approaches within the proposed probabilistic shared autonomy
framework, to derive the models of various contextual task executions for task recognition
from human demonstrations, instead of manually building them, since the way the human
operator executes a task via robot is implicit, and the data-driven approaches render the
framework able to adapt to the needs of the human operator over long time in an intuitive way.
The employments of the data-driven approaches for contextual task recognition constitute
the major scientific contributions achieved in this thesis, and are summarized as below.

In Chapter 4, GMR models were employed to learn the motion patterns of various task
types from human demonstrations in a batch way. Each task type to be estimated was
described with a set of simple and salient task features. To incorporate the uncertainty
of estimating multiple contextual tasks during operation, a RBF was adopted as the base
framework, and combined with the learned GMR models to stably and smoothly infer the
most probable operational intention of the human operator among multiple candidates over
time. Furthermore, a fast online and incremental contextual task learning approach was
proposed, to enable the system to learn the motion patterns online and incrementally from
the demonstrations. With the incrementally incorporated demonstration dataset of each task
type, a state-of-art FANN search algorithm was employed to retrieve a small training dataset
closest to the current robot state, and a GMR model with a very few number of the mixture
components was built online and combined with the RBF to estimate the likelihoods of the
corresponding candidates.

In Chapter 5, to avoid the calibration of the time scale factor in the process model of
the RBF and envision a life-long active learning scenario, contextual task recognition was
formulated as classification problem, and the SOGP classifier was presented to learn from
demonstrations and classify multiple contextual tasks, due to its superior introspective capa-
bility over other state-of-art classifiers, such as SVM, and scalability to large datasets. The
SOGP classifier was implemented with the Gaussian regression model, resulting into closed-
form solutions of the posterior predictive distribution and the model evidence respectively.
The closed-form model evidence simplifies the optimization of the hyper-parameters of the
model.
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Chapter 6 reported an unsupervised contextual task learning and recognition approach, to
relieve the workload of manually labeling the demonstration data into task types for robot to
learn. The proposed approach consisted of two phases. In the first step, DPGMM was applied
to cluster the human motion patterns performing different contextual task types from un-
annotated demonstrations, where the number of possible motion modes is inferred from the
data itself instead of being manually specified a priori or determined through model selection.
Post clustering, the proposed SOGP classifier was employed to classify the learned motion
patterns during operation, due to its outstanding introspective capability and scalability to
large datasets. This chapter also introduced the algorithm to predict local trajectory the human
operator intends to follow in the short term to perform corresponding contextual task in a
data-driven manner. It applies the proposed fast online GMR approach to classified motion
cluster with recognized contextual information. To threshold the Mahalanobis distance
computed with each estimated way point, it is able to achieve the trajectory prediction within
a predefined tolerance bound regarding the regression outliers. This algorithm links the task
recognition part and the motion assistance part of the proposed shared autonomy framework:
the predicted trajectory can be employed as the reference model by the state-of-art mobile
robot motion controller to generate safe motion commands, which are blended with the user
inputs according to the classification confidence, to assist the human operator to carry out the
intentional tasks actively and appropriately.

Finally, in Chapter 7, the proposed framework was implemented on both a simulated
quadrotor and a real holonomic ground mobile platform, and a variety of experiments both in
simulation and with real hardware were conducted in various indoor scenarios, to extensively
evaluate two major aspects of the proposed system: 1) its performance in recognizing
multiple contextual tasks with the models learned from human demonstrations, and 2) its
ability to appropriately assist the human operator based on the task estimation through
sharing autonomy. The experimental results demonstrated the scalability and the merit of the
proposed framework.

To summarize, a novel shared autonomy system has been reported to assist mobile robot
teleoperation in this thesis. It employs data-driven approaches to learn from demonstrations
the motion patterns of the human operator performing various task types with contextual
information, and uses the learned models to recognize the intentional task of the human
operator. With the recognized tasks, the proposed shared autonomy system provides the
corresponding motion assistance to the human operator in a probabilistic manner during
operation. Extensive evaluations conducted in both simulations and real experiments demon-
strated that the proposed framework is capable of effectively adapting behaviours through
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intuitive interactions with users in both supervised and unsupervised data-driven manners,
and it is able to efficiently assist the mobile robot teleoperation in a task-appropriate way.
With the proposed approaches, the teleoperator can be proactively and appropriately assisted
by increasing the cognition capability and the autonomy flexibility of the robot.

8.2 Outlook

Although experiments conducted in this thesis showed solid results, there are still rooms for
possibilities and extensions to be developed and improved.

The proposed context-aware adaptive shared autonomy system considers only single task
(action primitive) to estimate and assist. To better understand and support the user intention
in a longer range, one possible extension is naturally to take a sequence of such primitive
tasks into consideration, i.e., to recognize the task plan on a higher level. To achieve this, a
hierarchical model needs to be proposed to capture the spatial-temporal property when the
human operator executes a sequence of primitive tasks on the low level to fulfil an abstract
expectation on the high level over a certain scope. An exemplary work towards this goal can
be found in the work of [142], which presents a hierarchical HMM to infer both the long and
short range intentions of the user in the context of elderly walking assistance.

Additionally, the proposed system assumes that the human operator does not explicitly
consider assistance when issuing input commands - and in particular, that the users do not
adapt their strategy to the assistance. To alleviate this assumption in both prediction and
assistance, an interesting direction is to extend the proposed model as a stochastic game, as
presented in [114].

Although it is assumed in this thesis that the robot implicitly assists the human operator
with the user input from a mechanical joystick, some comments from the test-participants in
the user study suggest the need of devising a kind of visual or force feedback to intuitively
illustrate the motion assistance provided by the robot, i.e. to present that how the robot
predicts and actions. This echoes the message in [25]. Such kind of feedback system can
help the human operator establish a better mental model of the motion assistance provided by
the robot, and may increase the user acceptance of the robot and accelerate the deployment of
such shared autonomy system in a human-robot team. Meanwhile, such additional feedback
information is supposed to not further burden the cognitive load of the human operator.
Therefore, it indicates another interesting research direction in the future.
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Moreover, the model for contextual-task recognition is learned with handcrafted features
from human demonstrations in this thesis. To improve this to prevent the requirement of
manually designing task features, the Deep-Learning [109] technique provides a potential
solution, where it is able to extract multi-level features from raw input information (e.g.
raw sensor data) directly without any engineering design beforehand, thanks to the multiple
convolutional layers for abstraction of learning representations from the given data. To apply
the Deep-Learning technique in the context of shared autonomy between human and robot,
multimodal learning has to be considered, i.e. to learn task patterns for assistance from a
variety of data sources, e.g. LRF, camera and user input device like joystick. Meanwhile,
shared autonomy involves with decision making based on recognition when assisting human
operators. By employing the Deep-Learning framework in a shared autonomy system, several
challenges regarding robot control remain to be addressed, such as real-time requirement for
data processing, accomodation of uncertainties from perception and action, and generalization
of the Deep-Learning control, as indicated in [180].

Apart from assisting mobile robot teleoperation, the presented idea and methods of
autonomy sharing by contextual task recognition are generally applicable to other scenarios
where a human drives a mobile robot. For example, the proposed contextual task recognition
approaches can be applied to recognize and predict the driving intentions of an intelligent
wheelchair user in indoor scenarios with the corresponding contextual information. When
applying the proposed approach in a social environment, it is also supposed to consider the
intentions of other people in the surroundings to better assist the user of the mobility system
to navigate for task execution in such environment, such as to accompany a person or to
avoid collision against a person in a socially acceptable way, whereas the proposed approach
in this thesis focuses on inferring the task intention of only the user of the system. This
arouses interesting future research directions regarding the social intention recognition and
supporting, such as reported in [127]. Similarly, the proposed contextual-task aware adaptive
shared autonomy system has the potential applications in the scenario of intelligent vehicle
for driver assistance, where the vehicle is supposed to detect the driving intention of the
driver as early as possible from a set of contextual information, such as the user input and the
road situation, and provide the in-time correct assistance to promote the safety and efficiency
of the driving condition, such as presented in [93].



Algorithms to Extract Semantic
Elements from Map Image

For computing the task features of candidate tasks, which are employed by data-driven
approaches for task recognition, the environment is processed to obtain the information
regarding its semantic elements beforehand in this thesis, e.g. the positions of doorways, and
the surface points of candidate objects and wall segments, due to the lack of open-source
solutions for simultaneous mapping and semantic element localization. In this appendix,
this environment process algorithm will be presented in the following as a supplementary
document to this thesis.

The proposed algorithm acts on 2D occupancy grid maps which can be easily constructed
from the state-of-art SLAM approaches with a 2D LRF mounted on a mobile platform. It
reads in the map data as a gray-scale image (called a map image afterwards). The pixel
values of the map image for an occupied grid cell, a free one, and an unknown one are 0, 254
and 127 respectively. Algorithms 4 and 5 present the primary computational steps with the
map image used for segmenting objects and detecting doorways respectively.

Object Segmentation: the implementations from OpenCV [18] are used to pre-process the
map image: firstly two standard image filtering operations: the Morphological Gradient and
the Binary Threshold, are applied sequentially to the map image to retain its possible outlines;
then the contours of the potential objects are retrieved in the map image with the findContour
function. The contours whose distances to each other are under a certain threshold τd are
merged.1 After this step, the candidate objects (line 16 of Algorithm 4) and their surface
points C are obtained, which can be used to calculate the related task features.

1The distance between two contours refers to the minimal Euclidean distance between the surface points of
the two contours.
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Algorithm 4 2D Object Segmentation
1: Given gray-scale map image I
2: initialize O←{},C←{}
3: I←MorphologyGradient(I)
4: I← BinaryThreshold(I)
5: C← FindContour(I)
6: for i = 0;ci ∈C; i++ do
7: for j = i+1;c j ∈C; j++ do
8: d j =

∥∥ci,c j
∥∥

9: if d j < τd then
10: ci← ci∪ c j
11: C←C \{c j}
12: end if
13: end for
14: end for
15: for each c ∈C do
16: oc =

1
K ∑

K
i=1 si,si ∈ c

17: O← O∪{oc}
18: end for
19: return O,C

Key: ∥·∥= distance (Euclidean)
τd = distance threshold for merging contours

Doorway/Gap Detection: A doorway is interpreted as a gap between two objects in
this thesis. As gaps might exist inside a big object, to effectively detect gaps, firstly each
segmented object is splitted into n parts based on the azimuth of each surface point of the
object with respect to the center of the object. Then the distances of these split objects to each
other are calculated. The potential gaps are preliminarily detected with the width criterion:
those gaps whose widths are within a range (dmin,dmax) will be retained. To filter out false
gaps, the ratio of free grid cells along the line formed by the two end points of each candidate
gap is calculated. Those gaps whose free cell ratio is over a threshold τfree are considered
as the final gaps (there should be totally free space within a gap, but a threshold is used to
accommodate map noise).2 The detected gaps will then be used for the related task feature
calculation.3

2In practice, after this step, the obtained gaps whose distances to each other are under a threshold τgap_dist
(in the implementation of this thesis, it was manually set to 0.75m) are merged. The distance between two gaps
are calculated using their center points.

3In the implementation of this thesis, the following parameter values were arrived at experimentally:
τd = 1.0m,n = 24,dmin = 1.1m,dmax = 1.4m,τfree = 0.95.
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For detecting wall segments, the open-sourced method proposed in [17] is employed to
firstly segment the whole environment into individual rooms whose contours represent the
walls around them. Then the proposed object segmentation algorithm is applied to extract
the biggest contour of each room to obtain its wall segments. Benefiting from this procedure,
the doorways linking the segmented rooms can be obtained, and objects and gaps in each
room (or in the room where the test is carried out) can be extracted, instead of doing the
extractions over the whole map. This improves the computational efficiency.

The following figures illustrate the extraction results by applying the proposed algorithm
to various occupancy grid maps with the size: 1024× 1024 grid cells and the resolution
0.05m per cell.

Fig. 1(a) shows part of the detection results of the scenario used for demonstrating the
doorway crossing task. Apart from the required target (indicated by the orange arrow), the
algorithm outputs many false candidate doorways, most of which are in fact gaps, since the
doorway is interpreted as gap in this algorithm. A doorway on the right side of the required
target was ignored because of the width criterion for doorway detection in the algorithm.4

Fig. 1(b) displays part of the segmentation results of the scenario employed for demon-
strating the object inspection task. The required target is also noted by the orange arrow.
Some false candidate objects were produced due to the noise of the map, the others were
actually the walls of the scenario. Two major sources of the map noise are a small slope and
a stairway beside in this scenario, and they are indicated in the figure by a yellow arrow. (The
same kind of map noise can also be observed in Fig. 1(a).)

Fig. 2 shows the detection results of the algorithm applied to another scenario used for
evaluation in this thesis. Fig. 2(a) displays two doorways extracted after segmenting the
map into rooms by applying the approach proposed in [17], thus there are no gaps detected5.
Fig. 2(b) illustrates three object segments and the wall segments in the form of point clouds
together with the detected doorways within the room in which the test was performed. The
white point cloud represents the wall segments, while the others denote the three object
segments respectively.

4Although the “gap” next to this one was also filtered out due to the width criterion, but in fact it is a glass
wall with a steel frame which was detected by the LRF of the robot.

5Please notice, the coordinate system in the center of this map image indicates the original point of the map
instead of a segmented doorway.
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(a) (b)

Fig. 1 The detection results of the environment process algorithm applied to two different
scenarios. The orange arrows indicate the required targets in each of the scenarios, and
the yellow ones shows the map noise resulting from a small slope and a stairway beside of
the scenarios: (a) The doorway detection results. A candidate doorway is represented by a
colored coordinate system at the center point of it. The x,y,z axes of the coordinate system
are represented by red, green, blue colors respectively; (b) The object segmentation results.
A candidate object is displayed in the same way as the doorway candidates.

(a) (b)

Fig. 2 The extraction results of the environment process algorithm applied to another scenario
used for evaluation in this thesis: (a) Two doorways were detected after segmenting the
environment into rooms. Each doorway is indicated by a coordinate system fixed on its center
point with the same color coding as in Fig. 1, except the one in the center representing the
original point of the map; (b) The point clouds of the wall segments and three objects within
the room where the test was performed. The white point cloud represents the wall segments,
while the others denote the three object segments respectively. The detected doorways are
also shown together.
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Algorithm 5 2D Doorway/Gap Detection
1: Given grey-scale map image I and segmented object contours C
2: initialize D←{}, Csplit←{}
3: for each c ∈C do
4: for i = 0; i < n; i++ do
5: for each s ∈ c do
6: if azimuth(s) ∈ [2π

n i, 2π

n (i+1)] then
7: csplit_i← csplit_i∪{s}
8: end if
9: end for

10: Csplit←Csplit∪{csplit_i}
11: end for
12: end for
13: for i = 0;ci ∈Csplit; i++ do
14: for j = i+1;c j ∈Csplit; j++ do
15: d j =

∥∥ci,c j
∥∥

16: if d j ∈ [dmin,dmax] then
17: gappreliminary←{pstart, pend}, where:

pstart ∈ ci, pend ∈ c j, and d j == ∥pstart, pend∥
18: end if
19: end for
20: end for
21: for each gap ∈ gappreliminary do
22: {pstart, pend}← gap
23: Extract points along the straight line (pstart, pend) (→ Pline).

initialize Numfree_grid = 0
24: for each p ∈ Pline do
25: if Ip == 254 then
26: Numfree_grid++
27: end if
28: end for
29: if Numfree_grid

|Pline| > τfree then
30: gapfinal←{position = pstart+pend

2 , endpoints = {pstart, pend}}
D← D∪gapfinal

31: end if
32: end for
33: return D

Key: | · |= size (number of elements)
∥·∥= distance (Euclidean)
n = number of parts for an object to be divided into
dmin,dmax = min/max thresholds on gap width
τfree = threshold of free space percent for filtering gaps
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