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Abstract 

The deformation of water-affected silica fibers in 2-point-bending does not 
completely disappear after unloading. So far, this effect is discussed in literature 
as a stress relaxation at rather low temperatures. In the present study, we apply 
the swelling concept to the literature measurements. We found that the 
predictions of residual deformation via volume swelling by hydroxyl generation 
are in good agreement with the available experimental results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IV

 

 

 

 

 

 

 

 

 

 



 V

Contents 

  

1    Introduction  1 

2    Equilibrium constant and hydroxyl content under stresses 1 

3    Effect of swelling zones on bending deformation 2 

4    Results  5 

4.1 Tests at 550°C  5 

4.2 Tests at 625 and 700°C  7 

4.3 Predictions including the effect of swelling stresses on diffusivity 8 

5    Recovery of curvature after unloading 9 

 

References  11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 VI

 

 

 

 

 

 

 

 

 

 



 1

1. Introduction 

In the past, the authors showed in a couple of papers the principle effects of volume 
swelling by hydroxyl generation in silica on mechanics and fracture mechanics proper-
ties. Swelling of water-containing silica at high temperatures was early reported by 
Brückner [1,2], Shackelford [3] and Shelby [4]. An experimental proof of the swelling 
effect was given by deformation measurements on silica discs under 1-side soaking. 
The predicted and measured bending moments showed good agreement [5].  
In most of our studies in the past, it was without importance what the effect of stress 
state on swelling is. We always could use isotropic swelling assuming identical strains 
in all directions. In [6] we applied the principle of Le Chatelier [7] for the computation 
of the equilibrium constant for water reaction with silica. This was done for non-
isotropic stress states and allowed to predict the strength increase of silica fibers by 
swelling. We compared the predictions with strength measurements by Lezzi et al. [8]. 
Good agreement was found by using the results from Agarwal et al. [9] obtained with 
the Nuclear Resonance Analysis (NRA). In the actual note, we compare the swelling 
effect on residual bending displacements with deformation measurements by 
Tomozawa et al. [10]. 

2. Equilibrium constant and hydroxyl content under stresses 

Water penetrated into silica reacts with the silica network according to  

 Si-O-Si +H2O  SiOH+HOSi (2.1) 

with the concentration of the hydroxyl S = [SiOH] and that of the molecular water C = 

[H2O]. For temperatures >500°C, the equilibrium constant k of the reaction is  

 CSk /2 , (2.2) 

In [6] an equation was derived for the hydroxyl concentration as a function of stress. 
Following the procedure by Hamann [10], the equilibrium constant is given as: 

 CSkUWkRT /,222ln 2 SiOH0,H2O0,  , (2.3) 

where 0,H2O and 0,SiOH are the chemical potentials for molecular water and hydroxyls, 
respectively in the unstressed state; W represents the work per mol of SiOH in the 
volume V0 done by the mechanical stresses. U is the change of the elastic strain 
energy per mol due to a reduction of material stiffness because of the water reaction. 
The contribution W is for uniaxial loading by z=appl 

 EVU appl 2
2
1

0/   (2.4) 
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where ∆E is the change in the Young’s modulus as a consequence of the applied 
stresses. Due to the reaction between water and silica, a stiffness reduction of the SiO2-
structure, E/S, as can be concluded from sound velocity measurements in silica 
[11,12] with different hydroxyl content [13].  
Since E0, the contribution U has the same sign as W. In the previous evaluations 
[6], the energy term, U, was neglected and the undamaged Young’s modulus was 
used in all equations. In this way, the computations yielded to lower limit solutions. 

The derivation in [6] showed that the hydroxyl concentration is given as a function of 
the externally applied stress appl in implicit form  

 



 

RT
SSS appl

 )(exp0 , (2.5) 

with the coefficient  that reflects the effect of swelling stresses on the equilibrium 
concentration due to the fact that the swelling stresses sw are proportional to the 
swelling strains v and these are proportional to the hydroxyl concentration S, i.e. 
swvS. For uniaxial loading, appl is the externally applied stress in axial direction, 
R the gas constant and T the absolute temperature and the parameter  = 135 GPa as 
derived in [6]. S0 is the hydroxyl concentration in the absence of any stress.  
The parameter  was concluded from the bending experiments by Agarwal et al. [9]. 
By the evaluation in [6] it holds 

 10%/molcm4.14 3   (2.6) 

Eq.(2.5) is an implicit equation since S occurs also in the exponential term. The expli-
cit solution of (2.5) with respect to S reads 

 





















RTRT

SRT
S appl


expPLog 0  (2.7) 

using the product logarithm or Lambert W function PLog, i.e. the solution W = PLog(z) 
of the equation z=W exp(W) (see e.g. [14]). 
The swelling stress in axial direction is according to [6] 

 (GPa)    133, Szsw   (2.8) 

3. Effect of swelling zones on bending deformation 

Volume expansion under tensile loading must have consequences on the deformation 
behaviour, similar to the strength behaviour discussed in [6].  
Under bending load, the effect of stress on the SiO2/water reaction (2.1) is stronger in 
the tensile region than in the compression region. The enhanced swelling under tension 
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and suppressed swelling under compression zone must result in internal bending 
moment acting against the applied one. 
In order to give a transparent analysis, let us consider a thin bent fiber of radius r0, Fig. 
1a, loaded by a constant displacement of the fiber ends, Fig. 1b, and a constant force F, 
Fig. 1c. This fiber is water-vapour soaked under the externally applied outer fiber 
bending stress b. 
As long as the thickness of the water diffusion zone is small compared to the fibre 
radius, b<<r0, the bending stress in the diffusion zones is sufficiently constant. The 
applied stress at the surface as a function of the angle  is given by  

  cosbappl   (3.1) 

The thickness b of the diffusion and swelling layer is governed by diffusivity D and 
time t via 
 tDb   (3.2) 

 
Fig. 1 a) Fiber cross-section with swelling zone under bending, b) bending under constant 

displacements at the ends, c) constant load (arrows indicate where water vapor acts). 

The diffusivity to be used in eq.(3.2) is a function of stresses, commonly expressed by 
the hydrostatic stress component h. When D0 denotes its value in the absence of any 
stresses, the diffusivity for the case of stress-enhanced diffusion reads [15] 

 



 


RT

V
DD w

appl3
1

0 exp   (3.3) 

We used Vw  18 cm3/mol as was suggested in [8]. For thin diffusion layers the bend-
ing moment Msw, caused by swelling stresses is  

r0 

d 

 

r0d 

b 

dA=r0b()d 

a) b) 

load constant 

x 

deformation constant 

c) 
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 dArbM swsw 


cos)( 0

2

0
  (3.4) 

with the area element dA given by the hatched area in Fig. 1a 

  dbrdA )(0  (3.5) 

The eq.(3.4) can therefore be written 

 


dbrM swsw cos)()(
2

0

2
0   (3.4a) 

When the swelling zone becomes comparable with the fiber radius, e.g. b>r0/5, the 
moment has to be computed by 

  
 







2

0 0

0

)cos()(
r

r

swsw ddrrrM  (3.4b) 

After unloading the internal swelling moment Msw causes a remaining curvature of 

 4
04

,
1

rJ
EJ

M

R
sw 

   (3.6) 

Equation (3.4) gives the bending moment by swelling for the case of very thin 
swelling zones with b/r00. For thicker zones, comparable with the fiber radius r0, the 
solution becomes more complicated since then also the equilibrium conditions have to 
be fulfilled.  
Because of the Bernoulli hypothesis that plane cross sections must remain plane, the 
fiber curvature caused by swelling results in a linear strain distribution over the cross 
section: 

  cos,21 rxcxcz    (3.7) 

(for x see Fig. 1a).  
The integrals of swelling stresses over the cross section of the fiber allow consideration 
of different types of tests. The requirements of disappearing normal force of swelling 
stresses and disappearing total moment result in two conditions from which the 
unknown coefficients c1 and c2 can be determined  

 0')(
)(

1 
A

swE dAx    (3.8) 

 0')( 1 
A

swE xdAx    (3.9) 
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For constant load, the equations (3.8) and (3.9) have to be solved simultaneously. For 
this purpose we used the Mathematica [16] subroutine FindRoot. Boundary conditions 
for constant displacement are realized by setting c1=0.  
Consequently, the eq.(2.7) now reads 

 














 


RT

rEcEc

RT

SRT
S appl 


)cos(

expPLog 120  (3.10) 

4 Results 

4.1 Tests at 550°C 

Figure 2a shows the hydroxyl concentration at a water vapor pressure of 355 Torr as a 
function of temperature as reported by Davis and Tomozawa [17]. The data from IR-
analyses are indicated by the circles. The right ordinate shows the hydroxyl concen-
tration normalized on the value at 650°C.  

At 550°C we can conclude that the ratio S550°C/S650°C is about 1.4. The values of S0 ex-
pected from the NR-Analysis [9, 6] are compiled in Table 1 for temperatures 550°C.  
For the parameter  we tentatively used the 650°C result of =14.4 cm3/mol also at 
550°C, 625°C and 700°C.  

 
Fig. 2  a) Hydroxyl surface concentration S in silica, reported by Davis and Tomozawa [17] for a 
water vapor pressure of p = 355 Torr (circles); right ordinate represents hydroxyl concentration S 

normalized on the concentration at reference temperature 650°C, S650°C; b) Diffusivity from literature 
[17] (circles); Squares: D0 used for computations. 
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  NRA NRA D(0) 

Temperature S/S650°C S(0)  (wt%) S0  (wt%) (cm2/s) 

650°C  (via NR-data) 1 0.586 0.652  

550°C 1.4 0.821 0.971 110-11 

625°C 1.07 0.63 0.71 310-11 

700°C 0.87 0.51 0.56 710-11 

Table 1: Hydroxyl concentrations from NRA-measurements used for the deformation predictions 
according to [9, 6 ,17]. 

The effect of the different loading conditions is shown in Fig. 3a. Since in 2-point-
bending tests the bending moment changes along the fibre length axis and due to the 
fact that the water reaction only took place in a central region (indicated by the arrows 
in Fig. 1c), no well-defined mechanical boundary conditions are given. As limit case, 
we consider constant moment and constant curvature.  

In Fig. 3 computations are shown that are performed for a bending stress of 493 MPa 
at 355 Torr vapour pressure and a diffusivity of D0 = 110-11 cm2/s as indicated by the 
open square in Fig. 2b. Under constant load (0, 0) the dash-dotted line resulted 
and for constant displacement (=0, 0), the solid curve was obtained. The circles 
represent the experimental data from [10]. 

The effect of the applied bending stress is visible from Fig. 3b. The results agree 
sufficiently with the experimental data from [10] for all applied bending stresses. The 
perpendicular lines indicate upper limit for the time range in which the swelling layer 
thickness is smaller than b=10µm.  

It is self-evident that the residual curvatures cannot increase unlimited with time. For 
long times the diffused water has homogeneously soaked the full cross section, i.e. 
S0=const. The saturation moment results then from eq.(3.4b).  
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Fig. 3 Residual curvature of water vapour soaked silica fibers (125µm diameter). Comparison of 

experimental results at different bending stresses with theoretical predictions; circles: results obtained 
in constant displacement tests, reported by Tomozawa et al. [10]. a) Effect of different boundary 

conditions: Bending tests by Tomozawa et al. [10] given by the circles, solid curve: constant 
displacement (Fig. 1b), dash-dotted curve: constant load (Fig. 1c); b) computation for different loads. 

4.2 Tests at 625 and 700°C 

Residual deformations were also measured at increased temperatures [10]. In addition 
to the results at 550°C (circles), Fig. 4 represents the data for 625°C (squares) and 
700°C (triangles), all at 493 MPa. The diffusivities for computations are about D0=3 
10-11cm2/s at 625°C (blue square in Fig. 2b) and D0=7 10-11cm2/s at 700°C (red square 
in Fig. 2b). The hydroxyl concentration at 625°C is about 7% higher than at 650°C: 
S0,625°C1.13% and at 700°C about 15% smaller: S0,700°C0.92 wt%. 

The solid lines in Fig. 4 represent the computations. Whereas for 550°C a good 
agreement between measurement and computations is visible, at higher tempera-
tures of 625° and 700°C the measurements are clearly underestimated by the com-
putations.  

At 625°C the predictions are 75% and at 700°C about 55% of the measured values. 
By varying the diffusivities D0, the computations were matched to the experimental 
data as shown by the dashed curves. The diffusivities obtained via curve fitting are 
introduced in Fig. 5 by the squares. 
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Fig. 4 Residual curvatures at different temperatures (NRA-data used). Symbols: Measurements by 

Tomozawa et al. [10], solid curves: computations using the diffusivities from Fig. 2b, dashed curves: 
Diffusivities matched to the measurements; b) Diffusivities giving best agreement with the measured 

curvatures. 

4.3 Predictions including the effect of swelling stresses on diffusivity  

The predictions made in Section 4.2 were performed with eq.(3.3) that implicitly 
assumes that the stresses acting in a volume element would be externally applied 
stresses exclusively. In presence of swelling stresses, this equation must read 

 



 


RT

V
DD w

swhapplh )(exp ,,0    (4.1) 

The hydrostatic swelling stress term for anisotropic swelling, =1.92, reads according 
to [6]  

 SS
E

yswzswswh 


 GPa41)1(
)1(6

)( ,,3
1

, 


  (4.2) 

and for isotropic swelling with =1/3 to be applied in the computation of D0 from D(0) 
for the unloaded case, appl=0, 

 SS
E

swh 


 GPa7.18
)1(9

2
, 

  (4.3) 

This implies for the unknown diffusivity D0 in the absence of any stress: 
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 



 


RT

V
SDD w

00 (GPa)7.18exp)0(   (4.4) 

 

 

Fig. 5 a) Curve fitting according to (4.1) for =550°C, resulting in Vw=27 cm3/mol, b) predictions for 
temperatures of 625 °C, and 700°C.  

 

We varied the volume Vw and computed the residual curvatures for the three stresses 
at 550°C and compared the results with the measurements by using the Mathematica 
Subroutine NonlinearFit [16]. The best parameter set was found by matching the 
computed curves to the measured data by Tomozawa et al. [10] as Vw=27 cm3/mol.  
The related set of curves is shown in Fig. 5a. Application to the higher temperatures 
again underestimates the measurements as is visible from Fig. 5b. 

5. Recovery of curvature after unloading 

The hydroxyl concentration at the end of a bending test (bend = 493 MPa, t = 36 h) is 
shown in Fig. 6a as the red curve. The S-distribution is non-symmetric with respect to 
the centreline. On the tensile side, the concentration S is enhanced due to the tensile 
stresses and on the compression side reduced. The hydroxyl profile in the absence of 
externally applied stresses is represented by the black curve. This curve is of course 
symmetric.  
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Fig 6 a) Hydroxyl concentration along the diameter of a bent fiber (red curve) compared with the S 
profile in the absence of bending, b) expected mechanical response of curvature for changes in the 

equilibrium constant and hydroxyl concentration.  

If the bent fiber is unloaded and cooled down to room temperature, the S -distribution 
remains unchanged, and the S-profile caused by bending is “frozen in”. No time-
dependent “recovery” of the residual curvature is possible. 

When the fiber is unloaded at the soaking temperature, the equilibrium constant must 
decrease because it is no longer stress-enhanced. The consequence is that the equi-
librium of the reaction (2.1) tends more to the left side generating molecular water. 
The downward arrow in the former tensile region indicates this. The time necessary for 
the reaction can be rather short since diffusion processes are not necessary and 
generated molecular water can reside in the holes of the silica network. In the 
compression region, the equilibrium constant must increase and, consequently, the S-
concentration (indicated by an arrow upwards). This reaction is expected to be slowly 
since the additional water must diffuse from the surface. 
The changes in S-concentration cause changes in volumetric strains. Changes in 
swelling strains give rise for a change in swelling stresses. In the former tensile region, 
the swelling stresses decrease and in the former compression region, swelling stresses 
increase. The mechanical response is a time–dependent reduction of the curvature as 
schematically illustrated in Fig. 6b. This type of a “relaxation” or better “recovery” is 
of course only a consequence of an increase or decrease in S with time. 
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