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Abstract. This paper presents a didactical introduction to a tensor series expansion of a spherical function for the use in constitutive
theory of materials containing orientable particles. In several application areas a function of two angles, e.g. an orientation (density)
distribution function, is expanded into a series of symmetric irreducible tensors. This paper will explain this series expansion,
starting with reviewing the representation of a function defined on a unit sphere in terms of spherical harmonics, which are a
possible choice for a basis. Then, the connection between spherical harmonics and symmetric traceless tensors is explained. This
is the basis for introducing and understanding orientation and alignment tensors as well as their connection to the orientation
distribution function. The style of presentation was chosen to be more on the didactical side, differently from the theorem—proof
style found elsewhere, which directly starts from symmetric tensors.
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1. INTRODUCTION

In many materials like molecular gases [1, 2], liquid crystals [3-6], polymers, and short fibre reinforced
materials [7—-15] the orientation of the molecules or ‘particles’ plays an important role because different
orientation distributions lead in general to different material properties. In liquid crystals, the optical
properties depend on the orientation of the molecules; this can be used to change the polarization direction
of light and is applied in liquid crystal displays. Examples for fibre reinforced materials include fibre
reinforced plastics and fibre concrete. In short fibre reinforced concrete (SFRC), short steel fibres are added
to the concrete in order to increase the tensile strength. There, great differences of stability are observed in
dependence of the orientation of the fibres [16, 17].

Throughout this section it is assumed that the considered particles of the observed material are rigid
and rod-like. Since the size of the particles is not necessary for indicating their orientation, one can assume
that the particles have unit length without loss of information. Hence, the orientation of one particle can be
specified by indication of the angles ¥ and ¢ (see Fig. 1).
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Fig. 1. The orientation of every particle is specified by the angles ¢ and ¥.

The angles ¥ and ¢, with 0 < ¥ < w and 0 < ¢ < 27, can be used as coordinates on the surface of a
unit-sphere. Therefore, the orientation of a fibre can be described as a point on a unit-sphere. If the two ends
of a fibre are indistinguishable, each fibre orientation corresponds to two opposite points on the sphere.

With introducing a probability density f (with f(,9) > 0 and § fdQ = 1, where Q is the surface
element [18]) it is possible to compute the probability that one particle is being situated in a specific area
(see Fig. 2). In this context the probability density f is called orientation distribution function (ODF)
(although it is not a probability distribution in mathematical sense!). The ODF gives complete information
about the alignment of the considered particles and has influence on the material properties.

Examples of possible orientations of particles are shown in Fig. 3. In Fig. 3a the particles do not have a
preferred orientation, thus the ODF is constant and with § fdQ = 1 follows:

1
(%, 0)= i )

In Fig. 3b the density is given by

+ ¥ =nx/2
f(8,0) = L02m)x (/21 (@, ) == {2” / : (2)

which again follows from the condition ¢ fdQ = 1.

Fig. 2. The probability that particles are located in the area A is P(A) := §, fdQ.
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Fig. 3. Examples of orientation distributions.

The distribution functions can be visualized by plotting a coloured sphere, where for every 0 < ¢ < 7
and 0 < ¢ < 27 the colour of the point (cos @sin®,sin @ sin ¥, cos ) represents the value of f(, @) (see
Fig. 4). Every ODF f is dependent on the angles ¥ and ¢ and defined on the sphere 52 := {x € R3|||x|| = 1}.
In analogy to Fourier series, where a function is dependent on one angle ¢ or 27-periodic resp. it is possible
to express the ODF f in a (generally infinite) sum of ‘spherical harmonics’, where the spherical harmonics
are the two-dimensional analogues to the sines and cosines in the Fourier series (see Section 2). Hence, with
denoting ;" as spherical harmonics for I € Ny, |m| <1, we can express the ODF as the series

oo [
f,0) = Y Y oY (,0) 3)

1=0m=—1

with suitable chosen real coefficients ay,,. With n = (cos @ sin®¥,sin@sin®,cos ), f(n) := (¥, ¢), and
Y/"(n) :=Y/"(¥, @), we obtain the equivalent cartesian expression

= )
fm)=Y Y oY (n). 4)

1=0m=—1

(a) (b)
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X
Plot of ODF of Fig. 3a. No preferred orientation Plot of ODF of Fig. 3b. All particles oriented within
(isotropic) one plane, but no preference within this plane

Fig. 4. Visualization of the ODF given in Fig. 3.
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However, for many applications it has been proven worthwhile to use a tensorial description instead of
expressing f in a series of spherical harmonics. This means that the ODF can be expanded into a series
using tensor coefficients ay, . ,,; the cartesian expansion is given in the following way [1,19-21]:

1 = (204 1)1
f(n) = i (1 +) T G "'”uz>7 (&)
=1 :
aup..y = « f(n) Ry =Ny dzn’ (6)

where ny, ---ny, is the symmetric traceless part of the /-fold tensor product of n with itself (see Appendix
A, Definition 4 and Section 3). The !! denotes a factorial with double steps and the y; are the vector indices,
Ui = 1,2,3,i:0,...,l.

In Eq. (5) the Einstein summation convention is used; thus, every index that appears twice on the right
side of Eq. (5) implies summation over all values of the index, i.e. the right term of Eq. (5) is equivalent to

1 > & (201!
H (1 + Z Z Taﬂlmlllnlil RO R N

=1, =1

For better understanding of the notation of the formula we explicitly write down the first few terms of
the series in Eq. (5):

1 3 (2-14+1)! 3 2.2+ 1)
f(n) = 4”<1+Z 1 a#l”#1+ Z Taliluznldlnl-lz"_”' ’ (€))
=l ’ HisH2=1 :
1 5-3
= H <1 +3aulnul + Ta'uluznulnu_z +-- > . (9)

Example 1. In this example the second-order alignment tensor of the flat distribution from Fig. 4b is
calculated. For simplicity a discrete distribution of only two fibres is considered. These fibres have the
orientations (¥, @) = (90°,0°) and (9, ¢) = (90°,90°).

The first step is to convert the orientations from spherical polar coordinates to cartesian coordinates:

1 0
n> =10 .~ =1, (10)
0 0
The next step is to calculate the alignmen tensor using Eq. (6):
a = f(n) n®n dzn:lin<i>®n<i>—ll (11)
2 N £ 37

To do this, the sum of outer products of the orientations of the two fibres is calculated

| 1 1 1 0 0 | 1 00 | 0 0O
—1 0]l 0 ]J+=11]|®]| 1 250004—5010,(12)
N\ o o) NM\lo 0 00 0 00 0
and then, with removing the trace, the second-order alignment tensor results in
([ 100 L [1 00 £ 0 0
auv:—010—5010:0%0 (13)
0 00 0 0 1 00 —3

Comparing the second-order alignment tensor just calculated with the one presented in Eq. (111) in
Appendix B, one can see that the flat isotropic distribution is approximated in the first order using the
spherical harmonic —Y7). 0
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The equivalence of Eq. (5) and Eq. (4) will be shown in two steps. First, a series expansion of
the ODF into spherical harmonics will be performed (Section 2); second, after a short introduction
to symmetric irreducible tensors (Section 3), the correspondence of symmetric irreducible tensors with
spherical harmonics will be shown (Section 4).

2. SERIES EXPANSION USING SPHERICAL HARMONICS
2.1. Function spaces as vector spaces

The first thing to understand is that also functions can form a vector space. The definition of a vector space
is repeated for completeness in Definition 6 in Appendix A. In the following we only consider function
spaces where functions map from an arbitrary non-empty set D into a vector space V over the field F (for
the reader unfamiliar with the notion ‘field’ it is for our purposes sufficient to replace F with R or C). We
notate these function spaces as F(D,V), i.e. F(D,V) is the set of all functions that map from D to V.

The function space F (D, V) becomes a vector space if we endow the space with an addition and scalar
multiplication such that the vector space axioms in Definition 6 are fulfilled. For A € F and the functions
f,g: D —V we define the addition f + g and scalar multiplication A f by

frg @ DoV (f+8)(x) = F() +8(), (14)
Af i DoV A)E) =4 £(x). (1)

Note that the operations + and - in the terms f(x) 4+ g(x) and A - f(x) refer to the already defined operations
in the vector space V since f(x),g(x) are vectors in V for every x € D. With this in mind it can be easily
shown that the set F(D,V) = {f : D — V} will become a vector space if endowed with the operations + and
- defined in Eq. (14) and Eq. (15). Although it might be at first sight unfamiliar to consider a function as a
vector and a function space as a vector space, this approach allows us to use all the results that have been
proved for general vector spaces.

2.2. Scalar product and orthogonal system

The canonical scalar product in R” is defined by x-y := (x,y) := x;y; (using the Einstein sum convention)
for every x,y € R". Two vectors x, y are called orthogonal if (x,y) = 0 and the norm of x € R" is defined by
||lx|| := 1/ {(x,x). Again it is possible to generalize these notions and define a scalar product and a norm on
any vector space. The definitions of a scalar product and norm in an arbitrary vector space are repeated in
Definition 7 and Definition 8, respectively, in Appendix A.

For our purposes we consider the function space F(D,V) := F(5?,R) and define a scalar product by

(f:8) = | fx)g(x)dr. (16)

As the functions are real-valued, the complex conjugation of the first function under the integral is
omitted. It is a useful exercise for the reader to check that Definition 7 is fulfilled. A norm is induced by the
scalar product, i.e.

[NAIRSSRVAVAY AR (17)

For the further development some more notions with regard to the functionspace F (S, R) will be
introduced.
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Definition 1. The space L>(S?) of square integrable functions on §* = {x € R3|||x|| = 1} is defined by
2= { e PRIl <. 13
As a note, the space L?(S5?) is a Hilbert space, meaning it is a vector space with a scalar product that is

complete with respect to the norm induced by the scalar product.

Definition 2 (Schauder basis). A Schauder basis is a set of functions {g1,g,...} in L*(S?) such that for
every function f € L*(S?) there exists a unique sequence of real coefficients 0y, 0%, ... so that

f=Y agi. (19)
i=1

Note that a Schauder basis does not need to be a vector space basis (Hamel basis) because we allow
infinite linear combinations (whereas in a vector space basis every vector can be represented as a finite
linear combination of basis vectors).

Definition 3. The set {g1,g2,...} is called an orthonormal system (ONS) if
(8ir8j) = 6ij-

If {g1,82,...} is both a Schauder basis and an ONS, it holds [22]

=Y (f.8)8i. (20)

i=1

i.e. every coefficient ¢; in Eq. (19) is given by o; = (f, g;)-

2.3. Spherical harmonics

The three-dimensional Laplace operator in spherical coordinates is given by [18]

10 0 11 9 2, 1 92
Ay = —— (P )+ |—— (sind— |+ ——~——|. 21
3 r dr (r 8r> TR [sinﬁ 29 (Smﬁ86> +sin219 8(p2] @D
=:A,, r:;iial part =Ap.p ,;;gular part

Scalar functions Y : 2 — R are denoted as spherical harmonics if they solve the angular part of the
3-dimensional Laplace equation A3 = 0, i.e. a separation of variables is performed for ¥(r,%,¢) =

F(r)Y(9,9):

_ 9 (20 1[1 0 (. . 0 1 92
0 = ar<r ar)F(r)Y(ﬁ’(p)+ﬂ[sim9M (smﬁw>+MW]F(r)Y(ﬁ,<p). (22)

For us, only the spherical part is of interest.
It can be shown that for [ € No,m € {—1,—(+1,...,0,...,1— 1,1} the functions Y/" : (0,27) x (0,7) —

R,
cos(mp) ,1<m<lI
V" (e, 0) = N(z,\m|)P1|m|(COS B)-¢ 1 ;m=0 (23)
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are spherical harmonics, where P/ is given by

(=" 2\m/2 dm I
P"(x) = > (I —x7)" ppE (x*=1)", (24)
and the short form N(; ,,) is defined as Ny ,,) := (212;1) 8;23:

With the scalar product defined in Eq. (16) the spherical harmonics are orthonormal, i.e.
Yymyr = /2 Y"Y'dn = Oy O (25)
s

Furthermore, the set of all spherical harmonics forms a Schauder basis of L? and therefore it is possible to
expand the ODF into a series of spherical harmonics

oo l
fm) = Y Y oY"(n) (26)

I=0m=—1

with the coefficients

O = (f(n),Y]"(n)). 27)

In Table 1 the first few real spherical harmonics are displayed and in Table 2 the spherical harmonics of
Table 1 are visualized.

3. SYMMETRIC TRACELESS TENSORS

In this section we give a short introduction to symmetric traceless tensors and define a function space H;
that is connected with these tensors, which is, as we will see in Section 4, equal to span,,; ¥". We start
with a short description of tensors and the notations used in this article. The reader unfamiliar with tensors
can find a more detailed introduction in Ref. [23].

A tensor in general is a multicomponent quantity, whereby the realvalued components are dependent on
the chosen coordinate system. A tensor is of the /th order if its components can be indexed by [ integers
Ui, ..., U thus, to give an example, a zeroth-, first-, or second-order tensor can be represented by a scalar,
vector, or matrix, respectively. We denote with [aulmm] a tensor of the /th order itself and with ay, ., we
refer to the components of the tensor with regard to the chosen basis.

We give now a short introduction to the notions symmetric and traceless and illustrate these for tensors
of the order [ = 0,1, 2.

Table 1. The spherical harmonics for / =0,1,2

1=0 ] I=1 [ =2

m= -2 \/ % sin® © sin(2¢)

m=—1 \/%sim?sin(p — %sinﬂcosﬂsin(p
m=0 ﬁ \/%cosﬁ \/%(?woszﬁfl)
m=1 \/%sinﬂcomp — %sinﬂcosﬂcoup
m=2 \/%sin2 Y cos(29)
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Table 2. Visualization of the spherical harmonics of Table 1 using a ‘Mollweide’ projection

m= -2 m=—1 m=0 m=1 m=2

A tensor [ay, . y,] is called symmetric provided

Ay = Anpmps (28)

where 1 ... 1, is any reordering of the indices U, ... i;. For tensors of the order O or 1 this is not a restriction,
since we have zero or one index, respectively, which we cannot permutate. For / = 2 a tensor is symmetric
if

dajj = djj. (29)

A tensor [ay, .y, is called fraceless if the sum over any two indices that are set equal to each other is
zero. Thus, if we consider the indices gy ...j...j... U, this yields

3
0=y jojoty = Y, Aptyoojomootty (30)
j=1

For symmetric tensors this condition reduces to

Ajjus..;y =0,

since the ordering of the indices does not make any difference. Tensors of the order 0 or 1 are defined as
always being traceless. A tensor of the order [ = 2 is traceless provided

ajj=ay +axn-+a=0. (3D

It is often useful to decompose a tensor into a sum of ‘special’ tensors and to consider only several parts
of the decomposition. For our purpose we decompose every tensor into a symmetric and a skewsymmetric
part, whereby a tensor [aulm u,] is called skewsymmetric if all the components ay, ..., change its sign under
the exchange of any pair of its indices, i.e. for example the following holds:

Ay popis.py = ~ Aoy - (32)

For the sake of comprehension we consider again the zeroth-, first-, and second-order tensors. Tensors
of the order zero and one are per definition symmetric traceless and have no skewsymmetric part. A second-
order tensor [a;;] in R? can be represented as a matrix (a;;)
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ay app aps
(aij) = | a21 axn ax (33)
ay azy  ass

and has the decomposition

ap 012-5021 a|3J2ra3| 0 “125“21 6113;6131
(aij) — a12‘502l arn 112342ra32 + _U]2;a2] 0 0235032 , (34)
a1342rfl31 1123;&32 an _a135a31 _a23;a32 0
:=[a;;]y™ = symmetric Skewsyﬁmetric

where tr(A) = a;; = a11 +axn + as; is the trace of the tensor [a;;].
The symmetric part [a; j]Sym can be further decomposed into a traceless symmetric and isotropic part

aiy — 3 tr(A) dtan fatdy Ftr(A) 0 0
(@)= | e gy lua)  wiw (4] 0 luw@) o | (35)
aaza anfen azz — 1 tr(A) 0 0 T (A)
:="a;;' = traceless symmetric isotropic

Every tensor [ay,...,,] can be decomposed in this way. A recursive formula for the computation of the
symmetric traceless part ay,..,, can be found in Ref. [20].
The set of all symmetric traceless tensors

Vi: = {layu]|[ay -y is of the Ith order, symmetric and traceless }
= {au... |lay .y is atensor a of I-th order} (36)
forms a vector space; hence, V; has a dimension N and a basis {[b'],...,[b"]} such that every symmetric
traceless tensor can be expressed as a linear combination of the tensors [b'],. .., [p"].

In order to determine the dimension of V; we consider as an example the dimension of the vector spaces
V(), V], and V2.

Every tensor [a] € V} is a scalar and we have therefore dimVj = 1. The first-order tensors [g;] € V| have
three components: aj,a;, and az. As every first-order tensor is symmetric traceless, the components ay,as,
and a3 are linearly independent, which yields dimV; = 3.

Every [a; j] € V, has nine components aj,diz,...,a33. These components can not all be chosen
arbitrarily because the tensor has to be symmetric and traceless. It turns out that if we have for example
chosen the five components ajj,a2,a13,a2, and a3, the tensor is already completely defined by the

conditions ay| = ay,a31 = ai3,as = a3, and azz3 = —aj; — ax». Hence the dimension of V5 is
dimV, =5, (37)
and we can find a basis B, = {[b'],...,[b’]} such that every symmetric traceless tensor [a;;] € V> can be

expressed as a linear combination of the basis elements.
In general the dimension of V; is

dimV, =21+ 1, (38)

which is shown in Ref. [20].
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Now we define the function space H; based on traceless symmetric tensors. For better viewing we use

in the following the short form [a] := [ay,, . ,,] € V; for traceless symmetric tensors.
We define with
$?—R
hy o = (39)
n= (n17n27n3) — Auy..pNyy - Ny

the function space
Hy = {hjq|la] = lay.) € Vi}. (40)
Note that again in Eq. (39) Einstein’s summation convention is used, i.e.
3
hgm =Y ay. gy 41)
B =1

The function space H; becomes a vector space if endowed with the operations + and - defined in Eq. (14)
and Eq. (15). With dimV; = 2/ + 1 we obtain dimH; = 2/ + 1 and for a basis {[b'],...,[p**!]} of V; the

functions {hl7[bl], oy [b21+1]} form a basis of Hj.

4. SYMMETRIC TRACELESS TENSORS AS SPHERICAL HARMONICS

The three-dimensional Laplace operator in spherical coordinates is given in Eq. (21). We denote
11 02 d 1 9?
App=— | o (sin¥55 | +—5-55 42
0.0 = 2 Linz& 90 (Sm a&) e 8<p2} “42)

as the angular part of the Laplace operator (Ay ¢ is also denoted as the Laplace-Beltrami operator in [20]).
The operator Ay o has the eigenvalues —I(I + 1) for [ € Ny with eigenfunctions ¥" (|m| < 1), i.e.

Mg Y["(0,0) = —II+1)Y"(,9). (43)
The eigenspace of the eigenvalue —/(/ + 1) is defined by
Eig(Av.g) 10+1) = {P € L*(5%)|Ap,o® = —I(I+ 1)®}. (44)

Note that with Eq. (43) every linear combination of spherical harmonics of the /th order is an
eigenfunction of Ay ¢, therefore we have

spanY;” C Eig(Ay,p) 41 - (45)

m<lI

The Y;" are a set of orthogonal functions. For fixed [ there are 2/ + 1 orthogonal ¥;", span,,, ¥;" is therefore
(21 + 1)-dimensional. The dimension of the eigenspace of Ay, for the fixed eigenvalue —/(I + 1) is
also 2/ + 1. Looking at the dimensions of the spaces span,,; ¥, and Eig(AWP)_,(,H) and at Eq. (45),
one can argue that the spaces are equal. Therefore, it is shown that span,, ., ¥/" is not only a subset of
Eig(Ap,p)_i(1+1)> but the spaces are equal, i.e.

spanY;" = Big(Ay.p)_i(1+1)- (46)

m<l
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The eigenspace Eig(Ay,p)—i(+1) is a 2/ + 1-dimensional vector space. One possible basis is the set of the

spherical harmonics {Yf’, Yl”“, cee, Yll’1 , Yl’} and every eigenfunction is a linear combination of spherical
harmonics.
The aim is now to prove that

spanY" = Hj, (47)

m<l

because then every spherical hamonic can be expressed as a linear combination of functions /;, which are
defined in Eq. (39), such that we can replace the spherical harmonics in the series expansion in Eq. (4) by
symmetric traceless tensors, which leads to Eq. (5).

We obtain Eq. (47) if and only if

Eig(As.p)—1+1) = Hi- (48)
In order to show Eq. (48), we have to prove that
Ap g hyjg) = =11+ 1)y [ (49)

holds for all h; ) € H;. For this, we extend first of all the range of the definition of the functions 7, [, and
define

[ R3 >R 50)
M= = (X1,%2,23) = Ay, X ...xm’

where again [a] is a symmetric traceless tensor of the order /. For every [ € N the functions izl,[a] are
harmonic, i.e.

Al =0, (51)

which we will demonstrate for / = 0,1, and 2. The proof for the general case is given in [20].
For [ = 0 the tensor [a] is a scalar, which yields

Ahg (%) = Aa =0, (52)

since the derivative of the constant a € R vanishes.
For [ = 1 the tensor [a] is a vector and we obtain

A/jlua] (x) = Aa,-xl- = 07 (53)

because the second derivative of a;x; vanishes.
Using that the second-order tensor [g] is traceless we finally obtain for [ =2

B 3 p] 9 3
Ay j(x) = ) Y XX

m=1 i I Hisp=1

d d

a e Xy X
12593 axm axm( H .Uz)

J
- aﬂl#zg(aﬂlmxﬂz + Sﬂzmxﬂl)

m
= Ay, (Buym Opm + Opym Oty m)
28,1, Ay 1 = 20y, T 0. (54)

traceless
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With Eq. (51) it is now possible to prove Eq. (49).
For every vector x € R3 exist uniquely determined angles ¢ € [0,27), 9 € [0,7), and r > 0 such that
x =r(cos @sin¥,sin @sin ¥, cos ¥) (55)
and with Eq. (55) we can write 7[,7[6,] in spherical coordinates
il[yM(l",ﬁ,(P) ::ill,[a] (X) (56)
Using Eqs (21), (56), and (51) leads then to

~ 10 0 - 1 -
0=A2y¢ h(rd )= 23, (r28rhl,[u] (nv, (P)> + 3800 i) (n9,0). (57)

With 7 4 (, @) := hy 4 (cos @ sin ¥, sin @ sin ¥, cos ¥) holds

(1,0, 0) = hy (9, 9), (58)

which simply follows from the definition of the functions 4; |, and ill,[a]~
Thus, with inserting Eq. (58) in Eq. (57) we obtain

10 ) 1
0=—5- (rzarrlhl,[a](ﬁ,<p)> + 5780, I (D,0)- (59)

Differentiation and excluding the term /=2 yields

0=r"2 <l(l + Dhy o (D, 0) +As g hy 4 (T, <P)> ; (60)
which leads to
0=1(l+1)h (V) +As.¢ (D, @), (61)
and we finally obtain
Ay hyq)(V,9) = =11+ 1)hy [ (S, @). (62)

Thus, every function /; ;) € H; is an eigenfunction of the operator Ay , with the eigenvalue —I(I+1),
which yields

Hl - Eig(Aﬂ,(p)—l(l-&-l)' (63)

Since both the eigenspace Eig(Ay,p)_;(+1) and H; are 2/ + 1 dimensional, it holds

Eig(Av.g)-10+1) =H, ©4)
and we obtain with Eq. (44)
spanY," = H;. (65)
m<lI

Hence, we can find for every spherical harmonic ¥;" one particular symmetric traceless tensor [a™] eV,
such that i 1) = Y/". The corresponding tensors [a™] €V, for 1 € {0,1,2},|m| < I are explicitly specified
in Appendix B.
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To obtain the series expansion in Eq. (5) we first consider

) l
m,l ~
Z ahmYlm(n) = Z alvmaﬂl--JJl App oMy = Ay My - - - Ny (66)
m=—1 m=—1
~—————
::d;q...ul
With Eq. (66) and
A

Auy..py = mdm...u/

we can then rewrite Eq. (4) as

> o < (20 + 1)
f(n) = IZ Z alﬁmYlm(n) = Z (l!)aul...u,npl e Ry (67)

=0m=-1 =0

Hence, the tensorial description in Eq. (5) and the description using spherical harmonics in Eq. (4) are
equivalent. The coefficients ay, .., can be computed with formula (6), which is shown in Ref. [20].

5. ORIENTATION TENSORS, ALIGNMENT TENSORS, AND ORDER PARAMETERS

In the literature about materials containing fibres, the terms orientation tensor and alignment tensor appear
frequently; in liquid crystal theory, an order parameter is introduced. In this section, the connection of these
concepts to the previously introduced tensor series is presented.

The orientation tensors are defined as the sum of the tensor product of the particle orientations within a
reference volume element

Ouy..yy = an...nul. (68)

The traceless version of these tensors is called alignment tensors or deviatoric part and these tensors
appear in the series expansion of the ODF, Eq. (5). The difference is that in the case of isotropic distribution,
the orientation tensor would be the identity tensor, while the alignment tensor would be the zero tensor (zero
alignment).

It is further possible and common to define scalar order parameters, which are connected to the second-
order alignment tensor. Based on the eigenvalues of the second-order alignment tensor it is often useful
to introduce an orientational order parameter S € [—%, 1], which accounts for the amount of anisotropy.
The case S = 1 corresponds to total alignment and S = 0 corresponds to isotropy; S = —% describes a
situation where all fibres are aligned in a plane perpendicular to the eigenvector of the first eigenvalue. In
the following, it is assumed that the eigenvalues are sorted according to the amount |A;| > || > |A3|. The

order parameter S and eigenvalues A; are related as follows:

2

5= A, (69)
—%S—bs = A, (70)
—%S+bs ~ (71)

where bg = sign(S)b and the biaxiality b € [0, 1[S|] of the distribution [24].
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The range of the order parameter S can be calculated as follows [6]:
Define the order parameter tensor S as

Ajj (72)

and let d' be the normalized eigenvector with respect to the according-to-amount largest eigenvalue S, then
the scalar order parameter and the tensor are related as follows:

dySuvdy, = S (dydy=1). (73)
=5d,
Now consider
N —
diSuvdl, = dﬁd&iz ni'nl) (74)
NS
38w |1
_ gl () (i)
— dude§<n” ny —35“v), (75)
1 X1 NN?
. N;Ed;dé (3nnl) ~ 8uv) (76)
and with dﬁnﬂ) =X
1 1 1 A 1 2
dySuvdy = Nl;i@x ~1), (77)
1
_ <2(3x2_1>>. (78)

As both d' and n) are normalized, d:tnﬂ) € [—1,1]. From Eq. (78) follows that S € [—%, 1], and with
the second Legendre polynomial P;(x) = 1/2(3x> — 1) one can rewrite the equation in the following ways:

S = (BX), (79)
_ <P2(d1~n)>, (80)
= (Py(cosa)), (81)

where « is the angle between d !and n.

The eigenvectors of the second-order alignment tensor are appropriate estimates for the directions of
the main material symmetry axes derived from the orientation distribution function. The eigenvector of the
(by absolute value) largest eigenvalue determines the symmetry axis of a transversely isotropic material or
the main fibre orientation in an orthotropic material. For the transversely isotropic material one needs to
distinguish two cases: if S is positive, the symmetry axis is the average direction of the fibres and, if S is
negative, the fibres are mostly oriented in a plane perpendicular to the eigenvector.

6. PRACTICAL EXAMPLES FOR THE USE OF ORIENTATION TENSORS
IN CONSTITUTIVE THEORY

6.1. Molecular gases

The use of symmetric irreducible tensors to represent a spherical function dates back to at least Ludwig
Waldmann [1] in the theory of molecular gases.
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6.2. The anisotropic dielectric tensor in uniaxial nematic liquid crystals

One example for the use of alignment tensors in constitutive equations is given in the book by Hess [21] for
liquid crystals.
Considering the Maxwell equations for electromagnetic theory,

vV-D = p, (82)
JB

VxE = 0 (83)

V.-B = 0, (84)
oD

VxH = J+§7, (85)

these are underdetermined. Constitutive equations are needed to determine the additional fields D and H in
terms of E and B. For the special case of linear isotropic and instantaneous materials

D = ¢E, (36)
H - 'B (87)
u

are used. For anisotropic materials, such as birefringent crystals, the scalar coefficients need to be changed
to tensorial coefficients. Liquid crystals, although liquids, show birefringence, which gave rise to the
name. The symmetric traceless part of the dielectric tensor is proportional to the [second-order] alignment
tensor [21]:

€ = ga. (88)
Therefore, the constitutive equation for D reads
D = ga-E. (89)

The coefficient &, depends on the density of the material and on the difference o — o, of the molecular
polarizabilities parallel and perpendicular to n.

6.3. Rheology of fibre suspensions

When elongated particles, e.g. granular media made of elongated particles, liquid crystals, or fibres
suspended in a liquid flow, they change orientations in the presence of velocity gradients. The (mis)-
alignment of the ‘fibres’ also introduces an additional viscosity [25]. Based on the orientation tensors one
can define model 1 and model 2:

Upar122
Upt = pT’ (90)
;"Lpal lmn]-/nm
- Y~ . m,n = 1727 (91)
Hre 2uthe

where 7 is the airflow strain rate, ¥, = ‘3‘% + 3}’:"; u is the air dynamic viscosity; and u, is the additional

viscosity of fibres.
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6.4. Solid mechanics of anisotropic materials

In solids containing fibres, the mechanical properties can become anisotropic. Also in this case, the
anisotropy can be described by using alignment or orientation tensors. For fibre concrete, this is discussed
e.g. in [8,10,12]. The proposed constitutive equation for the dependence of the stresses on the deformation
in the elastic range is given by
SSFREE,A) = vu(Atr(E)I+2uE)
+Vikip (atr(EA)AT + B ((AE)" 4 (EA)T)). (92)

Another example is short fibre reinforced plastics [15]. Here the orientation averaging of a transversely
isotropic material leads to orientation tensors in the equation for the anisotropic short fibre material.

7. CONCLUSION

This paper gives an overview how spherical harmonical functions can be represented by the use of symmetric
traceless tensors. Starting from a representation of a function on a unit sphere in terms of a basis formed by
spherical harmonics, it is then shown that spherical harmonics can be represented by symmetric traceless
tensors. Further, examples for the use of alignment or orientation tensors in constitutive theory are presented.
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APPENDIX A
DEFINITIONS

Definition 4 (Tensor product [18]). Assume A is a tensor of the order m and B is a tensor of the order n,
with components ay, ..y, and by, v, in three dimensions. Then the 3"t scalars

Cppottuvive = Ay, Dvi oy, 93)

give the components of the tensor C of the order m+n. We denote it by C = AB and we call it the tensor
product of A and B.

Definition 5 (Dyadic product). The product of two tensors of the order 1 in three dimensions a = (ay,ay,as)
and b = (by,by,b3) gives a tensor of the order 2 with the elements

Cij = aibj (lv.] = 1a2>3)> (94)
i.e. the tensor product results in the matrix
aiby aiby  aibs

arby  axby arbsy | . 95)
azby asby azbs
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Definition 6 (Vector space). A vector space over a field F is a set V together with two binary operations

that satisfy the following eight axioms:

e associativity of addition: u+ (v+w) = (u+v)+w;

e commutativity of addition: u+v=v+u;

o (identity element of addition) there exists an element O € V called the zero element, such that v+0 = v for
allveV;

o (inverse element of addition) for every v € V there exists an element —v € V, called the additive inverse of
v, such that v+ (—v) = 0;

e distributivity of scalar multiplication with respect to vector addition: a(u+v) = au+ av;

e distributivity of scalar multiplication with respect to field addition: (a+b)v = av+ bv;

e compatibility of scalar multiplication with field multiplication: a(bv) = (ab)v;

o identity element of scalar multiplication: 1v = v, where 1 is the multiplicative identity in F.

Definition 7 (Scalar product). A scalar product or inner product on a real vector space V is a positive

definite symmetric bilinear form (-,-) : V xV — R, which means for x,y,z € V and A € R, the following

requirements are fulfilled:

e bilinear:
(x+y,2) = (x,2) +(»2)
(xy+z) = (x,2)+ (2
(x,Ay) = A(x,2)

o symmetric: (x,y) = (y,x)

e positive definite: (x,x) > 0, and (x,x) = 0 if and only if x = 0.

Definition 8 (Norm). A norm on a real vector space V is a function || -|| : V — [0,e0) that fulfils for all
x,yeV,aeR:

e definiteness: ||x||=0<x=0(or||x]|=0=x=07?)

e homogenity: ||ax|| = || - || x|

o triangle inequality: ||x+y|| < ||x|| + ||y[-

APPENDIX B
TENSORS AS SPHERICAL HARMONICS
For every n € S? exist angles ¢ € [0,27), 9 € [0,7) such that
n = (ny,ny,n3) = (cos @sin,sin @ sin¥,cos ). (96)
With Eq. (96) we can express the spherical harmonics in cartesian coordinates
Y(?(ﬁafl’):ﬁ = Yg(m,n2,m3), 97)
YN (0, 9) = %sin(psinﬁ = %nz = Y, (n1,n2,n3), (98)
(8, 9) = %cosf} = %m = Y)(ni,np,n3), (99)
Y (9, 9) = %cos(psinﬂ = %nl = Y (ni,na,n3), (100)
and with
sin(2p) = 2singcose, (101)

cos(2¢) = cos’@ —sin’ @ (102)
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follows

) (101) 45

Y, “(%,9) = 28nsm ¥ sin(2 28ncos(psmﬁsm(psmt?
= 2 %mnz:Yz 2(n1,m2,n3), (103)
» 15 , 15 »
Y, (%,9) = - Esmﬁcosﬁsm(p—— Hn2n3:Y2 (n1,n2,n3), (104)
R(8,e) = /—— > (3cos?®y —1) =3 > n3 — > (n? +n3+n3) =Y (n1,n2,n3),(105)
’ 1287 1287 1287 e
1 15 15 1
Y, (%,0) = 51n1900s19003(p =\ gy = Y, (n1,n2,n3), (106)

(102) 45
V28«

= 107
\/ 587 287r = Y5 (n1,n2,n3). (107)

The symmetric traceless tensors that correspond to the spherical harmonics are then given by (with
respect to the canonical basis)

sm 2% cos(2¢) ——(sin ¥ cos’ @ — sin” ¥ sin® @)

: 0 0 3
4
=g WTI= V& W= W= (108)
0 in 0
and
0 = 0
2,—2
2] = s : 109
[a™] B0 0 (109)
0 0 0
0 0 0
1 15
> = |0 0 =5/, (110)
1 15
0 -1/ 9

[a*?] = 0 v/ T 0 , (111)

0 0 -3z
[a*!] = 0 0 0 , (112)
1 15
—2\ax 0O
45
& 0 0
281
[a*?] = 45 (113)
0 —y/5 O
0 0 0
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Sfairilise funktsiooni tensorrea kasutamine orienteeritud osakesi sisaldava materjali
olekuvorrandi teoorias

Heiko Herrmann ja Miriam Beddig

On esitatud didaktiline sissejuhatus sféddrilise funktsiooni tensorreaksarendusse, et seda kasutada
orienteeritud osakesi sisaldava materjali olekuvorrandi teoorias.  Funktsiooni, mille argumendiks
on kaks nurka, niiteks orientatsiooni jaotustihedusfunktsioon, arendatakse mitmetes rakendustes ritta
siimmeetrilistest mitteredutseeruvatest tensoritest. Artiklis on selgitatud sellist reaksarendust, alustades
ilevaatega funktsioonist, mis on defineeritud tihiksfdéril sfadriliste harmoonikute kui iihe voimaliku baasi
kaudu. Seejirel on selgitatud seost sfidriliste harmoonikute ja selliste siimmeetriliste tensorite vahel, mille
jélg vordub nulliga. See moodustab aluse, et mdista orientatsiooni- ja joonduvustensoreid kui ka nende seost
orientatsiooni jaotusfunktsiooniga. Materjali esituslaad on didaktilise kallakuga ja erineb mujal leiduvast
teoreem-tdestus-esitusviisist, kus koheselt alustatakse stimmeetriliste tensoritega.



