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NLS IN THE MODULATION SPACE M, 4(R).

N. PATTAKOS

ABSTRACT. We show the local wellposedness of the Cauchy problem for the cubic non-
linear Schrédinger equation in the modulation space M5 ,(R), 1 < ¢ < 3 and s > 0. This
improves [3] (for 2 < ¢ < 3) where the cases 2 < ¢ < co were considered but the solution
given there was not persistent. It is done with the use of the differentiation by parts
technique and it is the first time that this purely periodic tool is used to attack a problem
with a continuous Fourier variable.

1. INTRODUCTION AND MAIN RESULT

In this paper we study the one dimensional cubic NLS:
) iU — Uy + |ulPu=0 , (t,r) € R
u(0,z) = up(x) , x €R

with initial data ug in the modulation space M 4(R). Before we proceed let us state all
the preliminaries that are required. First of all, we denote by S’(R) the space of tempered
distributions. The definition of modulation spaces is the following: Set Q¢ = [—%, %) and
Qr = Qo + k for all k € Z. Consider a family of functions {ox}rez C C*°(R) satisfying

(i) 3e>0:VkeZ:VneQk: lox(n)] > ¢,

(ii) Yk € Z : supp(ox) C{{eR: |- k| <1},

(iil) > pez ok = 1,

(iv) Vm e Ny : 3Cp, >0: Vk € Z: Ya e N: a <m = ||[D%||cc < Cm
and define the isometric decomposition operators

(2) O := F Yo, F, (VE€Z).

Then the norm of a tempered distribution f € S’(R) in the modulation space M  (R),
s€R,1<pg<oo,is

1 1
1 - 1
(3) 1y, = (Dot orig)* = (3o + k) 0es1) 7
kEZ kEZ
with the usual interpretation when the index ¢ is equal to infinity. Different choices of such
sequences of functions {oy }kez lead to equivalent norms in My  (R). When s = 0 we denote
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2 N. Pattakos

the space M) (R) by M,4(R). In the special case where p = ¢ = 2 we have M;,(R) =
H?*(R) the usual Sobolev spaces. Modulation spaces were introduced by Feichtinger in
[2] and have been used extensively in the study of nonlinear dispersive equations. See
[6] for many of their properties such as embeddings in other known function spaces and
equivalent expressions for their norm. Since their introduction, modulation spaces have
become canonical for both time-frequency and phase-space analysis. They provide an
excellent substitute in estimates that are known to fail on Lebesgue spaces. Here we will
use that for s > 1/¢’ and 1 < p,q < oo, the embedding

(4) M, (R) = Cyp(R) = {f : R — C/ f continuous and bounded},

andfor(1Sp1SP2SOO,1SQ1SQQSOO,&282)0r<1§P1§P2§007

1<g<q <00, 81 >80+ q% — qil) the embedding
(5) Myt g (R) = M2, (R),

are both continuous and can be found in [2] (Proposition 6.8 and Proposition 6.5). Before
we state our main Theorem let us mention some already known results on local wellposed-
ness of NLS with initial data in a modulation space.

From [2] (Proposition 6.9) it is known that for s > 1/¢’ or s > 0 and ¢ = 1 the
modulation space My (R) is a Banach algebra and therefore an easy Banach contraction
principle argument implies that NLS is locally wellposed for ug € M, ,(R) with solution
u € C([0,T]; M, ,(R)), T > 0. In [3] the case ug € Ma4(R), 2 < g < oo, was considered
which is a space that does not belong to the previous family of Banach algebras. The
solution u was not in C([0,T; M2 4(R)) and therefore, the solution was not persistent.

In order to give a meaning to solutions of the NLS in C([0,T], M2 4(R)) and to the
nonlinearity A'(u) := u|u|? we need the following definitions:

Definition 1. A sequence of Fourier cutoff operators is a sequence of Fourier multiplier
operators {Tn}nen on 8’ (R) with multipliers my : R — C such that

e my has compact support on R for every N € N,
e my is uniformly bounded,
o limy oo my(z) =1, for any x € R.

Definition 2. Let u € C([0,T], M3 ,(R)). We say that N(u) ewists and is equal to a
distribution w € S'((0,T) x R) if for every sequence {Tn}nen of Fourier cutoff operators
we have

(6) lim N (Thu) = w,

N—oo

in the sense of distributions on (0,T) x R.

Definition 3. We say that u € C([0,T], M3 ,(R)) is a weak solution of NLS if
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e u(0,z) = up(x),

e the nonlinearity N'(u) exists in the sense of Deﬁm’tion@

e u satisfies in the sense of distributions on (0,T) x R, where the nonlinearity
N (u) = ulu|® is interpreted as above.

Our main result which guarantees persistent solutions generalises the one in [3] and it is
the following:

Theorem 4. Let 1 < g < 3 and s > 0. For ug € M3 (R) there exists a weak solution
u € C([0,T]; M3 ,(R)) of NLS with initial condition ug in the sense of Deﬁnition@
where the time T of existence depends only on ||UOHM§7Q~ Moreover, the solution map is
Lipschitz continuous.

For its proof we are going to use the differentiation by parts technique that was in-
troduced in [I] to attack similar problems for the KdV equation but with periodic initial
data. In [4] this technique was used to prove unconditional wellposedness of the periodic
cubic NLS. In this paper, it is the first time that this technique will be used to attack a
problem with a continuous Fourier variable, in the sense that our initial data is far from
being periodic. For this reason there are some major differences and some difficulties that
do not occur in the periodic setting. We follow very closely the ideas of [4] but we have to
replace numbers and estimates for sums of numbers by operators and estimates for sums
of suitable operator norms. This will become clearer in the next section where the proof
of Theorem (4| will be given. Since we are interested in the space Miq(R) there is a more
convenient expression for its norm which is the one we are going to use in our calculations.
Let us denote by [Jj, the frequency projection operator .7:(_1)1[,@7“1]]:, where 1, 1) 1s the
characteristic function of the interval [k, k + 1], k € Z. Then it can be proved that

(7) 1l ~ (S (R I0kF15) "

kEZ

or in other words, the two norms are equivalent in M3  (R).

To conclude this section, firstly, we need that for S(t) = e** the Schrédinger semigroup
we have the equality:

(8) 1S(@) fll2 = [[f]l2;

and secondly, we need the multiplier estimate (see [6], Proposition 1.9):

Lemma 5. Let 1 < p < oo and 0 € CX(R). Then the multiplier operator T, : S'(R) —
S'(R) defined by

(T,f)=F o f), VfeSR)
is bounded on LP(R) and

1T |l o (r)— Lo ®) S 116111 (R)-
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A useful consequence is that for 1 < p; < ps < 0o the following holds:

(9) 1B f e S 15 flps

where the implicit constant is independent of £ and the function f.

Lastly, let us also recall the following number theoretic fact (see [5], Theorem 315) which
is going to be used throughout the proof of Theorem Given an integer m, let d(m) denote
the number of divisors of m. Then we have

logm

(10) d(m) < e‘Toelosm = o(mS),
for all € > 0.

2. PROOF OF THE MAIN THEOREM

2.1. The first steps of the iteration process. In this subsection we present the first
steps of the differentiation by parts technique adapted to the continuous setting, that is
NLS with initial data that is not periodic. Since it is the first time that this is done,
we try to be detailed for the interested reader. We will also use the same notation as in [4]
so that a direct comparison between the two papers can be made and the differences can
be emphasised.

From here on, we consider only the case s = 0 in Theorem [ since for s > 0 similar
considerations apply. See Remark [19] at the end of Subsection 2.2 for a more detailed
argument. Also, as we mentioned before we are going to use expression for the norm
in M5 4(R) and for convenience we will write 0, instead of ﬂn and o}, instead of Lk kg1

For n € Z let us define

(11) un(t, ) = Oyul(t, z),
(12) v(t,x) = eitaﬂ%u(t,x),
(13) on(t, z) = e, (t, ) = Op[(eu(t, z)] = Opo(t, z).

Also for (&,&1,&2,€&3) € R* we define the function

¢(§7§17€27§3) = 62 - g% +§§ - 6?2,7

which is equal to

(&, &1,62,83) = 2(§ — &) — &),
if £ =& — & + &3. Our main equation implies that

(14) i0stty, — (Un) ez £ On (Jul?u) = 0,
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and by calculating (u =), Ogu)

Oy (vaw) = 0O, Z Upyy Upg Upg = Z O [, Uny Uns]-

n1,n2,n3 ni1—ng+nz=n

Next we do the change of variables u,(t,z) = e~ it0z v, (t, ) and arrive at the expression

15 vy, = +i 0, eitag e—itagvn . eitagan ) e—ita,%vn ‘
1 2 3

ni1—ns+nz=n

We continue by presenting the first steps of our splitting procedure. Define the 1st gener-
ation operators by

_ 82 102 52 52
(16> Q}m’t(vmvvnzv vn3)(x) - Dn (eltaz [6 Ztazvm ’ ezt(‘)zvm e Ztaz””s])ﬁ

and continue with the splitting

(17) Opon=Hi > Q' (Uny,Pnytng) = D> o+ D

n1—nz+ng=n ni=n,n3=n n1#n#nsg

where we define the resonant part

(18) Ry(v)(n) = Ri()(n) = > Qu'+ D Q' — Qy"(vn, U, vn),

ni=n n3=n

and the non-resonant part

(19> Nf(v)(n) = Z Q#t(vnu’l—)nzyvng)?
n1#n#ng

which implies the following expression for our NLS (we drop the factor +i in front of the
sum since they will play no role in our analysis)

(20) Orvn = R5(v)(n) — Ri(v)(n) + Ni(v)(n).
For the resonant part we have the Lemma:

Lemma 6. Forj=1,2

IR iz S 0l

and

1R (v) = R (w)lliaze S (I0ll3s,, + 1wl )llv = wlam,.
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Proof. Let us consider only R! (for R} similar considerations apply). By definition

B 02 a2 09 a2
Rﬁ (v)(n) = Q}l’t(vm Un,yUn) = Oy (e’taﬂﬁ [e 0%y, - %5, e Ztazvn]),

and since the Schodinger operator is an isometry on L? our claim follows by Bernstein’s

inequality (see Lemma . For the difference RY(v) — RY{(w) we have to estimate terms

192 192 192 .
of the form |e= "%y, |2|e~ "9, — e~y | in the 1912 norm. For the L? norm we apply

Holder’s inequality and obtain the upper bound

—itH2 _it2 _ 5192 _itH2 _itH2 _itH2
le™ % v [&lle™"*% vy — e~ wnlla < lle™ = vnllle™ % vn — e wall2 = on|3llvn — wall2,

where we used @ and , and then proceed with the /9 norm as

1 1
(32 enll3 Wi = wnl)* < (sup lonlB) (3 e = wnllf)* = ol o = wlhn,
n

nel ne”

From (j5)) we have ||v||as, ., < [|v||las,,, which finishes the proof. Similar considerations apply
to all other Lemmata of the paper where estimates of the same form appear. ([l

For the non-resonant part N we have to split as

(21) Ni(v)(n) = N1y (v)(n) + Nip(v)(n),

where

N () = D Q' (vny, Tny, Uny)
An(n)
and

(22) An(n) = {(n1,n2,n3) € Z> : n1 —ng +n3 = n,ny #n # nz, |®(n,n1,n9,n3)| < N}.

The number N > 0 is considered to be large and will be fixed at the end of the proof.
With the use of inequality we estimate N7, as follows:

Lemma 7. )
L4
INT () ljar2 S N7 ol

and

t t < NI (11112 2
[N11(v) = Ny (o S N7 ([vll3g,, + lwllag o — wllarg,,-
Proof. Obviously,
IN(@)lz2 < Y Q% (vnss Bz g 224

An(n)
which from , Lemma [5[ and Holder’s inequality is estimated above by
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D Nunytngtinglliz <Y Ny |l ool |l 2ol | o
An(n) An(n)
Here we make use of @ and Holder’s inequality in the discrete variable to obtain the upper
bound

1
> Ntz ltm 1 2 oma 2 < ( Z 1q) ( Z vt 12 Wt 1 i 2 )

AN (n)

Fix n and p € Z such that |u| < N. From (10 there are at most o( N 1) many choices for
nq and ng, and so for ny from n = ny — ny + ng, satisfying

w=2(n—mny)(n—ng).
Therefore, we arrive at

1
X :
ING @)z S N7(32 Z et N a1 s 12 )

ne”L AN
and this final summation is estimated by Young s inequality providing us with the bound
(lullats, = llvlias,,)

1
L+
INTy (@) lliazz € N9 lolli, ,-
U

In order to continue, we have to look at the N{, part more closely keeping in mind that
we are on Ay (n)¢. Our goal is to find a suitable splitting in order to continue our iteration.
From we know that

‘F(Q7117t(vn1ﬂ6n2ﬂvn3>)(§> = O'n(f)/ 72”(5 e és)A (§1>Un2 (€ fl 63)@713 (53) d€1d§37

RQ
and by the usual product rule for the derivative we can write the previous integral as the
sum of the following expressions

—2it(§-&1)(E-€s) . .
at (Un(f)/ —Qi(f — 61)(5 — 53) Uny (fl)v’ng (5 - 51 - 53)”713(&3) d§1d§3>_

e~ 2it(6—€1)(6—€3)

On
© J i a)e @
Therefore, we have the splitting

O (P (€)1 (€ — &1 — &)y (69) )

(23) F(Qu') = 0F (Qy") — F(T")

or equivalently
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(24) 711’t (vnl , Ungy s Ung) = at(@i;t (Un1 » Ungs Ung)) - T&’t (Un1 y Ungs Ung)a

which allows us to write

(25) Niy(v)(n) = 0i(N3; (v)(n)) + Nao(v)(n),

where

(26) Nﬁl(v)(n) = Z Qi’t(vnlvﬁnzvvn3)7
Ay (n)e

and

(27) N3y (v)(n) = Z T (Uny Uny s Un)-
An(n)e

Moreover, we have

) A = e L
and we define
(28) ]_—(R#t (Unl ’ an2’ U/TL3))(€) _ Un(g) /Rz Uy (51)?712_(@%:) (fg : gj))Un3 (53) d§1d£37
which is the same as the operator
1, — _ iz€ Wn,y (gl)ﬁjnz (f —& — 53)127“3 (53)
(29) R (g ) @) = [ (6 Ty dé1desde.

Writing out the Fourier transforms of the functions inside the integral it is not difficult to
see that

(30) R#t (wn1 ) wnza wns)(x) = 3 Kr(zl) (xa r1,Y, J:S)wnl (m)an (y)wn3 (.733) dxldydxfﬂv
R

where

€1 (z—1 ) +in(z—y)+iks (- +1n+8)
KO (2 1.0,z :/ gi1 (a—o1)in(a—y)+ics(a—zz) Tn(E1 e —
) = f 1+ &)+ &) 110

f_lpgzl)(x — T, =Y, T — 333)

and
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on(&1+1n+ &)
(n+&)n+&)

The important estimate that the operator Q,ll’t satisfies is described in:

piV (&1,m,&3) =

Lemma 8.

) 3y [0y [12]|vns |12 0ngl2
(31) HQ?Il’t(UnlaUnza Un3)||2 S ‘7;11 — n;ﬁn — 7:33|

Proof. Observing that F(Qn" (vn,, Uny, Uns))(€) = €7 F(Ri (U, Uny» vns)) (€) it suffices
to estimate the L? norm of the operator Ry By duality, let g € L2, ||g||2 # 0, and consider
the pairing

B2 R OOt = | [ FORE 0y 00N OF (0)(0) ] =

. Oy (€1)0ny (€ — &1 — €3) 0y (€3) B
| [ 60 aute) e b 0l®) gy iy -

R O'n(§1+77+§3) N A N _
’/Rgg(il +1+£3) 1+ 6001+ &) By (€1)Uny (1) 05 (€3) dnd&d&a‘ =

Y

‘/[ /1 /1 G(E 41+ €3) pP(E1,1,€3) Dy (€1)0ny (7)Ong (€3) dErdndes

where these three intervals are the compact supports of the functions oy, , Un,, 0ns (See
(13)). By Holder’s inequality we obtain the upper bound

1
el lellvnllelionsl ([ [ [ later+ -+ €ol? deaandsa)”
ni ng n3

and the last triple integral is easily estimated by

. 1 1
1902 ([na |1 ns])2 = llglle (Hny[[Tns])2 -
Therefore, the following is true

Q% (U By Uns))ll2 = |1 RY (Uny s By Us)) 2 S 1105 ool [vmy N2l oms 20 12,
and since &1 &~ ni1, n = —ng and &3 =~ ng we obtain
1

ni|ln —ng|’
which finishes the proof. ([l

1o < 1o

Here is the estimate for the NJ; operator:
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Lemma 9. )
1+
N33 () liarz S N7 oll3s,

and
R
IN31(v) = Ngy (w)llarz S N7 ([0l + lwlin, o = wllan,.
Proof. From Lemma [§] we have

Lt 0 [ e Y e
ING @)z < 3 1@ 0ny By )2 S 3 M2 Pnal2ltnalz

An(n)e Anege P malin=mgl

and by Holder’s inequality the upper bound

1 7 q q q)tlz
(X mmmmmn?)” (2 Ton e o 1)
An(n)e An(n)e
The first sum (for u = |n — n1||n — ng|) is estimated from above by (with the use of (10]))

> pfN L 1
(5 2y wovt i
pu=N+1 H
and then with the use of Young’s inequality we arrive at

L1+
N33 (0)lliazz S N7~ ol ,

as claimed. O

To the remaining part N, we have to make use of equality depending on whether
the derivative falls on 9y, or ¥, or ¥,,. Let us see how we can proceed from here:

NEQ(U)(”‘) =—2 Z [Q#t(Rg(v)(nl) - Ri (U)(nl)a Ungs Uns) + Q~1117t(Nf(U)(n1)v Unys vn3):|
An(n)°

plus the corresponding term for d;v,, (the number 2 that appears in front of the previous
sum is because the expression is symmetric with respect to vy, and v,,). Therefore, we
can write N, as a sum

(33) Ny, (v)(n) = Ni(v)(n) + N3(v)(n),
where N}(v)(n) is the sum with the resonant part Ry — R}. The following Lemma is true:

Lemma 10. )
L 14+
NG () lazz S N7 ol

and

R
IN; () = Ni(w)liazz S NT™ ([0lli,, + 1wl v = wlla, ,.
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Proof. Follows by Lemmata [ and [9] in the sense that we repeat the proof of Lemma [9] and
apply Lemma |§| to the part RS(v)(ny) — R!(v)(ny). O

To continue, we have to decompose N even further. It consists of 3 sums depending on
where the operator N{ acts. One of them is the following (similar considerations apply for
the remaining sums too)

(34) > QR (NH(v)(n1), Tny, Vny),
AN(TL)C
where
Nf (v) () = Z 71L1t (Umy, Uy Umg),
mi#n1#ms

and n1 = m1 — mg + m3. Here we have to consider new restrictions on the frequen-
cies (my, ma, ms,na,n3) where the "new” triple of frequencies mj, mo, ms appears as a
"child” of the frequency ni. Thus, we define the set (u; = ®(n,ni,n9,n3) and py =
q>(n17m17m2am3))

Bl
(35) Cr = {lp1 + p2| < 5% |~ 700},
and split the sum in (34]) as

(36) > Z Z Z .= Ny (v)(n) + N (v) ().

An(n)©
The following holds:
Lemma 11. .
= —Tooa7 — 1+
IN51 (0)lgar2 S N7 1007 o]y, s

and

AN S
IN31 (v) = Ny (w)llare S N7 (o, , + lwllag, v — wllaz ,-

Proof. From we know that for fixed n and 1, there are at most o(|u1|) many choices
for ny and n3 and for fixed ny and ps there are at most o(|u3 ) many choices for m; and
ms. From we can control pa in terms of pi, that is |ue| ~ |p1]. In addition, for fixed
|1| there are at most O(|u1|'~
HN31 )Nz < Z Z ”Qlt n1 Um1’Um2va3) Uy Ung)ll2 S

An(n

Z Z va1H2||Um2H2va3”2an2||2an3||2 <
In = naf|n — ns -

An(n)e C1

100) many choices for py. Therefore,
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1—m+

[e.9]
7
(Y Iy ( Z vamlu o 10y 1903 3
pu=N-+1

and then by taking the [¢ norm in n and applying Young’s inequality we are led to the
desired estimate. g

For the Ni, part we have to do the differentiation by parts technique which will create
the 2nd generation operators. Our first 2nd generation operator Q?,jt consists of 3 sums

W= Z@#%Nﬂv)(m),%,vng),

An(n)e ©

qg:n Z ZQlt UnpNt )( )Ung),
An(n)e Cf

Q3n = Z ZQ vn17®n2va(v)(n3))'
An(n)e Cf

Let us have a look at the first sum q%fb (we treat the other two in a similar manner). Its
Fourier transform is equal to

EENED) ) e
> > oald) o 5 )€ &) (N1 (0)(n1))(£1)Uny (€ — &1 — &3) 05 (€3) dE1dEs,

An(n)e C¢

where

F(Ni(v)(n1))(&1)

equals

> o) /IR e HEEN O (1), (1 — € — E)0my () dEfdEh,

ni=mi—msz+ms3
m1#n17£ms

Putting everything together and applying differentiation by parts we can write the integrals
inside the sums as

e—it(n1tpuz)

8t<0n(f) /]R4 Ony (gl)m@ml (gi)f)mz(gl_gll_gé)@mg(gé)f}ng(g_fl_g?;)ﬁng(§3)d§1d&/’,dfld§3)

minus

e~ it(n1tpuz)

Un(g) /]R‘l Ony (fl)mat (@m1 (fi)iwm(fl_fi_gé)@ma(fé)ﬁm(f_fl_f?))@m(53)>d£1d§éd§1d§3a

where p1 = (€ — £1)(§ — &3) and p2 = (& — £1)(& — &3). Equivalently,
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(37) Flah) = 0u(dh) — F(rih).

Thus, by doing the same at the remaining two sums of Qn , namely ¢, Z, q3 s We obtain
the splitting

(38) F(Q) = 0, F(QF) — F(T2).

2t . .
These new operators ¢;., 7 = 1,2, 3, act on the following "type” of sequences
2t
Q1 n(Uml 9 vmza U’mg 9 ’Un2 9 ’Un3)
with mq — mo + m3 = n; and ny — ny + ng = n,

qg,ﬁ(”m s Uy s Umg s Umg s Ung )y
with mq — ms + m3 = ny and ny — ny + ng = n, and
q?2) Z(”mvnz s Umy's Umg s Umg )5
with mq — ms + m3 = ng and nqy — ny + ng = n.
In order to proceed we need a similar lemma for the operator Q?Lt as the one we had
for Q)" (see Lemma . Here we state it only for q%fl (remember that we look only at
frequencies on Ay (n)¢ and CY):

Lemma 12.
(39)
||Um1H2”Um2H2H7}m3HQHUNQ”QHUMHQ
—mln —n3|[(n —n1)(n —ng) + (n1 —ma)(n1 —m3)|’

”ql n(vmuvmw Uy s Uny,s vn3)H2 ~ |TL

Proof. Writing out the Fourier transforms of the functions inside the integral of F ((jffl) it
is not hard to see that

~2 _ _ —ite2 _ _
f(‘]l:fz(vmnvmwUmgavmavn?,))(f) —e F(Rizl(umuumzaumgaungaung))(£)7

where the operator

( R?L I;Ll (wm1 s Wing s Wy, Wny, wns)(x) =
/ K7(127)11 (x xll,y/,{L‘é,y,{L‘g)wml(IE’l)U_)mQ(y,)’me(ﬂfé)’U_)ng (y)wn3(933) dm'ldy/dxgdydxg

and the Kernel Kr(?%l is given by the formula

(41) K(2 (CE,ZE’l,y/,CL'é,y,.CL'g) =

n,ni
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/ [ (a—ai)inf (2—y') +igh (225 +in(—y)-+its (2—s)]
RS

Un(fi + 77/ + gé +n+ 53)‘7711 (fi + 77/ + fé)
(n+n"+& +&)n+E)n+n +& +85)(n+E&)+ (0 +&) 0 +&3)]

(FLo@, )@ — ah,x — o w — 2w — g,z — w),

d&ydn'désdndés =

(2)

and the function py, n, equals

on(El + 0 + &+ n+E)on, (& +1' + &)

p1(12,21,1 (gia 77/7 5{’)7 m, €3) -

The operator Ri’fnl is estimated in L? as in the proof of Lemma and the function pg%l

plays the same role as the function pg) did for R}{t, therefore,
1R, (Vs D s Vmg s B Vg M2 S 1105 oo [0 12 ][vms ll2l[vms 2|0 ll2l o 2,

and since & ~my,n &~ —mg, & ~ mg,n = —ng, {3 ~ ng we obtain

1

= nalln = ng||(n — n1)(n — n3) + (n1 — ma)(ny —ms)|’
which finishes the proof. U

Hpn,nl HOO ~ ’n

Remark 13. The operator qgi satisfies exactly the same bound as (j%fl since the only
difference between these operétors is a permutation of their variables. On the other hand,
the operator cjgfl is a bit different, since instead of taking only the permutation we have to
conjugate the 2nd variable too. Thus, a similar argument as the one given in Lemma
leads to the estimate

(42)
[[0n [12]lvm ll2[vms ll2 [[0ms 2] vns |2

(n+n"+& +E)M+E)n+n+& +85)(n+E&)+ 0+ + &)

2.t _ _
1Go (s O omas Bons sl S 6 56 [ = 1) (0 — ) — (e — ) — )
which is not exactly the same as the one we had for the operators (ﬁ”z, 632,:} since in the
denominator instead of having p1 + pg we have gy — po (11 = (n —n1)(n — n3) and in the
first case pa = (n1 —my)(n1 —ps), mi, ms being the ”children” of n;, whereas in the second
case p2 = (ng — mq)(ne2 — mg), mi1, ms being the ”children” of ny). It is readily checked
that this change in the sign does not really affect the calculations that are to follow.

This Lemma allows us to move forward with our iteration process and show that the
operators

(43) Ng? Z ZQ“ > ZZ@%

An(n)e Cf i=1
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(44)  NOWm) = Y Y (@ (Ra©)m1) = BE©)(m1), g Vs By V) +

An(n)e Cf

Cﬁ:; (vml’ Ré (v)(mQ) - Ri (U)(mZ)v Ums ) Ung; vn3)+' : +q?2,:; (Un1 Una s Umy > Uma s Ré (U)(m3)*Rli (v)(m?)))) )

are bounded on [9L2. The operator N, ) appears when we substitute each of the derivatives

by the expression given in . Notice that the operator IV (3)
)

in the operator 32

zlzn

has 3 summands and the operator NT( has 3 -5 = 15 summands. Here is the claim:

Lemma 14.
_ 1,2 1
INGD (0) gz S N 7200 0007 05,

and
ING () = N§¥ (@)llpagz € N~2F 1000 "0 (|Jwl|d, .+ lwllds, )llo — wllam,-

op Ly 1
INS () llgagz S N0 700 o,

and

oy L 42 1
IN® (0) = N (w) a2 S N0 007107 (o[, + N0l o = wllg,-

Proof. Let us start with the operator N ) and for simplicity of the presentation we will
consider only the sum with the term q1 'n- As in the proof of Lemma H we have from .

that for fixed n and p; there are at most o(|u1|*) many choices for ny,ns,ng (such that
(n—mn1)(n—n3) = p1) and for fixed n; and po there are at most o(|us|™) many choices for
mq,ma, m3 (such that (n; —mi)(n1 —mg) = pg). Thus, from Lemma [12| we obtain

Z Z ”qln Umuvmzavmavvnzvvm)“? S

Yy [[vma ll2]|vmg 2]l vms ll2[|vng ll2]|vns |2
Al [n —nil|n — ngl|(n — n1)(n — n3) + (n1 —m1)(n1 —ms)|
and the RHS is equal to

Z Z [0ma l[2]|vms |2 2ms ll2]0ns |l2]vns |12

ot [l =+ peol

which by Hoélder’s inequahty is bounded above by
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1
+ q
ZEI ZEI G %_lt|q|ﬁHW al*) ( jij }ijnvnuu e gl ms I8 10me 1G]l ens 1) *

By a very crude estimate it is not difficult to see that the first sum behaves like the
oyl 42 1

100ty " 100t Then, by taking the I norm and applying Young’s inequality
3

for convolutions we are done. For the operator N, ) the proof is the same but in addition
we use Lemma |§| for the operator R — RY. O

number N

The operator that remains to be estimated is defined as

(45> N( Z Z<~2t m1)71_}m27vm3)6n270n3>+

An(n)

2, Y TRV _ 2, _ _
QL:L(’UWH ) Nf(v)(mQ)a Umgs Ung UﬂS) +..+ qs,Z(Unlvnwvml » Uma, Nf(v)(m;;))),

which is the same as N\°) but in the place of the operator R, — Rt we have Nt. As before,

we write

(46) N® = N® L N,

where N1(3) is the restriction of N® onto the set of frequencies

- 1L . _1
(47) Cy = {|f13] < 7°|fio' 10} U {|jaz] < 7°|pa|' " 700},
where fio = p1 + po and fi3 = p1 + po + p3. The following is true:

Lemma 15.
3 o4y 1 43 2
INE (@) ljae S N2 1000 007 o7,

and

1N () = NP () lyagz € N~2F00t 7 =007 (0|8, . + [wllSs, o — wlla,,-

(3

Proof. Let us only consider the very first summand of the operator N; ), that is the operator

(j%i with NY acting on its first variable, since for the other summands similar considerations
apply. For the proof we use again the divisor counting argument. From ([10) it follows
that for fixed n and p; there are at most o(|ui|") many choices for ny,ng,n3 (1 =
(n—mn1)(n —n3), n =ny —ng + n3). For fixed n; and po there are at most o(|us|*) many
choices for mi,ma, m3 (2 = (n1 — m1)(n1 —ms), ng = my — me + m3) and for fixed my
and pg there are at most o(|us|™) many choices for ki, ko, k3 (u3 = (mq — k1)(mq — k3),
m1 = k1 — ko + k‘g)
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First, let us assume that our frequencies satisfy |fiz| < |fio|'~ 0. Since, fiz = iz + 3
we have |us| ~ |f2]. Moreover, for fixed |fso] (equivalently, for ﬁxed 1, 2) there are

at most O(\,&2|17ﬁ) many choices for fiz and hence, for us = iz — fiz- In addition,
|2l < max(],ul\ |/]2|) and we should recall that since we are on C§ we have |fi2| = |p1+p2| >

53 |1 0 > 53N1"100. Then, the expression
~2 t _ _
Z Z Z 121 ( n m1 Ukuvkzvvks) Uma s Ums Ung s Ung) |2
An(n)e C Cy

with the use of Lemma and a trivial bound of the operator m1 in L? (see proof of
Lemma [7)) we obtain the upper bound

Y Yy [0y [[211vks 12| Vks |2 [ 0ms [l2 ([ Vms [l2 [ 0ns |2 [l vns 2 _
e o ‘o I~ malln = nall(n —na)(n —ng) + (1 —m)(m — ms)|

Yy ([0 l[211vks (121l Vks |2 [ 0ms [l2[[Vmg [l2 [ 0ns 2]l vns 2

At CF a || 2]

and by Holder’s inequality we obtain

1
7

| || ||| ] 700
(48) ( 3 )

BN ||| fiz|

1
|fig|>53N''~ T00

( Do D0 D w3 l1oma 3 10ks 15 10 15 0 15 I vma 1511 0ms 13 )

~N(n) C Cs
The first sum is bounded above by

1

-:\‘ -
m\‘ =

(49) S (P00~ i) o )

)
P L 1 K

iz >5° N1~ 70
and by the use of Young’s inequality at the second sum we are done.
1 1
On the other hand, if |fi3| < |p1|*~ 1008, then for fixed pi1, pu2 there are at most O(|py |~ 100 )

many choices for fi3 and hence for us. After this observation, the calculations are exactly
the same as before but the first sum of becomes

1
o IR P
/_ 1~ ’_ ~
N ] T T e g e e
|fiz|>53 N1~ 100

»a\‘ -
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Between the two exponents of N in and we see that is the dominating one
and the proof is complete. ]

To the remaining part, namely NQ(B), we have to apply the differentiation by parts tech-
nique again. Note that here we only look at frequencies such that

- e I
3| = g1 + po + ps| > 73|y 100 > 73N T00,
or equivalently, frequencies that are on the set C'S. Instead, we will present the general Jth

step of the iteration procedure and prove the required lemmata. To do this, we need to
use the tree notation as it was introduced in [4].

2.2. The Tree Notation and the Induction Step. A tree T is a finite, partially ordered
set with the following properties:

e For any ay,a9,a3,a4 € T if ag < as < a1 and aq < a3 < aq then as < a3 or az < as.
e There exists a maximum element r € T, that is a < r for all @ € T which is called
the root.

We call the elements of T" the nodes of the tree and in this content we will say that b € T
is a child of @ € T' (or equivalently, that a is the parent of b) if b < a,b # a and for all
c € T such that b < ¢ < a we have either b = c or ¢ = a.

A node a € T is called terminal if it has no children. A nonterminal node a € T is a
node with exactly 3 children a1, the left child, as, the middle child, and a3, the right child.
We define the sets

(51) T° = {all nonterminal nodes},
and
(52) T°° = {all terminal nodes}.

Obviously, T = TO U T, TONT>® = () and if |T°| = j € Z; we have |T| = 3j + 1 and
|T°| = 25 + 1. We denote the collection of trees with j parental nodes by

(53) T(j) ={T is a tree with |T'| = 3j + 1}.
Next, we say that a sequence of trees {7} }37:1 is a chronicle of J generations if:
o T;€T(j) forall j=1,2,...,J.

e T is obtained by changing one of the terminal nodes of T into a nonterminal
node with exactly 3 children, for all j =1,2,...,J — 1.

Let us also denote by Z(J) the collection of trees of the Jth generation. It is easily checked
by an induction argument that

(54) IZ(J) =1-3-5...(2J — 1) =: (2] — 1)l
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Given a chronicle {T]}JJ:1 of J generations we refer to 7y as an ordered tree of the Jth
generation. We should keep in mind that the notion of ordered trees comes with associated
chronicles. It includes not only the shape of the tree but also how it ”grew”.

Given an ordered tree T' we define an index function n : T'— Z such that

® Ny =Ny, —Ngy, + Ngy for all a € T9, where a1, as, as are the children of a,
o n #ny, and n # ng,, for all a € T°,
o |u1| == 2|n, — ny |0y — npy| > N, where 7 is the root of T,

and we denote the collection of all such index functions by R(T).

For the sake of completeness, as it was done in [4], given an ordered tree T with the
chronicle {Tj}jz1 and associated index functions n € R(T'), we need to keep track of the
generations of frequencies. Fix an n € R(T") and consider the very first tree 77. Its nodes
are the root r and its children r1,79,7r3. We define the first generation of frequencies by

(n(l) ng ),ngl),né )) = (N, Mpy s Mgy Mg ).
From the definition of the index function we have

nM) = ngl) (1) + n31), 7& n{ 7é nél).
The ordered tree T of the second generatlon is obtamed from 717 by changing one of its
terminal nodes a = r, € I7° for some k = 1,2,3 into a nonterminal node. Then, the
second generation of frequencies is defined by

(n(2) ng ),ng),ng )) = (Nas Nay s Nags Nag)-

Thus, we have n(?) = ng) for some k£ = 1,2, 3 and from the definition of the index function
we have
= ngm — n§2) g , nl ;é n2 ;é n§2).
This should be compared with what happened in the calculations we presented before when
passing from the first step of the iteration process into the second step. Every time we
apply the differentiation by parts technique we introduce a new set of frequencies.

After j — 1 steps, the ordered tree T} of the jth generation is obtained from Tj_1 by
changing one of its terminal nodes a € 772, into a nonterminal node. Then, the jth
generation frequencies are defined as

e

(n(]) ngj), né])’ ngj)) .
(m)(

and we have n() = ny (= ng) for some m = 1,2,...,5 — 1 and k = 1,2,3, since this
corresponds to the frequency of some terminal node in 7;_;. In addition, from the definition
of the index function we have

(na7 nal I naz ’ na3>7

n(]) — ngj) ( j) + n 7& TL 7& ngj)
Finally, we use p; to denote the correspondlng phase factor introduced at the jth genera-
tion. That is,
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(55) i = 2(n(j) _ ngj))(n(j) B n:(gj))7

and we also introduce the quantities

J J
(56) iy =Y wi =] #
j=1 j=1

We should keep in mind that everytime we apply differentiation by parts and split the
operators, we need to control the new frequencies that arise from this procedure. For this
reason we need to define the sets (see and (47)):

(57) Cy = {|fis1] < (27 +3)* s 10} U {|igya] < (2J + 3)3|ua| '~ 100}

Let us see how to use this notation and terminology in our calculations. On the very
first step, J = 1, we have only one tree, the root node r and its three children 7,79, 73
(sometimes, when it is clear from the context, we will identify the nodes and the frequencies
assigned to them, that is, we have the root n = n, and its three children n,, = ny,n,, =
ng, Ny, = ng) and we have only one operator that needs to be controled in order to proceed
further, namely (ji’t = N,ll’t.

On the second step, J = 2, we have three operators o, = @i’i, Gl = Cﬁjz, Gty =
cjgfl that play the same role as (j}l’t did for the first step. Let us observe that for each one of
these operators we must have estimates on their L? norms in order to be able and continue
the iteration. These estimates were provided by Lemmata [§ and [T2]

On the general Jth step we will have |Z(J)| operators of the (j:‘;’g’n "type” each one
corresponding to one of the ordered trees of the Jth generation, T' € T'(J), where n is an
arbitrary fixed index function on T. We have the subindices 7° and n because each one of
these operators has Fourier transform supported on the cubes with centers the frequencies
assigned to the nodes that belong to 7.

Let us denote by Ty, all the nodes of the ordered tree T" that are descendants of the node
acT ie T,={BeT:B<a, B+a}.

We also need to define the principal and final ”signs” of a node a € T which are functions
from the tree T into the set {£1}:

+1, a is not the middle child of his father
(58) psgn(a) = ¢ +1, a = r, the root node
—1, a is the middle child of his father
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+1, psgn(a) = +1 and a has an even number of middle predecessors

—1, psgn(a) = +1 and a has an odd number of middle predecessors
(59) fsgn(a) = )

—1, psgn(a) = —1 and a has an even number of middle predecessors

+1, psgn(a) = —1 and a has an odd number of middle predecessors,

where the root node r € T' is not considered a middle father.
The operators (j# ,, are defined through their Fourier transforms as

(60) F(@7s o ({wns b oer=))(€) = e " F(RY , ({e P wn, }ger==)) (),

where the operator Rfo,n acts on the functions {w, }ger= as

J
K;O)(l‘,{xﬁ}ﬁe’foo) Rperoe Wng .CUB] H dwg,
BET™>

(61) Ry, ({wn,}per=)() :/

R2J+1

and the Kernel K(T{))n is defined as

J
(62) KW (@ (g} er=) = F 1050 ) ({z — 25} ger=).
Here is the formula for the function p(T{))n with (|7°°| = 2J + 1)-variables, &g, 8 € T*°:

(63) o alsbser=) = [ T] o 30 Bsen(d) &)] -

a€eTv BET>®NTy

where we denote by

(64) fr = H foy flo = Z K,

a€eTo BETO\T,

and for 5 € T° we have

(65) s = 2(&p — &p,) (€8 — &ps)

where we impose the relation &, = &4, — €ay + £y for every a € TO that appears in the
calculations until we reach the terminal nodes of T°°. This is because in the definition of
the function pé’é we need the variables ”£” to be assigned only at the terminal nodes of
the tree T'. We use the notation g in similarity to p; of equation because this is the
”continuous” version of the discrete case. In addition, the variables &, £q,, £qy that appear
in the expression are supported in such a way that &y, = 1, as = Nags Eas =~ Nag-
This is because the functions o, are supported in such a way. Therefore, |fip| ~ ||

For the induction step of our iteration process it is easy to check that the following
Lemma is true, which should be compared with Lemmata [8] and
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Lemma 16.

(66) g o ({onstaer=)l2 S ( T1 ||vn5||2)

peT>

for every tree T' € T'(J) and index function n € R(T).

Given an index function n and 2J + 1 functions {vy, }ger~ and o € T° we define the
action of the operator N? (see ) on the set {vy,;}per to be the same set as before
but with the difference that we have substituted the function v,, by the new function
Ni(v)(ng). We will denote this new set of functions Nf’o‘({vnﬂ}ﬁeToo). Similarly, the
action of the operator R} — R! (see ) on the set of functions {vy, } ger~ will be denoted
by (R5" — Ry)({vn, }sere).

The operator of the Jth step, J > 2, that we want to estimate is given by the formula:

(67) Nm) = S N ST G NP ({vay bper))-

TeT(J-1) a€T> neR(T)

n,=n

Applying differentiation by parts on the Fourier side (keep in mind that from the splitting

procedure we are on the sets Ay (n)¢, CY{,...,C5_;) we obtain the expression
(68) Ny (@)(n) = (NG (0) () + NI (@) (n) + NV ) (),
where

(69) NS @m) = YN dh (o baer~),

TeT(J) neR(T)

n,=n

and

(70) NI @)n) = Y > Y @# (Ry™ — Ry™)({vn, }per=)),

TeT(J) a€T>® neR(T

nr—n

and

(71) NID@)m) = 3 ) Z I70,0 (N7 ({vns Y per=>)).

TeT(J) a€T>® neR(T
nT—n

(J+1)

We also split the operator N as the sum

(72) N(J+1) _ N1(J+1) —|—N2(J+1),
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where NV is the restriction of N+ onto C 7 and NQ(JH) onto C'. First, we generalise

Lemma [14) by estimating the operators NéJH) and N7§J+1):

Lemma 17.

(a'-1) 4
ING D @) iags S N7 g U0 20,

and
!
J+1 J+1 _Wen @D g gy
ING" D (0) = N @)z SN 7 700 U ()3 w3, )llo — wllag,-

_M (a'-1) .
INMFED () |ljagz SN™ 7 T+ (= 1)+H ||%2]2+an

and

WDy @D (1)+
IND () = N (@) g S N7 80 00 )y 37,72 + lwl37, )l — wllam .

s

Proof. As in the proof of Lemma (14| for fixed nl/) and y; there are at most o(|p;|+) many

choices for n'? , n$) , n. n addition, let us observe that u; is determined by fi1, . .., fi; and
1 2 -3 Hj H J

|1 S max(|fj—1], |i4]), since pj = fij — fij—1. Then, for a fixed tree T' € T'(J), by Lemma
the estimate for the operator c’j%(f is as follows (remember that |ar| ~ |fs] = H,g 1 k)

J
] 1
2 bl s 3 (ng oot (1T 77

and by Holder’s inequality this is bounded from above by

1
Py

(73) (> E[W ) (D TT lewslld) ™

oAl

lu1|>N neR(T) BET®
~ . 3nl- 1o n,=n
|fij|>(2j+1)°N

=20,

. (q _1)J+(q -1) (J71)+ . .
The first sum behaves like N ¢ 100¢/ and for the remaining part we take the

19 norm in n and by the use of Young’s inequality we are done.

We have to make two observations for this lemma. Note that there is an extra fac-
tor ~ J when we estimate the differences NéJH)(v) — NéJH)(w) since |a?/*! — p?/H1| <
(E?f{l a?/t1=7pi=1)|a — b| has O(J) many terms. Also, we have c; = |Z(J)| many sum-
(J+1)

mands in the operator N since there are ¢y many trees of the Jth generation and ¢y
behaves like a double factorial in J (see ) However, these observations do not cause
any problem since the constant that we obtain from estimating the first sum of decays
like a fractional power of a double factorial in .J, or to be more precise we have
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cy
(74) .

HJ 225 +1)° K
In order to maintain the decay in the denominator we use the assumption of Theorem
namely that 1 < ¢ < 3 or equivalently ¢ > % For the operator NﬁJH)
same but in addition we use Lemma |§| for the operator R — RY. U]

the proof is the

The estimate for the operator Nl(JH), which generalises Lemma is the following:

Lemma 18.

INUFD (0)[pa> S N 757 1007+ 100) Gr D=0+ 278,
»q

and

J+1 J+1 —1+Z - +(1- —1)(J-1)+
INTD @)= NI ) o § N7 007 0780 Grm DD (g 22 g |2742) oo,

Proof. As before, for fixed n¥) and 1 there are at most o(|p;|™) many choices for ng ), ngl), n:(,) )

and note that p; is determined by fiq, ..., fi;.

Let us assume that |fyy1| = s + posi| S (2J + 3)3|ﬂJ|17ﬁ holds in . Then,
|r+1| S |fg] and for fixed fiy there are at most 0(|,&J|1_ﬁ) many choices for fiy41 and
therefore, for pyi1 = fij41 — fig. For a fixed tree T' € T'(J) and a € T, by Lemma
and a trivial bound of the operator Qki in L? (see proof of Lemma [7) the estimate for the
operator (j‘jjﬂ}f’n is as follows (remember that || ~ |fis] = Hi:l |fik|):

Y s W (N7 (ong b per=))llz S

=2
ne;m (e, l2lonay 1210 ”ZGTE[\M o ll2) H W)

n,=n

and by Holder’s inequality we obtain the upper bound

U

(75) (> wo+H|~‘qmw)

lui]>N
\ﬁj|>(2j+1)3N1*1
j=2,...,J
1
> o, 18l10n, Wona I T lonsl3) "
neR(T) peT>\{a}

n,=n
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2 1 1 1
An easy calculation shows that the first sum behaves like N~ =10y T 100) (G =D =DF
and then by taking the I¢ norm by the use of Young’s inequality we are done.
1
If [fiys1] < (27 + 3)3|p1|"~ 100 holds in (57), then for fixed yj, j =1,...,J, there are at

most O( |1 |17ﬁ) many choices for ji741. The same argument as above leads us to exactly
the same expressions as in but with the first sum replaced by the following:

A 3
(X ] lelt)
| - ||
mi|>N k=1
> (2j+1)3 N1~ 100
§=2,...,J

2 1 1 1
which again is bounded from above by N~ w0y H0-100) (G = DU=DE 0 the proof is

complete. ]

Remark 19. For s > 0 we have to observe that all previous Lemmata hold true if we
replace the [9L? norm by the [¢L? norm and the Ms ,(R) norm by the Ms ,(R) norm. To

see this, consider n() large. Then, there exists at least one of ngj ),ngj ),ngj ) such that

\ng)| > %]n(j)\, k € {1,2,3}, since we have the relation nl) = n(lj) — ngj) —|—ngj). ‘Therefore,
in the estimates of the Jth generation, there exists at least one frequency n,(g ) for some
je{l,...,J} with the property

<n>s < 3js<n§€j)>s < 3J5<n§€j)>s.
This exponential growth does not affect our calculations due to the double factorial decay
in the denominator of .

2.3. Existence of Weak Solutions. In this subsection the calculations are the same as
in [4] where we just need to replace their L? norm by the Ms ,(R) norm. We will present
them for the sake of completion.

Let us start by defining the partial sum operator 1“5;({) as

J J
(76) Tu(t) = vo+ Y N (0)(n) = S N (v0) ()
j=2

=2

¢ J J 4
+ [ R + B 0)m) + 3 NP @) + - NP w)w) dr,
0 , :
Jj=2 7j=1
where we have N := N, from |D (52) := N{, from 1' N1(2) := N{, from 1} and
NP = N} from 1' and vy € My 4(R) is a fixed function.
In the following we will denote by X7 = C([0,T], M24(R)). Our goal is to show that

the series appearing on the RHS of converge absolutely in Xp for sufficiently small
T >0, if v e Xp, even for J = co. Indeed, by Lemmata [6] [7] and [1§ we obtain
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J
(1- Dt o57 (52 + 2j—1 2i—1
(77> HF(J)UHXT S HUOHqu +CZN )(] ) 100¢ (] ) H H j— + HUOHJ\jlq)
7j=2
3 - ~(=2) G-+ 9j11
+CT[HU”XT + ZN a 1607 ( H H j
j=2
/+”U||XT+ZN by 0 022

7j=2
Let us assume that [[vo| s, < R and ||v]|x, < R, with R > R > 1. From we have

(78)
J-2
ITDvl|x, < R+ CN RS (Wt 5 2 ¢ oNT R Z 15 2y
j=0 7=0

k4

-2
+CT[(1+N$+)R3+CN%*”R (V7 1+ 2y

<.
i
=)

+Nq’ —1- 100q/JrRsz: Nq’ HfogquQ)}
7=0
= Lol 99i=e -, 1
We choose N = N(R) large enough, such that N« oo {2 = N%1000 R 3, Or

equivalently,

1004’

(79) N > (2R2) @1 |

so that the geometric series on the RHS of (|78]) converge and are bounded by 2. Therefore,
we arrive at

(80) IDD]x, < R+20NT R 4 2oNT R

199— IOOq

+CT[( +NTH)R 4 oNT R 4 oN T o0 *Rﬂ R,
and we choose T' > 0 sufficiently small such that

199— lOOq

(81) T+ N7HYR2 4 oaN7 TR 42N 1o0s TR <

E.

1 ~ 1-q¢" | .
With the use of we see that 20N« 'TR3 < CN17 R and by further imposing N
to be sufficiently large such that



NLS in the modulation space M 4(R) 27

1
82 C]\[wo’Jr
(82) BENTi
we have
R R 11 1~
Myl <R B B _Up 1p
(83) T4 v||XT_R+1O+5 1OR+5R

Thus, for sufficiently large N and sufficiently small 7' > 0 the partial sum operators I‘S,‘g)
are well defined in X7, for every J € NU {oco}. We will write I', for Fﬁ,}?).

Our next step is given an initial data vy € My q(R) to construct a solution v € Xp in the
sense of Deﬁnltlonl To this direction, let s > rnax{ e 1+l } (so that M5  (R) is a Banach

Algebra that embeds in L?) and consider a sequence {vo )}mGN € M3, (R) C My(R)

whose Fourier transforms are all compactly supported (thus, all v(()m) are smooth functions)

and such that v(m) — vg in Mz 4(R) as m — oo. Let R = ||vo|[as,,, + 1 and we can assume

< R, for all m € N. Denote by v("™ the local in time solution of NLS

in M3 ,(R) with initial condition v(() ). Tt satisfies the Duhamel formulation:

that [[o{™ ||as,.,

(84) o™ (1) = o™ +z/ NT(0'™) — R (™) + Ry (s'™) dr =
m) _|_ZNéj)(v(m))( ZN(J)( (m))(n)
j=2 J=2
t
+/ R (v™)(n) + R5 (v +ZN +ZNU v(™) n) dr =T v (m),
0

and we will show that this holds in XT for the same time 7" = T'(R) > 0 independent of
m € N. Indeed, fix m € N and observe that the norm |[v(™)]y, = Hv(m)HC([Qt],MZ,q) is
continuous in ¢. Since ||v((]m)\|M2,q < R there is a time 77 > 0 such that ||v(m)||XT1 < 4R.

Then, by repeating the previous calculations with R = 4R and keeping one of the factors
as o]y, we get

(85) o™ |z, = \Il“vérn)v(m)IIXT1 < TORJr IIU(m)HXTl,

if N and T3 satisfy , and . Therefore, we have

19

—R < 2R.
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Thus, from the continuity of t — |Jv(™)]||x,, there is € > 0 such that [|[v(™| X7, 4. < 4R.
Then again, from and with T} + € in place of T} we derive that ||v("™) | xp, e < 2R
as long as N and T + € satisfy , and . By observing that these conditions
are independent of m € N we obtain a time interval [0, 7] such that [[v(™)]| x,. < 2R for all
m € N.

A similar computation on the difference, by possibly taking larger N and smaller T leads
to the estimate

(87) o) = 0|y = 1T 0™ = Ty 0™y <

1 m m 1 m m
(U o™ = 6™l + 0™ = 0™
which implies
(88) ™) — o2 < e flug™ — of™ ||,

for some ¢ > 0 and therefore, the sequence {v(m)}meN is Cauchy in the Banach space Xp.
Let us denote by v its limit in X7 and by u® = S(t)v*>°. We will show that u> satisfies
NLS in the interval [0,7] in the sense of Definition [3| For convenience, we drop the
superscript oo and write u,v. In addition, let u(™ := S(t)v(m), where v(™) is the smooth
solution to with smooth initial data v(()m) as described above and note that (™ is the
smooth solution to 1' with smooth initial data u(()m) = v(()m). Furthermore, u(™ — u in
X7 because v™) — v in X and since convergence in the modulation space M, 4(R) implies

convergence in the sense of distributions we conclude that Opu™ — 9,u and Gu™ — du
in D'((0,T) x R). Since u(™ satisfies NLS for every m € N we have that

N @™y = o |um12 = —igu™ + 5260,
also converges to some distribution w € §’((0,7) x R). Our claim is the following:

Proposition 20. Let w be the limit of A/(u(™)) in the sense of distributions as m — oo.
Then, w = N (u), where N (u) is to be interpreted in the sense of Definition

Proof. Consider a sequence of Fourier cutoff multipliers {Tn }nen as in Definition |1 We
will prove that
lim N (Tnu) = w,
N—o00

in the sense of distributions. Let ¢ be a test function and € > 0 a fixed given number. Our
goal is to find Ny € N such that for all N > Ny we have

(89) (w — N(Tyu), )| < e
The LHS can be estimated as
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[(w — N(Tvu), ¢)] < [(w — N (u™),¢)] + (N (™) = N (Tyul™), ¢)|
HN(Tnu™) — N(Tnu), ¢).

The first term is estimated very easily since by the definition of w we have that

(90) {0 = M), 0)] < 5 ¢,

for sufficiently large m € N.
To continue, let us consider the second summand for fixed m. By writing the difference
N (™) — N (Tyul™) as a telescoping sum we have to estimate terms of the form

| / / (T = Tw)ul™ [u™ 2 ¢ d dt

where I denotes the identity operator. By Holder’s inequality and we obtain that this
integral is bounded by

Y

Iollzs Nue™ 135 I = Tw)u® Il S Colla™ 12 0y aa5 (T = To)u™ 13,

< Comll(I = Tn)u™ |z,
where LQT@ = L?((0,T) x R). By definition of the Fourier cutoff operators, the function

]:((I — TN)u(m)(-,t))(g) converges pointwise in ¢ and £ and by an application of the
Dominated Convergence Theorem, there is Ny = No(m) with the property

1
(1) ComlltI = Tw)u™ |3 < 3

67
for all N > Ny.

For the last term, we need to observe two things. Firstly, let us consider the sequence
{N(Tyu'™)},en, for each fixed N. By applying the iteration process that we described
in the previous subsection to {S(—t)N (Tnu™)}men, which is basically the nonlinear-
ity in equation up to the operator Ty, we see that {N(Tnu(™)},en is Cauchy in
S'((0,T) x R), as m — oo for each fixed N € N since the sequence u(™ is Cauchy in
C((0,T), M4(R)). Since the multipliers my of T are uniformly bounded in N we con-
clude that this convergence is uniform in V.

Secondly, let us observe that for fixed N, Tu is in C((0,T), H*(R)) since u € Ms 4(R)
and the multiplier my of Ty is compactly supported. Hence, N'(Tyu) = Tyu|Tnu|? makes
sense as a function. Therefore, for fixed NV by Holder’s inequality we get

(N (Tvu™) = N (Twvu), )| < [8lls (ITval™17s + [ Tvullfs )ITve™ = Tnullz
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3,3 1
< C¢,||“HXTM4T4 Hu(m) - uHXT < g €,

where the number M = M(N) > 0 is chosen so that supp(my) C [-M, M]. Here we
used Holder’s inequality in the interval (0,7 to pass from the L* norm to the L> norm
and in the space variable an application of Parseval’s identity together with the fact that
the multiplier operators T have compactly supported symbols my. Hence, N (TNu(m))
converges to N (Tyu) in S'((0,7) x R) as m — oo for each fixed N.

From these two observations we derive that N(Tyu(™) — N (Tyu) in S'((0,T) x R) as
m — oo uniformly in N. Equivalently,

1
(92) [N (Tyu™) = N (Tyu), ¢)| < 36
for all large m, uniformly in N. Therefore, follows by choosing m sufficiently large so
that and hold, and then choosing Ny = Ny(m) such that holds. O

Finally, we have shown that the function u = u® is a solution to the NLS (|1 in the
sense of Definition [3, The Lipschitz dependence on the initial data follows from by a
limit process.
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