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NONLINEAR SCHRODINGER EQUATION, DIFFERENTIATION BY
PARTS AND MODULATION SPACES.

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

ABSTRACT. We show the local wellposedness of the Cauchy problem for the cubic nonlin-
ear Schrodinger equation in the modulation space M, ,(R) where 1 < ¢ < 3,2<p < ql,of;
and s > 0. This improves [7], where the case p = 2 was considered and the differentiation
by parts technique was introduced to a problem with continuous Fourier variable. Here

the same technique is used, but more delicate estimates are necessary for p # 2.

1. INTRODUCTION AND MAIN RESULT

We are interested in the nonlinear Schrédinger equation defined by

(1)

iU — Uy + |ulPu=0 , (t,7) € R?
u(0, ) = up(z) , v€R

with initial data ug in the modulation space M, ;(R). To state the definition of a modula-
tion space we need to fix some notation. We will denote by S’(R) the space of tempered
distributions. Let Qg = [—%, %) and its translations Qr = Qo + k for all k € Z. Consider a
family of functions {0}, = oo(- — k) }rez C C°(R) satisfying

(i) Ie>0:VEe€Z: YneQyr: lox(n)| >c,

(ii) Vk € Z : supp(o) C{{ e R: | — k| <1} =: B(k, 1),

(i) Yz o = 1
and define the isometric decomposition operators
(2) O := FCYo F, (VkeZ).

Then the norm of a tempered distribution f € S'(R) in the modulation space M, (R),
seR,1<p,qg<oo,is

1
(3) 1l = (Dot I0kA11)
kEZ
with the usual interpretation when the index ¢ is equal to infinity, where we denote by
(k) = (1 + \k|2)% the Japanese bracket. It can be proved that different choices of the
function o lead to equivalent norms in M§7q(R). Later, during the proof of the main
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theorem we will make use of this fact. When s = 0 we denote the space ngq(]R) by
My 4(R). In the special case where p = g = 2 we have Mj4(R) = H*(R) the usual Sobolev
spaces. In our calculations we are going to use that for s > 1/¢’ and 1 < p,q < oo, the
embedding

(4) M, (R) = Cyp(R) = {f : R — C/ f continuous and bounded},
andfor(1§p1§P2§0071§C]1SCI2§OO,81282>0r<1§p1§p2§007

1<qga<q1 <00, 81> 8+ q% — qll) the embedding

() My! g, (R) = M2, (R),

pL.q1
are both continuous and can be found in [3] (Proposition 6.8 and Proposition 6.5). In
that paper modulation spaces were introduced for the first time by Feichtinger and since
then they have been used extensively in the study of nonlinear dispersive equations. They
have become canonical for both time-frequency and phase-space analysis. See [8] for many
of their properties such as embeddings in other known function spaces and equivalent
expressions for their norm. From [3] (Proposition 6.9) it is known that for s > 1/¢’ or
s > 0 and ¢ = 1 the modulation space M, (R) is a Banach algebra and therefore an
easy Banach contraction principle argument implies that NLS is locally wellposed for
ug € M, (R) with solution v € C([0,T]; M, ,(R)), T > 0 (see [2]). In this paper, with a
different approach, we are able to cover the remaining cases 0 < s < 1/¢/, unfortunately
not for all values of p, through the differentiation by parts technique that was used in [I]
to attack similar problems for the KdV equation but with periodic initial data. In [5] this
technique was used to prove unconditional wellposedness of the periodic cubic NLS in one
dimension. Our initial data is far from being periodic, and for this reason there are some
major differences and some difficulties that do not occur in the periodic setting, which were
pointed out in [7] too, where the case p = 2 was considered.

The main difference between this paper and [7] is that we are able to obtain estimates
on the LP norm of the operators R;’g’n (see ) for p # 2 through an L*° estimate and an
interpolation argument. Another difference is that in [7] an equivalent norm of M3, could
be used, namely the norm

1
(= teraios1g) ",
kEZ
where O, = F (*1)1[k7k+1]]: , in order to avoid overlaps between two neighbouring o, and
om which is something that for p # 2 can not be ignored.
In order to give a meaning to solutions of the NLS in C([0,77, M, 4(R)) and to the
nonlinearity A'(u) := u|u|? we need the following definitions:

Definition 1. For fizred 1 < p < 00, a sequence of Fourier cutoff operators is a sequence
of Fourier multiplier operators {Tn}nen with symbols my on S’ (R) such that
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e my is compactly supported for all N € N,
® supyen [[Tn|[p—p < 00 and
o for every f in a dense subset of LP(R) we have imy_o0 || Tnf — f|lp, = 0.

Notice that in our definition a sequence of Fourier cutoff operators depends on the given
value of p € [1,00] in M, (R).

Definition 2. Let u € C([0,T], M, ,(R)). We say that N(u) exists and is equal to a
distribution w € S'((0,T) x R) if for every sequence {Tn}nen of Fourier cutoff operators
we have

(6) lim N (Tnu) = w,

N—oo

in the sense of distributions on (0,T) x R.

Definition 3. We say that u € C([0,T], M, ,(R)) is a weak solution of NLS if
e u(0,2) = up(x),
o the nonlinearity N'(u) exists in the sense of Deﬁm’tion@,
e u satisfies in the sense of distributions on (0,T) x R, where the nonlinearity
N (u) = ulu|® is interpreted as above.

Our main result which guarantees persistent solutions generalises the one in [7] and it is
the following:

Theorem 4. Let s > 0,1 < g<3and2 < p < ql,OTq%. For ug € M, (R) there exists
a weak solution v € C([0,T]; M, ,(R)) of NLS with initial condition ug in the sense
of Definition |5, where the time T of existence depends only on |luol[ag; . Moreover, the
solution map is Lipschitz continuous.

Remark 5. The restriction on the range of p is dictated by the construction of our solution
of the NLS. More precisely, we decompose the NLS into countably many ”smaller” parts
and at the end we sum all of them together. In order for this summation to make sense all
the series must by convergent in the appropriate spaces and as a consequence we obtain

the restriction p < ql,oflﬁ (see the remarks after below).

To conclude this section we need that for S(t) = e the Schrédinger semigroup we have
the estimate:

1_1
(7) I1S® Fllarg, S A+ 101777 Fllag,,.
where the implicit constant does not depend on f,t. We also need the multiplier estimate
(see [8], Proposition 1.9):
Lemma 6. Let 1 < p < oo and 0 € CX(R). Then the multiplier operator T, : S'(R) —
S'(R) defined by
(T.f)=F o f), ¥feSR)
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is bounded on LP(R) and
1T |l r(r)— Lo ®) S 151121 (R)-

A useful consequence is that for 1 < p; < ps < oo the following holds:

(8) 15k f Nl S 15 flps

where the implicit constant is independent of k and the function f.

Lastly, let us recall the following number theoretic fact (see [6], Theorem 315) which is
going to be used throughout the proof of Theorem : Given an integer m, let d(m) denote
the number of divisors of m. Then we have

logm

9) d(m) < ePsloem = o(mS),

for all € > 0.

2. PROOF OF THE MAIN THEOREM

The calculations are similar to those presented in [7] where the difference is that instead
of using L? estimates for the Fourier-space variable we use L estimates which is something
that will become clearer in the calculations that follow. Nevertheless, there are a lot of
new details that need to be taken care of. For this reason, and for the reader’s convenience
we will be as detailed as possible.

From here on, we consider only the case s = 0 in Theorem [ since for s > 0 similar
considerations apply. See Remark[20]at the end of the section for a more detailed argument.

Also, since our indices 1 < g<3and 2 <p<
A > 1 such that

!
(11,(116 are fixed, we can find a fixed number

2¢'(2A +3)
10 9<pe —2LEATS)
(10) SPS QA1) +6

Notice that the function f(A) = (;?4{21%

global maximum at A = 1. From here on, we choose our bump function og to satisfy the
following bounds on its derivatives

is decreasing and in the range A > 1 it has a

11 d’ < (JnA4
m R
for all J € Z4. This is crucial for Lemma Notice that A < 1 can not be true since
then our compactly supported function oy would be a real analytic function and therefore,
it would be identically zero.

For n € Z let us define

(12) un(t, ) = Opul(t, z),
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(13) v(t,z) = eitagu(t,x),

(14) o (t,z) = eitagun(t,x) = Dn[(eitaﬂ%u(t, x)] = Oyv(t, x).
Also for (&,&1,&,€3) € R* we define the function

@(€7£17€27£3) = 52 - f% +£% - 6?2)7

which is equal to

q>(§7 517 527 53) = 2(§ - {1)(5 - g3)a
if £ =& — & + &3. Our main equation implies that

(15) 10y, — () pe £ Op(Ju)?u) = 0,
and by calculating (v = ), Oyu)

Oy (vaw) = 0O, E Upyy Upg Upg = g O [, Uny Uns ],
ni,n2,n3 ni—n2+n3x<n
where by &~ n we mean = n, or =n+ 1, or = n — 1. Next we do the change of variables

ito2 . .
un(t,z) = e "%y, (t, z) and arrive at the expression

. 02 a2 o9 02
(16) Oy, = £1 Z O, (e’tar [e ’tafvm -e’tawvm e ’tazvn3]>.

ni1—ns+n3=n

We define the 1st generation operators by

_ 02 o2 92 52
(17) erft (Unl » Ung) ,UTLS)($) = Dn (eztam [6’ zt@zvm ’ eztaz Upy - € 0 Uns])’

and continue with the splitting

(18) Opon =Fi D> Qul(Un BngUng) = > ot D,
ni—ns+nzxn ni=n ni¥ngns

or
naxn

where we define the resonant part

(19)  By)m) — Ri@)m) = (3 @k + D0 Q) = 3 Qb (v, Oy vy,
nin n3x=n n;:dn
nyx<n

and the non-resonant part
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(20) Nl( Z Qlt Um»””wvns)

ni¥n¥ns
which implies the following expression for our NLS (we drop the factor +i in front of the
sum since they will play no role in our analysis)

(21) Oyun = Ry(v)(n) — R (v)(n) + Ni(v)(n).

For the resonant part we have the following:

Lemma 7. Forj=1,2

g1
IR () ey, < (1 + 1) 272 oll3,
and

4|1
IR (v) = R (w)llang,, S 1+ D27 (ul3y, + 0l v — wliag,,-

Proof. Let us consider R}. By its definition, for fixed n, R{(n) consists of finitely many
summands, since [n — n1|,|n — ng| < 1 and |n — ny| < 3. We will handle Q" (vn, U, vn)
since the remaining summands can be treated similarly. Since,

192 2 2 2
Q}{t(vm Ty vn) = On (eztaz[ —itd3,, iRy e—ztazvn])

its M, 4 norm is bounded from above by

102 1_1
1™ O ) ., S (416D = D0l Pan) g
where we used . By estimating this last norm we have

1
100 ot gy = (32 15Ol Pu)l12) " S (32 15 2un) I )
meZ meZ
1
(D 18wt (unlPun)12) S Nt Punlly = renlf
leA
where in the first and last inequalities we used @ and A C Z is a finite set. With the use
of (8) we have ||uy||3p S ||unllp and by taking the {9 norm in the discrete variable we arrive
at the upper bound

1_1 p
(1 )5 (3 uall)* < (15 1)l
nez

where we used the embedding 19 — %7, Since u = e~ 9%y another application of (EI) gives
us the desired upper bound.

For the RY operator, it suffices to estimate the sum
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Z Q' (Vny's Unss Vg )

ni—ns+n3<n
nin

which consists of finitely many sums depending on whether ny = n — 1, or n; = n, or
n1 =n+ 1. Let us only treat

192 192 152
0, eztaz (8 ztazvn § : ’6 ztr?mvn2’2)7

no€Z
since for the remaining sums similar considerations apply. Its M,, , norm by is bounded
from above by

(L]

1

o L

Z |u"2|2HM =1+ |t| (Z HD Dnun !Un2|2H )q’
P,q n p

nac 2€Z

where the last summand is equal to

Z Z 2|4 i
DmDnun ’unJrk‘ ;
mez keA’ P

and A" ={l1,...,lp} C Z is finite. Again from @ the sum can be controlled by

oL
(32 [ 3 ) = (3 st T s ) & o 3 ]
mez keA’ p leA ke

ke
Z Hun’unJrkPHp < Hun”2p‘|un+ll H421p +.o.ot ”UnHQpHUnHk, H421p7
ke’
and by applying and Holder’s inequality in the discrete variable we have for each
individual summand the estimate

1
3i-1

[ {llunllpnezllza | lwallpnez i < Mllunllpbnezllis = lulid, , = (0 +1e)* 275 loll3y, .

where we used the embedding 19 < (%7, %9 and the proof is complete.
For the difference part R} (v) — R} (w) we have to estimate terms of the following form

Dneitaﬂ% (e*itaﬂ%vn)z(e*itaﬂ%vn — e*itaﬂ%wn) in the 19M, , norm. As before, from the M,
norm is bounded above by

14t | [ (e~ 0%y \2(e~it02,, _ o—itd:

(1+ ) 275 T (710, )2 (71020, — e W) || My,

and this last norm is equal to

(Z [ [ o it03 ) (e fitﬁﬁvn ztagwn)H >

meZ
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1
—itH? _itH? _itH2 q _i192 192 492
(S 1Tt On(e )2 0y — ) [8)° < (e 0 e v, — e PR,
leA
where we used @ Applying Holder’s inequality and we arrive at

—itd2 —itd?

—itH?
He ZtaxvnHZleHe TY, — € 93'lUn||2p S ||€

—itH? —ito2 v, — e—z‘taﬁ

wanv

and by taking the [? and applying Hoélder in the discrete variable with the embedding
19 — 129 % and , we have the estimate

vnllplle

a2 102 _i1+92

H{lle™ " vnllp bnezllfiall{lle™"* % vn — e = wylpbnezlliza <
a2 02 92

I{lle™ " vnllp nezllfa [ {le™ "% v — e wnllp}nezllie =

_itH2 _ 192 192 11
0|13y, e v — e 2 wyllag,, S L+ 1) oal3s  llvn — wallag,.,.

le

The operator difference RS(v) — Rb(w) is treated in a similar way and the proof is complete.
([l

For the non-resonant part N{ we have to split as

(22) Ni(v)(n) = N1y (v)(n) + Ni(v)(n),
where
Nfl(v)(n) = Z Q#t(vmﬂ_jnwvns)?

Apn(n)
and

(23) Anx(n) = {(n1,n9,n3) € Z® : ny — ng + ng ~ n,ny % n % ny, |®(n,n1,n2,n3)| < N}.

The number N > 0 is considered to be large and will be fixed at the end of the proof.
With the use of inequality @ we estimate NY; as follows:

Lemma 8.
1_1 1
1N () gy, S 1+ [E) 27 N oll3,,

and

4i-1 L+
N1 (0) = Ny ()i, S O+ )27 NTE (ol + Tolli, o = wllag,,,-

Proof. Since ||N{,(v)|a,, < 2 An(n) QL (Uny s Unys Uy )01, it suffices to estimate

) o B 1.1 _
||Q$Z(,Unl7vn27vn3)“Mp,q = Hendwljn(unlunzuns)HMp,q 5 (1 + |t|)|2 p‘HDn(unlunZunB)”Mp,q’

which by estimating the last norm we have
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1 1
( Z HDmDn(umﬂnQum)Hg) (Z 1541000 (U, Tny ting ) || )q

meZ leA

”umamum”p < HumH3p”u712H3pHun3H3p S ”unlHp”umeHunsHp’
by @, Hoélder and , where A C Z is the same set as in Lemma @ Therefore, the sum

™ Nl llttnglls < (32 19)7 (3 Tty 18t [ 1)

An(n) Apn(n) Apn(n)
Fix n and g € Z such that [u| < N. From (9) there are at most o(N*) many choices for
n1 and ng, and so for ny from n ~ n; — ne + ng, satisfying

w=2(n—mni)(n—ng).
Thus, we arrive at

N7t
N ()t S (L DN (S i 8 e )
An(n)
Then, we take the (¢ norm in the discrete variable and apply Holder’s inequality to obtain

,+
INE () o, < 0+ 1) (3 g s I8 1)

n€Z An(n)
and this final summation is estimated by Young’s inequality providing us with the bound

1_1
(lwnllagy, S 1+ 18D2 72 oallag,,,)

1_1 1
ING (@) gy, S 1+ ) 272N oll3,,
which finishes the proof. U

In order to continue, we have to look at the N, part more closely keeping in mind that
we are on Ay (n)¢. Our goal is to find a suitable splitting in order to continue our iteration.
From ((17)) we know that

‘F(Q}ft(vnnﬁnwvna))(f) = O'n(f)/ 72”(5 e £S)A (gl)v?w (§ fl 53)@713 (53) d€1d§37

]RQ
and by the usual product rule for the derivative we can write the previous integral as the
sum of the following expressions

Sie-e)E-€) )
(70 [ | e ey P (€€~ 6 = )y () dinds) -

e—2it(§—€1)(6—¢3)
—2i(€ — &) (E &)

206 Or (11 (€)1 (€ = €1 — &0)Bna(€3) ) dE1dSs.
R2
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Therefore, we have the splitting

(24) F(Qy") = 0 F(Qy") — F(Tp")

or equivalently

(25) Q}L7t(vn17'l_jn27vn3) = 815(@711"5(1),,11,17”2, Ung)) — Té’t(vm,ﬁm,vm),

which allows us to write

(26) Nip(v)(n) = 8i(N31(v)(n)) + Nip(v)(n),

where

(27) Ny (v)(n) = Z Q}L’t(”nu@nz:”m)’
An(n)e

and

(28) Ng?(v)(n) = Z T#t(vmal_)m’ Uny).
An(n)°

Moreover, we have

FQH Dty €)= ¢ () [ DmEaE— 1 = SN (8) g g,
and we define
20) PR 1y )O) = () [ LV E =8 = ENnlE1) g g,
which is the same as the operator
1,¢ ~ _ 1w ﬂm(fl)ﬁnz (f — & — 53)an3 (53)
(B0)  RY (s iy ) 0) = [ €76 6 Pl Bt e

At this point we introduce a fattened version of the o-functions in the following way:
Consider a function 6y with the same properties as og such that &9 = 1 on the support of
00, suppay C B(0, %) and define the tranlations 6 = oo(- — k), k € Z.

With this notation, writing out the Fourier transforms of the functions inside the integral

in it is not difficult to see that

(31> R}L’t(umvﬂm:uns)(x) = s Kv(zl)(x7 Y, x3>un1 (xl)ﬁw (y)un3 (x3) dxidydrs,
R
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where

K7(11) (l', r1,Y, 1'3) - / e’fl (@=e)Fin(@=y)+its(e=w3)
R3

on(§1+1+83) - ~ 5 )

(77 ‘(flgl)(,?? +€£‘;)) Ony (gl)o'nQ(_n)O'na (63) dfldnd&& =F 1p7(11)(x —ILT Y, X $3)

and

Z?n‘(flfj;(:;iég)) &n1 (51)5’712 (—U)5n3 (53)7 pgzl) (51, 1, 63) =

The important estimate that the operator Q}mt satisfies is described in:

on(&1+n+ &)
(n+&)n+8&)

ﬁ'gtl) (517 7, 53) =

Lemma 9. For2 <p < o0

; [
(32) 1B (ons By v llp S 2

where the implicit constant depends on p.

Proof. First, let us consider the case p = 2. This repeats the argument of the M, case
treated in [7]. By duality, let g € L2, ||g|l2 # 0, and consider the pairing

(33) R OOt = | [ FORE s 00 )OF(0)(0) ] =

~ @m (&1)6712 (f - & - §3>®n3 (€3) _
| [ a0 aule) Pttt S Bt ey ag | -

R on(§1+n+&) . 2 - —
| [ ot +n ) PR )i, (i () dndendss] =

‘/1 /1 /I G(& + 1+ &) pI (€1, 1, €3) Dy (€1)Dny (1) Dy (€3) dErdndes

where these three intervals are the compact supports of the functions o, , Un,, 0ns (See
(14)). By Holder’s inequality we obtain the upper bound

Y

1
0 el lellvnlllionsl ([ [ [ later+ -+ €ol? deadnasa)”
ni ng n3

and the last triple integral is easily estimated by

. 1 1
1912 (1na |1 ns])2 = llgllz (Hnyl[Tng])2 .
Therefore, the following is true

1R (Wny B vng))ll2 S (1057 ool v 1210, [l2lloms 12,
and since &1 = n1, 7 & —ng and &3 =~ ng we obtain
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1

M
nilln — ns

100 < 1o

which finishes the proof.
Next let us consider the case p = co. Obviously,

Hth(Unl’Unz?Uns HOO sup }— 7 (1 {L‘ 1, T—Y,T— x3)vn1(xl)vnz(y)vn3($3)d$1dyd$3a

which is bounded by

Sup/ (F50) (@ — 21,2 — y, & — 23)|dardydas]|vn, [|oo | vng || o | vng |0 =
r€R JR3

|l F~ lp(l)||L1(R3)||Un1HOOHUnQHOOHUng”oo'

By the embedding H*(R3) < FL!(R?), for s > 3/2, and the fact that ]supp( )\ <1, it
is sufficient to have an L* bound on the derivatives of p,(z) of order 0,1 and 2. Trivially,

1
5(1) <
’pn (517,’7753)|N |nfn1||n—n3|’

since &1 &~ ni1,n ~ —n9 and &3 = nz. Then for the first order derivatives we get

50| < 1 o7 lloc + 1157, lloo _ 1
"+ &GP+ Gyl In+&lIn+ &yl T In— nalln — ns|’
for j = 1,3, since |[n — ny| > 1. For the remaining derivative we observe that

|0,

llorllso + 1157, loo 121 + &1 + &3 < 1 In+ &+ |n+ &l
m+&ln+&l  In+&Pn+&E Y In+alln+&l 0 In+&Pn+ &2
which is bounded by

ORI

Cc

[ —nalln —ng|”
since |n + &;| > 1, where ¢ > 0 is a constant. Similarly we check the 2nd order derivatives

of ﬁg) . Thus,

[vny | oo Vs ||OO||Un3 [l oo

[n = ma||n — n3

Herz’t@nu@nvim)Hoo S
By interpolating between p = 2 and p = oo, we arrive at estimate for2<p<oco. 0O

Here is the estimate for the NJ; operator:
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Lemma 10. L )
1N (@) lagy, S 1+ )27 NT T )3,

and

P S P
N2 (0) = Ny (@), S 0+ D127 ANT (ol + el ) e =l ,-
Proof. Starting with the M, , norm we have the estimate

||N21 |1\/quS Z ‘Q Un1717n27vn3)HMp,q7
AN TL)C

and the inner norm is equal to

1
oS 1
HQlt(vnlvaLQvU?B HMpq = (Z HD QltH > <Z ”DmeltazRTl{tHg>q S

A+ 1) H (3 13 RE)T = 1+ fe)' (an— rnFRY)"

mMmEZ

from . Since the Fourier transform of the operator RY s supported where o, is, the
last sum is actually a finite sum, that is

(2 (2 (22
<Z”Dn+lR (un“unwun?))u > < Hth(unpung;ung)HpN ” n1Hp” nz”p” 713”177

leA In —n1|[n — ng

by Lemma [9] Then we take the (¢ norm in the discrete variable n to arrive at the bound

1 Un, [|p[[tns [[p]|ns |

Nt " || nillp 2 Ip 311p

IN& () lliong, g S (1412 §: n—ni|ln—ng|
AN (n)e

and by Holder’s inequality we are led to the upper bound
|11 1 % q q q %
A+ (Y ) (2 T sl 1)
Apn(n)e

An(n)©
The first sum (for 4 = |n — ny||n — ng|) is estimated with the use of (9) from above by

> 4
ql

p=N+1 K

and then with the use of Young’s inequality we arrive at

1
Py

L1+
= qu s

)ql’ (Ne+1 q)

L1+ 43— L1+
NG ()it g S (L4 1D 22 NT Tl < @+ )2 N T o),

where we used (up, = e~ it0; vp) and the proof is complete. O
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To the remaining part Ni, we have to make use of equality (21)) depending on whether
the derivative falls on 0, or 5n2 or Up,. Let us see how we can proceed from here:

Nip(0)(n) = =20 Y [Qk (R () (m1) = RE(0)(11), B V) + Qb (NE(0) (1), B vy |
An(n)°

plus the corresponding term for 9;vy,, (the number 2 that appears in front of the previous
sum is because the expression is symmetric with respect to vy, and v,,). Therefore, we
can write NI, as a sum

(34) Nay(v)(n) = Ny(v)(n) + Nj(v)(n),
where N(v)(n) is the sum with the resonant part R, — R}. The following Lemma is true:

Lemma 11.
1_1 1
INS ) llians,, S (1 + )22 INT T o),

and

e
INE(v) — Ni(w)llianr,, S (1+]t)712 %I NG (Iollds, , + lwliag, v = wlla, ,-
Proof. Follows by Lemmata [7] and in the sense that we repeat the proof of Lemma
and apply Lemma |7| to the part R5(v)(n1) — R (v)(nq). O

To continue, we have to decompose N even further. It consists of 3 sums depending on
which function the operator N} acts. One of them is the following (similar considerations
apply for the remaining sums too)

(35) > QEH(N{(v)(n1), Tny, Vny),
An(n)
where

Nf (v)(n1) = Z Q}m’lt (Umy s Uma, Umy),
mi1En1¥ms
and nq &= m1 — msy + m3. Here we have to consider new restrictions on the frequencies
(m1, ma, m3, n2,n3) where the "new” triple of frequencies my, mg, ms appears as a ”child”
of the frequency n;. Thus, for 3 = ®(n,n1,n2,n3) and p2 = ®(ny, mi, ma, ms3) we define
the set

1
(36) C1 = {|p1 + piz| < 5%~ 700},
and split the sum in as
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(37) Z Z Z Z .= N3 (v)(n) + Nip(v)(n).

An(n)© ~N(n)
The following holds:
Lemma 12.
NG (0 liaagy S (1 )25 N 007 o,

and

8|21 nr -t 14 4
INS1 () — Nk (w)llisag,, < (1+ [¢)Y 772 NT 007 T ((Jofld,  + [lwllh, v — wliag,,-

Proof. From (9)) we know that for fixed n and y1, there are at most o(|u1|) many choices
for n; and n3 and for fixed n; and s there are at most o(|u2|™) many choices for m; and

ms. From (36)) we can control K2 in terms of pi, that is |ue| ~ |p1]. In addition, for fixed
|pe1] there are at most O(|ur|'~ 100) many choices for us. Also,

||N§1( )HMpq = Z ZHQlt ni 'Uml,va,’UmS) 1'_]”2’Un3)||Mp,q’

An(n)e Ci

and by doing the same estimate as in the proof of Lemma for the norm

HQ ( nl(vmlvvmwvm:«x) 6”27vn3)‘|Mp,q’

we arrive at the upper bound

_itd2 ALt _
NG () lagy S (L4 [0S0 ZHe 0 Qi (V1 T, V)l s [l [ s
pg ~ Periirer In —ny|jn — ns|

and the last sum is bounded above by

1

-5\ L
N 100 _ito?
(3 B (X S 1 Qb e B ) i )

u=N+1 Apn(n)e C1

Now we take the [¢ norm and apply Young’s inequality for the second expression to arrive
at the estimate

g1 2Z_ —1+
NG () langy g S 1+ )25 NT 507 QL 0y By vty 1013,

and we treat the norm || QY (Vm, » Dy s Vs )| M,,, similarly as in Lemma ([7)) for the operator
R! which finishes the proof.



16 L. Chaichenets, D. Hundertmark, P. Kunstmann and N. Pattakos

For the Ni, part we have to do the differentiation by parts technique which will create
the 2nd generation operators. Our first 2nd generation operator Q?L’t consists of 3 sums

Qi’fa: Z Zerzyt(Nf(U)(nl)’ﬁnwvns)a

AN(n)C Cf

ot =3 3 QL (vay, N(v)(1n2), vy,
AN(n)P Cf

gt =3 3 Qh(vny, Tny, N(v)(n3)).
An(n)e Cf

Let us have a look at the first sum q%f1 (we treat the other two in a similar manner). Its
Fourier transform is equal to

M) . ) y
> 2on® | e e TN (€~ & — &)in(6) derdss,

AN (n)e Cf

where

F(Ni(v)(n1))(&1)

equals

> oml&) / e BTG (60)Tmy (1 — €1 — €3)0m, (€5) dE1dES.
ni~mi—msa+ms R2
mi1%niEms
Putting everything together and applying differentiation by parts we can write the integrals
inside the sums as

e~ (p1tp2)

() [ ome)

minus

e—it(n1tpuz)

G R G GG GRS E L AL ME I ) ES P

where p1 = (£ —&1)(§ — &) and pp = (§1 — £1)(&1 — &3). Equivalently,

(38) Flath) = aua@t,) — F(rit).

1n

Thus, by doing the same at the remaining two sums of Q%’t, namely qg’fﬂ qg’z, we obtain

the splitting
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(39) F(Q) = 0, F(QY) — F(T2).

These new operators (fjiz ;tl, 1 =1,2,3, act on the following ”type” of sequences

2 _ _
ql,n(vm1 » Umags Umg, Ungy, Un3)7

with mq — ms + m3 =~ n; and ny — ny +ng =~ n,

~2.t _ _
q2,n(vn1 y Umys Umo s Umg, Ung )7

with mq — ms + m3 =~ ng and ny — ny + ng = n, and

2t ~ _
q3:n (Unl Ungs Umy s Umas Umg)y
with m1 — mg + m3 =~ ng and n; — ny +n3 = n.
Writing out the Fourier transforms of the functions inside the integral of F (cjfi) it is
not hard to see that 7

2, _ _ _ite? _ _
]:(QI,;(Um1 y Umay Umgs Ung, ’Ung))(g) =e I(Riﬁn (um1 y Umgy Umgs Ung, un3))(£)>

where the operator

(

R?{,tnl (um1 s U s Umg s Ung  Ung ) (3}) =

)

40)
[ R0 ) (a0 (a0 () 'y iy

and the Kernel K,(L?Qll is given by the formula

(41) K@) (z,2), 4, 2, y,x3) =

n,ni
/ [ (i) in (2—y') igh (22 in(w—y) +is (2—s)]
RS

O (€L + 1 + & + 1+ E3)0rn, (L + 1+ E)Fims (€1)Fma (—1)im (€6)my (—1)6 ()

(n+n"+& +&)n+E)Nn+n 4+ & +&)n+E&) + (' + &) +&3)]
ey dn' dézdndés =

(]:-—1[)%2,%1)(1: - :L',bl' - y/,ZIT - l‘g,ﬂj‘ - YT — 1‘3),
(2)

and the function py, n, equals

ﬁ(z) _on(& 0 80+ 83)0n (81 + 0+ &5)Tmy (§1)Tims (—1) Timg (§5)Tny (—1)Fns (€3)
o -+ +& +&)n+8&)[n+n +& +&)n+E&)+ (1 + &) + &) '
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We also define the function
on(E1+ 1 +E+n+E)on, (8 + 17 + &)

(2) AN —
P (11 810 88) = e e &)+ £ 6+ ) (1 + &)+ (7 )7+ €

By the same calculations we obtain also the operators Ri’ﬁm and R%’,tni’,. They can be
treated similarly to R?L’fm and for this reason in order to proceed we state a lemma for the
operator R,%’fm as the one we had for R,ll’t (see Lemma @)

Lemma 13. For2 <p<oo
(42)
[vima [pl|vms lpl[vms [lp [|ons [|p [[ons [|p
ni|ln —nsl[(n —n1)(n —n3) + (m —ma)(nm —ms)|

||R3¥,tn1 (Vmas Umas Vs Ongs Vns)lp S n—

Proof. As in Lemma |§| we use interpolation between L? and L™, and the only difference is
that for the L> estimate we use the embedding of H*(R?) < FL!(R?), for s > 5/2, which

means we have to calculate up to the 3rd order derivative of the function 57(1272” in contrast

to the function ,3%1) of Lemma |§| where we had to find all derivatives up to order 2. O

Remark 14. The operator cjgfl satisfies exactly the same bound as cjffl since the only
difference between these operzitors is a permutation of their variables. On the other hand,
the operator (j;’; is a bit different, since instead of taking only the permutation we have to
conjugate the 2nd variable too. Thus, a similar argument as the one given in Lemma
leads to the estimate

(43)

([0 [l [0 [l [0 [l [ 02 1 [ 05

R v Ty Ung ) |lp <
iy (s Ot B 0o 50—, [ — m0) (. — m3) — (2 — )y — )

which is not exactly the same as the one we had for the operators Ri’fm , R,%:tnS since in the
denominator instead of having 1 + pg we have py — po (11 = (n —nq)(n — n3) and in the
first case pa = (ny —my)(ny —ps), my, ms being the ”children” of n, whereas in the second
case [y = (ng — mi)(ng — ms), m1, mg being the ”children” of ng). It is readily checked
that this change in the sign does not really affect the calculations that are to follow.

This lemma allows us to move forward with our iteration process and show that the
operators

3
(44) NOwm =Y Sex= 3 Y Y

An(n)e C¢ An(n)e C§ i=1

and

(5)  NO@@) = 3 3 (FAEY) 1) = RE@)0m1), B Vg, T Ug)+
An(n) Cf
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@0 (U BE0)(m2) — RL0)(12), U Oz Vg )+ - 4053 (Vs D Vs O, RE(0) ()= R (0) () )

are bounded on [9M,, ;. The operator N(3)

tives in the operator Zz 1 Tim by the expression given in . Notice that the operator

Né ) has 3 summands and the operator NT( )

appears when we substitute each of the deriva-

has 3 -5 = 15 summands. Here is the claim:

Lemma 15.
3 61 1 2/ 1 ST
NS (@) liangy S (14 [6)°2 75 N2 500+ o =007 )3,

and
3 3 1.1 9y 12 1
HNé )(’U)—Né )(w)quMp,q < (I—Ht’)ﬁ‘z ol N2 100 7~ To0q +(HU”ZJL\/IP,(1+HMH?\/IP,¢Z)Hv_w”Mp,q'

9|i-1 50 7~ To0g7 +
||N ()”l‘JMqu(1+|t|)‘2 lN +100 T 7~ To0q7 HUH&M’

and

93-2 00+t~ To0g7 +
IN® (@)= NS () ian,, S A+e)*2 75 N 200 7 =500 ()|, w]$ )lv—wlag,-

Proof. Let us start with the operator Né ) and for simplicity of the presentation we will
consider only the sum with the term qffI As in the proof of Lemma |12[ we have from @
that for fixed n and p; there are at most o(|u1|*) many choices for ny,ns,ng (such that
(n —n1)(n —n3) = p1) and for fixed ny and us there are at most o(|uz|*) many choices
for mq, mg,mg (such that (n; —mi)(n1 — ms3) = u2). Since the Fourier transform of the
operator q1 n 18 localised around the interval @Q,, using the same argument as in Lemma
[10] together with Lemma [[3] we see that

Z Z qun Uml’vm2’vm37vn27vn3)||Mp,q S

An(n)

et ot et g e
1+t
1+l Z Zrn—mun—n3||<n—m><n—n3>+<n1—m1><n1—m3>\

and the sum of RHS is equal to

Z Z ”UrmHp”umz||p”um3||pHun2||pHun3Hp

Prorel ||| pen + pol

which by Hélder’s inequality is bounded above by

+ q
(> Zw m ol ) (X Zuumlu Vit g 9 [ )

AN(TL AN(

U=
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By a very crude estimate it is not difficult to see that the first sum behaves like the
oy 142 1

100ty 100 T Then, by taking the {9 norm and applying Young’s inequality
(3)

for convolutions we are done. For the operator Ny™ the proof is the same but in addition
we use Lemma [7| for the operator R, — Rf. O

number N

The operator that remains to be estimated is defined as

(46) NG Z Z (c‘ifi (NE(0) (1), By Vs Uy, Vg )+

q%;i(vmuNf(v)(mQ)a Umys Ungs Ung) + - + qg:fm(”m@m,vmn@mzv Nf(v)(m;;))),

which is the same as N7§3) but in the place of the operator R, — R} we have N{. As before,

we write

(47) N® = N® L NP,

where Nfg) is the restriction of N®) onto the set of frequencies

(48) Cy = {|fis| < 7|fio|' =70} U {|fia| < 7°|pur|'~ 700},
where fio = p1 + po and fis = p1 + po + ps. The following is true:
Lemma 16.

IV @)llang, , S (14 )™V w0 o 7,

and

3 3 1011 o4 L 43 __2 4
||N1( )(’U)—Nl( )(w)quMP# < (1+]t]) la=2ln 100 T ¢’ ~ 100g (||v‘|?\/[p,q+”wm/lp,q)HU_wHMp,q'
3

Proof. Let us only consider the very first summand of the operator N; ), that is the operator

cﬁi with VY acting on its first variable, since for the other summands similar considerations
apply. For the proof we use again the divisor counting argument. From @ it follows that for
fixed n and p there are at most o(|p1|") many choices for ny,n2, ng (1 = (n—n1)(n—n3),
n = n; —ng + n3). For fixed n; and po there are at most o(|u2|™) many choices for
my,ma,ms (ug = (n1 —mi)(n1 —ms), n1 = m1 —mg +ms) and for fixed my and pg there
are at most o(|us|T) many choices for ky, ko, k3 (u3 = (m1—k1)(m1—ks3), my = k1 —ko+ks3).

First, let us assume that our frequencies satisfy |fis| < |fio|'™ 00 Since, fi3 = fi2 + u3
we have |us| ~ |f2]. Moreover, for fixed |fso] (equlvalently, for ﬁxed 11, o) there are
at most O(\ﬁ2|1_ﬁ) many choices for fi3 and hence, for us = fi3 — fie. In addition,
lpa] < max(!uﬂ |ﬂ2|) and we should recall that since we are on C{ we have |fia| = |p1+pa| >
53| g |1 w0 > 53N1~10. Then by the same localisation argument as in the proof of Lemma
[10] together with Lemma we estimate the expression
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~2t _ _
Z ZZH m1 Ukuvkzavks) Um27vm3’vn27vn3)||Mp,q
~(

A CC Co
by
2 1t _
(1+ |t| Z ZZ Ztasz1(Uk1aUkzaUks)”pHumzHp”umsHp”unszHUnsHp _
s & o In = malln = nsll(n — na)(n —ng) + (1 —ma)(ma — ms)|
—it0; m1(Uk1aUkzaUka)”pnumszHUmsHp”unszHUnsHp

ari e eyl

ot Nrerives | |2

and by Holder’s inequality we see that the sum is bounded above by

1
7

(49) < Z |M1|+\M2|+|M3|+|,u2|1 100>
1 |>N 1|7 | fia] @

1
|fig|>53 N~ T00

1

- 1
( > DD lle Qs vkl,vkg,vka)IIZHumz||§\|um3Ilgllumllg\lungllg)q

An(n)e C¢ Co

The first sum is controlled by

»a\‘ -
U

(50) ( 3 ! p——— )

| |>N || i
|fiz|>53 N1~ 100

< <N3(1_W10)—q/(2_ﬁ)+1002+)

and with the use of Young’s inequality at the second sum together with an estimate on the

norm |[|e~ % Qp (vkl,ka,vkd)HMM we are done.

On the other hand, if |f3] < |1 ]17171)0, then for fixed ju1, 1o there are at most O(\,uﬂlfﬁ)
many choices for jis and hence for pus. After this observation, the calculations are exactly
the same as before but the first sum of becomes

\\H

1
6y ( — )7 < (wo-damaede)) 7
P L R T
|fiz|>53 N~ 100
Between the two exponents of N in and we see that is the dominating one
and the proof is complete. O
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To the remaining part, namely N2(3), we have to apply the differentiation by parts tech-
nique again. Note that here we only look at frequencies such that

~ 1 1
|fs] = |p1 + po + ps >73|,u1|1 00 > 73N 00,
or equivalently, frequencies that are on the set C'S. Instead, we will present the general Jth

step of the iteration procedure and prove the required Lemmata. To do this, we need to
use the tree notation as it was introduced in [5].

2.1. The Tree Notation and the Induction Step. A tree T is a finite, partially ordered
set with the following properties:
e For any a1,a9,a3,a4 € T if ag < ag < a1 and a4 < ag < aq then as < as or ag < as.
e There exists a maximum element r € T, that is @ < r for all a € T which is called
the root.

We call the elements of T' the nodes of the tree and in this content we will say that b € T
is a child of a € T (or equivalently, that a is the parent of b) if b < a,b # a and for all
¢ € T such that b < ¢ < a we have either b = c or ¢ = a.

A node a € T is called terminal if it has no children. A nonterminal node a € T is a
node with exactly 3 children a1, the left child, as, the middle child, and a3, the right child.
We define the sets

(52) T° = {all nonterminal nodes},
and
(53) T°° = {all terminal nodes}.

Obviously, T = TOUT>®, TONT>® = () and if |T°| = j € Z; we have |T| = 3j + 1 and
|T°°| = 25 + 1. We denote the collection of trees with j parental nodes by

(54) T(j) =A{T is a tree with |T'| = 3j + 1}.
Next, we say that a sequence of trees {7} }3]:1 is a chronicle of J generations if:
o T, €T(j) forall j=1,2,...,J.

e T is obtained by changing one of the terminal nodes of T into a nonterminal
node with exactly 3 children, for all j =1,2,...,J — 1.

Let us also denote by Z(J) the collection of trees of the Jth generation. It is easily checked
by an induction argument that

(55) IZ(J) =1-3-5...(2J — 1) =: (2J — 1)L,

Given a chronicle {Tj}}']ﬂ of J generations we refer to Ty as an ordered tree of the
Jth generation. We should keep in mind that the notion of ordered trees comes with
associated chronicles. It includes not only the shape of the tree but also how it ”grew”.
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Given an ordered tree T' we define an index function n : T' — Z such that

® Ny XNy, — N, + Ny for all @ € TO, where ay,as, a3 are the children of a,
® Ny % ng, and ng % ng,, for all a € T°,
o |u1| :=2|n, — ny |0y — npy| > N, where r is the root of T,

and we denote the collection of all such index functions by R(T).

For the sake of completeness, as it was done in [5], given an ordered tree T' with the
chronicle {T]}‘]]:1 and associated index functions n € R(T"), we need to keep track of the
generations of frequencies. Fix an n € R(T') and consider the very first tree T7. Its nodes
are the root r and its children r1,79,7r3. We define the first generation of frequencies by

(n®, n @ a1 )) :

ny,ng ", Ng :(nr‘anh7n7“2anr3)~

From the definition of the index function we have

nM ~ ngl) —né ) —|—n3 ) ”1 5é n(t $é n:())l).
The ordered tree T of the second generation is obtained from 77 by changing one of its
terminal nodes a = 7, € T7° for some k£ = 1,2,3 into a nonterminal node. Then, the
second generation of frequencies is defined by

(n(2) ng ),ng),ng )) = (NasMay s Mags Nag )-

Thus, we have n(?) = ng) for some k£ = 1,2, 3 and from the definition of the index function
we have
2 2 2
n(2)Nng)—né)—l—n3 , ”1 aén aéng).
This should be compared with what happened in the calculations we presented before when
passing from the first step of the iteration process into the second step. Every time we
apply the differentiation by parts technique we introduce a new set of frequencies.

After j — 1 steps, the ordered tree T; of the jth generation is obtained from Tj_;1 by
changing one of its terminal nodes a € 772, into a nonterminal node. Then, the jth
generation frequencies are defined as

(n(j),ngj),né]),néj)) :
and we have n() = n,(gm)(: ng) for some m = 1,2,...,7 — 1 and k = 1,2,3, since this
corresponds to the frequency of some terminal node in 7;_;. In addition, from the definition
of the index function we have

= (na, Nay, Nay, nag)?

n(j)zngj) ()+n3, aén])aén
Finally, we use u; to denote the corresponding phase factor introduced at the jth genera-
tion. That is,

(56) i = 2(nt9) — 2Dy — n:())j))’
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and we also introduce the quantities

J J
(57) iy =Y wi, =] #
p j=1

We should keep in mind that everytime we apply differentiation by parts and split the
operators, we need to control the new frequencies that arise from this procedure. For this
reason we need to define the sets (see and (48)):

~ ~ __1 ~ _ 1
(58) Cy = {lfir1| < (27 +3)*|as 7100} U {|fig4] < (2 +3)% | |' 7109 .

Let us see how to use this notation and terminology in our calculations. On the very
first step, J = 1, we have only one tree, the root node r and its three children ry, 72,73
(sometimes, when it is clear from the context, we will identify the nodes and the frequencies
assigned to them, that is, we have the root n = n, and its three children n,, = ny,n,, =
na, Ny, = ng) and we have only one operator that needs to be controlled in order to proceed
further, namely (j}z’t = Qn'.

On the second step, J = 2, we have three operators (j?l’;” = ‘ﬁffw cﬁﬁm = cj;’;, (j%’f;g =

cj%fb that play the same role as (j};t did for the first step. Let us observe that for each one of
these operators we must have estimates on their L? norms in order to be able and continue
the iteration. These estimates were provided by Lemmata [ and

On the general Jth step we will have |Z(J)| operators of the (j&{’g’n "type” each one

corresponding to one of the ordered trees of the Jth generation, 7' € T'(J), where n is an
arbitrary fixed index function on 7. We have the subindices 7° and n because each one of
these operators has Fourier transform supported on the cubes with centers the frequencies
assigned to the nodes that belong to 7.

Let us denote by T}, all the nodes of the ordered tree T" that are descendants of the node
acT ie To,={BeT:B<a, B+#a}.

We also need to define the principal and final ”signs” of a node a € T" which are
functions from the tree T" into the set {+1}:

+1, a is not the middle child of his father
(59) psgn(a) = ¢ +1, a =r, the root node
—1, a is the middle child of his father

+1, psgn(a) = +1 and a has an even number of middle predecessors

)
—1, psgn(a) = +1 and a has an odd number of middle predecessors
)
)

(60) fsgn(a) = .
—1 and a has an even number of middle predecessors

(

(
—1, psgn(a
+1, psgn(a —1 and a has an odd number of middle predecessors,

where the root node r € T' is not considered a middle father.
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The operators q;(f ,, are defined through their Fourier transforms as

(61) F (@ ({wns Yser=))(€) = e F(RES | ({e7"%wy, }gere))(€),

where the operator ng,n acts on the functions {wn, }ger~ as

J
(62) R‘” n({wn, b gere) (@ )Z/RQJ+1 K;(po)(x,{ﬂfﬁ}ﬁe:roo) ®peT> Wny $/3] 11 d=s.
BeT=

and the kernel K;‘é)n is defined as

(63) KW, (@ (g} per=) = F (A5 ) ({2 — 2} ser=).

Here is the formula for the function ﬁ(T{))n with (|7°°| = 2J + 1)-variables, &g, f € T°°:

(64) o n({€adper=) = { 1T Gns(és H I1 Una( > fsgn(B) §a>} ﬂlT

BeT® a€eT0 BET>®NT,
We also define the function

(65) piallnser) = [ T] on( 3 tn(d) )] -

a€To BET>®NT,

where we denote by

(66> /lT: H /1047 ﬂa = Z Ks,

aeTo BETN\T,

and for B € T° we have

(67) s = 2(§p — &p,) (€8 — &ps)

where we impose the relation &, = &4, — €a, + £y for every a € TO that appears in the
calculations until we reach the terminal nodes of T°°. This is because in the definition of

the function pé’é we need the variables ”£” to be assigned only at the terminal nodes of

the tree T'. We use the notation pg in similarity to p; of equation because this is the
”continuous” version of the discrete case. In addition, the variables &, £q,, £qy that appear
in the expression are supported in such a way that &y, = 1,0 = Nags Easz =~ Nag-

This is because the functions o, are supported in such a way. Therefore, || ~ |7

For the induction step of our iteration process we need the following lemma which should

be compared with Lemmata [0] and
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Lemma 17. For2 <p< oo

_2
. (J+1)14 J%)l v
(63) 1RS y(Gonadser=)llp S ( TT Ivnally) A ,

e |
for every tree T € T'(J) and index function n € R(T).

Proof. We use interpolation between the L? estimate, which is done in exactly the same
way as in Lemma @ and the L estimate where we use that for s > % the embedding
H3(R?+1) s FLYR?*/*1) is continuous. By Holder’s inequality the embedding constant
is bounded above by the quantity

1 o g 3
(69) 82713 ( /0 T )
where |S?/| denotes the surface measure of the 2.J-dimensional sphere in R2/*1. It is known
that
oJ+1,J

and the integral part of decays like a polynomial in J, which can be neglected compared
to the double factorial decay of the surface measure of S?/. Thus, the embedding constant

decays like 1/J%.
Since the function p

%] =

(J)
T0.n
to calculate all possible derivatives of order r up to the order J + 1 we obtain

has 2J + 1 variables and consists of 4.J 4 1 factors and we have

J+1
. . @I+ 1)(AT+ 1)) -1
rz:%(z‘” DW= ey -1

terms in total. Let us notice that the more distributed the derivatives are on the product
(J)

TO0n
growth in J compared to (J 4 1)!. The factorial (J + 1)!4 appears in the calculations
because we take J + 1 derivatives of the o-functions. Finally, let us observe that a factorial
(J+1)! appears in the calculations too, when all J + 1 derivatives fall in terms of the form
1/x, but since A > 1, (J + 1)! dominates. O

of functions that consist the function p the smaller constants we obtain in terms of

For the rest of the paper, let us use the notation

(70) dy=(J+ 1A J7,
By Stirling’s formula we obtain that d; has the following behaviour for large J

A
2

J+ 1>A(J+1) s J

314y
I~ o JETA,

(71) dy~ (V2r(T+ D))" (
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Given an index function n and 2J + 1 functions {vy, }ger~ and o € T° we define the
action of the operator NY (see ) on the set {vn,}ger to be the same set as before
but with the difference that we have substituted the function v,, by the new function
Ni(v)(ng). We will denote this new set of functions Nf’a({vnﬂ}gegpoo). Similarly, the
action of the operator R — R{ (see (19)) on the set of functions {vn, }ger= will be denoted
by (R5" — Rﬁ’a)({vm}ﬁem)-

The operator of the Jth step, J > 2, that we want to estimate is given by the formula:

(72) NMwm = S Y ¥ qéo“ *({vny }ger==))-

TeT(J—1) a€T® neR(T

nT—n

Applying differentiation by parts on the Fourier side (keep in mind that from the splitting

procedure we are on the sets Ay(n)¢, CY,...,C9_;) we obtain the expression
(73) Ny )(n) = %(Ng" D (@) () + N (0) () + NV (0) (),
where

(74) N om = Y Y qTo ({0n, }ger=o),

TET(J) neR(T

n, _n

and

(75) NI @)n) = Y D D e (R5” = RY)({ons }per=)),

TET(J) a€T>® neR(T)
n,=n

and

(76) NI = Y Y Y dg,{é “({ons per=))-

TeT(J) a€T™ neR(T

n, —n

We also split the operator N/*1) as the sum

(77) N(JH) _ N1(J+1) +N2(J+1)7

where N!" Y is the restriction of N/+1) onto Cyand N2(J+1) onto C'9. First, we generalise

Lemma [15| by estimating the operators NSJH) and N1£J+1):

Lemma 18.

11, -1 (a'-1)
HN(§J+1)(U)HZ’1Mpq Sd ( + ’t’)<2j+2)|2 p\N 7 T+ 50 1004’ (J-1)+ Hv”?\j:ql’

and
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J+1 J+1
INST D (0) = NV (@) i, S

~

1-2 2 4+2)| i1 LD g =D (g gy
dy ? (L o) @RI e IO (o3, lwll3, il = -

I)JJF(fOO 7 (J— 1)+H ”2J+3

(2J+5)
INHD (W) fuaagy Sy (1 + )T+ 2,

~

and

INSHD () = N (w)lans,, <

1—-2
P

11y _@=D gy @ =D g
(1 + ‘t‘) 2J+5)|§_;|N 7 J+ 1004’ (J 1)+(||UH2J+2 + ”wH2J+2)||U - wHMp,q'

d;
MP#I Mpwq

Proof. As in the proof of Lemma [15] for fixed nl/) and y; there are at most o(|p;|*) many

choices for ngj ),ng ), D n addition, let us observe that p; is determined by fi1,. .., fi;

and |p;] S max(|uj,1| |fi;]), since p; = fij — fij—1. Then, for a fixed tree T' € T'(.J), since
the operator qN# ,, has Fourier transform localised around the interval (), using the same
argument as in Lemma |10 together with Lemma [17| we obtain the bound (remember that

N ~ J ~
liir| ~ |ig] = Hk:l |k |):

J
>l pGvsdper)lias,, S (1+ )2 Z ( 11 ”“"BHP>(H yﬂlk
k=1

neR(T) neR(T) BeT>

n,=n n,=n

and by Holder’s inequality the sum is bounded from above by

> T duaalit)”

(78) (X

=0
=
Bl

|1 |>N neR(T) BET
~ . 3arl— n,=n
|A;|1>(2j+1)*N "~ 100

=2,

. (d'-1) 4 + (¢~ ( J—1)+ ..
The first sum behaves like N ¢ 100q 7 and for the remaining part we take the

19 norm in n and by the use of Young’s inequality we are done.
At this point, let us observe the following: There is an extra factor ~ J when we estimate
the differences Né‘”l)(v) — NéJ+1)(w) since |a?/*1 — p2/F1| < (Z?f{l a?/ 171 a — b|

has O(J) many terms. Also, we have ¢; = |Z(J)| many summands in the operator NéJH)

since there are c; many trees of the Jth generation and c; behaves like a double factorial,
namely (2J — 1)!! (see (55)). However, these observations do not cause any problem since
the constant that we obtain from estimating the first sum of decays like a fractional
power of a double factorial in J, or to be more precise we have
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b -3 (3+a)(1-2)s

(79) A R dy LI

7 g.a=1_ 3—3 2-3 (2—3)J

[[—o(2i +1)7 7 2J+1)" 7 [(2J -7 4 J

In order to maintain the decay in the denominator we must have 2 — % —s—A+ 2A+3 >0
which is equivalent to the restriction p < (3%&%' This is true by the assumptlons
of Theorem (4| together with . For the operator Nﬁ‘”l) the proof is the same but in
addition we use Lemma [7| for the operator R} — RY. U]

The estimate for the operator Nl(JH), which generalises Lemma is the following:
Lemma 19.

VD )lnng g S dy (14 ) O i 0wl =D 2

~ Mp,q 2

and

_2

1_1
||N(J+1)( )_ N1(J+1)( )quMpq < d ( + |t|)(2‘]+6)|2 p|

~

2 1yl
N T 00 Gr DU (2702 2702 oy — g,

Proof. As before, for fixed n() and p; there are at most o(|p;| ") many choices for ng ), ngl), né )

and note that p; is determined by fiq, ..., fi;.

Let us assume that |fyy1| = g + posi| S (2J + 3)3|ﬂJ|1_ﬁ holds in . Then,
|r+1| < |fg] and for fixed fiy there are at most 0(|,L2J|1_ﬁ) many choices for fi;41 and
therefore, for pyi1 = fig+1 — fiy. For a fixed tree T' € T'(J) and o € T, since the operator
cj;,]:g’n has Fourier transform localised around the interval @),, by Lemma H we arrive at

the upper bound (remember that 7| ~ || = [Ti_, |xl):

2

ST e (NP (ong Y ger= ), S dy P+ 1)

SRD
J

DR (e TGN | M | | |unﬂ||p)(H )

ng;R:(g) BeT>>\{a} k=1

and by Holder’s inequality we bound the sum by

<

1
Py

el )

(80) (X el
lp1|>N k=1
| 1> (2j+1)° N~ 100
j=2,...,J

Mk\q
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1

—itO? q
> (e Qs (Vg Bnag va)IE [T ansl12)?

neR(T) BeT>=\{a}

n,=n
2
An easy calculation shows that the first sum behaves like NV 1+~ ooy (1 100) (7 ~DU =D+
and then by taking the [? norm with the use of Young’s inequality and an estimate on the
norm e~z QL (Vnay s Unay s Vnag )|ln,,, we are done.
1

If |figy1] < (2J 4 3)3|p1]' 70 holds in 1) then for fixed pj, j =1,...,J, there are at
most O(| ,u1|17ﬁ) many choices for ;1 711. The same argument as above leads us to exactly
the same expressions as in but with the first sum replaced by the following:

QDR s

|p1|>N

1
|iij|>(2j+1)3N'~ 100
=20,

1

+>?
b

2 1 1
which again is bounded from above by Ny ~ o0 +(1=155) (7 =D - 1)+ and the proof is

complete. O

Remark 20. For s > 0 we have to observe that all previous Lemmata hold true if we
replace the [9M), ; norm by the 1M, 4 norm and the M, 4(R) norm by the M} (R) norm.

To see this, consider n() large. Then, there exists at least one of ng ), ngj ),né ) such that

\n(J | > $nW|, k € {1,2,3}, since we have the relation n(/) = n(J) —ny )+nm Therefore,
()

in the estimates of the Jth generation, there exists at least one frequency ny’ for some

je{1,...,J} with the property

< > <3]s< ()> <3Js< ()>s'

This exponential growth does not affect our calculations due to the double factorial decay
in the denominator of .

Remark 21. Notice that all estimates that appear in the previous lemmata of this section
are true for all values of p € [2,00], ¢ € [1,00] and s > 0.

2.2. Existence of Weak Solutions. In this subsection the calculations are the same as
in [5] (and [7]) where we just need to replace the L? (or the Ms,) norm by the M, ,(R)
norm. We will present them for the sake of completion.

Let us start by defining the partial sum operator Fq(;g) as

J
(81) TDo(t) =vo + Y N Z N (wo)(
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J

+/0th( )(n) + Ry (v +ZNJ> +ZNU

where we have NV := N{, from 1' ( ) = N&, from . N = N, from (i and

NP = N} from 1| and vy € M, 4(R) is a fixed function.

In the following we will denote by X7 = C([0, T, M, 4(R)). Our goal is to show that the
series appearing on the RHS of converge absolutely in X for suﬂiciently small T > 0,
if v € Xp, even for J = oco. Indeed, by Lemmata |7 I, I, E 18, and [19| we obtain (we assume

that 7' < 1 so that the quantity (1 + T)(Q‘”ﬁ)‘2 » is an exponential in J independent of
T which can be neglected by making N possibly larger)

1— 1)44=L 2j—1 2j—1
(82) HFUO vl xr < llvollas,, +CZN (1= G =D+ {5 ( (H 1%, o+ HUOHJ\jZW)
Jj=2

+CT[HU||XT+ZN (=20~ 1)+100/ J= 2)+” ||2J+1
Jj=2

J
N7 ol + 30 N e ) G D e
j=2
Let us assume that ||vo||as,, < R and |Jv][x, < R, with R > R > 1. From 1) we have

(83)
J—2 J-2 ’_
IPDullx, < R+ CNV R3S (No 650 g2y 4 oN T RS Z(N$*1+5’TJR2)J'
J=2

+CT[(1+ NV RS + ONT RS (%‘Hfﬁé"’)j

.
Il
=)

+N<1’ - 100q/+R5Z Nq’ - 305‘11 "R?)] }

N 1 4,4 =1
We choose N = N(R) large enough, such that N7 e R = N99100q’ R? < < 3, or
equivalently,

1004’

(84) N > (2R*)%W -1,

so that the geometric series on the RHS of (83| . converge and are bounded by 2. Therefore,
we arrive at
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1 1 ~
(85> Hrz(;}]])UHXT <R+ 20N?71+R3 + QCN?*1+R3

199—1004"

1 ~ 1 ~ ~ ~
+CT[(1 FNTOR2 4 oNT TR 2N ooy *Rﬂ R,
and we choose T' > 0 sufficiently small such that

(86) CT[( 14+ NTHR2 4 oN7 R 4 oN o +R4] <=

1 ~ 1—¢ | .
With the use of we see that 20N« 'TR3 < CN7 R and by further imposing N
to be sufficiently large such that

1_7‘11_', 1
N 1004’ —
(87) C 7 <1y
we have
R R 11 1~
Dyl <R+ BB _Mp 1p
(88) I o v||XT_R+1O+5 10R—|—5R

Thus, for sufficiently large N and sufficiently small 7' > 0 the partial sum operators FS,‘({)

are well defined in X7, for every J € NU {oco}. We will write ', for D(,EO).

Our next step is, given an initial datum vy € M, 4(R) to construct a solution v € X
in the sense of Definition |3| To this end, let s > % (so that M; (R) is a Banach algebra
that embeds in M, ,(R) NCy(R)) and consider a sequence {v(()m)}meN € My (R) C Mp4(R)
whose Fourier transforms are all compactly supported (thus, all v(()m) are smooth functions)
and such that v(()m) — vo in My 4(R) as m — oo. Let R = [Jvol|ns,,, + 1 and we can assume
that ||v(()m)||MM < R, for all m € N. Denote by v(™) the local in time solution of NLS

in M, ,(R) with initial condition v[()m). It satisfies the Duhamel formula
(89) o™ (¢ —vo —H/ NT (™) — R7(v!™) 4+ R (v(™) dr =
M+Z%%WW%ZM%W

/RT M) (n) + R5(v™ +ZN +ZN dr_r<mw()

and we will show that this holds in XT for the same t1me T = T(R) > 0 independent
of m € N. Indeed, fix m € N and observe that the norm [|v™)|x, = Hv(m)HC([mt},Mp,q) is

continuous in ¢. Since ||v(()m)\|Mp‘q < R there is a time 77 > 0 such that Hv(m)HXT1 < 4R.
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Then, by repeating the previous calculations with R = 4R and keeping one of the factors
as o], we get

(90) o™ llx, = \Il“vgn)v(m)IIXT1 < TORJr ot X7, 5

if N and T} satisfy , and . Therefore, we have

19
(m) 19
(91) [0z, < {gR < 2R.

Thus, from the continuity of + — ||v("™||x,, there is € > 0 such that ||v(™)|| Xy, . < 4R.
Then again, from and with T} + € in place of T} we derive that ||v(™) | xp, e <2R
as long as N and T; + € satisfy (84 ., . and . By observing that these condltlons
are independent of m € N we obtain a time interval [0, 7] such that [[v(™)| x,. < 2R for all
m € N.

A similar computation on the difference, by possibly taking larger N and smaller T leads
to the estimate

(02 [0 = 72y = 7 00 = Ty 0 L <

(1 ™ = o™ g + 510 = 0],

I8z,

which implies

(93) o) — o2 < e [luS™) = 0|, ..

for some ¢ > 0 and therefore, the sequence {v(m)}meN is Cauchy in the Banach space X7.
Let us denote by v*° its limit in X7 and by u®> = S(t)v>°. We will show that u> satisfies
NLS in the interval [0,7] in the sense of Definition [3| For convenience, we drop the
superscript oo and write u,v. In addition, let u(™ := § (t)v(m), where v(™) is the smooth
solution to with smooth initial data v((]m) as described above and note that ("™ is the
smooth solution to 1') with smooth initial data u(m) = v((] ™) Furthermore, u(™ — u in
X7 because v(™) — v in X7 and since convergence in the modulation space M, 4(R) implies

convergence in the sense of distributions we conclude that J, w™ = 9.4 and Gu™ — du
in 8'((0,T) x R). Since u(™ satisfies NLS . for every m € N we have that

N@™) = u™ ™2 = —ig,u™ + 92
also converges to some distribution w € §’((0,7T) x R). Our claim is the following:

Proposition 22. Let w be the limit of A/ (u(™) in the sense of distributions as m — oo.
Then, w = N (u), where N (u) is to be interpreted in the sense of Definition
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Proof. Consider a sequence of Fourier cutoff multipliers {Tn}yen as in Definition |1 We
will prove that

lim N (Tnu) = w,
N—o00

in the sense of distributions. Let ¢ be a test function and € > 0 a fixed given number. Our
goal is to find Ny € N such that for all N > Ny we have

(94) (w = N(Tyu), )| < e
The LHS can be estimated as

[(w — N(Tvu), ¢)] < [(w — N (u™),¢)] + (N (™) = N (Tyul™), ¢)|
HN(Tnu™) — N(Tnu), ¢).

The first term is estimated very easily since by the definition of w we have that

(95) o = N (™), )] < 5 6

for sufficiently large m € N.
To continue, let us consider the second summand for fixed m. By writing the difference
N (w™) — N(Tnyu™) as a telescoping sum we have to estimate terms of the form

‘// [(I — Tn)ul™ | [u™? ¢ da dt|,

where I denotes the identity operator. This integral can be identified with the action of
the distribution [(I - TN)u(m)} lulm™|? e M, (R) (which is a Banach algebra) onto the

test function ¢, which in its turn can be controlled (Holder’s inequality) by the norms (up
to constants)

Illzzar, ™ Bengs 1= Th)u™ 2 ags -
Collu™ 12 029,013 1T = T ™l g2 ngs < Comll(T = T yu™ |z

Here we have to observe that for every fixed ¢ the norm ||(I — T )u(™|| Mg, —0as N — oo

and an application of Dominated Convergence Theorem in L?(0,7T) implies that there is
No = No(m) with the property

1
(96) ComllT = Tw)u™ sy, < 5
for all N > Nj.

For the last term, we need to observe two things. Firstly, let us consider the sequence
{N (Tnu")}men, for each fixed N. By applying the iteration process that we described in

the previous subsection to {S(—t)N (Tnu™)}en, which is basically the nonlinearity in

€,
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equation up to the operator Th, we see that {N(Txu™)}men is Cauchy in 8'((0,T) x
R), as m — oo for each fixed N' € N since the sequence u(™ is Cauchy in C((0, T), M, ,(R)).
Since the operators Ty are uniformly bounded in the LP norm in N we conclude that this
convergence is uniform in N.

Secondly, let us observe that for fixed N, Tnu is in C((0,T), H*(R)) since u € M, 4(R)
and the multiplier my of Ty is compactly supported. Hence, N'(Tyu) = Tiyu|Tnu|? makes
sense as a function. Therefore, for fixed N we obtain the upper bound

[N (Tul™) — N (Tivu), ¢)] <

Il (ITvu™ 2, o+ [Tl ITva™ = Tivull s, <

Colullxg 1™ = ulle0.1),1p,0)1

which can be made arbitrarily small. Hence, N'(Tyu(™) converges to N (Tu) in S'((0,T) %
R) as m — oo for each fixed N.

From these two observations we derive that N(Tyu(™) — N(Tyu) in S'((0,T) x R) as
m — oo uniformly in N. Equivalently,

(o7) (AT = N (T, ) < 5 e,

for all large m, uniformly in N. Therefore, follows by choosing m sufficiently large so
that and hold, and then choosing Ny = Ny(m) such that holds.
O

Finally, we have shown that the function u = u* is a solution to the NLS (If) in the
sense of Definition |3} The Lipschitz dependence on the initial data follows from (93] by a
limit process.
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