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NONLINEAR SCHRÖDINGER EQUATION, DIFFERENTIATION BY

PARTS AND MODULATION SPACES.

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

Abstract. We show the local wellposedness of the Cauchy problem for the cubic nonlin-

ear Schrödinger equation in the modulation space Ms
p,q(R) where 1 ≤ q < 3, 2 ≤ p < 10q′

q′+6

and s ≥ 0. This improves [7], where the case p = 2 was considered and the differentiation
by parts technique was introduced to a problem with continuous Fourier variable. Here
the same technique is used, but more delicate estimates are necessary for p 6= 2.

1. introduction and main result

We are interested in the nonlinear Schrödinger equation defined by

(1)

{
iut − uxx ± |u|2u = 0 , (t, x) ∈ R2

u(0, x) = u0(x) , x ∈ R

with initial data u0 in the modulation space Mp,q(R). To state the definition of a modula-
tion space we need to fix some notation. We will denote by S′(R) the space of tempered
distributions. Let Q0 = [−1

2 ,
1
2) and its translations Qk = Q0 + k for all k ∈ Z. Consider a

family of functions {σk = σ0(· − k)}k∈Z ⊂ C∞(R) satisfying

(i) ∃c > 0 : ∀k ∈ Z : ∀η ∈ Qk : |σk(η)| ≥ c,
(ii) ∀k ∈ Z : supp(σk) ⊆ {ξ ∈ R : |ξ − k| < 1} =: B(k, 1),
(iii)

∑
k∈Z σk = 1

and define the isometric decomposition operators

(2) �k := F (−1)σkF , (∀k ∈ Z) .

Then the norm of a tempered distribution f ∈ S′(R) in the modulation space M s
p,q(R),

s ∈ R, 1 ≤ p, q ≤ ∞, is

(3) ‖f‖Ms
p,q

:=
(∑
k∈Z
〈k〉sq‖�kf‖qp

) 1
q
,

with the usual interpretation when the index q is equal to infinity, where we denote by

〈k〉 = (1 + |k|2)
1
2 the Japanese bracket. It can be proved that different choices of the

function σ0 lead to equivalent norms in M s
p,q(R). Later, during the proof of the main
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theorem we will make use of this fact. When s = 0 we denote the space M0
p,q(R) by

Mp,q(R). In the special case where p = q = 2 we have M s
2,2(R) = Hs(R) the usual Sobolev

spaces. In our calculations we are going to use that for s > 1/q′ and 1 ≤ p, q ≤ ∞, the
embedding

(4) M s
p,q(R) ↪→ Cb(R) = {f : R→ C/ f continuous and bounded},

and for
(

1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞, s1 ≥ s2

)
or
(

1 ≤ p1 ≤ p2 ≤ ∞,

1 ≤ q2 < q1 ≤ ∞, s1 > s2 + 1
q2
− 1

q1

)
the embedding

(5) M s1
p1,q1(R) ↪→M s2

p2,q2(R),

are both continuous and can be found in [3] (Proposition 6.8 and Proposition 6.5). In
that paper modulation spaces were introduced for the first time by Feichtinger and since
then they have been used extensively in the study of nonlinear dispersive equations. They
have become canonical for both time-frequency and phase-space analysis. See [8] for many
of their properties such as embeddings in other known function spaces and equivalent
expressions for their norm. From [3] (Proposition 6.9) it is known that for s > 1/q′ or
s ≥ 0 and q = 1 the modulation space M s

p,q(R) is a Banach algebra and therefore an
easy Banach contraction principle argument implies that NLS (1) is locally wellposed for
u0 ∈ M s

p,q(R) with solution u ∈ C([0, T ];M s
p,q(R)), T > 0 (see [2]). In this paper, with a

different approach, we are able to cover the remaining cases 0 ≤ s ≤ 1/q′, unfortunately
not for all values of p, through the differentiation by parts technique that was used in [1]
to attack similar problems for the KdV equation but with periodic initial data. In [5] this
technique was used to prove unconditional wellposedness of the periodic cubic NLS in one
dimension. Our initial data is far from being periodic, and for this reason there are some
major differences and some difficulties that do not occur in the periodic setting, which were
pointed out in [7] too, where the case p = 2 was considered.

The main difference between this paper and [7] is that we are able to obtain estimates

on the Lp norm of the operators RJ,t
T 0,n

(see (62)) for p 6= 2 through an L∞ estimate and an

interpolation argument. Another difference is that in [7] an equivalent norm of M s
2,q could

be used, namely the norm (∑
k∈Z
〈k〉sq‖�̃kf‖q2

) 1
q
,

where �̃k = F (−1)1[k,k+1]F , in order to avoid overlaps between two neighbouring σn and
σm which is something that for p 6= 2 can not be ignored.

In order to give a meaning to solutions of the NLS in C([0, T ],Mp,q(R)) and to the
nonlinearity N (u) := u|u|2 we need the following definitions:

Definition 1. For fixed 1 ≤ p ≤ ∞, a sequence of Fourier cutoff operators is a sequence
of Fourier multiplier operators {TN}N∈N with symbols mN on S ′(R) such that
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• mN is compactly supported for all N ∈ N,
• supN∈N ‖TN‖p→p <∞ and
• for every f in a dense subset of Lp(R) we have limN→∞ ‖TNf − f‖p = 0.

Notice that in our definition a sequence of Fourier cutoff operators depends on the given
value of p ∈ [1,∞] in M s

p,q(R).

Definition 2. Let u ∈ C([0, T ],M s
p,q(R)). We say that N (u) exists and is equal to a

distribution w ∈ S ′((0, T )× R) if for every sequence {TN}N∈N of Fourier cutoff operators
we have

(6) lim
N→∞

N (TNu) = w,

in the sense of distributions on (0, T )× R.

Definition 3. We say that u ∈ C([0, T ],M s
p,q(R)) is a weak solution of NLS (1) if

• u(0, x) = u0(x),
• the nonlinearity N (u) exists in the sense of Definition 2,
• u satisfies (1) in the sense of distributions on (0, T ) × R, where the nonlinearity
N (u) = u|u|2 is interpreted as above.

Our main result which guarantees persistent solutions generalises the one in [7] and it is
the following:

Theorem 4. Let s ≥ 0, 1 ≤ q < 3 and 2 ≤ p < 10q′

q′+6 . For u0 ∈ M s
p,q(R) there exists

a weak solution u ∈ C([0, T ];M s
p,q(R)) of NLS (1) with initial condition u0 in the sense

of Definition 3, where the time T of existence depends only on ‖u0‖Ms
p,q

. Moreover, the
solution map is Lipschitz continuous.

Remark 5. The restriction on the range of p is dictated by the construction of our solution
of the NLS. More precisely, we decompose the NLS into countably many ”smaller” parts
and at the end we sum all of them together. In order for this summation to make sense all
the series must by convergent in the appropriate spaces and as a consequence we obtain

the restriction p < 10q′

q′+6 (see the remarks after (79) below).

To conclude this section we need that for S(t) = eit∆ the Schrödinger semigroup we have
the estimate:

(7) ‖S(t)f‖Ms
p,q
. (1 + |t|)|

1
2
− 1
p
|‖f‖Ms

p,q
,

where the implicit constant does not depend on f, t. We also need the multiplier estimate
(see [8], Proposition 1.9):

Lemma 6. Let 1 ≤ p ≤ ∞ and σ ∈ C∞c (R). Then the multiplier operator Tσ : S′(R) →
S′(R) defined by

(Tσf) = F−1(σ · f̂), ∀f ∈ S′(R)
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is bounded on Lp(R) and

‖Tσ‖Lp(R)→Lp(R) . ‖σ̌‖L1(R).

A useful consequence is that for 1 ≤ p1 ≤ p2 ≤ ∞ the following holds:

(8) ‖�kf‖p2 . ‖�kf‖p1 ,
where the implicit constant is independent of k and the function f .

Lastly, let us recall the following number theoretic fact (see [6], Theorem 315) which is
going to be used throughout the proof of Theorem 4: Given an integer m, let d(m) denote
the number of divisors of m. Then we have

(9) d(m) . ec
logm

log logm = o(mε),

for all ε > 0.

2. proof of the main theorem

The calculations are similar to those presented in [7] where the difference is that instead
of using L2 estimates for the Fourier-space variable we use Lp estimates which is something
that will become clearer in the calculations that follow. Nevertheless, there are a lot of
new details that need to be taken care of. For this reason, and for the reader’s convenience
we will be as detailed as possible.

From here on, we consider only the case s = 0 in Theorem 4 since for s > 0 similar
considerations apply. See Remark 20 at the end of the section for a more detailed argument.

Also, since our indices 1 ≤ q < 3 and 2 ≤ p < 10q′

q′+6 are fixed, we can find a fixed number

A > 1 such that

(10) 2 ≤ p < 2q′(2A+ 3)

(2A− 1)q′ + 6
.

Notice that the function f(A) = 2q′(2A+3)
(2A−1)q′+6 is decreasing and in the range A > 1 it has a

global maximum at A = 1. From here on, we choose our bump function σ0 to satisfy the
following bounds on its derivatives

(11)
∥∥∥ dJ
dxJ

σ0

∥∥∥
∞
. (J !)A,

for all J ∈ Z+. This is crucial for Lemma 17. Notice that A ≤ 1 can not be true since
then our compactly supported function σ0 would be a real analytic function and therefore,
it would be identically zero.

For n ∈ Z let us define

(12) un(t, x) = �nu(t, x),
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(13) v(t, x) = eit∂
2
xu(t, x),

(14) vn(t, x) = eit∂
2
xun(t, x) = �n[(eit∂

2
xu(t, x)] = �nv(t, x).

Also for (ξ, ξ1, ξ2, ξ3) ∈ R4 we define the function

Φ(ξ, ξ1, ξ2, ξ3) = ξ2 − ξ2
1 + ξ2

2 − ξ2
3 ,

which is equal to

Φ(ξ, ξ1, ξ2, ξ3) = 2(ξ − ξ1)(ξ − ξ3),

if ξ = ξ1 − ξ2 + ξ3. Our main equation (1) implies that

(15) i∂tun − (un)xx ±�n(|u|2u) = 0,

and by calculating (u =
∑

k�ku)

�n(uūu) = �n
∑

n1,n2,n3

un1 ūn2un3 =
∑

n1−n2+n3≈n
�n[un1 ūn2un3 ],

where by ≈ n we mean = n, or = n + 1, or = n − 1. Next we do the change of variables

un(t, x) = e−it∂
2
xvn(t, x) and arrive at the expression

(16) ∂tvn = ±i
∑

n1−n2+n3≈n
�n
(
eit∂

2
x [e−it∂

2
xvn1 · eit∂

2
x v̄n2 · e−it∂

2
xvn3 ]

)
.

We define the 1st generation operators by

(17) Q1,t
n (vn1 , v̄n2 , vn3)(x) = �n

(
eit∂

2
x [e−it∂

2
xvn1 · eit∂

2
x v̄n2 · e−it∂

2
xvn3 ]

)
,

and continue with the splitting

(18) ∂tvn = ±i
∑

n1−n2+n3≈n
Q1,t
n (vn1 , v̄n2 , vn3) =

∑
n1≈n
or

n3≈n

. . .+
∑

n1 6≈n6≈n3

. . . ,

where we define the resonant part

(19) Rt2(v)(n)−Rt1(v)(n) =
( ∑
n1≈n

Q1,t
n +

∑
n3≈n

Q1,t
n

)
−
∑
n1≈n
and
n3≈n

Q1,t
n (vn1 , v̄n2 , vn3),

and the non-resonant part
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(20) N t
1(v)(n) =

∑
n1 6≈n6≈n3

Q1,t
n (vn1 , v̄n2 , vn3),

which implies the following expression for our NLS (we drop the factor ±i in front of the
sum since they will play no role in our analysis)

(21) ∂tvn = Rt2(v)(n)−Rt1(v)(n) +N t
1(v)(n).

For the resonant part we have the following:

Lemma 7. For j = 1, 2

‖Rtj(v)‖lqMp,q . (1 + |t|)4| 1
2
− 1
p
|‖v‖3Mp,q

,

and

‖Rtj(v)−Rtj(w)‖lqMp,q . (1 + |t|)4| 1
2
− 1
p
|
(‖v‖2Mp,q

+ ‖w‖2Mp,q
)‖v − w‖Mp,q .

Proof. Let us consider Rt1. By its definition, for fixed n, Rt1(n) consists of finitely many

summands, since |n − n1|, |n − n3| ≤ 1 and |n − n2| ≤ 3. We will handle Q1,t
n (vn, v̄n, vn)

since the remaining summands can be treated similarly. Since,

Q1,t
n (vn, v̄n, vn) = �n

(
eit∂

2
x [e−it∂

2
xvn · eit∂

2
x v̄n · e−it∂

2
xvn]

)
its Mp,q norm is bounded from above by

‖eit∂2x�n(|un|2un)‖Mp,q . (1 + |t|)|
1
2
− 1
p
|‖�n(|un|2un)‖Mp,q ,

where we used (7). By estimating this last norm we have

‖�n(|un|2un)‖Mp,q =
(∑
m∈Z
‖�m�n(|un|2un)‖qp

) 1
q
.
(∑
m∈Z
‖�m(|un|2un)‖qp

) 1
q

=

(∑
l∈Λ

‖�n+l(|un|2un)‖qp
) 1
q
. ‖|un|2un‖p = ‖un‖33p,

where in the first and last inequalities we used (6) and Λ ⊂ Z is a finite set. With the use
of (8) we have ‖un‖3p . ‖un‖p and by taking the lq norm in the discrete variable we arrive
at the upper bound

(1 + |t|)|
1
2
− 1
p
|
(∑
n∈Z
‖un‖3qp

) 1
q ≤ (1 + |t|)|

1
2
− 1
p
|‖u‖3Mp,q

,

where we used the embedding lq ↪→ l3q. Since u = e−it∂
2
xv another application of (7) gives

us the desired upper bound.
For the Rt2 operator, it suffices to estimate the sum
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∑
n1−n2+n3≈n

n1≈n

Qtn(vn1 , v̄n2 , vn3)

which consists of finitely many sums depending on whether n1 = n − 1, or n1 = n, or
n1 = n+ 1. Let us only treat

�n e
it∂2x

(
e−it∂

2
xvn

∑
n2∈Z

|e−it∂2xvn2 |2
)
,

since for the remaining sums similar considerations apply. Its Mp,q norm by (7) is bounded
from above by

(1 + |t|)|
1
2
− 1
p
|
∥∥∥�nun ∑

n2∈Z
|un2 |2

∥∥∥
Mp,q

= (1 + |t|)|
1
2
− 1
p
|
(∑
m∈Z

∥∥∥�m�nun ∑
n2∈Z

|un2 |2
∥∥∥q
p

) 1
q
,

where the last summand is equal to(∑
m∈Z

∥∥∥�m�nun ∑
k∈Λ′

|un+k|2
∥∥∥q
p

) 1
q
,

and Λ′ = {l1, . . . , lk′} ⊂ Z is finite. Again from (6) the sum can be controlled by

(∑
m∈Z

∥∥∥�mun ∑
k∈Λ′

|un+k|2
∥∥∥q
p

) 1
q

=
(∑
l∈Λ

∥∥∥�n+lun
∑
k∈Λ′

|un+k|2
∥∥∥q
p

) 1
q
.
∥∥∥un ∑

k∈Λ′

|un+k|2
∥∥∥
p
≤

∑
k∈Λ′

‖un|un+k|2‖p ≤ ‖un‖2p‖un+l1‖24p + . . .+ ‖un‖2p‖un+lk′‖
2
4p,

and by applying (8) and Hölder’s inequality in the discrete variable we have for each
individual summand the estimate

‖{‖un‖p}n∈Z‖l2q‖{‖un‖p}n∈Z‖2l4q ≤ ‖{‖un‖p}n∈Z‖
3
lq = ‖u‖3Mp,q

= (1 + |t|)3| 1
2
− 1
p
|‖v‖3Mp,q

,

where we used the embedding lq ↪→ l2q, l4q and the proof is complete.
For the difference part Rt1(v) − Rt1(w) we have to estimate terms of the following form

�neit∂
2
x(e−it∂

2
xvn)2(e−it∂

2
xvn − e−it∂

2
xwn) in the lqMp,q norm. As before, from (7) the Mp,q

norm is bounded above by

(1 + |t|)|
1
2
− 1
p
|‖�n(e−it∂

2
xvn)2(e−it∂

2
xvn − e−it∂

2
xwn)‖Mp,q ,

and this last norm is equal to(∑
m∈Z
‖�m�n(e−it∂

2
xvn)2(e−it∂

2
xvn − e−it∂

2
xwn)‖qp

) 1
q

=
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l∈Λ

‖�n+l�n(e−it∂
2
xvn)2(e−it∂

2
xvn − e−it∂

2
xwn)‖qp

) 1
q
. ‖(e−it∂2xvn)2(e−it∂

2
xvn − e−it∂

2
xwn)‖p,

where we used (6). Applying Hölder’s inequality and (8) we arrive at

‖e−it∂2xvn‖24p‖e−it∂
2
xvn − e−it∂

2
xwn‖2p . ‖e−it∂

2
xvn‖2p‖e−it∂

2
xvn − e−it∂

2
xwn‖p,

and by taking the lq and applying Hölder in the discrete variable with the embedding
lq ↪→ l2q, l4q and (7), we have the estimate

‖{‖e−it∂2xvn‖p}n∈Z‖2l4q‖{‖e
−it∂2xvn − e−it∂

2
xwn‖p}n∈Z‖l2q ≤

‖{‖e−it∂2xvn‖p}n∈Z‖2lq‖{‖e−it∂
2
xvn − e−it∂

2
xwn‖p}n∈Z‖lq =

‖e−it∂2xvn‖2Mp,q
‖e−it∂2xvn − e−it∂

2
xwn‖Mp,q . (1 + |t|)3| 1

2
− 1
q
|‖vn‖2Mp,q

‖vn − wn‖Mp,q .

The operator difference Rt2(v)−Rt2(w) is treated in a similar way and the proof is complete.
�

For the non-resonant part N t
1 we have to split as

(22) N t
1(v)(n) = N t

11(v)(n) +N t
12(v)(n),

where

N t
11(v)(n) =

∑
AN (n)

Q1,t
n (vn1 , v̄n2 , vn3),

and

(23) AN (n) = {(n1, n2, n3) ∈ Z3 : n1 − n2 + n3 ≈ n, n1 6≈ n 6≈ n3, |Φ(n, n1, n2, n3)| ≤ N}.

The number N > 0 is considered to be large and will be fixed at the end of the proof.
With the use of inequality (9) we estimate N t

11 as follows:

Lemma 8.

‖N t
11(v)‖lqMp,q . (1 + |t|)4| 1

2
− 1
p
|
N

1
q′+‖v‖3Mp,q

,

and

‖N t
11(v)−N t

11(w)‖lqMp,q . (1 + |t|)4| 1
2
− 1
p
|
N

1
q′+(‖v‖2Mp,q

+ ‖w‖2Mp,q
)‖v − w‖Mp,q .

Proof. Since ‖N t
11(v)‖Mp,q ≤

∑
AN (n) ‖Qtn(vn1 , v̄n2 , vn3)‖Mp,q it suffices to estimate

‖Qtn(vn1 , v̄n2 , vn3)‖Mp,q = ‖eit∂2x�n(un1 ūn2un3)‖Mp,q . (1 + |t|)|
1
2
− 1
p
|‖�n(un1 ūn2un3)‖Mp,q ,

which by estimating the last norm we have
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(∑
m∈Z
‖�m�n(un1 ūn2un3)‖qp

) 1
q

=
(∑
l∈Λ

‖�n+l�n(un1 ūn2un3)‖qp
) 1
q
.

‖un1 ūn2un3‖p ≤ ‖un1‖3p‖un2‖3p‖un3‖3p . ‖un1‖p‖un2‖p‖un3‖p,
by (6), Hölder and (8), where Λ ⊂ Z is the same set as in Lemma 7. Therefore, the sum

∑
AN (n)

‖un1‖p‖un2‖p‖un3‖p ≤
( ∑
AN (n)

1q
′
) 1
q′
( ∑
AN (n)

‖un1‖qp‖un2‖qp‖un3‖qp
) 1
q
.

Fix n and µ ∈ Z such that |µ| ≤ N . From (9) there are at most o(N+) many choices for
n1 and n3, and so for n2 from n ≈ n1 − n2 + n3, satisfying

µ = 2(n− n1)(n− n3).

Thus, we arrive at

‖N t
11(v)‖Mp,q . (1 + |t|)|

1
2
− 1
p
|
N

1
q′+
( ∑
AN (n)

‖un1‖qp‖un2‖qp‖un3‖qp
) 1
q

Then, we take the lq norm in the discrete variable and apply Hölder’s inequality to obtain

‖N t
11(v)‖lqMp,q . (1 + |t|)|

1
2
− 1
p
|
N

1
q′+
(∑
n∈Z

∑
AN (n)

‖un1‖qp‖un2‖qp‖un3‖qp
) 1
q
,

and this final summation is estimated by Young’s inequality providing us with the bound

(‖un‖Mp,q . (1 + |t|)|
1
2
− 1
p
|‖vn‖Mp,q)

‖N t
11(v)‖lqMp,q . (1 + |t|)4| 1

2
− 1
p
|
N

1
q′+‖v‖3Mp,q

,

which finishes the proof. �

In order to continue, we have to look at the N t
12 part more closely keeping in mind that

we are on AN (n)c. Our goal is to find a suitable splitting in order to continue our iteration.
From (17) we know that

F(Q1,t
n (vn1 , v̄n2 , vn3))(ξ) = σn(ξ)

ˆ
R2

e−2it(ξ−ξ1)(ξ−ξ3)v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3) dξ1dξ3,

and by the usual product rule for the derivative we can write the previous integral as the
sum of the following expressions

∂t

(
σn(ξ)

ˆ
R2

e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3) dξ1dξ3

)
−

σn(ξ)

ˆ
R2

e−2it(ξ−ξ1)(ξ−ξ3)

−2i(ξ − ξ1)(ξ − ξ3)
∂t

(
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)

)
dξ1dξ3.
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Therefore, we have the splitting

(24) F(Q1,t
n ) = ∂tF(Q̃1,t

n )−F(T 1,t
n )

or equivalently

(25) Q1,t
n (vn1 , v̄n2 , vn3) = ∂t(Q̃

1,t
n (vn1 , v̄n2 , vn3))− T 1,t

n (vn1 , v̄n2 , vn3),

which allows us to write

(26) N t
12(v)(n) = ∂t(N

t
21(v)(n)) +N t

22(v)(n),

where

(27) N t
21(v)(n) =

∑
AN (n)c

Q̃1,t
n (vn1 , v̄n2 , vn3),

and

(28) N t
22(v)(n) =

∑
AN (n)c

T 1,t
n (vn1 , v̄n2 , vn3).

Moreover, we have

F(Q̃1,t
n (vn1 , v̄n2 , vn3))(ξ) = e−itξ

2
σn(ξ)

ˆ
R2

ûn1(ξ1)ˆ̄un2(ξ − ξ1 − ξ3)ûn3(ξ3)

(ξ − ξ1)(ξ − ξ3)
dξ1dξ3,

and we define

(29) F(R1,t
n (un1 , ūn2 , un3))(ξ) = σn(ξ)

ˆ
R2

ûn1(ξ1)ˆ̄un2(ξ − ξ1 − ξ3)ûn3(ξ3)

(ξ − ξ1)(ξ − ξ3)
dξ1dξ3,

which is the same as the operator

(30) R1,t
n (un1 , ūn2 , un3)(x) =

ˆ
R3

eixξσn(ξ)
ûn1(ξ1)ˆ̄un2(ξ − ξ1 − ξ3)ûn3(ξ3)

(ξ − ξ1)(ξ − ξ3)
dξ1dξ3dξ.

At this point we introduce a fattened version of the σ-functions in the following way:
Consider a function σ̃0 with the same properties as σ0 such that σ̃0 ≡ 1 on the support of
σ0, suppσ̃0 ⊂ B(0, 17

16) and define the tranlations σ̃k = σ̃0(· − k), k ∈ Z.
With this notation, writing out the Fourier transforms of the functions inside the integral

in (30) it is not difficult to see that

(31) R1,t
n (un1 , ūn2 , un3)(x) =

ˆ
R3

K(1)
n (x, x1, y, x3)un1(x1)ūn2(y)un3(x3) dx1dydx3,
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where

K(1)
n (x, x1, y, x3) =

ˆ
R3

eiξ1(x−x1)+iη(x−y)+iξ3(x−x3)

σn(ξ1 + η + ξ3)

(η + ξ1)(η + ξ3)
σ̃n1(ξ1)σ̃n2(−η)σ̃n3(ξ3) dξ1dηdξ3 = F−1ρ̃(1)

n (x− x1, x− y, x− x3)

and

ρ̃(1)
n (ξ1, η, ξ3) =

σn(ξ1 + η + ξ3)

(η + ξ1)(η + ξ3)
σ̃n1(ξ1)σ̃n2(−η)σ̃n3(ξ3), ρ(1)

n (ξ1, η, ξ3) =
σn(ξ1 + η + ξ3)

(η + ξ1)(η + ξ3)
.

The important estimate that the operator Q̃1,t
n satisfies is described in:

Lemma 9. For 2 ≤ p ≤ ∞

(32) ‖R1,t
n (vn1 , v̄n2 , vn3)‖p .

‖vn1‖p‖vn2‖p‖vn3‖p
|n− n1||n− n3|

,

where the implicit constant depends on p.

Proof. First, let us consider the case p = 2. This repeats the argument of the M2,q case
treated in [7]. By duality, let g ∈ L2, ‖g‖2 6= 0, and consider the pairing

(33) |〈R1,t
n (vn1 , v̄n2 , vn3), g〉| =

∣∣∣ˆ
R
F(R1,t

n (vn1 , v̄n2 , vn3))(ξ)F(g)(ξ) dξ
∣∣∣ =

∣∣∣ˆ
R3

ĝ(ξ) σn(ξ)
v̂n1(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3)

(ξ − ξ1)(ξ − ξ3)
dξdξ1dξ3

∣∣∣ =∣∣∣ˆ
R3

ĝ(ξ1 + η + ξ3)
σn(ξ1 + η + ξ3)

(η + ξ1)(η + ξ3)
v̂n1(ξ1)ˆ̄vn2(η)v̂n3(ξ3) dηdξ1dξ3

∣∣∣ =∣∣∣ˆ
In1

ˆ
In2

ˆ
In3

ĝ(ξ1 + η + ξ3) ρ(1)
n (ξ1, η, ξ3) v̂n1(ξ1)ˆ̄vn2(η)v̂n3(ξ3) dξ1dηdξ3

∣∣∣,
where these three intervals are the compact supports of the functions v̂n1 , ˆ̄vn2 , v̂n3 (see
(14)). By Hölder’s inequality we obtain the upper bound

‖ρ(1)
n ‖∞‖vn1‖2‖vn2‖2‖vn3‖2

(ˆ
In1

ˆ
In2

ˆ
In3

|ĝ(ξ1 + η + ξ3)|2 dξ1dηdξ3

) 1
2
,

and the last triple integral is easily estimated by

‖ĝ‖2 (|In2 ||In3 |)
1
2 = ‖g‖2 (|In2 ||In3 |)

1
2 .

Therefore, the following is true

‖R1,t
n (vn1 , v̄n2 , vn3))‖2 . ‖ρ(1)

n ‖∞‖vn1‖2‖vn2‖2‖vn3‖2,
and since ξ1 ≈ n1, η ≈ −n2 and ξ3 ≈ n3 we obtain



12 L. Chaichenets, D. Hundertmark, P. Kunstmann and N. Pattakos

‖ρ(1)
n ‖∞ .

1

|n− n1||n− n3|
,

which finishes the proof.
Next let us consider the case p =∞. Obviously,

‖R1,t
n (vn1 , v̄n2 , vn3)‖∞ = sup

x∈R

∣∣∣ ˆ
R3

(F−1ρ̃(1)
n )(x−x1, x−y, x−x3)vn1(x1)v̄n2(y)vn3(x3)dx1dydx3

∣∣∣,
which is bounded by

sup
x∈R

ˆ
R3

|(F−1ρ̃(1)
n )(x− x1, x− y, x− x3)|dx1dydx3‖vn1‖∞‖vn2‖∞‖vn3‖∞ =

‖F−1ρ̃(1)
n ‖L1(R3)‖vn1‖∞‖vn2‖∞‖vn3‖∞.

By the embedding Hs(R3) ↪→ FL1(R3), for s > 3/2, and the fact that |supp(ρ̃
(1)
n )| . 1, it

is sufficient to have an L∞ bound on the derivatives of ρ̃
(1)
n of order 0, 1 and 2. Trivially,

|ρ̃(1)
n (ξ1, η, ξ3)| . 1

|n− n1||n− n3|
,

since ξ1 ≈ n1, η ≈ −n2 and ξ3 ≈ n3. Then for the first order derivatives we get

|∂ξj ρ̃
(1)
n | .

1

|η + ξj |2|η + ξ4−j |
+
‖σ′n‖∞ + ‖σ̃′nj‖∞
|η + ξj ||η + ξ4−j |

.
1

|n− n1||n− n3|
,

for j = 1, 3, since |n− n1| ≥ 1. For the remaining derivative we observe that

|∂ηρ̃(1)
n | .

‖σ′n‖∞ + ‖σ̃′n2
‖∞

|η + ξ1||η + ξ3|
+
|2η + ξ1 + ξ3|
|η + ξ1|2|η + ξ3|2

.
1

|η + ξ1||η + ξ3|
+
|η + ξ1|+ |η + ξ3|
|η + ξ1|2|η + ξ3|2

,

which is bounded by

c

|n− n1||n− n3|
,

since |η + ξj | ≥ 1, where c > 0 is a constant. Similarly we check the 2nd order derivatives

of ρ̃
(1)
n . Thus,

‖R1,t
n (vn1 , v̄n2 , vn3)‖∞ .

‖vn1‖∞‖vn2‖∞‖vn3‖∞
|n− n1||n− n3|

.

By interpolating between p = 2 and p =∞, we arrive at estimate (32) for 2 ≤ p ≤ ∞. �

Here is the estimate for the N t
21 operator:
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Lemma 10.

‖N t
21(v)‖lqMp,q . (1 + |t|)4| 1

2
− 1
p
|
N

1
q′−1+‖v‖3Mp,q

,

and

‖N t
21(v)−N t

21(w)‖lqMp,q . (1 + |t|)4| 1
2
− 1
p
|
N

1
q′−1+

(‖v‖2Mp,q
+ ‖w‖2Mp,q

)‖v − w‖Mp,q .

Proof. Starting with the Mp,q norm we have the estimate

‖N t
21(v)‖Mp,q ≤

∑
AN (n)c

‖Q̃1,t
n (vn1 , v̄n2 , vn3)‖Mp,q ,

and the inner norm is equal to

‖Q̃1,t
n (vn1 , v̄n2 , vn3)‖Mp,q =

(∑
m∈Z
‖�mQ̃1,t

n ‖qp
) 1
q

=
(∑
m∈Z
‖�meit∂

2
xR1,t

n ‖qp
) 1
q
.

(1 + |t|)|
1
2
− 1
p
|
(∑
m∈Z
‖�mR1,t

n ‖qp
) 1
q

= (1 + |t|)|
1
2
− 1
p
|
(∑
m∈Z
‖F−1σmFR1,t

n ‖qp
) 1
q
,

from (7). Since the Fourier transform of the operator R1,t
n is supported where σn is, the

last sum is actually a finite sum, that is

(∑
l∈Λ

‖�n+lR
1,t
n (un1 , ūn2 , un3)‖qp

) 1
q
. ‖R1,t

n (un1 , ūn2 , un3)‖p .
‖un1‖p‖un2‖p‖un3‖p
|n− n1||n− n3|

,

by Lemma 9. Then we take the lq norm in the discrete variable n to arrive at the bound

‖N t
21(v)‖lqMp,q . (1 + |t|)|

1
2
− 1
p
| ∑
AN (n)c

‖un1‖p‖un2‖p‖un3‖p
|n− n1||n− n3|

,

and by Hölder’s inequality we are led to the upper bound

(1 + |t|)|
1
2
− 1
p
|
( ∑
AN (n)c

1

(|n− n1||n− n3|)q′
) 1
q′
( ∑
AN (n)c

‖un1‖qp‖un2‖qp‖un3‖qp
) 1
q
.

The first sum (for µ = |n− n1||n− n3|) is estimated with the use of (9) from above by

( ∞∑
µ=N+1

µε

µq′

) 1
q′ ∼ (N ε+1−q′)

1
q′ = N

1
q′−1+

,

and then with the use of Young’s inequality we arrive at

‖N t
21(v)‖lqMp,q . (1 + |t|)|

1
2
− 1
p
|
N

1
q′−1+‖u‖3Mp,q

. (1 + |t|)4| 1
2
− 1
p
|
N

1
q′−1+‖v‖3Mp,q

,

where we used (7) (un = e−it∂
2
xvn) and the proof is complete. �
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To the remaining part N t
22 we have to make use of equality (21) depending on whether

the derivative falls on v̂n1 or ˆ̄vn2 or v̂n3 . Let us see how we can proceed from here:

N t
22(v)(n) = −2i

∑
AN (n)c

[
Q̃1,t
n (Rt2(v)(n1)−Rt1(v)(n1), v̄n2 , vn3) + Q̃1,t

n (N t
1(v)(n1), v̄n2 , vn3)

]
plus the corresponding term for ∂t ˆ̄vn2 (the number 2 that appears in front of the previous
sum is because the expression is symmetric with respect to vn1 and vn3). Therefore, we
can write N t

22 as a sum

(34) N t
22(v)(n) = N t

4(v)(n) +N t
3(v)(n),

where N t
4(v)(n) is the sum with the resonant part Rt2 −Rt1. The following Lemma is true:

Lemma 11.

‖N t
4(v)‖lqMp,q . (1 + |t|)7| 1

2
− 1
p
|
N

1
q′−1+‖v‖5Mp,q

,

and

‖N t
4(v)−N t

4(w)‖lqMp,q . (1 + |t|)7| 1
2
− 1
p
|
N

1
q′−1+

(‖v‖4Mp,q
+ ‖w‖4Mp,q

)‖v − w‖Mp,q .

Proof. Follows by Lemmata 7 and 10 in the sense that we repeat the proof of Lemma 10
and apply Lemma 7 to the part Rt2(v)(n1)−Rt1(v)(n1). �

To continue, we have to decompose N t
3 even further. It consists of 3 sums depending on

which function the operator N t
1 acts. One of them is the following (similar considerations

apply for the remaining sums too)

(35)
∑

AN (n)c

Q̃1,t
n (N t

1(v)(n1), v̄n2 , vn3),

where

N t
1(v)(n1) =

∑
m1 6≈n1 6≈m3

Q1,t
n1

(vm1 , v̄m2 , vm3),

and n1 ≈ m1 − m2 + m3. Here we have to consider new restrictions on the frequencies
(m1,m2,m3, n2, n3) where the ”new” triple of frequencies m1,m2,m3 appears as a ”child”
of the frequency n1. Thus, for µ1 = Φ(n, n1, n2, n3) and µ2 = Φ(n1,m1,m2,m3) we define
the set

(36) C1 = {|µ1 + µ2| ≤ 53|µ1|1−
1

100 },

and split the sum in (35) as
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(37)
∑

AN (n)c

∑
C1

. . .+
∑

AN (n)c

∑
Cc1

. . . = N t
31(v)(n) +N t

32(v)(n).

The following holds:

Lemma 12.

‖N t
31(v)‖lqMp,q . (1 + |t|)8| 1

2
− 1
p
|
N

2
q′−

1
100q′−1+‖v‖5Mp,q

,

and

‖N t
31(v)−N t

31(w)‖lqMp,q . (1 + |t|)8| 1
2
− 1
p
|
N

2
q′−

1
100q′−1+

(‖v‖4Mp,q
+ ‖w‖4Mp,q

)‖v − w‖Mp,q .

Proof. From (9) we know that for fixed n and µ1, there are at most o(|µ1|+) many choices
for n1 and n3 and for fixed n1 and µ2 there are at most o(|µ2|+) many choices for m1 and
m3. From (36) we can control µ2 in terms of µ1, that is |µ2| ∼ |µ1|. In addition, for fixed

|µ1| there are at most O(|µ1|1−
1

100 ) many choices for µ2. Also,

‖N t
31(v)‖Mp,q ≤

∑
AN (n)c

∑
C1

‖Q̃1,t
n (Q1,t

n1
(vm1 , v̄m2 , vm3), v̄n2 , vn3)‖Mp,q ,

and by doing the same estimate as in the proof of Lemma (10) for the norm

‖Q̃1,t
n (Q1,t

n1
(vm1 , v̄m2 , vm3), v̄n2 , vn3)‖Mp,q ,

we arrive at the upper bound

‖N t
31(v)‖Mp,q . (1 + |t|)|

1
2

= 1
p
| ∑
AN (n)c

∑
C1

‖e−it∂2xQ1,t
n1 (vm1 , v̄m2 , vm3)‖p‖un2‖p‖un3‖p
|n− n1||n− n3|

and the last sum is bounded above by

( ∞∑
µ=N+1

µ1− 1
100

+

µq′

) 1
q′
( ∑
AN (n)c

∑
C1

‖e−it∂2xQ1,t
n1

(vm1 , v̄m2 , vm3)‖qp‖un2‖
q
2‖un3‖qp

) 1
q
.

Now we take the lq norm and apply Young’s inequality for the second expression to arrive
at the estimate

‖N t
31(v)‖lqMp,q . (1 + |t|)4| 1

2
− 1
p
|
N

2
q′−

1
100q′−1+‖Q1,t

n1
(vm1 , v̄m2 , vm3)‖Mp,q‖v‖2Mp,q

,

and we treat the norm ‖Q1,t
n1 (vm1 , v̄m2 , vm3)‖Mp,q similarly as in Lemma (7) for the operator

Rt1 which finishes the proof. �
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For the N t
32 part we have to do the differentiation by parts technique which will create

the 2nd generation operators. Our first 2nd generation operator Q2,t
n consists of 3 sums

q2,t
1,n =

∑
AN (n)c

∑
Cc1

Q̃1,t
n (N t

1(v)(n1), v̄n2 , vn3),

q2,t
2,n =

∑
AN (n)c

∑
Cc1

Q̃1,t
n (vn1 , N

t
1(v)(n2), vn3),

q2,t
3,n =

∑
AN (n)c

∑
Cc1

Q̃1,t
n (vn1 , v̄n2 , N

t
1(v)(n3)).

Let us have a look at the first sum q2,t
1,n (we treat the other two in a similar manner). Its

Fourier transform is equal to

∑
AN (n)c

∑
Cc1

σn(ξ)

ˆ
R2

e−2it(ξ−ξ1)(ξ−ξ3)

(ξ − ξ1)(ξ − ξ3)
F(N t

1(v)(n1))(ξ1)ˆ̄vn2(ξ − ξ1 − ξ3)v̂n3(ξ3) dξ1dξ3,

where

F(N t
1(v)(n1))(ξ1)

equals

∑
n1≈m1−m2+m3
m1 6≈n1 6≈m3

σn1(ξ1)

ˆ
R2

e−2it(ξ1−ξ′1)(ξ1−ξ′3)v̂m1(ξ′1)ˆ̄vm2(ξ1 − ξ′1 − ξ′3)v̂m3(ξ′3) dξ′1dξ
′
3.

Putting everything together and applying differentiation by parts we can write the integrals
inside the sums as

∂t

(
σn(ξ)

ˆ
R4

σn1(ξ1)
e−it(µ1+µ2)

µ1(µ1 + µ2)
v̂m1(ξ′1)ˆ̄vm2(ξ1−ξ′1−ξ′3)v̂m3(ξ′3)ˆ̄vn2(ξ−ξ1−ξ3)v̂n3(ξ3)dξ′1dξ

′
3dξ1dξ3

)
minus

σn(ξ)

ˆ
R4

σn1(ξ1)
e−it(µ1+µ2)

µ1(µ1 + µ2)
∂t

(
v̂m1(ξ′1)ˆ̄vm2(ξ1−ξ′1−ξ′3)v̂m3(ξ′3)ˆ̄vn2(ξ−ξ1−ξ3)v̂n3(ξ3)

)
dξ′1dξ

′
3dξ1dξ3,

where µ1 = (ξ − ξ1)(ξ − ξ3) and µ2 = (ξ1 − ξ′1)(ξ1 − ξ′3). Equivalently,

(38) F(q2,t
1,n) = ∂t(q̃

2,t
1,n)−F(τ2,t

1,n).

Thus, by doing the same at the remaining two sums of Q2,t
n , namely q2,t

2,n, q
2,t
3,n, we obtain

the splitting
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(39) F(Q2,t
n ) = ∂tF(Q̃2,t

n )−F(T 2,t
n ).

These new operators q̃2,t
i,n, i = 1, 2, 3, act on the following ”type” of sequences

q̃2,t
1,n(vm1 , v̄m2 , vm3 , v̄n2 , vn3),

with m1 −m2 +m3 ≈ n1 and n1 − n2 + n3 ≈ n,

q̃2,t
2,n(vn1 , v̄m1 , vm2 , v̄m3 , vn3),

with m1 −m2 +m3 ≈ n2 and n1 − n2 + n3 ≈ n, and

q̃2,t
3,n(vn1 v̄n2 , vm1 , v̄m2 , vm3),

with m1 −m2 +m3 ≈ n3 and n1 − n2 + n3 ≈ n.
Writing out the Fourier transforms of the functions inside the integral of F(q̃2,t

1,n) it is
not hard to see that

F(q̃2,t
1,n(vm1 , v̄m2 , vm3 , v̄n2 , vn3))(ξ) = e−itξ

2F(R2,t
n,n1

(um1 , ūm2 , um3 , ūn2 , un3))(ξ),

where the operator

(40) R2,t
n,n1

(um1 , ūm2 , um3 , ūn2 , un3)(x) =
ˆ
R5

K(2)
n,n1

(x, x′1, y
′, x′3, y, x3)um1(x′1)ūm2(y′)um3(x′3)ūn2(y)un3(x3) dx′1dy

′dx′3dydx3

and the Kernel K
(2)
n,n1 is given by the formula

(41) K(2)
n,n1

(x, x′1, y
′, x′3, y, x3) =

ˆ
R5

[eiξ
′
1(x−x′1)+iη′(x−y′)+iξ′3(x−x′3)+iη(x−y)+iξ3(x−x3)]

σn(ξ′1 + η′ + ξ′3 + η + ξ3)σn1(ξ′1 + η′ + ξ′3)σ̃m1(ξ′1)σ̃m2(−η′)σ̃m3(ξ′3)σ̃n2(−η)σ̃n3(ξ3)

(η + η′ + ξ′1 + ξ′3)(η + ξ3)[(η + η′ + ξ′1 + ξ′3)(η + ξ3) + (η′ + ξ′1)(η′ + ξ′3)]

dξ′1dη
′dξ′3dηdξ3 =

(F−1ρ̃(2)
n,n1

)(x− x′1, x− y′, x− x′3, x− y, x− x3),

and the function ρ̃
(2)
n,n1 equals

ρ̃(2)
n,n1

=
σn(ξ′1 + η′ + ξ′3 + η + ξ3)σn1(ξ′1 + η′ + ξ′3)σ̃m1(ξ′1)σ̃m2(−η′)σ̃m3(ξ′3)σ̃n2(−η)σ̃n3(ξ3)

(η + η′ + ξ′1 + ξ′3)(η + ξ3)[(η + η′ + ξ′1 + ξ′3)(η + ξ3) + (η′ + ξ′1)(η′ + ξ′3)]
.
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We also define the function

ρ(2)
n,n1

(ξ′1, η
′, ξ′3, η, ξ3) =

σn(ξ′1 + η′ + ξ′3 + η + ξ3)σn1(ξ′1 + η′ + ξ′3)

(η + η′ + ξ′1 + ξ′3)(η + ξ3)[(η + η′ + ξ′1 + ξ′3)(η + ξ3) + (η′ + ξ′1)(η′ + ξ′3)]
.

By the same calculations we obtain also the operators R2,t
n,n2 and R2,t

n,n3 . They can be

treated similarly to R2,t
n,n1 and for this reason in order to proceed we state a lemma for the

operator R2,t
n,n1 as the one we had for R1,t

n (see Lemma 9).

Lemma 13. For 2 ≤ p ≤ ∞
(42)

‖R2,t
n,n1

(vm1 , v̄m2 , vm3 , v̄n2 , vn3)‖p .
‖vm1‖p‖vm2‖p‖vm3‖p‖vn2‖p‖vn3‖p

|n− n1||n− n3||(n− n1)(n− n3) + (n1 −m1)(n1 −m3)|
.

Proof. As in Lemma 9 we use interpolation between L2 and L∞, and the only difference is
that for the L∞ estimate we use the embedding of Hs(R5) ↪→ FL1(R5), for s > 5/2, which

means we have to calculate up to the 3rd order derivative of the function ρ̃
(2)
n,n1 in contrast

to the function ρ̃
(1)
n of Lemma 9 where we had to find all derivatives up to order 2. �

Remark 14. The operator q̃2,t
3,n satisfies exactly the same bound as q̃2,t

1,n since the only
difference between these operators is a permutation of their variables. On the other hand,
the operator q̃2,t

2,n is a bit different, since instead of taking only the permutation we have to
conjugate the 2nd variable too. Thus, a similar argument as the one given in Lemma 13
leads to the estimate

(43)

‖R2,t
n,n2

(vn1 , v̄m1 , vm2 , v̄m3 , vn3)‖p .
‖vn1‖p‖vm1‖p‖vm2‖p‖vm3‖p‖vn3‖p

|(n− n1)(n− n3)||(n− n1)(n− n3)− (n2 −m1)(n2 −m3)|

which is not exactly the same as the one we had for the operators R2,t
n,n1 , R

2,t
n,n3 since in the

denominator instead of having µ1 + µ2 we have µ1 − µ2 (µ1 = (n− n1)(n− n3) and in the
first case µ2 = (n1−m1)(n1−µ3), m1,m3 being the ”children” of n1, whereas in the second
case µ2 = (n2 −m1)(n2 −m3), m1,m3 being the ”children” of n2). It is readily checked
that this change in the sign does not really affect the calculations that are to follow.

This lemma allows us to move forward with our iteration process and show that the
operators

(44) N
(3)
0 (v)(n) :=

∑
AN (n)c

∑
Cc1

Q̃2,t
n =

∑
AN (n)c

∑
Cc1

3∑
i=1

q̃2,t
i,n

and

(45) N (3)
r (v)(n) :=

∑
AN (n)c

∑
Cc1

(
q̃2,t

1,n(Rt2(v)(m1)−Rt1(v)(m1), v̄m2 , vm3 , v̄n2 , vn3)+
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q̃2,t
1,n(vm1 , R

t
2(v)(m2)−Rt1(v)(m2), vm3 , v̄n2 , vn3)+. . .+q̃2,t

3,n(vn1 v̄n2 , vm1 , v̄m2 , R
t
2(v)(m3)−Rt1(v)(m3))

)
,

are bounded on lqMp,q. The operator N
(3)
r appears when we substitute each of the deriva-

tives in the operator
∑3

i=1 τ
2,t
i,n by the expression given in (21). Notice that the operator

N
(3)
0 has 3 summands and the operator N

(3)
r has 3 · 5 = 15 summands. Here is the claim:

Lemma 15.

‖N (3)
0 (v)‖lqMp,q . (1 + |t|)6| 1

2
− 1
p
|
N
−2+ 1

100
+ 2
q′−

1
100q′+‖v‖5Mp,q

,

and

‖N (3)
0 (v)−N (3)

0 (w)‖lqMp,q . (1+|t|)6| 1
2
− 1
p
|
N
−2+ 1

100
+ 2
q′−

1
100q′+(‖v‖4Mp,q

+‖w‖4Mp,q
)‖v−w‖Mp,q .

‖N (3)
r (v)‖lqMp,q . (1 + |t|)9| 1

2
− 1
p
|
N
−2+ 1

100
+ 2
q′−

1
100q′+‖v‖7Mp,q

,

and

‖N (3)
r (v)−N (3)

r (w)‖lqMp,q . (1+|t|)9| 1
2
− 1
p
|
N
−2+ 1

100
+ 2
q′−

1
100q′+(‖v‖6Mp,q

+‖w‖6Mp,q
)‖v−w‖Mp,q .

Proof. Let us start with the operator N
(3)
0 and for simplicity of the presentation we will

consider only the sum with the term q̃2,t
1,n. As in the proof of Lemma 12 we have from (9)

that for fixed n and µ1 there are at most o(|µ1|+) many choices for n1, n2, n3 (such that
(n − n1)(n − n3) = µ1) and for fixed n1 and µ2 there are at most o(|µ2|+) many choices
for m1,m2,m3 (such that (n1 −m1)(n1 −m3) = µ2). Since the Fourier transform of the

operator q̃2,t
1,n is localised around the interval Qn, using the same argument as in Lemma

10 together with Lemma 13 we see that∑
AN (n)c

∑
Cc1

‖q̃2,t
1,n(vm1 , v̄m2 , vm3 , v̄n2 , vn3)‖Mp,q .

(1 + |t|)|
1
2
− 1
p
| ∑
AN (n)c

∑
Cc1

‖um1‖p‖um2‖p‖um3‖p‖un2‖p‖un3‖p
|n− n1||n− n3||(n− n1)(n− n3) + (n1 −m1)(n1 −m3)|

and the sum of RHS is equal to∑
AN (n)c

∑
Cc1

‖um1‖p‖um2‖p‖um3‖p‖un2‖p‖un3‖p
|µ1||µ1 + µ2|

which by Hölder’s inequality is bounded above by

( ∑
AN (n)c

∑
Cc1

1

|µ1|q′ |µ1 + µ2|q′
|µ1|+|µ2|+

) 1
q′
( ∑
AN (n)c

∑
Cc1

‖um1‖
q
2‖um2‖qp‖um3‖qp‖un2‖qp‖un3‖qp

) 1
q
.
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By a very crude estimate it is not difficult to see that the first sum behaves like the

number N
−2+ 1

100
+ 2
q′−

1
100q′+. Then, by taking the lq norm and applying Young’s inequality

for convolutions we are done. For the operator N
(3)
r the proof is the same but in addition

we use Lemma 7 for the operator Rt2 −Rt1. �

The operator that remains to be estimated is defined as

(46) N (3)(v)(n) :=
∑

AN (n)c

∑
Cc1

(
q̃2,t

1,n(N t
1(v)(m1), v̄m2 , vm3 , v̄n2 , vn3)+

q̃2,t
1,n(vm1 , N

t
1(v)(m2), vm3 , v̄n2 , vn3) + . . .+ q̃2,t

3,n(vn1 v̄n2 , vm1 , v̄m2 , N
t
1(v)(m3))

)
,

which is the same as N
(3)
r but in the place of the operator Rt2−Rt1 we have N t

1. As before,
we write

(47) N (3) = N
(3)
1 +N

(3)
2 ,

where N
(3)
1 is the restriction of N (3) onto the set of frequencies

(48) C2 = {|µ̃3| ≤ 73|µ̃2|1−
1

100 } ∪ {|µ̃3| ≤ 73|µ1|1−
1

100 },
where µ̃2 = µ1 + µ2 and µ̃3 = µ1 + µ2 + µ3. The following is true:

Lemma 16.

‖N (3)
1 (v)‖lqMp,q . (1 + |t|)10| 1

2
− 1
p
|
N
−2+ 1

100
+ 3
q′−

2
100q′+‖v‖7Mp,q

,

and

‖N (3)
1 (v)−N (3)

1 (w)‖lqMp,q . (1+|t|)10| 1
2
− 1
p
|
N
−2+ 1

100
+ 3
q′−

2
100q′+(‖v‖6Mp,q

+‖w‖6Mp,q
)‖v−w‖Mp,q .

Proof. Let us only consider the very first summand of the operatorN
(3)
1 , that is the operator

q̃2,t
1,n with N t

1 acting on its first variable, since for the other summands similar considerations

apply. For the proof we use again the divisor counting argument. From (9) it follows that for
fixed n and µ1 there are at most o(|µ1|+) many choices for n1, n2, n3 (µ1 = (n−n1)(n−n3),
n = n1 − n2 + n3). For fixed n1 and µ2 there are at most o(|µ2|+) many choices for
m1,m2,m3 (µ2 = (n1−m1)(n1−m3), n1 = m1−m2 +m3) and for fixed m1 and µ3 there
are at most o(|µ3|+) many choices for k1, k2, k3 (µ3 = (m1−k1)(m1−k3), m1 = k1−k2+k3).

First, let us assume that our frequencies satisfy |µ̃3| . |µ̃2|1−
1

100 . Since, µ̃3 = µ̃2 + µ3

we have |µ3| ∼ |µ̃2|. Moreover, for fixed |µ̃2| (equivalently, for fixed µ1, µ2) there are

at most O(|µ̃2|1−
1

100 ) many choices for µ̃3 and hence, for µ3 = µ̃3 − µ̃2. In addition,
|µ2| . max(|µ1|, |µ̃2|) and we should recall that since we are on Cc1 we have |µ̃2| = |µ1+µ2| >
53|µ1|1−

1
100 > 53N1− 1

100 . Then by the same localisation argument as in the proof of Lemma
10 together with Lemma 13 we estimate the expression
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∑
AN (n)c

∑
Cc1

∑
C2

‖q̃2,t
1,n(Q1,t

m1
(vk1 , v̄k2 , vk3), v̄m2 , vm3 , v̄n2 , vn3)‖Mp,q

by

(1 + |t|)|
1
2
− 1
p
| ∑
AN (n)c

∑
Cc1

∑
C2

‖e−it∂2xQ1,t
m1(vk1 , v̄k2 , vk3)‖p‖um2‖p‖um3‖p‖un2‖p‖un3‖p

|n− n1||n− n3||(n− n1)(n− n3) + (n1 −m1)(n1 −m3)|
=

(1 + |t|)|
1
2
− 1
p
| ∑
AN (n)c

∑
Cc1

∑
C2

‖e−it∂2xQ1,t
m1(vk1 , v̄k2 , vk3)‖p‖um2‖p‖um3‖p‖un2‖p‖un3‖p

|µ1||µ̃2|

and by Hölder’s inequality we see that the sum is bounded above by

(49)
( ∑

|µ1|>N
|µ̃2|>53N1− 1

100

|µ1|+|µ2|+|µ3|+|µ̃2|1−
1

100

|µ1|q′ |µ̃2|q′
) 1
q′×

( ∑
AN (n)c

∑
Cc1

∑
C2

‖e−it∂2xQ1,t
m1

(vk1 , v̄k2 , vk3)‖qp‖um2‖qp‖um3‖qp‖un2‖qp‖un3‖qp
) 1
q
.

The first sum is controlled by

(50)
( ∑

|µ1|>N
|µ̃2|>53N1− 1

100

1

|µ1|q′−ε|µ̃2|q
′−1+ 1

100
−ε

) 1
q′ .

(
N3(1− 1

100
)−q′(2− 1

100
)+ 1

1002
+
) 1
q′

and with the use of Young’s inequality at the second sum together with an estimate on the

norm ‖e−it∂2xQ1,t
m1(vk1 , v̄k2 , vk3)‖Mp,q we are done.

On the other hand, if |µ̃3| . |µ1|1−
1

100 , then for fixed µ1, µ2 there are at most O(|µ1|1−
1

100 )
many choices for µ̃3 and hence for µ3. After this observation, the calculations are exactly
the same as before but the first sum of (49) becomes

(51)
( ∑

|µ1|>N
|µ̃2|>53N1− 1

100

1

|µ1|q
′−1+ 1

100
−ε|µ̃2|q′−ε

) 1
q′ .

(
N3− 2

100
−q′(2− 1

100
)+
) 1
q′
.

Between the two exponents of N in (50) and (51) we see that (51) is the dominating one
and the proof is complete. �
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To the remaining part, namely N
(3)
2 , we have to apply the differentiation by parts tech-

nique again. Note that here we only look at frequencies such that

|µ̃3| = |µ1 + µ2 + µ3| > 73|µ1|1−
1

100 > 73N1− 1
100 ,

or equivalently, frequencies that are on the set Cc2. Instead, we will present the general Jth
step of the iteration procedure and prove the required Lemmata. To do this, we need to
use the tree notation as it was introduced in [5].

2.1. The Tree Notation and the Induction Step. A tree T is a finite, partially ordered
set with the following properties:

• For any a1, a2, a3, a4 ∈ T if a4 ≤ a2 ≤ a1 and a4 ≤ a3 ≤ a1 then a2 ≤ a3 or a3 ≤ a2.
• There exists a maximum element r ∈ T , that is a ≤ r for all a ∈ T which is called

the root.

We call the elements of T the nodes of the tree and in this content we will say that b ∈ T
is a child of a ∈ T (or equivalently, that a is the parent of b) if b ≤ a, b 6= a and for all
c ∈ T such that b ≤ c ≤ a we have either b = c or c = a.

A node a ∈ T is called terminal if it has no children. A nonterminal node a ∈ T is a
node with exactly 3 children a1, the left child, a2, the middle child, and a3, the right child.
We define the sets

(52) T 0 = {all nonterminal nodes},
and

(53) T∞ = {all terminal nodes}.
Obviously, T = T 0 ∪ T∞, T 0 ∩ T∞ = ∅ and if |T 0| = j ∈ Z+ we have |T | = 3j + 1 and
|T∞| = 2j + 1. We denote the collection of trees with j parental nodes by

(54) T (j) = {T is a tree with |T | = 3j + 1}.
Next, we say that a sequence of trees {Tj}Jj=1 is a chronicle of J generations if:

• Tj ∈ T (j) for all j = 1, 2, . . . , J .
• Tj+1 is obtained by changing one of the terminal nodes of Tj into a nonterminal

node with exactly 3 children, for all j = 1, 2, . . . , J − 1.

Let us also denote by I(J) the collection of trees of the Jth generation. It is easily checked
by an induction argument that

(55) |I(J)| = 1 · 3 · 5 . . . (2J − 1) =: (2J − 1)!!.

Given a chronicle {Tj}Jj=1 of J generations we refer to TJ as an ordered tree of the
Jth generation. We should keep in mind that the notion of ordered trees comes with
associated chronicles. It includes not only the shape of the tree but also how it ”grew”.
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Given an ordered tree T we define an index function n : T → Z such that

• na ≈ na1 − na2 + na3 for all a ∈ T 0, where a1, a2, a3 are the children of a,
• na 6≈ na1 and na 6≈ na3 , for all a ∈ T 0,
• |µ1| := 2|nr − nr1 ||nr − nr3 | > N , where r is the root of T ,

and we denote the collection of all such index functions by R(T ).
For the sake of completeness, as it was done in [5], given an ordered tree T with the

chronicle {Tj}Jj=1 and associated index functions n ∈ R(T ), we need to keep track of the

generations of frequencies. Fix an n ∈ R(T ) and consider the very first tree T1. Its nodes
are the root r and its children r1, r2, r3. We define the first generation of frequencies by

(n(1), n
(1)
1 , n

(1)
2 , n

(1)
3 ) := (nr, nr1 , nr2 , nr3).

From the definition of the index function we have

n(1) ≈ n(1)
1 − n

(1)
2 + n

(1)
3 , n

(1)
1 6≈ n(1) 6≈ n(1)

3 .

The ordered tree T2 of the second generation is obtained from T1 by changing one of its
terminal nodes a = rk ∈ T∞1 for some k = 1, 2, 3 into a nonterminal node. Then, the
second generation of frequencies is defined by

(n(2), n
(2)
1 , n

(2)
2 , n

(2)
3 ) := (na, na1 , na2 , na3).

Thus, we have n(2) = n
(1)
k for some k = 1, 2, 3 and from the definition of the index function

we have

n(2) ≈ n(2)
1 − n

(2)
2 + n

(2)
3 , n

(2)
1 6≈ n(2) 6≈ n(2)

3 .

This should be compared with what happened in the calculations we presented before when
passing from the first step of the iteration process into the second step. Every time we
apply the differentiation by parts technique we introduce a new set of frequencies.

After j − 1 steps, the ordered tree Tj of the jth generation is obtained from Tj−1 by
changing one of its terminal nodes a ∈ T∞j−1 into a nonterminal node. Then, the jth
generation frequencies are defined as

(n(j), n
(j)
1 , n

(j)
2 , n

(j)
3 ) := (na, na1 , na2 , na3),

and we have n(j) = n
(m)
k (= na) for some m = 1, 2, . . . , j − 1 and k = 1, 2, 3, since this

corresponds to the frequency of some terminal node in Tj−1. In addition, from the definition
of the index function we have

n(j) ≈ n(j)
1 − n

(j)
2 + n

(j)
3 , n

(j)
1 6≈ n

(j) 6≈ n(j)
3 .

Finally, we use µj to denote the corresponding phase factor introduced at the jth genera-
tion. That is,

(56) µj = 2(n(j) − n(j)
1 )(n(j) − n(j)

3 ),
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and we also introduce the quantities

(57) µ̃J =
J∑
j=1

µj , µ̂J =
J∏
j=1

µ̃j .

We should keep in mind that everytime we apply differentiation by parts and split the
operators, we need to control the new frequencies that arise from this procedure. For this
reason we need to define the sets (see (36) and (48)):

(58) CJ := {|µ̃J+1| ≤ (2J + 3)3|µ̃J |1−
1

100 } ∪ {|µ̃J+1| ≤ (2J + 3)3|µ1|1−
1

100 }.
Let us see how to use this notation and terminology in our calculations. On the very

first step, J = 1, we have only one tree, the root node r and its three children r1, r2, r3

(sometimes, when it is clear from the context, we will identify the nodes and the frequencies
assigned to them, that is, we have the root n = nr and its three children nr1 = n1, nr2 =
n2, nr3 = n3) and we have only one operator that needs to be controlled in order to proceed

further, namely q̃1,t
n := Q̃1,t

n .
On the second step, J = 2, we have three operators q̃2,t

n,n1 := q̃2,t
1,n, q̃

2,t
n,n2 := q̃2,t

2,n, q̃
2,t
n,n3 :=

q̃2,t
3,n that play the same role as q̃1,t

n did for the first step. Let us observe that for each one of

these operators we must have estimates on their L2 norms in order to be able and continue
the iteration. These estimates were provided by Lemmata 9 and 13.

On the general Jth step we will have |I(J)| operators of the q̃J,t
T 0,n

”type” each one

corresponding to one of the ordered trees of the Jth generation, T ∈ T (J), where n is an
arbitrary fixed index function on T . We have the subindices T 0 and n because each one of
these operators has Fourier transform supported on the cubes with centers the frequencies
assigned to the nodes that belong to T 0.

Let us denote by Tα all the nodes of the ordered tree T that are descendants of the node
α ∈ T 0, i.e. Tα = {β ∈ T : β ≤ α, β 6= α}.

We also need to define the principal and final ”signs” of a node a ∈ T which are
functions from the tree T into the set {±1}:

(59) psgn(a) =


+1, a is not the middle child of his father

+1, a = r, the root node

−1, a is the middle child of his father

(60) fsgn(a) =


+1, psgn(a) = +1 and a has an even number of middle predecessors

−1, psgn(a) = +1 and a has an odd number of middle predecessors

−1, psgn(a) = −1 and a has an even number of middle predecessors

+1, psgn(a) = −1 and a has an odd number of middle predecessors,

where the root node r ∈ T is not considered a middle father.
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The operators q̃J,t
T 0,n

are defined through their Fourier transforms as

(61) F(q̃J,t
T 0,n

({wnβ}β∈T∞))(ξ) = e−itξ
2F(RJ,t

T 0,n
({e−it∂2xwnβ}β∈T∞))(ξ),

where the operator RJ,t
T 0,n

acts on the functions {wnβ}β∈T∞ as

(62) RJ,t
T 0,n

({wnβ}β∈T∞)(x) =

ˆ
R2J+1

K
(J)
T 0 (x, {xβ}β∈T∞)

[
⊗β∈T∞ wnβ (xβ)

] ∏
β∈T∞

dxβ,

and the kernel K
(J)
T 0,n

is defined as

(63) K
(J)
T 0,n

(x, {xβ}β∈T∞) = F−1(ρ̃
(J)
T 0,n

)({x− xβ}β∈T∞).

Here is the formula for the function ρ̃
(J)
T 0,n

with (|T∞| = 2J + 1)-variables, ξβ, β ∈ T∞:

(64) ρ̃
(J)
T 0,n

({ξβ}β∈T∞) =
[ ∏
β∈T∞

σ̃nβ (ξβ)
][ ∏

α∈T 0

σnα

( ∑
β∈T∞∩Tα

fsgn(β) ξβ

)] 1

µ̂T
.

We also define the function

(65) ρ
(J)
T 0,n

({ξβ}β∈T∞) =
[ ∏
α∈T 0

σnα

( ∑
β∈T∞∩Tα

fsgn(β) ξβ

)] 1

µ̂T
,

where we denote by

(66) µ̂T =
∏
α∈T 0

µ̃α, µ̃α =
∑

β∈T 0\Tα

µβ,

and for β ∈ T 0 we have

(67) µβ = 2(ξβ − ξβ1)(ξβ − ξβ3),

where we impose the relation ξα = ξα1 − ξα2 + ξα3 for every α ∈ T 0 that appears in the
calculations until we reach the terminal nodes of T∞. This is because in the definition of
the function ρJ,t

T 0 we need the variables ”ξ” to be assigned only at the terminal nodes of
the tree T . We use the notation µβ in similarity to µj of equation (56) because this is the
”continuous” version of the discrete case. In addition, the variables ξα1 , ξα2 , ξα3 that appear
in the expression (64) are supported in such a way that ξα1 ≈ nα1 , ξα2 ≈ nα2 , ξα3 ≈ nα3 .
This is because the functions σnα are supported in such a way. Therefore, |µ̂T | ∼ |µ̂J |.

For the induction step of our iteration process we need the following lemma which should
be compared with Lemmata 9 and 13:
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Lemma 17. For 2 ≤ p ≤ ∞

(68) ‖RJ,t
T 0,n

({vnβ}β∈T∞)‖p .
( ∏
β∈T∞

‖vnβ‖p
)((J + 1)!A J

3J
2

)1− 2
p

|µ̂T |
,

for every tree T ∈ T (J) and index function n ∈ R(T ).

Proof. We use interpolation between the L2 estimate, which is done in exactly the same
way as in Lemma 9, and the L∞ estimate where we use that for s > 2J+1

2 the embedding

Hs(R2J+1) ↪→ FL1(R2J+1) is continuous. By Hölder’s inequality the embedding constant
is bounded above by the quantity

(69) |S2J |
1
2

(ˆ ∞
0

r2J

(1 + r)2J+2
dr
) 1

2
,

where |S2J | denotes the surface measure of the 2J-dimensional sphere in R2J+1. It is known
that

|S2J | = 2J+1πJ

(2J − 1)!!
,

and the integral part of (69) decays like a polynomial in J , which can be neglected compared
to the double factorial decay of the surface measure of S2J . Thus, the embedding constant

decays like 1/J
J
2 .

Since the function ρ̃
(J)
T 0,n

has 2J + 1 variables and consists of 4J + 1 factors and we have

to calculate all possible derivatives of order r up to the order J + 1 we obtain

J+1∑
r=0

(2J + 1)r(4J + 1)r =
[(2J + 1)(4J + 1)]J+2 − 1

(2J + 1)(4J + 1)− 1
∼ J2J

terms in total. Let us notice that the more distributed the derivatives are on the product

of functions that consist the function ρ̃
(J)
T 0,n

the smaller constants we obtain in terms of

growth in J compared to (J + 1)!A. The factorial (J + 1)!A appears in the calculations
because we take J +1 derivatives of the σ-functions. Finally, let us observe that a factorial
(J + 1)! appears in the calculations too, when all J + 1 derivatives fall in terms of the form
1/x, but since A > 1, (J + 1)!A dominates. �

For the rest of the paper, let us use the notation

(70) dJ := (J + 1)!A J
3J
2 .

By Stirling’s formula we obtain that dJ has the following behaviour for large J

(71) dJ ∼ (
√

2π(J + 1))A
(J + 1

e

)A(J+1)
J

3J
2 ∼ J

A
2

eAJ
J ( 3

2
+A)J .
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Given an index function n and 2J + 1 functions {vnβ}β∈T∞ and α ∈ T∞ we define the

action of the operator N t
1 (see (20)) on the set {vnβ}β∈T∞ to be the same set as before

but with the difference that we have substituted the function vnα by the new function

N t
1(v)(nα). We will denote this new set of functions N t,α

1 ({vnβ}β∈T∞). Similarly, the

action of the operator Rt2−Rt1 (see (19)) on the set of functions {vnβ}β∈T∞ will be denoted

by (Rt,α2 −R
t,α
1 )({vnβ}β∈T∞).

The operator of the Jth step, J ≥ 2, that we want to estimate is given by the formula:

(72) N
(J)
2 (v)(n) :=

∑
T∈T (J−1)

∑
α∈T∞

∑
n∈R(T )
nr=n

q̃J−1,t
T 0 (N t,α

1 ({vnβ}β∈T∞)).

Applying differentiation by parts on the Fourier side (keep in mind that from the splitting
procedure we are on the sets AN (n)c, Cc1, . . . , C

c
J−1) we obtain the expression

(73) N
(J)
2 (v)(n) = ∂t(N

(J+1)
0 (v)(n)) +N (J+1)

r (v)(n) +N (J+1)(v)(n),

where

(74) N
(J+1)
0 (v)(n) :=

∑
T∈T (J)

∑
n∈R(T )
nr=n

q̃J,t
T 0,n

({vnβ}β∈T∞),

and

(75) N (J+1)
r (v)(n) :=

∑
T∈T (J)

∑
α∈T∞

∑
n∈R(T )
nr=n

q̃J,t
T 0,n

((Rt,α2 −R
t,α
1 )({vnβ}β∈T∞)),

and

(76) N (J+1)(v)(n) :=
∑

T∈T (J)

∑
α∈T∞

∑
n∈R(T )
nr=n

q̃J,t
T 0,n

(N t,α
1 ({vnβ}β∈T∞)).

We also split the operator N (J+1) as the sum

(77) N (J+1) = N
(J+1)
1 +N

(J+1)
2 ,

where N
(J+1)
1 is the restriction of N (J+1) onto CJ and N

(J+1)
2 onto CcJ . First, we generalise

Lemma 15 by estimating the operators N
(J+1)
0 and N

(J+1)
r :

Lemma 18.

‖N (J+1)
0 (v)‖lqMp,q . d

1− 2
p

J (1 + |t|)(2J+2)| 1
2
− 1
p
|
N
− (q′−1)

q′ J+
(q′−1)

100q′ (J−1)+‖v‖2J+1
Mp,q

,

and
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‖N (J+1)
0 (v)−N (J+1)

0 (w)‖lqMp,q .

d
1− 2

p

J (1 + |t|)(2J+2)| 1
2
− 1
p
|
N
− (q′−1)

q′ J+
(q′−1)

100q′ (J−1)+
(‖v‖2JMp,q

+ ‖w‖2JMp,q
)‖v − w‖Mp,q .

‖N (J+1)
r (v)‖lqMp,q . d

1− 2
p

J (1 + |t|)(2J+5)| 1
2
− 1
p
|
N
− (q′−1)

q′ J+
(q′−1)

100q′ (J−1)+‖v‖2J+3
Mp,q

,

and

‖N (J+1)
r (v)−N (J+1)

r (w)‖lqMp,q .

d
1− 2

p

J (1 + |t|)(2J+5)| 1
2
− 1
p
|
N
− (q′−1)

q′ J+
(q′−1)

100q′ (J−1)+
(‖v‖2J+2

Mp,q
+ ‖w‖2J+2

Mp,q
)‖v − w‖Mp,q .

Proof. As in the proof of Lemma 15 for fixed n(j) and µj there are at most o(|µj |+) many

choices for n
(j)
1 , n

(j)
2 , n

(j)
3 . In addition, let us observe that µj is determined by µ̃1, . . . , µ̃j

and |µj | . max(|µ̃j−1|, |µ̃j |), since µj = µ̃j − µ̃j−1. Then, for a fixed tree T ∈ T (J), since

the operator q̃J,t
T 0,n

has Fourier transform localised around the interval Qn, using the same

argument as in Lemma 10 together with Lemma 17 we obtain the bound (remember that

|µ̂T | ∼ |µ̂J | =
∏J
k=1 |µ̃k|):

∑
n∈R(T )
nr=n

‖q̃J,t
T 0,n

({vβ}β∈T∞)‖Mp,q . (1 + |t|)|
1
2
− 1
p
|
d

1− 2
p

J

∑
n∈R(T )
nr=n

( ∏
β∈T∞

‖unβ‖p
)( J∏

k=1

1

|µ̃k|

)
,

and by Hölder’s inequality the sum is bounded from above by

(78)
( ∑

|µ1|>N
|µ̃j |>(2j+1)3N1− 1

100

j=2,...,J

J∏
k=1

1

|µ̃k|q′
|µk|+

) 1
q′
( ∑

n∈R(T )
nr=n

∏
β∈T∞

‖unβ‖
q
p

) 1
q
.

The first sum behaves like N
− (q′−1)

q′ J+
(q′−1)

100q′ (J−1)+
and for the remaining part we take the

lq norm in n and by the use of Young’s inequality we are done.
At this point, let us observe the following: There is an extra factor ∼ J when we estimate

the differences N
(J+1)
0 (v)−N (J+1)

0 (w) since |a2J+1 − b2J+1| . (
∑2J+1

j=1 a2J+1−jbj−1)|a− b|
has O(J) many terms. Also, we have cJ = |I(J)| many summands in the operator N

(J+1)
0

since there are cJ many trees of the Jth generation and cJ behaves like a double factorial,
namely (2J − 1)!! (see (55)). However, these observations do not cause any problem since
the constant that we obtain from estimating the first sum of (78) decays like a fractional
power of a double factorial in J , or to be more precise we have
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(79)
cJ d

1− 2
p

J∏J
j=2(2j + 1)

3· q′−1
q′ −

=
d

1− 2
p

J

(2J + 1)
3− 3

q′−[(2J − 1)!!]
2− 3

q′
∼ J

( 3
2

+A)(1− 2
p

)J

J
(2− 3

q′ )J
.

In order to maintain the decay in the denominator we must have 2− 3
q′ −

3
2 −A+ 2A+3

p > 0

which is equivalent to the restriction p < 2q′(2A+3)
(2A−1)q′+6 . This is true by the assumptions

of Theorem 4 together with (10). For the operator N
(J+1)
r the proof is the same but in

addition we use Lemma 7 for the operator Rt2 −Rt1. �

The estimate for the operator N
(J+1)
1 , which generalises Lemma 16, is the following:

Lemma 19.

‖N (J+1)
1 (v)‖lqMp,q . d

1− 2
p

J (1 + |t|)(2J+6)| 1
2
− 1
p
|
N
−1+ 2

q′−
1

100q′+(1− 1
100

)( 1
q′−1)(J−1)+‖v‖2J+3

Mp,q
,

and

‖N (J+1)
1 (v)−N (J+1)

1 (w)‖lqMp,q . d
1− 2

p

J (1 + |t|)(2J+6)| 1
2
− 1
p
|

N
−1+ 2

q′−
1

100q′+(1− 1
100

)( 1
q′−1)(J−1)+

(‖v‖2J+2
Mp,q

+ ‖w‖2J+2
Mp,q

)‖v − w‖Mp,q .

Proof. As before, for fixed n(j) and µj there are at most o(|µj |+) many choices for n
(1)
1 , n

(1)
2 , n

(1)
3

and note that µj is determined by µ̃1, . . . , µ̃j .

Let us assume that |µ̃J+1| = |µ̃J + µJ+1| . (2J + 3)3|µ̃J |1−
1

100 holds in (58). Then,

|µJ+1| . |µ̃J | and for fixed µ̃J there are at most o(|µ̃J |1−
1

100 ) many choices for µ̃J+1 and
therefore, for µJ+1 = µ̃J+1− µ̃J . For a fixed tree T ∈ T (J) and α ∈ T∞, since the operator

q̃J,t
T 0,n

has Fourier transform localised around the interval Qn, by Lemma 17 we arrive at

the upper bound (remember that |µ̂T | ∼ |µ̂J | =
∏J
k=1 |µ̃k|):∑

n∈R(T )
nr=n

‖q̃J,t
T 0,n

(N t,α
1 ({vnβ}β∈T∞))‖Mp,q . d

1− 2
p

J (1 + |t|)|
1
2
− 1
p
|

∑
n∈R(T )
nr=n

(
‖e−it∂2xQ1,t

nα(vnα1 , v̄nα2 , vnα3 )‖p
∏

β∈T∞\{α}

‖unβ‖p
)( J∏

k=1

1

|µ̃k|

)
,

and by Hölder’s inequality we bound the sum by

(80)
( ∑

|µ1|>N
|µ̃j |>(2j+1)3N1− 1

100

j=2,...,J

|µ̃J |1−
1

100
+

J∏
k=1

1

|µ̃k|q′
|µk|+

) 1
q′
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∑
n∈R(T )
nr=n

(
‖e−it∂2xQ1,t

nα(vnα1 , v̄nα2 , vnα3 )‖qp
∏

β∈T∞\{α}

‖unβ‖
q
p

) 1
q
.

An easy calculation shows that the first sum behaves like N
−1+ 2

q′−
1

100q′+(1− 1
100

)( 1
q′−1)(J−1)+

and then by taking the lq norm with the use of Young’s inequality and an estimate on the

norm ‖e−it∂2xQ1,t
nα(vnα1 , v̄nα2 , vnα3 )‖Mp,q we are done.

If |µ̃J+1| . (2J + 3)3|µ1|1−
1

100 holds in (58), then for fixed µj , j = 1, . . . , J , there are at

most O(|µ1|1−
1

100 ) many choices for µJ+1. The same argument as above leads us to exactly
the same expressions as in (80) but with the first sum replaced by the following:

( ∑
|µ1|>N

|µ̃j |>(2j+1)3N1− 1
100

j=2,...,J

|µ1|1−
1

100

J∏
k=1

1

|µ̃k|q′
|µk|+

) 1
q′
,

which again is bounded from above by N
−1+ 2

q′−
1

100q′+(1− 1
100

)( 1
q′−1)(J−1)+

and the proof is
complete. �

Remark 20. For s > 0 we have to observe that all previous Lemmata hold true if we
replace the lqMp,q norm by the lqsMp,q norm and the Mp,q(R) norm by the M s

p,q(R) norm.

To see this, consider n(j) large. Then, there exists at least one of n
(j)
1 , n

(j)
2 , n

(j)
3 such that

|n(j)
k | ≥

1
3 |n

(j)|, k ∈ {1, 2, 3}, since we have the relation n(j) = n
(j)
1 −n

(j)
2 +n

(j)
3 . Therefore,

in the estimates of the Jth generation, there exists at least one frequency n
(j)
k for some

j ∈ {1, . . . , J} with the property

〈n〉s ≤ 3js〈n(j)
k 〉

s ≤ 3Js〈n(j)
k 〉

s.

This exponential growth does not affect our calculations due to the double factorial decay
in the denominator of (79).

Remark 21. Notice that all estimates that appear in the previous lemmata of this section
are true for all values of p ∈ [2,∞], q ∈ [1,∞] and s ≥ 0.

2.2. Existence of Weak Solutions. In this subsection the calculations are the same as
in [5] (and [7]) where we just need to replace the L2 (or the M2,q) norm by the Mp,q(R)
norm. We will present them for the sake of completion.

Let us start by defining the partial sum operator Γ
(J)
v0 as

(81) Γ(J)
v0 v(t) = v0 +

J∑
j=2

N
(j)
0 (v)(n)−

J∑
j=2

N
(j)
0 (v0)(n)
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+

ˆ t

0
Rτ1(v)(n) +Rτ2(v)(n) +

J∑
j=2

N (j)
r (v)(n) +

J∑
j=1

N
(j)
1 (v)(n) dτ,

where we have N
(1)
1 := N t

11 from (22), N
(2)
0 := N t

21 from (26), N
(2)
1 := N t

31 from (37) and

N
(2)
r := N t

4 from (34) and v0 ∈Mp,q(R) is a fixed function.
In the following we will denote by XT = C([0, T ],Mp,q(R)). Our goal is to show that the

series appearing on the RHS of (81) converge absolutely in XT for sufficiently small T > 0,
if v ∈ XT , even for J = ∞. Indeed, by Lemmata 7, 8, 18, and 19 we obtain (we assume

that T < 1 so that the quantity (1 + T )
(2J+6)| 1

2
− 1
p
|

is an exponential in J independent of
T which can be neglected by making N possibly larger)

(82) ‖Γ(J)
v0 v‖XT ≤ ‖v0‖Mp,q + C

J∑
j=2

N
−(1− 1

q′ )(j−1)+ q′−1
100q′ (j−2)+

(‖v‖2j−1
XT

+ ‖v0‖2j−1
Mp,q

)

+CT
[
‖v‖3XT +

J∑
j=2

N
−(1− 1

q′ )(j−1)+ q′−1
100q′ (j−2)+‖v‖2j+1

XT

+N
1
q′+‖v‖3XT +

J∑
j=2

N
−1+ 2

q′−
1

100q′+(1− 1
100

)( 1
q′−1)(J−2)+‖v‖2j+1

XT

]
.

Let us assume that ‖v0‖Mp,q ≤ R and ‖v‖XT ≤ R̃, with R̃ ≥ R ≥ 1. From (82) we have

(83)

‖Γ(J)
v0 v‖XT ≤ R+ CN

1
q′−1+

R3
J−2∑
j=0

(N
1
q′−1+ q′−1

100q′R2)j + CN
1
q′−1+

R̃3
J−2∑
j=0

(N
1
q′−1+ q′−1

100q′ R̃2)j

+CT
[
(1 +N

1
q′+)R̃3 + CN

1
q′−1+

R̃5
J−2∑
j=0

(N
1
q′−1+ q′−1

100q′ R̃2)j

+N
2
q′−1− 1

100q′+R̃5
J−2∑
j=0

(N
1
q′−1+ q′−1

100q′ R̃2)j
]
.

We choose N = N(R̃) large enough, such that N
1
q′−1+ q′−1

100q′ R̃2 = N
99 1−q′

100q′ R̃2 ≤ 1
2 , or

equivalently,

(84) N ≥ (2R̃2)
100q′

99(q′−1) ,

so that the geometric series on the RHS of (83) converge and are bounded by 2. Therefore,
we arrive at
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(85) ‖Γ(J)
v0 v‖XT ≤ R+ 2CN

1
q′−1+

R3 + 2CN
1
q′−1+

R̃3

+CT
[
(1 +N

1
q′+)R̃2 + 2N

1
q′−1+

R̃4 + 2N
199−100q′

100q′ +
R̃4
]
R̃,

and we choose T > 0 sufficiently small such that

(86) CT
[
(1 +N

1
q′+)R̃2 + 2N

1
q′−1+

R̃4 + 2N
199−100q′

100q′ +
R̃4
]
<

1

10
.

With the use of (84) we see that 2CN
1
q′−1+

R̃3 ≤ CN
1−q′
100q′+R̃ and by further imposing N

to be sufficiently large such that

(87) CN
1−q′
100q′+ <

1

10
,

we have

(88) ‖Γ(J)
v0 v‖XT ≤ R+

R

10
+
R̃

5
=

11

10
R+

1

5
R̃.

Thus, for sufficiently large N and sufficiently small T > 0 the partial sum operators Γ
(J)
v0

are well defined in XT , for every J ∈ N ∪ {∞}. We will write Γv0 for Γ
(∞)
v0 .

Our next step is, given an initial datum v0 ∈ Mp,q(R) to construct a solution v ∈ XT

in the sense of Definition 3. To this end, let s > 1
q′ (so that M s

p,q(R) is a Banach algebra

that embeds in Mp,q(R)∩Cb(R)) and consider a sequence {v(m)
0 }m∈N ∈M s

p,q(R) ⊂Mp,q(R)

whose Fourier transforms are all compactly supported (thus, all v
(m)
0 are smooth functions)

and such that v
(m)
0 → v0 in Mp,q(R) as m→∞. Let R = ‖v0‖Mp,q + 1 and we can assume

that ‖v(m)
0 ‖Mp,q ≤ R, for all m ∈ N. Denote by v(m) the local in time solution of NLS (1)

in M s
p,q(R) with initial condition v

(m)
0 . It satisfies the Duhamel formula

(89) v(m)(t) = v
(m)
0 + i

ˆ t

0
N τ

1 (v(m))−Rτ1(v(m)) +Rτ2(v(m)) dτ =

v
(m)
0 +

∞∑
j=2

N
(j)
0 (v(m))(n)−

∞∑
j=2

N
(j)
0 (v

(m)
0 )(n)

+

ˆ t

0
Rτ1(v(m))(n) +Rτ2(v(m))(n) +

∞∑
j=2

N (j)
r (v(m))(n) +

∞∑
j=1

N
(j)
1 (v(m))(n) dτ = Γ

v
(m)
0

v(m),

and we will show that this holds in XT for the same time T = T (R) > 0 independent

of m ∈ N. Indeed, fix m ∈ N and observe that the norm ‖v(m)‖Xt = ‖v(m)‖C([0,t],Mp,q) is

continuous in t. Since ‖v(m)
0 ‖Mp,q ≤ R there is a time T1 > 0 such that ‖v(m)‖XT1 ≤ 4R.
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Then, by repeating the previous calculations with R̃ = 4R and keeping one of the factors
as ‖v(m)‖XT1 we get

(90) ‖v(m)‖XT1 = ‖Γ
v
(m)
0

v(m)‖XT1 ≤
11

10
R+

1

5
‖v(m)‖XT1 ,

if N and T1 satisfy (84), (86) and (87). Therefore, we have

(91) ‖v(m)‖XT1 ≤
19

10
R < 2R.

Thus, from the continuity of t → ‖v(m)‖Xt , there is ε > 0 such that ‖v(m)‖XT1+ε ≤ 4R.

Then again, from (90) and (91) with T1 + ε in place of T1 we derive that ‖v(m)‖XT1+ε ≤ 2R

as long as N and T1 + ε satisfy (84), (86) and (87). By observing that these conditions

are independent of m ∈ N we obtain a time interval [0, T ] such that ‖v(m)‖XT ≤ 2R for all
m ∈ N.

A similar computation on the difference, by possibly taking larger N and smaller T leads
to the estimate

(92) ‖v(m1) − v(m2)‖XT = ‖Γ
v
(m1)
0

v(m1) − Γ
v
(m2)
0

v(m2)‖XT ≤

(1 +
1

10
)‖v(m1)

0 − v(m2)
0 ‖Mp,q +

1

5
‖v(m1) − v(m2)‖XT ,

which implies

(93) ‖v(m1) − v(m2)‖XT ≤ c ‖v
(m1)
0 − v(m2)

0 ‖Mp,q ,

for some c > 0 and therefore, the sequence {v(m)}m∈N is Cauchy in the Banach space XT .
Let us denote by v∞ its limit in XT and by u∞ = S(t)v∞. We will show that u∞ satisfies
NLS (1) in the interval [0, T ] in the sense of Definition 3. For convenience, we drop the

superscript ∞ and write u, v. In addition, let u(m) := S(t)v(m), where v(m) is the smooth

solution to (21) with smooth initial data v
(m)
0 as described above and note that u(m) is the

smooth solution to (1) with smooth initial data u
(m)
0 := v

(m)
0 . Furthermore, u(m) → u in

XT because v(m) → v in XT and since convergence in the modulation space Mp,q(R) implies

convergence in the sense of distributions we conclude that ∂xu
(m) → ∂xu and ∂tu

(m) → ∂tu
in S ′((0, T )× R). Since u(m) satisfies NLS (1) for every m ∈ N we have that

N (u(m)) = u(m)|u(m)|2 = −i∂tu(m) + ∂2
xu

(m),

also converges to some distribution w ∈ S ′((0, T )× R). Our claim is the following:

Proposition 22. Let w be the limit of N (u(m)) in the sense of distributions as m → ∞.
Then, w = N (u), where N (u) is to be interpreted in the sense of Definition 2.
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Proof. Consider a sequence of Fourier cutoff multipliers {TN}N∈N as in Definition 1. We
will prove that

lim
N→∞

N (TNu) = w,

in the sense of distributions. Let φ be a test function and ε > 0 a fixed given number. Our
goal is to find N0 ∈ N such that for all N ≥ N0 we have

(94) |〈w −N (TNu), φ〉| < ε.

The LHS can be estimated as

|〈w −N (TNu), φ〉| ≤ |〈w −N (u(m)), φ〉|+ |〈N (u(m))−N (TNu
(m)), φ〉|

+|〈N (TNu
m)−N (TNu), φ〉|.

The first term is estimated very easily since by the definition of w we have that

(95) |〈w −N (u(m)), φ〉| < 1

3
ε,

for sufficiently large m ∈ N.
To continue, let us consider the second summand for fixed m. By writing the difference

N (u(m))−N (TNu
(m)) as a telescoping sum we have to estimate terms of the form∣∣∣ˆ ˆ [(I − TN )u(m)

]
|u(m)|2 φ dx dt

∣∣∣,
where I denotes the identity operator. This integral can be identified with the action of

the distribution
[
(I − TN )u(m)

]
|u(m)|2 ∈ M s

p,q(R) (which is a Banach algebra) onto the

test function φ, which in its turn can be controlled (Hölder’s inequality) by the norms (up
to constants)

‖φ‖L2
TMp′,q′

‖u(m)‖2L∞T Ms
p,q
‖(I − TN )u(m)‖L2

TM
s
p,q
.

Cφ‖u(m)‖2C((0,T ),Ms
p,q)
‖(I − TN )u(m)‖L2

TM
s
p,q
. Cφ,m‖(I − TN )u(m)‖L2

TM
s
p,q
.

Here we have to observe that for every fixed t the norm ‖(I−TN )u(m)‖Ms
p,q
→ 0 as N →∞

and an application of Dominated Convergence Theorem in L2(0, T ) implies that there is
N0 = N0(m) with the property

(96) Cφ,m‖(I − TN )u(m)‖L2
TM

s
p,q
<

1

3
ε,

for all N ≥ N0.
For the last term, we need to observe two things. Firstly, let us consider the sequence

{N (TNu
(m))}m∈N, for each fixed N . By applying the iteration process that we described in

the previous subsection to {S(−t)N (TNu
(m))}m∈N, which is basically the nonlinearity in
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equation (21) up to the operator TN , we see that {N (TNu
(m))}m∈N is Cauchy in S ′((0, T )×

R), as m→∞ for each fixed N ∈ N since the sequence u(m) is Cauchy in C((0, T ),Mp,q(R)).
Since the operators TN are uniformly bounded in the Lp norm in N we conclude that this
convergence is uniform in N .

Secondly, let us observe that for fixed N , TNu is in C((0, T ), H∞(R)) since u ∈Mp,q(R)
and the multiplier mN of TN is compactly supported. Hence, N (TNu) = TNu|TNu|2 makes
sense as a function. Therefore, for fixed N we obtain the upper bound

|〈N (TNu
(m))−N (TNu), φ〉| ≤

‖φ‖L4
TMp′,q′

(‖TNu(m)‖2L4
TMp,q

+ ‖TNu‖2L4
TMp,q

)‖TNum − TNu‖L4
TMp,q

≤

Cφ,‖u‖XT
‖u(m) − u‖C((0,T ),Mp,q),

which can be made arbitrarily small. Hence,N (TNu
(m)) converges toN (TNu) in S ′((0, T )×

R) as m→∞ for each fixed N .

From these two observations we derive that N (TNu
(m))→ N (TNu) in S ′((0, T )×R) as

m→∞ uniformly in N . Equivalently,

(97) |〈N (TNu
(m))−N (TNu), φ〉| < 1

3
ε,

for all large m, uniformly in N . Therefore, (94) follows by choosing m sufficiently large so
that (95) and (97) hold, and then choosing N0 = N0(m) such that (96) holds.

�

Finally, we have shown that the function u = u∞ is a solution to the NLS (1) in the
sense of Definition 3. The Lipschitz dependence on the initial data follows from (93) by a
limit process.
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