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Zusammenfassung

Die vorliegende Arbeit setzt sich (1) mit der Homogenisierung linearer
und nichtlinearer mechanischer Eigenschaften von Materialien mit kris-
tallographischer und morphologischer Textur, sowie (2) mit dem Materi-
aldesign mechanischer Eigenschaften bei vorgeschriebenem Eigenschaf-
tenprofil auseinander. Für die grundlegende Beschreibung der Textur
im Material wird die Orientierungsverteilungsfunktion von Kristalliten
verwendet. Diese grundlegende Größe der Mikrostruktur texturierter
Materialien erscheint auf natürliche Art und Weise in zahlreichen Homo-
genisierungsansätzen für verschiedene anwendungsrelevante Materiali-
en (z.B. partikelverstärkte Komposite und Polykristalle mit anisotropen
Materialverhalten). Aufgrund der Vielfältigkeit und Komplexität von
Texturen, ist es für die Anwendung notwendig, möglichst effiziente und
niedrig dimensionale Darstellungen von texturabhängigen Homogeni-
sierungansätzen zu entwickeln. Dies wird in der vorliegenden Arbeit
basierend auf Darstellungen in Abhängigkeit von tensorwertigen Texturko-
effizienten erreicht. Die Darstellungen dieser Arbeit liefern für die linear
elastischen Eigenschaften beliebig anisotroper Materialien Schranken
und Approximationen nur in Abhängigkeit von Texturkoeffizienten
zweiter und vierter Ordnung, welche eine endlich dimensionale Parametri-
sierung in konvexen Gebieten ergeben. Dazu werden die in der Literatur
bekannten Schranken linearer Eigenschaften von Voigt, Reuss (Schran-
ken erster Ordnung) und Hashin-Shtrikman (Schranken zweiter Ord-
nung) unter Berücksichtigung von Eigenfeldern betrachtet. Zusätzlich
zu der texturabhängigen Parametrisierung dieser Schranken, werden
die Schranken nullter Ordnung mit Berücksichtigung von Eigenfeldern
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Zusammenfassung

abgeleitet. Die Schranken nullter Ordnung sind materialabhängig, aber
mikrostrukturunabhängig. All diese Ergebnisse werden in dieser Arbeit
im Zusammenhang mit einem Materialdesign linearer und nichtlinearer
Eigenschaften anhand von drei Beispielen präsentiert. Im ersten Beispiel
werden die elastischen Eigenschaften eines orthotropen Polykristals
eines kubischen Materials diskutiert. Hierbei werden, basierend auf den
Schranken nullter Ordnung und Datenbanken, passende Materialkandi-
daten entsprechend dem geforderten Eigenschaftenprofil ausgewählt.
Dann werden die Schranken erster und zweiter Ordnung ausgewertet,
sowie eine darauf aufbauende Approximation in Anhängigkeit der
Texturkoeffizienten. Vorteilhafte Texturkoeffizienten werden basierend
auf der Approximation ermittelt. Im zweiten Beispiel werden (analog
zum ersten) die linear thermoelastischen Eigenschaften eines transver-
salisotropen partikelverstärkten Komposits ausgewertet. Hierbei wird
die Anwendung der texturabhängigen Ausdrücke mit Berücksichtigung
von Eigenfeldern demonstriert. Darüber hinaus wird diskutiert, wie eine
morphologische Textur durch Modellannahmen als kristallographische
Textur modelliert werden kann. Im letzten Beispiel wird die Anwendung
der texturabhängigen Hashin-Shtrikman Schranken im Kontext der
Schranken vom nichtlinearen viskoplastischen Materialverhalten von
Polykristallen demonstriert. Hierfür werden mithilfe von Variationsprin-
zipien (basierend auf linearen Vergleichsmaterialien) texturabhängige
untere Schranken für das effektive Fließpotential und obere Schranken
für die effektive Fließspannung abgeleitet. Ein analytischer Sonderfall
für Polykristalle von kubisch-flächenzentrierten Materialien wird ange-
geben und diskutiert.
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Summary

The present work approaches (1) the field of homogenization of linear
and nonlinear mechanical properties of materials with crystallographic
and morphological texture, as well (2) the field of materials design for the
mechanical properties with prescribed properties-profile. The basic ma-
terial texture is described by the crystallite orientation distribution func-
tion. This essential microscopic quantity of textured materials appears
naturally in a large number of homogenization approaches of different
application relevant materials, e.g., particle reinforced composites and
polycrystals with anisotropic material behavior. Due to the wealth and
complexity of textures, it is essential for applications to develop efficient
and low dimensional representations of texture dependent homogeniza-
tion approaches. This is achieved in this work based on representations
in terms of tensor valued texture coefficients. For arbitrarily anisotropic
linear elastic material behavior, the representations deliver bounds
and approximations in terms of solely second- and fourth-order texture
coefficients, which yield finite-dimensional parametrizations in convex sets.
The well-known bounds of Voigt, Reuss (first-order bounds), and Hashin-
Shtrikman (second-order bounds) are taken into consideration, account-
ing for eigenfields. In addition to the texture dependent parametrizations
of these bounds, the zeroth-order bounds accounting for eigenfields are
derived. These bounds of the linear material behavior are material
dependent and microstructure independent. All these results are then
presented in the context of the materials design of linear and nonlinear
properties in three examples. In the first example, the linear elastic
properties of an orthotropic polycrystal of a cubic material are discussed.
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Summary

For this purpose, based on the zeroth-order bounds, material candidates
are selected from a database according to the prescribed properties-
profile. Then, the first- and second-order bounds are evaluated for
the delineation of the properties-closures, together with a synthesizing
approximation in terms of texture coefficients. Favorable texture co-
efficients are determined based on the approximation. In the second
example, following the first example, the linear thermoelastic properties
of a transversely isotropic particle reinforced composite are evaluated.
Here, the application of the texture dependent expressions accounting
for eigenfields of this work is demonstrated, as well as modeling for the
treatment of morphological texture as crystallographic texture. In the
last example, the application of the texture dependent Hashin-Shtrikman
bounds in the context of bounds of nonlinear viscoplastic material
behavior of polycrystals is demonstrated. Based on variational principles
(using a linear comparison material) texture dependent lower bounds of
the effective flow potential are derived, together with texture dependent
upper bounds for the effective flow stress. One analytic special case for
FCC polycrystals is presented and discussed.
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Chapter 1

Introduction

1.1 Motivation

Modern materials research is concerned with the manufacturing of
multiphase materials, i.e., materials containing, in general, several ma-
terial constituents (referred to as phases) and a heterogeneous spatial
distribution of the material constituents (referred to as microstructure).
For example, for many automotive applications, metals are heavily used
in several components of cars. The material behavior of the metal is
governed by the material and its microstructural arrangement. At a
microscopic level, one can see that most metals might be described as an
aggregate of single crystals, i.e., a polycrystal. The anisotropic material is
the same in each crystallite, but its orientation differs from crystallite to
crystallite. This material orientation distribution of the crystallographic
axes of the reference material is referred to as crystallographic texture.
Although a metal of a pure material possesses only a single material
constituent, the material stiffness varies in space from crystallite to
crystallite due to the different material orientations in the crystallites.
Each distinct material orientation connected to the corresponding crys-
tallites in the polycrystal is to be considered as a distinct phase in
the polycrystal. Therefore, a polycrystal of a single material might be
referred to as a multiphase material with a large or even infinite number
of phases. In this work, we will instead refer to such a material as a

1



1 Introduction

single-phase polycrystalline material (SPPM) to emphasize the material
constituent and polycrystalline nature of the polycrystal. Other examples
of heterogeneous materials are fiber reinforced lightweight materials
and matrix-particle mixtures. These materials might be composed of
solely isotropic constituents, but the spatial arrangement of the fibers or
particles having specific geometry in the embedding matrix might be
highly complex. This is referred to as morphological texture since the
orientation distribution of the shapes is considered. If the phases of a
multiphase material are anisotropic and polycrystalline, then we refer
to the material as a multiphase polycrystalline material (MPPM) which
may show crystallographic and morphological texture. In this work, we
will shortly refer to all of these materials as textured materials.

The space of properties offered by different material combinations for
different physical problems can be very rich if either anisotropic ma-
terials or material combinations with high material contrast (e.g., a
weak matrix with stiff inclusions) are considered. Purposefully chosen
microstructures can induce highly preferable properties for different
applications. But, inventing different microstructures and testing mate-
rials is a procedure with too many costs regarding resources and time.
Therefore, theoretical investigations of the behavior of materials are
necessary in order to accelerate the discovery of materials for specific
applications, where different physical prescribed material properties
with imposed tolerances, referred to as properties-profile throughout
this work, are of interest. With this goal in mind, the theory of multiphase
heterogeneous materials needs to answer at least three central questions:

Q1 What are the effective properties of a material with a given mi-
crostructure and given local material properties?

Q2 Is it possible for a chosen/given material with variable microstruc-
ture to reach a required properties-profile?

Q3 Which microstructures of a given material are favorable for the
fulfillment of the desired properties-profile?

2



1.1 Motivation

The first question (Q1) deals with the problem of homogenization. It
follows the procedure of considering given microstructures and com-
putation of the effective material properties of heterogeneous materials,
usually based on as little statistical microstructure-information as possi-
ble. The homogenization of materials with complex microstructures
is a challenging problem which usually requires a high amount of
statistical microstructure-information to deliver accurate results. There-
fore, a statistical description of microstructures is essential in any case
concerning such approximations. How much statistical information is
needed depends on the properties of interest for the application and the
material contrast of the chosen materials. Material combinations with
high material contrast show significant differences in their directional
properties if the microstructure is changed.

Materials design is referred to in this work as the optimization of ma-
terial and microstructure depending on a prescribed properties-profile.
Material designers might have to confront other problems besides ho-
mogenization. Homogenization has the disadvantage of computing
a number, e.g., 10, and then asking the world, if anybody needs a 10.
Material designers rather work inversely, they ask themselves: "I need a
42. What gives me 42? What is even able to give me 42?". Therefore, the
first question, a material designer should ask himself is, if a material can
deliver properties required for a specific application. This is the problem
addressed by the question Q2. A chosen material, e.g., glass, might offer
high stiffness values. But for the properties-profile needed for a precise
application these values might be, perhaps, inadequate or too high.
Therefore, glass is not able to deliver properties in the range required
for the application of interest. This raises the alternative question: has
a material intrinsic lower and upper limitations? This question can
be approached in theory for certain materials, such that lower and
upper bounds of potentials can be derived based on physical principles,
which induce lower and upper bounds for the material properties for

3



1 Introduction

the physical problem at hand. Such lower and upper bounds do not give
explicit information about the exact material properties. Bounds give
information about definite limitations of the material, and what is definitely
not reachable by the material. This is crucial for material designers. For
many cases, it cannot be shown if the chosen material is able to reach
specific properties, but it can be shown that the selected material is not
able to achieve the properties-profile. This excluding property of bounds
allows material designers to exclude materials and microstructures
based on required properties-profile, such that inappropriate materials
in the databases can be immediately discarded. This would save high
amounts of otherwise unnecessarily wasted resources in manufacturing,
testing and/or simulating materials which would never be able to reach
required properties.

The last question (Q3) is the hardest of the three questions in the purpose-
ful engineering of materials. Two approaches can be considered. In the
first one, a sensible approximation of the effective material is required
which does not violate any bounds derived from the physical problem
at hand. Based on a pragmatic point of view, such approximations
usually fulfill bounds only up to a certain order, since otherwise the
exact material behavior would be needed, which is normally not known.
Further, these approximations should depend on as little statistical
microstructure-information as possible and given in finite-dimensional
parametrizations. If an approximation has these properties, then it might
be able to deliver practical results in optimization of its microstructural
variables concerning the prescribed properties-profile. Based on the
optimized microstructural variables, the bounds considered might be
evaluated to check how far deviations might occur. This first approach
is the simplest possible. In the second approach, considered bounds
can be used in order to scan the space of microstructural variables for
sets inducing properties bounds with non-empty intersections with
the properties-profile. This problem is the most complex one since the
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1.2 State of the art

evaluation of higher-order bounds might reveal that no microstructures
exist which deliver properties bounds intersecting the properties-profile.

These three questions motivate the investigations of the present work
for polycrystalline multiphase materials with linear and nonlinear me-
chanical material behavior.

1.2 State of the art

The theory of the effective behavior of heterogeneous materials has a
vast literature. The linear elastic behavior of, e.g., polycrystals has been
investigated already by Voigt (1910) and Reuss (1929), which proposed
to evaluate the volume averages of the stiffness (assuming constant
deformation) and compliance (assuming constant stresses), respectively.
These approaches have been shown by Hill (1952) to deliver actual
bounds of the linear elastic material behavior depending on volume
fraction information of the heterogeneous materials. Based on two-point
statistical information of the microstructure, second-order bounds of the
linear elastic properties can be formulated, e.g., based on the Hashin-
Shtrikman variational principle of Hashin and Shtrikman (1962), see also
Walpole (1966) and Willis (1977). If higher-order statistical information
is taken into account, then higher-order bounds and approximations
based on these bounds can be computed, see, e.g., Kröner (1977) and
Willis (1981). One of the more frequently used approximations (based
on bound expressions and derivation) in linear elasticity is the so-called
self-consistent approach, see Kröner (1958), Kröner (1977), Willis (1977)
and Willis (1981).

For different applications, physical problems with simplified coupled
behavior are also of interest. One example is linear thermoelasticity,
where the absolute temperature is assumed to be constant throughout
the material, and the mechanical material response of the composite
is to be examined. These kinds of problems have been analyzed, e.g.,
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by Rosen and Hashin (1970) and Laws (1973), where bounds and self-
consistent approximations are derived. This problem can be viewed,
more generally, as a linear elastic material with eigenfields (eigenstresses
or eigenstrains), see, e.g., Willis (1981). Bounds of this problem type
are known explicitly only for simplified, usually isotropic cases, due to
the cumbersome algebraic expressions for anisotropic materials or even
materials with orientation dependency, e.g., textured materials.

Based on the homogenization and bounding theory of linear material
behavior, different models and bounds for nonlinear behavior have
been developed. In Taylor (1938) the deformation is assumed constant
(Voigt assumption) in polycrystals with nonlinear material response,
which deliver an upper bound of the effective elastic potential, see, e.g.,
Bishop and Hill (1951) or Dendievel et al. (1991). The dual assumption
of constant stresses (Reuss assumption) delivers an upper bound of
the effective complementary potential, see, e.g., Dendievel et al. (1991).
Bounds of nonlinear material behavior based on the Hashin-Shtrikman
variational principle have been derived following Willis (1983) by Talbot
and Willis (1985). In Ponte Castañeda (1991) an even more general
approach for bounding nonlinear properties has been introduced. This
approach is highly attractive for a wide part of the community of homog-
enization since it is based on comparing the potential of the nonlinear
material with a potential corresponding to a linear material, referred to as
linear comparison composite. This gives access to the complete theory of
linear materials for bounding nonlinear behavior. The approach of Ponte
Castañeda (1991) can be extended to consider eigenfields in the linear
comparison composite, see, e.g., Ponte Castañeda et al. (2004), such that
auxiliary bound expressions for such materials, like the ones presented in
Willis (1981), can be used in nonlinear context. This approach continues
to be extended and optimized, see, e.g., Ponte Castañeda (2015) and
Ponte Castañeda (2016), but with no efficient parametrization for materials
showing complex directional dependency, as, e.g., textured materials.
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1.2 State of the art

All of the just addressed bounds and approximations for linear and
nonlinear material behavior are adequate (regarding computational
time) for calculations involving rather isotropic behavior. Especially,
bounds and approximation of textured polycrystals, having an intrinsic
directional dependency due to the underlying anisotropic single crystal
behavior and its orientation distribution over the spatial domain of
interest, are challenging to evaluate. The orientation distribution of the
single crystal behavior is the most basic statistical description of the
microstructure of polycrystals and other textured materials. But, bounds
and approximations of the material response depending on it are already
algebraically difficult to evaluate, if represented by a simple convex
combination of single crystal states. In the community of quantitative
texture analysis, the crystallite orientation distribution function (CODF)
is a well studied quantity, for which advantageous representations based
on Fourier series in terms of so-called texture coefficients are known, see,
e.g., Bunge (1982), Adams et al. (1992), Guidi et al. (1992), Schaeben and
van den Boogaart (2003) and Adams et al. (2013). Alternatively, CODFs
can be approximated by simplified model functions, see, e.g., Matthies
et al. (1988), Schaeben (1992) and Schaeben (1996), which simplify the tex-
ture coefficients drastically. These representations give access to highly
advantageous parametrizations of, e.g., the first-order bounds of linear
elastic properties (see, e.g., Adams et al. (2013)) due to the dependency
on texture coefficients. These coefficients enter several elasticity relevant
expressions in a finite-dimensional fashion. This property is a crucial
simplification which opens the fast and efficient exploration of properties
delivered by bounds and approximations parametrized with texture
coefficients. Naturally, corresponding bounds (and approximations)
depending on the CODF do not need to be expressed in terms of texture
coefficients. All corresponding bounds can be parametrized by the
CODF, but this parametrization has the disadvantage of taking into
consideration the infinite-dimensional function space of all CODFs.
This makes the exploration of the respective bounds severely more
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1 Introduction

complicated, compared to equivalent representations regarding finite-
dimensional texture coefficients.

Modern problems in materials design, as indicated in Section 1.1, are
inverse in nature. The objective is not to compute the effective properties
of a given material and a given microstructure, but to optimize material
and microstructure variables according to a given properties-profile.
First, in the selection of a material, large databases might be available to
material designers, see, e.g., de Jong et al. (2015). The selection of suitable
anisotropic materials or their combinations is already a huge problem. If
no physical and fast computable bounds for the anisotropic case are at
hand, then poor materials selection based only on isotropic cases is the
only pragmatic option in large material databases. And this is the case
which only considers changing the underlying material constituents,
i.e., the variations depending on microstructure adaption has not been
even taken into account. If the material is somehow given/chosen,
then bounds and approximations given in terms of finite-dimensional
representations might be adequate for efficient computations, as needed
in inverse problems. Approaches based on texture coefficients of the
CODF are presented in, e.g., Adams et al. (2001), Kalidindi et al. (2004),
Proust and Kalidindi (2006), Fullwood et al. (2010) and Adams et al.
(2013) for linear and nonlinear properties based on the Voigt and Reuss
bounds, approximations and Fourier series of the material response.
The author is not aware of the incorporation of second-order bounds
for linear material behavior and corresponding bounds for eigenfields
(as the Hashin-Shtrikman bounds of Willis (1977) and Willis (1981)) or
nonlinear behavior (based on approaches as the one introduced in Ponte
Castañeda (1991)) in the framework of materials design accounting for
textured materials, see, e.g., Fullwood et al. (2010) or Adams et al. (2013).
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1.3 Objectives and outline of this work

1.3 Objectives and outline of this work

Based on the questions discussed in Section 1.1 and the requirements of
materials design problems, the main objectives of this work are:

1. The investigation of material dependent but microstructure inde-
pendent bounds with a fast evaluation for large material databases.

2. The derivation of efficient expressions for the second-order Hashin-
Shtrikman bounds accounting for eigenfields in terms of texture
coefficients for multiphase polycrystalline materials of arbitrary
anisotropy.

3. The application of texture dependent Hashin-Shtrikman expres-
sions for linear behavior in the context of nonlinear approaches.

These objectives require a compact description of the concept of ori-
entations, their parametrizations, distribution and relevant influence
on the orientation average of physical tensorial properties of solid
materials, which is provided in Chapter 2. This a priori preparation will
drastically simplify the readability and the treatment of homogenization
of linear and nonlinear problems of textured materials discussed in the
subsequent chapters.

The basic homogenization theory needed for the present work is
sketched in Chapter 3. The chapter starts with a short description
of the microstructure of heterogeneous materials, followed by a brief
illustration of basic homogenization of random materials. Subsequently,
some general relations of the theory of bounds for linear problems are
discussed, together with zeroth-, first- and second-order bounds (all
accounting for eigenfields). The zeroth-order bounds are presented
to some length to show their potential application in large material
databases in material design problems. The first-order bounds are
recapitulated rather shortly since these are well known in literature. A
more extensive treatment is given to the second-order Hashin-Shtrikman
bounds for isotropic two-point statistics to illustrate their derivation
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and explicit texture dependency. At the end of the chapter, the
potential application of all derived expressions is discussed for linear
thermoelasticity and the approach introduced by Ponte Castañeda (1991)
but accounting for arbitrary texture.

In order to show possible application scenarios within the field of
materials design, the results of the present work are illustrated in Chap-
ter 4 in three examples. In the first example, a polycrystal of a single
cubic material showing orthotropic texture will be designed based
on a prescribed properties-profile and given material database. In
the second example, the linear thermoelastic properties of a matrix-
inclusion composite with a weak isotropic matrix and transversely
isotropic inclusions with transversely isotropic macroscopic behavior
will be optimized based on a prescribed properties-profile and material
database. Finally, in the last example, the nonlinear behavior of a
viscoplastic polycrystal with power-law behavior will be bounded with
the texture dependent expressions of the present work. The special
case of an FCC material with cubic macroscopic texture is illustrated to
present results computable by hand. For this case, compact bounds for
the resulting nonlinear potential and effective flow stress are derived
and discussed.

At the beginning and end of each chapter, an overview and a review of
the chapter is provided in order to improve readability and keep the
main objectives and results as clear as possible throughout this work.

1.4 Notation

In the present work, a direct tensor notation is preferred throughout
the text. Einstein summation convention is not used in this work.
Scalars are denoted by standard italic characters, e.g., 𝑥, 𝑦, 𝑊 . Lower
case bold Latin characters, e.g., 𝑥, 𝑦, denote first-order tensors, while
upper case bold Latin characters, e.g., 𝐴, 𝐵, and bold Greek characters,

10
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e.g., 𝜎, 𝜀, are used for second-order tensors. Fourth-order tensors
are designated by upper case blackboard bold symbols, e.g., A,B.
Higher-order tensors are denoted as A⟨𝑟⟩, where ⟨𝑟⟩ represent the
tensor order 𝑟. The dyadic / tensor product is denoted by ⊗. An
orthonormal basis {𝑏1, 𝑏2, 𝑏3} = {𝑏𝑖} of the physical three dimen-
sional Euclidean space is used throughout this work in order to
represent all tensors, i.e., we use the representations 𝑎 =

∑︀3
𝑖=1 𝑎𝑖𝑏𝑖,

𝐴 =
∑︀3

𝑖,𝑗=1 𝐴𝑖𝑗𝑏𝑖𝑗 or A =
∑︀3

𝑖,𝑗,𝑘,𝑙=1 𝐴𝑖𝑗𝑘𝑙𝑏𝑖𝑗𝑘𝑙, where 𝑎𝑖, 𝐴𝑖𝑗 , 𝐴𝑖𝑗𝑘𝑙 de-
note the corresponding tensor components and 𝑏𝑖 ⊗ 𝑏𝑗 = 𝑏𝑖𝑗 is ab-
breviated for better readability. Minor symmetric fourth-order ten-
sors fulfill 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘, while major symmetric fourth-order
tensors fulfill 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑘𝑙𝑖𝑗 . The linear map of a first-order tensor
over a second-order tensor is denoted as 𝐴𝑥 =

∑︀3
𝑖,𝑗=1 𝐴𝑖𝑗𝑥𝑗𝑏𝑖, while

higher-order linear maps are denoted by A[𝐵] =
∑︀3

𝑖,𝑗,𝑘,𝑙=1 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝑏𝑖𝑗

and A⟨6⟩[B⟨4⟩] =
∑︀3

𝑖,𝑗,𝑘,𝑙,𝑚,𝑛=1 𝐴𝑖𝑗𝑘𝑙𝑚𝑛𝐵𝑘𝑙𝑚𝑛𝑏𝑖𝑗 . The composition of
two equal order tensors delivering a tensor of equal order is sim-
ply symbolized by A⟨𝑟⟩B⟨𝑟⟩, e.g., 𝐴𝐵 =

∑︀3
𝑖,𝑗,𝑘=1 𝐴𝑖𝑗𝐵𝑗𝑘𝑏𝑖𝑘 maps as

(𝐴𝐵)𝑥 = 𝐴(𝐵𝑥) and AB =
∑︀3

𝑖,𝑗,𝑘,𝑙,𝑚,𝑛=1 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝑚𝑛𝑏𝑖𝑗𝑚𝑛 maps as
(AB)[𝐶] = A[B[𝐶]]. Composition of tensors of different orders is not
needed in this work. The scalar product is denoted as
A⟨𝑟⟩ · B⟨𝑟⟩ =

∑︀3
𝑖1,...,𝑖𝑟=1 𝐴𝑖1...𝑖𝑟

𝐵𝑖1...𝑖𝑟
. The Frobenius norm is defined as

‖A⟨𝑟⟩‖ =
√︀
A⟨𝑟⟩ · A⟨𝑟⟩. The Rayleigh product is denoted by

𝐴 ⋆ B⟨𝑟⟩ =
∑︀3

𝑖1,...,𝑖𝑟=1 𝐵𝑖1...𝑖𝑟
(𝐴𝑏𝑖1) ⊗ . . . ⊗ (𝐴𝑏𝑖𝑟

). Hereby, the Rayleigh
product of a zeroth-order tensor (a scalar) equals the zeroth-order tensor
itself, i.e., 𝐴 ⋆ 𝑊 = 𝑊. The identity on vectors and the permutation
tensor are denoted by 𝐼 =

∑︀3
𝑖,𝑗=1 𝛿𝑖𝑗𝑏𝑖𝑗 and 𝜖 =

∑︀3
𝑖,𝑗,𝑘=1 𝜀𝑖𝑗𝑘𝑏𝑖𝑗𝑘, re-

spectively, where 𝛿𝑖𝑗 and 𝜀𝑖𝑗𝑘 denote the Kronecker delta and the
permutation symbol, respectively. The basic fourth-order tensors
I =

∑︀3
𝑖,𝑗,𝑘,𝑙=1 𝛿𝑖𝑘𝛿𝑗𝑙𝑏𝑖𝑗𝑘𝑙 (identity on second-order tensors),

I𝑆 =
∑︀3

𝑖,𝑗,𝑘,𝑙=1
1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)𝑏𝑖𝑗𝑘𝑙 (identity on symmetric second-

order tensors), P1 = 1
3 𝐼 ⊗ 𝐼 (identity on isotropic second-order tensors),

P2 = I𝑆 − P1 (identity on symmetric and traceless second-order tensors)

11



1 Introduction

and P3 = I − I𝑆 (identity on skewed second-order tensors) are used
throughout this work. In this work, at several points scalar quantities,
say 𝑓 , will depend on several tensor valued variables of different
orders, e.g., 𝑓 = 𝑓(𝐴, 𝑥) = 1

2 𝐴 · B[𝐴] − 𝐴 · (𝑥𝐶) − 1
2 𝑑𝑥2. For these

kinds of scalar quantities, a supertensor notation following vector
matrix notation is used. The supervector 𝐴 = [𝐴, 𝑥]T with compo-
nents (𝐴)𝑖 with 𝑖 = 1, . . . , 𝑛 represents the 𝑛 degrees of freedom of
the considered variables and the supertensor 𝐵 with matrix com-
ponents (𝐵)𝑖𝑗 is constructed based on B, (−𝐶) and (−𝑑) such that
𝑓 = 1

2 𝐴T𝐵 𝐴 = 1
2
∑︀𝑛

𝑖,𝑗=1(𝐴)𝑖(𝐵)𝑖𝑗(𝐴)𝑗 holds, where 𝐴T denotes the
standard transposition.

A list of the frequently used symbols and acronyms is given at the end
of this document.
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Chapter 2

Calculus of orientations

2.1 Overview

In this chapter, the set of orientations 𝑆𝑂(3) and the CODF 𝑓(𝑄) for
𝑄 ∈ 𝑆𝑂(3) are discussed. Fourier expansions for central and general
CODFs depending on texture eigenvalues and texture coefficients are
discussed. Furthermore, the convex set of all possible texture eigenval-
ues and texture coefficients is sketched. An orientation dependent real
tensor valued quantity D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩ of 𝑟-th-order, with constant
reference single crystal material property D̃⟨𝑟⟩, and the orientation aver-
age of D⟨𝑟⟩(𝑄) based on 𝑓(𝑄) over 𝑆𝑂(3) are illustrated in this chapter.
Quantities corresponding to the reference single crystal behavior will be
denoted by a tilde, as D̃⟨𝑟⟩. The harmonic decomposition of the single
crystal tensor valued quantity D̃⟨𝑟⟩ is illustrated in order to examine
the orientation average of D⟨𝑟⟩(𝑄) over 𝑆𝑂(3) with consideration of
the tensorial Fourier expansion of 𝑓(𝑄). Based on the harmonic de-
composition, the orientation average is given in terms of the relevant
influence of the CODF, i.e., in terms of texture eigenvalues and texture
coefficients up to the respective tensor order. This representation gives
access to a finite and low dimensional parametrization of the orientation
averages depending on finite-dimensional variables belonging to convex
sets. These parametrizations will be used in following chapters for the
representation of bounds and approximations of linear elastic properties
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2 Calculus of orientations

depending on the respective set of texture variables (texture eigenvalues
and texture coefficients) for optimization of mechanical properties over
the respective convex sets.

2.2 Orientations

2.2.1 The manifold 𝑆𝑂(3)

Definition. The set 𝑆𝑂(3) is the manifold of special orthogonal second-
order tensors (corresponding to proper rotations) in the
3-dimensional real-valued space of first-order tensors (vectors). Further,
𝑆𝑂(3) is a subset of the set of orthogonal (unitary) second-order tensors
𝑂𝑟𝑡ℎ, defined by

𝑂𝑟𝑡ℎ = {𝑅 | (𝑅𝑥) · (𝑅𝑦) = 𝑥 · 𝑦 ∀𝑥, 𝑦 ∈ 𝑉 } . (2.1)

The vector space 𝑉 in this work is the 3-dimensional Euclidean space
of first-order tensors, for which an orthonormal basis {𝑏1, 𝑏2, 𝑏3} will
be used. For 𝑅 ∈ 𝑂𝑟𝑡ℎ, 𝑅−1 = 𝑅T and det(𝑅) = ±1 hold. The set of
orientations 𝑆𝑂(3) is defined as

𝑆𝑂(3) = {𝑄 | 𝑄 ∈ 𝑂𝑟𝑡ℎ ∧ det(𝑄) = +1} . (2.2)

Invariant integration over 𝑆𝑂(3) with integration variable 𝑄 is denoted
as

1 =
∫︁

𝑆𝑂(3)

1d𝑄(𝑄) =
∫︁

𝑆𝑂(3)

d𝑄(𝑅1𝑄𝑅2) , ∀𝑅1, 𝑅2 ∈ 𝑆𝑂(3) (2.3)

where d𝑄 represents the volume element ensuring an invariant integra-
tion over 𝑆𝑂(3), see, e.g., Gel’fand et al. (1963) or Morawiec (2004). For
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2.2 Orientations

The scalar product of scalar functions, say 𝑓1(𝑄) and 𝑓2(𝑄), over 𝑆𝑂(3)
is defined as

⟨𝑓1, 𝑓2⟩ =
∫︁

𝑆𝑂(3)

𝑓1(𝑄)𝑓*
2 (𝑄)d𝑄 , (2.4)

where 𝑓*
2 (𝑄) denotes complex conjugation. A square integrable function

𝑓(𝑄) over 𝑆𝑂(3) will be addressed as 𝑓(𝑄) ∈ 𝐿2(𝑆𝑂(3)).

In this work the symbol 𝑄 will be used in order to denote elements
of 𝑆𝑂(3), in order to abbreviate 𝑄 ∈ 𝑆𝑂(3) and keep the text readable.
Further, it is shortly stressed out that orientations 𝑄 are defined sym-
bolically, i.e., independently of any chosen representation basis of the
underlying vector space 𝑉 . An orientation 𝑄 is treated in this work
as a second-order tensor and can be represented by 𝑄 =

∑︀3
𝑖,𝑗=1 𝑄𝑖𝑗𝑏𝑖𝑗

with respect to a constant orthonormal basis {𝑏𝑖} of the underlying
vector space 𝑉 . For example, a vector 𝑥 =

∑︀3
𝑖=1 𝑥𝑖𝑏𝑖 ∈ 𝑉 is reoriented

by an orientation 𝑄. This delivers a new vector 𝑦 = 𝑄𝑥, represented
as 𝑦 = 𝑄𝑥 =

∑︀3
𝑖,𝑗=1 𝑄𝑖𝑗𝑥𝑗𝑏𝑖 =

∑︀3
𝑖=1 𝑦𝑖𝑏𝑖 with respect to the same basis

{𝑏𝑖}. The tensor components 𝑄𝑖𝑗 correspond, therefore, to the classi-
cal rotation matrix components. In order to be completely clear and
avoid any misunderstanding, this will be explicitly addressed with
the parametrization in terms of rotation axis and angle, and with the
parametrization in terms of Euler angles (see following sections).

2.2.2 Symmetry transformations and isotropic tensors

Symmetry transformations and groups. A tensor D̃⟨𝑟⟩ of 𝑟-th-order
(e.g., the single crystal stiffness of a material) is said to be invariant
under the transformation 𝑆 ∈ 𝑂𝑟𝑡ℎ if 𝑆 ⋆ D̃⟨𝑟⟩ = D̃⟨𝑟⟩ holds. The sym-
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metry group 𝑆 ⊂ 𝑂𝑟𝑡ℎ of a tensorial quantity D̃⟨𝑟⟩ is the collection of all
symmetry transformations, i.e.,

𝑆 ⋆ D̃⟨𝑟⟩ = D̃⟨𝑟⟩ ∀𝑆 ∈ 𝑆 ⊂ 𝑂𝑟𝑡ℎ . (2.5)



2 Calculus of orientations

The group symmetrization of a tensor D̃⟨𝑟⟩ with respect to a symmetry
group 𝑆sym with finite number 𝑛sym of symmetry transformations is
defined in this work as

gssym(D̃⟨𝑟⟩) = 1
𝑛sym

𝑛sym∑︁
𝛼=1

𝑆𝛼 ⋆ D̃⟨𝑟⟩ , 𝑆𝛼 ∈ 𝑆sym ∀𝛼 . (2.6)

Isotropic tensors. Isotropic tensors B𝐼
⟨𝑟⟩ of order 𝑟 are defined as

𝑆 ⋆ B𝐼
⟨𝑟⟩ = B𝐼

⟨𝑟⟩ ∀𝑆 ∈ 𝑂𝑟𝑡ℎ . (2.7)

The components of isotropic tensors are identical in all orthonormal
coordinate systems.

2.2.3 Parametrization of orientations

Rotation axis and angle parametrization. An orientation 𝑄 can be
parametrized with a normalized rotation axis 𝑛 and a rotation angle
𝜔 ∈ [0, 𝜋] as follows

𝑄 = 𝑁0 + 𝑁1 + 𝑁2 ,

𝑁0 = cos(𝜔)𝐼 , 𝑁1 = − sin(𝜔)𝜖[𝑛] , 𝑁2 = (1 − cos(𝜔))𝑛⊗2 .
(2.8)
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For example, the orientation 𝑄 = 𝑄(𝑛, 𝜔), which rotates vectors around
the axis 𝑛 = 𝑏3, is represented with respect to the basis {𝑏𝑖} as

𝑄(𝑏3, 𝜔) =
3∑︁

𝑖,𝑗=1
𝑄3,𝜔

𝑖𝑗 𝑏𝑖𝑗 , 𝑄3,𝜔
𝑖𝑗 =

⎛⎜⎝ 𝑐𝜔 −𝑠𝜔 0
𝑠𝜔 𝑐𝜔 0
0 0 1

⎞⎟⎠ , (2.9)
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where cos(𝜔) = 𝑐𝜔 and sin(𝜔) = 𝑠𝜔 have been abbreviated for future
expressions. This delivers for 𝑦 = 𝑄𝑥 with the linear combinations
𝑥 =

∑︀3
𝑖=1 𝑥𝑖𝑏𝑖 and 𝑦 =

∑︀3
𝑖=1 𝑦𝑖𝑏𝑖 the component relations

𝑦𝑖 =
3∑︁

𝑗=1
𝑄3,𝜔

𝑖𝑗 𝑥𝑗 =

⎛⎜⎝ 𝑥1𝑐𝜔 − 𝑥2𝑠𝜔

𝑥1𝑠𝜔 + 𝑥2𝑐𝜔

𝑥3

⎞⎟⎠ . (2.10)

The reader should consider this example to see, that the tensor represen-
tations of orientations used in this work might be different of the ones
used in literature, see, e.g., Bunge (1982), where the inverse/transposed
relations are used for the matrix components.

For a given orientation 𝑄, the rotation angle 𝜔 = 𝜔(𝑄) is obtained by

𝜔 = arccos
(︂

1
2 (tr (𝑄) − 1)

)︂
. (2.11)

If this parametrization is used, then d𝑄 is given as, see, for example,
Morawiec (2004),

d𝑄 = d𝑛 𝑠(𝜔)d𝜔 , 𝑠(𝜔) = sin2(𝜔/2)
2𝜋2 , (2.12)

where d𝑛 denotes the surface element of the unit sphere, denoted in
this work as 𝑆2. If the rotation axis is parametrized with spherical
coordinates

𝑛 = sin(𝜃) cos(𝜑)𝑏1 + sin(𝜃) sin(𝜑)𝑏2 + cos(𝜃)𝑏3 , (2.13)
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with 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋), then d𝑛 is given as

d𝑛 = sin(𝜃)d𝜑d𝜃 . (2.14)
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The integration over the unit sphere 𝑆2 is performed as

∫︁
𝑆2

1d𝑛 =
𝜋∫︁

𝜃=0

2𝜋∫︁
𝜑=0

1 sin(𝜃)d𝜑d𝜃 = 4𝜋 . (2.15)

The fulfillment of the normalization condition can be verified as

∫︁
𝑆𝑂(3)

1d𝑄 =
𝜋∫︁

𝜔=0

∫︁
𝑆2

1d𝑛 𝑠(𝜔)d𝜔 = 1 . (2.16)

Example orientation symmetry groups. Based on the parametriza-
tion Eq. (2.8) for an orientation 𝑄 = 𝑄(𝑛, 𝜔), several symmetry groups
𝑆𝑖 ⊂ 𝑆𝑂(3) ⊂ 𝑂𝑟𝑡ℎ of solid physical quantities with respect to an or-
thonormal vector basis {𝑏1, 𝑏2, 𝑏3} can be described. For second- and
fourth-order physical tensorial quantities, the groups

𝑆ort = {𝑆 | 𝑆 = 𝑄(𝑏𝑖, 𝑗 𝜋), 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {0, 1}} ,

𝑆hex = {𝑆 | 𝑆 = 𝑄(𝑏3, 𝑖 2𝜋/6) , 𝑖 ∈ {0, 1, . . . , 5}} ,

𝑆cub = {𝑆 | 𝑆 = 𝑄(𝑛𝑖, 𝜔𝑖), (𝑛𝑖, 𝜔𝑖) ∈ 𝑆cub
𝑛𝜔 } ,

(2.17)

with

𝑆cub
𝑛𝜔 = {(𝑏𝑖, 𝑗2𝜋/4), 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {0, 1, 2, 3}}

∪{((𝑏𝑖 + (−1)𝑘𝑏𝑗)/
√

2, 𝜋), 𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ {1, 2, 3}
, 𝑘 ∈ {1, 2}}

∪{((𝑏𝑖 + (−1)𝑙𝑏𝑗 + (−1)𝑚𝑏𝑘)/
√

3, 𝑛 2𝜋/3)}
, 𝑖 ̸= 𝑗 ≠ 𝑘, 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3}, 𝑙, 𝑚, 𝑛 ∈ {1, 2}}

(2.18)
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represent the classical rotational symmetry groups for orthotropic (with
respect to {𝑏𝑖}), hexagonal (with respect to 𝑏3) and cubic (with respect
to {𝑏𝑖}) solid materials.



2.2 Orientations

Example discretization of 𝑆𝑂(3). In this work, the parametrizations
Eq. (2.8) of 𝑄 = 𝑄(𝑛, 𝜔) and Eq. (2.13) of the rotation axis 𝑛 = 𝑛(𝜃, 𝜑)
are used to demonstrate several concepts over 𝑆𝑂(3). Based on these
representations, the simplest discretization of 𝑆𝑂(3) is the following

𝑄𝑛 = {𝑅 | 𝑅 = 𝑄(𝑛(𝜃, 𝜑), 𝜔), 𝜔 ∈ [𝜋]𝑛, 𝜃 ∈ [𝜋]𝑛, 𝜑 ∈ [2𝜋)𝑛} ,

[𝜋]𝑛 = {0, 𝜋/𝑛, . . . , 𝜋} , [2𝜋)𝑛 = {0, 2𝜋/𝑛, . . . , 2𝜋(1 − 1/𝑛)} .
(2.19)

Naturally, this discretization is not equidistant in 𝑆𝑂(3) and other much
better discretizations of 𝑆𝑂(3) can be used, e.g., the approximately
equidistant distribution of orientations, see, e.g., Helming (1997) or
Rosca et al. (2014). However, in this chapter, it is not essential to
investigate different discretizations of 𝑆𝑂(3), but to illustrate different
concepts using a discretization. The discretization 𝑄𝑛 of Eq. (2.19) has
been chosen in the present work, such that the reader can reproduce the
illustrated concepts of this chapter without unnecessary complications.

Alternatives. Alternative parametrizations can also be considered, e.g.,
different conventions for the Euler angles or the Rodrigues parameters
of a rotation connected to a corresponding quaternion, see, e.g., Bunge
(1982), Schaeben (1990), Morawiec (2004), Mardia and Jupp (2008). In
order to clearly address differences with parametrizations used in lit-
erature, the Euler angle parametrization of an orientation 𝑄 is shortly
sketched. First, we consider the orientation 𝑄3,𝜙1 which rotates vectors
around the axis 𝑛 = 𝑏3 with rotation angle 𝜔 = 𝜙1. This orientation
can be represented with respect to {𝑏𝑖} as 𝑄3,𝜙1 =

∑︀3
𝑖,𝑗=1 𝑄3,𝜙1

𝑖𝑗 𝑏𝑖𝑗 with
𝑄3,𝜙1

𝑖𝑗 taken from Eq. (2.9). The basis vector 𝑏𝑖 are mapped to the
vectors 𝑏′

𝑖 = 𝑄3,𝜙1𝑏𝑖 =
∑︀3

𝑗=1 𝑄3,𝜙1
𝑗𝑖 𝑏𝑗 , where {𝑏′

𝑖} forms an alternative
orthonormal basis and 𝑏′

𝑖 · 𝑏𝑗 = 𝑄3,𝜙1
𝑗𝑖 holds. For the following reasoning,
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the alternative representation 𝑄3,𝜙1 =
∑︀3

𝑖=1 𝑏′
𝑖 ⊗ 𝑏𝑖 is useful. Now, we

consider a second orientation 𝑄1,Φ which rotates vectors around the axis
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𝑛 = 𝑏′
1 with the angle 𝜔 = Φ. This second orientation can be represented

with respect to {𝑏′
𝑖} as

𝑄1,Φ = 𝑄(𝑏′
1, Φ) =

3∑︁
𝑖,𝑗=1

𝑄1,Φ
𝑖𝑗 𝑏′

𝑖𝑗 , 𝑄1,Φ
𝑖𝑗 =

⎛⎜⎝ 1 0 0
0 𝑐Φ −𝑠Φ

0 𝑠Φ 𝑐Φ

⎞⎟⎠ . (2.20)

The vectors 𝑏′
𝑖 are mapped through 𝑄1,Φ to the orthonormal vectors

𝑏′′
𝑖 = 𝑄1,Φ𝑏′

𝑖 =
∑︀3

𝑗=1 𝑄1,Φ
𝑗𝑖 𝑏′

𝑗 , and the orientation may be expressed as
𝑄1,Φ =

∑︀3
𝑖=1 𝑏′′

𝑖 ⊗ 𝑏′
𝑖. Finally, we consider a third orientation 𝑄3,𝜙2 rotat-

ing vectors around the axis 𝑛 = 𝑏′′
3 by the angle 𝜔 = 𝜙2. The orientation

is represented with respect to {𝑏′′
𝑖 } as 𝑄3,𝜙2 =

∑︀3
𝑖,𝑗=1 𝑄3,𝜙2

𝑖𝑗 𝑏′′
𝑖𝑗 , where

𝑄3,𝜙2
𝑖𝑗 is taken from Eq. (2.9). The vectors 𝑏′′

𝑖 are mapped through 𝑄3,𝜙2

to the vectors 𝑏′′′
𝑖 = 𝑄3,𝜙2𝑏′′

𝑖 =
∑︀3

𝑗=1 𝑄3,𝜙2
𝑗𝑖 𝑏′′

𝑗 , and the orientation may
be expressed as 𝑄3,𝜙2 =

∑︀3
𝑖=1 𝑏′′′

𝑖 ⊗ 𝑏′′
𝑖 . Now, the sequential application

of these three orientations can be computed and represented with respect
to {𝑏𝑖} as

𝑄𝜙1Φ𝜙2 = 𝑄3,𝜙2𝑄1,Φ𝑄3,𝜙1 =
3∑︁

𝑗=1
𝑏′′′

𝑗 ⊗ 𝑏𝑗

=
3∑︁

𝑖,𝑗,𝑘,𝑙=1
𝑄3,𝜙2

𝑘𝑗 𝑄1,Φ
𝑙𝑘 𝑄3,𝜙1

𝑖𝑙 𝑏𝑖𝑗 =
3∑︁

𝑖,𝑗=1
𝑄𝜙1Φ𝜙2

𝑖𝑗 𝑏𝑖𝑗

(2.21)

with the components

𝑄𝜙1Φ𝜙2
𝑖𝑗 =

3∑︁
𝑘,𝑙=1

𝑄3,𝜙1
𝑖𝑙 𝑄1,Φ

𝑙𝑘 𝑄3,𝜙2
𝑘𝑗

=

⎛⎜⎝ 𝑐𝜙1𝑐𝜙2 − 𝑐Φ𝑠𝜙1𝑠𝜙2 −𝑐Φ𝑐𝜙2𝑠𝜙1 − 𝑐𝜙1𝑠𝜙2 𝑠Φ𝑠𝜙1

𝑐𝜙2𝑠𝜙1 + 𝑐Φ𝑐𝜙1𝑠𝜙2 𝑐Φ𝑐𝜙1𝑐𝜙2 − 𝑠𝜙1𝑠𝜙2 −𝑐𝜙1𝑠Φ

𝑠Φ𝑠𝜙2 𝑐𝜙2𝑠Φ 𝑐Φ

⎞⎟⎠ .

(2.22)
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2.3 The crystallite orientation distribution function (CODF)

As stated before, the reader should keep in mind, that in some literature
inverse/transposed relations are used (cf. Bunge (1982), p.21, Eq. (2.50)).

2.3 The crystallite orientation
distribution function (CODF)

2.3.1 General properties

Definition. Polycrystals may show complex distributions of the ori-
entation of the crystallographic axes of a considered material. The
simplest description of a polycrystal is the consideration of the total
volume of the material having an orientation 𝑄 referred to the total
volume of the polycrystal, denoted as d𝑣(𝑄)/𝑣. This allows to define
an orientation density function 𝑓(𝑄) as d𝑣(𝑄)/𝑣 = 𝑓(𝑄)d𝑄, see Bunge
(1982). The density function 𝑓(𝑄) is sometimes referred to in the field of
quantitative texture analysis of polycrystalline materials as the crystallite
orientation distribution function (CODF), see Bunge (1982). Strictly
speaking, 𝑓(𝑄) is a density function, see, e.g., Morawiec and Pospiech
(1992) or Schaeben and van den Boogaart (2003), not a distribution
function, although this term is sometimes used in literature, see, e.g.,
Bunge (1982), Matthies et al. (1988), Morawiec (1989), Böhlke (2006),
Man and Huang (2012) and Adams et al. (2013). The CODF reflects
one-point statistical information of the polycrystal. Two-point statistical
information of the polycrystal can be represented by an orientation
correlation function, see, e.g., Morawiec and Pospiech (1992).

The CODF is non-negative and normalized, i.e.,

𝑓(𝑄) ≥ 0 ∀𝑄 ∈ 𝑆𝑂(3) ,

∫︁
𝑆𝑂(3)

𝑓(𝑄)d𝑄 = 1 . (2.23)
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2 Calculus of orientations

If a polycrystalline region is reoriented homogeneously in space with an
orientation 𝑅, then the orientation of each single crystal region in the
polycrystal is shifted from 𝑄 to 𝑅𝑄. It is self-evident that the relative
amounts of the orientations are kept the same, i.e.,

𝑅 ⋆

∫︁
𝑆𝑂(3)

𝑓(𝑄)𝑄 ⋆ D̃⟨𝑟⟩d𝑄 =
∫︁

𝑆𝑂(3)

𝑓(𝑅−1𝑄)𝑄 ⋆ D̃⟨𝑟⟩d𝑄 ∀𝑅 ∈ 𝑆𝑂(3)

(2.24)

holds due to (2.3) for the general CODF.

The orientation average of the real tensor valued D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩

with the CODF 𝑓(𝑄) may also be expressed based on Eq. (2.4) as

⟨𝑓,D⟨𝑟⟩⟩ =
∫︁

𝑆𝑂(3)

𝑓(𝑄)D⟨𝑟⟩(𝑄)d𝑄 . (2.25)

This notation will be used throughout this chapter.

Special cases. A single crystal with orientation �̂� is described by the
Dirac-distribution 𝑓(𝑄) = 𝛿(�̂�, 𝑄) which acts on a function ℎ(𝑄) as∫︁

𝑆𝑂(3)

𝛿(�̂�, 𝑄)ℎ(𝑄)d𝑄 = ℎ(�̂�) . (2.26)

A uniform distribution of orientations is described by 𝑓(𝑄) = 1, which
is referred to as the crystallographically isotropic state.

Symmetry groups. The CODF reflects the microscopic symmetry
group 𝑆micro of the considered material quantity, i.e.,

𝑆 ⋆ D̃⟨𝑟⟩ = D̃⟨𝑟⟩ ∀𝑆 ∈ 𝑆micro ⇒ 𝑓(𝑄𝑆) = 𝑓(𝑄) ∀𝑆 ∈ 𝑆micro . (2.27)
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2.3 The crystallite orientation distribution function (CODF)

Further, the macroscopic symmetry group 𝑆macro of the material region
is also reflected by the CODF,

𝑆 ⋆ ⟨𝑓,D⟨𝑟⟩⟩ = ⟨𝑓,D⟨𝑟⟩⟩ ∀𝑆 ∈ 𝑆macro ⇒ 𝑓(𝑆𝑄) = 𝑓(𝑄) ∀𝑆 ∈ 𝑆macro .

(2.28)

2.3.2 Central CODF (CCODF)

Orientation distance. A CODF is referred to as central in this work, if
it depends only on the distance �̂� between a central orientation �̂� and
the considered orientation 𝑄, where �̂� is defined as

�̂� = arccos
(︂

1
2

(︁
tr
(︁

𝑄�̂�
−1)︁

− 1
)︁)︂

∈ [0, 𝜋] . (2.29)

In a first attempt, a central CODF (CCODF) 𝑔(�̂�) might be interpreted as
a normal distribution in 𝑆𝑂(3), see, e.g., Matthies et al. (1988); however,
it should be noted that this interpretation is to be considered carefully,
as discussed in Schaeben (1992).

If the CCODF is considered centered around the identity, i.g., �̂� = 𝐼 ,
then the orientation distance �̂� (Eq. (2.29)) is equal to the rotation angle 𝜔

(Eq. (2.11)), and the CCODF 𝑔(𝜔) describes the distribution as a function
of the rotation angle independently of the rotation axis.

Example CCODFs. CCODFs have been used in the field of quanti-
tative texture analysis to approximate complex CODFs. Some model
CCODFs are the von Mises-Fisher CCODF

𝑔𝑀𝐹 (�̂�) = exp(𝑆 cos(�̂�))
𝐼0(𝑆) − 𝐼1(𝑆) , 𝑆 ≥ 0 ,

𝐼𝑛(𝑆) = 1
𝜋

𝜋∫︁
0

exp(𝑆 cos(𝑛𝜔)) cos(𝑛𝜔)d𝜔 ,

(2.30)
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2 Calculus of orientations

and the Lorentzian CCODF (also referred to as Cauchy distribution in
probability)

𝑔𝐿(�̂�) = (1 − 𝑆2) (1 + 𝑆2)2 + 4𝑆2 cos2(�̂�/2)
((1 + 𝑆2)2 − 4𝑆2 cos2(�̂�/2))2 , 0 ≤ 𝑆 < 1 , (2.31)

see, e.g., Matthies et al. (1988), Schaeben (1990), Morawiec (2004). The
parameter 𝑆 represents a concentration parameter. For a vanishing
parameter, i.e., 𝑆 = 0, the model CCODF 𝑔𝑋(�̂�) transitions into the
uniform CODF. An increasing parameter sharpens the model CCODF
around the central orientation �̂� indicating the tendency towards a
single crystal.

Approximation of CODFs. Depending on the observed material de-
formation during processing of polycrystalline materials, the CODF of
the investigated material may or may not be well representable by a
convex combination of 𝑛𝑐 model CCODFs 𝑔𝛼(�̂�𝛼) with respective central
orientations �̂�𝛼

𝑓(𝑄) =
𝑛𝑐∑︁

𝛼=1
𝑓𝛼𝑔𝛼(�̂�𝛼) , 𝑓𝛼 ≥ 0∀𝛼 ,

𝑛𝑐∑︁
𝛼=1

𝑓𝛼 = 1 ,

�̂�𝛼 = �̂�
⃒⃒⃒
�̂�=�̂�𝛼

= arccos
(︂

1
2

(︁
tr
(︁

𝑄�̂�
−1
𝛼

)︁
− 1
)︁)︂ (2.32)

The ansatz of Eq. (2.32) is known in the field of quantitative texture
analysis as texture component method, for small 𝑛𝑐. For large 𝑛𝑐, the
ansatz Eq. (2.32) may be considered as an approximation by convex
combinations of central / radially symmetric basis functions. The
different model functions 𝑔(�̂�𝛼) are referred to as components and
algorithms to determine the weight 𝑓𝛼, the central orientation and
possible concentration parameter of each component are presented in
literature, see, e.g., Wassermann and Grewen (1962), Lücke et al. (1981),
Schaeben (1996), Helming (1998) and Böhlke et al. (2006). However, the
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question if a complex CODF is representable by a convex combination of
CCODFs is not at the focus of this section. The question approached in
this section is: What is the relevant influence of texture on the orientation
average of a tensorial quantity if the general CODF is approximated as a
convex combination of CCODFs? Does the complete CCODF influence
the orientation average of the tensorial quantity or only a spectral part of
it? This will be analyzed in the following sections.

Fourier expansion of a CCODF in terms of texture eigenvalues. If a
CCODF centered around the identity, 𝑔(𝜔), is assumed square integrable,
𝑔(𝜔) ∈ 𝐿2(𝑆𝑂(3)), then its Fourier expansion exists, which is denoted in
this work as

𝑔(𝜔) =
∞∑︁

𝛼=0
(1 + 2𝛼)2𝜆𝛼𝜇𝛼(𝜔) . (2.33)

The ansatz functions 𝜇𝛼(𝜔) are constructed based on the Dirichlet kernels
𝐷𝛼(𝜔), see Savyolova (1984) or Schaeben (1992),

𝜇𝛼(𝜔) = 𝐷𝛼(𝜔)
(1 + 2𝛼) , 𝐷0(𝜔) = 1 , 𝐷𝛼(𝜔) = 1 + 2

𝛼∑︁
𝑘=1

cos(𝑘𝜔) . (2.34)

The Dirichlet kernels build an orthonormal system with respect to
𝐿2(𝑆𝑂(3)), while the ansatz functions build an orthogonal system, i.e.,

∫︁
𝑆𝑂(3)

𝜇𝛼(𝜔)𝜇𝛽(𝜔)d𝑄 =

⎧⎨⎩ 1
(1+2𝛼)2 𝛼 = 𝛽

0 else
. (2.35)

The scalar Fourier coefficients 𝜆𝛼 are determined as

𝜆0 = 1 , 𝜆𝛼 =
∫︁

𝑆𝑂(3)

𝑔(𝜔)𝜇𝛼(𝜔)d𝑄 . (2.36)
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2 Calculus of orientations

later in Section 2.5.2. Each texture eigenvalue is bounded from below
and above as follows

min
𝑄∈𝑆𝑂(3)

𝜇𝛼(𝜔) ≤ 𝜆𝛼 ≤ max
𝑄∈𝑆𝑂(3)

𝜇𝛼(𝜔) = 1 , (2.37)

where the minimum and maximum values are computed in the end
only with respect to the rotation angle 𝜔 since the functions 𝜇𝛼(𝜔) are
independent of the rotation axis. The bounds of the texture eigenvalues
are immediately visible by considering their definition as a simple
convex combination of the values of the corresponding 𝜇𝛼(𝜔) over
𝑆𝑂(3). The maximal value for all functions is found at the origin,
meaning that the texture eigenvalues equal unity for the limiting case of
the single crystal centered at �̂� = 𝐼 . For the isotropic case, i.e., 𝑔(𝜔) = 1,
all texture eigenvalues 𝜆𝛼 for 𝛼 ≥ 1 vanish.

(a) (b)
Figure 2.1: (a) Functions 𝜇𝛼(𝜔) for 𝛼 ∈ {1, 2, 3, 4}; (b) Set of all possible texture
eigenvalues (𝜆2, 𝜆4)
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The Fourier coefficients 𝜆𝛼 will be referred to as texture eigenvalues in
the present work, as in Lobos et al. (2017), for reasons to be discussed
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Fig. 2.1a. The maximum of all functions is found at the origin. It is also
visible that all 𝜇𝛼(𝜔) can change their sign and that |𝜇𝛼(𝜔)| ≤ 1 holds.
All these observations motivate the properties

1. that texture eigenvalues with negative sign exist,

2. that, due to the convex combination of the values of the functions
𝜇𝛼(𝜔), |𝜆𝛼| ≤ 1 holds, and

3. that the set of all possible texture eigenvalues of order 2 and 4 is
the convex hull of the curve described by the functions 𝜇𝛼(𝜔).

These properties are easily seen, e.g., by examination of the vector(︃
𝜆2

𝜆4

)︃
=

∫︁
𝑆𝑂(3)

𝑔(𝜔)
(︃

𝜇2(𝜔)
𝜇4(𝜔)

)︃
d𝑄 . (2.38)

Now consider the CCODF 𝑔𝛿(𝜔) = 𝛿(𝜔 − 𝜔0)/(4𝜋𝑠(𝜔0)) for 𝜔0 ∈ (0, 𝜋].
This CCODF represents a CODF accepting only orientations 𝑄 with
a distance equal to 𝜔0 from �̂� = 𝐼 . The artificial CCODF 𝑔𝛿(𝜔) might
not be easily found in nature, but it fulfills the normalization condi-
tion and is non-negative. Therefore, 𝑔𝛿(𝜔) is admissible as a CCODF.
Consideration of 𝑔𝛿(𝜔) in Eq. (2.38) delivers the value of the functions
𝜇𝛼(𝜔) at 𝜔 = 𝜔0 and the corresponding point in the 2-dimensional real
domain. For 𝜔0 minimizing 𝜇4(𝜔), see Fig. 2.1a, 𝜇2(𝜔) is positive and
the red point depicted in Fig. 2.1b is obtained. Analogously, the orange
point is obtained for 𝜔0 minimizing 𝜇2(𝜔). The black line is obtained
by considering all 𝜔0 ∈ (0, 𝜋], where the limit for 𝜔0 → 0 corresponds
to the single crystal with 𝜆𝛼 = 1. Now, any other CCODF 𝑔(𝜔) will
make a convex combination of the points on the black line, meaning
that, without further specification of the actual CCODF 𝑔(𝜔), all possible
texture eigenvalues (𝜆2, 𝜆4) lie in the convex hull of the curve. This set
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For the present work, the texture eigenvalues 𝜆2 and 𝜆4 are important
in the upcoming orientation averages in Chapter 3 and are discussed
briefly. First, consider the functions 𝜇𝛼(𝜔), 𝛼 ∈ {1, 2, 3, 4}, depicted in
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is depicted in green in Fig. 2.1b and will be addressed for the texture
eigenvalues (𝜆2, 𝜆4) as

Λ2,4 =

⎧⎪⎨⎪⎩(𝜆2, 𝜆4) |

(︃
𝜆2

𝜆4

)︃
=

∫︁
𝑆𝑂(3)

𝑔(𝜔)
(︃

𝜇2(𝜔)
𝜇4(𝜔)

)︃
d𝑄

⎫⎪⎬⎪⎭ , (2.39)

where 𝑔(𝜔) denotes a general CCODF.

Naturally, this reasoning can be extended to all texture eigenvalues
which belong to the infinite-dimensional convex set

Λ =

⎧⎪⎪⎨⎪⎪⎩(𝜆1, 𝜆2, ...) |

⎛⎜⎜⎝
𝜆1

𝜆2
...

⎞⎟⎟⎠ =
∫︁

𝑆𝑂(3)

𝑔(𝜔)

⎛⎜⎜⎝
𝜇1(𝜔)
𝜇2(𝜔)

...

⎞⎟⎟⎠d𝑄

⎫⎪⎪⎬⎪⎪⎭ , (2.40)

which is embedded in the rectangle described by Eq. (2.37). The set
Λ2,4 represents a projection of Λ and the gray lines depicted in Fig. 2.1b
represent the corresponding bounds defined in Eq. (2.37).

2.3.3 Tensorial Fourier expansion (TFE)

The tensorial Fourier expansion. If the general CODF 𝑓(𝑄) is as-
sumed square integrable, then it may be represented by a Fourier expan-
sion. In this work, following Guidi et al. (1992) and Lobos Fernández
and Böhlke (2018), the space of harmonic tensors is used to generate
real tensor valued functions for the representation of the CODF. A
harmonic tensor H′

⟨𝛼⟩ of 𝛼-th tensor-order is a fully symmetric tensor
fulfilling H′

⟨𝛼⟩[𝐼] = O⟨𝛼−2⟩ (referred to as traceless). The term harmonic
is referred to these tensors due to their connection to homogeneous
polynomials with vanishing Laplacian. Harmonic tensors will be de-
noted by a prime, as, e.g., H′

⟨𝛼⟩. A 𝛼-th-order harmonic tensor has, in
general, 1 + 2𝛼 degrees of freedom. We consider for each 𝛼-th-order an
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2.3 The crystallite orientation distribution function (CODF)

orthonormal basis of harmonic tensors {H′
⟨𝛼⟩𝛽} (i.e., H′

⟨𝛼⟩𝛽 · H′
⟨𝛼⟩𝛽

= 𝛿𝛽𝛽)
with 𝛽 = 1, . . . , 𝑛′

𝛼 ≤ 1 + 2𝛼. These basis harmonic tensors H′
⟨𝛼⟩𝛽 will

be denoted as reference tensors. The number 𝑛′
𝛼 of reference tensors of

𝛼-th-order will be discussed later based on the conditions implied by
the microscopic properties of the CODF. The reference tensors are now
used in order to generate the tensor functions

F′
⟨𝛼⟩𝛽(𝑄) = 𝑄 ⋆ H′

⟨𝛼⟩𝛽 , ‖F′
⟨𝛼⟩𝛽(𝑄)‖ = 1 , (2.41)

which form an orthogonal system with respect to 𝑆𝑂(3)

∫︁
𝑆𝑂(3)

F′
⟨𝛼⟩𝛽(𝑄) ⊗ F′

⟨�̃�⟩𝛽
(𝑄)d𝑄 =

⎧⎪⎨⎪⎩
I′
⟨2𝛼⟩

1 + 2𝛼
𝛼 = �̃� ∧ 𝛽 = 𝛽

O⟨𝛼+�̃�⟩ else
, (2.42)

where I′
⟨2𝛼⟩ denotes the identity on harmonic 𝛼-th-order tensors. Based

on the tensor functions given in Eq. (2.41), the tensorial Fourier expan-
sion (TFE) of the CODF may be expressed as

𝑓(𝑄) =
∞∑︁

𝛼=0

𝑛′
𝛼∑︁

𝛽=1
(1 + 2𝛼)V′

⟨𝛼⟩𝛽 · F′
⟨𝛼⟩𝛽(𝑄) , (2.43)

see also, e.g., Guidi et al. (1992), Zheng and Fu (2001), Böhlke (2005),
Kalisch and Bertram (2013) and Lobos Fernández and Böhlke (2018).
For the TFE given in Eq. (2.43), the harmonic 𝛼-th-order tensors V′

⟨𝛼⟩𝛽 ,
referred to in the field of texture analysis as (tensorial) texture coefficients,
are determined by

V′
⟨𝛼⟩𝛽 = ⟨𝑓,F′

⟨𝛼⟩𝛽⟩ , (2.44)

see Böhlke (2005; 2006). The zeroth-order reference tensor is defined
as H′

⟨0⟩ = 1, implying F′
⟨0⟩(𝑄) = 1 and V′

⟨0⟩ = 1. Due to the properties
of the CODF, the texture coefficients V′

⟨𝛼⟩𝛽 might be immediately inter-
preted as the convex combination of single crystal states of normalized
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2 Calculus of orientations

reference tensors. It follows that the norm of the texture coefficients is
bounded by ‖V′

⟨𝛼⟩𝛽‖ ∈ [0, 1], where the crystallographic isotropic state
𝑓(𝑄) = 1 delivers vanishing texture coefficients and a single crystal, i.e.,
𝑓(𝑄) = 𝛿(�̂�, 𝑄), possesses texture coefficients with maximum norm. It
is shortly remarked that, in some literature references, the factor (1 + 2𝛼)
is sometimes incorporated either in the reference tensors H′

⟨𝛼⟩𝛽 or in
the texture coefficients V′

⟨𝛼⟩𝛽 , changing their norms. In this work the
factor (1 + 2𝛼) is singled out in order to work with normalized reference
tensors and normalized texture coefficients.

Symmetry groups. Due to the properties of the CODF, see (2.27), the
reference tensors have to reflect the microscopic symmetry of the mate-
rial, i.e.,

H′
⟨𝛼⟩𝛽 = 𝑆 ⋆ H′

⟨𝛼⟩𝛽 ∀𝑆 ∈ 𝑆micro . (2.45)

These constraints can decrease the number of basis harmonic tensors 𝑛′
𝛼

needed for the CODF. For example, for triclinic single crystal behavior,
𝑆micro = {𝐼} and 𝑛′

4 = 1 + 2 × 4 = 9 hold, meaning that 9 linearly inde-
pendent fourth-order reference tensors are required for the CODF. But if,
e.g., cubic single crystal behavior is considered, then 𝑛′

4 = 1 ≤ 9 holds
and only one cubic fourth-order reference tensor exists.

Due to (2.28), the texture coefficients have to reflect the macroscopic
sample symmetry

V′
⟨𝛼⟩𝛽 = 𝑆 ⋆ V′

⟨𝛼⟩𝛽 ∀𝑆 ∈ 𝑆macro . (2.46)

These constraints allow reducing the number of free components of
the texture coefficients. For example, although a microscopically cubic
material might be considered, such that only one fourth-order cubic
reference tensor, say H′

⟨4⟩1, is needed, the corresponding fourth-order
texture coefficient, say V′

⟨4⟩1, might be arbitrarily triclinic. For this case
V′

⟨4⟩1 would have 9 free components. If it is known that the sample is,
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2.3 The crystallite orientation distribution function (CODF)

e.g., orthotropic, then the number of free components of the fourth-order
texture coefficient V′

⟨4⟩1 is reduced to 3, see, e.g., Appendix A.

Set of all possible texture coefficients. Due to the properties of the
general CODF, the definition of the texture coefficients Eq. (2.44) can be
interpreted as a convex combination of single crystal states. The set 𝒱 of
all possible texture coefficients is, therefore, the convex hull of all these
single crystal states. In order to show this, following Lobos Fernández
and Böhlke (2018), the notation

[[H′
⟨𝛼⟩𝛽 ]] = ( H′

⟨1⟩1, . . . ,H′
⟨2⟩1, . . . ) (2.47)

is introduced to address all normalized reference tensors as an infinite-
dimensional super vector. We address the rotation of such an infinite-
dimensional super vector by

𝑄 ⋆ [[H′
⟨𝛼⟩𝛽 ]] = [[𝑄 ⋆ H′

⟨𝛼⟩𝛽 ]] = [[F′
⟨𝛼⟩𝛽(𝑄)]] . (2.48)

The set of all possible texture coefficients 𝒱 is defined as

𝒱 =
{︁

[[V′
⟨𝛼⟩𝛽 ]] | V′

⟨𝛼⟩𝛽 = ⟨𝑓,F′
⟨𝛼⟩𝛽⟩

}︁
. (2.49)

with arbitrary CODF 𝑓(𝑄). The set 𝒱 corresponds to the limited mi-
crostructure hull of Adams et al. (2013), since 𝒱 considers only one-point
microstructure-information in Fourier space. The microstructure hull of
Adams et al. (2013) is defined as the set of all possible microstructures
that could exist in the material of interest, such that it contains the set 𝒱 .
The set

𝒱 =
{︃

[[V′
⟨𝛼⟩𝛽 ]] | V′

⟨𝛼⟩𝛽 =
∞∑︁

𝛾=1
𝑤𝛾F′

⟨𝛼⟩𝛽(�̂�𝛾), 𝑤𝛾 ≥ 0∀𝛾,

∞∑︁
𝛾=1

𝑤𝛾 = 1
}︃

(2.50)

31



2 Calculus of orientations

represents all possible convex combinations of all possible single crystal
states. It is obvious that 𝒱 ⊂ 𝒱 holds since convex combinations of Dirac
distributions are a special case of the general CODF. Consider now the
infinite-dimensional vector function

𝐼�̂�([[V′
⟨𝛼⟩𝛽 ]]) =

⎧⎨⎩0 [[V′
⟨𝛼⟩𝛽 ]] ∈ 𝒱

+∞ else
. (2.51)

This function is known in literature and is called the characteristic
function of the considered set (in this case, of 𝒱). The characteristic
function is a convex function. Jensen’s inequality states that for a random
variable 𝑋 , the value of its expectation value E[𝑋] mapped through a
convex function 𝜑 fulfills 𝜑(E[𝑋]) ≤ E[𝜑(𝑋)]. Jensen’s inequality can be
applied to the convex function 𝐼�̂� , such that

𝐼�̂�

⎛⎜⎝ ∫︁
𝑆𝑂(3)

𝑓(𝑄)[[F′
⟨𝛼⟩𝛽(𝑄)]]d𝑄

⎞⎟⎠ ≤
∫︁

𝑆𝑂(3)

𝑓(𝑄) 𝐼�̂�

(︁
[[F′

⟨𝛼⟩𝛽(𝑄)]]
)︁

⏟  ⏞  
=0

d𝑄

(2.52)

holds. The right-hand side of the inequality vanishes since every single
crystal state is contained in 𝒱 . It follows that the left-hand side has to
vanish for all 𝑓(𝑄), which means that all texture coefficients contained
in 𝒱 are also contained in 𝒱 , i.e., 𝒱 ⊂ 𝒱 . Finally, 𝒱 = 𝒱 holds.

It should be remarked that 𝒱 is a subset of the set

𝒩 = {[[V′
⟨𝛼⟩𝛽 ]] | ‖V′

⟨𝛼⟩𝛽‖ ≤ 1∀𝛼, 𝛽} . (2.53)

The set 𝒩 describes the crystallographic anisotropy strength of the
CODF, since single crystals are found on the boundary while polycrystals
with a smooth texture deliver texture coefficients towards the origin.
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2.3 The crystallite orientation distribution function (CODF)

Analytic expressions for 𝒩 are trivial. Analytic expressions for 𝒱 are
difficult to find, especially since these depend on the microscopic and
macroscopic symmetry groups. Even if only texture coefficients up to
tensor order 𝛼 are considered, with corresponding sets to be denoted
as 𝒱𝛼, 𝒱𝛼 and 𝒩𝛼, analytic expressions for the parametrization of the
respective sets are still cumbersome. But since 𝒱 = 𝒱 holds, subsets 𝒱sym

of 𝒱 defined as

𝒱sym =
{︁

[[V′
⟨𝛼⟩𝛽 ]] | V′

⟨𝛼⟩𝛽 =
𝑛∑︁

𝛾=1
𝑤𝛾gssym(F′

⟨𝛼⟩𝛽(�̂�𝛾)) ,

𝑤𝛾 ≥ 0∀𝛾,

𝑛∑︁
𝛾=1

𝑤𝛾 = 1
}︁ (2.54)

and corresponding projections 𝒱sym
𝛼 can be constructed by consideration

of a finite number 𝑛 of single crystal orientations (generated in this
work by 𝑄𝑛, see Eq. (2.19)) and group symmetrization (see Eq. (2.6))
if a special symmetry group 𝑆sym (see, e.g., Eq. (2.17)) is to be exam-
ined. Due to the construction based on single crystal orientations �̂�𝛾 ,
the original corresponding CODFs are based on Dirac distributions.
Some group symmetrizations will maximize the norm in the respective
Fourier directions. This does not have to be the case for every group
symmetrization of a single crystal orientation. Some of these group
symmetrizations approximate isotropic single crystal distributions up
to a respective tensor order and deliver, therefore, texture coefficients
near or even at the origin. But, since the corners of the set 𝒱 are single
crystal orientations, it is clear that the boundary of every symmetry
group dependent subset of 𝒱 is built by convex combinations of the
corners of 𝒱 . The convex set 𝒱sym is a trackable approximation of the
exact symmetry group subset of 𝒱 .

An example for polycrystals of hexagonal materials being axially sym-
metric to the direction 𝑏3 with aligned macroscopic hexagonal crystal-
lographic symmetry (i.e., also axially symmetric to the direction 𝑏3) is
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2 Calculus of orientations

presented based on 𝑆hex (see Eq. (2.17)) for clarification. In this example
only second- and fourth-order reference tensors will be investigated.
Only one second-order and only one fourth-order hexagonal reference
tensors exist. This implies that only one second-order V′

⟨2⟩1 and only one
fourth-order V′

⟨4⟩1 texture coefficient exist. If the sample is to be hexag-
onal with respect to 𝑏3, then V′

⟨2⟩1 and V′
⟨4⟩1 are fully determined by

their (V′
⟨2⟩1)11 = 𝑉 ′

11 and (V′
⟨4⟩1)1111 = 𝑉 ′

1111 components, respectively,
see Appendix A. The set 𝒱hex

4 is known from literature as, see, e.g.,
Nomura et al. (1970), Müller and Böhlke (2016) and, more recerently,
Lobos Fernández and Böhlke (2018),

𝒱hex
4 = {(𝑉 ′

11, 𝑉 ′
1111) | 10𝑉 ′

11
(︀√

6 − 21𝑉 ′
11
)︀

+ 12
√

70𝑉 ′
1111 + 7 ≥ 0

∧5
√

6𝑉 ′
11 + 7 ≥ 8

√
70𝑉 ′

1111} .

(2.55)

This set is depicted in yellow in Fig. 2.2.

Figure 2.2: Sets 𝒱hex
4 and 𝒩 hex

4 in yellow and blue, respectively; the convex hull of the red
points delivers the set 𝒱hex

4 for this section
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2.3 The crystallite orientation distribution function (CODF)

The corresponding set

𝒩 hex
4 = {(𝑉 ′

11, 𝑉 ′
1111) | 6(𝑉 ′

11)2 ≤ 1 ∧ 280(𝑉 ′
1111)2 ≤ 9} (2.56)

is depicted in blue in Fig. 2.2. Finally, using 𝑆hex (see Eq. (2.17)), group
symmetrization (see Eq. (2.6)), and 𝑄𝑛 with 𝑛 = 4 (see Eq. (2.19)), the set
𝒱hex

4 is generated as the convex hull of the red points depicted in Fig. 2.2.
For this case, all red points of 𝒱hex

4 lie on the boundary of 𝒱hex
4 .

The delineation of the set 𝒱 is an important task not only for its math-
ematical meaning but also relevant for material models of polycrys-
talline and anisotropic media. Different models have been proposed
in the literature to explore the evolution of the texture coefficients, see,
e.g., Clément and Coulomb (1979), Morawiec et al. (1991), Böhlke and
Bertram (2001b), Böhlke (2001), Böhlke (2006), Li et al. (2007), where
the approach of Böhlke (2006) is assured to deliver texture coefficients
in 𝒱 . Whatever model is proposed, it is crucial to investigate if the
proposed model / differential equation for the evolution of the texture
coefficients yields quantities at all times which stay in 𝒱 . To be clear,
e.g., a material model might always deliver harmonic tensors in 𝒩 . But
these tensors are not real texture coefficients if they are not in 𝒱 . If this
is the case for a model, it would imply that the chosen material model
delivers non-physical behavior, since there exists no CODF (and no real
polycrystal or physical system) with texture coefficients outside of 𝒱 .
This naturally also holds for models which might try to describe the
evolution of texture eigenvalues in Λ. If an analytic description of 𝒱 is
not at hand, then the motivated subset 𝒱sym

𝛼 up to 𝛼 tensor order offers a
trackable option, where the single crystal orientations are to be chosen
"properly". This could be achieved (1) with approximately equidistant
distribution of a fixed but high number of orientations in 𝑆𝑂(3), see, e.g.,
Helming (1997) or Rosca et al. (2014), or (2) using a simple discretization
as 𝑄𝑛 in Eq. (2.19), or (3) by consideration of iterations of increasing
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2 Calculus of orientations

number single crystal orientations until the volume of the generated
𝒱sym

𝛼 reaches a stationary numerical value under prescribed tolerances.

The generation of 𝒱sym
𝛼 is illustrative and instructive. It offers not only

a trackable generating option but also trackable deductive perspective.
If texture coefficients with degrees of freedom on the boundary of the
respective 𝒱𝛼 are needed (e.g., due to optimization based on the texture
coefficients), then single crystal CODFs can be tracked delivering these
texture coefficients with maximum possible anisotropy. Alternatively,
if the generated boundary points of 𝒱sym

𝛼 cover the origin, as, e.g., in
Fig. 2.2, then an infinite number of convex combinations and corre-
sponding CODFs of the single crystal states can be generated to deliver
vanishing texture coefficients up to tensor order 𝛼. For exact solutions
for the special case of 𝛼 = 4 and polycrystals of cubic materials, see
Bertram et al. (2000) and Böhlke and Bertram (2001a), and Gaffke et al.
(2002) for polycrystals of general materials.

Alternative complex-valued Fourier expansion. The CODF may also
be expanded in terms of complex-valued functions 𝑇 𝑙

𝑚𝑛(𝑄) as

𝑓(𝑄) =
∞∑︁

𝑙=0

𝑙∑︁
𝑚,𝑛=−𝑙

𝐶𝑙
𝑚𝑛𝑇 𝑙

𝑚𝑛(𝑄) , (2.57)

see, e.g., Roe (1965) and Bunge (1982). The complex-valued functions
𝑇 𝑙

𝑚𝑛(𝑄), with complex conjugate 𝑇 *𝑙
𝑚𝑛(𝑄), are usually chosen as to fulfill

⟨𝑇 𝑙
𝑚𝑛, 𝑇 *�̃�

�̃��̃�⟩ = 𝛿𝑙�̃�𝛿𝑚�̃�𝛿𝑛�̃�

(1 + 2𝑙) , (2.58)

e.g., by using Wigner 𝐷-functions, see Wigner (1931). The Fourier
coefficients 𝐶𝑙

𝑚𝑛 are determined by

𝐶𝑙
𝑚𝑛 = (1 + 2𝑙)⟨𝑓, 𝑇 *𝑙

𝑚𝑛⟩ . (2.59)
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The reader should note, that the Fourier expansion Eq. (2.57) has no
tensor character. The TFE, see Eq. (2.43), has tensor character such that
the tensorial texture coefficients V′

⟨𝛼⟩𝛽 may be more attractive for the
description of physical quantities in micromechanical models, instead
of the coefficients 𝐶𝑙

𝑚𝑛. Nevertheless, the coefficients 𝐶𝑙
𝑚𝑛 are vastly

used in the field of texture analysis. For readers having access to the
coefficients 𝐶𝑙

𝑚𝑛 through experiments, the relation of these coefficients
with the tensorial texture coefficients V′

⟨𝛼⟩𝛽 may be useful in order to
use the measured data in micromechanical models given in terms of the
tensorial texture coefficients. Based on the properties of the respective
function spaces spanned by the functions F′

⟨𝛼⟩𝛽(𝑄) and 𝑇 𝑙
𝑚𝑛(𝑄), it can

be shown that the relations

𝐶𝑙
𝑚𝑛 = (1 + 2𝑙)

𝑛′
𝑙∑︁

𝛽=1
V′

⟨𝑙⟩𝛽 · ⟨F′
⟨𝑙⟩𝛽 , 𝑇 *𝑙

𝑚𝑛⟩ ,

V′
⟨𝛼⟩𝛽 =

𝛼∑︁
𝑚,𝑛=−𝛼

𝐶𝛼
𝑚𝑛⟨𝑇 𝛼

𝑚𝑛,F′
⟨𝛼⟩𝛽⟩

(2.60)

hold, see Lobos Fernández and Böhlke (2018) for a detailed discus-
sion and examples. The relation Eq. (2.60) is shortly motivated by
consideration of the TFE for general triclinic materials based on the
full space of harmonic tensors with orthonormal basis {Ĥ′

⟨𝛼⟩𝛽} with

𝛽 = 1, . . . , 1 + 2𝛼 and Ĥ′
⟨𝛼⟩𝛽 · Ĥ′

⟨𝛼⟩𝛽
= 𝛿𝛽𝛽 . The corresponding functions

F̂′
⟨𝛼⟩𝛽(𝑄) = 𝑄 ⋆ Ĥ′

⟨𝛼⟩𝛽 are also harmonic tensors such that they may also

be represented in terms of the basis {Ĥ′
⟨𝛼⟩𝛽} for corresponding 𝛼, say,

F̂′
⟨𝛼⟩𝛽(𝑄) =

∑︀1+2𝛼
𝛾=1 𝑓𝛼𝛽𝛾(𝑄)Ĥ′

⟨𝛼⟩𝛽 . The real-valued functions 𝑓𝛼𝛽𝛾(𝑄)
form an orthogonal system with respect to 𝐿2(𝑆𝑂(3)) and fulfill due
to Eq. (2.42) ⟨𝑓𝛼𝛽𝛾 , 𝑓�̃�𝛽𝛾⟩ = 𝛿𝛼�̃�𝛿𝛽𝛽𝛿𝛾𝛾/(1 + 2𝛼). The functions 𝑓𝛼𝛽𝛾(𝑄)
span for given 𝛼 the same (1 + 2𝛼)2-dimensional real-valued function
space 𝑀𝛼 as the functions 𝑇 𝑙

𝑚𝑛(𝑄) for given 𝑙 = 𝛼, see Guidi et al. (1992).
For alternative real-valued functions 𝑇 𝑙

𝑚𝑛(𝑄), see, e.g., Bunge (1982)
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or Schaeben and van den Boogaart (2003). Based on the orthogonality
of the function spaces 𝑀𝛼 and 𝑀�̃� for 𝛼 ̸= �̃�, the relations Eq. (2.60)
are obtained for triclinic materials and all special elasticity classes with
corresponding symmetry groups, since the symmetry group dependent
functions F′

⟨𝛼⟩𝛽 are representable as linear combinations of F̂′
⟨𝛼⟩𝛽 .

2.4 Harmonic decomposition

Introductory example: decomposition of a second-order tensor. The
set of second-order tensors is shortly addressed as 𝑇2. A second-order
tensor �̃� ∈ 𝑇2 can be decomposed as

�̃� = 𝐼[ℎ̃] + 𝜖[ℎ̃] + �̃�
′

(2.61)

where the scalar ℎ̃, the vector ℎ̃ and the harmonic tensor �̃�
′

contain the
9 degrees of freedom of �̃�. The isotropic part 𝐼[ℎ̃] = ℎ̃𝐼 , the skewed part
𝜖[ℎ̃] and the harmonic part �̃�

′
of �̃� belong to separate vector spaces

which are invariant under the action of 𝑆𝑂(3). These vector spaces (i.e.,
the spaces of isotropic, 𝑇 𝐼

2 , skewed, 𝑇 𝑠
2 , and harmonic, 𝑇 ℎ

2 , second order
tensors) can not be decomposed into smaller vector spaces which are
also invariant under the action of 𝑆𝑂(3), i.e., these vector spaces are
irreducible (under the action of 𝑆𝑂(3)). Each of the tensors 𝐼[ℎ̃], 𝜖[ℎ̃], �̃�

′

is referred to as an irreducible tensor. The space 𝑇 𝐼
2 is one dimensional;

it is induced by a scalar ℎ̃ mapped into 𝑇 𝐼
2 by the isotropic tensor 𝐼 ∈ 𝑇 𝐼

2 .
The space 𝑇 𝑠

2 is three dimensional; it is induced by the (axial) vector ℎ̃

mapped into 𝑇 𝑠
2 by the isotropic tensor 𝜖 ∈ 𝑇 𝐼

3 , 𝑇3 being the set of third
order tensors.

Definition. From the theory of group representations for 𝑆𝑂(3), see
Schouten (1924) and Gel’fand et al. (1963), it is known that decompo-
sitions of a general 𝑟-th-order tensor D̃⟨𝑟⟩ in terms of tensors being
irreducible under the action of elements of 𝑆𝑂(3) exist. The irreducible
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2.4 Harmonic decomposition

tensors might be given in terms of isotropic (𝑟 + 𝛼)-th-order tensors
J⟨𝑟+𝛼⟩𝛾 and harmonic 𝛼-th-order tensors H′

⟨𝛼⟩𝛾 , such that the following
decomposition

D̃⟨𝑟⟩ =
𝑟∑︁

𝛼=0

𝑛𝑟𝛼∑︁
𝛾=1

J⟨𝑟+𝛼⟩𝛾 [H̃′
⟨𝛼⟩𝛾 ] = hd(H̃′

⟨𝛼⟩𝛾) (2.62)

exists. Each irreducible tensor J⟨𝑟+𝛼⟩𝛾 [H̃′
⟨𝛼⟩𝛾 ] from a corresponding

irreducible tensor valued vector space is induced by a harmonic tensor
H̃′

⟨𝛼⟩𝛾 . This decomposition is known as the harmonic decomposition, see,
e.g., Jerphagnon et al. (1978) or Auffray (2015). The harmonic tensors
H̃′

⟨𝛼⟩𝛾 are referred to as harmonic parts. The harmonic parts for 𝛼 = 0
are scalars and represent, together with the corresponding isotropic
tensors J⟨𝑟⟩𝛾 , the isotropic part of the decomposed tensor. The harmonic
parts for 𝛼 ≥ 1 carry the anisotropy of the tensor and are referred to
as anisotropic harmonic parts. The harmonic decomposition is not
unique, i.e., a different set of suitable harmonic parts with corresponding
isotropic tensors can also represent the original tensor, see, e.g., Auffray
(2015). For algebraic approaches to such decompositions for arbitrary
𝑟-th-order tensors, see Spencer (1970), Zheng and Zou (2000) and Zou
et al. (2001).

Due to the isotropy of the tensors J⟨𝑟+𝛼⟩𝛾 , any orthogonal transformation
applied to the original tensor is transferred to the harmonic parts

𝑅 ⋆ D̃⟨𝑟⟩ =
𝑟∑︁

𝛼=0

𝑛𝑟𝛼∑︁
𝛾=1

J⟨𝑟+𝛼⟩𝛾 [𝑅 ⋆ H̃′
⟨𝛼⟩𝛾 ] ∀𝑅 ∈ 𝑂𝑟𝑡ℎ . (2.63)

This implies that the symmetry group of D̃⟨𝑟⟩ is transferred to all
anisotropic harmonic parts. These properties are naturally transferred
to orientations 𝑄 ∈ 𝑆𝑂(3) ⊂ 𝑂𝑟𝑡ℎ and corresponding symmetry groups
𝑆 ⊂ 𝑆𝑂(3) ⊂ 𝑂𝑟𝑡ℎ.
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2 Calculus of orientations

The harmonic parts H̃′
⟨𝛼⟩𝛾 carry the degrees of freedom and the sym-

metry group of the decomposed tensor D̃⟨𝑟⟩, i.e., they depend on D̃⟨𝑟⟩.
The isotropic tensors J⟨𝑟+𝛼⟩𝛾 map linearly from the space of harmonic
tensors and are constant tensors, i.e., independent of D̃⟨𝑟⟩.

The number 𝑛𝑟𝛼 in Eq. (2.62) gives the number of independent harmonic
tensors of tensor order 𝛼 for the harmonic decomposition of an 𝑟-th-order
tensor. Depending on (1) index symmetries, (2) the symmetry group
and (3) the specific components of the tensor D̃⟨𝑟⟩, different numbers
𝑛𝑟𝛼 of independent harmonic tensors exist. For example, for an arbitrary
fourth-order tensor (𝑟 = 4), three scalars (𝛼 = 0), six vectors (𝛼 = 1),
six second-order tensors (𝛼 = 2), three third-order tensors (𝛼 = 3) and
one fourth-order tensor (𝛼 = 4 = 𝑟) exist, which contain the total of
3 × 1 + 6 × 3 + 6 × 5 + 3 × 7 + 1 × 9 = 81 degrees of freedom of the gen-
eral fourth-order tensor, see Schouten (1924). If the fourth-order tensor
D̃⟨𝑟⟩ is minor symmetric in the left and right index pairs, then two
scalars, one vector, three second-order tensors, one third-order tensor
and one fourth-order tensor exist, which deliver the expected 36 degrees
of freedom. If the minor symmetric fourth-order tensor D̃⟨𝑟⟩ possesses
𝑆𝑂(3) as its symmetric group (isotropic case), then only the scalars do
not vanish. Finally, the components of this isotropic tensor can be chosen
as to deliver equal scalar harmonic parts.

Representation through TFE. Consider the square integrable 𝑟-th-
order tensor valued function D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩ and its TFE based on
the functions F′

⟨𝛼⟩𝛽(𝑄), see Eq. (2.41), as for the CODF, see Eq. (2.43),

D⟨𝑟⟩(𝑄) =
∞∑︁

𝛼=0

𝑛′
𝛼∑︁

𝛽=1
(1 + 2𝛼)V⟨𝑟+𝛼⟩𝛽 [F′

⟨𝛼⟩𝛽(𝑄)] . (2.64)

The tensorial Fourier coefficients V⟨𝑟+𝛼⟩𝛽 map linearly from the space of
𝛼-th-order harmonic tensors into the space of arbitrary 𝑟-th-order

40



2.4 Harmonic decomposition

tensors. The tensorial Fourier coefficients V⟨𝑟+𝛼⟩𝛽 are determined based
on the orthogonality of the functions F′

⟨𝛼⟩𝛽 as

V⟨𝑟+𝛼⟩𝛽 = ⟨D⟨𝑟⟩,F′
⟨𝛼⟩𝛽⟩ =

∫︁
𝑆𝑂(3)

D⟨𝑟⟩(𝑄) ⊗ F′
⟨𝛼⟩𝛽(𝑄)d𝑄 . (2.65)

Now consider the harmonic decomposition of D̃⟨𝑟⟩. Equation (2.63) and a
set of basis harmonic 𝛼-th-order tensors B′

⟨𝛼⟩𝛽 with 𝛽 = 1, . . . , 𝑛′
𝛼 deliver

D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩ =
𝑟∑︁

𝛼=0

𝑛𝑟𝛼∑︁
𝛾=1

J⟨𝑟+𝛼⟩𝛾

⎡⎣ 𝑛′
𝛼∑︁

𝛽=1
ℎ̃𝛼𝛾𝛽𝑄 ⋆ B′

⟨𝛼⟩𝛽

⎤⎦ ,

H̃′
⟨𝛼⟩𝛾 =

𝑛′
𝛼∑︁

𝛽=1
ℎ̃𝛼𝛾𝛽B′

⟨𝛼⟩𝛽 .

(2.66)

Rearranging the sums yields

D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩ =
𝑟∑︁

𝛼=0

𝑛′
𝛼∑︁

𝛽=1
Ṽ⟨𝑟+𝛼⟩𝛽 [𝑄 ⋆ B′

⟨𝛼⟩𝛽 ] ,

Ṽ⟨𝑟+𝛼⟩𝛽 =
𝑛𝑟𝛼∑︁
𝛾=1

ℎ̃𝛼𝛾𝛽J⟨𝑟+𝛼⟩𝛾

(2.67)

Consideration of the symmetry group dependent reference tensors H′
⟨𝛼⟩𝛽

for the basis harmonic tensors B′
⟨𝛼⟩𝛽 delivers the perspective on Eq. (2.67)

(compared to Eq. (2.64)) as the up to the tensor order 𝑟 finite TFE of
D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩ and the harmonic decomposition Eq. (2.62) as the
finite TFE evaluated at 𝑄 = 𝐼 . The corresponding isotropic tensorial
Fourier coefficients V⟨𝑟+𝛼⟩𝛽 = Ṽ⟨𝑟+𝛼⟩𝛽 are isotropic and material de-
pendent. The functions 𝑄 ⋆ B′

⟨𝛼⟩𝛽 = 𝑄 ⋆ H′
⟨𝛼⟩𝛽 = F′

⟨𝛼⟩𝛽(𝑄) are material
independent but symmetry group dependent.
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2 Calculus of orientations

Example: fourth-order tensor with minor symmetries. A fourth-
order tensor D̃ with minor symmetries, i.e., �̃�𝑖𝑗𝑘𝑙 = �̃�𝑗𝑖𝑘𝑙 = �̃�𝑖𝑗𝑙𝑘, but
not necessarily major symmetric can be decomposed as proposed in
Spencer (1970) into its harmonic decomposition (see also Forte and
Vianello (1997)). For the case of an additionally major symmetric tensor,
see Forte and Vianello (1996). In this work, the harmonic decomposition
of Forte and Vianello (1997) is presented following Lobos et al. (2017)
and Lobos Fernández and Böhlke (2018) as follows

D̃ = hd(ℎ̃𝐼1, ℎ̃𝐼2, ℎ̃, �̃�
′
1, �̃�

′
2, �̃�

′
3, �̃�

′
⟨3⟩, H̃′)

= ℎ̃𝐼1P1 + ℎ̃𝐼2P2 + J⟨5⟩[ℎ̃] + J⟨6⟩1[�̃� ′
1] + J⟨6⟩2[�̃� ′

2]

+J⟨6⟩3[�̃� ′
3] + J⟨7⟩[�̃�

′
⟨3⟩] + H̃′ .

(2.68)

The scalars ℎ̃𝐼1,2, the vector ℎ̃ and the fully symmetric and traceless
tensors �̃�

′
𝛽 , �̃�

′
⟨3⟩ and H̃′ reflect the 2 × 1 + 3 + 3 × 5 + 7 + 9 = 36 free

components of minor symmetric fourth-order tensors. The isotropic
tensors J⟨𝛼⟩𝛽 are given explicitly in Lobos et al. (2017), see alterna-
tively Appendix B. The scalars ℎ̃𝐼1,2 represent the isotropic part of
the decomposed tensor, while the rest describes the anisotropy and
symmetry group of the tensor. A straightforward implementation in
Mathematica® 11 for the computation of this harmonic decomposition is
given together with examples in Lobos et al. (2017). If the considered
tensor D̃ is additionally major symmetric, i.e., �̃�𝑖𝑗𝑘𝑙 = �̃�𝑘𝑙𝑖𝑗 , then the
harmonic parts ℎ̃, �̃�

′
3 and �̃�

′
⟨3⟩ vanish.
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2.5 The orientation average

2.5 The orientation average

2.5.1 Orientation average of a minor
symmetric fourth-order tensor

The orientation average ⟨𝑓,D⟩ based on a minor symmetric fourth-order
single crystal tensor D̃ is now investigated. Two main perspectives on the
orientation average will be considered in Section 2.5.2 and Section 2.5.3.

The first one is the consideration of the orientation average as the simple
linear map of the single crystal behavior D̃ as follows

⟨𝑓,D⟩ = Q𝑓
⟨8⟩[D̃] , Q𝑓

⟨8⟩ =
∫︁

𝑆𝑂(3)

𝑓(𝑄)𝑄⋆4d𝑄 , (2.69)

with the Rayleigh power 𝑄⋆𝑟, defined as 𝑄⋆𝑟[K⟨𝑟⟩] = 𝑄 ⋆ K⟨𝑟⟩ and com-
ponents (𝑄⋆𝑟)𝑖1...𝑖𝑟𝑗1...𝑗𝑟

= 𝑄𝑖1𝑗1 . . . 𝑄𝑖𝑟𝑗𝑟
. As a linear map, several de-

compositions of Q𝑓
⟨8⟩ might be of interest. From the point of view of

orientation averaging, the polar decomposition Q𝑓
⟨8⟩ = R𝑓

⟨8⟩U
𝑓
⟨8⟩ with

stretching major symmetric positive semi-definite part U𝑓
⟨8⟩ and unitary

part R𝑓
⟨8⟩ (sometimes corresponding to a rotation) is of special interest. If

the stretching part is positive definite, then the unitary part is unique.
Two main special cases are important here. For a single crystal with
orientation �̂�, i.e., 𝑓(𝑄) = 𝛿(�̂�, 𝑄), Q𝛿

⟨8⟩ = R𝛿
⟨8⟩U

𝛿
⟨8⟩ with U𝛿

⟨8⟩ = I⟨8⟩ and

R𝛿
⟨8⟩ = �̂�

⋆4
clearly holds, I⟨8⟩ being the full identity on fourth-order

tensors which is positive definite. For the crystallographic isotropic case,
i.e., 𝑓(𝑄) = 1, the averaging tensor is given by Q1

⟨8⟩ = R1
⟨8⟩U

1
⟨8⟩ with the

identity on isotropic fourth-order tensors as stretching part U1
⟨8⟩ = I𝐼

⟨8⟩
and R1

⟨8⟩ = 𝑄⋆4 with arbitrary 𝑄 ∈ 𝑆𝑂(3). In this case, U1
⟨8⟩ contracts the

single crystal behavior to its isotropic part, mapping any anisotropic part
to zero. This means that, with respect to general fourth-order tensors, the
identity on isotropic tensors has vanishing eigenvalues and is, therefore,
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2 Calculus of orientations

positive semi-definite. As a consequence, R1
⟨8⟩ is not unique. This first

perspective on the orientation average will be considered in Section 2.5.2
for CCODFs, as investigated in Lobos et al. (2017).

The second perspective on the orientation average is the direct appli-
cation of the general harmonic decomposition Eq. (2.62) and its special
case Eq. (2.68) for the minor symmetric tensor D̃. Due to linearity and
the property Eq. (2.63), the general orientation average is transmitted
to the harmonic parts. For the orientation average ⟨𝑓,D⟩, the isotropic
part remains unchanged while the orientation average of the first- to
fourth-order harmonic parts is to be examined. This second perspective
will be taken into consideration in Section 2.5.3, as in Lobos Fernández
and Böhlke (2018).

2.5.2 Orientation average based on CCODFs

The orientation average based on Q𝑔
⟨2𝑟⟩. In this section, we consider

the orientation average ⟨𝑔,D⟨𝑟⟩⟩ of a general 𝑟-th-order tensor D̃⟨𝑟⟩

based on a CCODF 𝑔(�̂�) centered around �̂�, such that the 2𝑟-th-order
orientation averaging tensor

Q𝑔
⟨2𝑟⟩ =

∫︁
𝑆𝑂(3)

𝑔(�̂�)𝑄⋆𝑟d𝑄 (2.70)

is to be investigated. The tensor Q𝑔
⟨2𝑟⟩ has been investigated in Lobos

et al. (2017) for 𝑟 ∈ {1, 2, 3, 4} with detailed derivation. The objective of
this section is to extend these results for arbitrary tensor order 𝑟.
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2.5 The orientation average

on the shift property Eq. (2.24) of the general CODF, the ori
entation average might be shifted with the central orientation �̂� of the
CCODF

Q𝑔
⟨2𝑟⟩ = �̂�

⋆𝑟
∫︁

𝑆𝑂(3)

𝑔(𝜔)𝑄⋆𝑟d𝑄 = �̂�
⋆𝑟

𝜋∫︁
𝜔=0

𝑔(𝜔)
∫︁
𝑆2

𝑄⋆𝑟d𝑛 𝑠(𝜔) d𝜔 .

(2.71)

Now, consider the parametrization of the orientation 𝑄 in terms of
dyadic powers 𝑁0,1,2 of the rotation axis 𝑛. The integral over 𝑆2

eliminates any odd dyadic powers of 𝑛. This holds due to the isotropic
averaging over 𝑆2 such that for each 𝑛 its counterpart −𝑛 is weighted
equally for all odd dyadic powers of 𝑛 which then cancel each other out.
Only even dyadic powers of 𝑛 survive and the resulting integrals over 𝑆2

are isotropic tensors. This is shown directly with the property Eq. (2.24)
and 𝑓(𝑄) = 1. Now, let 𝑑𝐼

2𝑟 denote the dimension of the space of 2𝑟-th-
order isotropic tensors and B𝐼

⟨2𝑟⟩𝛽 isotropic basis tensors. The isotropic
tensor

∫︀
𝑆2

𝑄⋆𝑛d𝑛 must be representable by a linear combination of the
isotropic basis tensors. The 𝜔 dependent coefficients 𝑐𝛽(𝜔) of the linear
combination can be computed with standard projections and solving the
corresponding linear system

∫︁
𝑆2

𝑄⋆𝑟d𝑛 =
𝑑𝐼

2𝑟∑︁
𝛽=1

𝑐𝛽(𝜔)B𝐼
⟨2𝑟⟩𝛽 ,

∫︁
𝑆2

𝑄⋆𝑟 · B𝐼
⟨2𝑟⟩𝛼d𝑛 =

𝑑𝐼
2𝑟∑︁

𝛽=1
(B𝐼

⟨2𝑟⟩𝛼 · B𝐼
⟨2𝑟⟩𝛽)𝑐𝛽(𝜔) .

(2.72)

The scalars 𝑄⋆𝑟 · B𝐼
⟨2𝑟⟩𝛼 can be examined more clearly with the projection

𝑝(𝑛, 𝜔) = 𝑄⊗𝑟 · B⟨2𝑟⟩ = (𝑁0 + 𝑁1 + 𝑁2)⊗𝑟 · B⟨2𝑟⟩ (2.73)
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2 Calculus of orientations

with an arbitrary isotropic 2𝑟-th-order isotropic tensor B⟨2𝑟⟩. This is pos-
sible since the Rayleigh power 𝑄⋆𝑟 can be transformed into the dyadic
power 𝑄⊗𝑟 with a corresponding index permutation, which can be
transferred through the scalar product to the isotropic tensor. Consider,
e.g., 𝑟 = 2, 𝑝2 = 𝑄⋆2 · B𝐼 and an isotropic tensor B𝐼 . Short computation
shows 𝑝2 =

∑︀3
𝑖,𝑗,𝑘,𝑙=1 𝑄𝑖𝑘𝑄𝑗𝑙𝐵

𝐼
𝑖𝑗𝑘𝑙 =

∑︀3
𝑖,𝑗,𝑘,𝑙=1 𝑄𝑖𝑗𝑄𝑘𝑙𝐵𝑖𝑗𝑘𝑙 defining B

by 𝐵𝑖𝑗𝑘𝑙 = 𝐵𝐼
𝑖𝑘𝑗𝑙, such that 𝑝2 = 𝑄⋆2 · B𝐼 = 𝑄⊗2 · B holds. Any index

permutation / transposition of an isotropic tensor delivers just another
isotropic tensor. The scalar 𝑝 is an isotropic function of the rotation axis
𝑛 of 𝑄, where 𝑝(𝑛, 𝜔) = 𝑝(𝑅𝑛, 𝜔)∀𝑅 ∈ 𝑂𝑟𝑡ℎ is shown by transferring 𝑅

to the isotropic tensor B⟨2𝑟⟩. In order to see this, consider first 𝑄(𝑅𝑛, 𝜔),
which can be reformulated as 𝑄(𝑅𝑛, 𝜔) = 𝑅 ⋆ (𝑄(𝑛, 𝜔)). Then, based
on (𝑅 ⋆ 𝐴)⊗𝑟 = 𝑅 ⋆ (𝐴⊗𝑟) and (𝑅 ⋆ A⟨𝑟⟩) · Â⟨𝑟⟩ = A⟨𝑟⟩ · (𝑅T ⋆ Â⟨𝑟⟩), it
follows, e.g., 𝑄(𝑅𝑛, 𝜔)⊗2 · B = 𝑄(𝑛, 𝜔)⊗2 · (𝑅T ⋆ B) = 𝑄(𝑛, 𝜔)⊗2 · B
for all orthogonal 𝑅 due to the isotropy of B. Analogous reasoning
implies the isotropy of 𝑝 with respect to 𝑛, such that 𝑝 does not depend
on 𝑛. Further, the scalar 𝑝 is an even function of the rotation angle 𝜔, i.e.,
𝑝(𝑛, 𝜔) = 𝑝(𝑛, −𝜔) holds. This is immediately shown by considering
𝑝(𝑛, −𝜔) = 𝑝(𝑅𝑛, 𝜔) with 𝑅 = −𝐼 ∈ 𝑂𝑟𝑡ℎ and by using the isotropy of
𝑝 with respect to 𝑛. Now, with finite powers of sin(𝜔) and cos(𝜔) up to
𝑟 for 𝑄⋆𝑟 (which, based on Eulers formula, can be expressed as linear
combinations of sin(𝑘𝜔) and cos(𝑘𝜔) for 𝑘 ≤ 𝑟), the scalar 𝑝 (which is
an even function of 𝜔) can be represented by a finite series up to 𝑟 of
the functions 𝜇𝛼(𝜔), see Eq. (2.34). This implies that every projection
𝑄⋆𝑛 · B𝐼

⟨2𝑟⟩𝛼 can be represented as a linear combination of the functions
𝜇𝛼(𝜔) up to 𝑟.
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functions 𝜇𝛼(𝜔)
up to 𝑟, say, 𝑐𝛽(𝜔) =

∑︀𝑟
𝛼=1 𝑐𝛽𝛼

∫︀
𝑆2

d𝑛𝜇𝛼(𝜔). Therefore, replacing∑︀𝑑𝐼
2𝑟

𝛽=1 𝑐𝛽𝛼B𝐼
⟨2𝑟⟩𝛽 = B̂𝐼

⟨2𝑟⟩𝛼, the alternative representation

∫︁
𝑆2

𝑄⋆𝑟d𝑛 =
𝑟∑︁

𝛼=0

∫︁
𝑆2

d𝑛 𝜇𝛼(𝜔) B̂𝐼
⟨2𝑟⟩𝛼 (2.74)

is obtained. It should be noted that 𝑟 ≤ 𝑑𝐼
2𝑟 holds and, therefore, the

representation Eq. (2.74) delivers a special decomposition of the general
2𝑟-th-order isotropic tensor. The functions 𝜇𝛼(𝜔) build an orthogonal sys-
tem, see Eq. (2.35). Multiplying Eq. (2.74) with 𝑠(𝜔)𝜇�̃�(𝜔), see Eq. (2.12),
and integrating over 𝜔, see Eq. (2.16), allows to isolate the tensor B̂𝐼

⟨2𝑟⟩�̃�.

The isotropic tensors B̂𝐼
⟨2𝑟⟩𝛼 are, therefore, identified as

B̂𝐼
⟨2𝑟⟩𝛼 = (1 + 2𝛼)2

∫︁
𝑆𝑂(3)

𝜇𝛼(𝜔)𝑄⋆𝑟d𝑄 , (2.75)

with B̂𝐼
⟨2𝑟⟩0 being clearly the identity on isotropic 𝑟-th-order tensors

I𝐼
⟨2𝑟⟩, since B̂𝐼

⟨2𝑟⟩0 corresponds to the orientation average with 1 = 𝜇0(𝜔).

It should be noted that for 𝛼 > 𝑟, B̂𝐼
⟨2𝑟⟩𝛼 = O⟨2𝑟⟩ holds, meaning that

the finite series given Eq. (2.74) could be extended to infinity. The
identity I𝐼

⟨2𝑟⟩ maps an arbitrary D̃⟨𝑟⟩ into its isotropic part. Based on
this property, it can be shown that the scalar 𝑄⋆𝑟 · I𝐼

⟨2𝑟⟩ is a constant,
i.e., 𝑄⋆𝑟 · I𝐼

⟨2𝑟⟩ does not depend on 𝜔, and is, therefore, proportional to

𝜇0(𝜔) = 1, see Eq. (2.34). This implies that all B̂𝐼
⟨2𝑟⟩𝛼, 𝛼 ≥ 1, are orthogo-

nal to B̂𝐼
⟨2𝑟⟩0 = I𝐼

⟨2𝑟⟩. Further, by representing the Dirac distribution as

𝛿(𝜔) =
∑︀∞

𝛼=0(1 + 2𝛼)2𝜇𝛼(𝜔),
∑︀𝑟

𝛼=0 B̂𝐼
⟨2𝑟⟩𝛼 =

∑︀∞
𝛼=0 B̂𝐼

⟨2𝑟⟩𝛼 = I⟨2𝑟⟩ holds,
I⟨2𝑟⟩ being the identity on general 𝑟-th-order tensors. This allows to
compute the last tensor B̂𝐼

⟨2𝑟⟩𝑟 for fixed 𝑟 based on the previous tensors.
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2 Calculus of orientations

As a result, the general averaging tensor Q𝑔
⟨2𝑟⟩ can be represented in

terms of the texture eigenvalues 𝜆𝛼 of the general CCODF as follows

Q𝑔
⟨2𝑟⟩ = �̂�

⋆𝑟

(︃
𝑟∑︁

𝛼=0
𝜆𝛼B̂𝐼

⟨2𝑟⟩𝛼

)︃

= �̂�
⋆𝑟

(︃
I𝐼
⟨2𝑟⟩ +

𝑟−1∑︁
𝛼=1

𝜆𝛼B̂𝐼
⟨2𝑟⟩𝛼 + 𝜆𝑟B̂𝐼

⟨2𝑟⟩𝑟

)︃
.

(2.76)

This result generalizes the results of Lobos et al. (2017) to arbitrary tensor
order and might be applied to arbitrarily non-symmetric 𝑟-th-order
tensors. The limits for crystallographic isotropy (𝜆𝛼 → 0, 𝛼 ≥ 1) and for
the single crystal (𝜆𝛼 → 1) are visible in the obtained representation.

It should be noted that due to the linear map over isotropic tensors, if a
general 𝑟-th-order tensor D̃⟨𝑟⟩ is mapped over Q𝑔

⟨2𝑟⟩, then the symmetry
group of D̃⟨𝑟⟩ is automatically transferred to Q𝑔

⟨2𝑟⟩[D̃⟨𝑟⟩], only reoriented

by the central orientation �̂�. This means, that, e.g., if the single crystal
property D̃⟨𝑟⟩ is monoclinic, then Q𝑔

⟨2𝑟⟩[D̃⟨𝑟⟩] is also monoclinic, only

with respect to the reference crystallographic axes rotated with �̂�.

There are cases for which the isotropic tensors B̂𝐼
⟨2𝑟⟩𝛼 posses projec-

tor properties, i.e., B̂𝐼
⟨2𝑟⟩𝛼B̂

𝐼
⟨2𝑟⟩𝛽 = O⟨2𝑟⟩∀𝛼 ̸= 𝛽, B̂𝐼

⟨2𝑟⟩𝛼B̂
𝐼
⟨2𝑟⟩𝛼 = B̂𝐼

⟨2𝑟⟩𝛼 for

given 𝛼. Due to the orthogonality of B̂𝐼
⟨2𝑟⟩𝛼, 𝛼 ≥ 1, with respect to I𝐼

⟨2𝑟⟩,

the tensors B̂𝐼
⟨2𝑟⟩𝛼, 𝛼 ≥ 1 must map into anisotropic spaces of 𝑟-th-order

tensors. For these cases, the linear combination of the isotropic tensors
B̂𝐼

⟨2𝑟⟩𝛼 delivers a special projector decomposition of the general isotropic
2𝑟-th-order tensor and the averaging tensor Q𝑔

⟨2𝑟⟩ might be decomposed
into its polar decomposition Q𝑔

⟨2𝑟⟩ = R𝑔
⟨2𝑟⟩U

𝑔
⟨2𝑟⟩ with

R𝑔
⟨2𝑟⟩ = �̂�

⋆𝑟

(︃
𝑟∑︁

𝛼=0
sgn(𝜆𝛼)B̂𝐼

⟨2𝑟⟩𝛼

)︃
, U𝑔

⟨2𝑟⟩ =
𝑟∑︁

𝛼=0
|𝜆𝛼|B̂𝐼

⟨2𝑟⟩𝛼 . (2.77)
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2.5 The orientation average

Now, the linear map of an arbitrary 𝑟-th-order tensor D̃⟨𝑟⟩ over Q𝑔
⟨2𝑟⟩ for

these cases can be discussed. The tensor D̃⟨𝑟⟩ is first decomposed into
orthogonal parts by the tensors B̂𝐼

⟨2𝑟⟩𝛼. These orthogonal parts of D̃⟨𝑟⟩

might be contracted concerning their norms by the absolute value of the
anisotropic texture eigenvalues |𝜆𝛼| ≤ 1. But this contraction is applied
only the the anisotropic parts of the mapped tensor D̃⟨𝑟⟩, since 𝜆0 = 1
holds. The tensor U𝑔

⟨2𝑟⟩ is, therefore, considered as a contraction map.
The map over R𝑔

⟨2𝑟⟩ can be interpreted as the application of an eventual
reflection of different anisotropic parts for sgn(𝜆𝛼) = −1, 𝛼 ≥ 1, and a
final reorientation with the central orientation �̂�. These results are not
only in agreement with the results obtained in Lobos et al. (2017) for
Q𝑔

⟨2𝑟⟩, 𝑟 = 1, 2, 3, and 4, but hold for arbitrary tensor-order.

Cases with sgn(𝜆𝛼) = −1, 𝛼 ≥ 1 might be interesting for tensorial physi-
cal quantities D̃⟨𝑟⟩ needed for certain applications but where an inversion
of the anisotropic properties directions may be beneficial, see Lobos et al.
(2017). Not all anisotropic property directions can be inverted by a
single CCODF, since there exists no CCODF delivering only negative
anisotropic texture eigenvalues. This is proven already by contem-
plation of the functions 𝜇𝛼(𝜔), 𝛼 ∈ {1, 2, 3, 4}, in Fig. 2.1a and consid-
eration of the artificial CCODF 𝑔𝛿(𝜔) = 𝛿(𝜔 − 𝜔0)/(4𝜋𝑠(𝜔0)). There
exists no 𝜔0 such that 𝜇𝛼(𝜔0) < 0 ∀𝛼 ∈ {1, 2, 3, 4}. This implies, due
to convexity, that no convex combination, i.e., no 𝑔(𝜔), exists such that
𝜆𝛼 < 0 ∀𝛼 ∈ {1, 2, 3, 4}. This naturally rules out the general case for all
texture eigenvalues. Nevertheless, certain cases, e.g., 𝜆𝛼 < 0 ∀𝛼 ∈ {1, 2}
or ∀𝛼 ∈ {2, 4}, as visible in Fig. 2.1b, are possible, and more importantly,
independently of the symmetry group of the single crystal behavior. This
proves the existence of CCODFs (and therefore of general CODFs) being
able to invert the direction of certain anisotropic properties indepen-
dently of the kind of anisotropy itself.
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2 Calculus of orientations

For clarification, consider the case 𝑟 = 2. With B̂𝐼
⟨4⟩0 = P1, B̂𝐼

⟨4⟩1 = P3

and B̂𝐼
⟨4⟩2 = P2, the averaging tensor for this case is given by

Q𝑔
⟨4⟩ = �̂�

⋆2
(P1 + 𝜆2P2 + 𝜆1P3) , (2.78)

see Lobos et al. (2017). An arbitrary second-order tensor �̃� (corre-
sponding to a single crystal material behavior) is decomposed by
the projectors P𝑖 into its isotropic, symmetric traceless and skewed
part. The symmetry group of �̃� is transferred to Q𝑔

⟨4⟩[�̃�]. Only
the anisotropic parts of �̃� might be contracted with respect to their
norm. An inversion of the anisotropic directions is always possible,
i.e., sgn(𝜆𝛼) = −1 ∀𝛼 ∈ {1, 2}, independently of the anisotropic symmetry
group of �̃�. This is proven with 𝑔𝛿(𝜔) = 𝛿(𝜔 − 𝜔0)/(4𝜋𝑠(𝜔0)) and any
𝜔0 yielding 𝜇𝛼(𝜔0) < 0∀𝛼 ∈ {1, 2}, see Fig. 2.1a.

The isotropic tensors B̂𝐼
⟨2𝑟⟩𝛼, see (2.75), for 𝑟 ∈ {1, 2, 3, 4} have been

determined computationally and are given explicitly in Appendix B.
These tensors might be used for a rapid computation of the respective
orientation averages of arbitrary 𝑟-th-order tensors. For an extension
of these computations, algorithms implemented in Mathematica® 11 are
also given in Appendix B in order to generate bases of isotropic tensors
of arbitrary order which can then be used for the determination of the
tensors B̂𝐼

⟨2𝑟⟩𝛼 for 𝑟 ≥ 5.

Average of a minor symmetric fourth-order tensor. We consider now
the orientation average ⟨𝑔,D⟩ for a minor symmetric fourth-order tensor
D̃. Either, the tensor Q𝑔

⟨8⟩ can be considered in its full form, or, using
the harmonic decomposition of D̃, solely the corresponding orientation
averages of the first-order to fourth-order harmonic parts ℎ̃, �̃�

′
𝛽 , �̃�

′
⟨3⟩

and H̃′ are to be examined for a CCODF. In this work, the complete tensor
Q𝑔

⟨8⟩ is determined with the isotropic tensors B̂𝐼
⟨8⟩𝛼 given in Appendix B.
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2.5 The orientation average

Lengthy but simple computations with Q𝑔
⟨8⟩ deliver then

⟨𝑔,D⟩ = �̂� ⋆ hd(ℎ̃𝐼1, ℎ̃𝐼2, 𝜆1ℎ̃, 𝜆2�̃�
′
1, 𝜆2�̃�

′
2, 𝜆2�̃�

′
3, 𝜆3�̃�

′
⟨3⟩, 𝜆4H̃′) ,

(2.79)

see also Lobos et al. (2017), meaning that only the harmonic parts of
D̃ undergo an eventual contraction, direction inversion and an equal
reorientation with �̂�. The result Eq. (2.79) is the representation of the
orientation average based on a general CCODF in terms of its central
orientation and its texture eigenvalues 𝜆𝛼 up to 𝛼 = 4 = 𝑟. Higher-order
texture eigenvalues have no influence on this orientation average. This
representation of the orientation average based on CCODFs is actually
already visible through the result Eq. (2.76). The advantage of the results
Eq. (2.76) and Eq. (2.79) is that without further specification of the actual
CCODF, the relevant influence of all possible CCODFs on the orientation
average can be investigated by varying the central orientation and the
relevant texture eigenvalues in their respective subspace of Λ, see Eq. (2.40).
This representation offers a finite and low dimensional parametrization
of the orientation average based on CCODFs for all anisotropy classes in
terms of variables (texture eigenvalues) belonging to a convex set. These
properties of the given representation might be attractive for material
design purposes for polycrystalline materials and other optimization
applications.

If a CODF 𝑓(𝑄) is to be estimated with a convex combination of CCODFs
as in Eq. (2.32), then the orientation average ⟨𝑓,D⟩ evaluates to

⟨𝑓,D⟩ =
𝑛𝑐∑︁

𝛽=1
𝑓𝛽⟨𝑔𝛽 ,D⟩ , (2.80)

where the orientation average of the 𝛽 mode ⟨𝑔𝛽 ,D⟩ depends on the
corresponding 𝛽 central orientation �̂�𝛽 and 𝛽 texture eigenvalues (𝜆𝛼)𝛽 .
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2 Calculus of orientations

For minor and major symmetric tensors D̃, ℎ̃ = 𝑜, �̃�
′
3 = 0 and �̃�

′
⟨3⟩ = 0⟨3⟩

hold. This case implies that the relevant influence of a CCODF on
⟨𝑔,D⟩ is reflected by the reorientation with �̂� and by the texture
eigenvalues (𝜆2, 𝜆4) ∈ Λ2,4, see Eq. (2.39) and Fig. 2.1b. This low
dimensional representation and the convex set Λ2,4 are relevant for
the homogenization of linear elastic properties of Chapter 3.

2.5.3 Orientation average based on the TFE

Representation in terms of texture coefficients. As briefly motivated
in Section 2.5.1, the orientation average of an arbitrary 𝑟-th-order tensor
D̃⟨𝑟⟩ can be compactly investigated based on the TFE. Consider the gen-
eral harmonic decomposition Eq. (2.66) with the normalized reference
tensors H′

⟨𝛼⟩𝛽 as basis tensors for the respective harmonic spaces

D⟨𝑟⟩(𝑄) = 𝑄 ⋆ D̃⟨𝑟⟩ =
𝑟∑︁

𝛼=0

𝑛𝑟𝛼∑︁
𝛾=1

J⟨𝑟+𝛼⟩𝛾

⎡⎣ 𝑛′
𝛼∑︁

𝛽=1
ℎ̃𝛼𝛾𝛽𝑄 ⋆ H′

⟨𝛼⟩𝛽

⎤⎦ ,

H̃′
⟨𝛼⟩𝛾 =

𝑛′
𝛼∑︁

𝛽=1
ℎ̃𝛼𝛾𝛽H′

⟨𝛼⟩𝛽 .

(2.81)

The orientation average is transferred to the harmonic parts, or equally,
to tensor functions F′

⟨𝛼⟩𝛽(𝑄) = 𝑄 ⋆ H′
⟨𝛼⟩𝛽 . The orientation average

⟨𝑓,D⟨𝑟⟩⟩ based on an arbitrary 𝑟-th-order tensor D̃⟨𝑟⟩ is expressed in
terms of the texture coefficients of the CODF 𝑓(𝑄) by

⟨𝑓,D⟨𝑟⟩⟩ =
𝑟∑︁

𝛼=0

𝑛𝑟𝛼∑︁
𝛾=1

J⟨𝑟+𝛼⟩𝛾

⎡⎣ 𝑛′
𝛼∑︁

𝛽=1
ℎ̃𝛼𝛾𝛽V′

⟨𝛼⟩𝛽

⎤⎦ . (2.82)

This representation of the orientation average equals the one given in
Ganster and Gems (1985) and Guidi et al. (1992) but shows explicitly
the different parts influencing the orientation average. The influence
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2.5 The orientation average

of the single crystal material is reflected by the scalars ℎ̃𝛼𝛾𝛽 while the
relevant influence of the crystallographic texture is reflected by the
texture coefficients up to 𝑟-th-order. Higher-order texture coefficients of
the CODF do not affect the orientation average. The representation is
naturally linear in the single crystal behavior and in the texture.

The representation Eq. (2.82) offers, compared to the full function space
of CODFs, a finite and low dimensional representation of the orientation
average in terms of the texture coefficients belonging to the convex set
𝒱 , see Eq. (2.49). For the result Eq. (2.82) the subspace 𝒱𝑟 suffices
for the exploration of the influence of all CODFs on the orientation
average ⟨𝑓,D⟨𝑟⟩⟩. These properties make the result Eq. (2.82) attractive
for applications and optimizations over the respective finite-dimensional
convex sets.

For a minor symmetric fourth-order single crystal property D̃, ⟨𝑓,D⟩ is
represented explicitly as

⟨𝑓,D⟩ = hd
(︁

ℎ̃𝐼1, ℎ̃𝐼2,

𝑛′
1∑︁

𝛽=1
ℎ̃11𝛽V′

⟨1⟩𝛽 ,

𝑛′
2∑︁

𝛽=1
ℎ̃21𝛽V′

⟨2⟩𝛽 ,

𝑛′
2∑︁

𝛽=1
ℎ̃22𝛽V′

⟨2⟩𝛽 ,

𝑛′
2∑︁

𝛽=1
ℎ̃23𝛽V′

⟨2⟩𝛽 ,

𝑛′
3∑︁

𝛽=1
ℎ̃31𝛽V′

⟨3⟩𝛽 ,

𝑛′
4∑︁

𝛽=1
ℎ̃41𝛽V′

⟨4⟩𝛽

)︁
(2.83)

with

ℎ̃ =
𝑛′

1∑︁
𝛽=1

ℎ̃11𝛽H′
⟨1⟩𝛽 , �̃�

′
1 =

𝑛′
2∑︁

𝛽=1
ℎ̃21𝛽H′

⟨2⟩𝛽 , �̃�
′
2 =

𝑛′
2∑︁

𝛽=1
ℎ̃22𝛽H′

⟨2⟩𝛽 ,

�̃�
′
3 =

𝑛′
2∑︁

𝛽=1
ℎ̃23𝛽H′

⟨2⟩𝛽 , �̃�
′
⟨3⟩ =

𝑛′
3∑︁

𝛽=1
ℎ̃31𝛽H′

⟨3⟩𝛽 , H̃′ =
𝑛′

4∑︁
𝛽=1

ℎ̃41𝛽H′
⟨4⟩𝛽 .

(2.84)
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2 Calculus of orientations

For minor and major symmetric D̃, ℎ̃ = 𝑜, �̃�
′
3 = 0 and �̃�

′
⟨3⟩ = 0⟨3⟩ hold.

Therefore, for minor and major symmetric D̃ its orientation average
is described explicitly only depending on second- and fourth-order
texture coefficients. This case will be important for many expressions in
Chapter 3.

Connection to CCODFs via texture coefficients. The Dirichlet kernels
𝐷𝑟(𝜔) and associated functions 𝜇𝑟(𝜔) fulfill the identity∫︁

𝑆2

𝜇𝑟(𝜔)d𝑛 =
∫︁
𝑆2

H′
⟨𝑟⟩ · (𝑄 ⋆ H′

⟨𝑟⟩)d𝑛 (2.85)

for arbitrary normalized harmonic reference tensor H′
⟨𝑟⟩. This property

implies that the orientation average of an arbitrary harmonic 𝑟-th-order
tensor H′

⟨𝑟⟩ with F′
⟨𝑟⟩(𝑄) = 𝑄 ⋆ H′

⟨𝑟⟩ based on a CCODF evaluates to

⟨𝑔,F′
⟨𝑟⟩⟩ = �̂� ⋆ (𝜆𝑟H′

⟨𝑟⟩) . (2.86)

This result is shown as follows. The general orientation average of
a harmonic tensor H′

⟨𝑟⟩ delivers due to linearity also a harmonic ten-
sor ⟨𝑓,F′

⟨𝑟⟩⟩. This also holds for the orientation average based on a
CCODF centered around the identity, which might be represented as
⟨𝑔,F′

⟨𝑟⟩⟩|�̂�=𝐼
= 𝜆𝑟H′

⟨𝑟⟩ + R′
⟨𝑟⟩, with a harmonic tensor R′

⟨𝑟⟩ representing

the eventual non-vanishing rest. The rest R′
⟨𝑟⟩, if it does not vanish, has

to be a linear function of H′
⟨𝑟⟩, say, R′

⟨𝑟⟩ = L′
⟨2𝑟⟩[H′

⟨𝑟⟩], where L′
⟨2𝑟⟩ has to

map from harmonic into harmonic tensors. The tensor R′
⟨𝑟⟩ would have

to be orthogonal to H′
⟨𝑟⟩ since 𝜆𝑟(H′

⟨𝑟⟩ · H′
⟨𝑟⟩) = H′

⟨𝑟⟩ · ⟨𝑔,F′
⟨𝑟⟩⟩|�̂�=𝐼

holds

for arbitrary H′
⟨𝑟⟩ due to Eq. (2.85). This implies H′

⟨𝑟⟩ · L′
⟨2𝑟⟩[H′

⟨𝑟⟩] = 0 for
arbitrary H′

⟨𝑟⟩, which can only be fulfilled if L′
⟨2𝑟⟩ maps every harmonic

tensor into the zero tensor. This implies that the tensor R′
⟨𝑟⟩ vanishes.

If the general CODF is represented as a convex combination of CCODFs,
as in Eq. (2.32), then the general harmonic decomposition and the
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result Eq. (2.86) allow to express the general orientation average ⟨𝑓,D⟩
depending on the central orientations and texture eigenvalues of the
CCODFs. Due to the properties of the harmonic decomposition, the
general orientation average is transferred to the harmonic parts which
can be represented as linear combinations of the normalized reference
tensors, as in Eq. (2.84). The general orientation average of the normal-
ized reference tensors equals per definition the texture coefficients and
can be expressed under these considerations using Eq. (2.86) as

V′
⟨𝛼⟩𝛽 = ⟨𝑓,F′

⟨𝛼⟩𝛽⟩ =
𝑛𝑐∑︁

𝛾=1
𝑓𝛾⟨𝑔𝛾 ,F′

⟨𝛼⟩𝛽⟩ =
𝑛𝑐∑︁

𝛾=1
𝑓𝛾�̂�𝛾 ⋆ ((𝜆𝛼)𝛾H′

⟨𝛼⟩𝛽) .

(2.87)

This can be applied to the general orientation average of arbitrary order
tensors with arbitrary symmetries and helps to connect more clearly
the results Eq. (2.79), Eq. (2.80) and Eq. (2.83) for fourth-order minor
symmetric tensors. Alternatively, the result Eq. (2.87) offers a more
trackable parametrization of texture coefficients as a truncated series
regarding central orientations and texture eigenvalues belonging to
the set Λ. This may be used together with the motivated set 𝒱sym, see
Eq. (2.54), to delineate subsets of the set of all possible texture coefficients
𝒱 for symmetry groups of interest. As an example, consider polycrystals
of hexagonal materials with aligned macroscopic hexagonal symmetry,
as discussed in Section 2.3.3 and depicted in Fig. 2.2. If only one
CCODF is used in Eq. (2.87) with �̂� = 𝐼 , for the micro-macro-hexagonal
case 𝑉 ′

11 = 𝜆2/
√

6 and 𝑉 ′
1111 = 3𝜆4/(2

√
70) hold. The symmetry group

independent set Λ2,4 is rescaled accordingly, as depicted in green in
Fig. 2.3. As expected, the set Λ2,4 is a subset of 𝒱hex

4 and covers already
with a single CCODF a large part of 𝒱hex

4 (≈ 59%).
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2 Calculus of orientations

Figure 2.3: Rescaled set Λ2,4 in green together with the sets 𝒱hex
4 (light green region), 𝒱hex

4
(convex combination of the red points) and 𝒩 hex

4 (blue region)

2.5.4 Linearization with respect to texture

It should be remarked that, if only weak texture changes concerning a
reference CODF 𝑓𝑟(𝑄) are visible in experiments or certain applications,
then a linearization of several physical quantities with respect to the
texture might be considered. For example, the second-order tensor

𝐴 =
∫︁

𝑣

ℎ(𝑥)𝛼(𝑥)d𝑣 (2.88)

is considered as a functional of the scalar field ℎ(𝑥) with given second-
order tensor field 𝛼(𝑥) over a material domain 𝑣 over the three-
dimensional physical space. For a compact notation, 𝐴 = 𝐴(ℎ) and
𝐴𝑟 = 𝐴(ℎ𝑟) for a reference scalar function ℎ𝑟(𝑥) will be used. The
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variation 𝛿𝐹 and variational derivative (𝛿𝐹 /𝛿ℎ)(𝑔) are defined as



2.5 The orientation average

𝛿𝐹 = d𝐹 (ℎ + 𝜖𝛿ℎ)
d𝜖

⃒⃒⃒
𝜖=0

= 𝛿𝐹

𝛿ℎ
(𝛿ℎ) , (2.89)

where the variational derivative is linear in its argument. Trivially, for
the functional 𝐴 hold

𝛿𝐴 =
∫︁

𝑣

𝛿ℎ(𝑥)𝛼(𝑥)d𝑣 ,
𝛿𝐴

𝛿ℎ
(𝑔1 + 𝑔2) =

∫︁
𝑣

(𝑔1(𝑥) + 𝑔2(𝑥))𝛼(𝑥)d𝑣 .

(2.90)

The variation of the inverse is obtained as 𝛿𝐴−1 = (−1)𝐴−1(𝛿𝐴)𝐴−1,
such that the variational linearization of the inverse of 𝐴 with respect to
ℎ(𝑥) near a scalar function ℎ𝑟(𝑥) is expressed as

𝐴−1 ≈ 𝐴−1
𝑟 + 𝛿𝐴−1

𝛿ℎ

⃒⃒⃒
ℎ=ℎ𝑟

(ℎ − ℎ𝑟)

= 𝐴−1
𝑟 − 𝐴−1

𝑟

(︁
𝛿𝐴
𝛿ℎ (ℎ − ℎ𝑟)

)︁
𝐴−1

𝑟

= 𝐴−1
𝑟 − 𝐴−1

𝑟 (𝐴 − 𝐴𝑟)𝐴−1
𝑟

= 2𝐴−1
𝑟 − 𝐴−1

𝑟 𝐴𝐴−1
𝑟 .

(2.91)

In this work, bounds and approximations for the effective fourth-order
stiffness tensor C̄ of multiphase polycrystalline materials will be con-
sidered. The expression given in Eq. (2.91), see also Lobos Fernández
and Böhlke (2018), might be used for linearization of several expressions
concerning nonlinear expressions in terms of the stiffness depending on
the CODF (e.g., the Reuss average and HS bounds for elastic properties
of polycrystals, see Reuss (1929), Hashin and Shtrikman (1962), Willis
(1977)) or other density functions. For example, the inverse of the general
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orientation average might be linearized with respect to a given reference
CODF 𝑓𝑟(𝑄) as follows

(⟨𝑓,D⟨𝑟⟩⟩)−1 ≈ 2(⟨𝑓𝑟,D⟨𝑟⟩⟩)−1 − (⟨𝑓𝑟,D⟨𝑟⟩⟩)−1(⟨𝑓,D⟨𝑟⟩⟩)(⟨𝑓𝑟,D⟨𝑟⟩⟩)−1 .

(2.92)
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All orientation averages can be treated as presented in this chapter
and represented in terms of texture coefficients or eigenvalues. The
expression Eq. (2.92) is naturally linear in the relevant texture coeffi-
cients of 𝑓(𝑄). But it should be noted, that, as every linearization,
limited applicability is to be expected. This is due to two points of view.
First, depending on the reference texture (and corresponding texture
coefficients), it is not clear how far from the reference texture a sensible
answer is to be expected. It has to be considered where the reference
texture is found in the set 𝒱 of all texture coefficients. And second,
how far from the reference texture a sensible answer is to be expected
will be influenced by the strength of the harmonic parts of the physical
quantity D̃⟨𝑟⟩. Depending on, e.g., the norm of each harmonic part, the
influence of different texture coefficients will be notable or negligible,
independently of the reference texture.

Nevertheless, the linearization with respect to the crystallographic tex-
ture may be a valuable and efficient tool for applications with given
and well investigated material properties and a reference texture at
a "sufficiently safe" position within 𝒱 . Such a position could be the
isotropic case, i.e., 𝑓(𝑄) = 1. The expression Eq. (2.92) simplifies signifi-
cantly. All reference texture coefficients vanish, only the isotropic part
of D̃⟨𝑟⟩ remains and the weak texture expressions of Man and Huang
(2011), Man and Huang (2012) and Du and Man (2017) are immediately
obtainable.

Alternatively, the linearization with respect to the texture may be useful
for optimization problems. For nonlinear expressions in the texture
trying to minimize an objective function depending on the texture,
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classical Newton algorithms will require the linearization. For this kind
of applications, the just discussed linearizations are expected to be of
some use.



2.6 Review

2.6 Review

In this chapter, the basic calculus of orientations 𝑄 ∈ 𝑆𝑂(3) ⊂ 𝑂𝑟𝑡ℎ has
been motivated. The CODF 𝑓(𝑄) and the CCODF 𝑔(�̂�) have been pre-
sented, together with the texture eigenvalues 𝜆𝛼 and texture coefficients
V′

⟨𝛼⟩𝛽 as coefficients of the respective Fourier expansions. The sets of
all possible texture eigenvalues Λ and texture coefficients 𝒱 have been
defined. The convexity and importance of these sets have been discussed,
together with the instructive subset 𝒱sym

𝛼 based on a finite number of
single crystal states and group symmetrization up to tensor order 𝛼.
The orientation average of general 𝑟-th-order tensor quantities D̃⟨𝑟⟩ has
been deduced based on the CCODF in terms of texture eigenvalues and
based on the CODF in terms of texture coefficients through the harmonic
decomposition. The case for a fourth-order minor and major symmetric
tensor has been given explicitly as a preparation for the expressions in
the upcoming chapters. Linearizations with respect to the texture have
been discussed.
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Chapter 3

Homogenization of linear
and nonlinear properties of
multiphase polycrystalline
materials

3.1 Overview

This chapter begins with the basic probabilistic description of random
heterogeneous materials and the basic idea of homogenization of these
materials. Then, the homogenization of the classical linear elastic me-
chanical problem with eigenfields is reviewed. In the present work,
zeroth-, first- and second-order bounds of multiphase polycrystalline
materials are discussed. The explicit representation of the second-order
Hashin-Shtrikman bounds in terms of material phase concentrations and
texture coefficients is derived. These expressions are then used for the
generation of bounds and pragmatic approximations for optimization
problems in the field of materials design. Approximations for the ther-
momechanical case based on the same set of variables (material volume
fractions and texture coefficients) are presented. The applicability of the
obtained expressions for physically nonlinear bounds based on linear
comparison composites is discussed briefly.
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3 Homogenization of linear and nonlinear properties

3.2 Probabilistic description and
homogenization of random
inhomogeneous materials

Random inhomogeneous material. In the present work, following
Willis (1981), Torquato (2002) and Milton (2002), material bodies with
material inhomogeneities are considered for stochastic manufacturing
processes. The inhomogeneities are characterized by a length 𝑙𝜇, being
greater than the maximum size of all inhomogeneities. The material
properties vary in physical space at this microscopic length scale 𝑙𝜇

which is assumed significantly smaller than the length scale 𝑙𝑀 of the
body to be described by the material region Ω. The length scale 𝑙𝑀 is
referred to as the macroscopic length scale. From a macroscopic point of
view, at some intermediate length scale 𝑙𝑚, referred to as the mesoscale,
the inhomogeneous body might appear homogeneous and macroscopic
fields (e.g., mechanical stress and strain) might vary slowly in space
with respect to 𝑙𝑚. These three fundamental scales are assumed to fulfill
𝑙𝜇 ≪ 𝑙𝑚 ≪ 𝑙𝑀 , which is referred to as a scale separation. For example, for
a typical piece of metal, the macroscopic and microscopic length scales
take values around 𝑙𝑀 ≈ 1𝑚 − 10−2𝑚 and 𝑙𝜇 ≈ 10−4𝑚 − 10−6𝑚. Scale
separation is assumed throughout the present work. The considered
material bodies might be produced by complex stochastic manufacturing
processes, such that from sample to sample the material arrangement
might change with certain probabilities. These materials are referred to
as random heterogeneous materials.

Ensemble. An ensemble is the collection of all samples 𝛼 from a sample
space 𝒜. From a manufacturing point of view, every realization of
a heterogeneous material is a sample 𝛼 from all possible realizations
of the considered random manufacturing process. The different re-
alizations and corresponding microstructures are reproduced with a
certain probability depending on the manufacturing parameters. The
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ensemble average of a physical quantity 𝜑(𝛼) (e.g., the stiffness, the
thermal expansion, or other material property) varying from sample to
sample is defined as

⟨𝜑⟩ =
∫︁

𝒜
𝜑(𝛼)𝑝(𝛼)d𝛼 , (3.1)

where 𝑝 denotes the probability measure of the sample space.

Description of microstructures. It is assumed that all samples occupy
the same finite region Ω in the three-dimensional real space. Each sample
of the ensemble might show complex material distribution. For each
sample, each material constituent is referred to as a (material) phase. It
is remarked, that for a single constituent polycrystalline material, every
single crystalline orientation is to be considered as a distinct phase, as
discussed in Section 1.1.

The microstructure, i.e., the material distribution of the 𝑚 phases of the
sample, is characterized by the indicator function 𝐼𝑖(𝑥, 𝛼) of phase 𝑖,
𝑖 = 1, 2, . . . , 𝑚, defined as

𝐼𝑖(𝑥, 𝛼) =

⎧⎨⎩1 𝑥 ∈ Ω𝑖 ⊂ Ω

0 else
. (3.2)

The material region Ω𝑖 refers to the region of phase 𝑖 in sample 𝛼. The
indicator functions have projector properties, i.e., 𝐼𝑖(𝑥, 𝛼)𝐼𝑗(𝑥, 𝛼) = 0
∀𝑖 ̸= 𝑗, 𝐼𝑖(𝑥, 𝛼)𝐼𝑖(𝑥, 𝛼) = 𝐼𝑖(𝑥, 𝛼) and

∑︀𝑚
𝑖=1 𝐼𝑖(𝑥, 𝛼) = 1.

A physical quantity, e.g., the position dependent stiffness C(𝑥, 𝛼) in
sample 𝛼 is described in this work for a random medium composed of
𝑚 phases with phasewise constant material properties as

C(𝑥, 𝛼) =
𝑚∑︁

𝑖=1
C𝑖𝐼

𝑖(𝑥, 𝛼) . (3.3)
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3 Homogenization of linear and nonlinear properties

For the present work, the ensemble average of several physical quantities
is of interest. For example, the ensemble average of the stiffness at two
different points is expressed as

⟨CC⟩(𝑥1, 𝑥2) =
∫︁

𝒜
C(𝑥1, 𝛼)C(𝑥2, 𝛼)𝑝(𝛼)d𝛼

=
𝑚∑︁

𝑖1=1

𝑚∑︁
𝑖2=1

C𝑖1C𝑖2

∫︁
𝒜

𝐼𝑖1(𝑥1, 𝛼)𝐼𝑖2(𝑥2, 𝛼)𝑝(𝛼)d𝛼 .

(3.4)

It is obvious that the value of this expression is controlled by the ge-
ometrical arrangement and the probability of the different phases in
the random material. This motivates the necessity to define probability
functions for different phases.

The 𝑛-point probability functions (𝑛-PPFs ). For the probabilistic
description of microstructures, correlations between single and multiple
phases are of interest. The functions

𝑆𝑖1...𝑖𝑛
𝑛 (𝑥1, . . . , 𝑥𝑛) = ⟨𝐼𝑖1 . . . 𝐼𝑖𝑛⟩(𝑥1, . . . , 𝑥𝑛)

=
∫︁

𝒜

𝑛∏︁
𝑗=1

𝐼𝑖𝑗 (𝑥𝑗 , 𝛼)𝑝(𝛼)d𝛼
(3.5)

are referred to as the 𝑛-point probability functions (𝑛-PPFs ), see, e.g.,
Willis (1981) or Torquato (2002). These functions reflect the relative
amount of times (the probability) a specific event happens in the
ensemble. For example, the two-point auto-correlation of a phase
𝑖, 𝑆𝑖𝑖

2 (𝑥1, 𝑥2) = 𝑆𝑖
2(𝑥1, 𝑥2) for simplicity, reflects the probability that

phase 𝑖 is found at the same time at positions 𝑥1 and 𝑥2 with respect
to the ensemble. For 𝑥1 = 𝑥2, the auto-correlation simplifies to the
one-point probability function 𝑆𝑖(𝑥1) which reflects the volume fraction
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3.2 Probabilistic description and homogenization of random inhomogeneous materials

of phase 𝑖 at 𝑥1. This naturally means, that the 𝑛-PPFs for given 𝑛

contain all smaller �̃�-PPFs for �̃� < 𝑛 as special cases.

Statistical homogeneity and isotropy. Due to manufacturing condi-
tions, some processes might show, concerning the ensemble average of a
physical quantity, no change from position to position within Ω. This is
referred to as statistical homogeneity and is defined as

𝑆𝑖1...𝑖𝑛
𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝑆𝑖1...𝑖𝑛

𝑛 (𝑥1 + 𝑦, . . . , 𝑥𝑛 + 𝑦) ∀𝑦 ∈ Ω𝑦 ∀𝑛 , (3.6)

where Ω𝑦 denotes the set of all possible displacements such that
𝑥𝑖 + 𝑦 ∈ Ω. From a theoretical point of view, for this to make sense, Ω
and Ω𝑦 have to be extended to infinity.

If an ensemble is statistically homogeneous, then the 𝑛-PPFs of the
ensemble can be reduced by one argument, e.g., by choosing 𝑦 = −𝑥1,
i.e., 𝑆𝑖1...𝑖𝑛(Δ𝑥2, . . . , Δ𝑥𝑛) with Δ𝑥𝑖 = 𝑥𝑖 − 𝑥1, 𝑖 ≥ 2. It should be em-
phasized, that naturally other choices for 𝑦 in case of statistically homo-
geneity are possible since for these cases the 𝑛-PPFs have no preferred
origin (translation invariance).

Further, a statistically homogeneous ensemble is referred to as statisti-
cally isotropic, if the 𝑛-PPFs are rotationally invariant, i.e.,

𝑆𝑖1...𝑖𝑛
𝑛 (Δ𝑥2, . . . , Δ𝑥𝑛) = 𝑆𝑖1...𝑖𝑛

𝑛 (𝑄Δ𝑥2, . . . , 𝑄Δ𝑥𝑛) ∀𝑄 ∈ 𝑆𝑂(3) ∀𝑛

(3.7)

holds, see Torquato (2002). For such material ensembles, it follows that
the 𝑛-PPFs depend not on the direction of the arguments but only on
their magnitudes ‖Δ𝑥𝑖‖.

Ergodic hypothesis. All possible states of a random material system
are contained in an ensemble. The ensemble average reflects the average
state of the sample. If the sample is statistically homogeneous, then this

65



3 Homogenization of linear and nonlinear properties

imagine now an infinite realization of the random material containing
all states of the ensemble. Averaging over such an infinite volume would
also average all possible states of the sample and deliver the same value
as the ensemble average of the statistically homogeneous medium. This
is the ergodic hypothesis: the complete probabilistic information of
a statistically homogeneous medium is equally obtained through the
volume average over an infinite representative volume element (RVE)
with material region 𝑣

𝑆𝑖1𝑖2...𝑖𝑛
𝑛 (Δ𝑥2, . . . , Δ𝑥𝑛)

= ⟨𝐼𝑖1𝐼𝑖2 . . . 𝐼𝑖𝑛⟩(Δ𝑥2, . . . , Δ𝑥𝑛)

= lim
𝑣→∞

1
𝑣

∫︁
𝑣

𝐼𝑖1(𝑥)𝐼𝑖2(𝑥 + Δ𝑥2) . . . 𝐼𝑖𝑛(𝑥 + Δ𝑥𝑛)d𝑣

= ⟨𝐼𝑖1𝐼𝑖2 . . . 𝐼𝑖𝑛⟩𝑣(Δ𝑥2, . . . , Δ𝑥𝑛) ,

(3.8)

see, e.g., Beran (1968) or Torquato (2002). Based on the ergodic hypothe-
sis, the ensemble average of a physical quantity Eq. (3.1) for statistically
homogeneous media is computed as the volume average over one spe-
cific realization, i.e., an RVE, and is denoted in this work as ⟨𝜑⟩ = ⟨𝜑⟩𝑣 .

Homogenization The notion of a finite RVE is related to the notion of
a mesoscale for statistical homogeneous media. The dimensions of the
finite RVE is to be chosen as 3

√
𝑣 ≈ 𝑙𝑚. This means that, roughly speaking,

the finite RVE has to be large enough compared to the microstructure
such that volume averaging over 𝑣 contains enough representative sta-
tistical information. Scale separation and the consideration of an RVE
allow examining elliptic differential equations of the type

div(𝐴 grad(𝜑)) = 𝜌 , 𝑥 ∈ Ω , (3.9)

with bounded positive definite tensor field 𝐴, representing material
phase properties, a potential function 𝜑, and a inhomogeneity 𝜌, see,
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3.3 Homogenization with eigenfields

macroscopic body Ω, and the solution of this kind of equation might be
highly cumbersome if the complete microstructure is to be taken into
account. From a physical point of view, if the material properties vary
so rapidly over the macroscopic body and macroscopic physical state
⟨grad(𝜑)⟩𝑣 varies slowly over the mesoscale, then it is sensible to seek
for effective material properties �̄� satisfying

div(�̄� ⟨grad(𝜑)⟩𝑣) = 𝜌 , 𝑥 ∈ Ω ,

⟨𝐴 grad(𝜑)⟩𝑣 = �̄� ⟨grad(𝜑)⟩𝑣

(3.10)

This is the basic idea of homogenization. The determination of the
homogenized or equivalently effective material properties �̄� of the
RVE is one of the main objectives treated in the wide literature of
homogenization theory. Also, bounds and sensible approximations
of the effective material properties of the RVE are of great practical use
for materials science. From the perspective of materials design, it is
highly desired to obtain finite and low dimensional representations of
the effective properties, corresponding bounds and/or approximations.
This kind of representation facilitates substantially the optimization
problems posed in materials design in which material properties are
tailored corresponding to prescribed application constraints, see, e.g.,
Adams et al. (2013) and Kalidindi (2015).

3.3 Homogenization with eigenfields

Linear elastic boundary value problem with eigenfields. For linear
elastic problems taking into account eigenfields, the equilibrium con-
dition at a material point 𝑥 ∈ Ω of each material sample 𝛼 ∈ 𝒜 with
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homogeneous boundary conditions and corresponding elastic law for
small deformations are formulated as

div(𝜎) = 0 𝑥 ∈ Ω , 𝑢 = 𝜀0𝑥 𝑥 ∈ 𝜕Ω , 𝜎 = C[𝜀] − 𝑠 . (3.11)

The Cauchy stress tensor is denoted as 𝜎 and is determined by the
material law 𝜎 = C[𝜀] − 𝑠. The infinitesimal strain tensor is denoted
as 𝜀 = sym(grad(𝑢)), the arbitrary stress eigenfield 𝑠 and the material
stiffness C. It is assumed, that 𝑠 is independent of 𝜀. All tensor fields
are position and sample dependent, in general. Only the boundary
strain 𝜀0 is assumed constant. It should be remarked that the boundary
conditions of (3.11) do not allow for displacement fluctuations on the
boundary of Ω. In this work, it is assumed that the material region Ω has
no pores or cracks, such that 𝜀0 =

∫︀
Ω 𝜀d𝑣/Ω holds. Each material sample

𝛼 is assumed to occupy the same volume Ω, the material distribution,
i.e., C(𝑥, 𝛼), might change from sample to sample.

Solution for single sample. The solution of linear elastic problems
with eigenfields can be obtained formally following Willis (1981) by
using a constant comparison material with stiffness C0 and the exact
polarization field 𝜏

𝜎 = C0[𝜀] + 𝜏 , 𝜏 = Ĉ[𝜀] − 𝑠 , Ĉ = C − C0 . (3.12)

Based on Green’s function, the solution of the boundary value problem
for each sample is expressed with a sample dependent linear non-local
operator G, see Willis (1977; 1981), as

𝜀 = 𝜀0 − G{𝜏} , G{𝜏}(𝑥, 𝛼) =
∫︁

Ω
G(𝑥, 𝑥′, 𝛼)[𝜏 (𝑥′, 𝛼)]d𝑣′ . (3.13)

The solution might be reformulated in terms of 𝜀 by eliminating 𝜏 as

(I𝑆 + GĈ){𝜀} = 𝜀0 + G{𝑠} , (3.14)
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where I𝑆 is temporarily used as the identity operator and the term
(I𝑆 + GĈ){𝜀} = 𝜀 + G{Ĉ[𝜀]} is to be read as

𝜀(𝑥, 𝛼) +
∫︁

Ω
G(𝑥, 𝑥′, 𝛼)[Ĉ(𝑥′, 𝛼)[𝜀(𝑥′, 𝛼)]]d𝑣′ . (3.15)

Due to the length of these and upcoming formal expressions, in this sec-
tion we will only indicate the formal application of non-local operators.

For each sample, the solution of the respective boundary value problem
can be expressed formally due to the uniqueness of the solution as

𝜀 = A0{𝜀0} + 𝑎0 , A0 = (I𝑆 + GĈ)−1 , 𝑎0 = A0{G{𝑠}} , (3.16)

The non-local operator A0 and the field 𝑎0 fulfill the conditions

1
Ω

∫︁
Ω
A0d𝑣 = I𝑆 ,

1
Ω

∫︁
Ω

𝑎0d𝑣 = 0 . (3.17)

Solution in terms of ensemble average quantities. The ensemble av-
erage of a position dependent material quantity 𝑞(𝑥, 𝛼) is expressed as
follows

⟨𝑞⟩(𝑥) =
∫︁

𝒜
𝑞(𝑥, 𝛼)𝑝(d𝛼) . (3.18)

The deterministic displacement boundary conditions of (3.11) controlled
by the constant 𝜀0 can be eliminated by consideration of the ensemble
averaged fields

𝜀0 = ⟨A0⟩−1{⟨𝜀⟩ − ⟨𝑎0⟩} . (3.19)

The solution of the linear elastic problem for each sample is now refor-
mulated as

𝜀 = A{⟨𝜀⟩} + 𝑎 , A = A0⟨A0⟩−1 , 𝑎 = 𝑎0 − A{⟨𝑎0⟩} , (3.20)

with the normalized operator A, i.e., ⟨A⟩ = I𝑆 , and the fluctuation field
𝑎, i.e., ⟨𝑎⟩ = 0.
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3 Homogenization of linear and nonlinear properties

Effective material properties of ensemble. The effective material be-
havior is defined in terms of the ensemble average of the strain and
stresses based on (3.20) as

⟨𝜎⟩ = C̄{⟨𝜀⟩} − �̄� , C̄ = ⟨CA⟩ , �̄� = ⟨𝑠 − C[𝑎]⟩ . (3.21)

It should be noted that the fields 𝑎0, 𝑎 and �̄� are all linear in the stress
eigenfield 𝑠.

Effective potential of ensemble. An energy density 𝑊 is considered
as a potential for the stresses, i.e., 𝜎 = 𝜕𝑊/𝜕𝜀, in the following forms

𝑊 = 1
2𝜀 · C[𝜀] − 𝜀 · 𝑠 − 1

2𝑘 = 1
2(𝜀 · 𝜎 − 𝜀 · 𝑠 − 𝑘) . (3.22)

The ensemble average of 𝑊 can be simplified assuming the validity of
⟨𝜀 · 𝜎⟩ = ⟨𝜀⟩ · ⟨𝜎⟩ and inserting the effective law for ⟨𝜎⟩ as

2⟨𝑊 ⟩ = ⟨𝜀 · 𝜎⟩ − ⟨𝜀 · 𝑠⟩ − ⟨𝑘⟩
= ⟨𝜀⟩ · ⟨𝜎⟩ − ⟨(A{⟨𝜀⟩} + 𝑎) · 𝑠⟩ − ⟨𝑘⟩
= ⟨𝜀⟩ · C̄{⟨𝜀⟩} − ⟨𝜀⟩ · (�̄� + ⟨A†{𝑠}⟩) − ⟨𝑘 + 𝑎 · 𝑠⟩ ,

(3.23)

where the dagger † denotes the adjoint operator. In this case, if the
condition is imposed that the effective material behavior is also to be
derivable from the effective energy

𝜕⟨𝑊 ⟩
𝜕⟨𝜀⟩

= ⟨𝜎⟩ ∀⟨𝜀⟩, 𝑠, (3.24)

then
C̄ = C̄† , �̄� = ⟨A†{𝑠}⟩ (3.25)

hold, i.e., the effective stiffness is self-adjoint, and the effective eigenfield
can be obtained by the alternative expression. Under these conditions,
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3.3 Homogenization with eigenfields

the effective elastic energy density is expressed in terms of the effective
material properties as

⟨𝑊 ⟩ = 1
2 ⟨𝜀⟩ · C̄{⟨𝜀⟩} − ⟨𝜀⟩ · �̄� − 1

2𝑘 (3.26)

with the effective material properties of the ensemble

C̄ = ⟨CA⟩ , �̄� = ⟨A†{𝑠}⟩ , 𝑘 = ⟨𝑘⟩ + ⟨𝑎 · 𝑠⟩ . (3.27)

These formal expressions for the effective material behavior are impossi-
ble to evaluate explicitly, in general, such that approximations or bounds
for the effective behavior are sought for.

Statistical and material assumptions. In this work, statistical homo-
geneous and ergodic random materials will be assumed from this point
on, see, e.g., Kröner (1977), Willis (1981) or Torquato (2002). Further, the
existence of a finite RVE 𝑣 will be assumed. The ensemble average of a
quantity will be considered as the volume average over the RVE, i.e.,

⟨𝑞⟩ = ⟨𝑞⟩𝑣 = 1
𝑣

∫︁
𝑣

𝑞(𝑥)d𝑣 . (3.28)

Under these conditions, the effective stiffness C̄ simplifies to a constant,
see Milton (2002), and can be determined by solving the boundary value
problem over the RVE loaded on the boundary with a set of six linear
independent, effective strains �̄�.

The local elastic potential 𝑊 , the effective potential �̄� , the effective
strain �̄� = ⟨𝜀⟩𝑣 and the corresponding effective material properties C̄, �̄�

and 𝑘 of the RVE are defined analogously as

𝑊 = 1
2 𝜀 · C[𝜀] − 𝜀 · 𝑠 − 1

2 𝑘 , 𝜎 = 𝜕𝑊

𝜕𝜀
= C[𝜀] − 𝑠 ,

�̄� = ⟨𝑊 ⟩𝑣 = 1
2 (⟨𝜀 · 𝜎 − 𝜀 · 𝑠 − 𝑘⟩𝑣) = 1

2 �̄� · C̄[�̄�] − �̄� · �̄� − 1
2 𝑘 .

(3.29)
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3 Homogenization of linear and nonlinear properties

In this work, single-phase (SPPM) and multiphase polycrystalline mate-
rials (MPPM) are of interest. For an MPPM with 𝑚 phases, the material
properties C, 𝑠 and 𝑘 are assumed in the RVE as phasewise constant
with local orientations. This implies, e.g., for the stiffness with constant
single crystal stiffnesses C̃𝑝 of phase 𝑝

C(𝑥) =
𝑚∑︁

𝑝=1
𝐼𝑝(𝑥)C𝑝(𝑥) , C𝑝(𝑥) = 𝑄𝑝(𝑥) ⋆ C̃𝑝 (3.30)

and its average over the RVE

⟨C⟩𝑣 = 1
𝑣

∫︁
𝑣

C(𝑥)d𝑣 =
𝑚∑︁

𝑝=1

𝑣𝑝

𝑣⏟ ⏞ 
=𝑐𝑝

1
𝑣𝑝

∫︁
𝑣𝑝

C𝑝(𝑥)d𝑣⏟  ⏞  
=⟨C𝑝⟩𝑣𝑝

. (3.31)

The phase average ⟨C𝑝⟩𝑣𝑝 can be transformed into an orientation average
with the corresponding CODF 𝑓𝑝(𝑄). Analogous treatment is considered
for 𝑠 (with corresponding �̃�𝑝) and 𝑘 (with corresponding 𝑘𝑝), where
the orientation averages are considered only for 𝑠, for 𝑘 is assumed
orientation independent. It is reminded, that each crystallographic
orientation of each constituent is to be considered as a distinct phase.

3.4 Bounds of linear properties

3.4.1 General relations

Effective potentials of the RVE. In the RVE volume 𝑣, for the convex
stress potential 𝑊 = 𝑊 (𝜀) with 𝜎 = 𝜕𝑊/𝜕𝜀 given in Eq. (3.29), the
effective elastic potential �̄� = �̄� (�̄�) is defined through the principle of
minimum potential energy as

�̄� = inf
𝑢∈𝐾

⟨𝑊 ⟩𝑣 , 𝐾 = {𝑢 | 𝑢 = �̄�𝑥 ∀𝑥 ∈ 𝜕𝑣} . (3.32)
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3.4 Bounds of linear properties

The effective strain is imposed on the boundary of the RVE, which equals
the volume average over the RVE, i.e., �̄� = ⟨𝜀⟩𝑣 , if the displacement field
is continuous, which is assumed in this work.

In Ponte Castañeda and Suquet (1997) (page 184) it is shown that, based
on Hills’ Lemma, i.e., ⟨𝜎 · 𝜀⟩𝑣 = ⟨𝜎⟩𝑣 · ⟨𝜀⟩𝑣 for any divergence free 𝜎

with continuous traction vector and kinematically compatible 𝜀 of a
continuous displacement field, the average stress ⟨𝜎⟩𝑣 in linear and
nonlinear materials fulfills

⟨𝜎⟩𝑣 = 𝜕�̄�

𝜕�̄�
. (3.33)

The effective stress �̄� of the RVE is defined as �̄� = ⟨𝜎⟩𝑣 .

The dual problem in terms of the complementary energy density
𝑈 = 𝑈(𝜎) = 𝑊 *(𝜎), defined through the Legendre-Fenchel transform
𝑊 * of 𝑊

𝑊 * = sup
𝜀

{𝜎 · 𝜀 − 𝑊} = 1
2𝜎 · S[𝜎] + 𝜎 · 𝑒 + 1

2 𝑙 , (3.34)

with the relations

S = C−1 , 𝑒 = C−1[𝑠] , 𝑙 = 𝑘 + 𝑠 · C−1[𝑠] , (3.35)

defines the effective complementary potential �̄� = �̄�(�̄�) as

�̄� = inf
𝜎∈𝑆

⟨𝑈⟩𝑣 = 1
2 �̄� · S̄[�̄�] + �̄� · �̄� + 1

2 �̄� ,

𝑆 = {𝜎 | div(𝜎) = 𝑜 ∧ ⟨𝜎⟩𝑣 = �̄�} ,

(3.36)

where �̄� is imposed. The average strain fulfills

⟨𝜀⟩𝑣 = 𝜕�̄�

𝜕�̄�
. (3.37)
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3 Homogenization of linear and nonlinear properties

In Ponte Castañeda and Suquet (1997) (page 184) it is shown that �̄� and
�̄� (defined as given in Eq. (3.32) and Eq. (3.36)) are Legendre duals, i.e.,

�̄� + �̄� = �̄� · �̄� . (3.38)

This means that the effective complementary energy density �̄� is the
solution of the optimization problem

�̄� = sup
�̄�

{�̄� · �̄� − �̄�} (3.39)

which is nothing else that the Legendre-Fenchel transform �̄� * = �̄� of
the effective potential �̄� .

Bounds. Based on different variational principles, the effective elastic
potential �̄� might be enclosed by bounds, independently of the loading
conditions. Such upper 𝑊 + = 𝑊 +(�̄�) and lower 𝑊 − = 𝑊 −(�̄�) bounds
fulfill the inequalitites

𝑊 − ≤ �̄� ≤ 𝑊 + ∀�̄� . (3.40)

Accessible lower and upper bounds 𝑊 ± of �̄� deliver also bounds of
�̄� . Based on Eq. (3.39), it follows that �̄� · �̄� − �̄� ≥ �̄� · �̄� − 𝑊 + ∀�̄� holds.
This implies the same ordering for the suprema, such that

sup
�̄�

{�̄� · �̄� − 𝑊 +}⏟  ⏞  
=(𝑊 +)*=𝑈−

≤ sup
�̄�

{�̄� · �̄� − �̄�}⏟  ⏞  
=�̄� *=�̄�

≤ sup
�̄�

{�̄� · �̄� − 𝑊 −}⏟  ⏞  
=(𝑊 −)*=𝑈+

(3.41)

holds, i.e., the bounds of �̄� can be Legendre-Fenchel transformed in
order to obtain bounds for �̄� .

𝑛-th-order bounds of elastic properties. Consider for a moment
purely elastic problems, i.e., 𝑠 = 0 and 𝑘 = 0. The effective elastic energy
density is described as �̄� = 1

2 �̄� · C̄[�̄�]. Based on 𝑛-point probability
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3.4 Bounds of linear properties

information of the RVE, 𝑛-th-order bounds can be constructed, see, e.g.,
Kröner (1977) and Willis (1981). High-order bounds give access to a
better understanding of the space in which the effective properties are
assured to be contained but require a high amount of computation,
especially if the full infinite-dimensional function space of 𝑛-point-
statistics (n-PPFs) is to be evaluated. Low-order bounds give naturally
only rough information of the effective properties but might contain
crucial information for material design purposes. The effective stiffness
C̄ of the RVE with region 𝑣 is said to be bounded from below and
above by the lower / upper 𝑛-th-order bounds C𝑛± (which take into
consideration 𝑛-point probability information of the RVE) if

�̄� · C𝑛−[�̄�] ≤ �̄� · C̄[�̄�] ≤ �̄� · C𝑛+[�̄�] ∀�̄� (3.42)

hold. This kind of inequalities are naturally connected to the correspond-
ing effective potential bounds 𝑊 𝑛± and will be addressed shortly from
now on as C𝑛− ≤ C̄ ≤ C𝑛+. It should be remarked that, based on matrix
analysis, see, e.g., Horn and Johnson (1990), if C𝑛− ≤ C̄ ≤ C𝑛+ holds,
then (C𝑛+)−1 ≤ C̄−1 ≤ (C𝑛−)−1 also holds. Thus, the lower stiffness
bound might also be considered as the upper compliance bound. The
same results can be obtained based on Eq. (3.41).

From matrix analysis, it is known, that if Eq. (3.42) holds, then

𝜆𝑛−
𝛼 ≤ �̄�𝛼 ≤ 𝜆𝑛+

𝛼 , 𝛼 = 1, ..., 𝛽 (3.43)

necessarily holds for the 𝛽 corresponding eigenvalues, where each of
the sets {𝜆𝑛−

𝛼 }, {�̄�𝛼}, {𝜆𝑛+
𝛼 } is sorted in increasing order. From these

necessary conditions, other necessary conditions are easily derivable,
e.g., for the trace, determinant, Frobenius norm or any invariant of the
considered tensors viewed as linear maps for the space of symmetric
second-order tensors.
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3 Homogenization of linear and nonlinear properties

For given bounds C𝑛± (of arbitrary order), based on Eq. (3.42), it is
possible to give explicit bounds not only on the "diagonal" components
of the enclosed C̄, but also on the "off-diagonal" components of the
effective stiffness C̄

Γ𝑛−
𝛼𝛽 ≤ 𝐶𝛼𝛽 ≤ Γ𝑛+

𝛼𝛽 𝛼, 𝛽 ∈ {11, 22, 33, 23, 13, 12}

Γ𝑛±
𝛼𝛽 = 1

2 (𝐶𝑛+
𝛼𝛽 + 𝐶𝑛−

𝛼𝛽 ) ± 1
2

√︁
(𝐶𝑛+

𝛼𝛼 − 𝐶𝑛−
𝛼𝛼 )(𝐶𝑛+

𝛽𝛽 − 𝐶𝑛−
𝛽𝛽 ) ,

(3.44)

see Lobos and Böhlke (2016) or Appendix C of this work. These compo-
nents bounds improve the ones given in Proust and Kalidindi (2006) for
major symmetric C̄ and can be used by materials designers iteratively if
more and more statistical information of the considered inhomogeneous
material is available.

Also, it should be remarked that, based on Eq. (3.42), mechanical quan-
tities defined as 𝑞 = 𝐴 · B[𝐴] (and variations of the quadratic form of
a fourth-order tensor B) will obey the bounds hierarchy. This means,
e.g., that for Young’s modulus 𝐸 of a material with stiffness C in tensile
direction 𝑛 defined as 𝐸(C, 𝑛) = 1/(𝑛⊗2 · C−1[𝑛⊗2]),

𝐸𝑛− ≤ �̄� ≤ 𝐸𝑛+ , 𝐸𝑛± = 𝐸(C𝑛±, 𝑛) , �̄� = 𝐸(C̄, 𝑛) (3.45)

holds for given tensile direction 𝑛. For mechanical quantities defined
as 𝑞 = 𝐴 · B[𝐶], based only on Eq. (3.42), no statement can be made, in
general.

Finally, in this work, motivated by Lobos and Böhlke (2016), and the
derivable bounds for the determinant, we define the relative elastic
volume

𝑒𝑛 = det (C𝑛+)
det (C𝑛−) ∈ [1, ∞) . (3.46)

The relative elastic volume, due to the properties of the determinant,
is invariant under consideration of the inverse bounds for the effective
compliance. The determinant takes into account the multiplicity of the
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3.4 Bounds of linear properties

different eigenvalues and is, therefore, assumed to be an appropriate
description for the size of the elasticity space spanned by corresponding
bounds.

Extension to eigenfields. Consider now again the linear problem with
eigenfields 𝑠 ̸= 0 and 𝑘 ̸= 0. We introduce the scalar quantity �̄�𝜀

�̄�𝜀 = 1
2𝜀T 𝐶 𝜀 (3.47)

with the supervector 𝜀 = [�̄�, 𝑦]T (with real-valued 𝑦) and the supertensor

𝐶 =
[︃
C̄ −�̄�

−�̄� −𝑘

]︃
, 𝑆 = 𝐶

* =
[︃

C̄−1 C̄−1[�̄�]
C̄−1[�̄�] 𝑘 + �̄� · C̄−1[�̄�]

]︃
(3.48)

which might be considered as a corresponding symmetric 7 × 7 matrices
for linear elasticity with eigenfields. The symbol 𝐶

*
represents the

supertensor in the complementary space obtained through the Legendre-
Fenchel transformation of �̄� , see analogously Eq. (3.34) and Eq. (3.35).
For a supertensor in the complementary space 𝑆 we define

𝑆 =
[︃
S̄ �̄�

�̄� �̄�

]︃
, 𝑆

* =
[︃

S̄−1 −S̄−1[�̄�]
−S̄−1[�̄�] −(�̄� − �̄� · S̄−1[�̄�])

]︃
. (3.49)

It follows that (𝐶*)* = 𝐶 holds for the expressions of this work.

For 𝜀 = [�̄�, 1]T, clearly �̄�𝜀 = �̄� holds. If lower and upper bounds 𝑊 ±

of �̄� , represented as

𝑊 ± = 1
2 �̄� · C±[�̄�] − �̄� · 𝑠± − 1

2𝑘± , (3.50)
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3 Homogenization of linear and nonlinear properties

are obtainable, then it can be shown based on Appendix C that the
corresponding supertensors

𝐶± =
[︃
C± −𝑠±

−𝑠± −𝑘±

]︃
(3.51)

fulfill
𝜀T 𝐶− 𝜀 ≤ 𝜀T 𝐶 𝜀 ≤ 𝜀T 𝐶+ 𝜀 ∀𝜀 , (3.52)

abbreviated as 𝐶− ≤ 𝐶 ≤ 𝐶+. It is then clear that, based on the compo-
nent bounds given in Lobos and Böhlke (2016) for off-diagonal matrix
components, see, e.g., Appendix C, the effective �̄� and 𝑘 can be bounded
based on the values in the corresponding rows and columns of 𝐶±. It
should be stressed, that this naturally holds not only for linear elastic-
ity but for every other analogous physical problem based on elliptic
differential equations with corresponding physical eigenfields.

Explicitly, for linear elasticity with eigenfields, 𝜀 is a symmetric tensor
for which

𝐵1 = 𝑏11 , 𝐵4 = 1√
2 (𝑏23 + 𝑏32) ,

𝐵2 = 𝑏22 , 𝐵5 = 1√
2 (𝑏13 + 𝑏31) ,

𝐵3 = 𝑏33 , 𝐵6 = 1√
2 (𝑏12 + 𝑏21) ,

(3.53)

constitute an orthonormal basis for symmetric tensors, see Appendix A.
Every symmetric tensor 𝐴 =

∑︀3
𝑖,𝑗=1 𝐴𝑖𝑗𝑏𝑖𝑗 is then represented as a

vector as

𝐴 =
6∑︁

𝑖=1
𝐴𝑖𝐵𝑖 , 𝐴𝑖 =

[︁
𝐴11 𝐴22 𝐴33

√
2𝐴23

√
2𝐴13

√
2𝐴12

]︁T
.

(3.54)

Defining an artificial seventh base tensor 𝐵7, with which {𝐵𝑖} constitute
an orthonormal basis, allows representing the supervector 𝜀 = [�̄�, 𝑦]T and
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3.4 Bounds of linear properties

the supertensor 𝐶 containing the material properties with vector and
matrix components as

𝜀 =
7∑︁

𝑖=1
(𝜀)𝑖𝐵𝑖 , 𝐶 =

7∑︁
𝑖,𝑗=1

(𝐶)𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 (3.55)

with

(𝜀)𝑖 =
[︁
�̄�11 �̄�22 �̄�33

√
2�̄�23

√
2�̄�13

√
2�̄�12 𝑦

]︁T
(3.56)

and

(𝐶)𝑖𝑗 =

⎡⎢⎢⎣
�̄�1111 �̄�1122 �̄�1133

√
2�̄�1123

√
2�̄�1113

√
2�̄�1112 −𝑠11

�̄�1122 �̄�2222 �̄�2233
√

2�̄�2223
√

2�̄�1322
√

2�̄�1222 −𝑠22
�̄�1133 �̄�2233 �̄�3333

√
2�̄�2333

√
2�̄�1333

√
2�̄�1233 −𝑠33√

2�̄�1123
√

2�̄�2223
√

2�̄�2333 2�̄�2323 2�̄�1323 2�̄�1223 −
√

2𝑠23√
2�̄�1113

√
2�̄�1322

√
2�̄�1333 2�̄�1323 2�̄�1313 2�̄�1213 −

√
2𝑠13√

2�̄�1112
√

2�̄�1222
√

2�̄�1233 2�̄�1223 2�̄�1213 2�̄�1212 −
√

2𝑠12
−𝑠11 −𝑠22 −𝑠33 −

√
2𝑠23 −

√
2𝑠13 −

√
2𝑠12 −�̄�

⎤⎥⎥⎦ .

(3.57)
The given vectors and matrices are in accordance with the expected
state variable 𝜎 = [�̄�, 𝑧] = 𝐶 𝜀 (with corresponding real 𝑧 = −�̄� · �̄� − 𝑘𝑦)
and expected quadratic form �̄�𝜀 = 1

2 �̄�C̄[�̄�] − �̄� · �̄�𝑦 − 1
2 𝑘𝑦2. Based on the

matrix Eq. (3.57), and corresponding matrices for 𝐶±, e.g., the effective
eigenfield component −𝑠33 (i.e., the (3, 7) component in the matrix) is
bounded analogously as in Eq. (3.44) as

𝛾−
37 ≤ −𝑠33 ≤ 𝛾+

37 , 𝛾±
37 = 𝜇37 ± Δ37 ,

𝜇37 = 1
2 (−𝑠+

33 + (−1)𝑠−
33) ,

Δ37 = 1
2

√︁
(𝐶+

3333 − 𝐶−
3333)(−𝑘+ − (−1)𝑘−) .

(3.58)

One extraordinary property is visible in Eq. (3.58), namely, for the case
𝑘+ = 𝑘−, the exact �̄� is obtained immediately as �̄� = 𝑠+ = 𝑠−. From a
micromechanical point of view, if the bounds 𝑊 ± depend on statistical
quantities of the composite, and microstructures of a material can be
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3 Homogenization of linear and nonlinear properties

found for which 𝑘+ = 𝑘− holds, then �̄� is obtained immediately without
the need for any further computation. The search for materials for
which such microstructures exist is an intriguing quest for materials
research and design. Even if no real world material exists for which
𝑘+ = 𝑘− holds for any derivable bounds, the term (𝑘+ − 𝑘−)2 might be
minimized in order to make �̄� more controllable.

3.4.2 Zeroth-order bounds

Zeroth-order bounds of linear elastic properties. It is true, that based
on 𝑛-point information of the RVE with 𝑛 ≥ 1, 𝑛-th-order bounds reflect
important information about the heterogeneous material. But it is also
important to realize that the effective properties might also be bounded
solely by the 𝑚 material constituents of the heterogeneous material,
independently of the microstructural arrangement. These are the zeroth-
order bounds C0±, introduced by Kröner (1977), investigated by Nadeau
and Ferrari (2001) and improved by Lobos and Böhlke (2016). The zeroth-
order bounds are isotropic tensors C𝐼 = 𝜆1P1 + 𝜆2P2 ≥ C(𝑥)∀𝑥 ∈ 𝑣, as
discussed by Kröner (1977) and shown in Nadeau and Ferrari (2001). For
an MPPM the condition C𝐼 ≥ C(𝑥)∀𝑥 ∈ 𝑣 is equivalent to C𝐼 ≥ C̃𝑝∀𝑝,
where C̃𝑝 denotes the single crystal stiffness of phase 𝑝. The upper
zeroth-order bound C0+ =

∑︀2
𝛼=1 𝜆0+

𝛼 P𝛼 is defined in Lobos and Böhlke
(2016) following Nadeau and Ferrari (2001) through the optimization
problem

{𝜆0+
1 , 𝜆0+

2 } = arg min
{𝜆𝛼}

tr (𝜆1P1 + 𝜆2P2)

such that C̃𝑝 ≤ (𝜆1P1 + 𝜆2P2) ∀𝑝 .

(3.59)

For an SPPM, the solution of this optimization problem is easily obtained
with the elegant decompositions presented in Nadeau and Ferrari (2001),
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3.4 Bounds of linear properties

which delivered the following optimization problem for the trace of the
stiffness tensor

𝛽(𝛼) = {largest eigenvalue of C̃𝑝 − 𝛼P1}
𝛼+ = arg min

𝛼
tr
(︀
𝛼P1 + 𝛽(𝛼)I𝑆

)︀
{𝜆0+

𝑝,1, 𝜆0+
𝑝,2} = {𝛼+ + 𝛽(𝛼+), 𝛽(𝛼+)} .

(3.60)

This delivers the upper zeroth-order bound C0+
𝑝 =

∑︀2
𝛼=1 𝜆0+

𝑝,𝛼P𝛼 of
phase 𝑝.

The upper zeroth-order bound C0+ of an MPPM defined through
Eq. (3.59) is more difficult to compute, in general. One way to obtain
an admissible upper bound fulfilling C̃𝑝 ≤ C̃0+∀𝑝 is to compute all C0+

𝑝

separately and setting

C̃0+ = �̃�0+
1 P1 + �̃�0+

2 P2 , �̃�0+
1 = max

𝑝
{𝜆0+

𝑝,1} , �̃�0+
2 = max

𝑝
{𝜆0+

𝑝,2} . (3.61)

However, C̃0+ has no minimal trace, in general, in the set described by
C̃𝑝 ≤ C𝐼 ∀𝑝, see Appendix C, and the example described from Eq. (C.6)
to Eq. (C.10). The solution of Eq. (3.59) can be computed based on
algorithms for positive semidefinite programming with square slack
variables, see Appendix C. From the perspective of material databases,
the zeroth-order bound C̃0+ is far more attractive than the solution C0+

of Eq. (3.59). For a given material database, the zeroth-order bound of
each material can be computed a priori. Then, for arbitrary combination
of these materials, evaluation of C̃0+ is trivial, while for every new
combination of materials C0+ needs to be computed again and again.
For small material databases, C0+ might be achievable, but for large
databases, it is recommended to use the admissible bound C̃0+.

The upper zeroth-order bound C0+ is defined as the isotropic tensor
with minimal trace (in the sense of invariants of linear maps) delivering
a greater elastic energy density at any point of the RVE. In Lobos
and Böhlke (2016) it is discussed that the zeroth-order bounds are not
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3 Homogenization of linear and nonlinear properties

unique and that the definition Eq. (3.59) is only one possibility. The
zeroth-order bounds could alternatively be defined on other invariants
of the fourth-order tensor. The definition proposed by Kröner (1977) is
not valid for arbitrary anisotropic materials, as shown in Lobos et al.
(2017) by an explicit example. The lower zeroth-order bound C0− is
defined in Lobos and Böhlke (2016) as the upper zeroth-order bound
of the compliance, i.e., C̄−1 ≤ (C0−)−1, and solving the corresponding
optimization problem analogous to Eq. (3.59). This definition ensures
the positive definiteness of both zeroth-order bounds, which is not the
case as for the definitions proposed in Nadeau and Ferrari (2001), see
Lobos and Böhlke (2016) for a discussion.

Anisotropy measure of SPPMs and MPPMs. The scalar 𝑒0 based on
Eq. (3.46) and the zeroth-order bounds, see Lobos and Böhlke (2016),
is able to reflect several properties of materials. The zeroth-order rel-
ative elastic volume 𝑒0 for single-phase materials reflects the intrinsic
anisotropy of the SPPM itself. For isotropic and anisotropic materials,
𝑒0 = 1 and 𝑒0 > 1 hold, respectively. Without any modifications, 𝑒0

is also able to describe the intrinsic anisotropy strength of MPPMs.
For example, if a multiphase material with two anisotropic phases is
considered, then 𝑒0 > 1 might be expected. But, the two anisotropic
stiffness tensors of the considered phases might have both high values
not varying much from each other. For such an MPPM, 𝑒0 will not
be large. But, e.g., another 2-phase material with isotropic phases
having large relative distances will be able to show highly anisotropic
material behavior. Those multiphase materials are characterized by large
values of 𝑒0 reflecting the large relative space of possibilities for material
designers in different applications.

Naturally, if information about the specific range of the different com-
ponents or other mechanical quantities is desired, then instead of 𝑒0

the corresponding bounds, given in Eq. (3.44) and Eq. (3.45), can be
examined.
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3.4 Bounds of linear properties

Bounds for local elastic energy density. The zeroth-order bounds,
compared to all other upcoming bounds, have the property not only to
bound the effective energy density �̄� , but also the local energy density
𝑊 (𝑥) at every point of the material. If a material characteristic critical
energy level 𝑊𝑝,𝑐 of phase 𝑝 is not to be surpassed at a material point in
the material region 𝑣𝑝 of phase 𝑝, then the following estimate for 𝑥 ∈ 𝑣𝑝

can be considered

2𝑊 (𝑥) = 𝜀(𝑥) · C(𝑥)[𝜀(𝑥)]

≤ 𝜀(𝑥) · C0+
𝑝 [𝜀(𝑥)]

= (𝜆0+
𝑝,1 − 𝜆0+

𝑝,2) tr(𝜀(𝑥))2

3 + 𝜆0+
𝑝,2‖𝜀(𝑥)‖2

≤ 1
3 (𝜆0+

𝑝,1 + 2𝜆0+
𝑝,2)‖𝜀(𝑥)‖2 ≤ 2𝑊𝑝,𝑐 .

(3.62)

This estimate motivates the definition of the critical strain magnitude

𝜀𝑝,𝑐 =
√︃

6𝑊𝑝,𝑐

𝜆0+
𝑝,1 + 2𝜆0+

𝑝,2
, (3.63)

which depends only on material characteristics of the phase. This result
offers two perspectives for applications. Single-phase materials might be
characterized by this critical strain value, or, materials being able to bear
a prescribed maximum strain max𝑥∈𝑣𝑝 ‖𝜀(𝑥)‖ ≤ 𝜀𝑝,𝑐 can be selected
from given material data. Naturally, these critical strain measures are
not valid for phase boundaries but might be useful for single-phase
materials.

It should also be noted that analogous dual formulations for the comple-
mentary energy density, stress and zeroth-order bounds for the compli-
ance are obtainable.
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3 Homogenization of linear and nonlinear properties

Extension to eigenfields. Due to the definition of �̄� through the prin-
ciple of minimum potential energy

�̄� ≤ ⟨𝑊 (�̌�)⟩𝑣 ∀�̌� ∈ 𝐾 , �̌� = sym(grad(�̌�)) (3.64)

upper bounds of �̄� might be obtained by estimating ⟨𝑊 (�̌�)⟩𝑣 . By using
the notation introduced in Eq. (3.47), 𝑊 (�̌�) can be equally described as

𝑊𝜀 = 1
2 �̌�T 𝐶 �̌� , 𝐶 =

[︃
C −𝑠

−𝑠 −𝑘

]︃
(3.65)

for �̌� = [�̌�, 1]T. A orientation 𝑄 acts as follows

𝑄 ⋆ 𝐶 =
[︃

𝑄 ⋆ C 𝑄 ⋆ (−𝑠)
𝑄 ⋆ (−𝑠) 𝑄 ⋆ (−𝑘)

]︃
. (3.66)

We now define the constant supertensors

𝐶0 =
[︃
C0 −𝑠0

−𝑠0 −𝑘0

]︃
, 𝐶 ≤ 𝐶0 ∀𝑥 ∈ 𝑣 . (3.67)

For MPPMs, the supertensors 𝐶0 necessarily have to be invariant with
respect to any 𝑄, i.e., they are isotropic and have the form

𝐶0 =
[︃

(𝜆01P1 + 𝜆02P2) −𝑠0𝐼

−𝑠0𝐼 −𝑘0

]︃
. (3.68)

As for the zeroth-order bounds of elasticity, no unique zeroth-order
bound exist. In the present work it is proposed to define the general
upper zeroth-order bound

𝐶0+ =
[︃

(𝜆0+
1 P1 + 𝜆0+

2 P2) −𝑠0+𝐼

−𝑠0+𝐼 −𝑘0+

]︃
(3.69)
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following Lobos and Böhlke (2016) with tr(𝐶) = tr(C) − 𝑘 by the opti-
mization problem

{𝜆0+
1 , 𝜆0+

2 , 𝑠0+, 𝑘0+} = arg min
{𝜆01,𝜆02,𝑠0,𝑘0}

tr
(︁

𝐶0

)︁
such that 𝐶

𝑝
≤ 𝐶0 ∀𝑝 ,

(3.70)

with the corresponding single crystal properties 𝐶
𝑝

of phase 𝑝. The
solution of this problem might be obtained numerically with algorithms
for positive semidefinite programming, as illustrated in Appendix C.

The constructed supertensor 𝐶0+ fulfills 𝐶 ≤ 𝐶0+ for all �̌� (also for
�̌� = [�̌�, 1]T) at every 𝑥 ∈ 𝑣. This implies for �̌� = �̄�𝑥 and �̌� = [�̄�, 1]T

�̄� ≤ ⟨𝑊 (�̄�)⟩𝑣 = 1
2 �̌� ⟨𝐶⟩𝑣 �̌� ≤ 1

2 �̌� 𝐶0+�̌� ∀�̄� . (3.71)

The lower bound 𝐶0− is analogously defined through the dual problem
in complementary space, i.e., 𝑆0+ = (𝐶0−)* with 𝑆 = 𝐶*.

Simplification for large material databases. Due to the structure
of the supertensors Eq. (3.69), the corresponding eigentensors (and
eigenspaces) are not constant. This complicates computations for
MPPMs in large material databases, since, as discussed for Eq. (3.61),
the zeroth-order bound Eq. (3.70) would have to be computed for every
new material combination. This complication can be avoided with the
following alternative zeroth-order bounds. First, for an SPPM with
corresponding 𝐶

𝑝
, the admissible zeroth-order bound

�̃�
0+
𝑝

=
[︃

(�̃�0+
𝑝1 P1 + �̃�0+

𝑝2 P2) 0
0 −𝑘0+

𝑝

]︃
,

{�̃�0+
𝑝1 , �̃�0+

𝑝2 , 𝑘0+
𝑝 } = arg min

{𝜆01,𝜆02,𝑘0}
tr
(︁

𝐶0

)︁
|𝑠0=0

such that 𝐶
𝑝

≤ 𝐶0|𝑠0=0 ,

(3.72)
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3 Homogenization of linear and nonlinear properties

can be computed. The bound Eq. (3.72) can be calculated for each
material in a material database. The eigenspaces of these alternative
zeroth-order bounds are constant such that the admissible zeroth-order
bound for an MPPM

𝐶
0+ =

[︃
(�̃�0+

1 P1 + �̃�0+
2 P2) 0

0 −𝑘0+

]︃
,

�̃�0+
1 = max

𝑝
{�̃�0+

𝑝1 } , �̃�0+
2 = max

𝑝
{�̃�0+

𝑝2 } , −𝑘0+ = max
𝑝

{−𝑘0+
𝑝 }

(3.73)

can be evaluated without any further expensive computations and
immediately fulfills 𝐶

𝑝
≤ 𝐶

0+
. The bound 𝐶

0+
differs, in general, from

the bound 𝐶0+.

Benefits for materials design. From a homogenization point of view,
the zeroth-order bounds or any combination of them are naturally not to
be used as approximations for the effective stiffness. These bounds
do not incorporate any information of the microstructure statistics.
But from a materials design perspective, exactly this property is of
crucial importance and is one contribution of the present work for
the field of materials design, as discussed in Lobos and Böhlke (2016).
The zeroth-order bounds enclose the effective material behavior for
all realizations / microstructures of the considered inhomogeneous
material, only based on its material phases. This means that, based
only on the choice of materials and, e.g., the explicit bounds given in
Eq. (3.44) and Eq. (3.45), the material limitations of any realization of the
chosen material combination are immediately accessible, without the
need for experiments or simulations accounting for the infinite number
of possible microstructures. This illustrates the zeroth-order bounds
as perfect decision support quantities for prescribed properties-profiles
in materials screening. For example, if for a future application, certain
material properties are needed, then based on material databases, see,
e.g., https://materialsproject.org/ and de Jong et al. (2015),
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the zeroth-order bounds of each material (and any number of material
combinations) can be computed. Material designers are then imme-
diately able to see which materials can be excluded. This enables
the automation of the process of materials selection if only physical
properties are considered. For a more efficient evaluation of large
material databases, the results for each single-phase material can be
stored in the database itself. Based on C̃0± and 𝐶

0±
, evaluation for

multiphase materials is simplified significantly.

Naturally, the set of criteria for a sensible materials selection for practical
applications is much larger, see Ashby and Johnson (2013). In the present
work, in Chapter 4 the zeroth-order bounds will be used in order to select
material from example material databases.

3.4.3 First-order bounds

First-order bounds of linear elastic properties. If one-point statistical
information (i.e., volume fractions) of the microstructure of the inho-
mogeneous material is available (or taken into consideration), then the
simplest possible computations are the volume average of the stiffness
and compliance, see Voigt (1910) and Reuss (1929). In Hill (1952) it is
shown that these expressions are the first-order bounds of the effective
properties

C1+ = ⟨C⟩𝑣 , C1− = (⟨C−1⟩𝑣)−1 . (3.74)

It should be noted that for arbitrarily anisotropic MPPM, the expression
in Eq. (3.74) average only minor and major symmetric fourth-order
tensors. This immediately implies that these expressions depend only on
the second- and fourth-order texture coefficients of the corresponding
CODFs of each phase.
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3 Homogenization of linear and nonlinear properties

Extension. Actually, already in Eq. (3.71) the extended first-order
bound 𝐶1+ = ⟨𝐶⟩𝑣 has been shown. The lower bound can be obtained
through the dual problem, 𝐶0− = (𝑆1+)*.

It should be noted that the first-order bounds already offer search
options for microstructure statistics fulfilling 𝑘1+ = 𝑘1− or minimizing
(𝑘1+ − 𝑘1−)2, as motivated by Eq. (3.58).

Characterization and accuracy. If the material phases and the one-
point statistics of a multiphase material are given, then either component
bounds ( Eq. (3.44)), bounds for mechanical characteristics (Eq. (3.45)),
or the relative elastic volume (Eq. (3.46)) might be examined. These
quantities can reflect qualitative information of the limitations of higher-
order variations. For example, consider given materials and given one-
point statistics inducing a small relative elastic volume. For such a case, a
combination of the first-order bounds might be a good approximation for
the effective stiffness since for the fixed one-point statistics the first-order
bounds seem close to each other based on the small relative elastic
volume. Large relative elastic volumes reflect that even for fixed one-
point statistics, variation of two- and higher-point statistics might cover
a large number of different properties.

Variation of one-point statistics and properties-closure. For given
materials, for each point in the space of one-point statistics the first-order
bounds enclose the effective properties and derivable quantities, see
Eq. (3.44) - Eq. (3.46). For example, the component bounds Eq. (3.44)
describe for given one-point statistics a rectangle in the 21-dimensional
space of elastic constants. The union of all of these rectangles delivers
the first-order properties-closure of Adams et al. (2013). Analogously
the zeroth-order bounds deliver the zeroth-order properties-closure.
For given materials, the zeroth-order properties-closure encloses the
first-order properties-closure. Naturally, this can be continued by taking
into consideration high-order bounds to examine design possibilities
in higher-order properties-closures. But it should be kept in mind that
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3.4 Bounds of linear properties

bounds deliver sharp statements about values which are not achievable.
For given materials, the zeroth-order bounds give information about
properties which can not be realized independently of the microstructure
variation and reflect only a notion of what might be achievable by
the materials. Taking into account the first-order properties-closure,
material designers will have a better understanding of what is 𝑛𝑜𝑡

achievable for the chosen materials for any variation of the one-point
statistics and a better notion of what might be achievable by variation of
higher-point-statistics of the microstructure.

3.4.4 HS variational principle, bounds and localization

HS variational principle. We now shortly recapitulate the Hashin-
Shtrikman (HS) variational principle of Hashin and Shtrikman (1962)
extended with eigenfields following Willis (1981).

We consider a material volume 𝑣 with prescribed deformation on
the boundary 𝑢 = �̄�𝑥 ∀𝑥 ∈ 𝜕𝑣. The stress potential 𝑊 is given as in
Eq. (3.29). The stress 𝜎 = 𝜕𝑊/𝜕𝜀 = C[𝜀] − 𝑠 can be reformulated with
a constant C0 and a constant eigenfield 𝑠0 as 𝜎 = C0[𝜀] − 𝑠0 + 𝜏 with
𝜏 = Ĉ[𝜀] − �̂�, Ĉ = C − C0, �̂� = 𝑠 − 𝑠0 and the solution of the problem
given as in Eq. (3.12) and Eq. (3.13) but now in the RVE

𝜀 = �̄� −G{𝜏 − 𝑠0} = �̄� −G{𝜏} , G{𝜏} =
∫︁

𝑣

G(𝑥, 𝑥′)[𝜏 (𝑥′)]d𝑣′ . (3.75)

at what G maps constants to zero, see Willis (1981). The solution can be
expressed now in terms of the exact stress polarization 𝜏 by eliminating
𝜀 = Ĉ−1[𝜏 + �̂�] as

𝐾(𝜏 ) = Ĉ−1[𝜏 ] + G{𝜏} − �̃� , �̃� = �̄� − Ĉ−1[�̂�] , (3.76)

where 𝐾(𝜏 = 𝜏 ) = 0 (i.e., Eq. (3.75)) holds for the exact polarization
𝜏 . For any other stress polarization 𝜏 , 𝐾(𝜏 ) ̸= 0, in general. Based on
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𝐾, the Hashin-Shtrikman functional 𝐹 = 𝐹 (𝜏 ) including eigenfields is
defined as follows

𝐹 =
⟨

1
2𝜏 · Ĉ−1[𝜏 ] + 1

2𝜏 · (G{𝜏}) − 𝜏 · �̃�

⟩
𝑣

= 1
2 ⟨𝐾 · 𝜏 ⟩𝑣 − 1

2 ⟨𝜏 · �̃�⟩𝑣 ,

(3.77)

which fulfills 𝛿𝐹 = ⟨𝐾𝛿𝜏 ⟩𝑣, i.e., 𝐹 is stationary for 𝜏 , for which 𝐹 has
the value

𝐹 = 𝐹 (𝜏 = 𝜏 ) = �̄�0 − �̄� ,

�̄�0 = 1
2 �̄� · C0[�̄�] − �̄� · 𝑠0 − 1

2(⟨𝑘⟩𝑣 + ⟨�̂� · Ĉ−1[�̂�]⟩𝑣) .
(3.78)

The second variation is given by

𝛿2𝐹 = ⟨𝛿𝜏 · Ĉ−1[𝛿𝜏 ] + 𝛿𝜏 · (G{𝛿𝜏})⟩𝑣 . (3.79)

HS bounds. In Willis (1977) it has been shown, that, for positive
definite C0 fulfilling C ≤ C0 (at every point of the RVE), the operator
Ĉ−1 + G in the second variation of 𝐹 is negative definite. This implies
that the stationary value 𝐹 is a maximum, i.e., 𝐹 = �̄�0 − �̄� ≥ 𝐹 (𝜏 )∀𝜏 .
This property allows the generation of an upper bound 𝑊 𝐻𝑆+ of �̄� if
the polarization field is constrained in some way, say, 𝜏 ∈ 𝐶𝜏 (where 𝐶𝜏

symbolizes a constraint set for 𝜏 ). This delivers the upper bound

𝑊 𝐻𝑆+ = �̄�0 − max
𝜏 ∈𝐶𝜏

𝐹 (𝜏 ) ≥ �̄� . (3.80)

As shown in Willis (1977), analogous treatment can be followed for
positive definite C0 fulfilling C0 ≤ C in order to derive a lower bound

𝑊 𝐻𝑆− = �̄�0 − min
𝜏 ∈𝐶𝜏

𝐹 (𝜏 ) ≤ �̄� . (3.81)
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The HS bounds hold then for all effective strains �̄�, i.e.,

𝑊 𝐻𝑆− ≤ �̄� ≤ 𝑊 𝐻𝑆+ ∀�̄� . (3.82)

Based on Eq. (3.41), bounds for the complementary potential can be
obtained with the Legendre-Fenchel transforms of the corresponding
HS bounds

𝑈𝐻𝑆− = (𝑊 𝐻𝑆+)* ≤ �̄� ≤ 𝑈𝐻𝑆+ = (𝑊 𝐻𝑆−)* . (3.83)

HS bounds for isotropic two-point statistics. For ellipsoidal two-
point-statistics with no long-range order in a large volume and phase-
wise constant stress polarization, to be denoted as 𝜏 ∈ 𝐶𝜏 , the term
⟨𝜏 · (G{𝜏})⟩𝑣 is replaced with the operator G∞ based on Green’s func-
tion for the infinite body with vanishing fluctuation of the displacement
field, see Willis (1977), by

⟨𝜏 · (G{𝜏})⟩𝑣 = ⟨𝜏 · G∞{𝜏 − ⟨𝜏 ⟩𝑣}⟩𝑣 = ⟨𝜏 · P0[𝜏 − ⟨𝜏 ⟩𝑣]⟩𝑣 . (3.84)

The term 𝜏 − ⟨𝜏 ⟩𝑣 is used in order to achieve convergence of the inte-
gral concerning G∞, see Willis (1977) and Willis (1981) for a detailed
discussion. For ellipsoidal two-point statistics, the integral concerning
G∞ simplifies to an integral with the polarization tensor P0, see Willis
(1977) and Willis (1981),

P0 =
∫︁
𝑆2

P̃0d𝑛 , P̃0 = I𝑆((CTI
0 [𝑛⊗2])−1 ⊗ (𝑛⊗2))TII𝑆

4𝜋 det (𝐴) ‖𝐴−1𝑛‖3
, (3.85)

where the symmetric 𝐴 reflects the ellipsoidal shape of the two-point
statistics (2-PPF). The eigenvalues of the symmetric 𝐴 correspond to the
inverse of the aspect ratios of the average inclusion of the correspond-
ing phase. The symbol TI represent the inner index transposition of a
fourth-order tensor, defined in components of a fourth-order tensor A as
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3 Homogenization of linear and nonlinear properties

𝐴TI
𝑖𝑗𝑘𝑙 = 𝐴𝑖𝑘𝑗𝑙. It should be remarked that the integrand P̃0 is minor and

major symmetric even for a triclinic stiffness C0, such that P0 is minor
and major symmetric. The position independent tensor P0 depends
on the ellipsoidal shape of the two-point-statistics and on the reference
stiffness C0 of the comparison medium. For isotropic two-point statistics,
i.e., 𝐴 = 𝐼 , and anisotropic comparison stiffness C0, the analytic form
of P0 is know only for some cases. If the two-point-statistics are chosen
anisotropic but still ellipsoidal, then P0 has to be determined numerically
for anisotropic C0. In this work, isotropic two-point statistics will be
assumed and an isotropic comparison stiffness C0 = 𝑐1P1 + 𝑐2P2 will be
used. For this choice, the tensor P0 is also isotropic and given by

P0 = 1
𝑐1 + 2𝑐2

P1 + 2
5𝑐2

𝑐1 + 3𝑐2

𝑐1 + 2𝑐2
P2 . (3.86)

This will be assumed from this point on for the rest of the present work.

The HS functional Eq. (3.77) is reformulated as follows

𝐹 = 1
2 ⟨𝜏 ·D[𝜏 ]⟩𝑣 − 1

2 ⟨𝜏 ⟩𝑣 · P0[⟨𝜏 ⟩𝑣] − ⟨𝜏 · �̃�⟩𝑣 , D = Ĉ−1 + P0 . (3.87)

Stationarity of Eq. (3.87) with respect to the stress polarization demands

D[𝜏 ] − P0[⟨𝜏 ⟩𝑣] − �̃� = 0 . (3.88)

This might be solved first for ⟨𝜏 ⟩𝑣 and then for 𝜏 . The explicit compu-
tations are documented in Appendix D. The value of 𝐹 for 𝜏 fulfilling
Eq. (3.88) is obtained as

𝐹 = −1
2 ⟨𝜏 · �̃�⟩𝑣 . (3.89)

Since the phasewise constant stress polarization is linear in the strain
�̃� = �̄� − Ĉ−1[�̂�] (due to Eq. (3.88)), it is clear that Eq. (3.89) delivers a
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3.4 Bounds of linear properties

quadratic polynomial in �̄�. The HS potential 𝑊 𝐻𝑆 is obtained after some
technical computations as

𝑊 𝐻𝑆 = �̄�0 + 1
2 ⟨𝜏 · �̃�⟩𝑣 = 1

2 �̄� · C𝐻𝑆 [�̄�] − �̄� · 𝑠𝐻𝑆 − 1
2𝑘𝐻𝑆 , (3.90)

which based on the minor and major symmetric tensor

L = [C − (C0 − P−1
0 )]−1 (3.91)

possesses the material properties, see Appendix D

C𝐻𝑆 = C0 − P−1
0 + ⟨L⟩−1

𝑣 , 𝑠𝐻𝑆 = ⟨L⟩−1
𝑣 [⟨L[𝑠]⟩𝑣] ,

𝑘𝐻𝑆 = ⟨𝑘⟩𝑣 + ⟨𝑠 · L[𝑠]⟩𝑣 − 𝑠𝐻𝑆 · ⟨L[𝑠]⟩𝑣 .
(3.92)

It is remarked that 𝑠0 vanishes completely in these results, i.e., 𝑠0 has
no influence on the HS bounds for isotropic two-point statistics if the
polarization field is determined by the stationarity condition. An upper
HS bound is obtained as 𝑊 𝐻𝑆 = 𝑊 𝐻𝑆+ using a comparison stiffness
fulfilling C ≤ C0 (and 𝑊 𝐻𝑆 = 𝑊 𝐻𝑆− for C ≥ C0).

Comments on optimal HS bounds. The condition C ≤ C0 for an up-
per HS bound describes for given C a set 𝒞+

0 for the components or
eigenvalues of C0. Every point in 𝒞+

0 generates an upper HS bound
𝑊 𝐻𝑆+ for which �̄� ≤ 𝑊 𝐻𝑆+∀�̄� holds. Without further specifications,
we are not able to choose a point from 𝒞+

0 which would deliver the
smallest upper HS bound. The smallest upper HS bound is obtained by
minimizing the HS expression with respect to 𝒞+

0 , i.e., the optimal HS
upper bound �̂� 𝐻𝑆+ is defined as

�̂� 𝐻𝑆+ = min
C0∈𝒞+

0

𝑊 𝐻𝑆 . (3.93)

This optimization problem is highly nonlinear in C0 and analytic solu-
tions are not known, in general. The minimizing C0 depends, in general,
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3 Homogenization of linear and nonlinear properties

on all material properties of the phases, on their volume fractions and
on �̄�. The corresponding HS material properties depend naturally also
on these quantities such that, e.g., the corresponding Ĉ𝐻𝑆 would have
to be analyzed for all varying quantities.

A much simpler, but less optimal, upper HS bound can be obtained by
using the upper zeroth-order bound of the stiffness, which fulfills the
condition C ≤ C0, i.e.,

𝑊 2+ = 𝑊 𝐻𝑆
⃒⃒⃒
C0=C0+

, (3.94)

with corresponding properties C2+, 𝑠2+ and 𝑘2+. This upper bound is
less optimal, i.e., �̄� ≤ �̂� 𝐻𝑆+ ≤ 𝑊 2+∀�̄�, but it offers the possibility to
analyze all corresponding HS material properties and derive bounds in
closed forms for all effective material properties.

It is shortly remarked that analogous arguments can be followed for the
lower optimal HS bound and the lower HS bound defined with C0−,
denoted as 𝑊 2− = 𝑊 𝐻𝑆 |C0=C0− with corresponding C2−, 𝑠2− and 𝑘2−.

Localization tensors for HS. The HS stiffness might be reformulated
as follows

C𝐻𝑆 = [(C0 − P−1
0 )⟨L⟩𝑣 + I𝑆 ]⟨L⟩−1

𝑣

= ⟨[(C0 − P−1
0 ) + L−1]L⟩𝑣⟨L⟩−1

𝑣

= ⟨CA𝐻𝑆⟩𝑣

(3.95)

with
A𝐻𝑆 = L⟨L⟩−1

𝑣 . (3.96)
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3.4 Bounds of linear properties

The gradient of the HS potential 𝑊 𝐻𝑆 with respect to �̄� offers an estimate
for the effective stress, to be denoted as �̄�𝐻𝑆 , which can be expressed as

�̄�𝐻𝑆 = 𝜕𝑊 𝐻𝑆

𝜕�̄�
= C𝐻𝑆 [�̄�] − 𝑠𝐻𝑆

= ⟨CA𝐻𝑆 [�̄�] − (A𝐻𝑆)T[𝑠]⟩𝑣

= ⟨C[A𝐻𝑆 [�̄�] + 𝑎𝐻𝑆 ] − 𝑠⟩𝑣

(3.97)

with
𝑎𝐻𝑆 = C−1(I𝑆 − (A𝐻𝑆)T)[𝑠] . (3.98)

These reformulations motivate the HS localization relations for the local
fields 𝜀𝐻𝑆 and 𝜎𝐻𝑆

𝜀𝐻𝑆 = A𝐻𝑆 [�̄�] + 𝑎𝐻𝑆 ,

𝜎𝐻𝑆 = C[𝜀𝐻𝑆 ] − 𝑠 = CA𝐻𝑆 [�̄�] − (A𝐻𝑆)T[𝑠] .
(3.99)

These localization relations allow to estimate and investigate the local
fields in the composite based on the HS results. These relations are
summarized as

A𝐻𝑆 = L⟨L⟩−1
𝑣 ,

𝑎𝐻𝑆 = C−1(I𝑆 − (A𝐻𝑆)T)[𝑠] ,

𝜀𝐻𝑆 = A𝐻𝑆 [�̄�] + 𝑎𝐻𝑆 ,

𝜎𝐻𝑆 = C[𝜀𝐻𝑆 ] − 𝑠 = CA𝐻𝑆 [�̄�] − (A𝐻𝑆)T[𝑠] ,

�̄�𝐻𝑆 = 𝜕𝑊 𝐻𝑆

𝜕�̄�
= C𝐻𝑆 [�̄�] − 𝑠𝐻𝑆 = ⟨𝜎𝐻𝑆⟩𝑣 .

(3.100)

It is remarked that the implied localization relation is not normalized
as expected since ⟨A𝐻𝑆⟩𝑣 = I𝑆 holds but ⟨𝑎𝐻𝑆⟩𝑣 ̸= 0. This may be un-
expected but it a property implied by the polarization field determined
by the stationarity condition. Naturally, one may use other approaches
to formulate a sensible polarization field, see, e.g., Willis (1981), but
it remains then unclear how far away such approaches are from the
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3 Homogenization of linear and nonlinear properties

stationary value of the HS functional, which may deliver less optimal
bounds.

Dual principle, bounds and localization. The equation 𝜀 = �̄� − G{𝜏}
can be reformulated based on 𝜎 = C0[𝜀] + 𝜏 ,S0 = C−1

0 and 𝜀 = S0[𝜎] + 𝜉

in terms of the exact strain polarization 𝜉 = −S0[𝜏 ] as

𝜎 = �̄� − T{𝜉} , T{𝜉} = C0[𝜉 − ⟨𝜉⟩𝑣 − G{C0[𝜉]}] , (3.101)

where −T{𝜉} is a statically admissible stress with zero mean. Now, for a
heterogeneous material with 𝜀 = S[𝜎] + 𝑒 the exact strain polarization
is given by 𝜉 = Ŝ[𝜎] + 𝑒 with Ŝ = S − S0. Following the HS variational
principle construction, the relation Eq. (3.101) can be described in terms
of an arbitrary strain polarization 𝜉

𝐻(𝜉) = Ŝ−1[𝜉] + T{𝜉} − �̃� , �̃� = �̄� + Ŝ[𝑒] , 𝐻(𝜉) = 0 . (3.102)

The corresponding functional

𝐽 = 1
2 ⟨𝜉 · Ŝ−1[𝜉]⟩𝑣 + 1

2 ⟨𝜉 · T{𝜉}⟩𝑣 − ⟨𝜉 · �̃�⟩𝑣 (3.103)

is stationary at 𝜉 = 𝜉 and has the value

𝐽 = 𝐽(𝜉) = �̄�0 − �̄� , �̄�0 = 1
2 �̄� · S0[�̄�] + 1

2(⟨𝑙⟩𝑣 − ⟨𝑒 · Ŝ[𝑒]⟩𝑣) . (3.104)

Based on the second variation of 𝐽 and following analogous reasoning
as proved in Willis (1977), it can be shown that for S ≤ S0 the operator
Ŝ−1 + T is negative definite, such that the stationary value is a maximum
and a corresponding HS upper bound 𝑈𝐻𝑆+ can be obtained. Analogous
reasoning, following Willis (1977), can be applied for S0 ≤ S in order to
generate the lower bound 𝑈𝐻𝑆−.
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3.4 Bounds of linear properties

Now, the classical HS bounds for ellipsoidal 2-point statistics with P0

are obtained by replacing

⟨𝜉 · T{𝜉}⟩𝑣

= ⟨𝜉 · C0[𝜉]⟩𝑣 − ⟨𝜉⟩𝑣 · C0[⟨𝜉⟩𝑣] − ⟨(C0[𝜉]) · G{C0[𝜉]}⟩𝑣

= ⟨𝜉 · C0[𝜉]⟩𝑣 − ⟨𝜉⟩𝑣 · C0[⟨𝜉⟩𝑣] − ⟨(C0[𝜉]) · P0[C0[𝜉] − ⟨C0[𝜉]⟩𝑣]⟩𝑣

= ⟨𝜉 · Q0[𝜉]⟩𝑣 − ⟨𝜉⟩𝑣 · Q0[⟨𝜉⟩𝑣]
(3.105)

with the constant minor and major symmetric tensor

Q0 = C0 − C0P0C0 . (3.106)

The functional 𝐽 is expressed now as

𝐽 = 1
2 ⟨𝜉 · (Ŝ−1 + Q0)[𝜉]⟩𝑣 − 1

2 ⟨𝜉⟩𝑣 · Q0[⟨𝜉⟩𝑣] − ⟨𝜉 · �̃�⟩𝑣 . (3.107)

The algebraic structure is naturally identical to Eq. (3.87), such that we
can immediately present the dual HS potential based on the minor and
major symmetric tensor M

𝑈𝐻𝑆 = 1
2 �̄� · S𝐻𝑆 [�̄�] + �̄� · 𝑒𝐻𝑆 + 1

2 𝑙𝐻𝑆 , M = [S − (S0 − Q−1
0 )]−1 ,

S𝐻𝑆 = S0 − Q−1
0 + ⟨M⟩−1

𝑣 , 𝑒𝐻𝑆 = ⟨M⟩−1
𝑣 [⟨M[𝑒]⟩𝑣] ,

𝑙𝐻𝑆 = ⟨𝑙⟩𝑣 − ⟨𝑒 · M[𝑒]⟩𝑣 + 𝑒𝐻𝑆 · ⟨M[𝑒]⟩𝑣 .

(3.108)

Further computation shows that 𝑈𝐻𝑆 = (𝑊 𝐻𝑆)* holds. The advantage
of Eq. (3.108) is that the corresponding bounds are given explicitly in
terms of S, 𝑒 and 𝑙. This might be useful for problems starting with
complementary energy formulations. One example for viscoplastic
polycrystals will be discussed in Chapter 4.
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3 Homogenization of linear and nonlinear properties

It should be remarked that analogous arguments for optimal and simpler
upper and lower bounds, following Eq. (3.93) and Eq. (3.94), can be
considered.

Analogous localization relations, as the ones given in Eq. (3.99), are
obtained for the dual formulation, expressed as

B𝐻𝑆 = M⟨M⟩−1
𝑣 ,

𝑏𝐻𝑆 = S−1((B𝐻𝑆)T − I𝑆)[𝑒] ,

𝜎𝐻𝑆 = B𝐻𝑆 [�̄�] + 𝑏𝐻𝑆 ,

𝜀𝐻𝑆 = S[𝜎𝐻𝑆 ] + 𝑒 = SB𝐻𝑆 [�̄�] + (B𝐻𝑆)T[𝑒] ,

�̄�𝐻𝑆 = 𝜕𝑈𝐻𝑆

𝜕�̄�
= S𝐻𝑆 [�̄�] + 𝑒𝐻𝑆 = ⟨𝜀𝐻𝑆⟩𝑣 .

(3.109)

Classical limits and first-order bounds. For the comparison stiff-
ness C0 = 𝛾Ĉ0,P0(C0) = 1

𝛾P0(Ĉ0) = 1
𝛾 P̂0 and P−1

0 = 𝛾P̂−1
0 follow. The

limit for vanishing 𝛾 of 𝑊 𝐻𝑆 delivers with C−1 = S, 𝑒 = C−1[𝑠] and
𝑙 = 𝑘 + 𝑠 · C−1[𝑠]

lim
𝛾→0

𝑊 𝐻𝑆 = 1
2 �̄� · ⟨S⟩−1

𝑣 [�̄�] − �̄� · ⟨S⟩−1
𝑣 [⟨𝑒⟩𝑣] − 1

2(⟨𝑙⟩𝑣 − ⟨𝑒⟩𝑣 · ⟨S⟩−1
𝑣 [⟨𝑒⟩𝑣]) .

(3.110)

The Legendre-Fenchel transform of this limit equals to

( lim
𝛾→0

𝑊 𝐻𝑆)* = sup
�̄�

{�̄� · �̄� − lim
𝛾→0

𝑊 𝐻𝑆}

= 1
2 �̄� · ⟨S⟩𝑣[�̄�] + �̄� · ⟨𝑒⟩𝑣 + 1

2 ⟨𝑙⟩𝑣

(3.111)

such that this limit is in accordance with the upper first-order bounds in
the complementary space.
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3.4 Bounds of linear properties

For the complementary HS potential, the limit for 𝛾 → ∞ is computed
based on S0 = C−1

0 = 1
𝛾 Ĉ0 as

lim
𝛾→∞

𝑈𝐻𝑆 = 1
2 �̄� · ⟨C⟩−1

𝑣 [�̄�] + �̄� · ⟨C⟩−1
𝑣 [⟨𝑠⟩𝑣]

+1
2(⟨𝑘⟩𝑣 + ⟨𝑠⟩𝑣 · ⟨C⟩−1

𝑣 [⟨𝑠⟩𝑣]) .
(3.112)

Its Legendre-Fenchel transform yields

( lim
𝛾→∞

𝑈𝐻𝑆)* = sup
�̄�

{�̄� · �̄� − lim
𝛾→∞

𝑈𝐻𝑆}

= 1
2 �̄� · ⟨C⟩𝑣[�̄�] − �̄� · ⟨𝑠⟩𝑣 − 1

2 ⟨𝑘⟩𝑣

(3.113)

such that this limit is in accordance with the upper first-order bound
of �̄� . It is remarked that these limits are implied by the polarization
field determined through the stationarity condition (3.88). It is unclear if
other polarization fields (not determined by the stationarity condition)
deliver expressions which also deliver these limits.

Comments on HS expressions and texture dependency. The expres-
sions for the HS material properties given Eq. (3.92) and Eq. (3.108) offer
the most clear and computationally advantageous form possible for
the general anisotropic case. Compared to the algebraically identical
expression for the HS stiffness given in Willis (1977), the HS expression
for the stiffness given in Eq. (3.92), also obtained already by Walpole
(1966) for pure linear elasticity, shows immediately that the HS stiffness
is symmetric for arbitrary anisotropic constituents.

Further, the HS stiffness of Eq. (3.92) requires only one volume average
of major symmetric tensors over the RVE, compared to 2 averages of in
general not major symmetric tensors in the expression of Willis (1977).

Due to the major symmetry of L (and M), it is immediately visible
that for all elastic-anisotropy classes, the average ⟨L⟩𝑣 (and ⟨M⟩𝑣) and
consequently all HS material properties depend in terms of the texture
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3 Homogenization of linear and nonlinear properties

only on second- and fourth-order texture coefficients of the corresponding
CODFs of each phase. These are the very same relevant microstructural
texture variables of the first-order bounds. This result seems not to
be known in literature and offers a new insight into the present work.
This result is also obtainable through the expression of Willis (1977) but
only by considering the harmonic decomposition of minor but not major
symmetric tensors and the results of Lobos et al. (2017). There, it has been
shown, that, for the special, not major symmetric tensors appearing in
the HS stiffness expression of Willis (1977), the harmonic decomposition
delivers vanishing first- and third-order harmonic parts. This result of
Lobos et al. (2017) also implies that the corresponding orientation aver-
ages depend only on second- and fourth-order texture coefficients, but
in a much more complicated fashion which is algebraically equivalent to
the much simpler results of this work.

Finally, it should be remarked that, as discussed in Section 1.1, for a
polycrystal each crystallographic orientation is considered as a distinct
phase. This means that, in the case of polycrystalline materials, the
phasewise constant polarization, isotropic two-point-correlation and
lack of long-range-order in the HS bounds refers to each crystallographic
orientation of each material constituent.

3.4.5 Approximations based on HS expressions

Isotropic self-consistent approximation. By solving the elastic prob-
lem in a comparison medium with homogeneous stiffness C0 one might
consider the comparison medium as the medium exactly with the effec-
tive stiffness C0 = C̄. The exact solution of the elastic problem allows
this, since the exact solution is valid for arbitrary C0. This delivers
an implicit equation for the effective stiffness. Any approximation of
the comparison-medium-dependent localization operator A, depending
on the assumptions and motivation of the respective model, delivers
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a different implicit equation for C̄. These approximations are referred
to as self-consistent approximations, see Hershey (1954), Kröner (1958)
and Hill (1965). This approach has been extended in several linear
and nonlinear applications, see, e.g., Willis (1977), Talbot and Willis
(1987), Lebensohn et al. (2004), Knezevic et al. (2013). However, these
approaches are costly in their computation since the implicit nonlinear
equations require in general the computation of the tensor G for general
anisotropic comparison stiffness C0 = C̄ and general microstructure
statistics.

In this work, several simplifications are made. For the statistical assump-
tions considered for the HS bounds, a semi self-consistent approach
is build upon the HS stiffness C𝐻𝑆 . Even for a multiphase material,
the crystallographic isotropic case, i.e., 𝑓𝑝(𝑄) = 1∀𝑝, is a manageable
expression, since only the isotropic part of the "single crystal" tensor L
(or M for the dual formulations) needs to be extracted and superimposed
with the phase concentrations 𝑐𝑝 with 𝑝 = 1, . . . , 𝑚. The isotropic self-
consistent solution C𝑆𝐶

0 = 𝑐𝑆𝐶
1 P1 + 𝑐𝑆𝐶

2 P2 of the self-consistent equation
based on C𝐻𝑆 is noted in this work as

C𝑆𝐶
0 = C𝐻𝑆 |C0=C𝑆𝐶

0 ,𝑓𝑝=1 , (3.114)

and is determined by only two scalar nonlinear equations for the respec-
tive eigenvalues of isotropic stiffness tensors. It should be noted, that
these equations still depend on the phase concentrations 𝑐𝑝. For single-
phase polycrystalline materials, i.e., 𝑚 = 1 and 𝑐1 = 1 hold, Eq. (3.114)
can be solved immediately by numeric computation. For multiphase
materials, Eq. (3.114) can only be used implicitly. The isotropic stiffness
C𝑆𝐶

0 is then used in the present work as a comparison material for 𝑊 𝐻𝑆
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{C𝐼𝑆𝐶 , 𝑠𝐼𝑆𝐶 , 𝑘𝐼𝑆𝐶 ,A𝐼𝑆𝐶 , 𝑎𝐼𝑆𝐶} = {C𝐻𝑆 , 𝑠𝐻𝑆 , 𝑘𝐻𝑆 ,A𝐻𝑆 , 𝑎𝐻𝑆}|C0=C𝑆𝐶
0

(3.115)

for general crystallographic texture. This approach is not as accurate as
the full self-consistent approach but offers a fast and explicit computation
regarding the texture since, for isotropic C0, the tensor P0 is given
analytically and the representations of averages for general texture in
terms of texture coefficients, see Chapter 2, are directly applicable. There-
fore, the isotropically self-consistent approximation Eq. (3.115) offers a
practical approximation which is also usable for inverse problems as
in materials design, where the full self-consistent approach would be
highly cumbersome.

Naturally, dual properties of the complementary space can also be used.

Singular approximation. The obvious practical approximation based
on the HS expression is to choose a "sensible" comparison material
C0, e.g., located somewhere between the reference tensors delivering
the corresponding upper and lower bounds. This approach is purely
pragmatic and is, after long but simple computations, algebraically
equivalent to the singular approximation of Fokin (1972), see also, e.g.,
Morawiec (1996) and Morawiec (2004) for the purely elastic case.

The simplest and a probably "sensible" comparison material for a multi-
phase material is the Hill average of the isotropic first-order bounds of
the linear elastic properties. This approach noted in this work as SA1

{C𝑆𝐴1, 𝑠𝑆𝐴1, 𝑘𝑆𝐴1,A𝑆𝐴1, 𝑎𝑆𝐴1}
= {C𝐻𝑆 , 𝑠𝐻𝑆 , 𝑘𝐻𝑆 ,A𝐻𝑆 , 𝑎𝐻𝑆}|C0= 1

2 (C1++C1−)|𝑓𝑝=1
.

(3.116)

This pragmatic approach offers an explicit computation in terms of the
texture and phase concentrations even for multiphase materials and
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might be considered for cumbersome cases, where implementation of
C𝐼𝑆𝐶 require too many resources.
Again, dual properties of the complementary space can also be used.
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3.5 Applications for linear
thermomechanical properties

Assumptions and exact relations. For classical linear thermomechan-
ical behavior, it is assumed that the deformations are small, that the
mass density ρ is constant, and that the absolute temperature θ differs
only slightly of a reference temperature θ0, i.e., θ ≈ θ0. The eigenfield
s in Section 3.3 corresponds to the thermal stresses s = βΔθ with the
temperature deviation Δθ = θ − θ0 and the thermal stress coefficient
tensor β. The corresponding scalar k is expressed as k = fΔθ2, where
f is connected to the classical heat capacity for constant strain cε, i.e.,
f = ρcε/θ0. In the present work θ and θ0 are assumed as homogeneous
over the RVE. The effective free energy of the RVE is expressed following
Eq. (3.29) as

W̄ = 1
2 ε̄ · C̄[ε̄] − ε̄ · β̄Δθ − 1

2 f̄Δθ2 . (3.117)

Bounds, properties-closure and approximations. It is clear that the
thermoelastic properties can be bounded with the zeroth-, first- and the
respective second-order HS bounds (for assumed statistics). For MPPMs,
the texture enters the first- and second-order bounds through the second-
and fourth-order texture coefficients in all expressions.

The component bounds of the stiffness and of the effective thermal stress
(and expansion) coefficient can be investigated with the aid of the zeroth-,
first- and second-order properties-closure for varying texture. These
maps will offer valuable information to materials designer in several
applications.
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Approximations for SPPMs can be built with the ISC approach. For
MPPMs, the SA1 approach might be an option for pragmatic homoge-
nization applications.

3.6 Applications for physically
nonlinear problems

Variational principles based on linear comparison composite (LCC).
For physically nonlinear problems, bounds and estimates can be gen-
erated, as introduced by Ponte Castañeda (1991), by taking into con-
sideration a comparison linear composite. Based on the work of Ponte
Castañeda (1991), several extensions for nonlinear materials have been
developed by the use of the LCC for the generation of bounds and
self-consistent estimates, see, e.g., DeBotton and Ponte Castañeda (1995),
Ponte Castañeda (1996), Ponte Castañeda and Suquet (1997), Liu and
Ponte Castañeda (2004), Ponte Castañeda et al. (2004), Ponte Castañeda
(2015) and Ponte Castañeda (2016).

In this section, we consider the core idea of Ponte Castañeda (1991) in
an RVE with local elastic energy density 𝑊 with growth larger than
quadratic in terms of the strains. This will be noted as 𝑊 (𝜀) > 𝑂(𝜀2).
As introduced in Ponte Castañeda (1991), we use a linear comparison
composite (LCC) with local elastic energy density 𝑊𝑐 of quadratic
growth, 𝑊𝑐(𝜀) = 𝑂(𝜀2). Based solely on these properties the following
auxiliary quantity is obtained

𝑉𝑐 = sup
𝜀

{𝑊𝑐 − 𝑊} . (3.118)

The definition of 𝑉𝑐 implies the inequality

𝑉𝑐 ≥ 𝑊𝑐 − 𝑊 ∀𝜀 (3.119)
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at every point x of the RVE. The effective energy density W̄ is defined
through the solution of the boundary value problem which equals the
infimum with respect to the displacement being kinematically compat-
ible, i.e., W̄ = infu∈K〈W 〉v. Rearrangement of Eq. (3.119), integration
over the RVE and consideration of the infimum with respect to K on
both sides yields

W̄ ≥ W̄c − V̄c , W̄c = inf
u∈K

〈Wc〉v , V̄c = 〈Vc〉v (3.120)

The effective energy density W̄c is the exact effective energy density of
the LCC, a physically linear material. For example, the comparison po-
tential Wc could have been formulated as Wc = 1

2 ε · Cc[ε] − ε · sc − 1
2 kc.

It should be shortly remarked, that this method is analogously applicable
to other physical problems, as to be illustrated in Section 4.3.2 for
viscoplastic behavior.

Application of physically linear expressions. For W̄c all previous
expressions for linear elastic (and linear problems with eigenfields) of
this work can be considered. For example, if a purely elastic comparison
linear composite is taken into account, then, either with the Reuss bound
or the lower HS bound, lower bounds of W̄c can be given explicitly
for multiphase polycrystalline materials. If an estimate is needed in
practice, then, for multiphase polycrystalline materials, the isotropically
self-consistent estimate might deliver a viable option. Improvements
can be achieved by the usage of estimates of HS type with eigenfields,
see, e.g., Ponte Castañeda (1996), Ponte Castañeda and Suquet (1997),
Ponte Castañeda (2002) and Ponte Castañeda et al. (2004). The texture
dependent HS expressions of Section 3.4.4 extend the applications of
formulations with eigenfields if the eigenfields (s and e) are assumed to
have the same orientation at every material point as the local stiffness.
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3 Homogenization of linear and nonlinear properties

3.7 Review

In this chapter, the basic probabilistic description of multiphase random
materials has been illustrated along with the basic concept of homoge-
nization of mechanical problems with eigenfields. For linear problems
with eigenfields, zeroth-, first- and second-order bounds of the effective
material properties have been discussed. The second-order HS bounds
have been illustrated depending on phase concentrations and texture
coefficients. The isotropically self-consistent approximation has been
proposed as a pragmatic explicit and efficient approximation in terms
of finite-dimensional microstructural variables (phase concentrations
and texture coefficients). This approximation and the SA1 approach are
assumed to be useful for pragmatic applications in materials design. The
application of the obtained expressions for thermomechanical materials
and physically nonlinear bounds has been sketched. Explicit examples
will be presented in the upcoming chapter.
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Chapter 4

Applications in materials
design and homogenization
of textured materials

4.1 Overview

In this chapter, examples for the materials design of textured materials
based on the expressions of the present work are illustrated. The chapter
begins with a discussion of the main procedure and the terminology.
Subsequently, orthotropic polycrystals of cubic single crystals are taken
into consideration, and the elastic properties are designed in the first
example. In the second example, the linear thermoelastic properties
of transversely isotropic particle reinforced materials are investigated.
The last example shows how viscoplastic properties of a textured poly-
crystal are bounded with a linear material and the corresponding HS
expressions of the present work.
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4.2 Materials design of linear properties

4.2.1 Procedure

Materials design problems are inverse problems. One of today’s ma-
terials challenges is not to investigate several realizations of different
compounds and tabulate measured data, but to construct the microstruc-
ture of a material, precisely based on demanded properties 𝑝* with
given tolerances 𝑇 * (properties-profile). Therefore, models incorporating
the impact of microstructure 𝑚 on interesting properties 𝑝 up to a
certain degree of accuracy are needed. First, depending on the intrinsic
material anisotropy strength, some microstructure changes might or
might not significantly influence the properties of interest. For example,
the elastic properties of single crystal aluminum are cubic but almost
isotropic, such that aluminum polycrystals show very similar elastic
properties for all microstructures. Second, for materials showing strong
anisotropy, depending on the strength of microstructure influence, it
might be sufficient to incorporate only certain statistical moments of
the microstructure, denoted schematically as 𝑚1, 𝑚2, . . . belonging to a
microstructure variable set 𝑀 .

The materials design is carried out in the present work as follows:

1. Materials screening.

For bounded properties, we carry out a materials selection based
on material databases, required properties 𝑝* and tolerances 𝑇 *.

2. Microstructure optimization.

For the chosen material, the first- and second-order properties-
closures for the properties of interest are explored, based on phase
volume fractions and texture variables. Then, a "sensible" ap-
proximation for the properties of interest, schematically denoted
by 𝑝app = 𝑝app(𝑚1, 𝑚2, . . . ), is chosen. For the determination of
favorable microstructure variables, a metric 𝑑(𝑝𝑎, 𝑝*) ≥ 0 is chosen,
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4.2 Materials design of linear properties

in order measure the deviation from the prescribed properties. An
optimization problem is solved for the microstructure variables

min
𝑚𝑖∈𝑀

𝑑(𝑝𝑎, 𝑝*) .

3. Uncertainties check.

In this post-processing step, for bounded properties, the obtained
solution of the optimization problem is checked with the consid-
ered bounds to give information about maximal possible devia-
tions for given microstructure moments. The incorporation of this
step into the optimization problem would be highly cumbersome
since, depending on imposed tolerances, the solution set might be
too small or even empty.

4.2.2 Example 1: Linear elastic properties of orthotropic
polycrystals of cubic single crystals

Overview of this example. In this example, a cubic material and poly-
crystals of it with orthotropic texture will be investigated regarding
linear elastic properties. Based on the zeroth-order bounds, an artificial
material database will be used for the selection of a possibly suitable
material. Then, based on the zeroth-, first- and second-order bounds of
this work, the properties-closure of the linear elastic properties of the
textured polycrystals will be depicted to show the design possibilities
offered by all orthotropic polycrystals of the chosen material. Finally,
the ISC approach will be used as a pragmatic approach in order to
determine textures delivering properties as close as possible to the
desired properties-profile and the relative elastic range will be discussed.
For the sake of simplicity, all physical quantities will be given without
physical dimensions, and all numbers will be small.
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1. Materials screening. In this example, the properties-profile given
in Table 4.1 will be considered.

Table 4.1: Properties-profile of example 1

Maximum number of constituents:
2

Interesting quantities:
C̄1111 ≈ 7.4 with tolerances ±3%
C̄1133 ≈ −0.6 with tolerances ±3%

Macroscopic group:
Orthotropic with respect to {bi}

The material database tabulated in Table 4.2 is used in this example.

Table 4.2: Artificial material database with linear elastic properties

ID Group Properties
M1 ISO {C̃ijkl}

{
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1

2 , 0, 0, 1
2 , 0, 1

2

}
M2 ISO {C̃ijkl}

{
5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 5

2 , 0, 0, 5
2 , 0, 5

2

}
M3 CUB {C̃ijkl}

{
19
3 , 4

3 , 4
3 , 0, 0, 0, 19

3 , 4
3 , 0, 0, 0, 19

3 , 0, 0, 0, 5, 0, 0, 5, 0, 5
}

M4 CUB {C̃ijkl}
{

17
3 , 5

3 , 5
3 , 0, 0, 0, 17

3 , 5
3 , 0, 0, 0, 17

3 , 0, 0, 0, 5, 0, 0, 5, 0, 5
}

M5 HEX {C̃ijkl} {2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 8, 0, 0, 0, 1, 0, 0, 1, 0, 1}
M6 TRI {C̃ijkl}

{
6, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0, 0, 0, 3

2 , 0, 0, 1, 0, 1
2

}
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4.2 Materials design of linear properties

isotropic material (M5) and one triclinic material (M6). The 21 free elastic
constants are given as lists

{C̃ijkl} = {C̃1111, C̃1122, C̃1133, C̃1123, C̃1113, C̃1112,

C̃2222, C̃2233, C̃2223, C̃1322, C̃1222,

C̃3333, C̃2333, C̃1333, C̃1233,

C̃2323, C̃1323, C̃1223,

C̃1313, C̃1213,

C̃1212}

(4.1)

for each material / SPPM. The single crystal stiffness tensor of the
isotropic materials M1 and M2 can be expressed by the respective spec-
tral decomposition as C̃M1 = 1P1 + 1P2 and C̃M1 = 5P1 + 5P2. The sin-
gle crystal stiffness of the cubic materials M3 andM4 can be expressed by
the respective spectral decomposition as C̃M3 = 9Pcub

1 + 5Pcub
2 + 10Pcub

3
and C̃M4 = 9Pcub

1 + 4Pcub
2 + 10Pcub

3 . This tensorial expressions will facil-
itate the interpretation of the upcoming computations.

In order to see if a material or a combination of materials (MPPM)
of Table 4.2 is already unable to deliver properties according to the
properties-profile, the zeroth-order bounds C0±, see Eq. (3.59), can be
computed. Before doing this, the difficulty anticipated in the introduc-
tion of C̃0+, see Eq. (3.61), is shortly discussed. The material database
Table 4.2 contains 6 materials, i.e., 6 · 5 = 30 two phase material combi-
nations exist, such that material designers would have to compute the
zeroth-order bounds C0± of each material and then of every two phase
combination. As indicated in the introduction of C̃0+, the computation
of the zeroth-order bound C0+ (and C0− through the dual problem)
for every new material combination is possible, but cumbersome and
resource consuming for increasing number of materials in the database.
Therefore, in order to save resources, the zeroth-order bounds C̃0±
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be evaluated, together with the respective relative elastic volumes e0,
see Eq. (3.46). After that, the component bounds given in Eq. (3.44) are
computed for the properties of interest. The results are tabulated in
Table 4.3.

Table 4.3: Eigenvalues of zeroth-order bounds C0± of each material and C̃0± of selected
MPPMs with corresponding relative elastic volume e0 and bounds Γ0±

1111 of C̄1111 and
Γ0±

1133 of C̄1133

ID {λ0−
1,2} {λ0+

1,2} e0 {Γ0±
1111} {Γ0±

1133}
M1 {1.0, 1.0} {1.0, 1.0} 1.0 {1.0, 1.0} {0, 0}
M2 {5.0, 5.0} {5.0, 5.0} 1.0 {5.0, 5.0} {0, 0}
M3 {9.0, 5.0} {9.0, 10.} 3.2 × 101 {6.3, 9.7} {−1.2, 2.2}
M4 {9.0, 4.0} {9.0, 10.} 9.8 × 101 {5.7, 9.7} {−1.3, 2.7}
M5 {2.0, 2.0} {10., 7.3} 3.3 × 103 {2.0, 8.3} {−2.6, 3.7}
M6 {2.0, 2.0} {7.0, 5.7} 6.5 × 102 {2.0, 6.1} {−1.8, 2.3}
ID {λ̃0−

1,2} {λ̃0+
1,2} e0 {Γ0±

1111} {Γ0±
1133}

M12 {1.0, 1.0} {5.0, 5.0} 1.6 × 104 {1.0, 5.0} {−2.0, 2.0}
M34 {9.0, 4.0} {9.0, 10.} 9.8 × 101 {5.7, 9.7} {−1.3, 2.7}
M15 {1.0, 1.0} {10., 7.3} 2.1 × 105 {1.0, 8.3} {−3.1, 4.2}
M16 {1.0, 1.0} {7.0, 5.7} 4.1 × 104 {1.0, 6.1} {−2.3, 2.8}

In Table 4.3 several properties of the MPPMs are visible. Let us first
consider the SPPMs. Since M1 and M2 are isotropic materials, the
zeroth-order bounds evaluate to the same values as in their spectral
decompositions, as they should, since the effective stiffness equals the
single crystal stiffness for such single-phase materials. The correspond-
ing relative elastic volume equals identity, as it should. The zeroth-order
bounds of the cubic materials evaluate to the expected results from
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and Böhlke (2016). The respective relative elastic volume e0 of the cubic
materials is larger than the identity, but not by much, since the deviation
from an isotropic state is not large, as seen in the eigenvalues of the
corresponding zeroth-order bounds. The hexagonal material M5 shows
higher intrinsic anisotropy, as reflected by the computed λ±

1,2 and higher
value of e0. Finally, although the triclinic M6 does not deliver high λ±

1,2
values as M5, it nevertheless shows intrinsic anisotropy comparable to
M5, as seen by its e0.

Now, let us interpret the results for the MPPMs. Although the ma-
terials M1 and M2 are relatively weak isotropic materials (compared
to, e.g., M3 and M4), purposeful combination of a weak matrix with
strategic positioning and arrangement of stiff inclusions can offer a huge
anisotropic properties space. Exactly this intrinsic anisotropy is reflected
by the corresponding zeroth-order bounds and the high relative elastic
volume e0 of M12 in Table 4.3. The high value of e0 reflects only relative
information, not absolute, as seen, e.g., in the smaller values of {Γ0±

1111}
for M12 compared to M34. The MPPMM34, on the one hand, can offer
high absolute values of {Γ0±

1111} but shows less flexibility, as indicated by
the lower e0. Analogous conclusions can be seen for M15 and M16.

Now, based on our properties-profile Table 4.1, M3 - M5, M34 and M15
are candidate MPPMs, since all others can be excluded by automatic
evaluation due to the requirement C̄1111 ≈ 7.4. In order to be clear, no
realization (independently of the microstructure) of M1, M2, M6, M12
or M16 exists, which is able to exceed its zeroth-order bounds and ever
reach C̄1111 ≈ 7.4.
This automatic materials exclusion and search for candidates (in princi-
ple, since we still don’t know if the prescribed properties are achievable)
facilitates the materials selection/screening for large material databases.
Several resources are also spared since unnecessary fabrications, tests or
simulations of, e.g., MPPMs of M16 are avoided.
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Naturally, the materials screening should cover not only requirements
for the physical properties of a material, but chemical, manufacturing,
financial and other restrictions. For this example, we will select an SPPM
of the cubic material M4 and, according to the properties-profile Table 4.1,
polycrystals of M4 with orthotropic texture will be investigated.

2. Microstructure optimization. The base material has been chosen.
This allows us now to evaluate not only the zeroth- C0±, but also the
first- C1± and second-order bounds C2± (based on HS, see Eq. (3.94)) of
the present work.

Figure 4.1: Regions 𝒱ort
4 and 𝒩4 depicted in yellow and blue, respectively.

The bounds C1± and C2± depend only on second- and fourth-order
texture coefficients of the CODF of the cubic material M4. For cubic
materials, all second-order reference tensors T′

⟨2⟩𝛽 vanish and only
one fourth-order reference tensor T′

⟨4⟩1 exists, see Appendix A. This
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implies that the relevant influence of the CODF on polycrystals of M4 is
embodied in the single fourth-order texture coefficient V′

⟨4⟩1 = V′. The
polycrystals are restricted to be orthotropic. This restricts the number
of degrees of freedom of V′ to 3, 𝑉 ′

1111, 𝑉 ′
1122 and 𝑉 ′

2222 in this example,
see Appendix A. In Fig. 4.1 the relevant regions 𝒱ort

4 (based on 𝒱sym,
see Eq. (2.54), and constructed with 𝑆ort, see Eq. (2.17), and 𝑄15, see
Eq. (2.19)) and 𝒩4 are depicted in yellow and blue, respectively. It is
shortly reminded that for cases with triclinic texture, the number of
texture degrees of freedom increase and the delineation of the relevant
texture set requires more resources. If the complexity is too high for
certain applications, then the approximation of the CODF by CCODFs
and the set of texture eigenvalues 𝜆2,4 defined in Eq. (2.39) and depicted
in Fig. 2.1b offers an option.

The region 𝒱ort
4 depicted in Fig. 4.1 delivers a ground set for investigation

and optimization of quantities depending on the orthotropic texture co-
efficient V′. Each point in 𝒱ort

4 represents the influence of microstructures
with orthotropic CODF in C1± and C2±. Therefore, each point of 𝒱ort

4
delivers component bounds Γ1/2±

1111/1133, see Eq. (3.44), which describe
rectangles in the space of 𝐶1111 and 𝐶1133. Consider the regions depicted
in Fig. 4.2.

In Fig. 4.2, the gray region depicts the zeroth-order bounds of M4 and
corresponding component bounds Eq. (3.44). This is the zeroth-order
properties-closure which reflects the material specific, microstructure
independent assured limitations of a given material. The properties of
the single crystal are marked by the black point on the left edge of the
zeroth-order properties-closure. Now, for given material, evaluation a
single point of 𝒱ort

4 together with the first-order bounds C1± and corre-
sponding component bounds Eq. (3.44) delivers the example light green
rectangle depicted in Fig. 4.2. If the same point of 𝒱ort

4 is evaluated with
the second-order bounds C2±, then the smaller red rectangle depicted
in Fig. 4.2 is obtained, which is naturally contained in the one based on
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C1±. Analogous evaluation of all points of 𝒱ort
4 based on C1± yields a

set of rectangles, whose union delivers the first-order properties-closure,
depicted by the green region in Fig. 4.2. The second-order properties-
closure based on C2± is depicted in red, while the region obtained with
the ISC approach based on C𝐼𝑆𝐶 , see Eq. (3.115), is depicted in yellow
in Fig. 4.2. The aimed properties of the properties-profile Table 4.1 are
marked by the purple point and the purple rectangle (indicating the
tolerances).

Figure 4.2: The single crystal properties of M4 are marked by the black point; the
properties-closures of zeroth-, first- and second-order are represented by the gray, green
and red regions, respectively; properties reached by the ISC approach are represented by
the yellow region; the purple point and rectangle represent the aimed properties in the
properties-profile of this example; the blue point represents the properties obtained by the
ISC approach minimizing the euclidean distance to the purple point; the green and red
rectangle represent the component bounds of first- and second-order for the optimized
texture delivering the blue point of the ISC approach.
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Material designers can observe several properties and difficulties in
material design problems. The zeroth-order properties-closure gives
primarily information of properties definitely out of reach of a ma-
terial and only a notion of possibly achievable properties. The first-
order properties-closure offers the same information, only taking into
consideration volume fraction information. This means that the first-
order properties-closure is able to show that some properties (initially
considered as possibly achievable by the zeroth-order properties-closure)
are impossible to reach for any polycrystal of the considered material.
For properties-profile lying partly in the first-order properties-closure,
it might be possible to find favorable microstructures. Evaluation of
higher-order properties-closures, as the second-order one depicted in
red in Fig. 4.2, might reveal that (under the assumed statistics) the
aimed properties are definitely out of reach. Of course, the second-order
bounds of the present work assume isotropic 2-point statistics and no
long-range order, such that taking into consideration all possible 2-point
statistics might help in this situation. But this is not assured. Therefore,
it should be clear for every material designer that 𝑛-th-order bounds
(and corresponding properties-closures) reflect properties limitation and
offer only a notion of what might be achievable.

For cases as the present one, the only viable option (if a change of
material is not possible) is to use a pragmatic approach. In this example,
the ISC is used in order to determine texture coefficients delivering
properties as close as possible to the properties-profile. The solution
based on the ISC minimizing the Euclidean distance to the purple point
is depicted by the blue point in Fig. 4.2.

If a change of material is allowed, then this should be attempted. The
properties-closure of a new material with larger range of zeroth-order
bounds and / or larger relative elastic might be able to cover the aimed
properties. But again, higher-order bounds might show more informa-
tion for certain problems.
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3. Uncertainties check. Now, the corresponding optimal texture ob-
tained with the ISC approach is used to evaluate again the first- and
second-order properties-closure, which deliver the green and red rect-
angles in Fig. 4.2. This means that, based on C1±, the properties of
polycrystals with the obtained optimal texture are assured to be in the
green rectangle. If the polycrystals fulfill the HS statistical assumptions,
then the properties are assured to lie in the remarkably small red rectan-
gle, such that from a pragmatic point of view, the ISC approach delivers
a reasonable estimate with small uncertainties for the present example.

As shortly remarked in Section 4.2.1, the incorporation of the prescribed
tolerances of the properties in the optimization of the microstructure
would have led in this example to an empty solution set, as already
discussed and visible in Fig. 4.2. The afterward evaluation of the compo-
nent bounds for the optimal texture based on the ISC approach offers the
assured biggest possible deviations (green and red rectangles in Fig. 4.2)
under assumed statistics. For closely related approaches taking into
consideration all tolerances and gradients of the properties with respect
to the texture, see, e.g., Lobos et al. (2015) or Lobos et al. (2017).

4.2.3 Example 2: Linear thermoelastic properties of a
transversely isotropic matrix-inclusion composite

Overview of this example. In this example, the linear thermoelastic
properties of a matrix-inclusion composite will be investigated. First,
based on an artificial material database, the zeroth-order bounds will
be used to select a material. Then, as in the previous example, the
zeroth-, first- and second-order properties-closure will be depicted to
show unreachable and possible achievable properties for the composite.
This example is constructed to show possible applications for 2-step
homogenization procedures, e.g., for fiber reinforced composites. In the
first step, a single fiber might be enclosed in an isotropic material and
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homogenized, in order to obtain a transversely isotropic / hexagonal
inclusion, which, in a second step, might be considered as a normal
inclusion material in an isotropic matrix.

The materials screening and properties-closure presented in detail in
Section 4.2.2 will also be used in this example.

1. Materials screening. We consider now the properties-profile tabu-
lated in Table 4.4 and the material data given in Table 4.5, where the
single crystal thermal stress coefficient components are given as lists

{𝛽𝑖𝑗} =
{︀

𝛽11, 𝛽12, 𝛽13, 𝛽22, 𝛽23, 𝛽33
}︀

. (4.2)

Table 4.4: Properties-profile of example 2

Maximum number of constituents:
2

Interesting quantities:
𝐶1111 ≈ 3 with tolerances ±10%
𝛽33 ≈ 4 with tolerances ±10%

Macroscopic group:
transversely isotropic with respect to 𝑏3

The materials given in Table 4.5 are the same ones as the ones given in
Table 4.2 only extended by thermal properties, see Eq. (3.117).

The zeroth-order bounds defined in Eq. (3.70) are now computed for
each material. For each of the 30 two-phase material combinations, the
zeroth-order bounds 𝐶0±, see Eq. (3.70), have to be calculated again
and again. Instead of doing this, it is recommended to compute the
zeroth-order bound 𝐶

0±
𝑝

for each SPPM, see Eq. (3.72), and 𝐶
0±

for

every MPPM, see Eq. (3.73). In this example, the bounds 𝐶
0±

will
be computed (together with the corresponding component bounds of
interest, see Appendix C or Eq. (3.58)), but only for the MPPMs of
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Section 4.2.2, i.e., M12, M34, M15 and M16. The results are presented in
Table 4.6.

Table 4.5: Material database for thermoelastic properties

ID Group Properties
M1 ISO {𝐶𝑖𝑗𝑘𝑙}

{︀
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1

2 , 0, 0, 1
2 , 0, 1

2

}︀
{𝛽𝑖𝑗} {1, 0, 0, 1, 0, 1}
𝑓 1

M2 ISO {𝐶𝑖𝑗𝑘𝑙}
{︀

5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 5
2 , 0, 0, 5

2 , 0, 5
2

}︀
{𝛽𝑖𝑗} {5, 0, 0, 5, 0, 5}
𝑓 5

M3 CUB {𝐶𝑖𝑗𝑘𝑙}
{︀

19
3 , 4

3 , 4
3 , 0, 0, 0, 19

3 , 4
3 , 0, 0, 0, 19

3 , 0, 0, 0, 5, 0, 0, 5, 0, 5
}︀

{𝛽𝑖𝑗} {5, 0, 0, 5, 0, 5}
𝑓 5

M4 CUB {𝐶𝑖𝑗𝑘𝑙}
{︀

17
3 , 5

3 , 5
3 , 0, 0, 0, 17

3 , 5
3 , 0, 0, 0, 17

3 , 0, 0, 0, 5, 0, 0, 5, 0, 5
}︀

{𝛽𝑖𝑗} {5, 0, 0, 5, 0, 5}
𝑓 5

M5 HEX {𝐶𝑖𝑗𝑘𝑙} {2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 8, 0, 0, 0, 1, 0, 0, 1, 0, 1}
{𝛽𝑖𝑗} {2, 0, 0, 2, 0, 8}
𝑓 5

M6 TRI {𝐶𝑖𝑗𝑘𝑙}
{︀

6, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0, 0, 0, 3
2 , 0, 0, 1, 0, 1

2

}︀
{𝛽𝑖𝑗} {6, 0, 0, 5, 0, 4}
𝑓 6

The reader should notice that, compared to Table 4.2, e.g., for M1 already
the bounds Γ0±

1111 for 𝐶1111 show deviations from the isotropic single
crystal behavior. This is due to the choice 𝑠0 = 0 in the definition of the
pragmatic bounds 𝐶

0±
, see Eq. (3.72). This choice forces a discrepancy

between the trivial bounds and induces inflation in all consequent
component bounds. This non-optimality of the pragmatic bounds 𝐶

0±

is a clear disadvantage which can only be accepted. Nevertheless, the
bounds 𝐶

0±
deliver valid bounds of the different materials, i.e., none of

the materials can achieve properties outside the given values, such that
automated materials screening based on these results is still possible.
This is especially attractive for cases in which candidates for material
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combinations (MPPMs) for prescribed properties-profile are searched
for in large databases. This task would be impossible to do with the
bounds 𝐶0±, which deliver tighter results but need the evaluation of the
optimization problem for every new material combination. Based on the
results given in Table 4.2, we are only able to exclude M1.

Table 4.6: Eigenvalues of zeroth-order bounds 𝐶
0± of each material and of selected

MPPMs with corresponding bounds Γ0±
1111 of 𝐶1111 and 𝛾0±

37 of −𝛽33

ID {�̃�0−
1 , �̃�0−

2 , −𝑘0−} {�̃�0+
1 , �̃�0+

2 , −𝑘0+} {Γ0±
1111} {𝛾0±

37 }

M1 {0.37, 1., −5.73} {2.73, 1., 0.73} {0.79, 1.58} {−1.13, 1.13}

M2 {0.52, 5., −21.73} {13.66, 5., 3.66} {3.51, 7.89} {−5.27, 5.27}

M3 {0.93, 5., −14.3} {17.66, 10., 3.66} {3.64, 12.55} {−6.32, 6.32}

M4 {0.93, 4., −14.3} {17.66, 10., 3.66} {2.98, 12.55} {−6.56, 6.56}

M5 {0.45, 2., −18.73} {17.25, 9.46, 12.88} {1.48, 12.05} {−9.14, 9.14}

M6 {0.45, 2., −19.73} {14.28, 6.67, 6.73} {1.48, 9.21} {−7.15, 7.15}

ID {�̃�0−
1 , �̃�0−

2 , −𝑘0−} {�̃�0+
1 , �̃�0+

2 , −𝑘0+} {Γ0±
1111} {𝛾0±

37 }

M12 {0.37, 1., −21.73} {13.66, 5., 3.66} {0.79, 7.89} {−6.71, 6.71}

M34 {0.93, 4., −14.3} {17.66, 10., 3.66} {2.98, 12.55} {−6.56, 6.56}

M15 {0.37, 1., −18.73} {17.25, 9.46, 12.88} {0.79, 12.05} {−9.44, 9.44}

M16 {0.37, 1., −19.73} {14.28, 6.67, 6.73} {0.79, 9.21} {−7.46, 7.46}

As mentioned in the previous example, materials screening contains
a much broader collections of selection criteria. In this example, the
2-phase combination M15 is chosen, which might be considered as a
light isotropic matrix with stiff transversely isotropic inclusions. For
the MPPM M15, we now compute the zeroth-order bounds 𝐶0± to
have a better insight concerning its limitations. The results are given in
Table 4.7.
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Table 4.7: Degrees of freedom of zeroth-order bounds 𝐶0± of M15 with corresponding

bounds Γ0±
1111 of 𝐶1111 and 𝛾0±

37 of −𝛽33

ID {𝜆0−
1 , 𝜆0−

2 , −𝑠0−, −𝑘0−} {𝜆0+
1 , 𝜆0+

2 , −𝑠0+, −𝑘0+} {Γ0±
1111} {𝛾0±

37 }

M15 {1., 1., −1., −14.} {9.64, 8.44, −5.89, 7.31} {1., 8.84} {−9.91, 3.02}

The results given in Table 4.7 for M15 show clear deviations from the
ones given in Table 4.6. This is due to the different definitions of 𝐶0±

and 𝐶
0±

. The valid statements of both bounds remains. The results of
𝐶0± are expected to reflect tighter bounds for some cases, due to their
larger number of degrees of freedom.

2. Microstructure optimization. For the given materials, the first- and
second-order bounds of this work can be computed, depending on the
material concentrations and texture coefficients of second- and fourth-
order.

The material M1 is isotropic, i.e., all corresponding reference tensors and
texture coefficient vanish. The material M5 is hexagonal. For hexagonal
materials only one second- and one fourth-order reference tensors exists,
see Appendix A. This implies that the orientation averages for M5
depend solely on one second- and one fourth-order texture coefficient,
denoted by V′

⟨2⟩ and V′
⟨4⟩. Since only hexagonal macroscopic behavior

with respect to 𝑏3 is searched for, see Table 4.4, we are able to reduce the
degrees of freedom of the texture. The texture is fully determined by
𝑉 ′

11 (belonging to V′
⟨2⟩) and 𝑉 ′

1111 (belonging to V′
⟨4⟩), see Appendix A.

This implies that Eq. (2.55) describes the relevant texture set 𝒱hex
4 for this

example, depicted in Fig. 2.2.

It is shortly pointed out that, for the macroscopic hexagonal case of the
present example, a CCODF could also be used, with underlying set for
the texture eigenvalues (𝜆2, 𝜆4), see Fig. 2.3. For the even more general
cases with triclinic texture, the number of texture degrees of freedom
of the texture coefficients increases, and the delineation of the relevant
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texture set requires more resources. If the complexity is too high for
certain applications, then the approximation of the CODF by convex
combination of CCODFs and the set of texture eigenvalues 𝜆2,4 defined
in Eq. (2.39) and depicted in Fig. 2.1b offer an option.

Evaluation of the zeroth-, first- and second-order bounds and computa-
tion of the corresponding component bounds deliver the corresponding
properties-closures depicted in Fig. 4.3.

Figure 4.3: The single crystal properties of M1 and M5 are marked by the black points; the
properties-closures of zeroth-, first- and second-order are represented by the gray, green
and red regions, respectively; properties reached by the SA1 approach are represented by
the yellow region; the purple point and rectangle represent the aimed properties in the
properties-profile of this example; the blue point represents the properties obtained by the
SA1 approach minimizing the euclidean distance to the purple point; the green and red
rectangle represent the component bounds of first- and second-order for the optimized
material concentration and texture delivering the blue point of the SA1 approach.

The zeroth-order properties-closure is depicted in Fig. 4.3 in gray, while
the black points depict the single crystal properties of the materials
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4 Applications in materials design and homogenization of textured materials

M1 and M5. The green and red region are the first- and second-order
properties-closure, respectively, evaluated for all material concentra-
tions and all texture points (𝑉 ′

11, 𝑉 ′
1111) ∈ 𝒱hex

4 . The properties-closure
is not necessarily a convex set, see the red region corresponding to
the second-order properties-closure in Fig. 4.3. Further, it can be seen
that the current first- and second-order properties-closures cover only
a small portion of the zeroth-order properties-closure. This is mainly
the implication of the restriction of hexagonal macroscopic behavior.
Allowing for triclinic macroscopic behavior would allow for a wider
range of textures and properties variations. Therefore, it should be noted
that properties-profile restrictions might drastically reduce the space of
linear thermoelastic properties possible reachable by selected materials.

The properties aimed at in the properties-profile Table 4.4 seem achiev-
able by considering the first- and second-order bounds, as depicted by
the purple point and rectangle in Fig. 4.3.

Now, we are interested in determining an optimal texture for the aimed
properties. Since the MPPM of this example contains two constituents,
the ISC approach is applicable only implicitly, making its computation
slightly difficult. For a pragmatic and explicitly computable approach,
the SA1 approximation, see Eq. (3.116), is considered in this example.
Evaluation of all material concentrations and relevant texture points
delivers the yellow region depicted in Fig. 4.3. Minimization of the
Euclidean distance to the purple point (aimed properties) delivers the
blue point in Fig. 4.3.

3. Uncertainties check. The optimized material concentrations and
texture are now used to evaluate the first- and second-order bounds of
the present work. The corresponding component bounds are depicted
in Fig. 4.3 by the green (first-order) and red (second-order) rectangles,
respectively. It can be seen that, based on the first-order bounds, for
the optimized material concentrations and texture, a fair amount of
the aimed properties might be achievable. Based on the second-order
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4.3 Bounds of nonlinear properties

bounds of this work, the optimized statistics seem to yield an almost
negligible intersection with the aimed properties range, with respect to
𝐶1111, but an acceptable window with respect to 𝛽33. This is the case
due to optimization only of the Euclidean distance from the purple
point denoting the aimed properties. As indicated at the end of the
previous example, approaches considering the tolerances and gradients
of properties of interest can be taken into account, as done in Lobos et al.
(2015) or Lobos et al. (2017). But, as clearly visible through the shape
of the yellow region of the SA1 approach in Fig. 4.3, the reader should
realize that for this and surely other cases, several approximations of the
exact material behavior will not be able to deliver satisfying results for
all properties with corresponding tolerances.

4.3 Bounds of nonlinear properties

4.3.1 Objectives

In this section, we are interested in the applications of the texture
dependent expressions of the present work in the context of nonlinear
behavior. Therefore, the nonlinear bounds briefly sketched in Section 3.6
will be computed for viscoplastic single-phase polycrystals with texture.
The aim of this example is not to compute approximations of the non-
linear behavior but mainly to illustrate the application of the texture
dependent expressions of this work. Further, differences concerning
the texture dependency of the approach of this work with the approach
of DeBotton and Ponte Castañeda (1995) for viscoplastic polycrystals
build upon Ponte Castañeda (1991) are discussed for clarity. These
texture-dependency differences are also important for approaches ex-
tending DeBotton and Ponte Castañeda (1995), see, e.g., Ponte Castañeda
(2002), Liu and Ponte Castañeda (2004) and Ponte Castañeda (2015) for
improved bounds and estimates for known texture. At the end of this
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example, for cubic materials with cubic texture, the effective flow stress
will be bounded by expressions computable by hand.

4.3.2 Example 3: Viscoplastic properties of
textured polycrystalline materials

Rigid-viscoplastic material behavior. A rigid-viscoplastic material
behavior is referred to as a material law in which the stress is governed
not by the applied deformation but by the rate of deformation. Such
material laws are not able to reproduce spring-back phenomena, but
provide examples for which homogenization theory can be applied.
Consider a rigid-viscoplastic material law with strain rate potential 𝑈 ,
i.e. 𝜀 = 𝜕𝑈/𝜕𝜎 (𝜀 denoting the strain rate in this section, i.e, 𝜀 represents
the symmetrized spatial gradient of the velocity field), in an SPPM. The
strain rate potential is defined in this example as the sum of all potentials
of the 𝑛𝑠 slip systems, i.e., 𝑈 =

∑︀𝑛𝑠

𝑘=1 𝜑𝑘(𝜏𝑘), where 𝜑𝑘 are convex func-
tions of the shear stress 𝜏𝑘 in the 𝑘-th slip system. The convex functions
are assumed to have a growth higher than quadratic, i.e., 𝜑𝑘(𝜏) > 𝑂(𝜏2).
At a material point 𝑥, the shear stress in the corresponding slip system
is described as 𝜏𝑘(𝑥) = 𝜎(𝑥) · 𝜇(𝑥), with 𝜇(𝑥) = 𝑄(𝑥) ⋆ �̃�𝑘. The refer-
ence Schmidt-tensors �̃�𝑘 are defined as the symmetrization of the slip
directions �̃�𝑘 and slip plane normals �̃�𝑘 of the corresponding 𝑘-th slip
system, i.e., �̃�𝑘 = 1

2 (�̃�𝑘 ⊗ �̃�𝑘 + �̃�𝑘 ⊗ �̃�𝑘). The orientation tensor 𝑄(𝑥)
reorients the reference crystallographic axis at the momentary position.

In this example we consider the standard power law, see, e.g., Hutchin-
son (1976)

𝜑𝑘(𝜏) = 𝛾0𝑘𝜏0𝑘

𝑛 + 1

(︂
𝜏

𝜏0𝑘

)︂𝑛+1
(4.3)

for odd 𝑛 ≥ 3 in this example with the constant material specific ref-
erence shear stress 𝜏0𝑘 and the reference shear rate 𝛾0𝑘 of the 𝑘-th slip
system. The material parameter 𝑛 is bounded in general as 𝑛 ∈ [1, ∞),
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where the limits 𝑛 → 1 and 𝑛 → ∞ correspond to linear viscous and
ideally plastic material behavior, respectively. The material law (flow
rule) evaluates to

𝜀 = 𝜕𝑈

𝜕𝜎
=

𝑛𝑠∑︁
𝑘=1

𝛾0𝑘

(︂
𝜏𝑘

𝜏0𝑘

)︂𝑛

𝜇𝑘(𝑥) . (4.4)

For simplicity, from here on we reformulate Eq. (4.3) as

𝜑𝑘(𝜏) = 1
𝑛 + 1𝜆𝑘𝜏𝑛+1 , 𝜆𝑘 = 𝛾0𝑘

𝜏𝑛
0𝑘

> 0 . (4.5)

As illustrated in Section 3.6, the effective potential is defined as

�̄� = inf
𝜎∈𝑆

⟨𝑈⟩𝑣 , 𝑆 = {𝜎 | div(𝜎) = 𝑜 ∧ ⟨𝜎⟩𝑣 = �̄�} , (4.6)

and the macroscopic strain rate is obtained through

�̄� = 𝜕�̄�

𝜕�̄�
. (4.7)

Now, 𝛾0𝑘 = 𝛾0∀𝑘 is chosen, in order to simplify some expressions. Since
𝑛 is the same for all slip systems and all grains in the polycrystal,
the effective potential is a homogeneous function of degree (𝑛 + 1)
in �̄�. The effective potential �̄� depends on �̄� through its deviatoric
part �̄�′ = �̄� − 1

3 tr (�̄�) 𝐼 . Based on the (von Mises equivalent) stress

�̄�𝑒 =
√︁

3
2 �̄�′ · �̄�′, the effective potential �̄� can be expressed as

�̄� = 𝛾0�̄�𝑓

𝑛 + 1

(︂
�̄�𝑒

�̄�𝑓

)︂𝑛+1
, �̄�𝑓 =

(︂
𝛾0�̄�𝑛+1

𝑒

(𝑛 + 1)�̄�

)︂ 1
𝑛

, (4.8)

where �̄�𝑓 denotes the effective flow stress of the polycrystal, which
depends, in general, on the loading and the microstructure of the poly-
crystal, see, e.g., Nebozhyn et al. (2001). For untextured polycrystals
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further simplifications are possible, see Dendievel et al. (1991). If a lower
bound of �̄� is obtained, then an upper bound for �̄�𝑓 can be computed.

The LCC. Now, following the procedure described in Section 3.6
based on the comparison with linear material laws and corresponding
quadratic potentials, we introduce the comparison potential of the LCC
in the 𝑘-th slip system

𝜑𝑘𝑐(𝜏) = 1
2𝜆𝑘𝑐𝜏2 + 𝑒𝑘𝑐𝜏 + 1

2 𝑙𝑘𝑐 , 𝜆𝑘𝑐 ≥ 0 , (4.9)

and the quantities

𝜙𝑘𝑐 = sup
𝜏

{𝜑𝑘𝑐(𝜏) − 𝜑𝑘(𝜏)} ≥ 𝜑𝑘𝑐(𝜏) − 𝜑𝑘(𝜏) ∀𝜏 ,

𝜏𝑘𝑐 = arg sup
𝜏

{𝜑𝑘𝑐(𝜏) − 𝜑𝑘(𝜏)} ,
(4.10)

for each slip system. It should be noted that the quantity 𝜙𝑘𝑐 is stationary
with respect to 𝜏𝑘𝑐 and depends in this example solely on the constant
material parameters 𝜆𝑘 and the variables 𝜆𝑘𝑐, 𝑒𝑘𝑐 and 𝑙𝑘𝑐 of the LCC po-
tential. For example, consider the case 𝑒𝑘𝑐 = 0, then 𝜏𝑘𝑐 = 𝑛−1

√︀
(𝜆𝑘𝑐/𝜆𝑘)

holds.

Now, based on 𝜙𝑘𝑐, we can bound the effective potential as follows

1
𝑣

∫︁
𝑣

𝑛𝑠∑︁
𝑘=1

𝜑𝑘(𝜏𝑘)d𝑣 ≥ 1
𝑣

∫︁
𝑣

𝑛𝑠∑︁
𝑘=1

[𝜑𝑘𝑐(𝜏𝑘) − 𝜙𝑘𝑐]d𝑣 . (4.11)

Taking the infimum of each side delivers

�̄� ≥ �̄�𝑐 − 𝑉𝑐 , 𝑉𝑐 =
⟨ 𝑛𝑠∑︁

𝑘

𝜙𝑘𝑐

⟩
𝑣

=
𝑛𝑠∑︁
𝑘

𝜙𝑘𝑐 , (4.12)
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and the effective potential of the linear comparison material

�̄�𝑐 = inf
𝜎∈𝑆

1
𝑣

∫︁
𝑣

𝑛𝑠∑︁
𝑘=1

𝜑𝑘𝑐(𝜏𝑘)d𝑣

= inf
𝜎∈𝑆

1
𝑣

∫︁
𝑣

1
2𝜎(𝑥) · S(𝑥)[𝜎(𝑥)] + 𝜎(𝑥) · 𝑒(𝑥) + 1

2 𝑙(𝑥)d𝑣

(4.13)
with

S(𝑥) = 𝑄(𝑥) ⋆ S̃ , S̃ =
𝑛𝑠∑︁

𝑘=1
𝜆𝑘𝑐�̃�⊗2

𝑘 ,

𝑒(𝑥) = 𝑄(𝑥) ⋆ �̃� , �̃� =
𝑛𝑠∑︁

𝑘=1
𝑒𝑘𝑐�̃�𝑘 ,

𝑙(𝑥) = �̃� =
𝑛𝑠∑︁

𝑘=1
𝑙𝑘𝑐 .

(4.14)

The reader should note that, for the present example, �̄�𝑐 represents the
effective potential of a "standard linear SPPM with eigenfields". The
corresponding CODF of the slip system can be treated as 𝑓(𝑄) in the
preceding examples. Naturally, the present approach can be extended
with small modifications to MPPMs, see, e.g., Ponte Castañeda (1991),
Ponte Castañeda and Suquet (1997).

Bounds of HS type in terms of texture coefficients. The lower bound
of �̄� obtained in Eq. (4.12) is valid independently of the choice of
𝜆𝑘𝑐 ≥ 0, 𝑒𝑘𝑐 and 𝑙𝑘𝑐. This freedom would allow to optimize the lower
bound, for given �̄�𝑐. Since �̄�𝑐 is not known, we use the lower HS
bound 𝑈𝐻𝑆

𝑐 of �̄�𝑐, for which �̄� ≥ �̄�𝑐 − 𝑉𝑐 ≥ 𝑈𝐻𝑆
𝑐 − 𝑉𝑐 = 𝐵𝐻𝑆 holds

for arbitrary LCC parameters and comparison compliance S0 fulfilling
S0 ≤ S𝑐. In this work, isotropic S0 and isotropic two-point statistics in
the polycrystalline phases are assumed, such that the HS bound are
immediately obtained in terms of texture coefficients of second- and
fourth-order.
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At this point, the author would like to shortly point out the difference
of the approach of this work with the approach of DeBotton and Ponte
Castañeda (1995). Based on the original variational principle of Ponte
Castañeda (1991), DeBotton and Ponte Castañeda (1995) compute a lower
bound of �̄� by considering a finite number of given crystallographic
orientations and using a different compliance tensor for each orienta-
tion, considered as a distinct phase. This allows DeBotton and Ponte
Castañeda (1995) to optimize their bounds further, since this choice has
more degrees of freedom than the approach of this work, resulting in a
bound nearer to �̄� than the one of this work. The drawback of DeBotton
and Ponte Castañeda (1995) is that due to the change of compliance
from orientation to orientation, the average over all orientations cannot
be treated only based on the CODF of the slip system as in the present
work. The approach of the present work is a special case of DeBotton
and Ponte Castañeda (1995) (for vanishing 𝑒𝑐𝑘 and 𝑙𝑐𝑘) which considers
a single compliance for all orientations. This is an implication of the
approach based on Eq. (4.9). The author took this approach to derive
expressions treatable as a standard polycrystal and, therefore, expressible
in terms of texture coefficients. The trade-off between DeBotton and
Ponte Castañeda (1995) and the present approach is a higher accuracy of
the resulting bounds vs. a practical parametrization for materials design.
For given texture in terms of single crystal orientations, the approach
of DeBotton and Ponte Castañeda (1995) may be computed for results
with better accuracy of the resulting bounds than the present approach.
But, if the texture contains a large number of orientations, is not known
or to be varied arbitrarily for materials design objectives, the approach
of DeBotton and Ponte Castañeda (1995) is not practical. The approach
of this work allows investigating the influence of texture by variation
of the second- and fourth-order texture coefficients, without any speci-
fication of the CODF. This has the cost of less accuracy of the resulting
bounds, in the sense that the resulting bounds are nevertheless valid,
but farther from the effective �̄� . These texture-dependency differences
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4.3 Bounds of nonlinear properties

apply to extended approaches as Ponte Castañeda (2002), Liu and Ponte
Castañeda (2004) and Ponte Castañeda (2015), where the LCC is used
for bounds and estimates not only based on compliances, but also with
eigen-strain-rates, but with given texture.

We return now to the approach of the present work. Optimization of the
lower bound 𝐵𝐻𝑆 delivers

�̄� ≥ 𝐵𝐻𝑆
𝑠 = sup

𝜌∈𝒞
𝐵𝐻𝑆 = 𝐵𝐻𝑆 |𝜌𝑠

,

𝜌 = {𝜆𝑘𝑐, 𝑒𝑘𝑐, 𝑙𝑘𝑐, 𝜏𝑘𝑐,S0} ,

𝒞 = {𝜌 | 𝜆𝑘𝑐 ≥ 0 ∧ 𝜏𝑘𝑐 = arg sup𝜏 {𝜑𝑘𝑐 − 𝜑𝑘} ∧ S0 ≤ S}

(4.15)

where the parameters 𝜌𝑠 deliver the supremum. These parameters 𝜌𝑠

depend, in general, on �̄� and on the crystallographic texture, i.e., in this
example, on the second- and fourth-order texture coefficients of the
CODF.

It should be noted, that due to the dependency of 𝜌𝑠 on �̄� (and on the
texture coefficients), the quantity 𝐵𝐻𝑆

𝑠 is highly nonlinear in �̄�. The
gradient of 𝐵𝐻𝑆

𝑠 with respect to �̄� (for the examination of estimates of
the effective strain rate) is cumbersome to compute if the chain rule is to
be considered, i.e.,

d𝐵𝐻𝑆
𝑠

d�̄�
= 𝜕𝐵𝐻𝑆

𝑠

𝜕�̄�
+ 𝜕𝐵𝐻𝑆

𝑠

𝜕𝜌𝑠

𝜕𝜌𝑠

𝜕�̄�
. (4.16)

But, it should be noted, that only 2 cases are to be considered. The first
one is the one where the supremum of Eq. (4.15) is obtained at an inner
point of the constraints set 𝒞. If this is the case, then 𝐵𝐻𝑆

𝑠 is stationary
with respect to 𝜌𝑠 and the terms of chain rule vanish immediately. This
implies that the gradient of 𝐵𝐻𝑆

𝑠 with respect to �̄� is given solely by
the partial derivative of 𝐵𝐻𝑆

𝑠 with respect to �̄� for fixed 𝜌𝑠. The second
case is where the supremum is achieved at a boundary point of 𝒞. If
the constraints which describe 𝒞 do not depend on �̄� which is the case
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4 Applications in materials design and homogenization of textured materials

in this optimization problem, then the value of 𝜌𝑠 is independent of �̄�.
This implies that the chain rule term also vanishes in this second case.
Therefore, these cases imply that the effective strain rate estimate �̄�𝐻𝑆 is
obtained, for the present example, by the partial derivative 𝜕𝐵𝐻𝑆

𝑠 /𝜕�̄�

evaluated at 𝜌𝑠, i.e.,

�̄�𝐻𝑆 = 𝜕𝐵𝐻𝑆
𝑠

𝜕�̄�
= 𝜕𝑈𝐻𝑆

𝑐

𝜕�̄�

⃒⃒⃒
𝜌=𝜌𝑠

= S𝐻𝑆 [�̄�] + 𝑒𝐻𝑆
⃒⃒⃒
𝜌=𝜌𝑠

. (4.17)

The effective stress-strain-rate law is nevertheless nonlinear, since 𝜌𝑠

depends on �̄�. The relation Eq. (4.17) extends to the local fields, such
that these fields might be localized with the localization relations of the
HS results.

From the perspective of materials design, based on the material law
Eq. (4.17), the strain rates might be investigated in terms of the texture
coefficients for interesting applications searching for tendencies due to
texture changes.

Analytic example: simplified polycrystal of FCC crystals with cubic
texture. For a face centered cubic (FCC) material, the slip system
is described with the octahedral system containing 𝑛𝑠 = 12 slip sys-
tems, see, e.g., Böhlke (2001). In this computational example, 𝜏0𝑘 = 𝜏0,
𝜆𝑘 = 𝛾0/𝜏𝑛

0 ∀𝑘 are chosen in order to discuss the dimensionless ratio of
the effective flow stress �̄�𝑓 and 𝜏0.

The LCC might be simplified in several ways. If all 𝜆𝑘𝑐 are chosen to be
different, the single crystal reference compliance S̃ =

∑︀12
𝑘=1 𝜆𝑘𝑐�̃�𝑘 of the

FCC material is not cubic but triclinic. In order to present an example
computable by hand, 𝜆𝑘𝑐 = 𝛾0

𝜏0
𝜆𝑐, 𝑒𝑘𝑐 = 𝑒𝑐 = 0, 𝑙𝑘𝑐 = 𝑙𝑐∀𝑘 are chosen.

Under this simplification, S̃ is cubic, �̃� vanishes and �̃� = 12𝑙𝑐. The single
crystal compliance is expressible in its cubic spectral decomposition
S̃ = 𝛾0

𝜏0

∑︀3
𝛼=1 𝜆𝑐𝑢𝑏

𝛼 P𝑐𝑢𝑏
𝛼 with dimensionless {𝜆𝑐𝑢𝑏

𝛼 } = {0, 2𝜆𝑐, 2𝜆𝑐/3}, see
Appendix A, Eq. (A.12).
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4.3 Bounds of nonlinear properties

For a polycrystal of a FCC material with cubic texture, the HS comple-
mentary potential 𝑈𝐻𝑆 with cubic S𝐻𝑆 = 𝛾0

𝜏0

∑︀3
𝛼=1 𝜁𝐻𝑆

𝛼 P𝑐𝑢𝑏
𝛼 based on an

isotropic comparison compliance S0 = 𝛾0
𝜏0

(𝑠1P1 + 𝑠2P2) ≤ S is simplified.
The dimensionless eigenvalues of the cubic S𝐻𝑆 evaluate to

𝜁𝐻𝑆
1 = 0 ,

𝜁𝐻𝑆
2 = −2𝜆𝑐(5𝜆𝑐(4𝑠1 + 3𝑠2) + 3𝑠2(2𝑉 ′

1 + 3)(3𝑠1 + 𝑠2))
𝜆𝑐(6𝑉 ′

1 − 11)(4𝑠1 + 3𝑠2) − 15𝑠2(3𝑠1 + 𝑠2) ,

𝜁𝐻𝑆
3 = 2𝜆𝑐(5𝜆𝑐(4𝑠1 + 3𝑠2) + 𝑠2(9 − 4𝑉 ′

1)(3𝑠1 + 𝑠2))
𝜆𝑐(4𝑉 ′

1 + 11)(4𝑠1 + 3𝑠2) + 15𝑠2(3𝑠1 + 𝑠2)

(4.18)

where only 𝜁𝐻𝑆
2 and 𝜁𝐻𝑆

3 depend on the single degree of freedom
𝑉 ′

1111 =
√︀

2/15𝑉 ′
1 , 𝑉 ′

1 ∈ [−13/27, 1] (see Lobos et al. (2017)) of the cubic
fourth-order texture coefficient V′

⟨4⟩ of the cubic S̃. For the fulfillment of
S0 ≤ S, 𝑠1 = 0 is chosen and 𝑠2 is constrained as 0 ≤ 𝑠2 ≤ 2𝜆𝑐/3. For a
tensile test with effective stress �̄� = �̄�11𝑏⊗2

1 , the expression 𝑈𝐻𝑆 can be
obtained by long but simple computations as

𝑈𝐻𝑆
𝑐 = 𝛾0𝜏0

1
3𝜁𝐻𝑆

2

(︂
�̄�11

𝜏0

)︂2
+ 6𝑙𝑐 . (4.19)

With 𝜏𝑘𝑐 = 𝜏0
𝑛−1

√
𝜆𝑐, the quantities 𝜙𝑘𝑐 simplify to

𝜙𝑘𝑐 = 𝜑𝑘𝑐(𝜏𝑘𝑐) − 𝜑𝑘(𝜏𝑘𝑐) = 𝛾0𝜏0
1
2

𝑛 − 1
𝑛 + 1𝜆

𝑛+1
𝑛−1
𝑐 + 1

2 𝑙𝑐 (4.20)

such that 𝑉𝑐 evaluates to

𝑉𝑐 = 𝛾0𝜏06 𝑛 − 1
𝑛 + 1𝜆

𝑛+1
𝑛−1
𝑐 + 6𝑙𝑐 . (4.21)

The lower bound 𝐵𝐻𝑆 is given by

𝐵𝐻𝑆 = 𝛾0𝜏0�̂�𝐻𝑆 , �̂�𝐻𝑆 1
3𝜁𝐻𝑆

2

(︂
�̄�11

𝜏0

)︂2
− 6𝑛 − 1

𝑛 + 1𝜆
𝑛+1
𝑛−1
𝑐 (4.22)
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4 Applications in materials design and homogenization of textured materials

having no dependency on 𝑙𝑐. The best possible dimensionless bound
�̂�𝐻𝑆 is obtained by solving the optimization problem with dimension-
less parameters 𝜆𝑐 and 𝑠2

𝐵𝐻𝑆
𝑠 = 𝛾0𝜏0�̂�𝐻𝑆

𝑠 , �̂�𝐻𝑆
𝑠 = �̂�𝐻𝑆 |(𝜆𝑐,𝑠2)=𝜌𝑠

,

𝜌𝑠 = arg sup
(𝜆𝑐,𝑠2)∈𝒞

�̂�𝐻𝑆 ,

𝒞 = {(𝜆𝑐, 𝑠2) | 0 ≤ 𝜆𝑐 ∧ 0 ≤ 𝑠2 ≤ 2
3 𝜆𝑐} .

(4.23)

The solution of the dimensionless optimization problem is found to
evaluate to

𝜌𝑠 = (𝜆𝑠𝑐, 𝑠𝑠2) ,

𝜆𝑠𝑐 = 3(1−𝑛)
(︂

�̄�11

𝜏0

)︂𝑛−1(︂ 4𝑉 ′
1 + 21

43 − 18𝑉 ′
1

)︂𝑛−1
2

, 𝑠𝑠2 = 2
3𝜆𝑠𝑐 .

(4.24)

The dimensionless potential evaluates to

�̂�𝐻𝑆
𝑠 =

4
(︁

4𝑉 ′
1 +21

43−18𝑉 ′
1

)︁
𝑛+1

2

3𝑛(𝑛 + 1)

(︂
�̄�11

𝜏0

)︂𝑛+1
(4.25)

It should be noted, that these analytic results are, as in the general case,
�̄� and texture dependent. The solution of the optimization problem can be
used in order to generate the HS estimate of the normalized strain rate

�̄�𝐻𝑆

𝛾0
=
(︃ 3∑︁

𝛼=1
𝜁𝐻𝑆

𝛼 P𝑐𝑢𝑏
𝛼

)︃[︂
�̄�

𝜏0

]︂ ⃒⃒⃒
(𝜆𝑐,𝑠2)=𝜌𝑠

. (4.26)

The HS bound for the dimensionless effective flow stress �̄�𝑓 /𝜏0 ≤ �̄�𝐻𝑆/𝜏0

is described following Eq. (4.8) with �̄�𝑒 = �̄�11 as

�̄�𝐻𝑆
𝑓

𝜏0
= 3

4 1
𝑛

(︂
4𝑉 ′

1 + 21
43 − 18𝑉 ′

1

)︂− 𝑛+1
2𝑛

≥ �̄�𝑓

𝜏0
, (4.27)
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4.3 Bounds of nonlinear properties

which offers a loading independent, texture dependent compact expres-
sion. The limit for 𝑛 → ∞ yields

lim
𝑛→∞

�̄�𝐻𝑆
𝑓

𝜏0
= 3

√︃
43 − 18𝑉 ′

1
4𝑉 ′

1 + 21 . (4.28)

First, results are presented now for 𝑛 = 10, �̄�11/𝜏0 ∈ [0, 6] and varying
texture, see Fig. 4.4.

(a)

(b)
Figure 4.4: (a) Effective dimensionless lower bound �̂�𝐻𝑆

𝑠 based on HS (with 𝑛 = 10); (b)
Resulting nonlinear effective stress - strain rate relation estimate based on �̂�𝐻𝑆

𝑠 (with
𝑛 = 10)
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4 Applications in materials design and homogenization of textured materials

In Fig. 4.4a the dimensionless effective HS potential is depicted in
terms of �̄�11/𝜏0. It is visible that depending on the fixed texture, the
gradient with respect to the effective stress changes drastically, which
naturally affects the dimensionless effective nonlinear material law
depicted in Fig. 4.4b. This motivates the tendencies of strain rates
changes depending on the texture and corresponding texture coefficients
of second- and fourth-order. These tendencies can be analyzed based on
the convex set of texture coefficients.

Figure 4.5: Effective flow stress estimated based on HS against 1/𝑛 for varying texture

In Fig. 4.5 the dimensionless effective flow stress bound �̄�𝐻𝑆/𝜏0 is
represented for varying texture. The bound gives information of tex-
ture dependent limitations of the effective flow stress. The tendencies
for varying cubic texture are visible, for 𝑉 ′

1 → −13/27 the bound is
increased, while in the opposite direction it is decreased independently
of the specific viscous exponent 𝑛. For materials design purposes, the
texture dependent bound can help designers, e.g., to exclude materials
which definitely will not be able to achieve certain desired effective
flow stresses. Also interesting are the limits 𝑛 → ∞ or 1/𝑛 → 0 since

136



4.3 Bounds of nonlinear properties

these limits give information for material designers about the texture
dependent bounds of ideally plastic material behavior.

It is shortly remarked that the derived relations of this section depending
on 𝑉 ′

1 are also valid for a single CCODF, which preserves the microscopic
cubic behavior, as derived and pointed out for Eq. (2.76). As discussed
in Lobos et al. (2017) for elasticity expressions, 𝑉 ′

1 can immediately
be replaced with the texture eigenvalue 𝜆4 of a CCODF, fulfilling the
bounds Eq. (2.37) depicted in Fig. 2.1b.

Finally, the author would like to stress, that the present relations for
the effective flow stress offer only upper bounds, no accurate approx-
imations. As discussed in this section, for a higher bound accuracy,
the approach of DeBotton and Ponte Castañeda (1995) may be con-
sidered, but at the cost of higher computation complexity and less
flexibility concerning varying texture. The texture dependent bounds
of this example are extremely compact and fairly easily derivable by
the texture dependent expressions of the present work. The reader
should notice, that other bounds known from literature, for example, the
corresponding Voigt (constant deformation) or Reuss (constant stress)
bounds for nonlinear behavior could be computed, see, e.g., Böhlke and
Bertram (2003) and Böhlke (2004) for FCC polycrystals with isotropic
texture. However, the Voigt bound can only be computed for explicit
discrete CODF (i.e., superposition of Dirac distributions) and numerical
inversion for given viscous exponent 𝑛 of the nonlinear material laws.
Also, the Reuss bound requires for increasing 𝑛 an increasing number
of texture coefficients (up to ∞ for the limit 𝑛 → ∞) for the present
example. The texture dependent expressions of this work might return
results beyond the Voigt lower bound of the complementary potential.
This is already visible in Fig. 4.5 for 𝑉 ′

1 = 0, representing the up to
fourth-order crystallographic isotropic texture. For isotropic texture,
the Voigt bound is well know in literature and delivers for 𝑛 → ∞ the
Taylor factor 3.06 (Taylor, 1938), whereas the present approach exceeds
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it by around 40% (lim𝑛→∞ �̄�𝑓 /𝜏0|𝑉 ′
1 =0 ≈ 4.29). For clarity, consider the

following two microscopically and macroscopically cubic CODFs

𝑓𝑘(𝑄) = 1
242

24∑︁
𝑖,𝑗=1

𝛿(𝑄𝑖�̂�𝑘𝑄𝑗 , 𝑄) , 𝑘 ∈ {1, 2} ,

𝑄𝑖 ∈ 𝑆cub , �̂�𝑘 = 𝑄

(︃
𝑛 = 1√

3

3∑︁
𝑖=1

𝑏𝑖, 𝜔𝑘

)︃
,

𝜔𝑘 ∈ {𝜋, 1
3
(︀
2𝜋 + cos−1 (︀− 7

20
)︀)︀

} .

(4.29)

The CODF 𝑓1(𝑄) induces 𝑉 ′
1 = −13/27 (see Lobos et al. (2017)), while

𝑓2(𝑄) induces 𝑉 ′
1 = 0. The HS, the Voigt and the Reuss bounds for the

present example have been computed for the CODFs given in Eq. (4.29).
The viscous exponent has been varied as 𝑛 = 1, 3, . . . , 17. The results
are presented in Fig. 4.6. It is clearly visible that the present approach
surpasses almost immediately the Voigt bound for the CODFs 𝑓1/2(𝑄).

Figure 4.6: Bounds of the normalized flow stress: HS bound depicted by the lines without
markers, Voigt bound depicted by the lines with circle markers and Reuss bound depicted
by the lines with rectangle markers; the case with the CODF 𝑓1(𝑄) inducing 𝑉 ′

1 = −13/27
is depicted in blue, while 𝑓2(𝑄) inducing 𝑉 ′

1 = 0 is depicted in green.
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Still, the present approach is a valid bound. The Voigt bound requires
numerical inversion to be evaluated in the complementary space, which
increases for polycrystals with a large number of orientations. The
present approach does not have this disadvantage due to its formulation
in complementary space. Additionally the expressions of the present
work require only texture coefficients of second- and fourth-order, com-
pared to the Reuss upper bound of the complementary potential. These
properties of the results of this work might still be attractive, either for
homogenization approaches (to be appropriately computed with higher
accuracy by making use of eigenfields in the LCC), or for materials
design problems requiring simple bounds in order to exclude materials.
Again, the reader should keep in mind that the approach of this work has
been build for a practical and flexible parametrization of the influence of
crystallographic texture. If the texture is given, then the reader should
not only consider the present approach, but also the approaches of
DeBotton and Ponte Castañeda (1995), Ponte Castañeda (2002), Liu
and Ponte Castañeda (2004) and Ponte Castañeda (2015) for further
optimized bounds and estimates for known texture.

4.4 Review

In this chapter, applications of the expressions obtained in Chapter 2
and Chapter 3 have been demonstrated.

The first example showed how a polycrystal of a cubic material
with orthotropic sample symmetry could be optimized concerning
its anisotropic linear elastic properties for a given properties-profile.
The materials design approach considered the zeroth-order bounds in
the materials selection step. The first- and the second-order bounds
were used to delineate the corresponding properties-closure, and the
ISC approach was used to search for optimal CODF texture coefficient
estimates.
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In the second example, the linear thermoelastic properties of a particle
reinforced composite were optimized to show how the expressions
accounting for eigenstrains can be used. These expressions offer a
structure in which anisotropic particles or domains can be incorporated.
The anisotropic domains can be, e.g., results from 2-step-homogenization
techniques, such that the texture dependent expressions of the present
work offer the possibility to design the material orientation of such
domains. The thermoelastic composite was assumed to be microscop-
ically and macroscopically transversely isotropic. Its properties were
optimized based on the SA1 approximation, which allows for a faster
computation in scenarios in which the ISC approach would require more
resources.

The last example shows how the results of the present work might be
applied in the field of homogenization of nonlinear properties. Based
on the LCC method and the dual formulation of the HS bounds, a
viscoplastic material with a standard power law has been examined.
The LCC method allows obtaining a lower bound with a corresponding
polycrystalline linear material. The effective behavior of the polycrys-
talline linear material is bounded with the texture dependent expressions
of the present work, which deliver practical expressions with finite-
dimensional parametrization in terms of texture coefficients.
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Chapter 5

Summary

The present work approached problems for the materials design of the
mechanical properties of textured materials.

For this purpose, in Chapter 2 the description of orientations 𝑄 and
of the CODF 𝑓(𝑄) has been illustrated in terms of Fourier expansions
for central distributions (depending on texture eigenvalues 𝜆𝛼) and for
the general case (depending on texture coefficients V′

⟨𝛼⟩𝛽). The convex
sets of relevant texture eigenvalues (generalizing the results of Lobos
et al. (2017)) and coefficients for the orientation average (based on the
harmonic decomposition) of a tensorial quantity of 𝑟-th-order D̃⟨𝑟⟩ have
been discussed. The set of texture eigenvalues of the present work
offers a trackable option with less complexity than the full set of texture
coefficients.

The basic homogenization steps, relevant for the materials of interest
in this work, have been sketched in Chapter 3. Since the formal exact
non-local effective properties of random materials are impossible to
evaluate for general cases, bounds and approximations are searched
for. The zeroth-, first- and second-order bounds of linear properties
accounting for eigenfields are considered. The zeroth-order bounds
of the present work generalize the investigation of Lobos and Böhlke
(2016) and offer the possibility to automate the exclusion of materi-
als and selection of material candidates in large databases based on
prescribed properties. The texture dependency of the second-order
Hashin-Shtrikman bounds for isotropic two-point statistics accounting
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for eigenfields has been discussed explicitly for arbitrarily anisotropic
materials. Only second- and fourth-order texture coefficients enter all
expressions, extending the results of Böhlke and Lobos (2014) which
were valid only for cubic linear elastic materials. These expressions offer
low and finite dimensional parametrization of all bounds of the present
work. Based on the non-diagonal bounds of Lobos and Böhlke (2016),
bounds for all eigenfields are obtained. The implications of these results
for linear thermoelasticity and nonlinear bounds based on the LCC have
been sketched for arbitrarily anisotropic textured materials.

Three examples have been illustrated in Chapter 4 to show possible
applications of the texture dependent, low and finite dimensional ex-
pressions of this work in the field of materials design. In the first
example, a polycrystal of a cubic material with orthotropic texture
has been considered. An artificial material database has been used
to illustrate the possibilities and difficulties in materials screening based
on the zeroth-order bounds of this work. Then, based on the texture
dependent results and component bounds of this work, the zeroth-,
first- and second-order properties closure of the linear elastic properties
have been depicted. These maps help material designers to visualize
properties out of range as well as possibly achievable by the actual
material. Based on the ISC approach, a potentially optimal texture
has been computed, and the maximal possible deviations based on the
first- and second-order bounds have been discussed. In the second
example, an analogous materials design has been carried out for the
linear thermoelastic material properties of a matrix-inclusion composite
with microscopic and macroscopic transversally isotropic behavior. This
example shows a scenario relevant for fiber reinforced materials. The
evaluation of the zeroth-, first- and second-order bounds reflects the
limitation of the properties design options. The texture is optimized
based on the SA1 approach and maximal possible deviations based on
the first- and second-order bounds are computed. The last example
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5 Summary

illustrates the application of the textured HS bound of this work in the
context of nonlinear bounds based on a linear material. The special case
of a viscoplastic polycrystal with cubic texture is presented, together
with closed-form expressions for the nonlinear material law estimate, as
well as the texture dependent bound of the effective flow stress.

The texture dependent results of this work are a contribution to the
methods applied in the homogenization and materials design commu-
nity, which might facilitate solutions to inverse problems of different
applications. All expressions have been treated in the context of linear
elasticity with eigenfields. However, they might be transferred to other
physical problems based on elliptic differential equations.

Future work may focus on the coupling and investigation of the texture
dependent expressions of this work for the more recent nonlinear bounds
of Ponte Castañeda (2015) with an ansatz for the evolution of texture
coefficients, see, e.g., Böhlke (2006). Such a combination of approaches
is not only relevant for polycrystals but may also be an interesting ap-
proach for viscous nonlinear fiber reinforced composites with evolving
orientation distribution of the fibers.
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Appendix A

Auxiliary expressions for second-
and fourth-order tensors

A.1 Matrix representation of second- and
fourth-order tensors

In this work, mainly second- and fourth-order tensors are used for
explicit computations. The space of symmetric second-order tensors
will be shortly addressed as 𝑇 𝑠

2 . Every symmetric second-order tensor
𝐴 =

∑︀3
𝑖,𝑗=1 𝐴𝑖𝑗𝑏𝑖𝑗 has six degrees of freedom. A harmonic second-order

tensor 𝐴 (i.e., symmetric and fulfilling 𝐴 · 𝐼 = 0) is parametrized as

𝐴𝑖𝑗 =

⎡⎢⎣ 𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 −𝐴11 − 𝐴22

⎤⎥⎦ . (A.1)

Based on the following six linearly independent symmetric orthonormal
basis tensors

𝐵1 = 𝑏11 , 𝐵4 = 1√
2 (𝑏23 + 𝑏32) ,

𝐵2 = 𝑏22 , 𝐵5 = 1√
2 (𝑏13 + 𝑏31) ,

𝐵3 = 𝑏33 , 𝐵6 = 1√
2 (𝑏12 + 𝑏21) ,

(A.2)
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every 𝐴 ∈ 𝑇 𝑠
2 can be expressed as a linear combination of the chosen

basis as

𝐴 =
6∑︁

𝑖=1
𝐴𝑖𝐵𝑖 , 𝐴𝑖 =

[︁
𝐴11 𝐴22 𝐴33

√
2𝐴23

√
2𝐴13

√
2𝐴12

]︁T
.

(A.3)

Every fourth-order tensor A =
∑︀3

𝑖,𝑗,𝑘,𝑙=1 𝐴𝑖𝑗𝑘𝑙𝑏𝑖𝑗𝑘𝑙 being left and right
symmetric (also referred to as minor symmetric), i.e, 𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑖𝑗𝑙𝑘,
maps from 𝑇 𝑠

2 to 𝑇 𝑠
2 and has 36 degrees of freedom. These tensors can

be represented as

A =
6∑︁

𝑖,𝑗=1
𝐴𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 (A.4)

with

𝐴𝑖𝑗 =

⎡⎢⎢⎢⎣
𝐴1111 𝐴1122 𝐴1133

√
2𝐴1123

√
2𝐴1113

√
2𝐴1112

𝐴2211 𝐴2222 𝐴2233
√

2𝐴2223
√

2𝐴2213
√

2𝐴2212
𝐴3311 𝐴3322 𝐴3333

√
2𝐴3323

√
2𝐴3313

√
2𝐴3312√

2𝐴2311
√

2𝐴2322
√

2𝐴2333 2𝐴2323 2𝐴2313 2𝐴2312√
2𝐴1311

√
2𝐴1322

√
2𝐴1333 2𝐴1323 2𝐴1313 2𝐴1312√

2𝐴1211
√

2𝐴1222
√

2𝐴1233 2𝐴1223 2𝐴1213 2𝐴1212

⎤⎥⎥⎥⎦ .

(A.5)

If a minor symmetric tensor A is additionally major symmetric, i.e.,
𝐴𝑖𝑗𝑘𝑙 = 𝐴𝑘𝑙𝑖𝑗 , then A has only 21 degrees of freedom and the matrix
Eq. (A.5) is symmetric. A harmonic A (i.e., completely symmetric and
fulfilling A[𝐼] = 0) has only 9 degrees of freedom. Such harmonic fourth-
order tensors can be parametrized by the symmetric matrix based on
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Eq. (A.5) corresponding to a minor and major symmetric fourth-order
tensors and the following substitutions

{
𝐴1133 → −𝐴1111 − 𝐴1122

𝐴1212 → 𝐴1122

𝐴1213 → 𝐴1123

𝐴1233 → −𝐴1112 − 𝐴1222

𝐴1313 → −𝐴1111 − 𝐴1122

𝐴1322 → 𝐴1223

𝐴1323 → −𝐴1112 − 𝐴1222

𝐴1333 → −𝐴1113 − 𝐴1223

𝐴2233 → −𝐴1122 − 𝐴2222

𝐴2323 → −𝐴1122 − 𝐴2222

𝐴2333 → −𝐴1123 − 𝐴2223

𝐴3333 → 𝐴1111 + 2𝐴1122 + 𝐴2222

} .

(A.6)

The resulting matrix depends on the components

{𝐴1111, 𝐴1112, 𝐴1113, 𝐴1122, 𝐴1123, 𝐴1222, 𝐴1223, 𝐴2222, 𝐴2223} (A.7)

which reflect the 9 degrees of freedom of a harmonic A. If the harmonic
A is required to be orthotropic, i.e.,

A = 𝑄 ⋆ A ∀𝑄 ∈ 𝑆ort (A.8)

is imposed based on 𝑆ort, defined in Eq. (2.17), then A has only 3 degrees
of freedom and can be represented as A =

∑︀6
𝑖,𝑗=1 𝐴𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 with the

replacements

{𝐴1112 → 0, 𝐴1113 → 0, 𝐴1123 → 0, 𝐴1222 → 0, 𝐴1223 → 0, 𝐴2223 → 0} .

(A.9)
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The orthotropic harmonic A depends then solely on the three linearly
independent components

{𝐴1111, 𝐴1122, 𝐴2222} (A.10)

which reflect the remaining 3 degrees freedom. The orthotropic har-
monic fourth-order tensor can be considered for the parametrization of
corresponding texture coefficients, as discussed following Eq. (2.46) and
used in Section 4.2.2.

A.2 Cubic fourth-order tensors

The following relations are of practical use for Section 4.2.2. A fourth-
order tensor A is referred to as cubic, if it fulfills

A = 𝑄 ⋆ A ∀𝑄 ∈ 𝑆cub (A.11)

for the cubic symmetry group defined in Eq. (2.17). A minor and major
symmetric cubic tensor A can be expressed into its spectral decomposi-
tion, see, e.g., Böhlke and Lobos (2014),

A =
3∑︁

𝑖=1
𝜆𝑖Pcub

𝑖 , Pcub
1 = P1 = 1

2𝐼 ⊗ 𝐼 ,

Dcub =
3∑︁

𝑖=1
𝑏⊗4

𝑖 , Pcub
2 = Dcub − Pcub

1 ,

Pcub
3 = I𝑆 − (Pcub

1 + Pcub
2 ) .

(A.12)

It is shortly pointed out, that an isotropic tensors A = 𝜆1P1 + 𝜆2P2 can
be expressed as a cubic tensor by A = 𝜆1Pcub

1 + 𝜆2Pcub
2 + 𝜆2Pcub

3 .

148



A Appendix

The cubic harmonic A has only one degree of freedom and can be
represented as A =

∑︀6
𝑖,𝑗=1 𝐴𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 with

𝐴𝑖𝑗 =

⎡⎢⎢⎢⎢⎣
𝐴1111 − 𝐴1111

2 − 𝐴1111
2 0 0 0

− 𝐴1111
2 𝐴1111 − 𝐴1111

2 0 0 0
− 𝐴1111

2 − 𝐴1111
2 𝐴1111 0 0 0

0 0 0 −𝐴1111 0 0
0 0 0 0 −𝐴1111 0
0 0 0 0 0 −𝐴1111

⎤⎥⎥⎥⎥⎦ . (A.13)

The space of cubic harmonic fourth-order tensors is, therefore, one
dimensional. A basis tensor T′

⟨4⟩ = T′ of this space (used as a refer-
ence tensor for the CODF of cubic materials in this work) is given by
T′ =

∑︀6
𝑖,𝑗=1 𝑇 ′

𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 with

𝑇 ′
𝑖𝑗 =

√︂
2
15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1
2 − 1

2 0 0 0
− 1

2 1 − 1
2 0 0 0

− 1
2 − 1

2 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.14)

A.3 Hexagonal second- and fourth-order
harmonic tensors

The following relations are of practical use for the discussion concerning
Fig. 2.2 and for the example illustrated in Section 4.2.3. A harmonic
second-order tensor 𝐴 is referred to as hexagonal, if it fulfills

𝐴 = 𝑄 ⋆ 𝐴 ∀𝑄 ∈ 𝑆hex (A.15)

for the hexagonal symmetry group defined in Eq. (2.17). This implies
that the hexagonal harmonic 𝐴 has only one degree of freedom and
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can be represented as the linear combination 𝐴 =
∑︀3

𝑖,𝑗=1 𝐴𝑖𝑗𝑏𝑖𝑗 with
components

𝐴𝑖𝑗 =

⎡⎢⎣ 𝐴11 0 0
0 𝐴11 0
0 0 −2𝐴11

⎤⎥⎦ (A.16)

The space of hexagonal harmonic second-order tensors is, therefore, one
dimensional. A basis tensor T′

⟨2⟩ = 𝑇 ′ of this space (used as a reference
tensor for the CODF of hexagonal materials in this work) is given by
𝑇 ′ =

∑︀3
𝑖,𝑗=1 𝑇 ′

𝑖𝑗𝑏𝑖𝑗 with

𝑇 ′
𝑖𝑗 = 1√

6

⎡⎢⎣ 1 0 0
0 1 0
0 0 −2

⎤⎥⎦ . (A.17)

A harmonic fourth-order tensor A is referred to as hexagonal, if it fulfills

A = 𝑄 ⋆ A ∀𝑄 ∈ 𝑆hex (A.18)

for the hexagonal symmetry group defined in Eq. (2.17). This implies
that the hexagonal harmonic A has only one degree of freedom and can
be represented as A =

∑︀6
𝑖,𝑗=1 𝐴𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 with

𝐴𝑖𝑗 =

⎡⎢⎢⎢⎢⎣
𝐴1111

𝐴1111
3 − 4𝐴1111

3 0 0 0
𝐴1111

3 𝐴1111 − 4𝐴1111
3 0 0 0

− 4𝐴1111
3 − 4𝐴1111

3
8𝐴1111

3 0 0 0
0 0 0 − 8𝐴1111

3 0 0
0 0 0 0 − 8𝐴1111

3 0
0 0 0 0 0 2𝐴1111

3

⎤⎥⎥⎥⎥⎦ .

(A.19)

The space of hexagonal harmonic fourth-order tensors is, therefore, one
dimensional. A basis tensor T′

⟨4⟩ = T′ of this space (used as a reference
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tensor for the CODF of hexagonal materials in this work) is given by
T′ =

∑︀6
𝑖,𝑗=1 𝑇 ′

𝑖𝑗𝐵𝑖 ⊗ 𝐵𝑗 with

𝑇 ′
𝑖𝑗 = 3

2
√

70

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
3 − 4

3 0 0 0
1
3 1 − 4

3 0 0 0
− 4

3 − 4
3

8
3 0 0 0

0 0 0 − 8
3 0 0

0 0 0 0 − 8
3 0

0 0 0 0 0 2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.20)
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Isotropic tensors

B.1 Basic isotropic tensors

In this appendix, the following basic 𝑟-th-order isotropic tensor with
𝑟 ≥ 2 will be considered

B𝐼
⟨𝑟⟩ =

⎧⎨⎩𝐼⊗𝑟/2 𝑟 even

𝜖 ⊗ (𝐼⊗(𝑟−3)/2) 𝑟 odd
, (B.1)

see, e.g., Andrews and Ghoul (1999). Several different tensor trans-
positions will be used, which will be given as lists, e.g., the list
𝑡 = {1, 5, 2, 6, 3, 7, 4, 8} has eight elements, stands for the transposition
of a general eight-order tensor A⟨8⟩ and is applied as follows

AT15263748
⟨8⟩ = AT(𝑡)

⟨8⟩
= (𝐴𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6𝑖7𝑖8𝑏𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6𝑖7𝑖8)T15263748

= 𝐴𝑖1𝑖5𝑖2𝑖6𝑖3𝑖7𝑖4𝑖8𝑏𝑖1𝑖2𝑖3𝑖4𝑖5𝑖6𝑖7𝑖8

(B.2)

The basic isotropic tensor can be used together with the tensor transposi-
tions just introduced in order to generate bases for isotropic tensors of
arbitrary order. For a computational approach in Mathematica® 11 , see
the routines given in Appendix B.4. In order to keep the representation
of the isotropic tensor compact, the following notation is introduced.
The lists of tensor transpositions {𝑡𝑟𝑖}, with 𝑖 = 1, . . . , 𝑑𝐼

𝑟 , will denote a
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list of tensor transpositions of the basic isotropic 𝑟-th-order tensor B𝐼
⟨𝑟⟩

which deliver a basis of the 𝑑𝐼
𝑟-dimensional space of 𝑟-th-order isotropic

tensors. Any isotropic 𝑟-th-order tensor A𝐼
⟨𝑟⟩ can be expressed as a linear

combination with coefficients {𝑐𝑖} of the tensor transpositions of B𝐼
⟨𝑟⟩.

For example, the space of isotropic sixth-order tensors is 15-dimensional,
i.e., 15 transpositions of B𝐼

⟨6⟩

{𝑡6𝑖} = {{1, 2, 3, 4, 5, 6}, . . . } (B.3)

delivering a basis are needed. An isotropic sixth-order tensor A𝐼
⟨6⟩ will

be coded as follows

A𝐼
⟨6⟩ =

15∑︁
𝑖=1

𝑐𝑖(B𝐼
⟨6⟩)T(𝑡6𝑖) = {𝑐𝑖} = {𝑐1, 𝑐2, . . . , 𝑐15} . (B.4)

The introduced lists for tensor transpositions and linear combinations of
the basic isotropic tensor can be used in the software Mathematica® 11 to
compute all upcoming tensors, see routines given in Appendix B.4.

The following lists, generated with the routines given in Appendix B.4,
deliver bases for the respective tensor orders from fourth-order to eighth-
order and will be used for linear combinations of B𝐼

⟨𝑟⟩ in all upcoming
sections. These lists coincide with the tensor transpositions given in
Lobos et al. (2017).

Fourth-order: 𝑑𝐼
4 = 3.

{𝑡4𝑖} = {{1, 2, 3, 4}, {1, 3, 2, 4}, {1, 4, 2, 3}} (B.5)

Fifth-order: 𝑑𝐼
5 = 6.

{𝑡5𝑖}
=
{{1, 2, 3, 4, 5}, {1, 2, 4, 3, 5}, {1, 2, 5, 3, 4}, {1, 3, 4, 2, 5},

{1, 3, 5, 2, 4}, {1, 4, 5, 2, 3}}

(B.6)
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Sixth-order: 𝑑𝐼
6 = 15.

{𝑡6𝑖}
=
{{1, 2, 3, 4, 5, 6}, {1, 2, 3, 5, 4, 6}, {1, 2, 3, 6, 4, 5}, {1, 3, 2, 4, 5, 6},

{1, 3, 2, 5, 4, 6}, {1, 3, 2, 6, 4, 5}, {1, 4, 2, 3, 5, 6}, {1, 4, 2, 5, 3, 6},

{1, 4, 2, 6, 3, 5}, {1, 5, 2, 3, 4, 6}, {1, 5, 2, 4, 3, 6}, {1, 5, 2, 6, 3, 4},

{1, 6, 2, 3, 4, 5}, {1, 6, 2, 4, 3, 5}, {1, 6, 2, 5, 3, 4}}

(B.7)

Seventh-order: 𝑑𝐼
7 = 36.

{𝑡7𝑖}
=
{{1, 2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 6, 5, 7}, {1, 2, 3, 4, 7, 5, 6},

{1, 2, 4, 3, 5, 6, 7}, {1, 2, 4, 3, 6, 5, 7}, {1, 2, 4, 3, 7, 5, 6},

{1, 2, 5, 3, 4, 6, 7}, {1, 2, 5, 3, 6, 4, 7}, {1, 2, 5, 3, 7, 4, 6},

{1, 2, 6, 3, 4, 5, 7}, {1, 2, 6, 3, 5, 4, 7}, {1, 2, 6, 3, 7, 4, 5},

{1, 2, 7, 3, 4, 5, 6}, {1, 2, 7, 3, 5, 4, 6}, {1, 2, 7, 3, 6, 4, 5},

{1, 3, 4, 2, 5, 6, 7}, {1, 3, 4, 2, 6, 5, 7}, {1, 3, 4, 2, 7, 5, 6},

{1, 3, 5, 2, 4, 6, 7}, {1, 3, 5, 2, 6, 4, 7}, {1, 3, 5, 2, 7, 4, 6},

{1, 3, 6, 2, 4, 5, 7}, {1, 3, 6, 2, 5, 4, 7}, {1, 3, 6, 2, 7, 4, 5},

{1, 3, 7, 2, 4, 5, 6}, {1, 3, 7, 2, 5, 4, 6}, {1, 3, 7, 2, 6, 4, 5},

{1, 4, 5, 2, 3, 6, 7}, {1, 4, 5, 2, 6, 3, 7}, {1, 4, 6, 2, 3, 5, 7},

{1, 4, 6, 2, 5, 3, 7}, {1, 4, 7, 2, 3, 5, 6}, {1, 4, 7, 2, 5, 3, 6},

{1, 5, 6, 2, 3, 4, 7}, {1, 5, 7, 2, 3, 4, 6}, {1, 6, 7, 2, 3, 4, 5}}

(B.8)
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Eighth-order: 𝑑𝐼
8 = 91.

{𝑡8𝑖}
=
{{1, 2, 3, 4, 5, 6, 7, 8}, {1, 2, 3, 4, 5, 7, 6, 8}, {1, 2, 3, 4, 5, 8, 6, 7},

{1, 2, 3, 5, 4, 6, 7, 8}, {1, 2, 3, 5, 4, 7, 6, 8}, {1, 2, 3, 5, 4, 8, 6, 7},

{1, 2, 3, 6, 4, 5, 7, 8}, {1, 2, 3, 6, 4, 7, 5, 8}, {1, 2, 3, 6, 4, 8, 5, 7},

{1, 2, 3, 7, 4, 5, 6, 8}, {1, 2, 3, 7, 4, 6, 5, 8}, {1, 2, 3, 7, 4, 8, 5, 6},

{1, 2, 3, 8, 4, 5, 6, 7}, {1, 2, 3, 8, 4, 6, 5, 7}, {1, 2, 3, 8, 4, 7, 5, 6},

{1, 3, 2, 4, 5, 6, 7, 8}, {1, 3, 2, 4, 5, 7, 6, 8}, {1, 3, 2, 4, 5, 8, 6, 7},

{1, 3, 2, 5, 4, 6, 7, 8}, {1, 3, 2, 5, 4, 7, 6, 8}, {1, 3, 2, 5, 4, 8, 6, 7},

{1, 3, 2, 6, 4, 5, 7, 8}, {1, 3, 2, 6, 4, 7, 5, 8}, {1, 3, 2, 6, 4, 8, 5, 7},

{1, 3, 2, 7, 4, 5, 6, 8}, {1, 3, 2, 7, 4, 6, 5, 8}, {1, 3, 2, 7, 4, 8, 5, 6},

{1, 3, 2, 8, 4, 5, 6, 7}, {1, 3, 2, 8, 4, 6, 5, 7}, {1, 3, 2, 8, 4, 7, 5, 6},

{1, 4, 2, 3, 5, 6, 7, 8}, {1, 4, 2, 3, 5, 7, 6, 8}, {1, 4, 2, 3, 5, 8, 6, 7},

{1, 4, 2, 5, 3, 6, 7, 8}, {1, 4, 2, 5, 3, 7, 6, 8}, {1, 4, 2, 5, 3, 8, 6, 7},

{1, 4, 2, 6, 3, 5, 7, 8}, {1, 4, 2, 6, 3, 7, 5, 8}, {1, 4, 2, 6, 3, 8, 5, 7},

{1, 4, 2, 7, 3, 5, 6, 8}, {1, 4, 2, 7, 3, 6, 5, 8}, {1, 4, 2, 7, 3, 8, 5, 6},

{1, 4, 2, 8, 3, 5, 6, 7}, {1, 4, 2, 8, 3, 6, 5, 7}, {1, 4, 2, 8, 3, 7, 5, 6},

{1, 5, 2, 3, 4, 6, 7, 8}, {1, 5, 2, 3, 4, 7, 6, 8}, {1, 5, 2, 3, 4, 8, 6, 7},

{1, 5, 2, 4, 3, 6, 7, 8}, {1, 5, 2, 4, 3, 7, 6, 8}, {1, 5, 2, 4, 3, 8, 6, 7},

{1, 5, 2, 6, 3, 4, 7, 8}, {1, 5, 2, 6, 3, 7, 4, 8}, {1, 5, 2, 6, 3, 8, 4, 7},

{1, 5, 2, 7, 3, 4, 6, 8}, {1, 5, 2, 7, 3, 6, 4, 8}, {1, 5, 2, 7, 3, 8, 4, 6},

{1, 5, 2, 8, 3, 4, 6, 7}, {1, 5, 2, 8, 3, 6, 4, 7}, {1, 6, 2, 3, 4, 5, 7, 8},

{1, 6, 2, 3, 4, 7, 5, 8}, {1, 6, 2, 3, 4, 8, 5, 7}, {1, 6, 2, 4, 3, 5, 7, 8},

{1, 6, 2, 4, 3, 7, 5, 8}, {1, 6, 2, 4, 3, 8, 5, 7}, {1, 6, 2, 5, 3, 4, 7, 8},

{1, 6, 2, 5, 3, 7, 4, 8}, {1, 6, 2, 7, 3, 4, 5, 8}, {1, 6, 2, 7, 3, 5, 4, 8},

{1, 6, 2, 7, 3, 8, 4, 5}, {1, 6, 2, 8, 3, 4, 5, 7}, {1, 7, 2, 3, 4, 5, 6, 8},

{1, 7, 2, 3, 4, 6, 5, 8}, {1, 7, 2, 3, 4, 8, 5, 6}, {1, 7, 2, 4, 3, 5, 6, 8},

{1, 7, 2, 4, 3, 6, 5, 8}, {1, 7, 2, 4, 3, 8, 5, 6}, {1, 7, 2, 5, 3, 4, 6, 8},

{1, 7, 2, 5, 3, 6, 4, 8}, {1, 7, 2, 6, 3, 4, 5, 8}, {1, 7, 2, 8, 3, 4, 5, 6},

{1, 8, 2, 3, 4, 5, 6, 7}, {1, 8, 2, 3, 4, 6, 5, 7}, {1, 8, 2, 3, 4, 7, 5, 6},

{1, 8, 2, 4, 3, 5, 6, 7}, {1, 8, 2, 4, 3, 6, 5, 7}, {1, 8, 2, 4, 3, 7, 5, 6},

{1, 8, 2, 5, 3, 4, 6, 7}, {1, 8, 2, 5, 3, 6, 4, 7}, {1, 8, 2, 6, 3, 4, 5, 7},

{1, 8, 2, 7, 3, 4, 5, 6}}

(B.9)
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B.2 Isotropic tensors for the harmonic
decomposition of a minor symmetric
fourth-order tensor

The isotropic tensors J⟨𝛼⟩𝛾 for the harmonic decomposition Eq. (2.68) are
given according to the conventions introduced in Eq. (B.4) as

J⟨5⟩ = {−(3/20), −(3/20), 3/10, 0, −(3/10), −(3/10)} ,

J⟨6⟩1 = {0, 0, 1/7, 0, 0, 1/7, 0, 0, 1/7, 0, 0, 0, 1/7, 1/7, 1/7} ,

J⟨6⟩2 = {0, 0, −(1/3), 0, 0, 1/6, 0, 0, 1/6, 0, 0, 0, 1/6,

1/6, −(1/3)} ,

J⟨6⟩3 = {0, 0, −(1/2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2} ,

J⟨7⟩ = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −(3/4), 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 3/4, 0, 0, 0, 0, 0, 3/4, 0, 0, 0}

(B.10)

see alternatively Lobos et al. (2017).

B.3 Isotropic tensors B̂𝐼
⟨2𝑟⟩𝛼 for 𝑟 = 1, 2, 3, 4

This section presents explicit expressions for the isotropic tensor B̂𝐼
⟨2𝑟⟩𝛼

defined in Eq. (2.75). The notation introduced in Appendix B.1 is used
in this section for the basic isotropic tensor B𝐼

⟨2𝑟⟩, corresponding tensor
transpositions and corresponding linear combinations.

Case 𝑟 = 1.
B̂𝐼

⟨2⟩0 = 0 ,

B̂𝐼
⟨2⟩1 = 𝐼 − B̂𝐼

⟨2⟩0 = 𝐼 .
(B.11)
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Case 𝑟 = 2 (see {𝑡4𝑖}).

B̂𝐼
⟨4⟩0 = I𝐼 = {1/3, 0, 0} = P1 ,

B̂𝐼
⟨4⟩1 = {0, 1/2, −(1/2)} = P3 ,

B̂𝐼
⟨4⟩2 = I − (B̂𝐼

⟨4⟩0 + B̂𝐼
⟨4⟩1) = {−(1/3), 1/2, 1/2} = P2 .

(B.12)

Case 𝑟 = 3 (see {𝑡6𝑖}).

B̂𝐼
⟨6⟩0 = I𝐼

⟨6⟩
= {0, 0, 0, 0, 0, 0, 0, 1/6, −(1/6), 0, −(1/6), 1/6,

0, 1/6, −(1/6)} ,

B̂𝐼
⟨6⟩1 = {−(1/10), −(1/10), 2/5, −(1/10), 2/5, −(1/10),

2/5, 0, 0, −(1/10), 0, 0, −(1/10), 0, 0} ,

B̂𝐼
⟨6⟩2 = {1/6, 1/6, −(1/3), 1/6, −(1/3), 1/6, −(1/3), 2/3,

0, 1/6, 0, −(1/3), 1/6, −(1/3), 0} ,

B̂𝐼
⟨6⟩3 = I⟨6⟩ −

2∑︁
𝛼=0

B̂𝐼
⟨6⟩𝛼

= {−(1/15), −(1/15), −(1/15), −(1/15), −(1/15),
−(1/15), −(1/15), 1/6, 1/6, −(1/15), 1/6, 1/6,

−(1/15), 1/6, 1/6} .

(B.13)

Case 𝑟 = 4 (see {𝑡8𝑖}). The tensor B̂𝐼
⟨8⟩0 matches exactly the identity

on isotropic fourth-order tensors I𝐼
⟨8⟩ =

∑︀3
𝑖=1(P𝑖/‖P𝑖‖)⊗2, also given in

components in Morawiec (1989; 1994).

B̂𝐼
⟨8⟩0 = I𝐼

⟨8⟩
=
{2/15, −(1/30), −(1/30), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

−(1/30), 2/15, −(1/30), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

−(1/30), −(1/30), 2/15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} ,

(B.14)
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B̂𝐼
⟨8⟩1

=
{0, 0, 0, 0, 1/10, −(1/10), 0, 1/10, −(1/10), −(1/10), −(1/10),
3/10, 1/10, 1/10, −(3/10), 0, 0, 0, 1/10, 0, −(1/10), −(1/10),
−(1/10), 3/10, 0, 1/10, −(1/10), 1/10, −(3/10), 1/10, 0, 0, 0,

1/10, −(1/10), 0, −(1/10), 3/10, −(1/10), 1/10, −(3/10), 1/10,

0, 1/10, −(1/10), −(1/10), −(1/10), 3/10, −(1/10), 3/10,

−(1/10), 3/10, 0, 0, −(1/10), 0, 0, −(1/10), 0, 1/10, 0, −(1/10),
1/10, −(1/10), 0, −(3/10), 0, 1/10, 0, 0, 1/10, 1/10, 0, −(1/10),
−(3/10), 1/10, 1/10, 1/10, 0, −(1/10), 0, −(3/10), 1/10, 1/10,

1/10, 0, −(1/10), 1/10, 0, −(1/10), 0} ,

(B.15)

B̂𝐼
⟨8⟩2

=
{−(10/21), 4/21, 4/21, 2/21, −(1/14), −(1/14), 2/21, −(1/14),
−(1/14), −(1/14), −(1/14), 11/42, −(1/14), −(1/14), 11/42,

4/21, −(10/21), 4/21, −(1/14), 2/21, −(1/14), −(1/14),
−(1/14), 11/42, 2/21, −(1/14), −(1/14), −(1/14), 11/42,

−(1/14), 4/21, 4/21, −(10/21), −(1/14), −(1/14), 2/21,

−(1/14), 11/42, −(1/14), −(1/14), 11/42, −(1/14), 2/21,

−(1/14), −(1/14), −(1/14), −(1/14), 11/42, −(1/14), 11/42,

−(1/14), 11/42, 0, 0, −(1/14), 0, 0, −(1/14), 0, −(1/14), 2/21,

−(1/14), −(1/14), −(1/14), 2/21, 11/42, 0, −(1/14), 0, 0,

−(1/14), −(1/14), 2/21, −(1/14), 11/42, −(1/14), −(1/14),
−(1/14), 0, −(1/14), 2/21, 11/42, −(1/14), −(1/14), −(1/14),
2/21, −(1/14), −(1/14), 0, −(1/14), 2/21} ,

(B.16)
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B̂𝐼
⟨8⟩3

=
{1/2, 0, −(1/2), −(1/6), −(1/10), 7/20, −(1/6), 2/5, −(3/20),
1/10, 1/10, −(23/60), 3/20, 3/20, −(17/60), 0, 0, 0, −(1/10),
1/12, 1/10, 1/10, −(3/20), −(2/15), 1/12, 3/20, −(3/20),
−(1/10), −(1/30), 3/20, −(1/2), 0, 1/2, 2/5, −(3/20), −(1/6),
1/10, −(2/15), −(3/20), 3/20, −(8/15), 2/5, −(1/6), 3/20,

1/10, 7/20, 1/10, −(19/30), −(3/20), −(2/15), 1/10,

−(23/60), 1/2, 1/4, −(3/20), 1/2, −(1/4), 7/20, −(1/4),
3/20, −(1/6), 1/10, 3/20, −(3/20), 1/12, −(17/60), 1/4, 2/5,

−(1/4), −(1/4), −(1/10), −(1/10), −(1/6), 7/20, −(1/30),
3/20, −(1/10), 3/20, −(1/4), 1/10, −(1/6), −(1/30), −(1/10),
3/20, −(1/10), 1/12, 1/10, 3/20, −(1/4), 1/10, −(1/6)} ,

(B.17)

B̂𝐼
⟨8⟩4 = I⟨8⟩ −

3∑︁
𝛼=0

B̂𝐼
⟨8⟩𝛼

=
{−(11/70), −(11/70), 12/35, 1/14, 1/14, −(5/28), 1/14,

−(3/7), 9/28, 1/14, 1/14, −(5/28), −(5/28), −(5/28), 9/28,

−(11/70), 12/35, −(11/70), 1/14, −(5/28), 1/14, 1/14, 9/28,

−(3/7), −(5/28), −(5/28), 9/28, 1/14, 1/14, −(5/28), 12/35,

−(11/70), −(11/70), −(3/7), 9/28, 1/14, 1/14, −(3/7), 9/28,

−(5/28), 4/7, −(3/7), 1/14, −(5/28), 1/14, −(5/28), 1/14,

1/14, 9/28, −(3/7), 1/14, −(5/28), 1/2, −(1/4), 9/28, −(1/2),
1/4, −(5/28), 1/4, −(5/28), 1/14, 1/14, −(5/28), 9/28,

−(5/28), 9/28, −(1/4), −(3/7), 1/4, 1/4, 1/14, 1/14, 1/14,

−(5/28), 1/14, −(5/28), 1/14, −(5/28), 1/4, 1/14, 1/14,

1/14, 1/14, −(5/28), 1/14, −(5/28), 1/14, −(5/28), 1/4, 1/14
, 1/14} .

(B.18)
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B.4 Routines for Mathematica® 11

The following routines for Mathematica® 11 can be used in order to
generate a basis for isotropic tensors and compute coefficients of a given
isotropic tensor in respect to the generated bases.

The author recommends the readers copying and pasting the upcoming
lines of code to double check the pasted lines. Some PDF readers might
have problems copying some symbols and might copy {i,r-1} as
{i,r1}.

Table B.1: Auxiliary routines 1

(*Kronecker delta kd and permutation symbol ps*)
kd = IdentityMatrix[3, SparseArray];
ps = LeviCivitaTensor[3];
(*Dyadic power*)
dpow[A_, r_] := Block[{temp}, temp = A;

Do[temp = TensorProduct[temp, A], {i, r - 1}];
temp];

dpow::usage = "dpow[A,r] computes the dyadic
power of the tensor A, i.e., A
\[TensorProduct]...\[TensorProduct]A (r times).";

(*Generation of isotropic basic tensor for even
and odd order r*)

Biso[r_?EvenQ] := dpow[kd, r/2];
Biso[r_?OddQ] := TensorProduct[ps,

dpow[kd, (r - 3)/2]];
Biso::usage = "Biso[r] computes the basic

r-th-order isotropic tensor.";

For the Example 1 given in Table B.3, the auxiliary and main routines
given in Table B.1 and Table B.2 are required. In Example 1, the lists
with all tensor transpositions up to eighth-order given in Appendix B.1
are generated and saved in the symbol isoTTs. The lists for, e.g., eight-
order can be extracted with isoTTs[[8]], see Eq. (B.9).
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Table B.2: Main routine 1

(*Generate set of basis tensor transpositions for
isotropic r-th-order tensors*)

isoTT[r_] := Module[{p, m1, m2},
p = Permutations@Range@r;
m1 = Table[Flatten@TensorTranspose[Biso[r],

p[[i]]], {i, Length@p}];
m2 = DeleteDuplicates@m1;
p = p[[Flatten[Position[m1, #, 1, 1] & /@ m2]]];
p = p[[

Flatten[Position[#,
Except[0, _?NumericQ], 1, 1] &
/@ RowReduce@Transpose@m2]]]];

isoTT::usage = "isoTT[r] computes a set of tensor
transpositions of the basic isotropic r-th-order
tensor Biso[r]. The computed set of tensor
transpositions deliver together with Biso[r]
a basis of the set of isotropic r-th-order
tensors.";

Table B.3: Example 1

(*Generate transpositions up to eight-order*)
isoTTs = Table[isoTT@i, {i, 8}];

For the Example 2 given in Table B.6, the auxiliary and main rou-
tines given in Table B.4 and Table B.5 are required. In Example 2,
the coefficients for the representation of B̂𝐼

⟨2𝑟⟩𝛼 for 𝑟 = 3 and 𝛼 = 2 are
determined. The result of this computation is the corresponding list
given in Eq. (B.13).
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Table B.4: Auxiliary routines 2

(*Dirichlet kernels and related functions*)
Dk[a_] := 1 + 2*Sum[Cos[k*om], {k, a}];
muh[a_] := Dk[a]/(1 + 2*a);
(*Dummy rotation Q in terms of rotation angle

om and rotation axis nv*)
nv = Array[nc, {3}];
Q = (Cos[om]*kd - Sin[om]*ps.nv

+ (1 - Cos[om])*dpow[nv, 2]);
(*Integration over SO(3) for rotation angle

om and rotation axis nv*)
s = Sin[om/2]^2/(2 Pi^2);
intoms2[f_] := Integrate[Integrate[f,

Element[nv, Sphere[3]]]*s, {om, 0, Pi}];
intoms2::usage = "intoms2[f] computes the

integral over SO(3) for a quantity f
depending on the orientation angle om
and the rotation axis nv.";

(*Rayleigh power*)
rpow[A_, r_] := TensorTranspose[dpow[A, r]

, Flatten@Table[{i, r + i}, {i, r}]];
rpow::usage = "rpow[A,r] computes the

Rayleigh power of the tensor A to the r.";
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Table B.5: Main routine 2

(*Compute integral over SO(3) for Bisoh*)
Bisoh[r_, a_] := intoms2[

Flatten[rpow[Q, r]]*(1 + 2*a)^2*muh[a]];
Bisoh::usage = "Bisoh[r,a] computes

the isotropic 2r-th-order tensor for given
r based on muh[a].";

(*Compute coefficients for linear combinations
for on transpositions isoTTs for fixed r
and given isotropic tensor rhs*)

lcBiso[r_, rhs_] := Module[
{b},
b = Transpose@Table[Flatten

@TensorTranspose[Biso[2*r],
isoTTs[[2 r, i]]]
,{i,Length@isoTTs[[2 r]]}];

LinearSolve[b, rhs]];
lcBiso::usage = "lcBiso[r,rhs] computes the

coefficients for the linear combination
in order to represent the given isotropic
tensor rhs in terms of the transpositions
isoTTs of the basic 2r-th-order isotropic
tensor.";

Table B.6: Example 2

{r, a} = {3, 2};
lcBiso[r, Bisoh[r, a]]
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Quadratic polynomials

C.1 Local notation

In this appendix, a compact vector matrix notation will be used for
simplicity. The space of real valued numbers is denoted as 𝑅. Italic
symbols, e.g., 𝑐, 𝛾 and 𝑦, will denote scalars in 𝑅. Underlined symbols,
e.g., 𝑥, 𝑏 and 𝛽, will denote vectors in 𝑅𝑛. Double underlined symbols,
e.g., 𝑉 , 𝐷 and 𝑀 , will denote quadratic matrices in in 𝑅𝑛×𝑛. The symbol
𝐴 will be used for symmetric matrices in 𝑅𝑛×𝑛. The scalar product
between vectors, e.g., 𝑥 and 𝑏 will be simply noted as 𝑥T𝑏.

C.2 Homogeneous quadratic polynomials

Positive semidefinite quadratic polynomials. We consider in this sec-
tion homogeneous quadratic polynomials 𝑞

𝑞 = 𝑥T𝐴 𝑥 =
𝑛∑︁

𝑖,𝑗=1
𝑥𝑖𝐴𝑖𝑗𝑥𝑗 (C.1)

with symmetric matrix 𝐴. The polynomial 𝑞 is non-negative, i.e.,
𝑞 ≥ 0 ∀𝑥, if and only if 𝐴 is positive semidefinite (PSD), shortly denoted
as 0 ≤ 𝐴. A matrix 𝐴 is positive semidefinite if and only if all principal
minors are non-negative.
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For 𝑞+ = 𝑥T𝐴+ 𝑥, 𝑞 ≤ 𝑞+ ∀𝑥 is fulfilled if and only if 𝐴+ − 𝐴 is PSD,
shortly denoted as 𝐴 ≤ 𝐴+.

Bounds of matrix components. The following matrix component
bounds are relevant for the bounding of material properties in case of
given upper and lower bounds, described in Section 3.4. For 0 ≤ 𝐴 ≤ 𝐴+,
it possible to bound the coefficients of unknown 𝐴 for given 𝐴+. This is
achieved by consideration of simple necessary conditions. The simplest
necessary conditions for 0 ≤ 𝐴 ≤ 𝐴+ are obtained with vectors 𝑥𝑖 ̸= 0
and 𝑥𝑗 = 0∀𝑗 ̸= 𝑖. This delivers the necessary conditions for the main
diagonal components of 𝐴

0 ≤ 𝐴𝑖𝑖 ≤ 𝐴+
𝑖𝑖 ∀𝑖 = 1, . . . , 𝑛 . (C.2)

The off-diagonal components of 𝐴 can be bounded as in Lobos and Böh-
lke (2016) by consideration of the vectors 𝑥𝑖 ̸= 0, 𝑥𝑗 ̸= 0, 𝑥𝑘 = 0 ∀𝑘 ̸= 𝑖, 𝑗.
This delivers the necessary conditions

0 ≤

[︃
𝐴𝑖𝑖 𝐴𝑖𝑗

𝐴𝑖𝑗 𝐴𝑗𝑗

]︃
≤

[︃
𝐴+

𝑖𝑖 𝐴+
𝑖𝑗

𝐴+
𝑖𝑗 𝐴+

𝑗𝑗

]︃
. (C.3)

For 2 × 2 matrices, the maximum and minimum of 𝐴𝑖𝑗 can be obtained
analytically, see Lobos and Böhlke (2016), which delivers the off-diagonal
bounds

𝐵−
𝑖𝑗 ≤ 𝐴𝑖𝑗 ≤ 𝐵+

𝑖𝑗 , 𝐵±
𝑖𝑗 = 𝜇𝑖𝑗 ± Δ𝑖𝑗 ,

𝜇𝑖𝑗 = 1
2 𝐴+

𝑖𝑗 , Δ𝑖𝑗 = 1
2

√︁
𝐴+

𝑖𝑖𝐴
+
𝑗𝑗 .

(C.4)

For cases with 𝐴− ≤ 𝐴 ≤ 𝐴+ and given 𝐴±, the problem can be refor-
mulated as 0 ≤ (𝐴 − 𝐴−) ≤ (𝐴+ − 𝐴−), solved with Eq. (C.4) and given
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𝐵−
𝑖𝑗 ≤ 𝐴𝑖𝑗 ≤ 𝐵+

𝑖𝑗 , 𝐵±
𝑖𝑗 = 𝜇𝑖𝑗 ± Δ𝑖𝑗 ,

𝜇𝑖𝑗 = 1
2 (𝐴+

𝑖𝑗 + 𝐴−
𝑖𝑗) , Δ𝑖𝑗 = 1

2

√︁
(𝐴+

𝑖𝑖 − 𝐴−
𝑖𝑖)(𝐴

+
𝑗𝑗 − 𝐴−

𝑗𝑗) .
(C.5)

Upper bound problem. The following problem is relevant for the
zeroth-order bonds discussed in Section 3.4.2. Consider the problem of
finding a symmetric matrix 𝐵 for given matrices {𝐴

𝑖
} = {𝐴1, 𝐴2, . . . , 𝐴

𝑛
},

𝐴
𝑖

∈ 𝑅𝑛×𝑛 fulfilling 𝑥T𝐴
𝑖

𝑥 ≤ 𝑥T𝐵 𝑥 ∀𝑥∀𝑖. The set of possible upper
bounds for the given matrices

ℬ = {𝐵 | 𝑥T𝐴
𝑖

𝑥 ≤ 𝑥T𝐵 𝑥 ∀𝑥∀𝑖} (C.6)

is a convex set since any convex combination of 𝐵1 ∈ ℬ and 𝐵2 ∈ ℬ is
also an element of ℬ. A unique / optimal upper bound does not exist
unless some order for elements of ℬ is imposed. For two matrices 𝐶

and 𝐷, 𝐶 ≤ 𝐷 (i.e., 𝐷 − 𝐶 is PSD) implies 𝛾𝑖 ≤ 𝛿𝑖 𝑖 = 1, . . . , 𝑛 for the
eigenvalues 𝛾𝑖 of 𝐶 and 𝛿𝑖 of 𝐷 in increasing order, see Horn and
Johnson (1990). From these necessary conditions, further necessary
conditions for 𝐶 ≤ 𝐷 are immediately derivable, e.g., tr

(︀
𝐶
)︀

≤ tr
(︀
𝐷
)︀
,

det
(︀
𝐶
)︀

≤ det
(︀
𝐷
)︀

and many others. This motivates the simplest optimal
upper bound 𝐵+ as the upper bound with trace being smaller than all
upper bounds, i.e., 𝐵+ is defined as

𝐵+ = arg min
𝐵∈ℬ

tr
(︀
𝐵
)︀

. (C.7)

It should be remarked that the choice for the trace is a practical choice,
as used without further discussion in Nadeau and Ferrari (2001) in the
context of zeroth-order bounds of linear elastic material behavior. But,
alternative optimal bounds can be defined on other invariants, e.g., the
determinant, see Lobos and Böhlke (2016) for a discussion in the context
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of zeroth-order bounds of linear elastic material behavior. It should
also be noted that the solution of the minimization of the trace and the
solution of the minimization of the determinant differ, in general. In this
work, we choose the trace in order to formulate a simpler optimization
problem, since the trace is a linear function.

The optimization problem Eq. (C.7) belongs to the positive semidefinite
programming class. The objective function in this optimization problem
is linear / strictly increasing in 𝐵, and the underlying set of variables
is convex, such that numerical interior point algorithms searching for
a local minimum suffice. Alternatively, this positive semidefinite pro-
gramming problem can be treated with slacked variables, see Lourenço
et al. (2016).

As an example, consider the following matrices

𝐴1 =
[︃

117 42
42 17

]︃
, 𝐴2 =

[︃
26 48
48 104

]︃
(C.8)

For illustrative reasons, we will consider diagonal matrices

𝐵 =
[︃

𝑏1 0
0 𝑏2

]︃
(C.9)

for this first example. The set ℬ is described now based on the non-
negative principal minors of the difference matrices 𝐵 − 𝐴

𝑖

ℬ1 = {𝐵 | 𝑏2 ≥ 17 ∧ 𝑏1 (𝑏2 − 17) + 225 ≥ 117𝑏2} ,

ℬ2 = {𝐵 | 𝑏2 ≥ 104 ∧ 𝑏1 (𝑏2 − 104) + 400 ≥ 26𝑏2} ,

ℬ = ℬ1 ∩ ℬ2 .

(C.10)

The regions ℬ1, ℬ2 and ℬ are depicted in Fig. C.2.1 in orange, blue
and green respectively while a contour map of tr

(︀
𝐵
)︀

is given in the
background in gray colors (lighter colors indicate higher values of tr

(︀
𝐵
)︀
).
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The matrices 𝐵 with respective minimum traces in ℬ1, ℬ2 and ℬ are
depicted by the red, blue and green points, respectively. This explicit
example has been chosen in order to motivate two points. The first one
is that the solutions of the separate optimization problem differ, i.e., the
solution in ℬ cannot be obtained from the respective solutions in the ℬ𝑖,
in general. And the second point is that for the special case of matrices 𝐵

with fixed eigenvectors, as in the current example, taking the maximum
eigenvalues of the solutions of each ℬ𝑖 in each eigenspace suffices in
order to obtain an element of ℬ (e.g., the purple point in Fig. C.2.1).
But this upper bound will not have minimum trace in ℬ, in general. In
higher dimensional spaces, this optimization problem shows several
complications due to the increasing number of constraints.

Figure C.2.1: Regions ℬ1 (orange), ℬ2 (blue) and ℬ (green) of the 2D example; a contour
map of the trace is given in the backgroud in gray colors, where lighter colors indicate
higher trace values; the elements with minimum trace in ℬ1, ℬ2 and ℬ are marked with
the red, blue and green points, respectively; the purple points marks the point by taking
the maximum values in respective common eigenspaces of the separate solutions in ℬ1
and ℬ2.
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In Table C.1 three implementations of algorithms in Mathematica® 11
for the computation on an upper bound symmetric matrix B for given
list of matrices As are given. In Table C.2, the discussed 2D example of
Fig. C.2.1 is computed with its output lines given in Table C.3.

Table C.1: Routines for computation of upper bound

PrincipalMinors[A_]:=Diagonal@Minors[A,#]&/@Range@Length@A;
PSDCond[A_]:=#>=0&/@Flatten@PrincipalMinors@A;
UpperBoundTr[As_,B_]:=Module[
{cond,f,vars,min},
cond=And@@PSDCond[B-#]&/@As;
f=Tr@B;
vars=Variables@B;
min=Minimize[{f,cond},vars];
FullSimplify@min[[2]]

];
NUpperBoundTr[As_,B_]:=Module[
{cond,f,vars,min},
cond=And@@PSDCond[B-#]&/@As;
f=Tr@B;
vars=Variables@B;
min=FindMinimum[{f,cond},vars,Method->"InteriorPoint"];
min[[2]]

];
NUpperBoundTrSlack[As_,B_]:=Module[
{cond,f,vars,min,Ss,s},
Ss=UpperTriangularize/@Array[s,Dimensions@As];
cond=DeleteCases[Flatten[UpperTriangularize/@
(ConstantArray[B,Length@As]-As-(Transpose[#].#&/@Ss))],0];

cond=Thread[cond==0];
f=Tr@B;
vars=Join[Variables@B,Variables@Ss];
vars={#,1.}&/@vars;
min=FindMinimum[{f,cond},vars];
First@Solve[B==(B/.min[[2]])]

];
MinEV[As_,B_]:=Min[Eigenvalues@(B-#)&/@As];
UpperBoundQ[As_,B_]:=0<=Min[Eigenvalues[B-#]&/@As];
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Table C.2: Upper bound example

As = {{{117, 42}, {42, 17}}, {{26, 48}, {48, 104}}};
B = DiagonalMatrix@{b1, b2};
bs = Through[{
UpperBoundTr,
NUpperBoundTr,
NUpperBoundTrSlack}[As, B]]

Bs = B /. bs;
UpperBoundQ[As, #] & /@ Bs
MinEV[As, #] & /@ Bs

Table C.3: Output lines for upper bound example

Out[1] = {
{b1->1/58 (3967+(14153689)^(1/2))
,b2->1/182 (11551+3(14153689)^(1/2))}
,{b1->133.261,b2->125.48}
,{b1->133.261,b2->125.48}}

Out[2] = {True, True, False}
Out[3] = {0,4.84361*10^(-8),-5.25851*10^(-9)}

The symbol bs in Table C.2 carries out all computation routines. The
routine UpperBoundTr computes the analytic solution, which for the
2D example is given in the first entry of the list of Out[1] of Table C.3.
The second and third entry of Out[1] are the results of the numeric
routines NUpperBoundTr (based on conditions for the principal minors
and an interior point algorithm) and NUpperBoundTrSlack (based on
slack variables for positive semidefinite programming). All solutions
stored in bs are then stored in the symbol Bs (creating a list with
three matrices, the solutions of the respective routines). These three
solutions are then tested with the routine UpperBoundQ which returns
in Out[2] in Table C.3 two true statements and a false one for the
solution of NUpperBoundTrSlack. This false statement is due to the
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minimum negative eigenvalue −5.26 × 10−9 of one of the difference
matrices 𝐵 − 𝐴

𝑖
for NUpperBoundTrSlack, which might be consider

negligible in a numeric sense.

In the author’s experience, for higher dimensional problems, routines
based on the slack variable formulation, as in the presented routine
NUpperBoundTrSlack, seems to work faster and more accurately than
routines similar to presented NUpperBoundTr, which has problems
finding feasible points for increasing number of constraints. Problem
reformulations based on the Gershgorin circle theorem and diagonal
dominance of matrices are possible, but, in the author’s experience,
slower and less accurate than the results obtained with the slack variable
formulation.

C.3 Quadratic polynomials

The following relations are needed for the bounds of linear properties
with eigenfields, see Eq. (3.52). We consider quadratic polynomials 𝑝

𝑝 = 𝑥T𝐴 𝑥 + 2𝑥T𝑏 + 𝑐 . (C.11)

For 𝑝 in order to be non-negative, i.e., 𝑝 ≥ 0 ∀𝑥, conditions on 𝐴, 𝑏

and 𝑐 have to be fulfilled. Every symmetric 𝐴 can be diagonalized
as 𝐴 = 𝑉 T𝐷 𝑉 , with diagonal 𝐷 with 𝜆𝑖, 𝑖 = 1, . . . , 𝑛 being the eigen-
values 𝐴. Further, we assume that the last 𝑚 eigenvalues vanish. The
polynomial 𝑝 can be expressed with 𝜉 = 𝑉 𝑥 and 𝛽 = 𝑉 T 𝑏 as

𝑝 = 𝜉T𝐷 𝜉 + 2𝜉T𝛽 + 𝑐

=
𝑛−𝑚∑︁
𝑖=1

(𝜆𝑖𝜉
2
𝑖 + 2𝜉𝑖𝛽𝑖) + 𝑐 +

𝑛∑︁
𝑖=𝑛−𝑚+1

2𝜉𝑖𝛽𝑖

=
𝑛−𝑚∑︁
𝑖=1

(︃
𝜆𝑖

[︂
𝜉𝑖 + 𝛽𝑖

𝜆𝑖

]︂2
)︃

+ 𝑐 −
𝑛−𝑚∑︁
𝑖=1

𝛽2
𝑖

𝜆𝑖
+

𝑛∑︁
𝑖=𝑛−𝑚+1

2𝜉𝑖𝛽𝑖 .

(C.12)
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It is now visible, that the condition for non-negativity 𝑝 ≥ 0∀𝑥 is fulfilled
if and only if

𝜆𝑖 ≥ 0 𝑖 = 1, . . . , 𝑛 − 𝑚

∧ 𝛽𝑖 = 0 𝑖 = 𝑛 − 𝑚 + 1, . . . , 𝑛

∧
𝑛−𝑚∑︁
𝑖=1

𝛽2
𝑖

𝜆𝑖
≤ 𝑐 ,

(C.13)

such that 𝐴 has to be PSD, 𝑐 has to be non-negative and the components
of 𝑏 have to fulfill the constrains in Eq. (C.13) generated by 𝐴 and 𝑐. For
𝑐 = 0, it follows immediately that 𝑏 = 0 has to be fulfilled for 𝑝 ≥ 0∀𝑥 to
hold.

Now, 𝑝 is assumed non-negative, i.e., 𝐴, 𝑏 and 𝑐 fulfilled the derived
conditions. The symmetric block matrix 𝑀 ∈ 𝑅(𝑛+1)×(𝑛+1)

𝑀 =
[︃

𝐴 𝑏

𝑏T 𝑐

]︃
(C.14)

is now investigated. For the vector 𝑧 = [𝑥, 𝑦]T with real valued scalar 𝑦,
the quadratic form of 𝑀 is considered

𝑧T𝑀 𝑧 = 𝑥𝑇 𝐴 𝑥 + 2𝑥T(𝑦𝑏) + 𝑐𝑦2 . (C.15)

This quadratic form is non-negative for all 𝑥 and 𝑦, i.e., for all 𝑧. This
is directly proven by consideration of the conditions Eq. (C.13) for (𝑦𝑏)
and 𝑐𝑦2 which are fulfilled for all 𝑦, since 𝑦 enters linearly the conditions
Eq. (C.13)2 and as 𝑦2 both sides of the inequalities in Eq. (C.13)3. There-
fore, 𝐴, 𝑏 and 𝑐 fulfilling Eq. (C.13) imply PSD 𝑀 . This statement can be
given compactly by defining 𝑧1 = [𝑥, 1]T and considering 𝑧T

1𝑀 𝑧1 = 𝑝 as

0 ≤ 𝑧T
1𝑀 𝑧1 ∀𝑧1 ⇒ 0 ≤ 𝑧T𝑀 𝑧 ∀𝑧 ⇔ 0 ≤ 𝑀 . (C.16)
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For given 𝑝± fulfilling 𝑝− ≤ 𝑝 ≤ 𝑝+, corresponding symmetric block
matrices 𝑀 and 𝑀± can be constructed. For these matrices

𝑧T
1𝑀− 𝑧1 ≤ 𝑧T

1𝑀 𝑧1 ≤ 𝑧T
1𝑀+ 𝑧1 ∀𝑧1 (C.17)

holds. This can be reformulated as 0 ≤ 𝑧T
1𝑁 𝑧1 ≤ 𝑧T

1𝑁+ 𝑧1 ∀𝑧1 with
𝑁 = 𝑀 − 𝑀− and 𝑁+ = 𝑀+ − 𝑀−. Based on Eq. (C.16), 0 ≤ 𝑁 ≤ 𝑁+

and 𝑀− ≤ 𝑀 ≤ 𝑀+ follow. Bounds for all coefficients of 𝑀 can now
be obtained with Eq. (C.5).
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Stationary HS polarization field

We start at the stationarity condition Eq. (3.88). Reformulation of
Eq. (3.88) delivers

𝜏 = R[�̌� + P0[⟨𝜏 ⟩𝑣]] , R = (Ĉ−1 + P0)−1 (D.1)

Averaging, isolating ⟨𝜏 ⟩𝑣 and reinserting �̃� = �̄� − Ĉ−1[�̂�] delivers

⟨𝜏 ⟩𝑣 = ⟨R[�̃�]⟩𝑣 + ⟨R⟩𝑣P0[⟨𝜏 ⟩𝑣] (D.2)

⇒ ⟨𝜏 ⟩𝑣 = (I𝑆 − ⟨R⟩𝑣P0)−1[⟨R⟩𝑣[�̄�] − ⟨RĈ−1[�̂�]⟩𝑣] . (D.3)

The tensor R may be manipulated as

R = (Ĉ−1[P−1
0 + Ĉ]P0)−1 = P−1

0 LĈ , L = Ĉ + P−1
0 (D.4)

This identity allows to simplify ⟨RĈ−1[�̂�]⟩𝑣 as

⟨RĈ−1[�̂�]⟩𝑣 = P−1
0 [⟨L[�̂�]⟩𝑣] . (D.5)

The tensor R can be further reformulated as

R = P−1
0 LĈ = P−1

0 L(L−1 − P−1
0 ) = P−1

0 (P0 − L)P−1
0 . (D.6)

The average of R yields

⟨R⟩𝑣 = P−1
0 (P0 − ⟨L⟩𝑣)P−1

0 , (D.7)
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such that 〈τ 〉v is computed as

〈τ 〉v = 〈L〉−1
v P0[P−1

0 (P0 − 〈L〉v)P−1
0 [ε̄] − P−1

0 [〈L[ŝ]〉v]] (D.8)

= (〈L〉−1
v − P−1

0 )[ε̄] − 〈L〉−1
v [〈L[ŝ]〉v] . (D.9)

The local polarization yields

τ = R[ε̄ − Ĉ−1[ŝ] + P0{(〈L〉−1
v − P−1

0 )[ε̄]
−〈L〉−1

v [〈L[ŝ]〉v]}] (D.10)

= RP0〈L〉−1
v [ε̄ − 〈L[ŝ]〉v] − RĈ−1[ŝ] (D.11)

= (IS − P−1
0 L)〈L〉−1

v [ε̄ − 〈L[ŝ]〉v] − P−1
0 L[ŝ] , (D.12)

where in the last line (D.6) the identities (D.4) and (D.6) have been used.
The determined polarization field yields the stationary value of the HS
functional. For its evaluation, the scalar product

〈τ · ε̃〉v = 〈τ 〉v · ε̄ − 〈τ · Ĉ−1[ŝ]〉v (D.13)

needs to be computed. The first term evaluates to

ε̄ · 〈τ 〉v = ε̄ · (〈L〉−1
v − P−1

0 )[ε̄] − ε̄ · 〈L〉−1
v [〈L[ŝ]〉v] . (D.14)

The second term may be computed based on the identities

Ĉ−1 = (L−1 − P0)−1 = L(IS − P−1
0 L)−1 (D.15)

Ĉ−1 − L = Ĉ−1P−1
0 L (D.16)
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such that

〈ŝ · Ĉ−1[τ ]〉v = 〈ŝ · Ĉ−1(IS − P−1
0 L)〈L〉−1

v [ε̄ − 〈L[ŝ]〉v]〉v

−〈ŝ · Ĉ−1P−1
0 L[ŝ]〉v (D.17)

= 〈s · L〈L〉−1
v [ε̄ − 〈L[ŝ]〉v]〉v

−〈ŝ · (Ĉ−1 − L)[ŝ]〉v (D.18)

= (ε̄ − 〈L[ŝ]〉v) · 〈L〉−1
v [〈L[ŝ]〉v]

−〈ŝ · (Ĉ−1 − L)[ŝ]〉v (D.19)

holds. The HS potential evaluates to, see Eq. (3.92),

W HS = W̃0 + 1
2 〈τ · ε̃〉v (D.20)

=
{

1
2 ε̄ · C0[ε̄] − ε̄ · s0 − 1

2 〈k + ŝ · Ĉ−1[ŝ]〉v

}
+1

2

{
ε̄ · (〈L〉−1

v − P−1
0 )[ε̄]

−(2ε̄ − 〈L[ŝ]〉v) · 〈L〉−1
v [〈L[ŝ]〉v]

+〈ŝ · (Ĉ−1 − L)[ŝ]〉v

}
(D.21)

= 1
2 ε̄ · (C0 − P−1

0 + 〈L〉−1
v )[ε̄]

−ε̄ · (s0 + 〈L〉−1
v [〈L[ŝ]〉v])

−1
2
(〈k〉v + 〈ŝ · L[ŝ]〉v − 〈L[ŝ]〉v · 〈L〉−1

v [〈L[ŝ]〉v]
)
(D.22)

= 1
2 ε̄ · (C0 − P−1

0 + 〈L〉−1
v )[ε̄] − ε̄ · 〈L〉−1

v [〈L[s]〉v]

−1
2

(
〈k〉v + 〈s · L[̂]〉v − 〈L[s]〉v · 〈L〉−1

v [〈L[s]〉v]
)
(D.23)
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Frequently used acronyms,
symbols, and operators

Acronyms

𝑛-PPF 𝑛-point probability function
CCODF Central crystallite orientation distribution function
CODF Crystallite orientation distribution function
CUB Cubic
FCC Face centered cubic
HEX Hexagonal
HS Hashin-Shtrikman
ISC Isotropic self-consistent
ISO Isotropic
LCC Linear comparison composite
MPPM Multiphase polycrystalline material
ORT Orthotropic
PSD Positive semidefinite
RVE Representative volume element
SA1 Singular approximation based on Hill average of

first-order bounds for isotropic texture
SC Self-consistent
SPPM Single phase polycrystalline material
TFE Tensorial Fourier expansion
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TRI Triclinic



Frequently used acronyms, symbols, and operators

Latin letters

𝑥, 𝑦, 𝑊, . . . Scalar quantities
𝑎𝑖, 𝐴𝑖𝑗 , 𝐴𝑖𝑗𝑘𝑙, . . . Tensor components in respect to orthonormal

basis {𝑏𝑖}
𝑥, 𝑦, . . . Vectors
𝐴, 𝐵, . . . Second-order tensors
A,B, . . . Fourth-order tensors
A⟨𝑛⟩,B⟨𝑛⟩, . . . 𝑛-th-order tensors
A Strain localization tensor
𝑎 Strain fluctuation localization field

B Stress localization tensor
𝑏𝑖𝑗 , 𝑏𝑖𝑗𝑘𝑙 Abbreviations for 𝑏𝑖 ⊗ 𝑏𝑗 and 𝑏𝑖 ⊗ 𝑏𝑗 ⊗ 𝑏𝑘 ⊗ 𝑏𝑙

{𝑏1, 𝑏2, 𝑏3} Orthonormal basis vectors of the three
dimensional Euclidean physical space

𝑏 Stress fluctuation localization field
(second-order tensor)

C0 Constant comparison stiffness
Ĉ Stiffness difference C − C0

C𝑛± Upper and lower 𝑛-th-order bounds of C̄
C Stiffness tensor
C̃0± Alternative zeroth-order bounds of linear elastic

properties for large material data bases
C0± Zeroth-order bounds of linear elastic properties
C̄ Effective stiffness
C̃ Single crystal stiffness tensor
𝐶* Supertensor based on 𝑊 * in complementary

space
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(second-order tensor)

𝐶
0±

Alternative supertensor zeroth-order bounds for
large material data bases

𝐶0± Supertensor zeroth-order bounds



Latin letters

𝐶 Supertensor based on 𝑊

𝐷𝛼(𝜔) Dirichlet kernel
D̃⟨𝑟⟩ Single crystal physical property of 𝑟-th-order
𝑒 Eigenstrain field (second-order tensor)
𝐹 HS functional in elastic space
F′

⟨𝛼⟩𝛽(𝑄) Ansatz function for CODF of 𝛼-th-order cor-
responding to the reference tensor H′

⟨𝛼⟩𝛽 ,
F′

⟨𝛼⟩𝛽(𝑄) = 𝑄 ⋆ H′
⟨𝛼⟩𝛽

𝑓(𝑄) Crystallite orientation distribution function
𝑒𝑛 Relative elastic volume based on 𝑛-th-order

bounds of linear elastic properties
𝑓 Material parameter connected to the heat capacity

for constant strain 𝑐𝜀, 𝑓 = 𝜌𝑐𝜀/𝜃0

G Non-local operator based on Green’s function
𝑔(�̂�) Central crystallite orientation distribution func-

tion
H′

⟨𝛼⟩ Harmonic tensor of 𝛼-th-order, i.e., completely
symmetric in respect to arbitrary index permuta-
tion and fulfilling H⟨𝛼⟩[𝐼] = O⟨𝛼−2⟩

H′
⟨𝛼⟩𝛽 Reference tensor of 𝛼-th-order for 𝛽 = 1, . . . , 𝑛′

𝛼

𝐼 Identity on vectors 𝐼 =
∑︀3

𝑖,𝑗=1 𝛿𝑖𝑗𝑏𝑖𝑗

I Identity on second-order tensors
I =

∑︀3
𝑖,𝑗,𝑘,𝑙=1 𝛿𝑖𝑘𝛿𝑗𝑙𝑏𝑖𝑗𝑘𝑙

I𝑆 Identity on symmetric second-order tensors
I𝑆 =

∑︀3
𝑖,𝑗,𝑘,𝑙=1

1
2 (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘)𝑏𝑖𝑗𝑘𝑙

𝐼𝑖 Indicator function of phase 𝑖

J⟨𝑟+𝛼⟩𝛾 Constant isotropic (𝑟 + 𝛼)-th-order tensors in
harmonic decomposition of D̃⟨𝑟⟩

181

𝑘 Strain independent part of 𝑊

𝑙 Stress independent part of 𝑈



Frequently used acronyms, symbols, and operators

𝒩 , 𝒩 sym
𝛼 Set of harmonic tensors with Frobenius norm

smaller or equal to unity and corresponding
special case considering tensors up to tensor
order 𝛼 for symmetry group 𝑆sym

𝑛 Rotation axis
𝑛′

𝛼 Number of non-vanishing harmonic tensors of
𝛼-th-order

𝑂𝑟𝑡ℎ Set of orthogonal tensors
O⟨𝛼⟩ Zero 𝛼-th-order tensor
P0 Polarization tensor
P1 Identity on isotropic second-order tensors

P1 = 1
3 𝐼 ⊗ 𝐼

P2 Identity on symmetric, traceless second-order
tensors P2 = I𝑆 − P1

P3, I𝐴𝑆 Identity on skewed / antisymmetric second-
order tensors P3 = I𝐴𝑆 = I − I𝑆

𝑄𝑛 Equidistant discretization of intervals based on
positive integer 𝑛 for rotation angle and spherical
coordinates of rotation axis for orientations

𝑄 Orientation
Q𝑓

⟨2𝑟⟩,Q
𝑔
⟨2𝑟⟩ Orientation average (2𝑟)-th-order tensor based

on CODF 𝑓 or CCODF 𝑔

𝑆2 Unit sphere in 3-dimensional space
S Compliance tensor
𝑆𝑖1...𝑖𝑛

𝑛 𝑛-point probability function
𝑆𝑂(3) Set of orientations
𝑆 Supertensor based on 𝑈 in complementary space
�̄� Effective eigenstress
𝑠 Eigenstress field (second-order tensor)
𝑈 Complementary potential function
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𝑈± Upper and lower bound of �̄�

�̄� Effective complementary potential function



Greek letters

𝑢 Displacement field
𝒱, 𝒱sym

𝛼 Set of texture coefficients based on convex combi-
nations of single crystal states and corresponding
special case considering tensors up to tensor
order 𝛼 for symmetry group 𝑆sym

𝒱, 𝒱sym
𝛼 Set of texture coefficients based on general CODF

and corresponding special case considering ten-
sors up to tensor order 𝛼 for symmetry group
𝑆sym

V′
⟨𝛼⟩𝛽 Texture coefficient of 𝛼-th-order corresponding

to the reference tensor H′
⟨𝛼⟩𝛽

𝑣, 𝜕𝑣 RVE volume region and surface
𝑊 Elastic potential function
𝑊 ± Upper and lower bound of �̄�

𝑊 * Legendre-Fenchel transform of 𝑊

�̄� Effective elastic potential function
𝑥 Position vector

Greek letters

𝛽 Thermal stress coefficient
𝛿(�̂�, 𝑄) Dirac distribution in orientation space with cen-

tral orientation �̂�

𝛿𝑖𝑗 Kronecker symbol
𝜀, ⟨𝜀⟩𝑣, �̄� Infinitesimal strain, volume average over RVE

and effective corresponding measure
𝜀𝑖𝑗𝑘 Permutation symbol
𝜖 Third-order permutation tensor
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Γ𝑛±
𝛼𝛽 Component bounds of stiffness tensor based on

𝑛-th-order bounds
𝛾𝑛±

𝛼𝛽 Component bounds of supertensors



Frequently used acronyms, symbols, and operators

𝜃 Spherical coordinate / absolute temperature
𝜆 Texture eigenvalue / general tensor eigenvalue
𝜇𝛼(𝜔) Ansatz function for CCODF based on Dirichlet

kernel 𝐷𝛼(𝜔)
𝜉, 𝜉 Arbitrary and exact strain polarization
�̄�𝑓 Effective flow stress
𝜎, ⟨𝜎⟩𝑣, �̄� Cauchy stress, volume average over RVE and

effective corresponding measure
𝜏 , 𝜏 Arbitrary and exact stress polarization
𝜏𝑘𝑐 Argument of maximal potential difference in 𝑘-th

slip system
𝜏𝑘 Shear stress of 𝑘-th slip system
𝜑 Spherical coordinate
𝜑𝑘𝑐 Comparison potential of 𝑘-th slip system in LCC
𝜑𝑘 Potential of 𝑘-th slip system
𝜙𝑘𝑐 Maximal potential difference in 𝑘-th slip system
Ω, 𝜕Ω Material region of a sample and surface
�̂� Orientation distance
𝜔 Rotation angle

Operators

𝐴⊗𝑟 Dyadic / tensor power, defined by 𝐴⊗2 = 𝐴 ⊗ 𝐴

and 𝐴⊗𝑟 = 𝐴⊗(𝑟−1) ⊗ 𝐴

𝐴 ⊗ 𝐵 Dyadic / tensor product
𝐴 ⊗ 𝐵 =

∑︀3
𝑖𝑗𝑘𝑙=1 𝐴𝑖𝑗𝐵𝑘𝑙𝑏𝑖 ⊗ 𝑏𝑗 ⊗ 𝑏𝑘 ⊗ 𝑏𝑙

‖𝐴‖ Frobenius norm ‖𝐴‖ =
√

𝐴 · 𝐴
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A[𝐵] Linear map
A[𝐵] =

∑︀3
𝑖,𝑗,𝑘,𝑙=1 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝑏𝑖𝑗

𝐴⋆𝑟 Rayleigh power, defined by 𝐴⋆𝑟[B⟨𝑟⟩] = 𝐴 ⋆ B⟨𝑟⟩



Operators

𝐴 ⋆ B⟨𝑟⟩ Rayleigh product
𝐴 ⋆B⟨𝑟⟩ =

∑︀3
𝑖1...𝑖𝑟=1 𝐵𝑖1...𝑖𝑟

(𝐴𝑏𝑖1) ⊗ · · · ⊗ (𝐴𝑏𝑖𝑟
)

𝐴 · 𝐵 Scalar product
𝐴 · 𝐵 =

∑︀3
𝑖𝑗=1 𝐴𝑖𝑗𝐵𝑖𝑗

𝛿 Variation
⟨𝑞⟩𝑓 Orientation average of a quantity 𝑞 over 𝑆𝑂(3)

based on the CODF 𝑓(𝑄)
⟨𝑞⟩𝑣 Volume average of a quantity 𝑞 over the RVE

region 𝑣

⟨𝑞⟩ Ensemble average of a quantity 𝑞 over the sample
space of the manufacturing process

A† Adjoint operator
div(A⟨𝑟⟩) Divergence of a tensor field A⟨𝑟⟩ defined as

div(A⟨𝑟⟩) = grad(A⟨𝑟⟩)[𝐼]
grad(𝑞) Gradient of a field 𝑞

gssym(A⟨𝑟⟩) Group symetrization of the tensor A⟨𝑟⟩ in respect
to the group indexed by sym, e.g., hex for
hexagonal materials
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for the linear and nonlinear mechanical properties with prescribed proper-
ties-profile. The set of achievable properties is bounded by the zeroth-order 
bounds (which are material specific), the first-order bounds (containing vol-
ume fractions of the phases) and the second-order Hashin-Shtrikman bounds 
with eigenfields in terms of tensorial texture coefficients for arbitrarily aniso-
tropic textured materials.
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