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1 Introduction

Understanding basic principles and phenomena in nature has been a perpetual moti-
vation for researchers since the beginning of mankind. Classical computers, acting as
universal computational devices in the sense of deterministic Turing machines [Tur37],
provide a powerful tool to efficiently simulate the dynamics of physical systems obeying
Newtonian physics. With the advent of quantum mechanics, it became however ap-
parent that the properties and dynamics of microscopic systems in particular are not
captured by classical physics in general. A quantum mechanical treatment is typically
required on atomic scales, for instance in order to treat single molecules or proteins
of biological systems or general quantum models in condensed matter physics. These
quantum problems have been proven incompatible with the original Turing hypothesis
[Deu85] and resilient to be efficiently simulated with classical computers. However,
it was proposed [Fey82; Deu85] and verified [Llo96] that any physical system can be
simulated by a universal quantum computer.

In quantum information processing, the classical bit with possible states 0, 1, is replaced
by the quantum bit or qubit that can assume any superposition state |ψ〉 = α |g〉+β |e〉,
with qubit eigenstates |g〉 and |e〉. Due to the fundamental principle of quantum
entanglement, the quantum state of N interacting qubits must be described by a
common state in their joint Hilbert space of 2N dimensions and in general cannot
be decomposed into a product state of N single qubit states. In solving a quantum
problem with classical hardware, the computer needs to keep track of all probability
amplitudes for any possible configuration of the system at any time [GAN14], leading
to an exponential explosion of the required computational power and memory.

A quantum state collapses to one of its eigenstates during a measurement process
with probabilities dependent on the initial quantum state. The output of a quantum
computer is therefore always classical. Many identical successive computations however
yield a probability distribution that allows for the estimation of expectation values.
During the computation process, several qubits interacting with each other can make
use of their intrinsic quantumness. Since a quantum system can be in exponentially
many states at the same time, as imposed by the superposition principle, a quantum
computation is performed for all these possible configurations at once. This massive
parallelism provides quantum computers with their enormous power and enables them
to outperform classical computers by an exponential speed-up for some problems [Fey82;
Llo96; Lan+10]. In this context, the term quantum supremacy was introduced, denoting
the superiority of a quantum computation over a classical approach. Even the simulation
of a quantum computer containing about 50 physical qubits, as it was announced for
the near future by Google, is already at the limit of the capabilities of today’s classical
supercomputers [Boi+17; CZ03].
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1 Introduction

A prominent example for an exponential speed-up of quantum computers is prime
factorization based on the Shor algorithm [Sho94]. This is known to be a hard problem
for classical computers and it is fundamental to the RSA cryptosystem. Several proof-of-
principle implementations of a compiled version of Shor’s algorithm with a pre-defined
small number have been demonstrated in nuclear magnetic resonance [Van+01], with
cold atoms [Gil+08], on a photonic chip [PMO09], and with superconducting circuits
[Luc+12].

However, the implementation of a universal quantum computer capable of performing
useful calculations is very challenging since it requires many error-corrected logical
qubits that in turn involve a large overhead of physical qubits. In order to obtain a
single logical qubit of reasonable error rate, on the order of 103 to 104 physical qubits
of present coherence rates are necessary. For factorizing a 15 bit number using Shor’s
algorithm, a quantum computer would require up to ∼ 107 physical qubits, dependent
on the tolerated error rate and the time of the computation [Fow+12].

One of the most anticipated applications of quantum computation is the simulation
of quantum chemistry [Bab+15; Lan+10]. As an example, protein complexes such as
ferredoxin Fe2S2 or the Fenna-Matthews-Olson (FMO) complex are known to mediate
energy transfer in many metabolic reactions but are intractable on a classical computer
[Svo14; Mos+12]. Based on the FMO complex, the efficiency of light harvesting in
photosynthesis has been found to notably exceed the expectation based on classical
models, such that a quantum description is likely to be required in order to understand
the mechanism [Eng+07]. Astonishingly, quantum effects seem to be relevant even
though these biological reactions occur at ambient temperatures. Within the electronic
structure problem [Bab+15], relevant spin orbitals of active molecules are mapped
to qubits, such that more than 100 logical qubits need to be taken into account in a
quantum simulation solving for the ground state of Fe2S2 [Svo14]. Further prominent
applications of quantum simulation in chemistry are the elucidation of nitrogen fixation
by bacterial catalysis, the carbon capture process and material research [Rei+17].

While the universal quantum computer is yet to be demonstrated, the concept of
quantum simulation in the spirit of Feynman’s original proposal [Fey82] may provide a
more feasible approach to achieve quantum supremacy in the near future.

”Let the computer itself be built of quantum mechanical elements which obey
quantum mechanical laws.” Feynman 1982 [Fey82]

It is the key idea to implement quantum computation by using hardware that itself obeys
the laws of quantum mechanics in order to avoid an exponential scaling in computational
resources.

The main simplification of a quantum simulator as compared to a universal quantum
computer is that the simulator is very problem-specific [GAN14]. On the other hand,
this allows for the investigation of interesting quantum problems already today by
combining few elements such as single qubits and resonators that are available on
various experimental platforms [BN09].
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Figure 1.1: Analog quantum simulation A quantum system of interest (red), artistically depicted
as a protein complex, is mapped onto an artificial quantum simulator (blue). In this thesis the
quantum simulator is a superconducting circuit. By preparing and reading out quantum states |ψ〉
of the simulator system, the time evolution Û of the underlying quantum problem, described by
the state |Ψ〉, can be inferred [GAN14].

The quest in quantum simulation, which comes in two flavours, is to solve the time
evolution of a certain quantum system of interest.

The framework of analog quantum simulation, used in this thesis, is schematically
depicted in Fig. 1.1. A quantum system of interest is mapped onto a tailored and well
controllable artificial quantum system, striving to mimic the dynamics of the investiga-
ted quantum system. In the setting of this thesis, the simulator is a superconducting
quantum circuit. When approximately the same equations of motion hold for both sys-
tems, the solution of the underlying quantum problem can be inferred from observing
the time evolution of the artificially built model system.

The alternative approach, named digital quantum simulation, is a gate-based scheme
that is in much closer resemblance to the universal quantum computer. Here, the
complex unitary transformation Û in Fig. 1.1 is decomposed into many single- and
two-qubit gates [GAN14]. The error induced by such a Trotter decomposition arises
from non-vanishing commutators of the Hamiltonians in different Trotter steps and
scales with the size of individual Trotter steps [Bab+15]. As a consequence, many
gates are typically required to obtain a useful result, which again can require an error
correction scheme and thereby entail an overhead in resources.

First experiments on quantum simulation have been performed on various experimental
platforms. Examples of analog quantum simulation are the study of fermionic transport
[Sch+12], magnetism [Gre+13] and a quantum phase transition in the Bose-Hubbard
model [Gre+02] with cold atoms. A simulation of the Fermi-Hubbard model was
performed with an array of semiconductor quantum dots [Byr+08; Hen+17] and the
simulation of a quantum magnet and the Dirac equation was demonstrated with trapped
ions [Fri+08; Ger+10]. Digital simulation schemes with superconducting devices were
demonstrated for fermionic models [Bar+15] and spin systems [Sal+15]. Further
experiments following a digital approach are the simulation of frustrated magnets by
a nuclear magnetic resonance quantum processor [Zha+12] and the dynamics of spin
systems with trapped ions [Lan+11].
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1 Introduction

In this thesis, we make use of superconducting circuits that have proven to be a suitable
experimental platform to implement quantum hardware [Par14; HTK12; YN11]. The
non-linearity of the Josephson junction, forming the key element of all superconducting
qubits, allows one to isolate two excitation levels in a quantum circuit to form a computa-
tional qubit basis [CW08; SG08]. Superconducting circuits operate at frequencies in the
few gigahertz regime, much below the typical energy scale of the superconducting gap.
Therewith, individual transitions are well protected from quasi-particle excitations. By
cooling the quantum circuits to milli-Kelvin temperatures, thermal excitations are ad-
ditionally suppressed. Superconducting qubits feature individual control, readout and
frequency tunability and their properties are rather straightforward to tailor by circuit
design. During almost two decades, superconducting qubits experienced a rapid impro-
vement of their coherence properties [DS13]. This has allowed for the demonstration of
several major milestones in the pursuit of scalable quantum computation, such as the
control and entanglement of multiple qubits [Ste+06; Bar+14], the implementation of a
quantum error correction scheme [Ree+12], the demonstration of quantum algorithms
[Luc+12] and encoding quantum information in complex cavity states [Vla+13].

Here, we realize an analog quantum simulation scheme using few elements from the
quantum toolbox available in superconducting circuits. This allows us to investigate
quantum models that provide intriguing non-classical physics and are closely related to
fundamental processes in nature. We focus in particular on the quantum Rabi model
and the spin boson model that describe the interaction between matter and light on a
quantum level. More specifically, the quantum Rabi model describes the interaction of
a two-level atom or qubit with a quantized oscillator mode [Rab36; Rab37], while the
spin boson model involves a bath of bosonic oscillator modes forming a dissipative qubit
environment [Leg+87]. The more general spin boson model is ubiquitous in nature and
allows one to study critical phenomena and quantum phase transitions, while finding its
solution by classical means is very challenging [ABV07]. In particular for a sub-ohmic
shape of the spectral function, which describes the effect of the bosonic bath on the
qubit, predictions of the model dynamics at finite temperature are contradictory and a
numerically exact solution does not exist [ABV07]. In addition, the spin boson model
in the context of quantum simulations provides a route to experimentally study open
quantum systems, for instance by engineering the dissipative vibrational environment
of the electronic degrees of freedom in a biomolecule [Mos+12; Mos+16]. Recently,
the spin boson model has attracted large experimental interest [Hae+15; For+16a;
Mag+17; Pot+17].

The spin boson model and related quantum models exhibit their most fascinating
physics in a regime where the energy associated with the coupling strength between
qubit and oscillator modes becomes comparable to the subsystem energies, the so-called
ultra-strong coupling regime [Cas+10]. While it is experimentally challenging to achieve
ultra-strong coupling merely by sample design [Nie+10; Yos+16], and some types of
qubits even seem to refuse to be pushed into such a regime [Jaa+16], we demonstrate
an analog quantum simulation scheme that creates an effective quantum Rabi model
in the ultra-strong coupling regime [Bal+12; Bra+17]. This simplified version of the
spin boson model, involving only one single quantized oscillator mode that couples
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to the qubit, already reveals remarkable quantum features such as distinct collapse-
revival dynamics. With this proof-of-principle experiment, we validate the experimental
feasibility of simulating non-trivial quantum models with superconducting qubits.

In this thesis, I first provide the theoretical concepts necessary to understand how
to operate superconducting qubits in the coherent quantum regime. The following
chapter briefly elucidates the basic methods and techniques that we use to carry out
the experiments in the microwave regime. In the subsequent chapter I introduce the
concentric transmon qubit [Bra+16], which was conceived in collaboration with co-
workers from the National Institute of Standards and Technology (NIST) in Boulder,
Colorado as a robust and versatile building block for quantum simulation experiments.
Thereafter, the quantum simulation of the Rabi model in the ultra-strong coupling
regime is presented [Bra+17]. The last chapter details our efforts and first steps in
studying the spin boson model [Lep+17]. We validate the experimental feasibility of a
modular approach where qubit and bosonic bath are fabricated on two separate chips.
By making use of the specific symmetry properties of the concentric transmon, we
demonstrate the interaction between a single qubit and a bosonic environment that is
formed by 20 individual resonators with a tailored non-trivial spectral function.
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2 Quantumdevicesbasedon
superconductingcircuits

In this chapter, I provide the main building blocks of superconducting quantum circuits.
The quantum bit as the basic unit cell of quantum devices is introduced, together with a
briefdiscussionof its fundamentalbehaviourand itsdissipativedynamics. Subsequently,
I provide the basic concepts of superconductivity and the Josephson effect, which are
the key ingredients to all superconducting quantum circuits. Hereafter, I present the
working principle and the main properties of the transmon qubit, which is the type of
qubit used in this thesis. The chapter concludes with an overview on cavity quantum
electrodynamics and its circuit implementation.

2.1 The quantum bit

The quantum bit or qubit is a quantum mechanical two-level system with logical states
|g〉, |e〉, in analogy to a classical bit. While a classical bit can be in only one of its
fundamental states, a qubit can be in any superposition state

|ψ〉 = α |g〉+ β |e〉 (2.1)

prior to a quantum measurement. α and β are normalized complex coefficients and
|g〉, |e〉 denote the qubit groundstate and excited state, respectively. Since |g〉, |e〉 span
a two-dimensional basis, they can be represented in terms of eigenvectors of the Pauli
matrix σ̂z,

|g〉 =
(

0
1

)
|e〉 =

(
1
0

)
, (2.2)

with σ̂z |g〉 = − |g〉 and σ̂z |e〉 = |e〉.

7
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x

y

z

Figure 2.1: Representation of a qubit state on the Bloch sphere An arbitrary pure qubit state
|ψ〉 is represented as a point on the surface of the Bloch sphere, defining the Bloch vector. It is
unambiguously defined by the Euler angles φ and θ. The logical basis states |g〉 and |e〉 of the
qubit are located on the poles of the Bloch sphere and are eigenvectors of σ̂z . Since |g〉 and |e〉
form a basis, |〈ψ|ψ〉|2 = 1 and the Bloch sphere is of radius 1.

2.1.1 Bloch sphere representation

It is intuitive to represent a single pure qubit state |ψ〉 as a point on the surface of the
Bloch sphere, see Fig. 2.1. Here, a general qubit state is characterized by a Bloch vector
with the Euler angles φ and θ [WS06] and Eq. (2.1) takes the form

|ψ〉 = cos θ2 |g〉+ sin θ2e
iφ |e〉 . (2.3)

The time evolution of a general pure qubit state can be found according to

|ψ(t)〉 = Û(t− t0) |ψ(t0〉 , (2.4)

with Û = exp−iĤ(t− t0)/~ the time evolution operator and

Ĥ = ~
ε

2 σ̂z (2.5)

the time-independent qubit Hamiltonian, quantized along the z-axis. ε denotes the
qubit energy splitting, or transition frequency. Evaluating Eq. (2.4) for t0 = 0 yields

|ψ(t)〉 = cos θ2 |g〉+ sin θ2e
i(φ−εt) |e〉 (2.6)

8



2.1 The quantum bit

where the global phase was chosen arbitrarily. Equation 2.6 implies a phase evolution
with constant angular frequency ε, corresponding to a steady Larmor precession around
the quantization axis (z-axis). For an intuitive visualization of qubit states on the Bloch
sphere, this Larmor precession is often disregarded by looking at the qubit Bloch vector
from a frame rotating with the Larmor frequency ε.

The Bloch sphere representation can also capture mixed states, denoting a statistical
mixture of several quantum states. In practice, this is used to describe an ensemble of
spins interacting with a noisy environment. In qubit experiments, a mixed state can
contain the statistical state of a single qubit subject to decoherence that is successively
measured multiple times after a certain equal preparation and evolution. The mixed
state of an ensemble is described by the density matrix [Sak94]

ρ̂ =
∑
i

pi |ψi〉 〈ψi|
∑
i

pi = 1, (2.7)

where pi is the non-negative probability to find the ensemble in the pure state |ψi〉.
Mixed states are represented by points located inside the Bloch sphere.

2.1.2 Qubit dynamics

The dynamical behaviour of a mixed qubit state is most evidently described by the
master equation in Lindblad form [Lin76; HR06; BCR11],

d
dt ρ̂ = − i

~

[
Ĥ, ρ̂

]
+

3∑
j=1

Γj
(
L̂j ρ̂L̂

†
j −

1
2

[
L̂†jL̂j , ρ̂

]
+

)
(2.8)

Equation (2.8) yields the time evolution of the density matrix ρ̂ in the presence of
decoherence, quantified by the Lindblad or collapse operators L̂j and the respective
rate Γj for decoherence channel j. We also made use of the anticommutator notation
[a, b]+ = ab + ba. The set of Lindblad operators L̂j are required to be traceless and
orthonormal [BCR11].

The relevant decoherence mechanisms are energy relaxation at a rate Γ1 via the qubit
decay operator L̂1 = σ̂− and pure dephasing at a rate Γτ via L̂2 = σ̂z/

√
2, inducing

rotations around the z-axis. We define σ̂− = 1/2 (σ̂x − iσ̂y) with σ̂x, σ̂y Pauli operators
and σ̂− |e〉 = |g〉. The third decoherence channel describes qubit excitation via σ̂+ and
can be neglected at very cold temperatures. Since tr ρ̂ = 1, we can rewrite the density
matrix in its generic form

ρ̂ =
(
ρ11 ρ10
ρ∗10 1− ρ11

)
(2.9)

9



2 Quantum devices based on superconducting circuits

with only two independent components [Gra13]. The Lindblad equation, Eq. (2.8),
becomes

d
dt

(
ρ11 ρ10
ρ∗10 1− ρ11

)
=− i

~

[
Ĥ, ρ̂

]
+
(

−Γ1ρ11 −(Γ1/2 + Γτ )ρ10
−(Γ1/2 + Γτ )ρ∗10 Γ1ρ11

)
=− i

~

[
Ĥ, ρ̂

]
+
(
−Γ1ρ11 −Γ∗2ρ10
−Γ∗2ρ∗10 Γ1ρ11

)
. (2.10)

In the last step we introduced the dephasing rate

Γ∗2 = 1
2Γ1 + Γτ (2.11)

according to the common convention with an asterisk. The symbol Γ2 without the
asterisk usually denotes the dephasing rate acquired with a Hahn echo pulse in the
measurement sequence that eliminates low-frequency noise [Hah50], see Sec. 5.5.

In the absence of pure dephasing where 1/Γτ ≡ τ = ∞, it is apparent from Eq. (2.11)
that the dephasing time T ∗2 = 1/Γ∗2 is relaxation limited,

T ∗2 = 2T1. (2.12)

Using the qubit Hamiltonian defined in Eq. (2.5) but transformed into the frame rotating
at a frequency ω1,

Ĥrf = ~
ε− ω1

2 σ̂z = ~
∆ω
2 σ̂z, (2.13)

allows us to solve Eq. (2.10) for ρ̂(t), which yields

ρ̂(t) =
(

c0e
−Γ1t c1e

−Γ∗2te−i∆ωt

c∗1e
−Γ∗2tei∆ωt 1− c0e−Γ1t

)
(2.14)

with integration constants ci. ∆ω denotes the detuning frequency between qubit
transition frequency ε and drive frequency ω1.

Setting the initial condition ρ11(t = 0) = 1, the diagonal entries in Eq. (2.14) imply
that a qubit that was prepared in its excited state |e〉 will relax exponentially to its
groundstate |g〉 at a rate Γ1.

The dephasing of a qubit is measured in a Ramsey experiment [Ram49]. The qubit
dynamics in the equatorial plane is experimentally acquired by rotating its Bloch vector
to the equator. At the end of a measurement sequence, the Bloch vector is rotated
back to the quantization axis of the qubit prior to state readout, see Sec. 2.5. Both
rotations are achieved by applying π/2 pulses that wind the qubit Bloch vector around
a fixed axis in the equatorial plane. By preparing the qubit along the x-axis in a state

10



2.1 The quantum bit

|x〉 = 1/
√

2(|g〉+|e〉) such that ρ̂(0) = |x〉 〈x|, we obtain c0 = c1 = 1/2. From Eq. (2.14),
the probability to find the qubit in state |x〉, corresponding to the probability of finding
the qubit in |e〉 after the final π/2-rotation, is

〈x| ρ̂(t) |x〉 = 1
2 + 1

2e
−Γ∗2t cos ∆ωt. (2.15)

For zero detuning, ∆ω = 0, Eq. (2.15) describes an exponential damping of the qubit
state at the dephasing rate Γ∗2 to a randomized state in the equatorial plane of the Bloch
sphere where all phase information is lost. For ∆ω > 0, we observe oscillations at the
detuning frequency ∆ω, which are referred to as Ramsey fringes.

2.1.3 Rabi oscillations

The coherent oscillations between two states of a qubit in the presence of an external
driving field are called Rabi oscillations. It is therefore a first check experiment to verify
qubit behaviour and is used to calibrate pulses required for qubit excitation and gate
operations.

The Hamiltonian of a driven qubit reads

Ĥ

~
= ε

2 σ̂z + ΩRσ̂x cosωt, (2.16)

with drive amplitude ΩR denoting the Rabi frequency and a drive frequencyω. The drive
couples transversally and therefore via Pauli’s operator σ̂x. The unitary transformation
Û for changing into the frame rotating at the drive frequency ω reads

Û = exp
{

iω2 σ̂zt
}

. (2.17)

From the definition of a state transformation |ψ̃〉 = Û |ψ〉 we find the transformed
Hamiltonian H̃ according to

H̃ = ÛĤÛ† − iÛ ˙̂
U†. (2.18)

11



2 Quantum devices based on superconducting circuits

This can be directly seen by plugging into the time dependent Schrödinger equation

Ĥ |ψ〉 = i ∂
∂t
|ψ〉

ĤÛ†
∣∣ψ̃〉 = i ∂

∂t

(
Û†
∣∣ψ̃〉)

= i ˙̂
U†
∣∣ψ̃〉+ Û†i ∂

∂t

∣∣ψ̃〉
⇒ ÛĤÛ†

∣∣ψ̃〉− iÛ ˙̂
U†
∣∣ψ̃〉 = i ∂

∂t

∣∣ψ̃〉 = H̃. (2.19)

Applying the transformation in Eq. (2.17) to the driven Hamiltonian, Eq. (2.16) yields

H̃

~
= ε− ω

2 σ̂z + ΩR
2 σ̂x = ∆ω

2 σ̂z + ΩR
2 σ̂x, (2.20)

with detuning frequency ∆ω = ε−ω. Diagonalization of the Hamiltonian in Eq. (2.20)
yields the eigenenergies

E± = ±1
2

√
Ω2

R + ∆ω2 = ±1
2Ω′R, (2.21)

defining the generalized Rabi frequency Ω′R =
√

Ω2
R + ∆ω2. The corresponding eigen-

vectors forming the new basis states become

(
|+〉
|−〉

)
=

 Ω′R−∆ω√
2Ω2

R−2Ω′R∆ω
ΩR√

2Ω2
R−2Ω′R∆ω

−Ω′R−∆ω√
2Ω2

R+2Ω′R∆ω
ΩR√

2Ω2
R+2Ω′R∆ω

( |g〉
|e〉

)
. (2.22)

The time evolution operator in the |±〉 basis reads

Û(t) = exp
{
−iΩ

′
Rt

2 (|−〉 〈−| − |+〉 〈+|)
}

(2.23)

and the probability to find the qubit in state |g〉 becomes [Sak94]

p|g〉 =
∣∣∣〈g| Û(t) |g〉

∣∣∣2 (2.24)

12



2.2 Superconductivity

for initial qubit state |g〉. In order to evaluate Eq. (2.24), the original qubit basis state
|g〉must be expressed in terms of the new basis states |+〉, |−〉. By inverting the matrix
in Eq. (2.22), we obtain

|g〉 =

√
Ω′R −∆ω

2Ω′R
|+〉 −

√
Ω′R + ∆ω

2Ω′R
|−〉 . (2.25)

Plugging into Eq. (2.24) yields

p|g〉 =
∣∣∣∣Ω′R −∆ω

2Ω′R
eiΩ′Rt/2 + Ω′R + ∆ω

2Ω′R
e−iΩ′Rt/2

∣∣∣∣2
=1

2

(
1 +

(
∆ω
Ω′R

)2
)

+ 1
2

(
1−

(
∆ω
Ω′R

)2
)

cos Ω′Rt (2.26)

and accordingly we find p|e〉 = | 〈e| Û(t) |g〉 |2 = 1− p|g〉.

For a resonant Rabi drive, ∆ω = 0, Eq. (2.26) describes harmonic oscillations between
the qubit states |g〉, |e〉 with a Rabi frequency ΩR, corresponding to the applied
drive amplitude. For departing from the resonance condition, ∆ω 6= 0, we obtain an
increased generalized Rabi frequency Ω′R > ΩR. Additionally, the oscillation amplitude
is decreased such that the state |e〉 is never reached. The reason is an effective tilt of the
rotation axis with respect to the Bloch sphere coordinate system, which is reflected by
the principle axis transformation during diagonalization of Eq. (2.20).

2.2 Superconductivity

The coherent quantum properties of superconductors render them a valuable basic
resource for quantum circuits. Apart from their intriguing microscopic characteristics,
superconductors reveal remarkable macroscopic phenomena. The most striking one
is the absolute disappearance of electrical resistivity below a critical temperature
Tc, first observed in 1911 in mercury [Kam11]. When increasing the temperature,
superconductors undergo a second-order phase transition at Tc to become a normal
metal. Another hallmark property of superconductivity is the Meissner-Ochsenfeld
effect [MO33]. It denotes the property of superconductors to exclude magnetic fields,
similar to perfect conductors, but additionally to expel a magnetic field that was
originally penetrating the normal conductor before cooling below Tc. Due to this
screening field that precisely cancels the external field, superconductors behave as
perfect diamagnets [AM76]. In addition, this implies that superconductivity is destroyed
at a certain critical magnetic field [Tin04].
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2 Quantum devices based on superconducting circuits

−~k − ωµ

~k ωµ

−~k ′ − ω′
µ

~k − ~k ′ ωµ − ω′
µ

~k ′ ω′
µ

−~k − ωµ

~k ωµ

−~k ′ − ω′
µ

~k ′ ω′
µ

Λ

Figure 2.2: Diagrammatic representation of electron-phonon scattering (a) Single scattering
event between electrons with momenta ~k and −~k. (b) Cooperon diagram picturing repeated
scattering events of a pair of electrons with momenta ~k and −~k. Multiple scattering events are
encapsulated in the scattering vertex Λ.

2.2.1 Cooper instability and BCS-Theory

The microscopic theory of superconductivity by Bardeen, Cooper and Schrieffer (BCS)
captures and explains all basic phenomena of conventional superconductivity [BCS57].
It allows for a quantitative prediction of the relevant macroscopic parameters of super-
conductors that were phenomenologically found within the Ginzburg-Landau theory
[GL50].

The BCS theory requires a net attractive interaction between electrons close to the
Fermi surface of a metal. While the bare Coulomb interaction between two isolated
electrons is repulsive, it is predominantly the ion cores that move in response to the
electronic motion, leading to a screening of the actual charge of the electron as seen
from far away [AM76; Tim12; Tin04]. For electron energies smaller than the Debye
frequency ωD, which denotes the typical phonon energy scale, this leads to an effective
attraction between electrons and to the formation of Cooper pairs at the Fermi surface.

The Green’s function formalism provides an elegant method to swiftly arrive at the
Cooper instability equation. A single scattering event due to an effective attractive
potential

Veff = (2.27)

is diagrammatically depicted in Fig. 2.2(a).
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2.2 Superconductivity

Multiple scattering events are captured by the Cooperon diagram, see Fig. 2.2(b). The
scattering vertex Λ only contains the dominant diagrams without crossings,

Λ = + + ...(2.28)

= + Λ . (2.29)

Evaluating Eq. (2.29) with mathematical expressions yields

Λ = V + V

β

∑
~k,ωµ

G(~k,ωµ)G(−~k,−ωµ)Λ (2.30)

⇒ Λ = V

1− V
β

∑
~k,ωµ G(~k,ωµ)G(−~k,−ωµ)

, (2.31)

where we set Veff = V under the condition that |ωµ| < ωD and Veff = 0 otherwise. ωµ
denotes the energy of an unpaired electron relative to the Fermi energy and the sign of
V is chosen such that the interaction is attractive.

The scattering instability, known as Cooper instability, manifests in a diverging scatte-
ring vertex Λ at β = βc = (kBTc)−1, where

1 = V

βc

∑
~k,ωµ

G(~k,ωµ)G(−~k,−ωµ). (2.32)

Using explicit forms of the Green’s functions yields the Cooper instability equation

1 = V

βc
N(0)

∑
|ωµ|<ωD

∫ ∞
−∞

dε 1
ω2
µ + ε2 = 2V

βc
N(0)π

β~ωD/2π∑
n=0

βc
(2n+ 1)π , (2.33)

with N(0) the constant quasi-particle density of states at the Fermi energy. In the last
step of Eq. (2.33) we make use of the residue theorem and employ fermionic Matsubara
frequencies ωµ. Assuming β~ωD � 1 and using the Euler constant γE yields

kBTc = 2eγE
π

~ωD exp
(
− 1
V N(0)

)
. (2.34)
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2 Quantum devices based on superconducting circuits

At Tc, the scattering becomes infinitely strong, indicating that the equilibrium state
cannot be obtained by perturbation theory applied to the Fermi liquid. This is affirmed
mathematically by the lack of an analytic Taylor expansion in the interaction potential
V of the Cooper instability equation, Eq. (2.34) [Tim12]. The criticality condition is
satisfied regardless of how small the attractive interaction is.

Due to the bosonic nature of a Cooper pair, consisting of two electrons with opposite spin
and momentum, each pair can occupy the same quantum mechanical state. The Cooper
pairs condensate into a common BCS groundstate, described by a single macroscopic
wave function [Ann11]

Ψ(~r) = |Ψ|eiϕ(~r), (2.35)

with a collective phase ϕ(~r) dependent on the coordinate ~r. Its absolute square |Ψ(~r)|2
is related to the Cooper pair density.

The absolute value |Ψ| of the wave function appears as an order parameter in the
Ginzburg-Landau theory, which was later identified with the superconducting gap
∆ that opens in the quasi-particle density of states of a superconductor. For a
spatial inhomogeneity in the gap parameter ∆ = ∆(~r), the BCS theory becomes
very complicated and the Ginzburg -Landau theory can provide much more reliable
predictions [Tin04].

2.2.2 Flux quantization

A key phenomenon that is widely used in superconducting quantum devices is magnetic
flux quantization in a closed superconducting loop [Sch97]. The second London equation
in its local gauge invariant form reads

~j ∝ ~A− ~
2e∇ϕ, (2.36)

where ~j denotes the current density and ~A the vector potential. Choosing a closed
integration path well within the superconductor, where screening currents vanish, we
obtain

0 =
∮

~A · d~r − ~
2e

∮
∇ϕ · d~r. (2.37)

From the definition of external flux Φ through a surface S with a contour parametrized
by d~r and using Stokes’ theorem we obtain

Φ =
∫

~B · d~S =
∫
∇× ~A · d~S =

∮
~A · d~r = ~

2e

∮
∇ϕ · d~r. (2.38)
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2.3 The Josephson effect

ba
C

Figure 2.3: Schematic diagram of a Josephson junction (a) Two superconducting electrodes
(blue) are separated by a weak link (red). In thermal equilibrium, the amplitudes |Ψ | of the
Ginzburg-Landau wave functions of the adjacent superconductors are equal, while their relative
phase difference ∆ϕ = ϕA−ϕB determines the behaviour of the Josephson junction. (b) Schematic
circuit diagram of a Josephson junction. The cross symbolizes the weak link while a square around
the cross accounts for the intrinsic capacitance C of the Josephson junction.

In order to render the wave function single-valued, the change in phase ϕ must be an
integer multiple of 2π after integrating along the closed contour in Eq. (2.37), such that

Φ = ~
2e2πn = nΦ0, n ∈ Z (2.39)

which defines the magnetic flux quantum Φ0 = h/2e. The charge 2e in the definition of
the flux quantum reflects the fact that the supercurrent is carried by pairs of electrons.

2.3 The Josephson effect

The Josephson tunnel junction is the key building block for non-linear superconducting
quantum circuits. It consists of two superconducting electrodes that are separated by a
weak link [Sch97; Tin04]. The wave functions of the adjacent superconductors overlap
and interfere within the barrier region, leading to phase coherent effects determined by
the relative phase of the two wave functions. In experiments, a weak link is typically
formed by a thin insulating oxide barrier, see Fig. 2.3(a).

As depicted in Fig. 2.3(b), the Josephson junction can be regarded as an ideal tunnel
element connected in parallel to a capacitor, accounting for the intrinsic capacitance C
of the superconducting electrodes. Tunneling of Cooper pairs through the Josephson
junction is described by the Hamiltonian [Dev97]

ĤJ = −EJ
2

∞∑
N=−∞

|N〉 〈N + 1|+ |N + 1〉 〈N | (2.40)

with the Josephson energy EJ, denoting a macroscopic parameter characteristic for the
tunneling rate of a Josephson junction. N counts the number of Cooper pairs on one of
the electrodes of the Josephson junction, which allows us to define a charge operator

Q̂ = −2eN̂ (2.41)
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2 Quantum devices based on superconducting circuits

and a Cooper pair number operator

N̂ =
∑
N

N |N〉 〈N | . (2.42)

The tunneling Hamiltonian ĤJ in Eq. (2.40) couples states that differ by one Cooper pair
that has tunnelled across the barrier. By defining a phase operator φ̂ as the conjugate
of the Cooper pair number operator N̂ ,[

φ̂, N̂
]

= i, (2.43)

and corresponding basis states

|φ〉 =
∞∑

N=∞
eiNφ |N〉 , (2.44)

we can express the state |N〉 via Fourier transformation as

|N〉 = 1
2π

∫ 2π

0
dφe−iNφ |φ〉 . (2.45)

Plugging into Eq. (2.40) yields

ĤJ = −EJ
2

1
2π

∫ 2π

0
dφ
(
eiφ + e−iφ) |φ〉 〈φ| . (2.46)

The periodicity of φ motivates to introduce an operator [Dev97]

eiφ̂ = 1
2π

∫ 2π

0
dφeiφ |φ〉 〈φ| (2.47)

and Eq. (2.46) becomes

ĤJ = −EJ cos φ̂. (2.48)

The capacitive energy term accounting for the intrinsic Josephson junction capacitance
C can be written as

ĤC = Q̂2

2C = 4e2

2C N̂
2 = 4ECN̂

2, (2.49)
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2.3 The Josephson effect

where we introduced the charging energy EC = e2/2C. This results in a total Hamilto-
nian

ĤJJ = HC +HJ = 4ECN̂
2 − EJ cos φ̂ (2.50)

for the Josephson junction.

We now can extract both Josephson relations by evaluating

Î = d
dt Q̂ = −2e

i~

[
N̂ , ĤJJ

]
= −2e

~
∂ĤJJ

∂φ̂
=2e

~
EJ sin φ̂ = Ic sin φ̂ (2.51)

∂

∂t
φ̂ = 1

i~

[
φ̂, ĤJJ

]
= −1

~
∂ĤJJ

∂N̂
=2e

~
Û = Q̂

C
= 2e

~
V̂ , (2.52)

where we defined the critical current Ic = 2eEJ/~ of the Josephson junction. Ic depends
on the superconducting properties of its electrodes as well as on the sheet resistance
of the barrier. The phase φ in the above equations is the gauge-invariant equivalent
to the phase difference ∆ϕ = ϕA − ϕB of the wave functions of the two adjacent
superconductors forming the Josephson junction, see Fig. 2.3(a).

It was the remarkable prediction by Josephson [Jos62] that a zero-voltage supercurrent
of Cooper pairs can be sustained below the critical current Ic, before the Josephson
junction becomes resistive, see Eq. (2.51). In addition, the phase difference φ will
evolve in time according to Eq. (2.52) when a voltage V is applied across the Josephson
junction.

The hysteretic current-voltage characteristic of a Josephson junction can be understood
within the Resistively and Capacitively Shunted Junction (RCSJ) model. It describes
a parallel connection of an ideal Josephson junction, a resistance R and a capacitance
C. The RCSJ model can explain the non-vanishing voltage across a Josephson junction
after reducing the drive current below Ic by the finite inertia of a virtual phase particle
travelling down the ’tilted washboard potential’ [Tin04]. In addition, the model yields
a plasma frequency

ωp =
√

2πIc
Φ0C

(2.53)

of the Josephson junction, which yields a non-linear Josephson inductance

LJ = Φ0
2πIc cosφ . (2.54)

This non-linear current-phase relation is the basis for the anharmonicity in supercon-
ducting circuits and allows for the definition of a computational qubit basis [CW08;
SG08]. The damping of a Josephson junction is quantified by the Stewart-McCumber
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Figure 2.4: Qubit energy dispersions for various ratios of EJ/EC The plots show the eigenenergies
Ej of the Hamiltonian, Eq. (2.56), normalized to the fundamental transition energy E01 and as a
function of the offset charge ng. E01 is evaluated at half integer ng and an energy offset is subtracted
in each plot. The coloured energy bands correspond to the first three energy levels in the harmonic
approximation, see Eq. (2.61), denoted as |g〉, |e〉 and |f〉 for j = 1, 2, 3, respectively. (a) Energy
dispersion for the Cooper pair box regime. The parabolas from the electrostatic energy term can
still be identified while the degeneracy at half integer ng (dashed lines) is lifted by the Josephson
coupling term. (b) Intermediate regime, where En is well approximated by a tight-binding treatment
[Koc+07]. (c) Transmon regime with EJ/EC & 50 revealing and flat energy levels. As can be seen
from the scale, the anharmonicity for the transmon qubit is negative. The plots are similarly given
in Ref. [Koc+07].

parameter βc [McC68; Ste68], defined as the square of the quality factor Q of a parallel
LCR resonator,

β1/2
c = Q = ωpRC. (2.55)

2.4 The transmon qubit

The qubit of choice for this thesis is the transmon qubit. Its architecture is closely
related to the one of the single Cooper pair box (CPB) [Bou+98; NPT99]. The CPB
consists of a superconducting island that is connected via a Josephson junction to a
large superconducting reservoir. The gate potential and thereby the offset charge ng on
the island is controlled via a gate electrode that capacitively couples to the island. The
CPB operates in a regime where EJ � EC. Assuming an intrinsic Josephson junction
capacitance C = 1 fF and an experimental temperature T = 25 mK , the charging
energy EC = e2/2C = 80 µeV required to add a single electron on the CPB island is
much bigger than the thermal energy kBT ∼ 2 µeV [CW08].

Up to an additional term accounting for the offset charge ng, the Hamiltonian of the
CPB is identical to the one of a single Josephson junction, Eq. (2.50),

Ĥ = 4EC(N̂ − ng)2 − EJ cos φ̂. (2.56)
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2.4 The transmon qubit

In analogy to the definition in Sec. 2.3, N̂ counts the number of excess Cooper pairs on
the island. The eigenenergies of the Cooper pair box are depicted in Fig. 2.4(a). The
state of the CPB is encoded in N̂ , corresponding to different parabolas visible. It is
operated at half integer ng, where the energy degeneracy is lifted by the weak Josephson
coupling term and a coherent superposition of different charge states is present [NPT99].

The transmon qubit was proposed in Ref. [Koc+07] as a ’transmission line shunted
plasma oscillation qubit’ and is since then the most promising type of qubit employed
to advance scalable quantum computation based on superconducting circuits. It
differs from the CPB by an additional large shunt capacitance in parallel to the
Josephson junction and is therefore described by the identical Hamiltonian, Eq. (2.56),
with a decreased charging energy EC ∝ C−1. Due to the strongly increased ratio
of EJ/EC & 50, the Josephson term is dominant, which causes the transmon to
operate in the phase regime. Here, the charge is not well-defined, according to the
commutation relation provided in Eq. (2.43). The key advantage of the transmon qubit
is its exponentially decreased sensitivity to charge noise, as apparent in Fig. 2.4 by a
flattening of the energy dispersion for increasing the ratio EJ/EC. This comes at the
expense of an algebraic decrease in qubit anharmonicity

α = E12 − E01 (2.57)

whereEij = Ej−Ei andEj denoting the transmon eigenenergies as visible in Fig. 2.4(c).
Figure 2.4(b) shows the dispersion for an intermediate regime, while a complete sup-
pression of substructure is found in Fig. 2.4(c), which suggests that a biasing of the
transmon is no longer required since the charge has no meaning in the phase regime.

In fact, the transmon is a multi-level quantum circuit that operates in a regime that is
very similar to the simple LC-oscillator, with the inductance replaced by a Josephson
junction. The non-linearity of the Josephson junction renders the potential energy of
the transmon weakly anharmonic, which enables to address individual transitions, see
Fig. 2.5(a).

The close resemblance of the transmon qubit to a slightly anharmonic resonator becomes
apparent in the harmonic approximation of the transmon Hamiltonian, Eq. (2.56). To
this end we expand the potential energy term−EJ cos φ̂ up to fourth order in φ̂, yielding

− EJ cos φ̂ ≈ EJ
2 φ̂2 − EJ

4! φ̂
4 + const. (2.58)

In order to cast Eq. (2.56) into the standard form of the harmonic oscillator for terms
of order O(φ̂2), we identify 4EC ≡ ~2

2m and EJ/2 ≡ 1
2mω

2, where m is the mass of the
particle described by the quantum harmonic oscillator at angular frequency ω. This
allows us to define the conjugate operators satisfying Eq. (2.43)

φ̂ =
(

2EC
EJ

)1/4
(â† + â), N̂ = i

(
EJ

32EC

)1/4
(â† − â) (2.59)
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Figure 2.5: Multiphoton transitions in the weakly anharmonic transmon circuit (a) Josephson
potential Epot from the Hamiltonian in Eq. (2.56) with indicated approximation as a harmonic
potential (red). Transmon levels only up to level |5〉 are properly bound in the Josephson potential
and were experimentally observed. Harmonic oscillator wave functions are schematically indicated
in blue. (b) Energy diagram illustrating the observed multiphoton transitions. (c) Spectroscopically
measured power spectrum for multiphoton transition with frequency ε0j/j. We plot the transmission
magnitude of a dispersively coupled readout resonator in colours with respect to an applied drive
of frequency ω1 and the drive power P. (d) Respective master equation simulation with the
Rabi frequency ΩR on the vertical axis, corresponding to the drive amplitude. The expectation
value 〈n̂〉 = 〈â†â〉 of the qubit population is plotted in colours. (e)-(h) Detailed comparison of
experimental and simulated data for horizontal cuts of the power spectrum. Please refer to Sec. 4
and Ref. [Bra+15] for experimental details.
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2.4 The transmon qubit

in the representation of bosonic creation (annihilation) operators â† (â) [Koc+07].
The expansion in Eq. (2.58) is justified since φ̂ is small in the transmon regime where
EJ � EC. Plugging into Eq. (2.56) and taking into account the bosonic commutation
relation [â, â†] = 1 yields

Ĥp =
√

8ECEJâ
†â− EC

2
(
(â†â)2 + â†â

)
+ const. (2.60)

and we can find the transmon eigenenergies Ej to be

Ej =
√

8ECEJj −
EC
2 (j2 + j) + const. (2.61)

The transmon excitation number operator â†â =
∑
j j |j〉 〈j| in the harmonic approx-

imation should be distinguished from the Cooper pair number operator N̂ . From
Eq. (2.61), we obtain the approximate fundamental transmon transition frequency
ε01 = E01/~ =

√
8ECEJ/~− EC/~ and the anharmonicity α ∼ −EC.

A typical relative anharmonicity ofαr = α/E01 ∼ 0.05 suppresses unwanted excitations
of higher transmon levels and thereby allows one to use the transmon as a two-level
system by defining a computational qubit basis using the two lowest energy levels,
denoted as |g〉, |e〉 in Fig. 2.4.

The exact eigenenergies of the Hamiltonian in Eq. (2.56) can be found by writing the
corresponding Schrödinger equation in the phase basis and casting it in the form of
Mathieu’s differential equation [Ast64; Koc+07; Bra13]. The Schrödinger equation
reads [

4EC

(
−i d

dφ − ng

)2
− EJ cosφ

]
ψ(φ) = Eψ(φ) (2.62)

which is equivalent to

d2

dx2 g(x) +
(
E

EC
+ EJ
EC

cos(2x)
)
g(x) = 0 (2.63)

with φ = 2x and introducing g(x) = e−2ingxψ(2x). The eigenenergies Ej for transmon
levels j can be expressed at half integer flux in terms of Mathieu’s characteristic values
according to

Ej = EC

 MA

(
k + 1,− EJ

2EC

)
for k = 2j

MB

(
k,− EJ

2EC

)
for k = 2j + 1

 , j = 1, 2, 3, ... (2.64)

MA and MB denote the even and odd Mathieu characteristic values.
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By evaluating Eq. (2.64) for an experimentally investigated transmon qubit ofEJ/EC ∼
80, we find the existence of five bound states in the Josephson potential [Bra+15], see
Fig. 2.5(a). A numerical diagonalization in the Cooper pair number basis |N〉 yields
a groundstate energy of E0/h = 2.4 GHz which equals the vacuum energy ~ε01/2 with
fundamental transition frequency ε01/2π = 4.78 GHz. Due to the small anharmonicity
αr ∼ 0.045 in the transmon circuit, multiphoton transitions of frequency ε0j/j can
be observed up to j = 5 in spectroscopy [Bra+15]. See Fig. 2.5(b) for a schematic
illustration and Fig. 2.5(c-h) for a comparison between experimental measurement and
master equation simulation.

2.5 Cavity quantum electrodynamics

The field of cavity quantum electrodynamics (cQED) studies the fundamental inte-
raction between matter and light at the archetype system of a quantized harmonic
oscillator mode coupled to a two-level atom. The two quantum states of the atom are
described via a spin-1/2 degree of freedom, recovering the Bloch sphere description
introduced in Sec. 2.1.1 for a qubit.

With the emergence of superconducting circuits as a versatile platform for cQED
experiments, the termcircuitQEDwas introduced, standing foracircuit implementation
of cQED. It typically involves a transmission line resonator of low internal loss rate that
couples to a superconducting qubit [Bla+04; Wal+04].

2.5.1 Jaynes-Cummings Hamiltonian

The coupling in cQED systems is induced by a dipole interaction of the qubit with the
oscillating field of a cavity or a circuit resonator. For a capacitive coupling of a transmon
qubit, having a dipole moment ~̂d ∝ ~d0σ̂x, to the electric field ~̂E ∝ b̂† + b̂ of a quantum
harmonic oscillator, we find a coupling term

Ĥc = ~gσ̂x
(
b̂† + b̂

)
∝ ~̂E · ~̂d (2.65)

with coupling strength g. The complete quantum Rabi Hamiltonian [Rab37; Rab36]
describing a generic cQED system therefore reads

Ĥ

~
= ε

2 σ̂z + ωb̂†b̂+ gσ̂x

(
b̂† + b̂

)
, (2.66)

with ε the qubit energy splitting and ω the resonator frequency. σ̂i are Pauli matrices
and b̂† (b̂) are creation (annihilation) operators in the Fock space of the bosonic oscillator
mode, such that [b̂, b̂†] = 1. The described type of interaction is often referred to as
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2.5 Cavity quantum electrodynamics

transversal coupling, since it appears on the off-diagonals of both the qubit and the
resonator Hamiltonians.

In many applications of quantum optics and cQED, the system described by Eq. (2.66)
is in a regime where g � ε,ω. This enables to apply a rotating wave approximation
(RWA), which reduces the quantum Rabi Hamiltonian in Eq. (2.66) to the Jaynes-
Cummings Hamiltonian ĤJC [JC63]. In the approximation, so called counter-rotating
terms of the form σ̂+â

† + σ̂−â are neglected, such that

ĤJC
~

= ε

2 σ̂z + ωb̂†b̂+ g
(
σ̂+b̂+ σ̂−b̂

†
)

, (2.67)

with σ̂± = 1/2 (σ̂x ± iσ̂y). Applying the RWA renders the resulting Jaynes-Cummings
model exactly solvable since it can be expressed in terms of infinitely many equivalent
and disconnected subspaces that allow for trivial diagonalization individually [Bra11;
HR06]. At the same time, this motivates the investigation of the exact quantum Rabi
model in the framework of quantum simulations, revealing non-classical and novel
physics, see Sec. 6.

In order to verify the RWA, we follow the formal text book approach of time-independent
perturbation theory [Sak94]. The diagonal Hamiltonian H0 of the problem with trivial
solution is given by the subsystem energy terms

H0
~

= ε

2 σ̂z + ωâ†â. (2.68)

We consider the counter rotating terms of the coupling term in Eq. (2.66) as a pertur-
bation,

Ĥ1
~

= g
(
σ̂+â

† + σ̂−â
)

. (2.69)

SinceH1 couples unperturbed eigenstates of non-degenerate eigenenergies, we can apply
non-degenerate perturbation theory. This yields an energy correction

∆En,e = ~2g2
∑
m,s

| 〈n, e| σ̂+â
† + σ̂−â |m, s〉 |2

En,e − Em,s
(2.70)

= ~2g2

En,e − En−1,g
= ~

g2

ε+ ω
(2.71)

and analogously ∆En,g = −~g2/(ε + ω). The RWA is therefore valid in the regime
where g/(ε+ ω)� 1, which is true in typical scenarios of cavity and circuit QED.

The Jaynes-Cummings Hamiltonian reveals its most remarkable features and becomes
most relevant in quantum optics and various cQED platforms in the strong coupling
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2 Quantum devices based on superconducting circuits

limit, where the energy decay rates of the subsystems are smaller than the mutual
coupling strength. It is one of the major benefits of circuit QED that the strong
coupling condition can straightforwardly be achieved [Wal+04].

Since the interaction term of the Jaynes-Cummings Hamiltonian in Eq. (2.67) conserves
the total excitation number and couples only neighbouring qubit and resonator levels,
the Hamiltonian takes a block diagonal shape in matrix form, consisting of a set
of disconnected two-dimensional sub-matrices for any resonator excitation number n
[Sch07]. This allows for an exact diagonalization of the n-th sub-matrix

Ĥn

~
=
(

(n+ 1)ω g
√
n+ 1

g
√
n+ 1 nω + ε

)
. (2.72)

Its eigenenergies are

En,±(∆)
~

= ω

(
n+ 1

2

)
+ ε

2 ±
1
2
√

4g2(n+ 1) + ∆2 (2.73)

with a mutual detuning ∆ = ε− ω.

The significance of strong coupling in the Jaynes-Cummings model becomes most appa-
rent in the case where the transition frequencies of atom and resonator are degenerate.
Equation (2.73) reduces to

En,±(∆ = 0)
~

= ω(n+ 1)± g
√
n+ 1, (2.74)

illustrating that the frequencies of the new eigenstates are split by 2g
√
n+ 1 [Bla+04].

An analogy to a classical treatment, the levels of the new eigenstates repel each other and
are clearly distinguishable when the strong coupling condition is met. The frequency
splitting in the single-photon regime therefore becomes 2g, which is a property that is
commonly exploited for characterization purposes in qubit spectroscopy experiments.

The eigenstates of the coupled system are no longer of tensor product form |n, g〉, |n, e〉,
but are superposition states of the form

|n,±〉 = 1√
2

(|n+ 1, g〉 ± |n, e〉) . (2.75)

2.5.2 Dispersive limit

The regime where the detuning between qubit and resonator is large compared to
the coupling strength, g/∆ � 1, is called the dispersive limit [Bla+04]. In this
case, qubit and resonator maintain their individual character while the coupling is
merely a perturbation that leads to a dressing of the respective energy levels. In the

26



2.5 Cavity quantum electrodynamics

dispersive limit, the Jaynes-Cummings Hamiltonian in Eq. (2.67) can be diagonalized
approximately by applying the canonical transformation

Û = exp
{ g

∆
(
σ̂+â− σ̂−â†

)}
. (2.76)

Expanding up to order (g/∆)2 yields [Bla+04]

ÛĤJCÛ
†

~
≈
(
ω + g2

∆ σ̂z

)
â†â+ 1

2

(
ε+ g2

∆

)
σ̂z (2.77)

≈ (ω + χσ̂z) â†â+ 1
2 (ε+ χ) σ̂z. (2.78)

Hence, the dressing in the dispersive regime leads to a shift of the qubit and resonator
frequencies by the dispersive shift χ = g2/∆. In particular, the effective resonator
frequency ω ± χ is dependent on the qubit state, which enables perform a projective
quantum non-demolition measurement of the qubit state along its quantization axis.
When populating the resonator, that acts as the qubit readout device with photons, the
qubit Bloch vector collapses into one of its basis states |g〉, |e〉. Since the qubit state
and the measured outcome are equal, the measurement is referred to as non-demolition
[Sch07]. This is an essential feature of the dispersive readout scheme, enabling complex
gate sequences conditional on a measured qubit state by using a fast quantum feedback.

The dispersive shift obtained in Eq. (2.77) is in agreement with the exact result in
Eq. (2.73) which takes the form

En=0,±
~

= ω + ε

2 ± ∆
2

√
1 + 4g2

∆2 ≈
ω + ε

2 ±
(

∆
2 + g2

∆

)
(2.79)

in the limit where g/∆� 1. Equation (2.79) yields the dispersively shifted energies of
qubit and resonator as

E+/~ = ε+ χ E−/~ = ω − χ. (2.80)

When using the transmon as an effective two-level qubit, we typically plot the qubit
population on a scale from 0 to 1, where 0 corresponds to the dispersive resonator shift
when the qubit is in |g〉 and 1 corresponds to the dispersive shift when the qubit is in
|e〉. The qubit population is therefore a probability for finding the qubit in |e〉, based on
the previously calibrated qubit basis.
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2 Quantum devices based on superconducting circuits

The presented concepts remain valid when treating the transmon qubit as a many-level
circuit [Koc+07; Nee+09]. The approximately diagonalized Hamiltonian, Eq. (2.78)
takes the form

Ĥ ′

~
=
∑
j

ωj |j〉〈j|+
∑
j=1

χj−1,j |j〉〈j|

+â†â

ω − χ01|0〉〈0|+
∑
j=1

(χj−1,j − χj,j+1) |j〉〈j|

 , (2.81)

where ωj are the eigenenergies of the transmon qubit and the dispersive shift χj,j+1 =
g2
j,j+1/(εj,j+1−ω) induced by transitions between neighbouring transmon levels j, j+1

with εj,j+1 = εj+1 − εj and εj = Ej/~. We experimentally analysed the back-action
of higher order multiphoton transitions on the readout resonator in a regular Jaynes-
Cummings system and demonstrated quantitative accordance with the theoretical
expectation from Eq. (2.81). With a pump-probe setup in addition to the readout
tone, we could achieve a multiphoton dressing of the transmon circuit and were able to
observe the emerging Rabi-sidebands and Autler-Townes like splittings involving up to
five levels of the circuit. These results are published in Ref. [Bra+15].

28



3 Microwavetheory

This chapter provides the fundamentals of microwave theory necessary for evaluating
and characterising quantum circuits. I give a brief summary of transmission line theory
and its circuit implementation which is followed by some network analysis techniques.
The description of microwave resonators is carried out in more detail. Despite of its
importance for a large community of microwave engineers as well as to the field of circuit
based quantum information processing, I find a lack of a comprehensive treatment of
respective fitting models in literature. To this end, I derive relevant formulas relating
the experimentally accessible scattering matrix elements with the frequency response
of microwave resonators, providing the mathematical framework for extracting quality
factors of resonating networks based on circuit impedances.

3.1 Transmission lines

In contrast to dc electronics, where a conducting wire equalizes the respective potentials
at its two ends, a transmission line must be considered as a distributed element network.
This is caused by the fact that the size of a transmission line can be similar to the
wavelength of the propagating wave, such that spatial inhomogeneities in voltage and
current need to be considered [Poz12]. An equivalent circuit for a generic transmission
line is depicted in Fig. 3.1(a). Kirchhoff’s rules yield the telegrapher equations [Poz12]

dV (z)
dz =− (R′ + iωL′)I(z) (3.1)

dI(z)
dz =− (G′ + iωC ′)V (z), (3.2)

a R' L'

G' C' ZLZ0

z

l 0

bV0
-

V0
+

Figure 3.1: Circuit model for a transmission line (a) Lumped-element circuit model for an
infinitesimal piece of a transmission line. The resistance R ′, inductance L′, conductance G ′ and
capacitance C ′ are given per unit length. (b) A transmission line of characteristic impedance Z0
terminated in a load impedance ZL.

29



3 Microwave theory

with resistance R′, inductance L′, conductance G′ and capacitance C ′ given per unit
length. Equations (3.1), (3.2) are solved by a plane wave ansatz, yielding

V (z) =V +
0 e−γz + V −0 eγz (3.3)

I(z) =V +
0
Z0

e−γz − V −0
Z0

eγz. (3.4)

V +
0 (V −0 ) denote the voltage of the wave travelling to the right (left) and we define a

propagation constant γ =
√

(R′ + iωL′)(G′ + iωC ′). In Eq. (3.4) we introduced the
characteristic impedance Z0 of the transmission line, which can be found as

Z0 =
√
R+ iωL
G+ iωC (3.5)

by using Eq. (3.1), (3.2) and Eq. (3.4).

Terminating a transmission line of characteristic impedance Z0 in a load impedance
ZL amounts to wave reflection dependent on the boundary condition given by ZL, see
Fig. 3.1(b). The total voltage V (z) on a transmission line at position z is given by the
sum of right and left travelling waves and the total current I(z) flowing in the positive
direction is the difference between current flowing to the right and current flowing to
the left. Evaluating Eq. (3.3), (3.4) at z = 0 yields

ZL = V (z = 0)
I(z = 0) = V +

0 + V −0
V +

0 − V
−
0
Z0 (3.6)

and we obtain the voltage reflection coefficient

Γ ≡ V −0
V +

0
= ZL − Z0
ZL + Z0

. (3.7)

It is apparent from Eq. (3.7) that the input impedance of a transmission line terminated
with a load ZL = Z0 does not cause any reflections.

The superposition of incident and reflected waves leads to a spatially varying line
impedance [Poz12]. Using Eq. (3.3), (3.4) allows us to evaluate

Z(l) = V (−l)
I(−l) = Z0

ZL + Z0 tanh γl
Z0 + ZL tanh γl (3.8)

for a lossless line with a purely imaginary propagation constant γ. l denotes the spatial
distance relative to the position of the load, see Fig. 3.1(b).
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ba

w
s

w
d

Figure 3.2: Planar implementations of transmission lines (a) Coplanar line with central conductor
of width w and ground reference in the device plane at a spacing s. The substrate has a dielectric
constant ε ∼ 11 for intrinsic silicon and sapphire, which are substrate materials commonly used for
fabricating superconducting quantum circuits. (b) Microstrip line with single conductor of width
w and a ground plane on the backside of the substrate. The thickness d of the substrate gives the
distance to the ground reference.

3.2 Circuit implementation of transmission lines

In practice, transmission lines are realized by coaxial lines, where a central conductor at
a potential V0 is surrounded by a concentric shield connected to ground. The distance
between inner and outer conductors together with the dielectric constant ε of the gap
material defines all the quantities sketched in Fig. 3.1(a) and therefore the characteristic
impedance Z0 of the coaxial line.

In order to incorporate transmission lines in planar circuit designs, it is the goal to
mimic the properties of a coaxial line as good as possible in a planar geometry. Among
others, the coplanar line and the microstrip line are the most popular types of planar
transmission lines since they can be easily fabricated by lithography [Poz12].

Figure 3.2(a) shows a schematic of a coplanar transmission line of width w and spacing
s to its ground reference on either side. The ratio w/s and the dielectric constant ε of
the substrate material defines the impedance of the line. A characteristic impedance
of 50 Ω can be achieved for w/s ∼ 5/3 and εr ∼ 11 [Sim01], as is the case for intrinsic
silicon and sapphire. For a substrate thickness that is much larger than the scaled gap
size sε, a ground plane on the backside of the substrate has no influence since the fields
are mainly confined within the gap region in the device plane. The scaling with ε is due
to the change of the electric displacement field in a dielectric. A substrate of thickness
d and dielectric constant ε therefore corresponds to a vacuum equivalent substrate of
thickness d/ε.

In contrast, a transmission line in microstrip geometry does not have its ground reference
in the device plane but at the backside of the substrate at a distance d. The characteristic
impedance is dependent the ratio w/d. For a substrate dielectric constant εr ∼ 11, a
characteristic impedance of 50 Ω can be achieved for w ∼ d [Poz12].

The microstrip geometry features an increased mode volume due to the larger dimensions
between centre conductor and ground plane such that electric fields are smaller which
potentially decreases loss from surface and interface defects. Since field are less confined,
as compared to the coplanar architecture, radiative loss is favoured. Due to the strong
fieldconfinement incoplanar lines, crosstalkbetweenadjacent circuit elements is reduced
which benefits the scalability of circuits. Both geometries are employed in this work.
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3 Microwave theory

3.3 Microwave network characterization with the
scattering matrix

A complete description of a microwave network with an arbitrary number of ports is
provided by the scattering matrix Ŝ [Poz12]. The matrix element Sij relates the wave
of voltage V −i reflected from port i to the incident wave of voltage V +

j travelling into
port j,

Sij = V −i
V +
j

∣∣∣∣∣
V +
k

=0 ∀k 6=j

. (3.9)

The incident waves on all other ports must be set to zero. The scattering matrix will be
used in this thesis to characterise single-port and two-port networks. For a single-port
network, we obtain the reflection matrix element

S11 ≡ Γ = V −1
V +

1
(3.10)

as defined in Eq. (3.7). For two-port networks we can write Ŝ in matrix form(
V −1
V −2

)
=
(
S11 S12
S21 S22

)(
V +

1
V +

2

)
. (3.11)

If a microwave network does not contain any active devices or ferrites, the network is
called reciprocal and the scattering matrix Ŝ is symmetric such that S11 = S22 and
S12 = S21 [Poz12].

Experimentally, a vector network analyser (VNA) allows us to characterise any multi-
port network. By using two VNA ports, all scattering matrix elements Sij of a network
can be measured successively while terminating all ports k 6= i, l in loads matched to
the characteristic impedances of the respective lines at ports k.

3.4 Microwave resonators

Microwave resonators are used to implement harmonic oscillator modes in supercon-
ducting circuits and therewith form an integral building block in circuit QED. They
typically appear as transmission line resonators with a fixed characteristic impedance
Z0 and length l between two boundary conditions defining the transmission line. Con-
tinuous reflections at both ends of the resonator gives rise to the formation of standing
waves. The resonance frequency ω0 is dependent on the length l, with l ∝ λ and λ the
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wavelength of the resonating microwave. For λ/2 resonators, which are used in this
thesis, the two boundary conditions are identical and the resonance frequency is

ω0/2π = vp
λ

= mc
√
εeff2l , (3.12)

with the phase velocity vp = c/
√
εeff in the medium of effective dielectric constant εeff

and the speed of light c in vacuum. m counts the mode number of the transmission line
resonator with l = mλ/2, m ∈ N+, yielding an infinite number of modes spaced by the
resonance frequency ω0.

The treatment of transmission line resonators is analogous to the one for lumped-element
LCR resonators of circuit theory [Poz12]. In the following, we will therefore rather
use lumped-element equivalent parameters for resonator characterization instead of
referring to the quantities per unit length introduced in Fig. 3.1(a). L denotes the
impedance, C the capacitance and R the resistance of an equivalent lumped-element
circuit.

3.4.1 Definition of quality factors

Quality factors are a measure for the losses a resonator of resonance frequency ω0
experiences. A generic quality factor Q is defined as

Q = ω0
Etot
Ploss

= ω0
κ

, (3.13)

where Etot is the total energy stored in the resonator and Ploss is the dissipated power
or energy loss rate [Poz12]. According to the common convention, κ denotes the inverse
photon lifetime of a linear resonator, defined as the full width at half maximum of a
Lorentzian response in frequency space. Via Fourier transformation one can see that
this means the cavity relaxes to its groundstate at a rate of κ/2. In the following we will
refer to κ as a decay rate.

Loaded quality factor

The loaded quality factor QL accounts for the total loss of a resonating circuit [Poz12].
It is defined as the reciprocal sum of internal quality factor Qi and coupling quality
factor Qc, as defined below.

Q−1
L = Q−1

i +Q−1
c (3.14)

Accordingly, the respective decay rates for internal loss κi and for external loss κc add
up to the total loaded decay rate κ, see Fig. 3.3(a).
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b

ZRZL

Cc

a

Figure 3.3: Illustration of quality factors and decay rates (a) The coupling decay rate κc = ω0/Qc
and the internal decay rate κi = ω0/Qi in a resonating cavity yield the total decay rate κ = κi +κc.
κc is defined separately for each single port of the network and adds to the total decay. (b)
Schematic circuit for the derivation of the coupling quality factor Qc.

Table 3.1: Summary of coupling regimes

over-coupled Qc < Qi

critical coupling Qc = Qi

under-coupled Qc > Qi

The relative contributions of dissipation due to internal loss and due to coupling to
external parts of the circuit define the coupling regime of the resonating circuit. Table 3.1
summarizes the different coupling regimes. In case Qi � Qc, we find QL ∼ Qc, which
is a common scenario in superconducting quantum circuits.

In the following, we present formulas for resonant circuits formed by a series network
of lumped-element components. Formulas for the parallel lumped-element resonant
circuit can be obtained in analogy.

Internal quality factor

The internal quality factor Qi describes intrinsic losses of a resonator for instance via
dipole radiation into the vacuum or dielectric and paramagnetic loss at surface and
interface defects of metal films. For the series resonant LCR circuit, it is defined as

Qi = ω0
Etot
Ploss

= ω0L

R
= 1
ω0RC

. (3.15)

Ploss here only accounts for dissipated power via the internal resistor R.

Microwave resonators built with superconducting metals are appealing in particular
since they feature very small intrinsic loss. Due to the superconducting gap that opens in
the quasi-particle density of states, Cooper pair conduction is dissipation free, rendering
the internal quality limited by geometric or surface properties of the resonator. In order
to avoid quasi-particle excitations, the superconducting gap must be much larger than
the resonance frequency ω0 of the resonator.
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Coupling quality factor

The external quality factor, or coupling quality factor Qc accounts for the dissipation
of a resonator via its coupling to external circuit components. Qc is therefore closely
related to the coupling strength of the resonator to its environment.

In the following we restrict our analysis to the case where resonators are capacitively
coupled to external circuitry. Using the definition

Qc = ω0
Etot
Pdiss

, (3.16)

whereEtot = 1
2 C̃V

2 = 1
4 C̃|V |

2 is the total energy stored in the resonator with maximum
voltage |V | and root-mean-square voltage 1√

2 |V |. The total capacitance C̃ = π(ωZR)−1

of an open-ended λ/2 resonator can be found from circuit quantization [Pal10], with
resonator characteristic impedance ZR. Pdiss = V I = 1

2 |V |
2<[Z−1

ex ] denotes the
dissipated power at a single port of the resonator via the coupling capacitance Cc into a
load of impedance ZL, summarized in an external impedance Zex = 1/iωCc + ZL. See
Fig. 3.3(b) for a schematic sketch of the considered circuit. With the approximation
ZL � (ωCc)−1, Eq. (3.16) becomes [Maz04; Sch07]

Qc = π

2ZR<[Z−1
ex ]

= π

2ZR

Z2
L + (ωCc)−2

ZL
≈ π

2ZRZLω2C2
c

. (3.17)

Employing the definition of the normalized susceptance [Poz12]

bc =
√
ZRZLωCc (3.18)

of the coupling capacitor, Eq. (3.17) can be rewritten as

Qc = π

2b2c
. (3.19)

It is important to point out that the definition of the coupling quality factor Qc is
dependent on the load impedance ZL that is connected to the resonator. In particular,
it is convenient to define a separate coupling quality factor for each external port via
which the resonator couples to its environment.

3.4.2 Impedance of a capacitively coupled resonant circuit

Calculating the total impedance of a capacitively coupled resonator to a external load
provides a very elegant method to relate scattering matrix elements to the frequency
response of many frequently used resonator networks. To this end, we derive the input
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Figure 3.4: Schematics yielding impedance formulas (a) An open-ended λ/2 resonator with
impedance ZR and of length l that couples to a transmission line of impedance ZL via a capacitor
Cc at one of its ends. Resonator impedance and the coupling are summarized in an effective
input impedance Zin as seen by the transmission line, see (b). The blue rectangles in (a), (b) are
therewith equivalent. (c) Notch type configuration. An impedance Z couples to a transmission
line of characteristic impedance Z0 as a parallel scatterer. (d) Single-port reflection scenario. An
impedance Z couples to an open-ended transmission line of characteristic impedance Z0.

impedanceZin of an open-ended λ/2 transmission line resonator of length l, that couples
to an external load of impedance ZL through a capacitor Cc at one of its ends. See
Fig. 3.4(a) for a schematic sketch of the circuit. Our goal is to summarize the resonator
and its coupling capacitor to an input impedance Zin that is seen by the transmission
line. The resulting effective circuit is depicted in Fig. 3.4(b).

Following the treatment in Ref. [Poz12], we can write the input impedance Zin using
Eq. (3.8) as

Zin(ω) =
(

1
iωCc

+ ZR
tan γl

)
∝ −i (tan γl + ZRωCc) . (3.20)

Requesting=Zin = 0 for the resonance condition, performing a Taylor expansion around
resonance ω ≈ ω0 and inserting l = λ/2 for a λ/2 resonator yields

Zin(ω) = ZR

(
π

2QiZ2
Rω

2C2
c

+ i π∆ω
ω0Z2

Rω
2C2

c

)
, (3.21)

valid in the vicinity of the resonance frequency ω0, ∆ω = ω − ω0 � ω0. The input
impedance is stated relative to the characteristic impedance ZR of the resonator.

The input impedance in Eq. (3.21) takes the form of a series LCR circuit [Poz12] near
resonance

Zser = R

(
1 + 2iQi

∆ω
ω0

)
(3.22)
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noting the relations Qc = ω0L/ZL and Qi = ω0L/R.

3.4.3 Scattering matrix elements for relevant resonator networks

In this section we provide relations between scattering matrix elements and response
functions of microwave resonators in one- and two-port networks. These allow us to
fit experimental data and to extract characteristic resonator properties. We focus the
presented derivations on the notch type configuration and single-port reflection from
a resonator, since these scenarios are used in this thesis. A complete summary of the
obtained results including the in-line configuration is given in Table 3.2 at the end of this
section. We base our treatment on the input impedance of the investigated resonating
circuit rather than applying input-output theory [Pal10], which is an equivalent appro-
ach. Our results are in agreement with literature [Göp+08; Gao08; Kha+12; Kra16;
Pal10; PA98; Poz12; Pro+15; Sha+11].

Notch type configuration

In order to calculate reflection Sn
11 and transmission Sn

21 scattering matrix elements
for a notch type configuration, we consider the circuit depicted in Fig. 3.4(c). In this
scenario, an impedance Z couples to a continuous transmission line of characteristic
impedance Z0 as a parallel scatterer. The impedance Z sees a load ZL = Z0/2 due to
the two branches of the transmission line such that we can rewrite Eq. (3.21) in terms
of Qc = π/ZRZ0ω

2
0C

2
c as

Zin(ω) = Z0

(
Qc
2Qi

+ i∆ω
ω0

Qc

)
. (3.23)

Inorder tofindrelationsbetweenthescatteringmatrixelementsandthe input impedance
Zin we make use of the table provided in Ref. [Poz12], p. 190, 192 on conversions between
the scattering matrix elements and the transmission (ABCD) matrix elements for two-
port networks. Exemplarily, we derive the relation between the transmission scattering
matrix element Sn

21 to the input impedance of a notch type resonator [Lep+17]. We
denote V +

i (V −i ) the voltage contribution of a wave propagating from left to right (right
to left) on site i = 1, 2, where 1 is left of the scatterer and 2 is right of the scatterer,
according to Fig. 3.4(c). Net currents Ii are labelled accordingly and IZ denotes the
current flowing in the branch of the scatterer. From Kirchhoff’s rules, we obtain the
relations

V +
1 + V −1 = V +

2 + V −2 (3.24)
I1 = I2 + IZ (3.25)

⇔ 1
Z 0

(
V +

1 − V
−
1
)

= 1
Z 0

(
V +

2 − V
−
2
)

+ 1
Z

(
V +

1 − V
−
1
)

(3.26)

37



3 Microwave theory

and therefore the scattering parameter

Sn
21 ≡

V +
2
V +

1
= 1

1 + Z0
2Z

= 2Z
2Z + Z0

(3.27)

where Z0 is the characteristic impedance of the transmission line. This result is in
agreement with Ref. [Poz12]. In analogy, we find

Sn
11 = Z0

Z0 + 2Z , (3.28)

such that we obtain the relation Sn
11 +Sn

21 = 1. Note that this is a result specific for the
notch configuration.

Inserting Eq. (3.23) into Eq. (3.27) yields the complex transmission scattering parameter
[Gao08; Kha+12; Pro+15]

Sn
21(ω) = 1− QL/Qc

1 + 2iQL
∆ω
ω0

. (3.29)

The absolute square

|Sn
21|2(ω) = (<[Sn

21])2 + (=[Sn
21])2 = 1− 1− (QL −Qc)2/Q2

c

1 + 4Q2
L

(
∆ω
ω0

)2 (3.30)

takes the form of an inverse Lorentzian distribution of full width at half maximum
κ = ω0/QL, reflecting the dip structure in the transmitted magnitude response. The
phase of the complex scattering parameter in Eq. (3.29) becomes

argSn
21(ω) = arctan

(
=[Sn

21]
<[Sn

21]

)
= arctan

 2QL∆ω/ω0

Qc
QL
− 1 + 4QLQc

(
∆ω
ω0

)2

 (3.31)

= − arctan
(

2QL
∆ω
ω0

)
− arctan

(
2 QLQc
QL −Qc

∆ω
ω0

)
. (3.32)

We used arctan’s addition theorem

arctan(u) + arctan(v) = arctan
(
u+ v

1− uv

)
, (3.33)
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valid for uv < 1. 4Q2
LQc(QL−Qc)−1(∆ω/ω0)2 < 1 is fulfilled since ∆ω/ω0 � 1. Phase

data can be used to fit purely QL for inverting Sn
21 and shifting the coordinate system

by 1 on the real axis, Sn
21 → 1− Sn

21, as pointed out in [Pro+15].

arg(1− Sn
21) = arctan

(
=[1− Sn

21]
<[1− Sn

21]

)
= − arctan

(
2QL

∆ω
ω0

)
, (3.34)

and its derivative with respect to ω becomes

d
dω arg(1− S21)(ω) = −2QL/ω0

1 + 4Q2
L

(
∆ω
ω0

)2 =
κ
2(

κ
2
)2 + ∆ω2

, (3.35)

which recovers an analog Lorentzian distribution as derived in Eq. (3.30). As we point
out in Sec. 3.4.3, this provides a robust method to extract resonator characteristics.

From Eq. (3.28) and using Eq. 3.23 we can immediately write down the reflection matrix
element

Sn
11 = QL/Qc

1 + 2iQL
∆ω
ω0

(3.36)

and therewith

|Sn
11| =

(QL/Qc)2

1 + 4Q2
L

(
∆ω
ω0

)2 , argSn
11 = − arctan

(
2QL

∆ω
ω0

)
. (3.37)

Single-port reflection

In the single-port scenario, we have ZL = Z0 according to the circuit in Fig. 3.4(d) and
can identify Qc = π/2ZRZ0ω

2
0C

2
c . The input impedance becomes

Zin(ω) = Z0

(
Qc
Qi

+ i∆ω
ω0

2Qc

)
. (3.38)

The single-port reflection coefficient Ss
11 for looking into a transmission line of charac-

teristic impedance Z0, terminated in a load Z = Zin can be found to be

Ss
11 = V −0

V +
0

= Z − Z0
Z + Z0

(3.39)
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Figure 3.5: Single port reflection from a resonator. (a) Plot of the scattering parameter Ss
11 in the

complex plane. The off-resonance point is marked with a black star and different colours correspond
to various values of Qi relative to a fixed Qc. (b) Shifted and inverted complex data 1− Ss

11 (solid
circles) with the original circles (dashed) as shown in (b). The off-resonance point (black star) is
shifted to the origin of the complex plane and circles are in the right half plane such that arg Ss

11
covers a range of only π irrespective of the coupling regime. (c) Lorentzian fit of the phase data
∂/∂ω arg Ss

11(ω) differentiated with respect to frequency ω, yielding a QL = 0.71× 103. (d) Similar
Lorentzian fit of the argument of the normalized and shifted reflection data ∂/∂ω arg(1 − Ss

11),
yielding a QL = 0.80× 103. For the fit in in (e), only points in the grey area are considered.

40



3.4 Microwave resonators

such that

Ss
11(ω) = 1− 2QL/Qc

1 + 2iQL
∆ω
ω0

. (3.40)

Correspondingly, find

|Ss
11|2 = 1−

1− (2QL−Qc)2

Q2
c

1 + 4Q2
L

(
∆ω
ω0

)2 , (3.41)

argSs
11 = − arctan

(
2QL

∆ω
ω0

)
− arctan

(
2 QLQc

2QL −Qc

∆ω
ω0

)
. (3.42)

For a coupling limited resonator with QL = Qc and Qi → ∞ we find |Ss
11|2(ω) = 1,

which is intuitively clear since all the energy put into the resonator will come back
eventually in the absence of internal loss. In the complex plane, this corresponds to a
circle that is centred around the origin, see Fig. 3.5(a). In the same limit, Qi → ∞,
Eq. (3.42) reduces to

argSs
11 = −2 arctan

(
2QL

∆ω
ω0

)
, (3.43)

accounting for a 2π phase roll-off. The respective circle in the complex plane encloses
the origin of the coordinate system. These results are in agreement with Ref. [Pal10].
Note that we can recover a similar formula as Eq. (3.43) for all coupling regimes when
evaluating

arg(1− Ss
11) = arctan

(
=[1− Ss

11]
<[1− Ss

11]

)
= − arctan

(
2QL

∆ω
ω0

)
. (3.44)

The shift along the real axis can be motivated as follows: Since the co-domain of the
arctan function is only π, the scattering data needs to be shifted into the positive
complex half-plane such that the phase range of scattering data is limited to π for
all coupling regimes. Since the magnitude is normalized to unity, a shift by unity is
required. The additional factor of 2 in Eq. (3.43) reflects the 2π co-domain of Ss

11, as the
origin lies within the circle in the over-coupled regime. This is illustrated in Fig. 3.5(b).

Given that the magnitude signal |Ss
11|2 is very small for strongly over-coupled resonators,

a robust method to extract resonator characteristics is provided by fitting the frequency
derivative of the phase to a Lorentzian distribution. In Fig. (3.5)(c), (d) we compare
Lorentzian fits to the derivative of the phase quadrature∂/∂ω argSs

11 and to the inverted
and shifted phase quadrature, ∂/∂ω arg(1 − Ss

11). While the latter is the analytically
exact procedure, it requires an elaborate post-processing of measured data, such as a
normalization and a slope subtraction in the phase signal, which is physically hard to
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justify. Comparing the extracted loaded quality factors demonstrates the reliability of
the straightforward method. The internal quality factor in the example is ∼ 20× 103.
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Table 3.2: Summary of relations between scattering matrix elements and frequency response of relevant one- and two-port resonator
networks In the in-line configuration, a resonator is defined by introducing two gaps in a continuous transmission line. The reflection case is
analog to single-port reflection, with individual coupling quality factors Qc,i for port i = 1, 2, respectively. For equal coupling capacitors at either
port, we can recover S il,i

11 = Ss
11 for Qc = Qc,i/2. The in-line transmission matrix element S il

21 is provided with respect to a the total coupling
quality factor Q−1
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c,1 + Q−1
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4 Experimentalmethods

This chapter presents the experimental methods used in the experiments carried out
during this thesis. We provide the basic concepts employed in sample fabrication
with a focus on patterning Josephson tunnel junctions. A detailed list of parameters
used during fabrication can be found in the Appendix. In order to reveal quantum
effects with the fabricated samples, they are cooled to millikelvin temperatures, where
classical noise that destroys quantum coherence is strongly suppressed. We describe
the utilized cryogenic setup and discuss the working principle of a dilution refrigerator.
Qubit measurements are carried out in the microwave regime either by spectroscopy
or by applying time-resolved pulses. The basic framework of the microwave setup and
equipment used is described in the following. Specific techniques and adaptations in
different experiments are discussed in the subsequent result chapters.

4.1 Sample fabrication

Experiments in this thesis were carried out with samples that were in-house fabricated at
the Nanostructure Service Laboratory (NSL) of the Karlsruhe Institute of Technology.

We make use of intrinsic silicon substrates of 380 µm thickness and dielectric constant
εr = 11.5 for all qubit samples and use sapphire substrates at a thickness of 440 µm and
εr = 10. The substrate is rinsed in piranha solution to remove organic residues and
the surface is plasma cleaned prior to metal deposition in a ’descum’ process using a
mixture of argon and oxygen.

4.1.1 Josephson junction fabrication

Josephson tunnel junctions with an overlap area of about 100 nm × 220 nm were
fabricated by making use of electron beam lithography and shadow angle evaporation.
In order to achieve a clean oxide interlayer between two aluminium (Al) electrodes, it
is advantageous to performed the deposition in-situ, without breaking the vacuum for
the secondary lithography step. This is facilitated by the shadow angle evaporation
technique. Here, an overhanging bridge is formed by making use of a double resist
stack and the two electrodes are deposited at two different angles relative to the sample
surface. We make use of the Dolan bridge technique [Dol77], where a free standing resist
bridge is created by a stack of LOR/PMMA resists. After evaporation of the first metal
layer, a controlled amount of oxygen is allowed into the chamber for a fixed amount of
time and given partial pressure, where the pressure is adjusted by a continuous oxygen
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flow rate and dynamical pumping. The oxygen exposure leads to the formation of a
∼ 1 nm thin layer of AlOx, later on used as the tunnel barrier of the Josephson junction.
We use electrode film thicknesses of 30 nm and 50 nm, respectively, resulting in a total
Al film thickness of 80 nm across the entire chip. In a final lift-off process, the resist
stack is removed.

4.1.2 Film deposition

Film deposition is primarily performed by evaporation of Al from a thermal source 1 at
a background chamber pressure of about 3× 10−8 mbar.

4.1.3 Optical lithography

For optical lithography, we use the photo resist AZ5214E. It is applied with a spin
coater by first covering the complete chip homogeneously at a low spinning frequency
and subsequently adjusting its thickness to ∼ 1 µm with a higher spinning frequency.
Mechanical stability is provided by a successive baking step.

Optical resist structuring is performed by using a chrome mask that is previously written
with direct laser lithography. The photo mask is aligned on top of the resist layer with
a Carl Süss mask aligner and exposed at a wavelength of 365 nm in hard contact mode.
Resist development is carried out by immersing into the TMAH based solvent MIF726,
which dissolves exposed regions of resist.

Throughout this thesis, we made use of negative lithography in combination with a
lift-off process. In this process, resist is structured on a clean substrate prior to covering
the complete chip with a metal film. Thereby, metal is deposited on regions of the
substrate that are not covered with resist. In the subsequent lift-off process, resist
residues are stripped such that unwanted metallizations are removed.

4.2 Cryogenic setup

Samples hosting the fabricated quantum circuits are fixed inside an Al sample box with
silver glue and electronically connected by Al wire bonds to a 50 Ω matched microstrip
transmission line on a printed circuit board element. The transmission line is then
soldered to SMA plugs that connect to the coaxial wiring in the cryostat. See Fig. 4.1(a)
for a photograph of the sample box. The Al sample box is thermally anchored to the
base plate of a cryostat reaching a temperature of ∼ 30 mK and enclosed in a cryoperm
case for additional magnetic shielding, see Fig. 4.1(b).

We operated a wet dilution refrigerator manufactured partially by High Precision
Devices (HPD) and in parts by the in-house workshop, see Fig. 4.1(c).
1 Plassys Bestec, model MEB550S
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Figure 4.1: Cryogenic setup and sample box (a) Aluminium sample box and lid as used in this
thesis. (b) View of the base stage of the cryostat, reaching a temperature of typically 30 mK.
Samples are enclosed in a cryoperm shield for magnetic shielding (dark box). To the left, the
cryogenic circulators are visible. (c) Wet dilution refrigerator without thermal radiation shields. As
indicated, the temperature of the stages decreases from top to bottom.
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Liquid 4He at a temperature of 4.2 K can be cooled to about 1.5 K by continuous
pumping at its surface and hence reducing its boiling temperature. For this purpose
the cryostat contains a reservoir of liquid 4He.

In order to cool below 1.5 K, we make use of a standard technique employing a helium
isotope mixture of 4He/3He. The fraction of ∼ 25% of 3He is continuously circulated
in a closed cycle by means of a room temperature pump. Warm 3He gas is pre-cooled
in a condenser which is thermally connected to a temperature stage of ∼ 1.5 K. The
liquefied 3He is passed through a set of high-impedance capillaries and further cooled by
3He coming from the base stage via heat exchangers. It enters the mixing chamber that
is thermally anchored to the base plate of the cryostat. Below a critical temperature,
the helium isotope mixture in the mixing chamber undergoes a spontaneous phase
separation into a 3He rich phase and a dilute phase of ∼ 7% 3He admixture [CL04].
Due to the negative pressure created by the pump at room temperature, 3He from the
rich phase is evaporated into the dilute phase such that the cooling power at the phase
boundary originates from the latent heat. The 3He leaves the mixing chamber at the
dilute phase and enters the still, where it is thermally evaporated and thereby separated
from the 4He.

4.3 Microwave setup

Microwave tones and pulses are fed to the cryostat at room temperature TRT = 300 K
and are strongly attenuated at stages with temperatures T4K = 4 K, Tim = 0.1 K and
Tbase = 30 mK. Since the resistors in the attenuators are thermally anchored, the
electronic noise temperature Tn at the base plate is decreased according to

Tn = Tbase + Tim
k1

+ T4K
k1k2

+ TRT
k1k2k3

= 31.7 mK = 1.057 · Tbase (4.1)

with attenuations k1 = k2 = k3 = 100 corresponding to a 20 dB reduction of Johnson-
Nyquist noise power, see the lower part in Fig. 4.2. The resulting noise temperature
is therefore only about 6% above the base plate temperature such that the signal and
in particular thermal noise from the microwave sources and signal generators at room
temperature is strongly damped.

In most experiments in this thesis we measure the microwave reflection signal at a single-
ended 50 Ω matched transmission line that capacitively couples to further circuitry of the
investigated sample. We achieve a splitting of in- and out-going signals by making use
of a cryogenic microwave circulator in front of the sample, such that the measurement
appears to be transmission type from outside the cryostat.

The measurement signal coming from the sample passes several isolation and filtering
stages and is amplified at the 4 K stage by a high electron mobility transistor (HEMT)
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Figure 4.2: Schematic microwave setup used for qubit measurements Dependent on the type
of measurement we either connect a spectroscopy setup or a time domain setup (red boxes) to the
cryostat (blue box). Circuit elements in between the boxes sit at room temperature and are used
in both assemblies. The qubit manipulation and drive part inside the grey box is aptly upgraded
for the experiment described in Ch. 6.
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bias tee
RI

Vex

flux bias line

z

C

readout
qubit control,
readout

Vex

a

b

Δt

freq.exc. 6.03

6.04

100 200 300

c

Δt (ns)

readoutx

z

Δt

0.6µs

0.7µs

0.8µs

0.9µs

1.0µs

dcL

Figure 4.3: Calibration of the bias tee (a) Simplified schematic circuit diagram motivating the
required compensation strategy for the finite time constant τ = (RC)−1 in the bias tee. Microwave
pulses of amplitude Vex pass a resistor R and charge the capacitor of capacitance C which is part
of the bias tee. (b) We apply voltage pulses of amplitude Vex following the blue line to the input
of the bias tee such that the resulting current admitted to the on-chip flux bias line follows the
desired pulse sequence depicted in red. (c) Typical calibration measurement. The qubit frequency
ε is measured after increasing detuning times ∆t before applying the excitation pulse. We find a
constant qubit frequency for choosing τ = 0.7 µs using a bias tee operated at base temperature.

amplifier 2 with an added noise equivalent temperature of 5.8 K. The HEMT amplifier
band is 4 GHz to 16 GHz while the experimentally usable band from 8 GHz to 12 GHz
is limited by the cryogenic circulators.

The qubit transition frequency is adjusted by a dc current applied to the on-chip flux
coil. High frequency noise is filtered at the 4 K stage with RCR type π-filters at about
25 kHz and on the base plate via a copper powder low pass filter [LU08].

4.3.1 Bias tee calibration for fast qubit pulsing

Current pulses for fast Ẑ pulsing of the qubit are sent through a separate microwave line
and combined with the dc bias component by means of a bias tee located at the base
plate. It conserves the 50 Ω impedance matching of the microwave line but contains
a decoupling capacitor that is only transparent for the ac component in the applied
signal, see the schematic circuit diagram in Fig. 4.3(a). The discharge at a finite time
constant τ = (RC)−1 requires a continuous compensation of the applied voltage in
order to maintain a constant current that is applied to the flux bias line.

Vex denotes the amplitude of the voltage pulse, R is the line resistance in front of the
bias tee and C is the capacitance of the bias tee. From Kirchhoff’s law we can write

RI + Q

C
= Vex, (4.2)

2 Low Noise Factory LNF-LNC4 16a sn013b
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with I the constant current that is admitted to the flux bias line. The condition of
constant current follows from requesting

dI
dt = 1

R

d
dtVex −

1
RC

I
!= 0, (4.3)

which yields

d
dtVex = I

C
. (4.4)

Integrating Eq. (4.4) yields

Vex = 1
C
It+ const. ∝ t. (4.5)

This shows that the required correction of the externally applied voltage Vex is linear
in time t with a slope proportional to the time constant 1/τ . See the pulse sequence
applied (blue) and the resulting pattern (red) in Fig. 4.3(b). During pulse-off time
where I = 0, Vex has to be kept constant and no further correction is required.

The described compensation cannot be performed for longer than approximately 1 µs
within one continuous pulse sequence, since the output stage of the pulse generator
eventually saturates or high currents heat the cryostat. We therefore typically utilize
a scheme where fast Ẑ pulsing is only required during excitation and readout of a
measurement sequence, which scales nicely for perspectively longer recording times ∆t.

We calibrated the time constant of the bias tee 3 used in the experiment to be τ = 0.7 µs.

4.3.2 Spectroscopy

The spectroscopy setup consists of a vector network analyser (VNA) 4 that measures
the complex transmission scattering matrix element S21. A continuous microwave tone
is admitted to the sample and the dispersive resonator shift can be extracted from the
respective response signal. By means of a continuous drive from a separate microwave
source, specific resonant transitions in a qubit circuit can be excited. In spectroscopy,
the qubit assumes an equal superposition state between its ground state and the driven
state which induces a specific dispersive shift on the readout resonator. The mentioned
components of the spectroscopy setup are schematically depicted in the top part of
Fig. 4.2.

3 Tektronix PSPL5547
4 Anritsu MS4642B
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4.3.3 Time resolved measurements

In order to perform time resolved measurements, a phase sensitive setup that generates
and records microwave pulses is required. Figure 4.2 schematically shows the basic
structure of the time domain setup used in the experiments of this thesis.

Readout of the qubit state is performed by recording the dispersive shift of a readout
resonator that couples to the qubit. We apply a strong projective measurement of
the qubit σ̂z operator with a readout pulse of 400 ns duration, leading to a circulating
photon number in the resonator in excess of the single photon regime. Readout pulses
are generated via heterodyne single sideband mixing of a local oscillator (LO) carrier
frequency by an IQ frequency of 30 MHz. The shift in resonance frequency of the readout
resonator is extracted by acquiring the reflected microwave pulse after down-conversion
with the same LO frequency in a second IQ mixer. A complex value for the measured
scattering parameter can be reconstructed from the measured signals in I and Q acquired
at the IQ frequency after Fourier transformation. This heterodyne frequency conversion
scheme eliminates parasitic population of the readout resonator during pulse-off time
which would cause photon induced qubit decay.

Data acquisition is performed by recording full time traces of the readout pulses
reflected from the sample, which are∼ 2×103 fold pre-averaged per trace on an analog-
to-digital conversion (ADC) acquisition card. Successively, the data is sent to the
measurement computer where we extract the IQ quadratures by Fourier transformation.
In measurements of the qubit lifetime, its dephasing rate or its time evolution, we
typically average over ∼ 30 complete traces to obtain a reasonable signal to noise
ratio. Due to the single-port reflection scheme, most information is stored in the phase
quadrature of the recorded signal since Qi � Qc for the readout resonator, see Sec. 3.
Error bars are calculated from pre-averaged data points and represent the standard
deviation of the mean.

Qubit manipulation pulses are equally generated by heterodyne single sideband mixing
and combined in a directional coupler to be applied to the same transmission line used
for readout. See Fig. 4.2 for a detailed schematics of the microwave setup.

We use Anritsu MG37022A and Agilent E8257D signal generators as well as Tektronix
AWG7062B and Tabor WX1284C arbitrary waveform generators (DAC). The IQ
mixers are Marki IQ0618LXP for the readout and IQ4509LXP, IQ0307LXP for qubit
manipulation. All devices in the setup are phase-locked to a common 10 MHz clock
reference and triggers are generated by an Agilent 81130A pulse generator.

4.4 Measurement software

The measurement software utilized in this thesis is written in Python 2.7 and is based
on the QTLab measurement software mainly written by R. Heeres [Hee]. In 2015,
we merged and extended existing measurement scripts at KIT and collected them
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in a software framework called qkit [qkit15], which was later uploaded to a public
repository of the GitHub development platform. Qkit now provides a measurement
suite for quantum microwave measurements that is typically controlled via an IPython
notebook interface. It features data acquisition and analysis including robust fitting
tools, intelligent data storage and visualization as well as server based data monitoring
and logging.
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5 Theconcentrictransmonqubit

We present a planar qubit design based on a superconducting circuit that we call concentric
transmon. While employing a straightforward fabrication process using Al evaporation
and lift-off lithography, we reproducibly observe qubit lifetimes and coherence times up
to 15 µs. We systematically characterize loss channels such as incoherent dielectric
loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID
loop allows for a fast tuning of the qubit transition frequency and therefore for full
tomographic control of the quantum circuit. Due to the large loop size, the presented
qubit architecture features a strongly increased magnetic dipole moment as compared
to conventional transmon designs. This renders the concentric transmon a promising
candidate to establish a site-selective direct Ẑ coupling between neighbouring qubits, being
a pending quest in the field of quantum simulation. [Bra+16]

5.1 Motivation

Over the last decade there has been a two order of magnitude increase in coherence
times of superconducting qubits, which allowed for several major achievements in the
pursuit of scalable quantum computation, such as the control and entanglement of
multiple qubits [Ste+06; Bar+14]. Further increases in coherence times will eventually
allow for building a fault tolerant quantum computer with a reasonable overhead in
terms of error correction, as well as implementing novel quantum simulation schemes
by accessing wider experimental parameter ranges [Par14]. Apart from the demand
for advancing qubit lifetimes and coherence times, other properties become more and
more important, such as the scalability of quantum circuits and the coupling versatility
between qubits.

The motivation for building the concentric transmon qubit is to add a building block to
the quantum toolbox that features sufficient coherence properties for many experiments
in the emerging field of quantum simulations while making use of a straightforward and
robust fabrication technique. It is the goal to achieve a compact planar device with a
confined field distribution that suppresses unwanted crosstalk to spurious modes. This
addresses the issue of scalability which was reported as a weakness of superconducting
circuits in general [GAN14]. Additionally, we aim for a device featuring a longitudinal
magnetic coupling.

While superconducting qubits embedded in a 3D cavity [Pai+11] have shown coherence
times in excess of 100 µs [Rig+12] and even 1 ms [Pop+14], this approach imposes some
constraints on the tunability and the mutual coupling of individual circuit elements.
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Figure 5.1: Architecture of the concentric transmon qubit (a) Optical micrograph of the
fabricated sample. The dark grey colour corresponds to the intrinsic silicon substrate, while the
coloured and brighter areas are covered with an Al film. The transmon consists of a central island
with holes for flux trapping, that is surrounded by a concentric ring electrode. The electrodes
are interconnected by two Josephson junctions, forming a gradiometric dc SQUID. The open end
of a microstrip λ/2-resonator (coloured in blue) capacitively couples to the concentric transmon
for dispersive qubit readout. An on-chip flux bias coil (yellow) allows for fast tuning of the qubit
transition frequency since it couples asymmetrically to the two SQUID loops. It is designed in
coplanar geometry in order to match its impedance to 50 Ω. The flux bias line is grounded at one
of its ends on chip. A superconducting groundplane is applied to the backside of the substrate. (b)
Simplified lumped-element circuit diagram. The black dot in the middle corresponds to the central
qubit island. One can recognize two closed loops (L1, L2) sharing the two Josephson junctions.
The large loop size in the geometry amounts to a geometric inductance contribution, as indicated
in the circuit. Since the mutual inductances to the flux bias line are not equal, M1 6= M2, the
effective critical current of the SQUID can be tuned.

Since the Josephson junction itself does not limit qubit coherence [Pai+11], comparably
long lifetimes can also be achieved in a planar geometry by careful circuit engineering.

5.2 Design and architecture

The design and architecture of the concentric transmon qubit is depicted in Fig. 5.1(a).
The two capacitor pads forming the large shunt capacitance of the transmon are
implemented by a central disk island and a concentrically surrounding ring. The two
islands are interconnected by two Josephson junctions forming a gradiometric SQUID.
The transmon islands act as coplanar electrodes [San+13] giving rise to the total qubit
capacitance C = 81 fF, including the contribution by the ground plane and coupling
capacitances.

For readout and control purposes we embed the qubit in a microstrip resonator circuit,
forming a familiar cQED system. The λ/2 readout resonator has a net capacitive
coupling to the concentric transmon since it couples more strongly to the ring electrode
than to the central disk. The coupling strength is in first order independent of the
orientation of the concentric transmon due to the lumped-element nature of the qubit.
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5.2 Design and architecture

A 50 Ω impedance matched on-chip flux bias line located next to the qubit allows for
fast flux tuning of the qubit frequency due to the imposed asymmetry. This guarantees
high experimental flexibility and enables full tomographic control. The gradiometric
flux loop renders the qubit insensitive to external uniform magnetic fields and thus
suppresses external flux noise.

A simplified lumped-element circuit diagram of the concentric transmon is schematically
depicted in Fig. 5.1(b). Considering loop L1 as the primary transmon loop, the
gradiometric dc-SQUID architecture can be recognized. The kinetic inductance of the
superconducting aluminum wire can be neglected due to its finite thickness and the
width of the Josephson junction leads. The effective critical current Ic,eff of the SQUID
is tuned by applying an inhomogeneous magnetic field supplied by the on-chip flux bias
line. From flux quantization in both closed loops L1, L2,

φ1 − φ2 =2πΦ1
Φ0

, (5.1)

−φ1 + φ2 =2πΦ2
Φ0

(5.2)

we obtain

φ1 − φ2 = π
Φ1 − Φ2

Φ0
= π

∆Φ
Φ0

, (5.3)

such that the effective critical current of the primary loop L1 becomes

Ic,eff = 2Ic
∣∣∣∣cos

(
π∆Φ
2Φ0

)∣∣∣∣ (5.4)

and is therefore 2Φ0-periodic in the flux asymmetry ∆Φ = |Φ1 − Φ2| between the
loops. Φ0 = h/2e denotes the magnetic flux quantum. We analytically calculate the
net mutual inductance to the flux bias line to be 2.3 pH by applying the double integral
Neumann formula [Jac62]. The calculation yields a flux bias current of 1.8 mA, required
to induce 2Φ0 in the primary transmon loop. This is confirmed in qubit spectroscopy
shown in Fig. 5.3(b), where we observe a periodicity of ∼ 1.7 mA.

The position of the flux sweet spot with maximum transmon frequency is dependent on
the number of trapped flux quanta in the two SQUID loops. The dispersion maximum
appears at zero externally applied flux, ∆Φ = 0, if the difference in number of trapped
fluxes in the two loops, respectively, is an even number. This corresponds to the familiar
scenario for conventional tunable transmon qubits. If the difference in trapped flux
quanta is an odd number when cooling through Tc, the dispersion is shifted by Φ0 and
has its minimum frequency at ∆Φ = 0. We confirmed this behaviour by more than
ten cool-downs where we found the dispersion located symmetrically either around its
maximum or its minimum frequency. A further small horizontal offset of the qubit
spectrum is due to asymmetric flux trapping in the electrode areas.
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Figure 5.2: Schematic circuit diagrams for the concentric transmon qubit (a) Exact lumped-
element representation of the qubit circuit accounting for the distribution of capacitance and
inductance per unit length. (b) Simplified effective circuit diagram used for circuit quantization.
The dc SQUID is treated as a single effective Josephson junction with critical current I∗c , connected
in series with an effective inductance L and the qubit capacitance C . It is suggestive to identify
L with the inductance of the complete qubit ring electrode. (c) Geometric representation of the
circuit. The qubit capacitance is centre symmetrically dispersed. (d) Diagram motivating the
choice of effective inductance L. Two half rings with inductance L/2, respectively, are connected
in parallel, forming the geometric inductance Lg = L/4.

We operate the device at a fundamental qubit transition frequency ε/2π = 6.85 GHz,
far detuned from the readout resonator at ω/2π = 8.79 GHz in order to reduce Purcell
dissipation. The Josephson energy EJ/h = 29 GHz dominates the charging energy
EC/h = 0.24 GHz, rendering a EJ/EC = 120 well within the transmon regime. This
assures the circuit to be inherently insensitive to charge noise and features an intrinsic
self-biasing [Koc+07]. For the operation point we extract a relative anharmonicity of
αr = −3.4%.

5.3 Circuit quantization

The geometric inductance of the large loops in the concentric transmon architecture
constitutes a notable contribution to the total qubit inductance. To account for this, we
derive a generalized system Hamiltonian to model our circuit. An exact lumped element
representation of the qubit circuit is depicted in Fig. 5.2(a). The qubit capacitance is
distributed centre symmetrically into n small parallel capacitances C/n and the total
inductanceLg is split into a series ofn inductors of inductanceLg/n. In order to simplify
the analytic treatment, we approximate this exact circuit by the effective simplified
circuit diagram depicted in Fig. 5.2(b), consisting of a single capacitor of capacitance
C connected in series with an effective inductance L and a single Josephson junction
of effective critical current I∗c . The total critical current of the SQUID is treated as
an effective parameter I∗c = 1.5Ic to account for model inaccuracies. The geometric
inductance Lg we extract in this analysis is related to the effective inductance L via
Lg = L/4. This can be motivated since Lg is formed by two half rings in parallel, see
Fig. 5.2(c), (d). This semi-quantitative treatment is justified by a good agreement of
the presented model with measured data and simulation results. In the following we
present a detailed derivation of the system Hamiltonian based on the simplified circuit
diagram depicted in Fig. 5.2(b).
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5.3 Circuit quantization

From current conservation at the two independent active nodes we get

~
2eCφ̈1 = I∗c sinφ2 = ~

2e
1
L
φ3. (5.5)

The phases φi in Fig. 5.2(b) correspond to the respective voltage drop across each of the
components of the circuit according to

~
2eφi =

∫ t

t0

dt′Ui(t′). (5.6)

The directed voltage drops in a closed network add up to zero according to Kirchhoff’s
rule. In a closed loop, the integration constant in Eq. (5.6) is the total magnetic flux
penetrating the loop. Since the network in Fig. 5.2(b) is an open loop in the sense of
the flux quantization law, we can write

φ1 + φ2 + φ3 = 0. (5.7)

We eliminate φ2 using Eq. (5.5) and insert in Eq. (5.7)

φ3 + arcsin(cφ3) = −φ1, (5.8)

introducing the notation

c = ~
2e

1
I∗cL

. (5.9)

An approximate solution to Eq. (5.8) can be written as

φ3 = − 1
(1 + c)2φ1 −

c

(1 + c)2 sinφ1 (5.10)

which is exact when φ1 � 1 or c � 1. Plugging into Eq. (5.5) and writing φ1 ≡ φ, we
reduce the set of equations to a single equation of motion,

~
2eCφ̈ = − ~

2e
1
L

1
(1 + c)2φ−

~
2e

1
L

c

(1 + c)2 sinφ. (5.11)

With the Euler-Lagrange equation

d
dt

∂L
∂
( ~

2e φ̇
) = ∂L

∂
( ~

2eφ
) (5.12)
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5 The concentric transmon qubit

we obtain the Lagrange function

L = C

2

(
~
2e φ̇

)2
− 1

2L
1

(1 + c)2

(
~
2eφ

)2
+
(

~
2e

)2 1
L

c

(1 + c)2 cosφ. (5.13)

Employing the definitions of the Josephson energy EJ = ~Ic/2e, and the inductive
energy EL = (~/2e)2(2Lg)−1, the parameter c becomes

c = 2e
~

1
1.5Ic

(
~
2e

)2 2
8Lg

= EL
3EJ

. (5.14)

Using the conjugated variable for the charge number N = C ~
(2e)2 φ̇, we arrive at the

Hamiltonian

Ĥ = 4EC(N̂ − ng)2 − EJ
6E2

L
(6EJ + 2EL)2 cos φ̂+ EL

9E2
J

(6EJ + 2EL)2 φ̂
2 (5.15)

with charging energy EC = e2/2C.

The constructed system Hamiltonian reads

Ĥ = 4EC(N̂ − ng)2 − ẼJ cos φ̂+ ẼLφ̂
2, (5.16)

introducing the quantities

ẼJ = EJ
6E2

L
(6EJ + 2EL)2 , ẼL = EL

9E2
J

(6EJ + 2EL)2 . (5.17)

Note that ẼL = 0 in the limit EL →∞, such that the original transmon Hanmiltonian
is recovered up to a factor of 3/2 in the Josephson term that comes from the effectiveness
of the critical current in the model.

Expanding the cosine in Eq. (5.16) up to fourth order in φ̂ yields

Ĥ = 4EC(N̂ − ng)2 +
(
ẼJ
2 + ẼL

)
φ̂2 − ẼJ

4! φ̂
4 + const. (5.18)

We identify 4EC ≡ ~2/2m and ẼJ/2+ẼL ≡ mω2/2 to cast the Hamiltonian in Eq. (5.18)
into the standard form of the harmonic oscillator for terms of order O(φ̂2). This yields
the phase operator

φ̂ =
(

EC

ẼJ/2 + ẼL

)1/4
(â† + â) (5.19)
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5.3 Circuit quantization

Table 5.1: Summary of extracted parameters of the investigated concentric transmon qubit
Errors ∆ in EC and C are assumed, other errors are standard deviations as extracted from the fit. Ic
denotes the total critical current of both Josephson junctions. The contribution of the geometric
inductance relative to the total qubit inductance Lg + Lj at 6.85 GHz is Lg/(Lg + Lj) ∼ 10%, where
Lj is the kinetic inductance of the Josephson junctions.

EJ Ic EC C EL Lg

sweet spot
6.85 GHz

45 GHz
29 GHz

90 nA
58 nA 0.24 GHz 81 fF 128 GHz 0.64 nH

∆ ±12 GHz ±23 nA ±0.03 GHz ±10 fF ±30 GHz ±0.16 nH

in the representation of creation (annihilation) operators â† (â). Plugging into Eq. (5.18)
and taking into account the bosonic commutation relation, [â, â†] = 1, yields

Ĥ = 4
√
EC(ẼJ/2 + ẼL) â†â− ẼJEC

4(ẼJ/2 + ẼL)
(
(â†â)2 + â†â

)
+ const. (5.20)

and we can find the energiesE0j of concentric transmon levels |j〉 relative to the ground
state to be

E0j = 4
√
EC(ẼJ/2 + ẼL)j − ẼJEC

4(ẼJ/2 + ẼL)
(j2 + j). (5.21)

For the concentric transmon under investigation, Fig. 5.3(a) shows the fundamental
qubit transition ε01 and the lowest order multi-photon transitions 1/2ε02 and 1/3ε03,
measured close to the current sweet spot of the spectrum, see the arrow in Fig. 5.3(b).
Equating Eq. (5.21) for j = 1, 2, 3 and using fitted transition data as depicted in
Fig. 5.3(a) yields three equations for the transmon parameters EC, EJ and EL. In an
iterative approach using this transition data and by fitting measured spectroscopy data,
we can extract a set of parameters which are in good agreement with both data sets.
The spectrum fit is carried out using Eq. (5.21) evaluated for j = 1, see Fig. 5.3(b) and

EJ(∆Φ) = ~
2eI

m
c

∣∣∣∣cos
(
π

∆Φ
Φ0

)∣∣∣∣
√

1 + d2 tan2
(
π

∆Φ
Φ0

)
. (5.22)

Im
c denotes the total critical current of the concentric transmon at the flux sweet spot,

where ∆Φ = 0 and we omitted a phase offset used for fitting purposes. The square root
term in Eq. (5.22) accounts for a relative asymmetry between the Josephson junctions
[Koc+07], specified by the asymmetry parameter d = (Ic,1 − Ic,2)/(Ic,1 + Ic,2). A
separate fit of the qubit spectrum indicates an asymmetry parameter of d = 0.32,
causing a decrease in tunability range of the circuit. The minimum qubit frequency of
the investigated sample is 6.3 GHz.
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Figure 5.3: Concentric transmon spectroscopy (a) Fundamental qubit transition and lowest
order multi-photon transitions. From the extracted transition frequencies ε01/2π = 7.6496 GHz,
1
2 ε02/2π = 7.6094 GHz and 1

3 ε03/2π = 7.5673 GHz we obtain three equations using Eq. (5.21).
The transition peaks were recorded at different excitation powers (blue data points) and fitted
to Lorentzians. (b) Frequency dispersion of the concentric transmon qubit with a dc current I
applied to the flux bias line. The thick blue line denotes the measured qubit transition frequency
ε01 which is fitted to our theory model (red). Good agreement is obtained for taking into account
a geometric inductance contribution. The faint blue line visible close to the flux sweet spot shows
the two-photon transition 1

2 ε02. We performed a normalization of each individual column, sich
that a weaker signal close to the points of minimum frequency leads to a enhancement of relative
background noise. Qubit measurements presented in Sec. 5.5, 5.6 are taken at a qubit frequency
ε01/2π = 6.85 GHz.
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Figure 5.4: Measurement of the dissipative dynamics (a) By exciting the qubit with a previsously
calibrated π pulse and reading out the qubit state after a varying time ∆t, we record a relaxation
time T1 = 9.6 µs. Relaxation times up to ∼ 15 µs were measured for later sample generations. (b)
Echo dephasing time T2 = 10 µs, measured with a Ramsey pulse sequence and one additional Hahn
echo, as shown in the inset. The qubit operation frequency was ε/2π = 6.85 GHz, corresponding
to a detuning of 1.9 GHz below the readout resonator frequency.

Table 5.1 summarizes the parameters extracted from the described fitting method based
on measured data shown in Fig. 5.3. Microwave simulations indicate a shunt capacitance
ofCsh = 58 fF, yielding a capacitance of∼ 20 fF between the disk electrode and ground,
which contributes to the effective transmon capacitance. A separate geometric finite
elements simulation yields Lg ∼ 0.2 nH, deviating by a factor of three from the fitted
value.

5.4 Fabrication

The fabrication process consists of two subsequent deposition and lithography steps.
The feedline, the microstrip resonator and the flux bias line are structured by optical
lithography in a lift-off process of a 50 nm thick Al film. In a successive step, the
concentric transmon including the Josephson junctions are patterned using electron
beam lithography. The Josephson junctions are formed by shadow angle evaporation
as described in Sec. 4.1. A 50 nm thick Al film is applied on the backside of the intrinsic
silicon substrate.

5.5 Dissipative dynamics

The dissipative dynamics of the investigated concentric transmon is depicted in Fig. 5.4.
At a qubit operation frequency of ε/2π = 6.85 GHz we extract T1 = 9.6 µs by exciting
the qubit with a previously calibratedπ pulse and measuring its population after varying
times ∆t. We engineered the concentric transmon to have a reduced sensitivity to its
major loss channels, namely spontaneous Purcell emission, dielectric loss, and radiative
decay. Losses due to quasi-particle tunneling processes typically impose a T1 limitation
at around ∼ 1 ms [Ris+13], having no considerable effect on the lifetime of our circuit.
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5 The concentric transmon qubit

Table 5.2: Calculated loss contributions fo the concentric transmon qubit The main contribution
Γ−1

1,ind arises from inductive coupling to the flux bias line, leading to a total Purcell limitation of
Γ−1

1,P = 16 µs. The estimated reciprocal sum Γ−1
Σ is in good agreement with the measured value for

T1.

Purcell Defects Radiation Reciprocal sum
Γ−1

1,sm Γ−1
1,ind Γ−1

1,cap Γ−1
1,TLF Γ−1

1,rad Γ−1
Σ

47 µs 32 µs ∼ 87 µs
Γ−1

1,P = 16 µs ∼ 26 µs & 100 µs 8.9 µs

In the following, we provide a loss participation ratio analysis in order to explain the
measured value for T1. The results are summarized in Tab. 5.2.

5.5.1 Purcell decay

We find a coupling limited decay rate κ = 26× 106 s−1, corresponding to a line width
of 4.1 MHz of the dispersive readout resonator, which is close to the design value. The
qubit lifetime is potentially Purcell limited by spontaneous emission into modes that
are nearby in frequency. Major contributions are the dispersive single-mode decay into
the capacitively coupled readout resonator as well as emission into the flux bias line
[Koc+07; Hou+08] due to inductive coupling. The coupling strength g/2π = 55 MHz
between qubit and resonator is extracted from the dispersive shift of the resonator
[Bra+15].

The single-mode Purcell limitation can be found from Fermi’s Golden rule using the
dipolar coupling Hamiltonian

Ĥc = ~gσ̂x
(
b̂† + b̂

)
(5.23)

between qubit and resonator with b̂† (b̂) bosonic creation (annihilation) operators in
the harmonic Fock space of the resonator. For the decay rate Γ1 from the excited qubit
state |e〉 to its groundstate |g〉 under photon creation in the resonator |n〉 → |n+ 1〉 we
obtain

Γ1 = 2π
~
∑
i

~2g2|〈0| ⊗ 〈n+ 1|σ̂x
(
b̂† + b̂

)
|1〉 ⊗ |n〉|2 δ(ε− ωi)

~
, (5.24)

with discrete contributions δ(ε − ωi) from the Dirac function. Assuming small tem-
peratures, the resonator is in its groundstate and we can set n = 0. Writing the sum
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5.5 Dissipative dynamics

in Eq. (5.24) as an integral introduces the spectral density function ρ(ω,ωr) of the
resonator mode. Applying a normalized Lorentzian shape

ρ(ω′,ω) = 1
π

κ/2
(κ/2)2 + (ω′ − ω)2 , 1

π

∫ ∞
−∞

dω′ κ/2
(κ/2)2 + ω′2

= 1 (5.25)

with full width at half maximum κ yields

Γ1 = 2πg2
∫

dω′ρ(ω′,ω)δ(ε−ω′) = 2g2 κ/2
(κ/2)2 + (ε− ω)2 = 2g2 κ/2

(κ/2)2 + ∆2 , (5.26)

where ∆ = ε − ω is the detuning between qubit and resonator. In the dispersive limit
∆� κ, we calculate a single-mode Purcell limitation induced by the readout resonator
of ΓΓ1,sm = κ (g/∆)2 = 1/47 (µs)−1 at a detuning ∆ = 1.94 GHz. While the formula
provided in Eq. (5.26) is exact in the dispersive limit, it can reproduce the expected
envelope of the decay rate on resonance, where Γ1(∆ = 0) ∝ g2/κ.

For a qubit being capacitively coupled to an environment of impedance Z0(ω) via a
capacitance Cc, the total impedance seen by the qubit becomes

Z(ω) = − i

ωCc
+ Z0(ω). (5.27)

The decay rate Γ1 due to classical zero-point noise [Hou+08; Mar+03] can be written as

ΓZ = <Y (ε)
C

, (5.28)

where C is the total qubit capacitance and Y (ε) denotes the admittance of the envi-
ronment at the qubit frequency ε. Since the effective qubit resistance takes the form
R = 1/<Y (ε), the decay rate in Eq. (5.28) is the inverse time constant of the RC
element. Using Eq. (5.27) we can write

<Y (ε) = <1/Z(ε) = <Z(ε)
<Z(ε)2 + =Z(ε)2 = Z0(ε)

Z0(ε)2 + 1/(εCc)2 = Z0(ε)ε2C2
c . (5.29)

The last step in Eq. (5.29) is valid for 1/(εCc) � Z0(ε). Substituting Eq. (5.29) into
Eq. (5.28) yields the multi-mode decay rate

ΓZ = Z0ε
2C2

c

C
. (5.30)
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5 The concentric transmon qubit

In analogy to this result, one can write down the decay rate Γ for a qubit being inductively
coupled to an arbitrary impedance:

ΓZ = ε2M2

Z0LΣ
, (5.31)

with M the mutual inductance between qubit and impedance load and LΣ the total
qubit inductance.

The multi-mode Purcell limitation due to inductive coupling of the concentric transmon
to the flux bias line of impedance Z0 = 50 Ω is Γ1,ind = 1/32 (µs)−1, with mutual
inductance M = 2.3 pH. The total qubit inductance LΣ = 6.3 nH includes the kinetic
inductance of the Josephson junctions and the geometric inductance contribution.

In analogy, we find a Purcell decay rate due to capacitive coupling (∼ 0.1 fF) to the flux
bias line, we estimate Γ1,cap ∼ 1/87 (µs)−1. The presented values are approximations
and give a rough estimate of the expected Purcell loss. A more stringent analysis would
require a full 3D electromagnetic simulation of the circuit for instance by the blackbox
quantization technique [Nig+12; SAD14].

5.5.2 Dielectric loss

The coplanar concentric transmon is embedded in a microstrip geometry, where the
ground reference on the device side of the substrate is substituted by a backside
metallization. The largest fraction of the electric field energy is stored in the substrate,
and the field strength at incoherent and weakly coupled defects residing in surface and
interface oxides of the sample is reduced due to an increased mode volume. Highest
fields in the geometry appear in the gap between the centre island and the ring of the
concentric transmon within the substrate. The smallest dimension in the geometry is
given by the electrode spacing of 35 µm, see Fig. 5.1, which roughly corresponds to the
equivalent substrate thickness in vacuum of 380 µm/εr ∼ 33 µm. While electric fields
between the transmon electrodes are enhanced by the dielectric substrate, we provide
a microscopic analysis of the defect loss based on the dimensions in our geometry. The
estimate is demonstrated to be in good agreement with a finite element simulation.

Microscopic treatment

From the vacuum energy of the transmon we extract a weighted mean electrical field
strength | ~E| = 2.3 Vm−1 in the surface and interface oxide of an estimated effective
volume ofV = 50× 10−18 m3, compare Fig. 5.5. We assume a maximum dipole moment
|~d0| = 1.6 eÅ of dielectric defects, reported in literature [Mar+05; Col+10; MCL17] as
thehighestdipolemomentobserved inJosephson junctionbarriersandthereforeyielding
a worst case estimation. The maximum coupling strength to a single TLF therewith
is | ~E||~d0| ∼ 90 kHz. We employ a normalized dipole moment distribution [Mar+05]
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Figure 5.5: Finite element simulation of defect loss The schematic shows a side view of the
concentric transmon qubit. The rotational symmetry axis is in the centre of the central transmon
island and indicated with the arrow to the left. The electric field distribution is depicted in colours.
Maximum values occur at the edges of the transmon electrodes and exceed the maximum value
of the scale bar, such that these results are in reasonable agreement with the stated value for the
mean electrical field strength in the oxide volume of |~E | = 2.3 Vm−1.

P (p) = A
√

1− p2/p, with relative dipole moment p = |~d|/|~d0|. Taking into account a
normalized defect probability distribution [Mül+15] P (ω, θ) = Bωα cosα θ/ sin θ allows
us to estimate the mean relaxation rate Γ1,TLF due to a single incoherent two level
fluctuator (TLF) with averaged parameters to be

∫ d0

0
dpP (p)p

2| ~E|2

~2

∫ ωTLF

0
dω
∫ π/2

0
dθP (ω, θ)S(ε). (5.32)

ω denotes the TLF frequency that we integrate to a maximum of ωTLF/2π = 15 GHz,
and the angle θ accounts for the dipole coupling matrix element. The spectral function
S(ωq) = sin2 θ γ2/(γ2

2 + (ω − ωq)2) is essentially the Fourier transform of the coupling
correlation function [Mül+15], with an assumed TLF dephasing rate γ2/2π = 10 MHz.
The averaged rate induced by a single TLF, given in Eq. (5.32), is multiplied by the
number N = ρ0V ~ωTLF of defect TLF interacting with the qubit. With a distribution
parameterα ∼ 0.3 [FI15]andaconstructeddefectdensityρ0 = 4× 102 (µm)−3(GHz)−1
we compute a T1 limitation due to the quasi-static bath of incoherent TLF to be
Γ1,TLF ∼ 1/26 (µs)−1. The choice of ρ0 is consistent with literature [Bar+13; Mar+05]
and is justified by a good agreement with a loss participation ratio analysis carried out
via a finite element simulation, see the next paragraph. The calculated decay rate shows
a very weak dependence on the employed parameters γ2, α and integration cut-offs.
Due to the small size of the Josephson junction, the defect density in the Josephson
barrier itself is discrete and therefore highly reduced [Wei+11a; Wei+11b].
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5 The concentric transmon qubit

Finite element simulation of defect loss

To validate the above microscopic analysis, we conduct a finite element simulation
of the concentric transmon geometry 1. The simulation layout with the electric field
distribution is depicted in Fig. 5.5. We model the sample by assuming an oxide layer
thickness of 3 nm, formed by AlOx (εr = 11.5), surrounding the central island and the
concentric ring electrode of the qubit. For the interface between substrate and aluminum
we assume an effective dielectric constant of εr = 6, accounting for the contribution
of SiO2 (εr = 4) in the interface oxide. The simulation yields an electric field energy
fraction of 2.8× 10−4 residing in the oxide volume. With a phenomenological loss
tangent [PO10] δAlOx = 3 · 10−3 of AlOx, this leads to a total effective loss tangent
δTLF = 8.4× 10−7 which we attribute to dissipation by surface and interface oxide
defects. Due to uncertainties in δAlOx , the oxide layer thickness and εr, this value is
to be considered exact within a factor of two. δTLF can be calculated to limit T1 at
Γ−1

1,TLF = 28 µs which is in good agreement with the microscopically extracted value.

In the same spirit we can extract a relative electric field energy ratio in the silicon
substrate of 0.92. With an intrinsic silicon loss tangent δSi < 1× 10−7, dissipation in
the substrate can be neglected. This is confirmed by very high quality factors measured
for TiN resonators on intrinsic silicon [San+12].

5.5.3 Radiation loss

Aspointedout inRef. [San+13], radiative loss intothemediumfarfieldbecomesapparent
for qubits with a large electric dipole moment. In conventional pad geometries, radiative
decay is reduced since the dipole of the mirror image, induced by the ground plane of the
microstrip geometry, radiates in anti-phase, leading to destructive interference. The
circular geometry investigated here brings about an additional decrease in radiated
power by a strongly reduced electric dipole moment of the concentric electrodes. We
analyse the effect by simulating the dissipated power in a conductive plane placed 1.5 mm
above our geometry in the medium far field and compare the result to a conventional pad
architecture. The internal quality factor of the qubit eigenmode indicates a radiative
contribution of Γ−1

1,rad & 100 µs. The radiative dissipation of a comparable qubit in pad
geometry exceeds this value by more than an order of magnitude.

As compared to Purcell loss, the radiative decay rate is a measure for the confinement
of electric fields inside the geometry and can be understood as the coupling strength
to spurious modes in the imperfect electromagnetic environment of the qubit. In our
sample box with an engineered lower mode cut-off frequency of 12 GHz, loss may be
induced by bond wires, glue or the PCB. In addition, reduced dipole radiation allows

1 Finite Element Method Magnetics (FEMM), version 4.2
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5.5 Dissipative dynamics

for a closer packaging of qubits that can be advantageous in complex chip layouts, and
looses the requirements on the utilized sample box.

To verify the presented loss participation ratio analysis, T1 was measured close to
the flux sweet spot and the associated Purcell contribution is calculated to be 4.7 µs,
reducing the overall dissipation estimate to Γ−1

Σ = 3.7 µs, while the measured value was
T1 = Γ−1

1 = 1.8 µs [Bra+16]. The enhanced reduction in T1 at the sweet spot is not fully
understood. A possible explanation is the disregard of losses related to the geometric
inductance such as quasi particles or magnetic vortices.

In continuous lifetime measurements, we observe temporal fluctuations in T1 down to
∼ 2 µs for the operation point in Fig. 5.4. We conjecture that this is attributed to the
discrete dynamics of two-level fluctuators (TLF), located in the small oxide volume at
the leads of the Josephson junctions, where the electric field strength is enhanced. The
temporal fluctuations decreased in later generations of the concentric transmon, which
was fabricated in a single lithography step. A possible reason is a decreased TLF density
due to a cleaner substrate prior to deposition of the concentric transmon.

In Fig. 5.4(b), we present a measurement of the spin echo dephasing time T2 = 10 µs
by making use of a Ramsey sequence with one additional Hahn echo pulse. The two
π/2 pulses rotate the qubit Bloch vector into the equatorial plane and back to the
quantization axis of the qubit prior to state readout such that the final qubit state is
sensitive to phase rotations that are acquired during the time ∆t. The echo π pulse
in the middle of the two π/2 pulses mirrors the Bloch sphere and therefore reverts
the drift direction of the qubit Bloch vector. Therewith, the technique compensates
low-frequency fluctuations in the qubit transition frequency and renders the qubit
insensitive to noise below ∼ 1/max(∆t) = 25 kHz. We measure a Ramsey dephasing
timeT ∗2 ∼ 2 µs without echo pulse. We want to point out that a rather highT2 is achieved
in spite of the large loop size in the geometry. The transmon was detuned by ∼ 1 GHz
from its flux sweet spot, such that the slope in the dispersion is finite and flux noise causes
dephasing. Apart from noise from the current bias source, dephasing is presumably
induced by local magnetic fluctuators that sit on the surface of the metallizations. We
show in Ref. [Bra+16] that the Ramsey dephasing time T ∗2 = 2.2 µs is slightly increased
at the flux sweet spot, where T1 = 1.8 µs, indicating a pure dephasing time of τ ∼ 6 µs
being increasingly relaxation limited. The Purcell contribution at the flux sweet spot is
calculated to be 4.7 µs, reducing the overall dissipation estimate to ∼ 3.7 µs.

In a non-tunable titanium nitride (TiN) version of the concentric transmon with a single
Josephson junction and an opening in the outer ring, we find lifetimes of T1 ∼ 50 µs and
Ramsey dephasing times up to T ∗2 ∼ 60 µs. Similar lifetimes have been reported for
TiN transmon qubits in the conventional capacitor pad design [Cha+13]. We expect
an increase in coherence times also for the tunable concentric design by implementing
it in a TiN material system due to a suppression of defect loss in surface and interface
oxides.
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Figure 5.6: Demonstration of fast frequency tunability of the concentric transmon (a) Pulse
sequence applied in the experiment. Between two projecting π/2 pulses we apply a Ẑ -rotation Rz

ϕ

of amplitude η = 32 µA and length ∆t. (b) The expectation value of the qubit state oscillates
between its basis states |g〉, |e〉 with a relative Larmor frequency ωL/2π = 65 MHz, according to
the sinusoidal fit. A correction for the finite time constant in the bias tee was not performed as it
can be neglected for such short pulse lengths.

The measured coherence times compare with other planar transmon geometries such as
a non-tunable Al based transmon with decreased finger gap size [Cho+12] (T1 = 9.7 µs,
T ∗2 = 10 µs) and the cross shaped transmon [Bar+13] (T1 = 40 µs, T2 = 20 µs),
fabricated via molecular beam epitaxy deposition [Meg+12].

5.6 Frequency tunability

Figure 5.6 demonstrates fast frequency control of the concentric transmon. This is
commonly referred to as Ẑ control since Pauli’s spin operator σ̂z appears in the driving
Hamiltonian. In the utilized pulse sequence shown in Fig. 5.6(a) we apply a Ẑ-rotation
pulse of amplitude η in between a Ramsey sequence consisting of two projective π/2
pulses. We record the equatorial precession of the qubit Bloch vector at a relative
Larmor frequency ωL = 65 MHz in Fig. 5.6(b). The Ẑ-pulse amplitude η translates into
magnetic flux applied to the flux bias line. In the laboratory frame, this corresponds
to a shift in qubit frequency by ωL ∝ η, which is confirmed in a quasi-spectroscopic
measurement by exciting the detuned qubit and measuring its transition frequency, see
Ref. [Bra+16]. By increasing η, we demonstrated a fast frequency detuning of up to
200 MHz.

5.7 Coupling mechanisms

We propose the concentric transmon as a suitable candidate to establish a direct
inductive longitudinal coupling between neighbouring qubits. This is referred to as Ẑ
coupling because the coupling Hamiltonian is proportional to σ̂z. Since the area of
the magnetic flux loop is large, the magnetic dipole moment of our qubit is strongly
enhanced as compared to conventional transmon designs where it is typically negligible.
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5.7 Coupling mechanisms

Figure 5.7: Possible implementation of the Fermi-Hubbard emulator with a double chain of
concentric transmon qubits Within the two horizontal chains, qubits couple via a swap interaction
proportional to σ̂x ,j σ̂x ,j+1. The linear chains form a ladder and adjacent qubits from different chains
are coupled through a ẑ type interaction proportional to σ̂z,j σ̂z,j . ẑ interactions within chains vanish
due to a π/2-rotation of neighbouring concentric transmons, while the swap interaction between
the ladders can be suppressed by a mutual frequency detuning.

For two concentric transmon qubits separated by ∼ 50 µm, we estimate an inductive
coupling in the range of gz/2π ∼ 1 MHz for an operation point where the flux dependent
qubit spectrum has a large slope. This value is estimated by taking into account
the full inductance matrix of a all four loops of a two-qubit unit cell [Ste16] and by
applying the double integral Neumann formula [Jac62] to calculate individual mutual
inductances Mij . The technique considers the direction of currents flowing. We
expect a longitudinal Ẑ coupling in the range of few megahertz between two concentric
transmon qubits sharing a fraction of their ring electrodes, which is currently explored
in experiment.

At the given qubit distance, the conventional dipolar capacitive coupling, also referred
to as a swap interaction, was simulated and experimentally confirmed to be 13 MHz
[Ste16]. To further increase gz, the mutual inductance in the two-qubit geometry must be
increased. In a current experimental approach we galvanically connect the outer loops
of two concentric transmon qubits in order to maximizeMij . In an alternative approach,
the mutual inductance of loops of adjacent qubits can be enhanced by arranging qubits
on top of each other but transversally shifted in a flip chip approach [Ste16].

For a mutual frequency detuning of neighbouring qubits, the dipolar coupling can
effectively suppressed, while the longitudinal coupling strength gz does not depend
on the qubit frequencies. The longitudinal coupling vanishes completely for adjacent
qubits in plane arranged at a relative rotation angle of π/2, such that the concentric
transmon geometry allows for a site-selective Ẑ coupling. Figure 5.7 shows a schematic
implementation of a quantum simulator of the Fermi-Hubbard model [Rei+16]. It
consists of two linear chains of concentric transmons that are dipole coupled but with
the Ẑ coupling switched off along the two chains. This is achieved by alternating
rotation angles and using the symmetry properties of the Ẑ coupling. Adjacent qubits
belonging to different chains are Ẑ coupled while the dipole coupling is suppressed by a
strong mutual frequency detuning.
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5 The concentric transmon qubit

The Ẑ coupling scheme is highly promising for the field of quantum simulation in general,
for instance in the context of implementing Ising spin models. Patterning an array of
concentric transmon qubits featuring dipolar and Ẑ coupling along two orthogonal
directions while exploiting the strongly reduced off-site inductive interaction may be
a route to implement a quantum neural network, which is a powerful tool in quantum
computation [SSP14].

5.8 Conclusion

We have designed, fabricated and experimentally investigated a planar tunable qubit
based on superconducting circuits that we call concentric transmon. With measured
lifetimes and coherence times of up to 15 µs, the qubit design is competitive with
conventional transmon geometries. The main limitations of the qubit lifetime are the
Purcell effect induced by the readout resonator and the flux bias line, as well as loss
from dielectric defects. Radiative loss was demonstrated to be suppressed due to the
small electric dipole moment. A major advantage of our approach is the straightforward
Al evaporation based fabrication process. The strong decrease in qubit lifetime due to
defect loss in AlOx is circumvented by a large mode volume in particular in the gap
region between the transmon electrodes. We demonstrated full tomographic control of
our quantum circuit and discuss the high potential of the presented qubit design for
the implementation of a direct site-selective Ẑ coupling between neighbouring qubits,
rendering it a flexible building block for quantum simulation experiments.

72



6 ThequantumRabimodelat
ultra-strongcoupling

The quantum Rabi model describes the fundamental mechanism of light-matter inte-
raction. It consists of a two-level atom or qubit coupled to a quantized harmonic
oscillator mode via a transversal interaction. In the small coupling regime, a rotating
wave approximation can be applied and it reduces to the well-known Jaynes-Cummings
model. The rotating wave approximation breaks down in the ultra-strong coupling regime,
where the effective coupling strength g is comparable to the energy ω of the bosonic mode,
and remarkable features in the system dynamics are revealed. We demonstrate an analog
quantum simulation of an effective quantum Rabi model in the ultra-strong coupling
regime, achieving a relative coupling ratio of g/ω ∼ 0.6. The quantum hardware of the
simulator is a superconducting circuit embedded in a cavity quantum electrodynamics
(cQED) setup. We observe fast and periodic quantum state collapses and revivals of the
initial qubit state, being the most distinct signature of the synthesized model. [Bra+17]

6.1 Motivation

The quantum Rabi model in quantum optics describes the interaction between a two-
level atom and a single quantized harmonic oscillator mode [Rab36; Rab37]. In the small
coupling regime, which may still be strong in the sense of quantum electrodynamics
(QED), a rotating wave approximation (RWA) can be applied and the quantum Rabi
model reduces to the Jaynes-Cummings model [JC63], which captures most relevant
scenarios in cavity and circuit QED. In the ultra-strong coupling (USC) and deep strong
coupling regimes, where the coupling strength is comparable to or even exceeds the
subsystem energies [Cas+10], the counter rotating terms in the interaction Hamiltonian
can no longer be neglected and the RWA breaks down. As a consequence, the total
excitation number is not conserved in the quantum Rabi model. Except for one recent
paradigm of finding an exact solution [Bra11], an analytically closed solution of the
quantum Rabi model does not exist due to the lack of a second conserved quantity,
which renders it non-integrable. It is therefore appealing to investigate the non-
classical features that emerge in the USC regime and beyond in the context of quantum
simulations. The dynamics of the quantum Rabi model is well reproduced by standard
master equation approaches, such that it provides an ideal test bed for experimental
simulation techniques.

Apart from its intrinsic quantumness, rising interest in the Rabi model is inspired by
strong advances of experimental capabilities [Cas+10; AN10; BGB11; AR16]. The

73



6 The quantum Rabi model at ultra-strong coupling

specific spectral features of the USC regime and the consequent breakdown of the RWA
were previously observed with a superconducting circuit by implementing an increased
physical coupling strength [Nie+10; For+10; For+16b]. A similar approach involving a
flux qubit coupled to a single-mode resonator allowed to access the deep strong coupling
regime in a closed system [Yos+16]. The USC regime was reached before by dynamically
modulating the flux bias of a superconducting qubit, reaching a coupling strength of
about 0.1 of the effective resonator frequency [Li+13].

In our approach, we create an effective quantum Rabi Hamiltonian in the USC regime by
applying an analog quantum simulation scheme based on the application of microwave
Rabi drive tones. By a decrease of the subsystem energies, the USC condition is satisfied
in the effective rotating frame, which allows us to observe the distinct model dynamics.
The scheme may be a route to efficiently generate non-classical cavity states [Leg+15;
Kir+13; Vla+13], see Sec. 6.9, and may be extended to explore relevant physical models
such as the Dirac equation in (1+1) dimensions. Its characteristic dynamics is expected
to display a Zitterbewegung in the spacial quadrature of the bosonic mode [Bal+12].
This dynamics has been observed with trapped ions [Ger+10], likewise based on a
Hamiltonian that is closely related to the USC Rabi model.

It has been shown recently that a quantum phase transition, typically requiring a
continuum of modes, can appear already in the quantum Rabi model under appropriate
conditions [HPP15]. The experimental challenge is projected onto the coupling require-
ments in the model which may be accomplished with the simulation scheme presented.
This can be a starting point to experimentally investigate critical phenomena in a small
and well-controlled quantum system [HP16]. By using a digital simulation approach,
the dynamics of the quantum Rabi model at USC conditions was similarly studied very
recently [Lan+17].

In our experiment we first simulate the USC quantum Rabi model in the absence of a
qubit energy term, achieving a relative coupling strength of up to 0.6. This is achieved
by applying a single Rabi drive. We observe periodically recurring quantum state
collapses and revivals in the qubit dynamics as one of the characteristic signatures of
USC. The collapse-revival dynamics appears most clearly in the absence of the qubit
energy term in the quantum Rabi Hamiltonian. In a second step, we use our device to
simulate the full quantum Rabi model and are able to observe the onset of an additional
substructure in the qubit time evolution. With this proof of principle experiment we
validate the experimental feasibility of the proposed analog quantum simulation scheme
and demonstrate the potential of superconducting circuits for the field of quantum
simulation.
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6.2 Simulation Scheme

Table 6.1: Designation of coupling regimes in the quantum Rabi model The coupling strength
g must exceed the decay rates Γ1, κ of the coupled subsystems for the strong coupling condition
from cavity QED to be fulfilled, see Fig. 6.3. For USC and deep strong coupling, the figure of merit
is the coupling strength relative to the bosonic mode frequency, g/ω.

coupling regime condition
strong coupling g > Γ1, κ

USC 0.1 < g/ω < 1
deep strong g/ω > 1

6.2 Simulation Scheme

The quantum Rabi Hamiltonian reads

Ĥ

~
= ε

2 σ̂z + ωb̂†b̂+ gσ̂x

(
b̂† + b̂

)
, (6.1)

with ε the qubit energy splitting, ω the bosonic mode frequency and g the transversal
coupling strength. σ̂i are Pauli matrices with σ̂z |g〉 = − |g〉 and σ̂z |e〉 = |e〉, where
|g〉, |e〉 denote the eigenstates of the computational qubit basis. b̂† (b̂) are creation
(annihilation) operators in the Fock space of the bosonic mode. Both elements of the
model are physically implemented in the experiment, with a small geometric coupling
g � ε, ω. In order to access the USC regime, we follow the scheme proposed in
Ref. [Bal+12]. It is based on the application of two transversal microwave Rabi drive
tones coupling to the qubit. The effective USC quantum Rabi Hamiltonian is created in
the frame rotating with the dominant drive frequency. In the engineered Hamiltonian,
the effective mode energies are adjusted by the Rabi drive parameters.

The driven laboratory frame Hamiltonian takes the form

Ĥd
~

= ε

2 σ̂z + ωb̂†b̂+ gσ̂x

(
b̂† + b̂

)
+ σ̂xη1 cos(ω1t+ ϕ1) + σ̂xη2 cos(ω2t+ ϕ2). (6.2)

ηi denote the amplitude and ωi the frequency of drive i. ϕi is the relative phase of drive
i in the coordinate system of the qubit Bloch sphere in the laboratory frame. Within
the RWA where ηi/ωi � 1, the ϕi enter as relative phases of the transversal coupling
operators e−iϕi σ̂+ + h.c., where σ̂± = 1/2 (σ̂x ± iσ̂y) denote Pauli’s ladder operators.
In the following, we set ϕi = 0 to recover the familiar σ̂x coupling without loss of
generality.
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6 The quantum Rabi model at ultra-strong coupling

By applying the unitary transformation

Û = exp
{

iω1t

(
b̂†b̂+ 1

2 σ̂z
)}

(6.3)

we move into the frame rotating with ω1 and the transformed Hamiltonian becomes

H1
~

= ε

2 σ̂z + ωb̂†b̂+ g
(
σ̂+e

iω1t + σ̂−iω1t
−

) (
eiω1tb̂† + e−iω1tb̂

)
+ η1

(
σ̂+e

iω1t + σ̂−e
−iω1t

)
cosω1t+ η2

(
σ̂+e

iω1t + σ̂−e
−iω1t

)
cosω2t

− ω1

(
b̂†b̂+ 1

2 σ̂z
)

(6.4)

=1
2 (ε− ω1) σ̂z + (ω − ω1) b̂†b̂+ g

(
σ̂−b̂

† + σ̂+b̂
)

+ η1
2 (σ̂+ + σ̂−)

+ η2
2

(
σ̂+e

i(ω1−ω2)t + σ̂−e
−i(ω1−ω2)t

)
+ g

(
σ̂+e

2iω1tb̂† + σ̂−e
−2iω1tb̂

)
+ η1

2
(
σ̂+e

2iω1t + σ̂−e
−2iω1t

)
+ η2

2

(
σ̂+e

i(ω1+ω2)t + σ̂−e
i(−ω1−ω2)t

)
(6.5)

≈ (ε− ω1) σ̂z2 + (ω − ω1) b̂†b̂+ g
(
σ̂−b̂

† + σ̂+b̂
)

+ η1
2 σ̂x + η2

2

(
σ̂+e

i(ω1−ω2)t + σ̂−e
−i(ω1−ω2)t

)
. (6.6)

Terms of the form eXY e−X are calculated using the power series expansion of the
exponential function, also called Hadamard lemma. For X = iω1tb̂

†b̂, Y = b̂†,

eiω1tb̂
†b̂b̂†e−iω1tb̂

†b̂ = eiω1tb̂† (6.7)

eiω1tb̂
†b̂b̂e−iω1tb̂

†b̂ = e−iω1tb̂ (6.8)

since

∞∑
m=0

1
m!

[
iω1tb̂

†b̂, b̂†
]
m

= b̂†
∞∑
m=0

1
m! (iω1t)m = b̂†eiω1t. (6.9)

e
i
2ω1tσ̂z and σ̂z clearly commute, while

e
i
2ω1tσ̂z σ̂xe

− i
2ω1tσ̂z = σ̂+e

iω1t + σ̂−e
−iω1t (6.10)

using ediag(a,b) = diag(ea, eb). Terms rotating at e±2iω1t were omitted in Eq. (6.6) in
the spirit of a RWA, valid for η1/2ω1 � 1. This is a good approximation as η1 is bound
in the experiment by the qubit anharmonicity.
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The η1-term is now the significant term and we move into its interaction picture via the
transformation

ei η1
2 σ̂xt

[
Ĥ1
~
− η1

2 σ̂x

]
e−i η1

2 σ̂xt. (6.11)

Satisfying the requirement ω1 − ω2 = η1 and performing a time averaging in the spirit
of a RWA yields the effective Hamiltonian in the ω1 frame

Ĥeff
~

= η2
2
σ̂z
2 + ωeff b̂

†b̂+ g

2 σ̂x
(
b̂† + b̂

)
. (6.12)

We define the effective bosonic mode energy ωeff ≡ ω − ω1, which is the parameter
governing the system dynamics. Noting that η1 � η2, which is a necessary condition for
the above approximation to hold, the effective qubit frequency η2 and effective bosonic
mode frequency ωeff can be chosen as experimental parameters in the simulation. In
Eq. (6.12), the complete coupling term of the quantum Rabi Hamiltonian is recovered,
valid in the USC regime and beyond, while the geometric coupling strength is only
modified by a factor of two, resulting in geff = g/2. It is therewith feasible to tune
the system into a regime where the coupling strength is comparable to the energies of
the subsystems. This is achieved by leaving the geometric coupling strength essentially
unchanged in the synthesized Hamiltonian, while slowing down the system dynamics
by effectively decreasing the mode frequencies to . 8 MHz.

Thermal excitations of these effective transitions can be neglected since they couple to
the thermal bath excitation frequency of the cryostat, corresponding to ∼ 1 GHz, via
their laboratory frame equivalent frequency of ω/2π ∼ 6 GHz. We want to point out
that the coupling regime is defined by geff/ωeff , rather than by the Rabi frequency η1,
which does not enter the synthesized Hamiltonian. See Tab. 6.1 for an overview on the
designation of coupling regimes.

While the simulation scheme requires |ε−ω1| � η1, the qubit frequency ε does not enter
the effective Hamiltonian. The time evolution of the qubit measured in the laboratory
frame is subject to fast oscillations corresponding to the Rabi frequency η1. Accordingly,
the qubit dynamics in the engineered quantum Rabi Hamiltonian Eq. (6.12), valid in the
ω1 frame, can be inferred from the envelope of the evolution in the laboratory frame. The
derivation of Eq. (6.12) can be found in Ref. [Bal+12] and is detailed in Supplementary
Note 1 of Ref. [Bra+17]. A similar drive scheme based on a Rabi tone was previously
used in experiment to synthesize an effective Hamiltonian with a rotated qubit basis
[Voo+16]. For the qubit and the bosonic mode degenerate in the laboratory frame, a
distinct collapse-revival signature appears in the dynamics of the quantum Rabi model
under USC conditions, which is observed and investigated in this experiment.
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Figure 6.1: Quantum simulation device (a) Optical micrograph with the atomic spin represented
by a concentric transmon qubit, highlighted in red and the λ/2 microstrip resonator (blue)
constituting the bosonic oscillator mode. The readout resonator couples to the qubit capacitively
and its frequency is measured with an open transmission line (TL) via the reflection signal of an
applied microwave tone or pulse. The second resonator visible on chip is not used in the current
experiment and is detuned in frequency from the relevant bosonic mode by∼ 0.5 GHz. (b) Effective
circuit diagram of the device.

6.3 Device

The physical implementation of the quantum simulator is based on a superconducting
circuit embedded in a typical circuit QED setup [Bla+04; Wal+04], see Fig. 6.1. The
atomic spin of the quantum Rabi model is mapped to a concentric transmon qubit
[Koc+07; Bra+16]. It is operated at a ratio of Josephson energy to charging energy
EJ/EC = 50 and an anharmonicity α/h = ε12/2π − ε01/2π = −0.36 GHz ∼ −EC/h =
−0.31 GHz, and tuned on resonance with the bosonic mode at 5.948 GHz. εij denote
the transition frequencies between transmon levels i, j. The energy relaxation rate Γ1
of the qubit at the operation point is measured to be Γ1 = 1/T1 = 0.2 × 106 s−1. An
on-chip flux bias line allows for a fast tuning of the qubit transition frequency, see Ch. 5.
The bosonic mode of the model is represented by a harmonic λ/2 resonator with an
inverse lifetime κ ∼ 3.9× 106 s−1 that is limited by internal loss.

6.3.1 Fabrication

Sample fabrication was carried out in one single electron beam lithography step. The
Josephson junctions are formed by shadow angle evaporation and the Dolan bridge
technique, as detailed in Ch. 4. The area of the Josephson junctions is designed to
be 100 nm × 220 nm, resulting in a critical current Ic = 45 nA for a single junction.
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Figure 6.2: Qubit manipulation and drive microwave setup Modification of the qubit manipulation
setup, see the grey box in Fig. 4.2. Two drive pulses with amplitudes η1, η2, respectively, are
generated in separate IQ mixers, sharing a common local oscillator (LO) input, and combined
subsequently.

We applied an Al metallization on the backside of the double-side polished intrinsic Si
substrate as a ground reference for the microstrip elements on chip.

6.3.2 Measurement technique

Qubit excitation and Rabi driving are performed by heterodyne mixing with two
individual IQ frequencies and amplitudes, respectively. In the experiment with only
the dominant Rabi drive applied, we use one single microwave source and one IQ mixer
according to the setup shown in Fig. 4.2 in Ch. 4. This allows for the required phase
control on the phase ϕ1 of the dominant Rabi drive with respect to the qubit Bloch
sphere coordinate system fixed by the first excitation pulse. In particular, we fix the
idling time between initial excitation pulse and the onset of the Rabi drive, such that the
acquired phase during that time is constant. The Rabi drive is therefore applied with a
constant relative phase ϕ1 with respect to the phase used for the excitation pulse. We
chose an LO frequency located 20 MHz or 65 MHz above the qubit control frequency,
located at about ω/2π + 95 MHz.

In the experiment with the second Rabi drive added, both drive tones are up-converted
in two separate IQ mixers while sharing a common local oscillator input to preserve their
relative phase relation, see Fig. 6.2(a). Qubit excitation and drive pulses are applied
via the same transmission line used for readout.

The bosonic mode resonator is located far away from the transmission line in space,
which reduces unwanted parasitic driving. It is strongly detuned from the readout
resonator located at ωr/2π = 8.86 GHz.
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6 The quantum Rabi model at ultra-strong coupling

Table 6.2: Summary of device and simulation parameters Errors are extracted from the fit of
the vacuum Rabi oscillations in Fig. 6.3.

ω/2π EJ/EC α/h Γ1 = 1/T1 κ

5.948 GHz 50 −0.36 GHz (0.2± 0.12)× 106 s−1 (3.9± 0.14)× 106 s−1

ωr/2π ωeff/2π η1/2π η2/2π
8.86 GHz < 8 MHz ∼ 50 MHz ∼ 3 MHz

6.4 Sample characterization

The quantum state collapse followed by a quantum revival is the most striking signature
of the ultra-strong coupling regime of the quantum Rabi model. It emerges for qubit
and bosonic mode degenerate in the laboratory frame. We calibrate this resonance
condition by minimizing the periodic swap rate of a single excitation between qubit and
bosonic mode for the simple Jaynes-Cummings model in the absence of additional Rabi
drives. Figures 6.3(a), (b) show the measured vacuum Rabi oscillations in the resonant
case (a) and dependent on the qubit transition frequency (b). For qubit preparation
and readout we detune the qubit by 95 MHz up in frequency and therewith out of
resonance. This corresponds to switching off the resonant interaction with the bosonic
mode. Experimental details on flux pulse generation are described in Sec. 4.3. Vacuum
Rabi oscillations can be observed during the interaction time ∆t and yield a coupling
strength g/2π = 4.3 MHz.

This is in good agreement with the spectroscopically obtained result, see Fig. 6.3. A two-
tone spectroscopy measurement yields a minimum line separation of 2g/2π = 8.0 MHz,
corresponding to a coupling strength of g/2π = 4.0 MHz. The dispersive readout
resonator shift is measured with a continuous microwave probe tone and an additional
microwave drive tone is applied through the same transmission line to excite the qubit
transition.

The relevant experimental device and simulation parameters are summarized in Tab. 6.2.

6.5 Master equation simulations

Master equation simulations of the quantum Rabi model are based on the master
equation solver provided by the QuTiP package [JNN12; JNN13] for Python. Here,
the time evolution of a given initial state or density matrix is calculated by solving the
von Neumann equation associated with the given system Hamiltonian in the absence of
dissipation. Dissipation is taken into account by solving the Lindblad master equation.
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Figure 6.3: Calibration of the coupling strength g between qubit and bosonic mode (a) The
qubit is initially dc-biased on resonance with the bosonic mode, while it is detuned for state
preparation and readout. The solid black line in the inset depicts the fast flux pulses applied to the
flux bias line and indicates the qubit frequency on the given axis. After preparing the qubit in |e〉,
qubit and bosonic mode are on resonance during an interaction time ∆t. A frequency fit (red) of the
vacuum Rabi oscillations yields 2g/2π = 8.5 MHz. With the decay rate Γ = (2.08±0.03)×106 s−1

of the envelope and the qubit decay rate 1/T1 = (0.2 ± 0.12) × 106 s−1 we extract the bosonic
mode decay rate κ = (3 9 ± 0.13) × 106 s−1. Error bars denote a statistical standard deviation.
(b) Typical calibration measurement for the resonance condition (blue line) between qubit and
bosonic mode. By varying the dc bias current I, we can tune out of resonance and observe the
expected decrease in excitation swap efficiency and an increase in the vacuum Rabi frequency. The
qubit population is given in colours and we applied a numerical interpolation of data points. (c)
Spectroscopic measurement of the avoided crossing between qubit and bosonic mode. The qubit
transition frequency is tuned by a dc current applied to the flux bias line. The dispersive shift of the
readout resonator is proportional to the excitation number of the qubit and is depicted in colours.
A fit yields a minimum line separation of 2g/2π = 8.0 MHz.
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6 The quantum Rabi model at ultra-strong coupling

The decay terms in the underlying Liouvillian are based on the experimentally found
parameters, summarized in Tab. 6.2. In addition we use a qubit dephasing time of
T ∗2 ∼ 0.5 µs. The Hilbert space of the bosonic mode is truncated at a photon number
of 25 to 35, while higher Fock states were found to be insignificant. The transmon
qubit is treated as a three-level system with the experimentally found anharmonicity
α/h = −0.36 GHz. To account for the |f〉 level in the transmon, we use a transversal
qubit coupling operator ∑

ij

gij |i〉 〈j| . (6.13)

The coupling matrix elements gij are found by evaluating the matrix elements of the
Cooper pair number operator N̂ in the charge basis [Koc+07; Bra+15], according to

gij ∝ |〈i|N̂ |j〉|. (6.14)

In analogy, we can define a general annihilation operator ât that reflects the transmon
anharmonicity in the simulation according to

â =
∑
i<j

gij
g01
|i〉 〈j| . (6.15)

Master equation simulations of the effective USC quantum Rabi model in the rotating
frame are performed in the two-level approximation.

6.6 Verification of the simulation scheme

Since a rotating frame is not an inertial system, the laws of physics may be drastically
altered when describing a physical system in a rotating frame. In the framework of analog
quantum simulation, this allows us to access intriguing effective parameter regimes that
are hard or impossible to tread in the laboratory frame. For the simulation scheme
applied here, it is therefore not a priori clear that the bosonic mode population evolution
of the quantum Rabi model is well reflected by the laboratory frame simulation. To verify
the simulation scheme for the ideal system we compare the bosonic mode population in
the driven laboratory frame, and the expected evolution of the ideal effective quantum
Rabi model via master equation simulations. Here, we neglect dissipation and any
parasitic drive terms in the Hamiltonian. Figure 6.4(a) demonstrates good agreement
when comparing the time evolutions of the ideal (solid line) and the constructed (dashed
line) Hamiltonians for various choices of the bosonic mode frequency ωeff in the effective
frame.

For ωeff/2π = 5 MHz we demonstrate that the photon population in the bosonic mode
is independent of the applied drive amplitude η1, despite of it forming a large energy
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Figure 6.4: Verification of the simulation scheme and effect of the parasitic drive (a) Time
evolution of the bosonic mode population for a simulation sequence with η2 = 0. We compare its
population in the ideal quantum Rabi Hamiltonian (solid line) with the population of the bosonic
mode in the laboratory frame with the drive applied (dashed line). Despite the fact that an infinite
energy reservoir is supplied by the drive, the population follows the expected one rather well. This
remains also true for varying the drive amplitude η1. Different colours correspond to a varying ωeff .
(b) Bosonic mode population for ωeff/2π = 5 MHz and a varying drive amplitude η1. The evolution
and maximum population is confirmed to be independent of η1 in first order. Master equation
simulations here are performed without taking into account dissipation and neglect parasitic driving
of the bosonic mode.

reservoir that is provided to the circuit. Simulations for various η1 in the driven
laboratory frame are depicted in Fig. 6.4(b).

6.7 Quantum state collapse and revival

The collapse-revival signature of the quantum Rabi model in USC conditions manifests
most clearly for a vanishing qubit term. We therefore initially perform a simulation
with η2 = 0, yielding an effective Hamiltonian in the qubit frame

Ĥ

~
= ωeff b̂

†b̂+ g

2 σ̂x
(
b̂† + b̂

)
. (6.16)

Figure 6.5(a) shows the applied measurement sequence which is based on the one in
Fig. 6.3(a) but extended by a drive tone of amplitude η1. The bosonic mode is initially
in the vacuum state and the qubit is prepared in one of its basis states |g〉, |e〉, which
are thermally impure. Qubit and bosonic mode are on resonance during the simulation
time ∆t. The effective bosonic mode frequency ωeff in the rotating frame is set by the
detuning of the Rabi drive at a frequency ω1 from the common resonance frequency
ω. Measured data for ωeff/2π = 8 MHz is displayed in Fig. 6.5(b), corresponding to
geff/ωeff ∼ 0.3. Data points show the experimentally simulated time evolution of the
qubit prepared in |e〉. A fast quantum state collapse followed by periodically returning
quantum revivals can be observed. The ground state of the qubit subspace in the driven
system as well as in the synthesized Hamiltonian, Eq. (6.16), is in the equatorial plane
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Figure 6.5: Quantum state collapse and revival with only the dominant Rabi drive applied (a)
Schematic pulse sequence and overview on the relative frequencies used in the experiment. (b)
Quantum simulation of the periodic recurrence of quantum state revivals for ωeff/2π = 8 MHz.
The blue line corresponds to a master equation simulation of the qubit evolution in the rotating
frame. (c), (d) Master equation and quantum simulation of the qubit time evolution for initial
qubit states |g〉, |e〉 and ωeff/2π = 5 MHz, corresponding to geff/ωeff ∼ 0.5. The red line shows
the qubit population evolution of the driven system in the laboratory frame, Eq. (6.2), while the
blue lines follow the qubit evolution in the synthesized Hamiltonian Eq. (6.12), likewise extracted
from a master equation simulation. The deviation between the envelope of the laboratory frame
data and the rotating frame data in (c) reflects the approximations of the simulation scheme.
Experimental data shows the difference between two measurements for the qubit prepared in |g〉,
|e〉, respectively, in order to isolate the qubit signal. (e) Measured population evolution of the
bosonic mode, extracted from the sum of the two successive measurements and fitted to simulated
data. Error bars throughout the figure denote a statistical standard deviation of the mean and are
propagated according to Gauss.
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6.7 Quantum state collapse and revival

of the qubit Bloch sphere and is occupied after a time ∆t � T1, 1/κ. It is diagonal in
the |±〉 basis, with |±〉 = 1/

√
2(|e〉 ± |g〉).

The revival dynamics can be understood with an intuitive picture in the laboratory
frame. The eigenenergies in the |±〉 subspaces take the form of displaced vacuum

ωeff

(
b̂† ± g

2ωeff

)(
b̂± g

2ωeff

)
+ const., (6.17)

which is a coherent state that is not diagonal in the Fock basis. The prepared initial
state in the experiment is therefore not an eigenstate in the effective basis of the driven
system. Consequently, many terms that correspond to the relevant Fock states n of
the bosonic mode participate in the dynamics with phase factors exp{inωefft}, n ∈ N+.
While contributing terms get out of phase during the state collapse, they rephase after
an idling period of 2π/ωeff to form the quantum revival. The underlying physics of
this phenomenon is fundamentally different from the origin of state revivals that were
proposed for the Jaynes-Cummings model [ENS80]. Here, the preparation of the bosonic
mode in a large coherent state with α & 10 is required and non-periodic revivals are
expected at times ∝ 1/geff rather than ∝ 1/ωeff [HR06], as demonstrated in Fig. 6.6.

The blue line in Fig. 6.5(b) corresponds to a master equation simulation of the qubit
dynamics in the effective frame, Eq. (6.16).

Figures 6.5(c),(d) show a master equation simulation and the quantum simulation for
ωeff/2π = 5 MHz, respectively, with the qubit prepared in one of its eigenstates |g〉, |e〉.
The population of the bosonic mode takes a maximum during the idling period and
adopts its initial population at 2π/ωeff in the absence of dissipation, see Fig. 6.5(e). The
fast oscillations in Fig. 6.5(c), (d) correspond to the Rabi frequency η1/2π ∼ 50 MHz.
This value is chosen such that the requirement η1/ωeff � 1 is fulfilled while staying well
below the transmon anharmonicity, avoiding higher level populations.

Deviations in the laboratory frame simulation traces are due to an uncertainty in
the Rabi frequency that is extracted from Fourier transformation of measured data,
see Fig 6.7(c). The broadening in frequency space is mainly caused by the beating
in experimental data, which is an experimental artefact, potentially originating from
pulse imperfections. The relevant dynamics of the USC quantum Rabi Hamiltonian
corresponds to the envelope of measured data.

Since the laboratory frame dissipation is enhanced for a larger ratio of photon population
in the bosonic mode, the accessible coupling regime is bound by the limited coherence of
the bosonic mode, in particular. This is demonstrated by a dependence of the coherence
envelope of the quantum revivals on the ratio g/ωeff , see Fig. 6.6. The dependence
reflects that the excitation number is no longer a conserved quantity in the quantum
Rabi model at USC conditions. Figure 6.6 further demonstrates that the maximum
position of the first quantum revival appears at to 2π/ωeff , which can be well controlled
by choosing ωeff in the quantum simulation.
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Figure 6.6: Quantum collapse and revival signatures for various ωeff The qubit is prepared in its
groundstate |g〉 and the bosonic mode is initially in the vacuum state |0〉. The first revival appears
at 2π/ωeff , respectively, and the different plots correspond to a varying ωeff . The blue line shows a
master equation simulation of the ideal effective Hamiltonian in the rotating frame, while the red
data points are the qubit population evolution in the effective qubit frame. The black line shows
the bosonic mode population in the rotating frame according to a master equation simulation,
which increases with decreasing ωeff . Note that the scale on the horizontal axis is not equal for
each plot. The depicted qubit signal is extracted from measured data with the protocol described
in Sec.6.7.1, based on the master equation simulation (black) in the absence of a parasitic drive of
the bosonic mode.

Table 6.3: Geometric coupling g/2π between qubit and bosonic mode. Experimental values
are obtained from the spectroscopic measurement and the vacuum Rabi experiment in Fig. 6.3.
The value used in master equation simulations differs slightly.

spectroscopy vacuum Rabi master eq. simulation
4.0 MHz 4.3 MHz 5.5 MHz
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6.7 Quantum state collapse and revival

We find a better agreement of experimental data with master equation simulations for
a slightly increased geometric coupling g/2π ∼ 5.5 MHz as compared to the measured
value in Fig. 6.3 of g/2π = 4.3 MHz. This may be explained by an excess population of
the bosonic mode due to a parasitic coupling of the Rabi drives, see Sec. 6.7.2. This can
effectively increase the coupling strength between qubit and bosonic mode. The effect
may be additionally enhanced by a population of higher transmon levels.

We checked that master equation simulations with increased decay and decoherence
rates, accounting for a changed environmental spectral density in the rotating frame,
cannot reproduce the correct dynamics. Simulations performed with g/2π = 4.3 MHz
show a ∼ 30% decrease in the maximum population of the bosonic mode with no
qualitative consequences. With the measured geometric coupling we approach an USC
regime with geff/ωeff ∼ 0.6 for the experiment depicted in Fig. 6.6(d). Based on the
effectively increased value for geff , we reach a relative coupling ratio of 0.7. Measured
values of geff and the effective value used in the presented master equation simulations
are summarized in 6.3.

6.7.1 Protocol for extracting the qubit population

In the simulation experiments presented in Fig. 6.5, we note a modulated low-frequency
bulge in the recorded dispersive readout resonator shift that does not agree with the
expected qubit population evolution, see Fig. 6.7(a). By comparing with the master
equation simulation, we can recognize the population evolution of the bosonic mode
which reflects the governing fundamental frequency ωeff of the effective Hamiltonian.
By simulating the full circuit Hamiltonian including qubit, bosonic mode and readout
resonator, we find that the effect is induced by an additional photon exchange coupling
f between the bosonic mode and the readout resonator. The coupling is facilitated
by the electric fields of the resonators and is potentially mediated by the qubit. By
inheriting non-linearity from the qubit, the bosonic mode can induce a cross-Kerr like
photon number dependent shift ∝ f2 on the harmonic readout resonator.

The complete Hamiltonian including the readout resonator of resonance frequency ωr
with creation (annihilation) operator â† (â) and with the RWA applied takes the form

Ĥ

~
= ε

2 σ̂z + ωb̂†b̂+ ωrâ
†â+ g

(
σ̂−b̂

† + σ̂+b̂
)

+ gr
(
σ̂−â

† + σ̂+â
)

+ f
(
âb̂† + â†b̂

)
+ σ̂xη1 cos(ω1t+ ϕ1) + σ̂xη2 cos(ω2t+ ϕ2). (6.18)

gr/2π ∼ 55 MHz denotes the coupling strength between qubit and readout resonator.
The conjecture is verified by comparing master equation simulations with the photon
exchange coupling f switched on and off, respectively, see 6.7(d). As visible in 6.7(e), the
difference of both master equation simulations (grey) follows the evolution of the bosonic
mode population (red) in the rotating frame as obtained from the same simulation. The
experimentally extracted bosonic mode population (blue) likewise agrees with the trend
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Figure 6.7: Verification of the photon exchange coupling between the bosonic mode and the
readout resonator (a) Dispersive shift of the readout resonator including both the shifts induced
by qubit and bosonic mode. The red line depicts the bosonic mode population according to a
master equation simulation. (b) Extracted qubit signal in the original qubit basis after subtracting
the additional shift induced by the bosonic mode. The analysis is based on the expectation from
the master equation simulation as depicted in (a). The qubit was prepared in |e〉. From Fourier
transformation (c) we obtain η1/2π ∼ 52 MHz. (d) Master equation simulation of the vacuum
projection |0〉 〈0| of the readout resonator state for vanishing photon exchange coupling f = 0
(blue) and for f /2π = 12 MHz (red), disregarding dissipation. The blue dashed line denotes the
mean value of the f = 0 simulation as a guide to the eye. Orange and green traces show the
same master equation simulations in the presence of dissipation and are shifted for better visibility.
The additional bulge in the presence of the photon exchange coupling f > 0 is apparent. (e) The
difference (grey) between both master equation simulations from (d) including dissipation follows
the experimentally measured bosonic mode population (blue). Both data sets are fitted to the
time evolution of the bosonic mode population (red), as obtained from the same master equation
simulation.
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6.7 Quantum state collapse and revival

from the master equation simulation. The photon exchange coupling assumes the form
of a cross-Kerr interaction after diagonalization in the subspace spanned by the bosonic
mode and the readout resonator. Comparison with measured data suggests f ∼ MHz.

In Fig. 6.5(d) we made use of the topological symmetry of simulations with initial qubit
states |g〉, |e〉. In order to cancel out the additional dispersive shift induced by the
bosonic mode, we subtract two successive measurements with the qubit prepared in
its eigenstates |g〉, |e〉, respectively. The population evolution of the bosonic mode,
depicted in Fig. 6.5(e), is obtained by summing two successive measurements with the
qubit prepared in |g〉, |e〉, respectively. The extracted bosonic mode population is fitted
to the expectation according to master equation simulations in the laboratory frame
and in the effective frame. Since the maximum population is around unity while the
qubit is in the equatorial state, the non-conservation of the total excitation number is
apparent.

This measurement protocol is based on the symmetry of the qubit signal for preparing
eigenstates, while the bosonic mode induced shift is always repulsive and does not
change its sign. The photon exchange coupling f therefore provides indirect access
to the population of the bosonic mode without a dedicated readout device available.
Specifically monitoring the population of the bosonic mode and performing a Wigner
tomography would highlight another hallmark signature of the USC regime, namely the
efficient generation of non-classical cavity states [Lan+17]. The protocol for generating
cat states in the bosonic mode with the presented scheme is elaborated in Sec. 6.9.

In the absence of such a symmetry, the qubit population can be retrieved from measured
raw data based on the master equation simulation of the bosonic mode population.
In this procedure, the dispersive shift ∝ f2 remains as the only free fit parameter.
Figure 6.7(b) shows the extracted qubit signal after subtracting the additional shift
induced by the bosonic mode. The mentioned symmetry is absent when the relative
phases of the Rabi drives are relevant or when we apply the second Rabi drive.

6.7.2 Parasitic driving of the bosonic mode

In the experiment we face a parasitic coupling of the Rabi drive tones to the bosonic
mode that is degenerate with the qubit and spatially close by in the circuit. This leads
to an excess population of the bosonic mode, however without disturbing the functional
evolution of its population.

In our circuit, the effect is accounted for by an additional drive term

ηr

(
b̂† + b̂

)
cos(ω1t) (6.19)
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6 The quantum Rabi model at ultra-strong coupling

entering the laboratory frame Hamiltonian, Eq. (6.2). ηr denotes the effective amplitude
of the parasitic drive and we take into account the effect of only the dominant Rabi drive
frequency ω1. Under the unitary transformation Û from Eq. (6.3), Eq. (6.19) becomes

ηr
2

(
b̂† + b̂

)
+ ηr

2

(
e2iω1tb̂† + e−2iω1tb̂

)
. (6.20)

Terms rotating with e±2iω1t are omitted, resulting in a time independent drive term that
is added to the Hamiltonian (6.12) in the rotating frame. The effective Hamiltonian
including the parasitic drive term reads

Ĥeff,p
~

= η2
2
σ̂z
2 + ωeff b̂

†b̂+ g

2σx
(
b̂† + b̂

)
+ ηr

2

(
b̂† + b̂

)
. (6.21)

By applying the unitary displacement transformation

D̂ = exp
{
− ηr

2ωeff

(
b̂† − b̂

)}
(6.22)

the additional term translates into a qubit tunneling term ∝ σ̂x, giving rise to a sub-
rotation of the effective frame. We obtain the quantum Rabi Hamiltonian in its original
form

D̂†
Ĥeff,p
~

D̂ = η2
2
σ̂z
2 + ωeff

(
b̂† − ηr

2ωeff

)(
b̂− ηr

2ωeff

)
+ g

2σx
(
b̂† + b̂− ηr

ωeff

)
+ ηr

2

(
b̂† + b̂− ηr

2ωeff

)
(6.23)

= η2
2
σ̂z
2 − g

ηr
2ωeff

σ̂x + ωeff b̂
†b̂+ g

2σx
(
b̂† + b̂

)
+ const., (6.24)

using

D̂†b̂†b̂D̂ = D̂†b̂†D̂D̂†b̂D̂ =
(
b̂† − ηr

2ωeff

)(
b̂− ηr

2ωeff

)
. (6.25)

The resulting dynamics complies with the envelope defined by the ideal Hamiltonian
with the tunneling term absent and therefore maps to the ideal quantum Rabi model,
leaving its dynamics qualitatively unaffected. Master equation simulations supporting
these statements are depicted in Fig. 6.8(a), (b). The thick black line in Fig. 6.8(a)
shows a master equation simulation of the qubit population according to the effective
Hamiltonian, Eq. (6.12), for ηr = 0. When switching on the parasitic driving, ηr 6= 0,
the qubit is subject to a sub-rotation that however adheres with the envelope defined
by the pure Hamiltonian. The dynamics of the bosonic mode remains unchanged by
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Figure 6.8: Effect of parasitic driving of the bosonic mode (a) Master equation simulation of
the qubit population for the effective Hamiltonian, Eq. (6.24), without the qubit tunneling term
ηr = 0 (black) in comparison with simulations for ηr 6= 0, plotted in colours. One can see that the
additional qubit tunneling term ∝ σ̂x introduces a rotation while complying with the envelope of
the ideal Hamiltonian, see Eq. (6.12). We demonstrate this by plotting the evolution for various
values of ηr and ωeff/2π = 5 MHz. (b) Bosonic mode population based on a master equation
simulation for a harmonic oscillator under a static transversal drive. The periodicity of the evolution
in the quantum Rabi model is reproduced up to a scaling factor.

the parasitic drive, as the displacement transformation defined in Eq. (6.22) leaves the
eigenenergies of the isolated harmonic oscillator unchanged,

D̂†
(
ωeff b̂

†b̂+ 1
2ηr(b̂† + b̂)

)
D̂ = ωeff b̂

†b̂+ const. (6.26)

The time evolution of the driven harmonic oscillator Hamiltonian in the rotating frame,

Ĥh
~

= ωeff b̂
†b̂+ 1

2ηr(b̂† + b̂) (6.27)

is depicted in Fig. 6.8(b) for varying ηr.

The qubit tunneling term emerging in Eq. (6.24) appears as a correction of the dominant
Rabi frequency η1 after the transformation into the ω1-rotating frame, see Eq. (6.6).
The resulting effective Rabi frequency becomes

η1,eff = η1 − g
ηr

2ωeff
(6.28)

and the transformation into the interaction picture, Eq. (6.11), is performed with
respect to η1,eff . This amounts to an effective decrease of the dominant Rabi frequency,
which can be observed in the laboratory frame dynamics by a decrease in the fast
oscillation frequency of the qubit population. We find quantitative agreement between
the analytical expectation in Eq. (6.28) and the observed oscillation frequencies in
master equation simulations of the driven laboratory frame Hamiltonian with and
without parasitic drive term, see Sec. 6.8.
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Figure 6.9: Qubit time evolution for a varying relative phase ϕ1 of the applied drive The initial
qubit state is prepared on the equator of the Bloch sphere |g〉±|e〉. Dispersive shifts induced by the
bosonic mode are subtracted based on its population evolution as obtained in a master equation
simulation.

For a realistic parasitic coupling ηr ∼ 0.1η1 and ωeff/2π = 5 MHz, we obtain an effective
qubit tunneling term

− g ηr
2ωeff

σ̂x ∼ −2π × 2.2 MHz× σ̂x ∼ −0.4ωeff × σ̂x. (6.29)

The effective change in the dominant Rabi frequency is on the order of 5%. Therewith,
only a small modification to the frequency constraint ω1 − ω2 = η1,eff is necessary due
to the parasitic driving of the bosonic mode.

6.7.3 Phase dependent qubit response

While the phase of the qubit Bloch vector is not well defined for initial states |g〉, |e〉,
the qubit state carries phase information when prepared on the equatorial plane of the
Bloch sphere via a π/2 pulse. Figure 6.9 shows the qubit time evolution with varying
relative phase ϕ1. The plots are given in the original qubit basis, as calibrated in a Rabi
oscillation experiment. Experimentally, the orientation of the coordinate system is set
by the first microwave pulse and we apply the Rabi drive with a varying relative phase
ϕ1, corresponding to the angle between qubit Bloch vector and rotation axis of the
drive in the equatorial plane. When both are perpendicular, ϕ1 = ±π/2 in Fig. 6.9(a),
(b), we record a similar dynamics as observed in Fig. 6.5. The steady state at long
simulation times is in the equatorial plane. For the case where ϕ1 = 0,π in Fig. 6.9(c),
(d), qubit oscillations in the laboratory frame are suppressed while the baseline is shifted
up or down, dependent on the choice of ϕ1. The remaining substructure emerges from
the swap interaction term between qubit and bosonic mode in the laboratory frame
Hamiltonian and may be regarded as a perturbation since η1 � g.
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6.8 Simulation of the full quantum Rabi model

Master equation simulations confirm that the basis shift, dependent on the prepared
initial qubit state, is enhanced by the presence of the second excited transmon level
and by a spectral broadening of the applied Rabi drive. The experimentally observed
shift is not entirely captured by the master equation simulation which we attribute to
missing terms in the master equation that may be related to qubit tuning pulses and
are unknown at present. We conjecture that the basis shifts are caused by an effective
tilt of the qubit Bloch sphere as an artefact of the frequency tuning in experiment prior
to applying the Rabi drives. We isolate the effect as an initialization issue since the
basis shift cancels out in good approximation when averaging the mutually anti-parallel
simulation sequences in Fig. 6.9. Dependent on ϕ1, we observe a varying maximum
photon population of the bosonic mode in master equation simulations. This is also
indicated in raw data of the measured dispersive shift of the readout resonator.

The qubit population as depicted in Fig. 6.9 is retrieved from measured raw data by
subtracting the contribution of the bosonic mode as described in Sec. 6.7.1. A deviation
of the effective qubit basis is likewise observed for preparing the qubit in one of its
eigenstates |g〉, |e〉, see Fig. 6.5, 6.6. The calibration of the original qubit basis is
presented in the Supplementary Material of Ref. [Bra+17].

6.8 Simulation of the full quantum Rabi model

In order to simulate the full quantum Rabi model including a non-vanishing qubit energy
term we switch on the second drive, η2 6= 0, see the pulse sequence in Fig. 6.10(a).
Quantum simulations are performed with the qubit prepared in |g〉, subject to a thermal
excess population. For the simulation scheme to be valid, we need to fulfil the parameter
constraint ω2 = ω1−η1, according to the schematics in Fig. 6.10(b). We initially record
a simulation sequence with η2 = 0 and extract the Rabi frequency η1 from a fit to the
Fourier transformation of the qubit time evolution. Subsequently, we apply the same
sequence including the second drive, η2 > 0 and ω2 based on the extracted value for η1
in order to obey the constraint ω2 = ω1 − η1. By sweeping the relative phase ϕ1 − ϕ2
between the two drives we calibrate the condition where ϕ1 = ϕ2.

Figure 6.10(c) shows a master equation simulation of the complete quantum Rabi model
for η2 = 0 (grey) and η2 6= 0 (red), respectively. The main difference is an emerging
substructure between quantum revivals and a slight increase of the revival amplitude in
the presence of the qubit energy term. In measured data, see Fig. 6.10(d), the additional
substructure could not be fully reproduced. We attribute this to pulse imperfections
caused by ring up dynamics of the rectangular drive pulses. The frequency of the short
pulses is thereby not well defined such that the frequency constraint of the simulation
scheme is not sufficiently well satisfied. In particular, the frequency beating in measured
data leads to a broadening of the Rabi frequency η1 in Fourier space. One can observe
in Fig. 6.10(d) that more pronounced oscillations are better visible at regions of smaller
oscillation frequency, namely during the collapse and around the revival. An increased
revival amplitude is likewise indicated.
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Figure 6.10: Simulation of the full quantum Rabi model (a) Schematic pulse sequence used in the
experiment. (b) Overview on the relative frequencies of the bosonic mode and the applied drives.
The constraint η1 = ω1 − ω2 is sketched. (c) Master equation simulations for a vanishing qubit
term η2 = 0 (grey) and with non-vanishing qubit term η2 > 0 (red). The blue line corresponds to
the master equation simulation in the effective frame for η2/2π = 3 MHz. (d) Quantum simulation
for equal parameters. The dispersive shift of the readout resonator induced by the bosonic mode
is subtracted based on a master equation simulation and we added a small offset between the
traces for better visibility. (e)-(h) Dependence on the relative phase ϕ1 − ϕ2 in the presence of
a parasitic drive, ηr = 0.05η1. Panels (e) and (f) show master equation simulations for ϕ1 = ϕ2
(e) and ϕ1 6= ϕ2 (f). The respective experimental traces are given in (g), (h). The trends are
reproduced in measured data, in particular with respect to the position of the first revival and the
oscillation amplitude before the revival. The decrease in the Rabi frequency due to the parasitic
drive is indicated in (c) and (e) by arrows.
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6.9 Efficient generation of non-classical cavity states

In principle, pulses of higher fidelity can be achieved in experiment by using Gaussian
shaped envelopes, since high frequency Fourier components are suppressed. This is
however incompatible with the simulation scheme, which requires rectangular pulses of
constant Rabi frequency. These limitations of the simulation scheme become visible in
particular in the presented experiment including two Rabi drives.

In addition, the parasitic drive of the bosonic mode contributes to a suppression of
the expected signatures, which is suggested by master equation simulations. In our
experimental scheme, we in fact extract the effective Rabi frequency η1,eff from Fourier
transformation, since the shift induced by the parasitic drive is included in the fast
oscillation frequency, as discussed in Sec. 6.7.2. The frequency constraint is therefore
correctly calibrated. The change in the effective Rabi frequency η1,eff can be observed
by comparing the frequencies of the red lines in Fig. 6.10(c), (e). Figure 6.10(e) shows a
master equation simulation in the presence of parasitic driving, which leads to a decrease
in the Rabi frequency. The frequency shift is indicated by arrows close to ∆t = 0.15 µs
as a guide to the eye.

By performing master equation simulations with a varying parasitic drive strength, we
note a qualitative dependence of the bosonic mode population. We conjecture that this
is due to the induced sub-rotation discussed in Sec. 6.7.2 and similar to the observations
in Sec. 6.7.3 for varying the initial qubit phase.

In order to further demonstrate the effect of the second Rabi drive, we sweep its
relative phase ϕ1−ϕ2. Figures 6.10(e), (f) show master equation simulations including
the parasitic coupling to the bosonic mode, while the associated experimental traces
are depicted in Fig. 6.10(g), (h), respectively. While deviations between theory and
experiment are present, we observe the trend that the revival is shifted to later times for
a violated phase condition ϕ1 6= ϕ2 and the oscillation amplitude before the first revival
is suppressed. The correct scenario is depicted in Fig. 6.10(g), being the identical data
set as in Fig. 6.10(d).

We estimate η2/2π ∼ 3 MHz by comparing the relative peak heights of both drive
tones with a spectrum analyser. With ωeff/2π = 6 MHz we approach a regime where
2geff/

√
ωeffη2/2 > 1, marking the quantum critical point in the related Dicke model

[NC10].

6.9 Efficient generation of non-classical cavity states

The presented simulation scheme provides an efficient technique to generate non-
classical states in the Fock space of the bosonic mode. We demonstrate this in Fig. 6.11
by plotting the time evolution of the Wigner function W (X,P ) of the bosonic mode
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Figure 6.11: Wigner function evolution of the bosonic mode for the quantum Rabi Hamiltonian
at USC conditions The plots show the time evolution of the Wigner function W (X , P) in the
absence of dissipation as calculated from a master equation simulation. The qubit state is post-
selected either in state |g〉 (a) or |e〉 (b). Depending on the qubit state one can observe the
formation of even |α〉+ |−α〉 (a) and odd |α〉 − |−α〉 (b) cat states, respectively, which differ in
their unique interference patterns. |α〉 denotes a coherent state. X ∝ b̂† + b̂ and P ∝ i(b̂† − b̂)
refer to the conjugate variables of the bosonic mode.
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6.10 Conclusion

after post-selecting the qubit in either of its basis states. We use the Wigner function
representation

W (X,P , t) = 1
π~

∫ ∞
−∞

dY ψ∗(X + Y , t)ψ(X − Y , t)e2iPY , (6.30)

whereX ∝ b̂†+ b̂ and P ∝ i(b̂†− b̂) refer to the conjugate variables of the bosonic mode
and ψ(X, t) denotes the pure state wavefunction of the bosonic mode after an evolution
time t. Post-selection is performed numerically by projecting the evolved state |Ψ(t)〉
of the joint Hilbert space according to

|Ψ(t)〉|g〉 = (1b ⊗ |g〉 〈g|) |Ψ(t)〉
|Ψ(t)〉|e〉 = (1b ⊗ |e〉 〈e|) |Ψ(t)〉 . (6.31)

The Wigner function is evaluated using the bosonic mode state |ψ(t)〉. It is obtained by
taking the partial trace in the qubit Hilbert space,

|ψ(t)〉|g〉 = trq |Ψ(t)〉|g〉
|ψ(t)〉|e〉 = trq |Ψ(t)〉|e〉 . (6.32)

Experimentally, the post-selection requires a single-shot qubit readout that is feasible
with parametric quantum amplifiers. This allows for a correct allocation of the measured
resonator state according to the qubit state. In order to perform a full Wigner
tomography protocol, projection measurements with the help of an ancillary qubit need
to be repeated multiple times in order to record every pixel of the Wigner plot. The
mentioned experimental techniques are sophisticated and were not available when the
above experiment was performed. However, the simulations demonstrate the eligibility
of the presented simulation scheme for fast and efficient creation of non-classical cavity
states.

The master equation simulation underlying Fig. 6.11 was performed for the effective
quantum Rabi Hamiltonian at USC conditions in the absence of a qubit term, see
Eq. (6.16). Simulation parameters orientate at the presented experiment withωeff/2π =
2 MHz and g/2π = 5 MHz and we neglected dissipation.

6.10 Conclusion

We have demonstrated an analog quantum simulation of the quantum Rabi model
in the ultra-strong coupling regime. A quantum state collapse and revival as the
distinct signatures of this regime were observed in the qubit dynamics, validating
the experimental feasibility of the proposed simulation scheme [Bal+12]. While the
accessible coupling regime is fundamentally not limited by the scheme, we could
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6 The quantum Rabi model at ultra-strong coupling

experimentally observe quantum revivals up to a coupling regime where geff/ωeff ∼ 0.6
due to the finite coherence and unwanted cross-talk in our circuit. A limitation of the
scheme is an effective slowing down of the system dynamics, while the laboratory frame
dissipation rates are maintained in the synthesized frame. In analogy to the measure of
cooperativity in standard QED, we find the ratio geff/

√
κ/T1 ∼ 30, rendering the qubit

and bosonic mode decay rates an ultimate limitation for the simulation quality. The
decelerated system dynamics in the effective frame however allows for the observation of
quantum revivals on a time-scale of∼ 100 ns, while the repetition time of revivals in the
laboratory frame USC quantum Rabi model is on a time scale of 2πω−1 ∼ 0.2 ns, being
experimentally hard to resolve. A major limitation of the simulation scheme emerged in
simulating the full quantum Rabi model with two Rabi drives applied. Presumably due
to the rectangular shape of the drive pulses, as required by the simulation scheme, we
observed a frequency beating in the experimental simulations. As a consequence, the
parameter constraints required by the scheme were satisfied only to a limited extend,
which explains the encountered deviations from master equation simulations. The
parasitic coupling of the dominant Rabi drive to the bosonic mode further limits the
simulation quality.
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7 Towardsquantumsimulationofthe
spinbosonmodel

By substituting the single harmonic oscillator mode of the quantum Rabi model by a
set of oscillator modes that form a bosonic bath, we can engineer the spin boson model.
Similar to the quantum Rabi model, the spin boson model is described by an infinitely
large Hilbert space and the model exhibits non-classical ground state properties and
dynamics in certain parameter regimes. The spin boson model can capture basic
biological phenomena in a more realistic way than the simplified quantum Rabi model
investigated in the previous chapter.

In principle one can integrate the spin boson model numerically by truncating the
Hilbert spaces of the resonator modes at a large enough maximum Fock number in order
to recover a finite problem. However, it turns out that numerical solutions are very
sensitive on the choice of the truncation, such that they regularly diverge [FG96]. Several
numerical methods have been devised to study the dynamics of the spin boson model,
such as the non-interacting blip approximation (NIBA) [Leg+87], non-Markovian
master equations [Koc+08], Monte Carlo methods [Gul+11], renormalization group
approaches [AS06] and several others [OIL13]. For specific parameter regimes, the
results of these techniques have been shown to be of questionable validity and are not
always numerically exact [ABV07; OIL13]. The vision of the present approach is to
experimentally quantum simulate the dynamics of the spin boson model in various
regimes and thereby provide indications which of the presented solutions obtained in
numerical approaches are most promising.

In this chapter we present an on-chip implementation of the spin boson model based on
a modular flip-chip approach and show experimental evidence that the dissipative qubit
dynamics is governed by the engineered bosonic bath. This can be a starting point to
observe a variety of interesting phenomena in the spin boson model [Lep+17].

7.1 The spin boson model

The spin boson model generically describes the effect of a dissipative environment on the
dynamics of a quantum mechanical two-level system, or qubit [Leg+87; FVN10]. While
the dynamics of an isolated qubit can be obtained analytically, solving the complete
spin boson model becomes non-trivial for an open quantum system in an arbitrary
environment. In order to access and exploit the quantum properties of a qubit or a more
complex quantum circuit, a finite interaction with its environment is required.
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7 Towards quantum simulation of the spin boson model

The quantum impurity couples to the electromagnetic field of the bosonic environment
via its electric dipole moment. Provided that the interaction strength is sufficiently
weak, the environment can be represented as a set of harmonic oscillators with a coupling
strength that is linear in the oscillator coordinates. In addition, it was argued that it is
adequate and sufficiently general to treat the effect of the environment on the qubit with
an interaction term only proportional to one qubit degree of freedom, say σ̂x [Leg+87].

The general spin boson Hamiltonian, a variant of the Caldeira-Legget model [CL83],
reads

Ĥ

~
= ε

2 σ̂z + ∆
2 σ̂x +

∑
i

ωib̂
†
i b̂i + σ̂x

∑
i

gi

(
b̂†i + b̂i

)
, (7.1)

with ε the qubit transition frequency, ∆ a qubit tunneling matrix element, ωi the
frequencies of the oscillator modes and gi the individual coupling strengths between the
qubit and bosonic mode i. σ̂i are Pauli matrices with σ̂z |g〉 = − |g〉 and σ̂z |e〉 = |e〉,
where |g〉, |e〉denote the eigenstates of the computational qubit basis. b̂†i (b̂i) are creation
(annihilation) operators in the Fock space of the i-th oscillator mode. In quantizing the
harmonic oscillator, we obtain bosonic commutation relations

[
b̂i, b̂†j

]
= b̂ib̂

†
j − b̂

†
j b̂i = δij , δij =

{
1 if i = j

0 if i 6= j
, (7.2)

with δij the Kronecker delta. The oscillator modes are therefore referred to as bosonic
modes and we call the collective of the bosonic modes the bosonic bath. The fact that
the qubit Hamiltonian represents a particle with spin-1/2 in a constant and parallel
magnetic field, motivates the name spin boson model.

The spin boson Hamiltonian (7.1) becomes non-diagonal and therefore non-trivial for
ε 6= 0, rendering it an appealing testbed for quantum simulations. Since the effects of
the tunneling term are negligible in many scenarios of practical interest, we focus on
the case where ∆ = 0.

The notation in Eq. (7.1) is equivalent to the literature notation, where the σ̂z-operator
typically appears in the coupling term and the σ̂x-operator in the qubit term. Our
notation is motivated by considering the spin boson model as a many-mode extension of
the quantum Rabi model. Besides, it allows for a direct mapping onto a cQED system
involving a single qubit, transversally coupled to a set of harmonic oscillator modes. For
the transmon qubit in particular, the tunneling matrix element vanishes, since hopping
between wells in the Josephson potential are suppressed due to its periodicity. For a
small inductive term in the transmon Hamiltonian this argument remains valid in the
spirit of the WKB approximation.
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7.2 Bath spectral density J(ω)

7.2 Bath spectral density J(ω)

In thermal equilibrium, the properties of the bosonic bath as experienced by the qubit
are encapsulated in the bath spectral density J(ω) [Leg+87; VEA12], defined as

J(ω) ≡ π~
∑
i

g2
i δ(ω − ωi). (7.3)

By considering only positive bosonic mode frequencies ωi > 0, J(ω) is non-zero only for
ω > 0. By assuming that J(ω) is a smooth function and can be written as a power law
up to a cut-off frequency ωc, we obtain

J(ω) = π

2α~ω
sω−s+1

c C(ω,ωc). (7.4)

α denotes the dimensionless Kondo parameter, which is interpreted as a dissipation
strength [SMS02] and C(ω,ωc) is a cut-off function.

The exponent s describes the shape of the spectral function. s = 1 corresponds to a
linear spectral function, also called ohmic, where J(ω) ∝ ω, as is the case for a 50 Ω
matched transmission line. The regime where s < 1 is called sub-ohmic and turns out
to be particularly appealing to study in the framework of quantum simulations, since
numerical exact solutions are scarce.

The bath spectral density, as defined in Eq. (7.3), corresponds to the density of states

ρ(ω) = 1
~
∑
i

δ(ω − ωi), (7.5)

with single mode contributions weighted by the square of the individual coupling
strengths gi. The effect of the bosonic environment on the qubit is entirely captured
by the bath spectral density J(ω) [FVN10], since any correlator of more than two bath
operators can be split into a product of correlators of only two bath operators. This is
due to the underlying Gaussian statistics of the bosonic modes [Lep+17].

7.3 Bath spectral function S(ω)

In order to account for a finite temperature, we introduce the spectral function S(ω).
It is defined as the Fourier transform of the bath correlator [VEA12],

S(ω) =
∫ ∞
−∞

dτeiωτ 〈X̂(τ)X̂(0)〉, (7.6)
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7 Towards quantum simulation of the spin boson model

with the bath operator [Hau15; Paz+16]

X̂ =
∑
i

~gi
(
b̂†i + b̂i

)
. (7.7)

Sometimes, only the symmetrized version of the bath correlator 〈[X̂(τ), X̂(0)]+〉 enters
the definition of S(ω), referred to as the classical component of the spectral function
[Paz+16]. From

〈[X̂(τ), X̂(0)]+〉+ 〈[X̂(τ), X̂(0)]−〉 = 〈X̂(τ)X̂(0)〉, (7.8)

we can see that the complete form of S(ω) is obtained from the sum of the anti-
commutator [, ]+ and the commutator [, ]− representation of the bath operator products.

We can evaluate Eq. (7.6) by inserting the definition of X̂ in Eq. (7.7),

S(ω) =
∫ ∞
−∞

dτeiωτ
∑
i,j

~2gigj

〈(
b̂†i (τ) + b̂i(τ)

)(
b̂†j + b̂j

)〉
(7.9)

= ~2
∑
i

g2
i

∫ ∞
−∞

dτeiωτ
[
〈b̂†i b̂i〉e

iωiτ + 〈b̂ib̂†i 〉e−iωiτ
]

(7.10)

= ~2
∑
i

g2
i

∫ ∞
−∞

dω̄δ(ω̄ − ωi)
∫ ∞
−∞

dτ
[
n(ω̄)eiω̄τ + (1 + n(ω̄))e−iω̄τ ] (7.11)

= ~
π

∫ ∞
0

dω̄J(ω̄)
∫ ∞
−∞

dτeiωτ [n(ω̄)eiω̄τ + (1 + n(ω̄))e−iω̄τ ]
= ~
π

∫ ∞
−∞

dτeiωτ
[∫ 0

−∞
dω̄J(−ω̄)n(−ω̄)e−iω̄τ +

∫ ∞
0

dω̄J(ω̄)(1 + n(ω̄))e−iω̄τ
]

= ~
π

∫ ∞
−∞

dτeiωτ
[∫ ∞
−∞

dω̄J(|ω̄|)sgn(ω̄)(1 + n(ω̄))e−iω̄τ
]

(7.12)

= 2~J(|ω|)sgn(ω)(1 + n(ω))

= ~J(|ω|)sgn(ω)
(

1 + coth
(
β~ω

2

))
. (7.13)

Inorder toarriveatEq. (7.10), weemployedthe timeevolutionoperator Û(τ) = e−iĤbτ/~

of the bosonic bath Hamiltonian Ĥb =
∑
i ~ωib̂

†
i b̂i, and the identities

b̂†i (τ) = Û†(τ)b̂†i Û(τ) = eiĤbτ b̂†ie
−iĤbτ = b̂†ie

iωiτ (7.14)

b̂i(τ) = Û†(τ)b̂iÛ(τ) = eiĤbτ b̂ie
−iĤbτ = b̂ie

−iωiτ . (7.15)
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7.3 Bath spectral function S(ω)

Additionally, we introduced the Bose-Einstein statistics

n(ω) = 1
eβ~ω − 1 = 1

2

(
coth

(
β~ω

2

)
− 1
)

(7.16)

in Eq. (7.11), with β−1 ≡ kBT . In order to account for negative frequencies ω we use
the relation n(−ω) = −(n(ω) + 1) and the sign function sgn(ω) to arrive at Eq. (7.12).

The close relation between the spectral function S(ω) and the bath spectral density
J(ω) is revealed most clearly at T = 0,

S(ω)|T=0 = 2~J(|ω|)sgn(ω). (7.17)

Likewise, S(ω) agrees with J(ω) up to a constant factor for ω � T , while S(ω = 0) ∝ T
for an ohmic spectral density.

7.3.1 1/f noise

As an example, the spectral function reduces to

S(ω) = π~2αωcC(ω,ωc) coth
(
β~ω

2

)
(7.18)

in the case where s = 0 in the bath spectral density, Eq. (7.4). In the limit β~ω � 1, we
can expand coth(β~ω/2) ≈ 2(β~ω)−1 and Eq. (7.18) becomes

S(ω � β−1) = π~αωcC(ω,ωc) 2
βω

, (7.19)

yielding 1/f noise that is incessantly present in experiment and in general of unclear
origin.

7.3.2 Relation to a circuit impedance

From the fluctuation dissipation theorem, we can derive a formula connecting the
spectral function S(ω) of a bosonic environment to its equivalent impedance Z(ω)
[SMS02; Lep+17],

S(ω)|T=0 ∝ ω<Z(ω). (7.20)

The proportionality factor contains information on how voltage fluctuations in the
environment characterized byZ(ω) influence the qubit. It is apparent from this relation
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Figure 7.1: Generic spin boson circuit diagram and schematic principle of our approach (a)
Transmon qubit coupled to an environment with impedance Zb = Zb(ω). (b) The effective qubit
capacitance as seen by the bath becomes Cint. (c) Spectral function S(ω) of a bosonic bath with
restricted frequency range in the laboratory frame. (d) In the frame rotating at ωr , the bosonic
bath has a sharp onset at zero frequency, corresponding to the case T = 0. In the rotating frame,
we therewith avoid a finite value of the spectral function at ω = 0.

that a 50 Ω matched transmission line with Z(ω) = const yields an ohmic spectral
function with a linear frequency dependence as pointed out in Sec. 7.2,

S(ω) ∝ ω. (7.21)

For completeness, we note thatS(ω) corresponds to the expected Lorentzian distribution
for a parallel LCR resonator. With lumped-element resistance R, capacitance C,
inductance L, and internal quality factor Qi, as defined in Ch. 3, we obtain [Poz12]

Z(ω) =
(

1
R

+ iωC + 1
iωL

)−1
≈ R

1 + 2iQi∆ω/ω0
(7.22)

and therefore

S(ω)T=0 ∝ ω<Z(ω) ∝ ω

1 + 4Q2
i

(
∆ω
ω0

)2 ≈
ω0

1 + 4Q2
i

(
∆ω
ω0

)2 . (7.23)

7.4 Experimental concept

It is our goal to engineer a tailored bosonic bath that influences the dissipative qubit
dynamics in a controlled way. We want to achieve a scenario where the qubit dissipation
into the bosonic bath is dominating the total decay rate of the qubit. As a consequence,
the effect of unwanted and possibly unknown decay channels can be neglected.

Figure 7.1(a) shows the generic circuit diagram of a transmon qubit coupled to an
environment characterized by the equivalent bosonic bath impedance Zb(ω). In our
experiment, we use a frequency tunable concentric transmon qubit with identical
geometric parameters as detailed in Ch. 5. At a fundamental qubit frequency ε/2π =
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b

22 mm
qubit sample

bosonic batha

Figure 7.2: Flip-chip sample box (a) A schematic side view shows how the two samples are
attached on top of each other. Their distance is adjusted by the hight of machined spacers inside
the sample box. (b) Photograph of the flip-chip sample box with two samples mounted on top of
each other. Samples are fixed by using CuBe clamps.

7.412 GHz we measure a transmon anharmonicity of α/h = −0.30 GHz. The relevant
capacitance accounting for the qubit is Cint = CJCg/(CJ + Cg), given as the series
capacitance of CJ and Cg, see Fig. 7.1(b). The effective impedance Z(ω) that maps to
the spectral function S(ω) therewith becomes

Z(ω)−1 = iωCint + Zb(ω)−1. (7.24)

In the experiment, we engineer a bosonic bath in a restricted frequency band of about
0.5 GHz, see the schematic in Fig. 7.1(c). This allows us to effectively switch off the
influence of the bosonic bath by detuning the qubit from the spectral location of the
bosonic bath, for instance during state preparation and readout. In addition, we can
look at the qubit-bath system in a frame rotating with the lower cut-off frequency ω0
of the bosonic bath, see Fig. 7.1(d). In the rotating frame, we obtain a natural shape
of the spectral function with S(ω = 0) ≈ 0. Additionally, we can create an effective
spectral function with a finite zero-frequency value S(ω = 0) > 0 by moving into a
frame rotating at a frequency ω > ω0. In such a way, we can choose the effective system
temperature by selecting the appropriate rotating frame. In bath implementations with
transmission lines, the finite temperature behaviour of the spectral function is known
as the infrared cut-off problem.

7.5 Flip-chip approach

In our experimental realization of the spin boson model, we distribute the relevant
elements of the spin boson model on two physically different chips. The qubit with
its readout and control circuitry is fabricated on an intrinsic silicon substrate, using a
single electron beam lithography step and Al evaporation as detailed in Sec. 4.1. The
bosonic bath is fabricated on a separate sapphire chip in an optical lift-off lithography
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7 Towards quantum simulation of the spin boson model

Table 7.1: Relevant parameters of the lumped element resonators constituting the bosonic
bath We summarize the individual resonance frequencies ωi/2π, spectral widths ∆ωi/2π, internal
quality factors Qi,i and lumped-element parameters Li , C and resonator impedance Zi .

ωi/2π (GHz) ∆ωi/2π (MHz) Qi,i (103) Li (nH) C (pF) Zi (Ω)
7.5 .. 8.0 36 .. 40 0.21 .. 0.20 2.15 .. 1.9 0.21 101 ..95

process. Both samples are mounted inside a specifically designed sample box on top of
each other in a flip-chip fashion. The qubit sample at the bottom is mounted on the
ground level of the sample box, which allows for the required bond connections to the
PCB. The bosonic bath sample is mounted on top of two pedestals that are machined
inside the sample box, see Fig. 7.2(a). It is flipped upside down and therefore facing the
qubit chip, facilitating a coupling via electric fields.

The distance between the two chips is adjusted via the height of the spacers. We
designed boxes that yield a sample spacing of 35 µm to 80 µm, at a precision of ±3 µm,
given by the precision of the CNC mill in our machine shop. The experiment presented
in Sec. 7.7 is carried out for a sample spacing of 35 µm.

Instead of using glue that would potentially lift the samples due to the capillary effect,
we hold both chips with CuBe clamps that are known to maintain their elasticity at low
temperatures. See Fig. 7.2(b) for a photograph of the two samples mounted inside the
box.

A main advantage of this flip-chip technique is its modularity. It allows us to measure
the qubit dynamics in the presence of different bosonic baths with varying spectral
functions S(ω). In addition, we can pre-characterize the qubit sample without bosonic
bath attached. Moreover, fabricated bosonic bath chips can be tested by measuring
microwave transmission through a separate probe sample, which is mounted as the
lower chip inside an identical sample box.

7.6 Engineering of the bosonic bath

There are various approaches to engineer a specific spectral function with supercon-
ducting circuits. They have in common that the equivalent impedance Z(ω) of the bath
is tailored, which is connected to its spectral function, see Eq. (7.20).

The most intuitive approach to synthesize the bath Hamiltonian from Eq. (7.1) is to
fabricate many individual resonators that individually couple to the qubit. In order to
achieve a continuous spectral function in a fixed frequency band, the number of required
resonators depends on the spectral width of the individual resonators. Since the number
of resonators that can couple to a single qubit is experimentally limited, we deliberately
increase their line widths.
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Figure 7.3: Tailored bosonic bath (a) Lumped-element circuit diagram of one of the 20 bath
resonators, showing a series LCR circuit. (b) Circuit diagram of the bath impedance Z built out
of many individual resonators of impedance Zi . The bath capacitively couples to the transmon
qubit which is represented by its effective capacitance Cint. Parasitic coupling between individual
resonators is represented by capacitances Cp,i . (c) Optical micrograph of a fabricated bosonic bath.
The variation of the individual coupling capacitances Cc,i is visible by various lengths of the coupler
arms. Resonators that are adjacent in frequency are also spatially neighbouring. (d), (e) The
insets show the lumped-elements of the resonators. The resistive copper metallization is visible in
red. (f) Version of the bosonic bath, with resonators that are adjacent in frequency arranged at
maximum distance. The resistive element used here is an AuPd metallization, as described in the
text.
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Figure 7.4: Microwave simulations for designing the bosonic bath (a) The figure shows the
coupling capacitance Cc,i of a single resonator of the bosonic bath to the concentric transmon qubit
based on a microwave simulation. The distance between the two chips is 50 µm in the simulation.
We plot the shortening ∆l of the coupler arm with respect to the maximal length that yields a
maximum coupling capacitance of 1.1 fF. The simulated geometry is schematically depicted in
the inset. The concentric transmon (red) is located on the lower chip in the simulation, while a
single resonator (blue) is on the bottom layer of the upper chip. Maximum coupling is achieved
when the coupler arm touches the ring electrode of the qubit in the projection. The blue line
corresponds to a spline fit of simulated data points. (b) Simulated maximum coupling strength
gi ,max/2π = 1.0 MHz for ∆l = 0 at a chip spacing of 35 µm.

We use 20 superconducting series lumped-element resonators that are equipped with
a resistive element. With a designed line width in the range of ∼ 40 MHz, we can
achieve a rather smooth filling of a 0.5 GHz wide frequency band. See Fig. 7.3(a) for a
circuit diagram of a single resonator. The inductance Li of resonator i is linearly varied,
resulting in a linear distribution of the bare resonator frequencies in good approximation.

Since the frequency band where the bath has non-zero J(ω) is small, the effective
environment impedance Z(ω) must reflect the desired form of the bath spectral density.
We achieve a shaping of Z(ω) by adjusting the coupling strengths gi between qubit
and the individual lumped-element resonators forming the bosonic bath. Since the
coupling strengths and therefore the coupling capacitances Cc,i ∼ gi appear in first
order linear in Z(ω) [Lep+17], we linearly vary Cc,i = 0.17 fF to 1.1 fF in order to
recover an approximately ohmic spectral function. See Fig. 7.3(b) for a complete circuit
diagram of the bosonic bath.

From microwave simulations 1, we obtain a relation between the length of the coupling
antenna and the coupling capacitance Cc,i between qubit and bosonic mode i. See
Fig. 7.4(a) for the simulated data and a schematic illustration of the simulation layout.
In the simulation we use three microwave ports, located on the central qubit island,
the qubit ring electrode, and on the coupling antenna of the lumped-element resonator
on the upper chip. We deduce the effective coupling capacitance from the simulated
admittance matrix. In a separate simulation, we find that the coupling strength is equal
for various positions at the ring electrode of the concentric transmon qubit. This can be
1 Sonnet Software Inc., Sonnet Professional 13.52
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understood by the lumped-element nature of the concentric transmon qubit, see Ch. 5.
By simulating the level repelling between the qubit and a bosonic mode resonator, we
extract a maximum coupling strength gi,max/2π = 1.0 MHz for ∆l = 0 at a chip spacing
of 35 µm, see Fig. 7.4(b).

The resistive elements for the bosonic bath resonators are formed by a gold-palladium
AuPd film, which does not become superconducting at low temperatures. The internal
quality factorQi,i = Zi/R of bosonic mode i can be calculated from the series resistance
R of the normal metal piece.

On a silicon substrate we measure a room temperature square resistance R� = 2.6 Ω
for a AuPd film thickness of 85 nm. With a designed square resistance of 0.25� in the
bosonic bath resonators, we obtain a target resistance of 0.51 Ω at base temperature,
taking into account a decrease in the sheet resistance by 20% [Kle15].

Micrographs of fabricated bosonic baths are depicted in Fig. 7.3(c)-(f). The individual
resonators are radially arranged around the centre of the concentric transmon on the
lower chip, making use of its rotational symmetry. We either arrange the resonators
in a spiral configuration such that adjacent ones are also neighbouring in frequency,
Fig. 7.3(c), or with a respective maximum distance of resonators that are neighbouring
in frequency, see Fig. 7.3(f). The motivation for distributing the single resonators
is to minimize the parasitic coupling Cp,i. Figures 7.3(c)-(e) show a bosonic bath
version with a resistive copper circuit element, which was not measured during this
thesis. Measurement data with the spiral configuration is not shown here. Table 7.1
summarizes the relevant design parameters of the bosonic bath.

7.6.1 Circuit quantization

We can find the environment impedance Zb(ω) with the schematic circuit depicted in
Fig. 7.3(b). Following Ref. [Lep+17] and evaluating Kirchhoff’s current conservation
law at the nodes above the single resonator impedances Zi with potential difference Vi
yields

V − Vi
ZCi

= Vi − Vi−1
Zp,i−1

+ Vi − Vi+1
Zp,i

+ Vi
Zi

(7.25)

for i = 1..N withN the number of resonators. Zp,i = 1/iωCp,i denotes the impedance of
the parasitic capacitive couplingCp,i between node i and node i+1, andZCi = 1/iωCc,i
is the impedance of the coupling capacitor with capacitance Cc,i. Diagonalization of
Eq. (7.25) yields

Z−1
b = I

V
= 1
V

∑
i

V − Vi
ZC,i

. (7.26)

assuming a voltage drop V across the bath impedance [Lep+17].
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7.6.2 Alternative approaches

During the course of this thesis, we investigated and evaluated different approaches for
bosonic bath engineering. In the following, some efforts in alternative directions are
outlined.

Fano resonance

A similar approach as the one described involves a single primary resonator of low
internal quality factor Qi, that couples to the qubit. Its frequency response is altered
by introducing one or many secondary resonators that only couple to the primary
resonator but not to the qubit and ideally do not couple mutually. By this, the initially
Lorentzian frequency response of the primary resonator is reshaped in a controlled way,
in order to recover the desired bath spectral density J(ω) within a defined frequency
band [Hau15]. Numerical simulations were carried out within an undergraduate theses
[Fri15], revealing promising results of the approach. However, microwave simulations
and initial experiments [Pis15] showed that the frequency response is very sensitive on
experimental uncertainties and crosstalk between single resonators. In addition, the
spectral width of the primary resonator needs to be as large as the desired spectral
width of the bath, which renders it extremely dissipative and therefore its coupling to
the quantum circuit becomes very small.

By adjusting the couplings between qubit and primary resonator and between primary
and secondary resonators, a dedicated shaping of the joint frequency response can be
achieved by making use of Fano dynamics. In a system of two coupled oscillators with
one of them being subject to a driving force, one can observe an asymmetric profile in
the frequency response of the driven oscillator [MFK10].

Bath shaping via the introduction of an impedance mismatch

An elegant approach to engineer the spectral function of a bosonic bath is to use a
50 Ω transmission line and tailor its J(ω) by the introduction of controlled impedance
mismatches ∆Z. Two such discontinuities can define a spacially restricted area of the
line with a reduced number of modes.

A large enough ∆Z, yields an in-line resonator with a single fundamental mode. This
allows one to tune between a very sharp frequency response (for a strong impedance
mismatch) and the ohmic spectral function of a 50 Ω transmission line. Choosing
asymmetric coupling ∆Z1 6= ∆Z2, where ∆Z1,2 are the two impedance mismatches
defining the resonating region, allows for an asymmetric shaping of the resonator’s
frequency response.

The coupling of transmission lines to a qubit and the frequency selection of the bath
is however challenging. One approach can be to capacitively couple a half open
transmission line to the qubit. The transmission line however would not have a tailored
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cut-off at small and large frequencies, respectively. In order to suppress the coupling
between qubit and transmission line within a defined region, an additional microwave
filter may be used, which renders the approach rather challenging.

7.7 Preliminary spin boson simulator

For the preliminary spin boson experiment, we couple a concentric transmon qubit to
the bosonic bath including resistive AuPd elements in the configuration where frequency
adjacent resonators are arranged at maximum distance, see Fig. 7.3(f). Figure 7.5(a)
shows a micrograph of both samples mounted inside the sample box and a magnified
view of the aligned chips is depicted in Fig. 7.5(b). Manual alignment was performed
under the optical microscope.

The coupling between qubit and readout resonator is measured by spectroscopically
recording their avoided crossing when tuning them on resonance, see Fig. 7.5(c). The
fit yields a coupling strength of g/2π = 63.5 MHz.

Figure 7.5(d) shows the measured qubit decay rate Γ1 with respect to the qubit transition
frequency ε. As depicted by the grey area in Fig 7.5(d), we calculate a lower bound of
the qubit decay rate induced by the single-mode Purcell effect of the readout resonator,
based on its measured line width κ = κ(ε). At frequencies smaller than 7 GHz and
larger than 7.8 GHz, the decay rate roughly follows the single-mode Purcell limitation.

In a frequency band of ∼ 0.5 GHz we observe an increased decay rate induced by the
bosonic bath. Apart from a region at 7.3 GHz, the decay rate is enhanced by more
than one order of magnitude within the spectral location of the bosonic bath. The
three-peak substructure is qualitatively reproduced by a numerical simulation of the
quantized circuit. Numerical data of the real part of the bath impedance<Z(ω) ∼ S(ω)
is shown as a green line in Fig. 7.5(d). The simulation takes into account the exact circuit
design of the bosonic bath and includes accordingly varying mutual capacitive couplings
Cp,i between individual bosonic bath resonators. Deviations between measured data
and the numerical simulation are attributed to fabrication tolerances and an imprecise
alignment of the two chips.

From varying the spectral width in numerical simulations, we can observe a frequency
bunching of the bosonic bath resonators due to their mutual coupling, leading to the
formation of three peaks in the resulting spectral function. This indicates that the
observed shape in the measured qubit decay rate originates from the response of many
individual resonators that form the bosonic bath, rather than being induced by three
individual resonators.

Blue and orange data points in Fig. 7.5(d) were acquired in two successive measurement
traces. Since both traces reproduce the same substructure in Γ1, we can exclude
temporal fluctuations in measured data. A frequency offset in the bosonic bath response
on the order of∼ 400 MHz is attributed to an unconsidered capacitance coupling of the
individual resonators to the sample box ground or a lithography bias.
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Figure 7.5: Spin boson experiment (a) Micrograph showing the qubit sample and the AuPd
bosonic bath sample mounted in the sample box. (b) Closer view of the chip stack. The lower qubit
sample is coloured in orange while the bosonic bath sample is coloured in blue. The bosonic bath
is aligned in the centre symmetric projection of the concentric transmon qubit. (c) Avoided level
crossing between qubit and readout resonator, yielding a coupling strength of g/2π = 63.5 MHz.
(d) Measured qubit decay rate Γ1 = 1/T1 dependent on the qubit transition frequency ε. In a band
of ∼ 0.5 GHz we observe a strong increase in the decay rate due to the presence of the bosonic
bath. The three-peak structure qualitatively agrees with a numerical simulation of the quantized
circuit and is attributed to the parasitic coupling of individual bosonic bath resonators. The grey
area on the bottom of the figure shows the expected qubit decay rate only taking into account
the single-mode Purcell effect of the readout resonator based on the coupling strength extracted
in panel (c). Blue and orange points correspond to successive measurement traces as indicates
in the inset (e), demonstrating that the measured signature is not due to temporal fluctuations
in Γ1. Error bars are scaled up by a factor of ten for better visibility. (e) Qubit dispersion versus
the applied bias current I. Blue and orange data points again correspond to the consecutively
measured traces.
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Figure 7.6: Rabi and decay time measurements during the spin boson experiment (a) Illustrative
Rabi driving of the qubit during the measurement depicted in Fig. 7.5. The qubit was located at
7.085 GHz. We apply pulses with a rectangular envelope, and use π-pulses of ∼ 50 ns duration.
(b) Respective lifetime measurement yielding T1 = 4.7 µs and Γ1 = 0.21× 106 s−1. The window
size for the lifetime measurement in Fig. 7.5 was 20 µs. (c) The maximum lifetime for the qubit is
measured at a frequency below the spectral location of the bosonic bath. With the qubit biased to
6.739 GHz, we find T1 = 15 µs and Γ1 = 0.065× 106 s−1.
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Figure 7.5(e) shows the qubit transition frequency ε with respect to the dc bias current
I applied to the flux bias coil. Data points correspond to fits of the qubit transition
frequency, as measured during acquisition of the measurement sequence in Fig. 7.5(d).

For every data point depicted in Fig. 7.5(d), we record the qubit frequency ε, calibrate
the π-pulse in a Rabi measurement and measure the inverse decay rate in a qubit lifetime
measurement. As visible in Fig. 7.6(a), we use rectangular π-pulses of∼ 50 ns duration.
The window size ∆t in the qubit lifetime measurements presented in Fig. 7.5(d) was
20 µs, see Fig. 7.6(b). In a separate measurement, we validate the increased lifetime of
the qubit state outside of the spectral band of the bosonic bath, see Fig. 7.6(c).

In a separate experiment, we probed purely superconducting versions of fabricated
bosonic baths by measuring microwave transmission through a line that couples to the
bosonic bath. We find the response of∼ 10 individual resonators within a spectral region
of 0.5 GHz, which supports the above indicated multi-mode response. Via the relation
between the transmission matrix element Sn

21 and the impedance of the scatterer, see
Eq. (3.23) in Sec. 3.4.3, we can map the acquired transmission data to the spectral
function S(ω) of the environment.

7.8 Conclusion and Outlook

We have presented an experimental approach that allows for the circuit implementation
of the spin boson model. We engineered a dissipative bosonic environment using a
set of 20 lumped-element resonators. By equipping the individual bosonic modes with
resistive circuit elements, their line width is increased, such that they overlap and form
a bosonic bath of continuous spectral function.

In our experiment, we fabricated the bosonic bath and the qubit on two separate chips.
They are attached on top of each other at a spacing of 35 µm in a specifically designed
sample box. The upper chip, holding the bosonic bath, is flipped upside down and
therefore facing the qubit sample on the bottom. The approach makes use of the
rotational symmetry of the concentric transmon qubit, which allows to couple many
individual resonators.

In the preliminary spin boson experiment, we observe a strong increase in the qubit
decay rate induced by the engineered bosonic bath within a spectral band of 0.5 GHz
width. We observed a pronounced substructure that is caused by a frequency bunching
of individual resonators, in qualitative agreement with a numerical simulation of the
quantized circuit. While a frequency bunching tendency has been found theoretically
in disordered systems [KMS16], we attribute the effect to the mutual couplings in
the bosonic bath circuit. The simulations therewith indicate the desired many-mode
response, validating our approach.

The presented experiment is a starting point to tailor specific shapes of spectral functions
in successive experiments. We are confident that the described frequency bunching can
be avoided by taking into account the parasitic mode couplings in circuit design.
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There is an ongoing discussion whether the spectral function of the bosonic bath must
be a smooth continuum of modes in order to recover the spin boson model. A bosonic
bath formed by distinct sharp modes with a separation comparable to the coupling
strength of the single modes to the qubit may equally map to the spin boson model in
the thermodynamic limit [Roc17]. While this being a pending question, the modular
approach presented here can also be applied for bosonic baths of high internal quality.
This furthermore allows us to make use of the pre-characterisation scheme using a
separate probe sample.

The spin boson model exhibits its critical phenomena in a regime where the effective
Kondo parameter of the bosonic environment is close to unity [Lep+17]. This can be
achieved by creating ultra-strong coupling in the spin boson model, corresponding to a
regime where the energy decay rate of the two-level system is comparable to its effective
transition frequency [For+16a; Lep+17]. For this purpose, we are currently exploring
the feasibility of applying a similar driving scheme as presented in Ch. 6.
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It was the goal of this thesis to apply few basic elements from the toolbox of super-
conducting quantum circuits and demonstrate that useful manipulations in the spirit
of analog quantum simulations can be performed. The presented proof-of-principle
experiments demonstrate the large potential of superconducting circuits for building
quantum hardware that is capable of efficiently simulating physical phenomena.

In the course of this thesis we have started with designing a planar tunable qubit that
we call concentric transmon [Bra+16]. It stands out by forming a robust building
block for quantum information experiments with a straightforward fabrication process
and is competitive in coherence with conventional transmon geometries. We could
reproducibly measure quantum excitation lifetimes of up to 15 µs in our fabricated
devices. The qubit lifetimes are limited by the Purcell effect and loss induced by
interface and surface defects. As compared to conventional transmon designs, fields
are more confined in the concentric layout, which reduces coupling to spurious modes
in the electromagnetic environment of the sample. The versatility of the concentric
transmon in particular for quantum simulation experiments becomes most evident
given its potential for the implementation of a direct site-selective Ẑ coupling between
adjacent qubits. The presence of a longitudinal Ẑ coupling is under current experimental
investigation [Ste16].

Quantum simulations that were performed in this thesis are based on the quantum
Rabi model and the spin boson model that generically describe the fundamental light-
matter interaction on a quantum level. These were the models of choice because they
are ubiquitous in nature and provide non-trivial physics that can be studied within
the framework of quantum simulation at a small experimental expense. They require
only few technological and hardware resources that are available in the toolbox of
superconducting circuits, namely a single qubit and several harmonic resonator modes,
as in our approach.

The main achievement of this thesis is the analog quantum simulation of the quantum
Rabi model in the ultra-strong coupling regime [Bra+17]. While this extreme coupling
regime is very challenging to access geometrically by sample design, we achieved ultra-
strong coupling (USC) in an effective quantum Rabi model with decreased sub-system
energies. The applied simulation scheme is based on the application of two microwave
Rabi drives that couple to the qubit. In the effective frame, the synthesized model
is operated at a relative coupling regime of up to geff/ωeff ∼ 0.6, approaching the
deep strong coupling regime. As the hallmark signature of USC in the quantum Rabi
model we have observed quantum state collapses and revivals in the qubit dynamics.
The non-conservation of the total excitation number in the circuit, imposed by the
counter-rotating terms in the Hamiltonian, has been indirectly observed. Limitations
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of the simulation scheme became apparent for a finite qubit energy term in the effective
Hamiltonian. However, we could obtain experimental evidence of the desired signatures
in our quantum simulation. The accessible coupling regime was not fundamentally
limited by the applied scheme, but rather by the finite coherence in our circuit. While
the system dynamics in the effective frame is slowed down, the laboratory frame
dissipation rates are maintained in the synthesized frame. This comes at the expense of
a small cooperativity measure which is an ultimate limitation of the simulation scheme.
The decelerated system dynamics however allowed us to observe quantum revivals at
a rate that is compatible with our experimental resolution. Revivals in the laboratory
frame USC quantum Rabi model would occur on a time scale of 2πω−1 ∼ 0.2 ns and are
therewith impossible to resolve with conventional experimental equipment.

In the final experimental chapter of this thesis I presented first steps in extending
the quantum Rabi model by substituting the single quantized oscillator mode with
an engineered bosonic bath, recovering the spin boson model. In our experimental
approach, we coupled a concentric transmon qubit to a set of 20 resonators that
form a dissipative environment. The individual series lumped-element resonators are
equipped with a resistive element that increases their spectral width such that they
overlap and form a continuous spectral function. A shaping of the spectral function
is achieved by varying the coupling between individual resonators to the qubit. The
qubit and the bosonic bath were fabricated on two separate chips in a modular flip-chip
approach. They are attached on top of each other by making use of a specifically
designed sample box, while both chips are facing each other to enhance their mutual
coupling. The bosonic bath is therewith physically separated from the qubit and its
readout and control circuitry, in contrast to previous experiments [Hae+15; For+16a].
We presented experimental evidence of a strong increase in the qubit decay rate due to
an engineered bosonic environment. The shape of the spectral function in the initial
experiment was dominated by a three-peak structure, in qualitative agreement with
a numerical simulation of the quantized circuit. Simulations have shown that the
substructure is caused by a frequency bunching of bosonic bath resonators, thereby
indicating the desired many-mode response. The presented experiment is a starting
point to tailor specific shapes of spectral functions by taking into account the parasitic
mode couplings in circuit design.

In conclusion, we have succeeded to perform several proof-of-principle experiments
simulating interesting quantum models of relevance in nature, and demonstrated the
potential of superconducting circuits for the field of quantum simulation.
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Outlook

An experimental implementation of the spin boson model at arbitrary coupling and with
a tailored spectral function would be a rich platform to study interesting phenomena
and dynamics of the model. A similar drive scheme as applied to create USC in the
quantum Rabi model can be a route to achieve coupling conditions with a Kondo
parameter approaching unity also in the spin boson model [Lep+17]. By again creating
an effective model in a rotating frame with decreased subsystem energies, the zero-
frequency properties of the spectral function can additionally be well controlled. This
corresponds to choosing the effective system temperature [Lep+17].

In general, the spin boson model exhibits a multitude of interesting phenomena [OIL13].
At sufficiently large coupling to the bosonic environment, the spin undergoes a quantum
phase transition from a de-localized to a localized phase, which manifests itself in new
ground state properties of the two-level system, similar to the dynamics we observed
in the quantum Rabi model at USC. The corresponding dynamics is accessible in
experiment and appears as a finite expectation value of the well population function
[FVN10; Leg+87; Lep+17].

For an ohmic spectral density, the spin boson model can be exactly mapped to the
anisotropic Kondo model via bosonization, which describes a procedure valid in one
dimension where a set of non-interacting bosons is transformed to a system of interacting
fermions in the spirit of Luttinger liquid theory [BEL70; Le 12]. This opens up the
possibility to experimentally access and simulate a range of impurity models relevant
in condensed matter physics, such as the Kondo problem itself, the Anderson impurity
model or the one-dimensional Ising model [OIL13], as well as the paradigmatic Mott-
insulator transition in the Hubbard model [HTK12].

The main impediment to advance an implementation of the universal quantum com-
puter with superconducting circuits is energy dissipation and decoherence due to an
uncontrolled bosonic environment [OIL13]. A spin boson simulator therefore may
provide a generic tool to study and address these limitations.

It remains as one of the open questions to the field how to properly quantify or benchmark
the performance of a quantum simulation in general. Assessing the result of a quantum
computation that cannot be reproduced and checked by classical means is evidently
difficult. Even the benchmarking of analog quantum simulators that are still within
reach of the capabilities of classical computers is not entirely obvious. Stating the
standard deviation between the experimental result and a numerical calculation may
not do justice to a quantum simulator suffering from experimental errors and noise but
is capable of providing qualitative signatures of the investigated quantum system.

While this thesis focussed on the approach of analog quantum simulation, it is an
ongoing debate how to first reach quantum supremacy in a useful computation. The
digital simulation approach may be considered to be more exact in the sense that
quantum hardware is exploited to provide fault-tolerant logical quantum elements.
Error monitoring and correction however comes at the cost of requiring massive hardware
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resources that exceed the capabilities of present technologies. Given the finite coherence
in present superconducting circuits and other quantum hardware platforms of similar
controllability, the number of gates within one computational step is strongly limited in
the digital approach. The consequence is a very restricted level of error-correction and
a coarse Trotter decomposition that comes at the expense of poor accuracy in mapping
a complex quantum evolution.

The analog approach equally suffers from the finite coherence in an engineered circuit.
Onecanhowever conceivea scenariowhereanoisyenvironment that leads todecoherence
of physical qubits may be considered as part of the simulator. This appears to be
particularly appealing when emulating complex mechanisms of protein complexes or
molecules in quantum chemistry that are naturally coupling to a lossy environment.

It is my conviction that the universal quantum computer will be a truly digital device
while meaningful computations with quantum hardware in the near future will be
based on analog simulation schemes. This thesis presents a small contribution in this
direction.
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[KMS16] M. Koppenhöfer, M. Marthaler, and G. Schön: Superconducting quan-
tum metamaterials as an active lasing medium: Effects of disorder.
Phys. Rev. A 93 (2016), p. 063808. doi: 10.1103/PhysRevA.93.
063808 (cit. on p. 114).

[Kra16] P. Krantz: The Josephson parametric oscillator – From microscopic
studies to single-shot qubit readout. PhD thesis. Quantum Device Phy-
sics Laboratory, Department of Microtechnology and Nanoscience,
Chalmers University of Technology, 2016 (cit. on p. 37).

128

https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1063/1.3692073
https://doi.org/10.1038/nature11902
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.100.230402
https://doi.org/10.1103/PhysRevA.93.063808
https://doi.org/10.1103/PhysRevA.93.063808


Bibliography

[Lan+17] N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel, A. Bruno,
F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo: Experimentally
simulating the dynamics of quantum light and matter at deep-strong
coupling. Nat. Commun. 8.1 (2017), p. 1715. doi: 10.1038/s41467-
017-01061-x (cit. on pp. 74, 89).

[Lan+11] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F.
Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair,
M. Hennrich, P. Zoller, R. Blatt, and C. F. Roos: Universal Digital
Quantum Simulation with Trapped Ions. Science 334.6052 (2011),
pp. 57–61. doi: 10.1126/science.1208001 (cit. on p. 3).

[Lan+10] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.
Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M.
Barbieri, A. Aspuru-Guzik, and A. G. White: Towards quantum che-
mistry on a quantum computer. Nat. Chem. 2.2 (2010), pp. 106–111.
doi: 10.1038/nchem.483 (cit. on pp. 1, 2).

[Le 12] K. Le Hur: Kondo resonance of a microwave photon. Phys. Rev. B
85 (2012), p. 140506. doi: 10.1103/PhysRevB.85.140506 (cit. on
p. 119).

[Leg+87] A. Leggett, S. Chakravarty, A. Dorsey, M. Fisher, A. Garg, and W.
Zwerger: Dynamics of the dissipative two-state system. Rev. Mod.
Phys. 59.1 (1987), pp. 1–85. doi: 10.1103/revmodphys.59.1 (cit. on
pp. 4, 99–101, 119).

[Leg+15] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko,
K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge, M. Reagor, L.
Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H. Devoret: Confining
the state of light to a quantum manifold by engineered two-photon loss.
Science 347.6224 (2015), pp. 853–857. doi: 10 . 1126 / science .
aaa2085 (cit. on p. 74).
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Appendix

Fabrication parameters

Table 1: Substrate cleaning

solvent ultrasonic bath IPA H2O hot plate piranha rinse
NEP 10 min yes yes 145 ◦C, 1 min yes

Electron beam lithography

Table 2: Application of the resist stack

resist pre spin hotplate
LOR 500nm 300 rpm, 10 s 3000 rpm, 60 s 180 ◦C, 5 min
PMMA 950K
AR-P672.03 300 rpm, 10 s 6000 rpm, 60 s 145 ◦C, 5 min

Table 3: Lithography with a 10 keV Jeol electron beam writer

write current dose
large structures, qubit electrodes 6 nA 350 µCcm−2

junction leads, bridge 100 pA 300 µCcm−2

139



Appendix

Table 4: Development

developer time rinse dry
MIBK/IPA 1:3, 25 ◦C 65 s IPA 30 s, H2O 60 s spin coater, 7500 rpm, 120 s

MIF 726/H2O 3:2 150 s H2O 60 s spin coater, 7500 rpm, 120 s

Table 5: Plasma clean with the Kaufman source, Plassys

plasma voltage current gas time
200 V 10 mA 4 sccm Ar, 0.5 sccm O2 10 s

Table 6: Al Shadow angle evaporation, Plassys

thickness rate angle
Al layer 1 30 nm 0.2 nm/s 8◦

Al layer 2 50 nm 0.2 nm/s −8◦

Table 7: Dynamic oxidation between Al layers 1,2

O2 flow rate pressure time
12.75 sccm 0.021 mbar 45 min

Table 8: Lift-off

solvent hotplate time
NEP 75 ◦C ∼ 1 h
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Optical lithography

Table 9: Primer application as sticking layer for photo-resist

agent hotplate pump in desiccator
HMDS 180 ◦C 2 min + 5 min

Table 10: Resist application

resist pre spin hotplate
AZ 5214E 500 rpm, 5 s 6000 rpm, 60 s 110 ◦C, 50 s

Table 11: Lithography at a Carl Süß mask aligner, 500 W XeHg lamp

dose exposure time mask type
13 mW(cm)−2 5 s soda lime, hard contact mode

Table 12: Development

developer time rinse
MIF 726 35 s H2O

AZ developer, H2O 1:1 33 s H2O

Table 13: Plasma clean with the Kaufman source, Plassys

plasma voltage current gas time
200 V 10 mA 4 sccm Ar, 0.5 sccm O2 10 s
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Table 14: AuPd evaporation, Plassys

thickness rate contact layer
75 nm ∼ 0.2 nm/s 5 nm titanium

Table 15: Plasma clean in Plasma 1

plasma power voltage gas time comment
20 W 80 V 10 sccm Ar 2 min prior to Cu deposition

Table 16: Sputter deposition, Plasma 1

target sputter power Ar flow rate main chamber pressure time
Cu 130 W 30 sccm 1.9× 10−3 mbar 105 s

Table 17: Lift-off

solvent ultrasonic bath time
NEP power 5/9 ∼ 5 min to 15 min
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