
Filtering on the Unit Sphere Using Spherical Harmonics

Florian Pfaff*, Gerhard Kurz*, and Uwe D. Hanebeck*

Abstract— For manifolds with topologies that strongly differ
from the standard topology of Rn, using common filters created
for linear domains can yield misleading results. While there
is a lot of ongoing research on estimation on the unit circle,
higher-dimensional problems particularly pose a challenge.
One important generalization of the unit circle is the unit
hypersphere. In this paper, we propose a recursive Bayesian
estimator for the unit sphere S2 based on spherical harmonics
for arbitrary likelihood functions and rotationally symmetric
system noises. In our evaluation, the proposed filter outperforms
the particle filter in a target tracking scenario on the sphere.

I. INTRODUCTION

In the rapidly evolving field of recursive Bayesian estima-
tion, the linear topology of Rn is often taken for granted.
However, many frequently occurring phenomena feature
an underlying periodic manifold and can only be modeled
accurately by taking the periodicity into account. The periodic
manifold that is easiest to handle using recursive Bayesian
estimation is the unit circle, which has gained considerable
attention and for which fast and versatile filters [1], [2],
[3], [4] have been developed. Another manifold that is very
important in practice is the unit sphere. Among many others,
applications include tracking on a sphere [5], speaker tracking
using microphone arrays [6], and estimating the orientation
of rotationally symmetric objects.

For estimation on the sphere, the von Mises–Fisher filter [5]
and the Bingham filter [7] have been proposed. These filters
assume that the densities involved are distributed according to
a von Mises–Fisher or Bingham density, respectively. While
nonlinear variants have been proposed [8], the applicability of
the filters is limited by the densities that can be represented
accurately using the respective distribution. While a particle
filter [9] can easily be adapted to spherical domains, its usual
disadvantages apply. A large number of particles are required
in general and due to particle degeneracy, the number of
particles that are of practical use is far lower than the total
number of particles employed. Furthermore, the particle filter
is non-deterministic and thus only yields acceptable results
on average, even if high numbers of particles are used.

For circular manifolds, we have proposed filters that do
not require that the density can be represented well using
one of the parametric densities. One approach is to use grid
filters [4] that are based on a discretization of the state space.
Another approach is to use Fourier filters [3]. In the Fourier
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Fig. 1: An approximation of a bimodal, non-antipodally
symmetric density function as obtained by the use of our
filter with a maximum degree of 10.

filters, the density (or its square root) is approximated using
a trigonometric polynomial [10].

In this paper, we adapt the idea of representing densities
using a complete orthogonal sequence of functions to densities
on the sphere by the use of spherical harmonics. Using
spherical harmonics, we can model densities that are non-
antipodally symmetric and multimodal (such as the one
shown in Fig. 1), which pose a challenge to filters that
only support specific densities. Spherical harmonics are well
researched as they are useful for signal processing [11],
weather modeling [12], physics [13], [14], chemistry [15],
and computer graphics [16].

In the next section, we first give a review of the basics
of spherical harmonics. In the third section, we introduce
the prediction and update step of our spherical harmonics
filter. Afterward, we evaluate our filter by comparing it with
a particle filter on the sphere. Last, we provide a conclusion.

II. BASICS OF SPHERICAL HARMONICS

Spherical harmonics are a complete orthonormal sequence
in the function space of square integrable functions on S2 [11,
Theorem 2.12]. When performing a spherical harmonics
analysis, the function on the sphere is represented by a sum
of spherical harmonics Y ml weighted by coefficients wml
according to [11, Sec. 2.9.4]

f(θ, φ) =

L∑
l=0

l∑
m=−l

wml Y
m
l (θ, φ) ,

in which m is called the order, l the degree, and L is the
maximum degree used. To approximate arbitrary continuous



Fig. 2: Real spherical harmonics up to degree 3 (from high function values in yellow to low values in blue). The harmonics
are listed in ascending order according to their degree (vertically) and order (horizontally). All spheres shown are unit spheres.

densities, L = ∞ is necessary, which results in an infinite
series. For practical use, we only use coefficients up to a
certain degree L ∈ N.

Analogous to Fourier series, real and complex spherical
harmonics exist. While the former can only be used to model
real functions on the sphere, the latter can be used to represent
both real and complex functions1. For both representations,
multiple conventions exist, especially due to the different
fields of application in the individual communities.

In this paper, we use the complex spherical harmonics
according to the convention [11, Ch 7.3.3, Eq. (7.19)]

Y ml (θ, φ) = Nm
l P

m
l (cos(θ))eimφ ,

depending on the associated Legendre function Pml including
the Condon–Shortley phase2 defined by [11, Eq. (7.23-7.24)]

Pml (x) =


(−1)m

2l l!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l , m ∈ Z+

0

(−1)m (l +m)!

(l −m)!
P−ml (x) , m ∈ Z−

and the normalization constant [11, Eq. (7.20)]

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!

that ensures that Y ml is normalized in regard to the L2 norm.
To obtain the spherical harmonics coefficients of a square

integrable function on the sphere f(θ, φ) parametrized using

1When representing a real function using complex spherical harmonics,
the complex coefficients include some redundancy.

2The Condon–Shortley phase is an optional factor (−1)m that causes the
signs of the spherical harmonics to alternate with increasing m for positive
m [13, Ch. 15.5]. Some authors, e.g. [17], do not include it in the definition
of the associated Legendre functions but rather explicitly include it in the
definition of the spherical harmonics. The Condon–Shortley phase factor is
not essential to the definition of the spherical harmonics but simplifies the
calculations in certain applications.

spherical coordinates, we can calculate the integral

wml =

∫ 2π

0

∫ π

0

f(θ, φ)Y
m

l (θ, φ) sin(θ) dθdφ ,

with Y
m

l being the complex conjugate of Y ml .
The unit sphere can be regarded as a two-dimensional

manifold embedded in R3. Many parametric densities are not
given depending on spherical coordinates, but use a vector
x ∈ R3 instead. To be able to use such densities in the
spherical harmonics framework, we use the formulae

x1 = x = cos(θ) cos(φ) ,

x2 = y = cos(θ) sin(φ) ,

x3 = z = sin(θ)

to convert the spherical coordinates to Cartesian coordinates.
Whenever we give a function parametrized by a vector in
R3, we implicitly assume that a coordinate transformation is
performed, if necessary.

For each degree l, there are 2l + 1 spherical harmonics,
which we index using the order m ∈ {−l, . . . , l}. We
illustrate the increasing number of spherical harmonics for
increasing degree by showing the real spherical harmonics up
to degree 3 in Fig. 2. When using all spherical harmonics up
to a maximum degree L, there are a total of (L+1)2 spherical
harmonics and spherical harmonics coefficients. As can be
seen in Fig. 3, the approximation of the density improves
with every additional degree. Especially densities that are
highly concentrated and multimodal (and are thus particularly
“peaky”) can benefit from using higher degrees.

It should be noted that even if a valid density is approxi-
mated, the approximation can attain negative function values
unless a transformation such as the square root as applied
in [3], [18], [19] is used. Examples for approximations that
have negative function values can be seen in Fig. 1 and
Fig. 3. Approximations of densities with regions close to
0 and approximations using only few coefficients are more



susceptible to this effect. We disregard this effect as we
observed in [19] that it can also make sense to invest the
additional computational power required for the square root
version of the filter into using more coefficients instead.

For the Fisher–Bingham distribution, formulae involving
infinite sums to calculate the spherical harmonics coefficients
have been proposed [20]. For arbitrary distributions, calcu-
lating the two-dimensional integral to obtain the coefficients
may be too costly. Analogous to the FFT for trigonometric
polynomials, fast algorithms to calculate spherical harmonics
coefficients from function values on a grid have been proposed.
Important insights were obtained in [21] and a fast algorithm
with a computational complexity of O(L2 logL) for a maxi-
mum degree L was presented in [22]. In our implementation,
we use an algorithm implemented in Matlab as used in [23],
which we have tweaked for higher performance.

III. THE SPHERICAL HARMONICS FILTER

For a recursive Bayesian estimator, we have to implement
the two required operations—namely, the update and the
prediction step—that we lay out in the following subsections.

A. Update Step

Given the measurement likelihood, the update step at time
step t can be formulated based on Bayes’ law as

f e
t (xt|z1, . . . , zt) ∝ fLH

t (zt|xt)f
p
t (xt|z1, . . . , zt−1) ,

depending on the state vector xt and the measurements z at
the respective time steps, the likelihood function fLH

t , the
prior density f p

t , and the posterior density f e
t .

A useful identity regarding the multiplication of functions
in a spherical harmonics representation is the equation [21,
Theorem 2]

Y m1

l1
· Y m2

l2
=

l1+l2∑
lc=|l1−l2|

√
(2l1 + 1)(2l2 + 1)

4π(2lc + 1)

· Cl1,l2,lc0,0,0 · Cl1,l2,lcm1,m2,m1+m2
· Y m1+m2

lc

(1)

depending on the Wigner symbol C (using the convention
of [14, Eq. (3.165)]). This formula allows the insight that the
result of the multiplication of two spherical harmonics can
be represented using a weighted sum of multiple spherical
harmonics. By regarding each pair of spherical harmonics
separately, this formula can be used to determine (aside from
numerical imprecision) the exact result of the multiplication
of two functions represented by their spherical harmonics
coefficients. As can be seen from the formula, even if both
spherical harmonics are of degree l, spherical harmonics of de-
gree 2l are required in general to represent the multiplication
result.

To multiply two functions in their spherical harmonics
representations, we can first expand the product of the two
sums with O(L2) terms each. This leads to a sum of O(L2 ·
L2) multiplied pairs of spherical harmonics from the first
and the second function with their corresponding coefficients.
We can then apply (1) to represent the multiplication result
of each pair multiplied using weighted spherical harmonics.

For each pair, we obtain O(L) terms to be added to the
coefficients of the spherical harmonics representation of
the multiplication result. Thus, the total complexity of the
multiplication performed like this is in O(L5). Due to the
multiplication of pairs of spherical harmonics of degree L,
we may have nonzero entries for degrees up to 2L in the
multiplication result.

Thus, if we use this approach to derive the exact result,
the degree of the approximation of the resulting density
will increase with every update step, inducing the need for a
truncation to prevent an ever-increasing number of coefficients.
Moreover, while the formula can be used to calculate the
result directly using the spherical harmonics coefficients, this
approach is not cheap.

To avoid such a costly operation, we use the fast approx-
imations of the spherical harmonics analysis and synthesis
operations used by the authors of [23] in our implementation
instead. We first use the fast spherical harmonics synthesis
to calculate function values of f p

t on a grid of points on
the sphere from the spherical harmonics coefficients. We
then proceed similarly to a grid filter and use the likelihood
function directly to obtain the (unnormalized) function values
of f e

t on the same grid. For the next prediction step, we
calculate the new spherical harmonics coefficients using the
fast analysis operation. In total, the effort never exceeds
O(L2 logL) as required by the spherical harmonics analysis
and synthesis operations. Because the synthesis and analysis
operations only yield approximations and because no higher
degrees than L are used to approximate the multiplication
result, approximation errors are generally inevitable.

The normalization after the multiplication that is required
for the update step can easily be performed. The integral of
a real function given by its spherical harmonics coefficients
over the entire unit sphere only depends on the coefficient
of degree zero w0

0 as all harmonics except Y 0
0 cancel out in

the integral. As Y 0
0 (θ, φ) = 1/

√
4π [11, Example 7.9], the

integral of w0
0Y

0
0 (θ, φ) over the 4π surface of the sphere is√

4πw0
0 . Thus, we can normalize the function by dividing

all coefficients by
√
4πw0

0 to ensure that the coefficient of
degree and order zero of the resulting function is 1/

√
4π,

resulting in an integral of 1.

B. Prediction Step

For the prediction step, the predicted density f p
t+1 fulfilling

the Chapman–Kolmogorov equation

f p
t+1(xt+1|z1, . . . , zt) =

∫
Ωx

fT
t (xt+1|xt)f e

t (xt|z1, . . . , zt)dxt

(2)
is to be obtained. One very useful transition density is an
analog to the identity system model with additive noise

fT
t (xt+1|xt) = VMF(xt+1;µ = Qtxt, κ

w
t ) (3)

presented in [8, Eq. (6)]. It involves a rotation using a rotation
matrix Q ∈ SO(3) and a von Mises–Fisher distributed [24]
noise term parametrized by the concentration parameter κwt .

In the context of spherical harmonics, there are special
functions that are called zonal. A function is called zonal



(a) The von Mises–Fisher mixture that is approximated in the
subsequent subfigures. Both von Mises–Fisher components are equally
weighted and have a dispersion according to κ = 10.

(b) Approximation using all spherical harmonics up to degree 2. The
approximation is not yet able to capture the bimodality correctly and
the modes are fused instead.

(c) Approximation using all spherical harmonics up to degree 3. The
approximation has now become bimodal.

(d) Approximation using all spherical harmonics up to degree 9. The
Hellinger distance to the ground truth is approximately 10−4.

Fig. 3: Visualization of approximations of a von Mises–Fisher mixture with two modes. Since no square root transformation
as used in [3] is employed, negative values are possible, especially when using few coefficients.

when it is rotationally symmetric regarding, e.g., the z-axis.
The proposed filter works for arbitrary likelihoods but requires
zonal noise terms for the prediction step. Due to the zonality
of the von Mises–Fisher distribution, we can rewrite (3) as

fT
t (xt+1|xt)=VMF

([
0,
√
1− (xTt+1Qtxt)

2, xTt+1Qtxt

]T
;

µ =
[
0, 0, 1

]T
, κwt

)
. (4)

To get from (3) to (4), we regard the angle between Qtxt and
xt+1 and calculate its cosine via xTt+1Qtxt and its sine via√

1− (xTt+1Qtxt)
2. These values are then used to rotate µ

around the x-axis. Based on the representation (4), we say that
our noise term is fvt (vt) = VMF(vt;µ =

[
0, 0, 1

]T
, κwt ).

We only support zonal transition densities. For non-zonal
transition densities, the rotation of the density in (3) around
Qtxt would have to be declared but there is no good basis
to decide upon a specific rotation. In (4), the density is only
evaluated along a great circle of the sphere containing µ.
If the density was not zonal, the function values along the
different great circles containing µ would not be identical
and it would be necessary to decide upon a specific great
circle.

The convolution-like operation with a zonal density in
the prediction step can be calculated efficiently when the
spherical harmonics coefficients of f e

t and fvt are given. If
wml are the spherical harmonics coefficients for f e

t and vml
are the coefficients for the zonal noise density fvt , then the
resulting coefficients cml can be calculated according to [11,
Sec. 9.3, Theorem 9.2]

cml =

√
4π

2l + 1
wml v

0
l . (5)

When the spherical harmonics coefficients are given for both
densities, this formula allows us to perform a prediction step
with a complexity of O(L2) for a maximum degree L as only
a fixed number of operations are required per coefficient in (5).
If the spherical harmonics coefficients of the noise density
have to be determined first, the complexity increases to3

O(L2 logL). However, if the noise density does not change
over time, the coefficients only have to be calculated once.

IV. EVALUATION

In our simulation-based evaluation, we regard the challenge
of locating a moving target on a sphere using measurements

3As we only require the entries of order zero for the zonal density, we
could reduce the effort to O(L logL).



that only give information about a single axis. The state is
not observable using only a single measurement, which can
lead to posterior densities that are not unimodal. As densities
with multiple modes can usually not be approximated well
using parametric densities, this scenario is unsuited for the
use of filters that are based on parametric densities, such
as the von Mises–Fisher filter. Therefore, we only compare
our filter with a particle filter that we have adapted to the
spherical domain.

A common distance measure between two points on the
sphere is the orthodromic distance. The orthodromic distance
describes the length of the shortest path along the sphere
from one point to the other. To compare the approaches, we
evaluate the orthodromic distance between the true position
of the target and the estimated position as given by the mean
resultant vector [8]

m = E(x) =
∫
S2

x f(x) dx .

While our spherical harmonics filter can provide a probability
density in each time step, we only evaluate the point estimate
of the last position of the target. We do not regard the
quality of the approximation of the posterior density as, to
our knowledge, there is no established way to convert the
particles of the particle filter to a continuous density on the
sphere.

We compared the two filters regarding the estimation
quality and run time on a laptop with an Intel Core i7-5500U
processor, 12GB of RAM, and Matlab 2016a on Windows 10.
For the particle filter, different numbers of particles were used
and for the spherical harmonics filter, we used coefficients
up to different degrees. We always include all coefficients
of the utilized degree so the number of coefficients scales
quadratically with increasing degree.

A. Scenario Description

The initial position of the target is set by sampling
from a uniform distribution on the sphere. First, we obtain
5 measurements of the position along the x-axis, then 5
measurements of the y-axis position, and then 5 measurements
of the position along the z-axis. Each measurement is
perturbed by a (truncated) Gaussian noise with σ = 0.3 along
the respective axis. The big challenge in this scenario is that
the state is, in general, only partially observable using each
of the measurements. Hence, the position of the target cannot
be estimated to arbitrary accuracy using only measurements
of the position along one axis4. This can clearly be seen in
the intermediate results of the filters shown in Fig. 4 and
Fig. 5. When only measurements along one axis have been
obtained, the approximation of the posterior density given
by the spherical harmonics filter depicted in Fig. 4a clearly
shows that the posterior density has high probability density
along a small circle of the sphere. This is also reflected in
the weights of the particles of the particle filter shown in
Fig. 5a.

4An exception is, e.g., when the target is at −1 or 1 along the x-axis as
there is only one point with this x coordinate.

(a) Result after the first 5 measurements of the position along the
x-axis have been obtained. A whole region along a small circle of the
sphere has high probability density. Because only part of the state was
observable so far, the mean resultant vector cannot be used to reliably
estimate the true position of the target.

(b) Result after incorporating the 5 measurements of the position along
the y-axis. The probability density is still bimodal and when using the
mean resultant vector to derive an estimate, we obtain a point between
the two modes.

(c) Result after incorporating the 5 measurements of the position along
the z-axis. The ambiguity has resolved and the estimate is now close
to the true position.

Fig. 4: Visualizations of the intermediate results for the first
15 measurements for the spherical harmonics filter after all
measurements of the individual axis have been obtained.
Coefficients up to degree 13 are used. The red circle indicates
the true position of the target, whereas the yellow circle
indicates the current estimate.



(a) Result after the 5 measurements of the position along the x-axis have
been obtained. Particles along a whole small circle of the sphere have
high weights.

(b) Result after incorporating the 5 measurements of the position along
the y-axis. Particles at the two modes of the density (which can be
seen in the result of the spherical harmonics filter) have high weights.
Significant particle degeneracy can be observed.

(c) Result after incorporating the 5 measurements of the position along
the z-axis. Only particles in the vicinity of the true position have height
weights.

Fig. 5: Visualizations of the intermediate results for the first
15 measurements of the particle filter for 800 particles. The
particles are shown as blue circles and the sizes indicate the
particles’ weights. The red circle indicates the true position
of the target, whereas the yellow circle indicates the current
estimate.

After these 15 measurements, the target moves according
to the transition density given in (3) with Q = I and κ = 10.
For these parameters, the transition density induces a motion
behavior resembling a random walk on the real plane. After
this prediction step, 5 measurements of the position along
each axis are obtained again and another prediction step is
performed. Finally, 5 measurements of each axis are obtained
sequentially again and the performance of the estimate at the
last time step is determined (no prediction step is performed
in the last time step). Thus, a total of 45 update steps and 2
prediction steps are performed.

B. Evaluation Results

In the results of our evaluation, we provide the errors
and run times based on an average of 5000 runs for all
configurations. For the particle filter, we plot the results
shown in Fig. 6 against the number of particles used, and for
the spherical harmonics filter, we plot them against the total
number of coefficients. For an identical number of parameters,
the particle filter is superior in the range up until 121 particles.
For more than 121 coefficients, the spherical harmonics filter
performs better compared on a per coefficient basis. As shown
in Fig. 6a, the spherical harmonics filter reaches an estimation
quality close to its optimal quality using only 324 coefficients.
The estimation quality achieved is superior to that of the
particle filter, even when using 50 000 particles.

The run times shown in Fig. 6b are in accordance with
the complexities of the two filters. The computation time
of the particle filter increases linearly in the number of
particles and the run time of the spherical harmonics filter rises
approximately linearly with increasing number of coefficients.
This is to be expected as the total number of spherical
harmonics coefficients is in O(L2) for the maximum degree
L and the complexity is in O(L2 logL). For very few
coefficients, the relative increase in the run time is very
small for both filters as the constant overhead is predominant
in that case.

Compared on a run time basis, the particle filter is superior
for low numbers of particles as it is very fast per particle
and little constant overhead is involved. However, using 324
coefficients, the spherical harmonics filter achieves a quality
that is not surpassed by the particle filter, even if a lot of
computational power is invested and 50 000 particles are used.
Since the spherical harmonics filter only requires about 74ms
for the entire evaluation scenario that involves 45 update steps
and 2 prediction steps in this configuration, this is a reasonable
configuration to use even in many real time applications.

V. CONCLUSION

The spherical harmonics filter is a versatile new filter
for estimation problems on the unit sphere. Using fast and
efficient algorithms in our implementation of the update and
prediction steps, we are able to achieve good estimation
quality and run time performance. In our evaluation, the filter
outperforms the particle filter in a task of estimating the
position of a target on the sphere when a high precision is
desired. Furthermore, the filter provides an entire density



(a) Errors in form of the orthodromic distances for both filters shown using
logarithmic scales.

(b) Run times of both filters shown using logarithmic scales.

Fig. 6: Errors and run times of both filters in the evaluated scenario.

on the sphere in every time step and is fully deterministic,
allowing the user to generate reproducible results.

In future work, we intend to work on a square root version
of the filter as done for the Fourier filters [3], [18], [19]
and assess how this extension affects its performance and
robustness. This is also of theoretical interest as negative
function values can be completely prevented by the use of
the square root transformation. Furthermore, using a different
complete orthogonal sequence or regarding other manifolds
may lead to new promising filters.
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