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Abstract— The centralized Kalman filter can be implemented
in such a way that the required calculations can be distributed
over multiple nodes in a network, each of which processes
only the locally acquired sensor data. The main downside of
this implementation is that it requires each distributed sensor
node to communicate with the fusion center in every time step
so as to compute the optimal state estimate. In this paper,
two distributed Kalman filtering algorithms are proposed to
overcome these limitations. The first algorithm merely requires
communication of each local sensor node with the fusion center
in every other time step. The second algorithm even allows
for a lower communicate rate. Both algorithms apply event-
based communication to compute consistent estimates and to
reduce the estimation error for a fixed communication rate.
Simulations demonstrate that both algorithms perform better in
terms of the mean squared estimation error than the centralized
Kalman filter.

I. INTRODUCTION
A well-known algorithm for data fusion in sensor networks

is the Kalman filter [1]. We consider centralized and dis-
tributed sensor networks. In a centralized sensor network the
local sensors send their measurements to the central node in
the network. The central node fuses the measurements using
the Kalman filter algorithm. The result is an estimate of the
state that has been measured by the local nodes. In contrast,
in a distributed sensor network each local sensor node uses
its measurements to compute a state estimate with the help
of a local Kalman filter. The central node then fuses the local
estimates to obtain a superior estimate.

One advantage of distributed sensor networks compared to
centralized sensor networks is the reduction of communication
load in the network. Since the local estimates contain the
information from all past measurements, the estimates can
be sent to the central node after any number of time steps,
without losing the information from the past measurements.
Another advantage of distributed networks is their robustness.
The local estimates can be used as a backup in case the
central node fails.

However, the task of fusing local estimates is challenging
due to correlations between local estimates [2], [3]. Naive
fusion of correlated estimates leads to an underestimation
of the actual estimation error by the computed error co-
variance matrix. The estimator is then called inconsistent.
One possibility to solve this problem is to keep track of the
correlations between the local estimates. If the correlations
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are known, a consistent estimate can be computed using
Bar-Shalom-Campo fusion [4]. In the case of unknown
correlations, the fusion algorithms Covariance Intersection
[5], [6] and its further development Inverse Covariance
Intersection [7], [8] can be applied to compute consistent
estimates. However, these algorithms return error covariance
matrices that overestimate the actual estimation error.

Koch and Govaers have proposed a distributed fusion algo-
rithm that does not require to keep track of the correlations and
provides an error covariance matrix which exactly describes
the actual estimation error [9]–[12]. This is realized by a
distributed implementation of the centralized Kalman filter.
The local estimates are neither optimal nor unbiased, nor does
the error covariance matrix describe the actual estimation
error. But fusing them at the fusion center results in an
estimate that equals the fusion result of a centralized Kalman
filter. Also, some relaxations can be implemented [13], [14]
that rely on a hypothesis about information provided by the
entire network.

A drawback of this algorithm is that it only provides fusion
formulas for those time steps, at which the estimates of all
sensors in the network are available at the center. In this
paper, we will present two generalizations of this algorithm.
These novel algorithms also provide fusion formulas for the
case that not all estimates are available at the center at a
particular time step. Thus, the newly developed algorithms
allow for asynchronous communication in the network. With
the help of these novel distributed fusion algorithms, it is
possible to reduce the communication load in the network
while still providing good estimates at the fusion center.

The first algorithm returns an error covariance matrix
which exactly describes the actual estimation error. However,
the algorithm requires that each sensor communicates with
the center node at least every other time step. The second
algorithm allows for arbitrary communication rates. It uses
an event-based communication strategy and schedules the
data to be sent to the fusion center according to its relevance.
It also returns a consistent estimate.

The paper is structured as follows. In Section II the
centralized and the distributed Kalman filtering algorithms
are described, and the problem is formulated. In Section III,
we describe the first new distributed algorithm which allows
for omitted estimates at the fusion center. In Section IV,
we describe the second new distributed algorithm which
allows for omitted estimates at the fusion center over multiple
time steps. Finally, in Section V, we show the results of an
experimental evaluation of the algorithms.



II. CENTRALIZED AND DISTRIBUTED KALMAN
FILTERING

We consider a sensor network with N local sensor nodes
and one central unit, which has no sensing capabilities. We
consider a discrete-time linear dynamic system. The true state
of the system at time k is denoted by xk. The system evolves
according to

xk+1 = Akxk + wk ,

where Ak is a matrix describing the system model and wk

is the system noise, which is assumed to be Gaussian noise
with zero mean, wk ∼ N (0,Cw

k ). At each time step k, each
sensor i produces a measurement zi

k according to

zi
k = Hi

kxk + vi
k ,

where Hi
k is a matrix describing the measurement model and

vi
k the measurement noise, which is assumed to be Gaussian

noise with zero mean, vk ∼ N (0,Cz,i
k ).

In a centralized sensor network, the central unit fuses the
measurements from the local nodes according to

(Ce,c
k )

−1
x̂e,ck = (Cp,c

k )
−1
x̂p,ck +

N∑
i=1

(
Hi

k

)T(
Cz,i

k

)−1
zi
k ,

(Ce,c
k )

−1
= (Cp,c

k )
−1

+

N∑
i=1

(
Hi

k

)T (
Cz,i

k

)−1
Hi

k .

These equations correspond to the information form [15],
[16] of the filtering step of the standard Kalman filter,
where the noise of different local sensors is assumed to be
uncorrelated. x̂e,ck and Ce,c

k denote the state estimate and the
corresponding error covariance matrix after the fusion step.
x̂p,ck and Cp,c

k denote the state estimate and the corresponding
error covariance matrix after the prediction step. After each
fusion, a prediction is performed at the center by(

Cp,c
k+1

)−1
x̂p,ck+1 =

(
Cp,c

k+1

)−1
Akx̂

e,c
k ,(

Cp,c
k+1

)−1
=
(
AkC

e,c
k AT

k + Cw
k

)−1
.

Since these equations correspond to the standard Kalman
filter, the centralized Kalman filter is unbiased and optimal in
the minimum mean squared error sense. Also, the computed
error covariance matrix is equal to the actual estimation error,
i.e.,

Ce,c
k = E

(
(x̂e,ck − xk) (x̂e,ck − xk)

T
)
. (1)

In [9]–[12], a distributed Kalman filter algorithm has been
proposed, which is also unbiased, optimal in the minimum
mean squared error sense, and for which (1) holds. This is
achieved by defining a local filtering scheme such that the
fusion result is equal to the fusion result of a centralized
Kalman filter. We will describe the algorithm in the following.

The local sensor nodes perform a modified version of
the Kalman filtering algorithm. They work with so called
globalized local states estimates 1 and error covariance

1Although, strictly speaking, the local parameters do not represent
estimates of the states, we denote them as local estimates.

matrices. Let (x̂e,i0 ,Ce,i
0 ) be the initial state estimates and

error covariance matrices for all sensors i ∈ {1, . . ., N}. They
are sent to the central node and fused according to

x̄e,i0 = Ce
0

N∑
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(
Ce,i

0

)−1

x̂e,i0 ,

C̄e
0 = N

(
N∑
i=1

(
Ce,i

0

)−1
)−1

.

These are the initial globalized estimates and error covariance
matrices, which are sent back to the local nodes. The
globalized error covariance matrix is equal for each sensor
and thus, is not denoted with the sensor index i. This also
applies to all future time steps. The local prediction step is
given by

x̄p,ik+1 = Akx̄
e,i
k , (2)

C̄p
k+1 = AkC̄

e
kA

T
k +NCw

k .

The local filtering step is given by

x̄e,ik = C̄e
k

((
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)−1
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The central node receives the globalized estimates (x̄e,ik , C̄e
k)

from each sensor and fuses them according to(
Ce,d

k

)−1
=

N∑
i=1

(
C̄e

k

)−1
, (3)

(
Ce,d

k

)−1
x̂e,dk =

N∑
i=1

(
C̄e

k

)−1
x̄e,ik . (4)

x̂e,dk denotes the state estimate after the fusion step in the dis-
tributed sensor network, and Ce,d

k denotes the corresponding
error covariance matrix.

From (3) and (4), we can easily derive that

Ce,d
k =

1

N
C̄e

k ,

x̂e,dk =
1

N

N∑
i=1

x̄e,ik .

The same equations apply to the predicted estimates and error
covariance matrices. It can be shown that

x̂e,dk = x̂e,ck , (5)

Ce,d
k = Ce,c

k , (6)

where we assume that x̂e,ck and Ce,c
k have been computed

in a centralized sensor network where each sensor node
communicates with the central unit at every time step. Note
that communication in past time steps does not influence x̂e,dk

and Ce,d
k , i.e., the equalities hold independently of the past

communication pattern in the distributed network. It follows
from (5) and (6) that

Ce,d
k = E

((
x̂e,dk − xk

)(
x̂e,dk − xk

)T)
(7)



is equal to (1). Consider now the case that only m out of N
sensors send their estimates to the fusion center at time k.
Equations (3) and (4) then become(

Ce,d
k

)−1
=

m∑
i=1

(
C̄e

k

)−1
,

(
Ce,d

k

)−1
x̂e,dk =

m∑
i=1

(
C̄e

k

)−1
x̄e,ik .

The resulting estimate x̂e,dk and error covariance matrix Ce,d
k

are not equal to the estimate x̂e,ck and the error covariance
matrix Ce,c

k computed according to

(Ce,c
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k (9)

since in the centralized sensor network the fusion result
depends also on the communication pattern in past time
steps. The equality between the centralized and distributed
fusion result would only hold in case that exactly m
measurements had been fused in every past time step in the
distributed network. As a consequence, when applying the
presented distributed Kalman filtering algorithm although
some estimates are not available at the center, we will,
in general, not get an unbiased and optimal estimate, and
consistency according to (7) can be violated.

In Section III, we present a new distributed fusion algorithm
which allows for the absence of estimates at the fusion
center and still provides a fusion result which is equal to
the fusion result of the centralized Kalman filter. With this
algorithm, we are able to reduce by half the communication
rate. Section IV introduces a second algorithm that can even
reach a lower communication rate by applying a bound on
the non-transmitted information.

III. DISTRIBUTED KALMAN FILTER WITH
OMITTED ESTIMATES

We consider again the distributed Kalman filtering algo-
rithm described in Section II. We consider the case that
at time k only sensor nodes 1, . . . ,m communicate with
the fusion center, but sensor nodes m + 1, . . . , N do not.
However, we assume that at time k−1 sensors m+1, . . . , N
had communicated with the fusion center. Thus, we can
assume that the predicted estimates x̄p,m+1

k , . . . , x̄p,Nk can
be computed using (2) and are available at time k. We now
replace the fusion equations (3) and (4) by the generalized
fusion equations

(
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=
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(
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We will now show that x̂e,d
′

k = x̂e,ck and Ce,d′

k = Ce,c
k , where

we assume that x̂e,ck and Ce,c
k have been computed by (8) and

(9) in a centralized sensor network, where each sensor node
communicates with the central unit at every time step until
time k−1 (included), but only the first m nodes communicate
with the central unit a time k.

Proof: Ce,d′
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Accordingly, x̂e,d
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�

We have shown the equality of the fusion result of the newly
developed distributed Kalman filtering algorithm to the fusion
result of the centralized Kalman filter. Thus, unbiasedness,
optimality, and (7) are inherited from the centralized Kalman
filter.



We have generalized the original distributed Kalman
filtering algorithm such that full rate communication is not
required anymore. The novel fusion algorithm merely requires
that if a particular sensor does not communicate with the
center at time k, it has communicated at time k − 1, i.e.,
each sensor has to communicate with the center at least every
other time step. Thus, the communication rate can be lowered
to 0.5.

However, a higher communication rate—and thus, the
incorporation of the information contained in additional
measurements—will always result in a lower mean squared
error (MSE). Thus, we have to deal with the trade-off between
a low communication rate and a low MSE.

Nevertheless, it is possible to achieve a smaller MSE while
keeping the same communication rate by using an event-
based communication strategy and thus, scheduling the data
according to the information contained. Valuable results have
already been achieved using event-based communication in
distributed sensor networks [17]–[25]. The idea is that each
local sensor evaluates if the distance between the predicted
estimate x̄p,ik and the filtered estimate x̄e,ik is large, and thus,
if the measurement zi

k adds much new information to the
prediction. Only in this case, the sensor should send its current
estimate x̄e,ik to the center.

However, we have to take into consideration that due to
the globalization x̄p,ik and x̄e,ik are not unbiased estimates of
the true state. Experiments have shown that in contrast to
the difference between the standard Kalman filter estimates,
x̂p,ik − x̂

e,i
k , the difference x̄p,ik − x̄

e,i
k is not zero on average,

but even diverges. Therefore, to evaluate the relevance of
the measurement zi

k, we consider the difference between
the standard Kalman filter estimates, which is equal to
the weighted difference between the measurement and the
prediction converted to the measurement space, i.e.,

x̂p,ik − x̂
e,i
k = Ki

k

(
zi
k −Hi

kx̂
p,i
k

)
,

where Ki
k denotes the Kalman gain. To obtain the standard

Kalman filer estimates, the standard Kalman filtering algo-
rithm has to run in parallel to the globalized version of the
Kalman filter at each sensor node. The following event-based
communication strategy is applied.

If ‖x̂p,ik − x̂
e,i
k ‖ ≤ α (12)

do not send estimate to the fusion center
else

send estimate to the fusion center,

where α denotes a scalar parameter. We can achieve any com-
munication rate in range [0.5, 1] by varying the parameter α.

By using this communication strategy we can only evaluate
the relevance of the measurement to the local estimate
x̂p,ik , and not to the fused estimate x̂p,dk . Still, experiments
(see Section V) will show that by using the event-based
communication strategy instead of random communication,
for a fixed communication rate an improvement of the MSE
of the fused estimate x̂e,d

′

k can be achieved.

As mentioned before, communication rates lower than 0.5
cannot be achieved with the newly developed distributed fu-
sion algorithm. In Section IV, we will present a generalization
of the algorithm, which allows for any communication pattern
in the network and thus, for any communication rate, and
still provides consistent fusion results.

IV. DISTRIBUTED KALMAN FILTER WITH
OMITTED ESTIMATES OVER MULTIPLE TIME

STEPS

If we want to achieve communication rates lower than 0.5
in the sensor network, we have to allow that a particular sensor
does not send its estimates to the fusion center over multiple
time steps. In this case, the fusion center has to perform
multiple consecutive predictions. By x̄pp,ik , we denote the
estimate which has been computed by applying equation
(2) not only once but any number of times, until the next
communication with the center node occurs. In case that
prediction has been performed only once, we have x̄pp,ik =
x̄p,ik . Fusion equation (11) is generalized to

(
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)−1
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)
.

We define
dik := x̄pp,ik − x̄p,ik .

The expected estimation error is then given by

E
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)(
xk − x̂

e,d′′
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)T)
= E

((
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)
(
xk − x̂

e,d′

k −Ce,d′

k

(
C̄p

k

)−1
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i=m+1
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)T
)
.

Obviously, the expected estimation error cannot be computed
exactly at the fusion center, since the difference dik is not
available. Nevertheless, it is possible to obtain an upper
bound on the estimation error, if we alter the communication



test (12). We ensure that in case of communication the matrix
dik
(
dik
)T

is bounded, by using the communication strategy

If ‖x̂pp,ik − x̂e,ik ‖ ≤ α and dik
(
dik
)T ≤ B (13)

do not send estimate to the fusion center
else

send estimate to the fusion center,

where x̂pp,ik denotes the estimate which has been computed
by applying the standard Kalman filtering prediction step
multiple times and B denotes any given symmetric positive
definite square-matrix. For any square matrices X and Y ,
X ≤ Y denotes that Y −X is positive semi-definite.

As in the previous communication strategy, we have to
take into consideration that the globalized estimates x̄pp,ik and
x̄p,ik are biased and thus, the difference dik diverges. As a
consequence, the matrix dik

(
dik
)T

also diverges. In contrast
to the previous fusion algorithm, using the standard Kalman
filtering estimates x̂pp,ik , x̂p,ik is not a reasonable solution,
since the communication strategy is used to get an upper
bound on dik. An alternative possibility to avoid the divergence
of the difference is to debias the local globalized estimates. A
strategy to debias the estimates using debiasing matrices has
been proposed in [13], [14]. In each prediction and filtering
step, each local node computes a new debiasing matrix. The
matrix is initialized by ∆p,i

0 = I . In the filtering step, the
debiasing matrix is computed by

∆e,i
k = C̄e,i

k (C̄p,i
k )−1∆p,i

k + C̄e,i
k

(
Hi

k

)T
(Cz,i

k )−1Hi
k .

In the prediction step, the debiasing matrix is computed by

∆p,i
k = Ak∆e,i

k A−1
k . (14)

∆pp,i
k is computed by applying equation (14) multiple times,

until the next communication with the center node occurs.
By multiplying the inverse of the debiasing matrix with the
globalized estimates, we can debias the estimates [13], [14],
i.e.,

E
((

∆e,i
k

)−1
x̄e,ik

)
= E (xk) ,

E
((

∆p,i
k

)−1
x̄p,ik

)
= E (xk) .

It can be easily shown that the same applies to the predicted
estimate over multiple time steps, i.e.,

E
((

∆pp,i
k

)−1
x̄pp,ik

)
= E

(
xk+n

)
.

We define now

x̃pp,ik := ∆p,i
k (∆pp,i

k )−1x̄pp,ik

and then have

E
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)
= E
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k E
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(
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)−1
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)
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k E
(
xk+n − xk

)
.

Thus, in general the difference x̃pp,ik − x̄p,ik does not diverge.
We define

d̃ik := x̃pp,ik − x̄p,ik

and replace in (13) the second inequality by

d̃ik
(
d̃ik
)T ≤ B .

We can now define the new fusion equations as follows.

Ce,d′′

k = Ce,d′
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+ (N −m− l)2Ce,d′
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)−1
B
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i=1

(C̄e
k)−1x̄e,ik +

N∑
i=m+1

(C̄p
k)−1x̃pp,ik

)
,

where m is the number of sensors which communicate with
the center at time k and l is the number of sensors which
do not communicate with the center at time k, but for which
x̃pp,ik − x̄p,ik = 0. Note that the fusion formulas are equal to
(10) and (11) for N = m + l, i.e., for the case that each
sensor sends its estimate to the center at least every other
time step.

We will now show that the resulting estimate is consistent,
i.e.,

E

((
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)(
xk − x̂

e,d′′

k

)T)
≤ Ce,d′′

k .

Proof: We have

x̂e,d
′′

k = x̂e,d
′

k −Ce,d′

k

(
C̄p

k

)−1
N∑

i=m+1

d̃ik .

The expected estimation error is then given by
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(
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)
·

(
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Due to the orthogonality principle [26] we have
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and
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We can now write (15) as

Ce,d′

k +Ce,d′

k

(
C̄p

k

)−1
E

( N∑
i=m+1

N∑
j=m+1

d̃ik
(
d̃jk
)T)·

(
C̄p

k

)−1 (
Ce,d′

k

)T
.

To complete the proof we still have to show that

E

(
N∑

i=m+1

N∑
j=m+1

d̃ik
(
d̃jk
)T) ≤ (N −m− l)2B .

For i = j and i, j ∈ {m+ 1, . . . , N} we have

d̃ik
(
d̃jk
)T ≤ B ,

since no communication was performed from sensor i to the
center at time k. For i 6= j and i, j ∈ {m + 1, . . . , N}, we
have

0 ≤
(
d̃ik − d̃

j
k

)(
d̃ik − d̃

j
k

)T
= d̃ik

(
d̃ik

)T
− d̃ik

(
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)T
− d̃jk

(
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)T
+ d̃jk

(
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)T
.

We have then
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(
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)T
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(
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)T
≤ d̃ik

(
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)T
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(
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≤ 2B .

The number of summands different from zero in the sum∑N
i=m+1

∑N
j=m+1 d̃

i
k

(
d̃jk
)T

is (N −m− l)2. Thus, we have

N∑
i=m+1

N∑
j=m+1

d̃ik
(
d̃jk
)T ≤ (N −m− l)2B .

It follows that

E

(
N∑

i=m+1

N∑
j=m+1

dik
(
djk
)T) ≤ (N −m− l)2B .

�

V. EXPERIMENTAL EVALUATION

We apply the centralized Kalman filter as well as the two
newly developed distributed algorithms to a single-target
tracking problem. The system state xk is a six-dimensional
vector with two dimensions for the position, two dimensions
for the velocity, and two dimensions for the acceleration. A
near constant acceleration model is used. The system matrix
is given by

Ak =

 1 ∆ ∆2/2 0 0 0
0 1 ∆ 0 0 0
0 0 1 0 0 0
0 0 0 1 ∆ ∆2/2
0 0 0 0 1 ∆
0 0 0 0 0 1

 .

with the sampling interval ∆ = 0.25s. The process noise
covariance matrix is given by

Cw
k =


∆5/20 ∆4/8 ∆3/6 0 0 0

∆4/8 ∆3/3 ∆2/2 0 0 0

∆3/6 ∆2/2 ∆ 0 0 0

0 0 0 ∆5/20 ∆4/8 ∆3/6

0 0 0 ∆4/8 ∆3/3 ∆2/2

0 0 0 ∆3/6 ∆2/2 ∆

 .

We have a sensor network consisting of six sensor nodes
and one fusion node. Two sensors measure the position, two
sensors measure the velocity and two sensors measure the
acceleration. The measurement noise covariance matrices are
given by

Cz,i
k =

(
1 0
0 1

)
for i ∈ 1, . . . , 6 .

Monte Carlo simulations with 500 independent runs over
100 time steps are performed. Since (Ak,C

w
k ) is stable and

(Ak,Hk) is detectable the error covariance matrix and the
MSE converge to a unique values [27]. These values are
considered the error covariance matrix and the MSE of the
particular algorithm.

Monte Carlo simulations are performed for different
average communication rates for each of the three algorithms.
For the centralized Kalman filter communication is performed
randomly, but with different average rates. Note that only
current measurements are communicated. If the measurement
zi
k is not sent to the fusion center at time k, the information

will not be available at the center at any future time.
The first newly developed algorithm (Algorithm 1) is

performed with random communication as well as with event-
based communication. In the latter case, the parameter α
is varied to achieve different rates. The second algorithm
(Algorithm 2) is performed with event-based communication,
where both parameters α and B are varied.

The simulation results are shown in Figure 1. The MSEs
and the traces of the error covariance matrices are depicted
relative to the average communication rate in the network.
Since for Algorithm 2 different parameter combinations lead
to different results, we have only included the results with
the smallest error covariance matrices in the graphic.
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0.8
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MSE Central KF

Trace Central KF

MSE Algorithm 1 Random

MSE Algorithm 1 Event−based

MSE Algorithm 2

Fig. 1: MSEs and traces of the error covariance matrices are
plotted relative to the communication rate. Each communi-
cation rate corresponds to one Monte Carlo simulation with
500 runs over 100 time steps. MSEs are shown as solid lines,
traces are shown as dashed lines.

Only for the centralized Kalman filter and for Algorithm 2,
communication rates lower than 0.5 are given. We can observe
that for Algorithm 1 event-based communication leads to



an improved estimate compared to random communication.
However, it also leads to a larger trace of the error covariance
matrix and thus, to a larger uncertainty of the estimate.

We also can observe that for communication rates in range
[0.5, 1] the results of Algorithms 1 and 2 with event-based
communication are almost equal. This can be explained by the
fact that Algorithm 2 extends Algorithm 1 by an additional
criterion and the fusion formulas for both algorithms are
equal if each sensor communicates with the center at least
every other time step.

Figure 1 shows that for each of the algorithms the MSE
is always smaller than or equal to the trace of the error
covariance matrix. This follows from the consistency of the
estimators. The traces are good estimates of the MSEs except
for very low communication rates in Algorithm 2. Thus, the
uncertainty of the estimates is not overestimated too much
by the trace of the error covariance matrices.

Each of the distributed fusion algorithms performs better in
terms of small MSEs compared to the centralized algorithm
(except for full rate communication). This can be explained
by the fact that in the distributed network the fused estimates
contain the information of all past measurements, while in
the centralized network only the current measurements are
fused.

VI. CONCLUSIONS

In this paper, we have presented two novel distributed
fusion algorithms which do not require to keep track of the
correlations between the local estimates, but still provide
consistent estimates. The algorithms are generalizations of
another distributed fusion algorithm that requires full rate
communication to compute current estimates. The novel
algorithms overcome this drawback. The first algorithm allows
for communication rates in the range [0.5, 1] while the second
algorithm allows for any communication rate in range [0, 1].
Both algorithms apply event-based communication to improve
the fusion result. The consistency of the algorithms and
the superiority over the centralized Kalman filter could be
confirmed by simulations.
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