

Atom Probe Tomography of Oxidation processes in NiAICr-alloys

Torben Boll

- Field Ion Microscopy
- Atom Probe Tomography
- Investigated Materials @ KIT
- Oxidation of NiAlCr
- Outward diffsion through Al₂O₃

BAM Berlin 14.02.2018

What can APT do for me?

- 3D-information of a sample up to 200 nm laterally and up to 1000 nm in depth
- Mass to charge ratio: Chemical information
- Atomic resolution (<0.1 nm) can be achieved in z-direction (in lateral directions 0.5 nm are typical)

History

- **1951** Field Ion Microscope: Atomic resolution was achieved the first time in October, 17th 1955.
- **1967** Chemical Analysis by time of flight measurement in Atom Probe Field Ion Microscope (APFIM)
- **1989** Position Sensitive Atom Probe
- 2001 Local Electrode Atom Probe (LEAP)
- 2013 Installation of LEAP 4000X HR at KIT
- 2018 Installation of Laser Assisted Wide Angle Atom Probe (LAWATAP) at KIT

History

- **1951** Field Ion Microscope: Atomic resolution was achieved the first time in October, 17th 1955.
- **1967** Chemical Analysis by time of flight measurement in Atom Probe Field Ion Microscope (APFIM)
- **1989** Position Sensitive Atom Probe
- 2001 Local Electrode Atom Probe (LEAP)
- 2013 Installation of LEAP 4000X HR at KIT
- 2018 Installation of Laser Assisted Wide Angle Atom Probe (LAWATAP) at KIT

Field Ion Microscopy

Video: B. Färber (Göttingen)

- Image gas ionizes on tip surface
- Ions are accelerated towards the screen
- Kinks (i.e. atoms) are imaged on the phosphorous screen
- If voltage is increased, tip atoms are evaporated, the image changes

Atom Probe Tomography (APT)

- High field applied, almost strong enough to evaporate atoms
- Additional pulse (laser or voltage): Atom is evaporated
- From the flight time the mass to charge ratio can be calculated
- (x,y)-dimension is known from the detector, z is determined from the sequence of arrival

Resolution

10 nm

 3D- Atom Probe Tomography (APT) data often has atomic resolution in z-direction (crystallographic information)

Resolution

3D- Atom Probe Tomography (APT) data often has atomic resolution in z-direction (crystallographic information)

10 nm

Resolution

(110) bcc: different planes emphasized by color

But often the resolution is not good enough -> data has to be processed to obtain this information

[011]

What can APT do for me?

Sample preparation: options

NANO

MICRO

Sample preparation of surface features with FIB

- Protective sample coating (Au, Ag)
- Mark area with Pt, deposit 2 µm Pt on 2x10 µm
- Cut lamella
 - Lift out
 - Attach lamella to OP
 - Cut lamella loose
 - Attach to micro tip
 - Cut loose
 - Find feature (ridge)
 - Annular milling at feature (ridge) while controlling position

12

12

Sample preparation of surface features with FIB

Overview for NiAl-alloys

- Ni base superalloys are good at high temperatures (e.g. air plane engines)
- Corrosion potentially dangerous
- Stable protective coating (oxide scale) is required: α -Al₂O₃
- Cr and reactive elements (e.g. Y,Hf) are added to change microstructure of the coating and the chemistry at grain boundaries
- Diffusion of O-ions occurs primarily along oxide grain boundaries (GBs) and can be influenced by additives
- APT can give quantitative information about GB chemistry

Overview:TEM

The second	$\label{eq:heads} \begin{array}{ c c c c c c c c } & YHfB: \ Ni_{60.6}Cr_{16.8}AI_{22.2}Y_{0.015}Hf_{0.037}B_{0.33}C_{0.028}\\ & YHfTi: \ Ni_{61.9}Cr_{15.2}AI_{22.6}Y_{0.020}Hf_{0.043}Ti_{0.31}C_{0.01}\\ & YHf: \ Ni_{62.3}Cr_{15.1}AI_{22.5}Y_{0.03}Hf_{0.04}C_{0.024}\\ \end{array}$							
		$Metal-Al_2O_3$	$Al_2O_3 - Al_2O_3$	Al ₂ O ₃ -M _y O _x				
	Hf	Υ	Y	Υ				
	Y	Ν	Y	Υ				
	Ті	Ν	Ν	Ν				
	В	Ν	Ν	Ν				
	Ni		Y					
500nm	Cr		Y					

TEM of oxidized NiCrAl after 100h@1100°C APT: Quantitative enrichment at different interfaces

BOLL, T., UNOCIC, K. A., PINT, B. A. & STILLER, K. (2017). Microscopy & Microanalysis

 $\begin{array}{l} \text{Cr-rich grain} \\ \text{Ni}_{59}\text{Al}_{16}\text{Cr}_{24}\text{Ti}_{0.1} \end{array}$

Al-rich grain Ni_{70.2}Al_{21.3}Cr_{5.9}Ti_{0.7}

- Hf but no Ti or Y at metal-oxide interface
- γ/γ metal nanosrucure. Ti is enriched in γ

Atom Probe:YHfB: Metal-oxide interface

Unexpected interface roughness

Atom Probe:YHfB: Metal-oxide interface

Unexpected interface roughness

M/O interface

- Al_2O_3 interface
- Al depleted, Ni enriched in the metal close to the interface
- Hf enriched at interface
- Nothing else is enriched at the interface

APT: YHfB- M/O-interface: non stoichiometric AIO in metal

APT: YHfB- M/O-interface: non stoichiometric AIO in metal

Conclusions I

The solutes

- Ti not found at phase or grain boundaries
- Hf segregates to metal/oxide PBs, oxide/oxide PBs and oxide GBs
- Y segregates to oxide/oxide GBs and PBs but not to metal-oxide PBs
- B shows no segregation to PBs or GBs
- Al₂O₃-Al₂O₃ GBs contain Ni and Cr
- Hf and Y could influence the transport of O, Ni and Cr in these GBs

The oxidation progress

- Rough oxide/metal interface
- Oxidation in the metal progresses along γ/γ -PBs into Al-rich γ -phase
- Small oxides in metal are not stoichiometric Al₂O₃
- Only observed due to APT

Outward diffusion in oxide scale on NiAl

- Protective Al₂O₃ coating on NiAl-alloy
- O (and all other elements) in α-alumina diffuse mostly via grain boundaries (GBs)
- Minor outward diffusion of metal
- Decoration of GBs will influence the diffusion and thus oxidation
 - Apparently grows inwards

Material	Ni	Al	Zr	Hf	N	С	Sxx	0	В	Cr
	at.%	at.%	ррта							
Zr-doped	49.95	49.99	520	0	0	0	3	48	30	0
Hf-doped	49.83	50.07	0	480	30	36	0	43	0	100

Outward diffusion: Exp. idea

a) After 1st exposure

Outward diffusion: SEM

Hf 10h exposure

TEM of mechanically polished Hf sample

No Ga contamination GB enriched with Hf and some Ni

TEM of Zr sample

Zr enriched at the GB

29

How to calculate the flux

Calculate the flux

- Number of diffused Al-atoms N^{Al}_{GB}
- Exposure time Δt (10h)
- Calculate number of atoms
 - Volume of ridge $V^{Al} = A^{Al} L_{GB}$
 - Length of GB L_{GB} (not height!)
 - Cross section area of ridge A^{Al}
 - Volume of Al_2O_3 unit cell: V_u =2.54 10⁻²² cm³
 - Number of Al atoms per unit cell: 12

$${}_{Al} = \frac{N_{GB}^{Al}}{L_{GB}\Delta t} \qquad \qquad N_{GB}^{Al} = \frac{12 V^{Al}}{V_u} \qquad \qquad J_{Al} = \frac{12 A^{Al}}{V_u \Delta t}$$

Flux of AI through GBs at 1100° C

follows Fick's 1st law

Flux of AI through GBs at 1100° C

follows Fick's 1st law

APT of NiAl + Hf sample

- Protective Au, Pt coating
- GB with Hf, Ni
- Ni enriched at surface
- Gibbsian excess F (Number of additional atoms per area in GB):

Hf: 0.5 nm⁻² Ni: 2.6 nm⁻²

Hf: 0.35 nm⁻² Ni: 0.59 nm⁻²

APT of NiAl + Zr sample: At the ridge

- Protective Ag on top of ridge-GB
- No Ni found
- Γ_{Zr}: 2.5 nm⁻²

Outward flux of Ni, Hf, Zr

Outward flux of Ni, Hf, Cr

Conclusions II

Outward Diffusion of AI along Al₂O₃ GBs is observed by STEM Mechanical polishing introduces defects that promote diffusion

Hf reduces Al-outward diffusion stronger than Zr

Zr is enriched at GBs

 \rightarrow Outward diffusion of Zr, Hf

- Hf is enriched at GBs
- Ni is found at the GB and at the top of the ridge in the Hf sample $\rightarrow \text{Outward diffusion of Ni}$

 $J_{O} \sim 10^{6} \text{ nm}^{-1} \text{s}^{-1} >> J_{AI} \sim 1 \text{ nm}^{-1} \text{s}^{-1} >> J_{Hf,Ni,Zr} \sim 10^{-3} \text{ nm}^{-1} \text{s}^{-1}$

37

Atom Probe Tomography: fast facts

- Small tip (d < 400 nm), high field (10-50 V/nm) in UHV -> atoms almost field evaporate
- Additional event: Laser /voltage ->evaporate single atoms
- Evaporation time and arrival time -> time of flight mass spectrometer -> elements and molecules can be identified
- Detection on a 2D detector ->(x,y)-position of atom
- Z-position from arrival sequence
- APT can analyze (in order of difficulty): metallic alloys, semiconductors, multi-layer systems, ceramics, non-organic compounds; organic materials are problematic
- Atomic resolution for a volume of 20-300 nm in diameter and 20-2000 nm in length

Acknowledgements

NiAICr

Krystyna Stiller (Chalmers) Olof Bäcke (Chalmers) Patrik Alngren (Chalmers) Kinga Unocic (Oakridge) Bruce Pint (Oakridge) <u>APT/ other</u> Sascha Seils Martin Heilmaier Delphine Chassaing Annette Kamilli Thomas Kreuter Talaat Al-Kassab (KAUST) Catharina Wille (KAUST) Tobias Schulz (Göttingen)

Thank you for your attention

You also want APT results? - knmf.kit.edu, or contact me KNMF grants APT time to suitable projects

