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The simulation of dense particulate flows offers a series of challenges, including the modelling of particle- 

particle and fluid-particle interaction, complex heterogeneous structures in the particulate phase and 

the displacement of fluid by particles. A common approach to incorporate the latter into the govern- 

ing equations of the fluid phase is given by the volume-averaged Navier–Stokes (VANS) equations which 

have been extensively researched in combination with finite volume methods. Multiple lattice Boltzmann 

(LB) schemes for the VANS equations have been suggested, yet only one study, relying on the use of 

non-physical force terms, investigated the schemes’ applicability to test cases with non-homogeneous 

particle concentrations. Furthermore, no such scheme has yet been used in a dense Euler–Euler 

model. 

In this paper, we first introduce a novel lattice Boltzmann method (LBM) for the VANS equations 

which relies on an adaptation of the streaming step, while requiring no additional forcing terms. Sec- 

ond, we combine the method with an advection-diffusion LBM to obtain a simple multiphase model, 

which forms a first step towards an Euler–Euler model for dense particulate flows. It takes the phases’ 

volume fractions and simple drag forces into consideration but neglects some inter-particle and hydro- 

dynamic forces as well as turbulence. The LBM’s convergence to the VANS equations is investigated in 

four test cases with analytical solutions, two of which contain spatially or temporally fluctuating par- 

ticle concentrations. The combined multiphase model is validated using a Rayleigh–Taylor instability 

test case. 

1. Introduction 

Dense particulate flows can be found in many scientific and 

industrial applications, such as deep bed filters [1,2] or fluidized 

bed reactors [3] . Accordingly, the correct modelling and efficient 

simulation of dense particulate flows is of considerable impor- 

tance. Since they characteristically contain strong interaction be- 

tween particles as well as strong hydrodynamic interaction [4,5] , 

this is a challenging task. 

Due to the substantial presence of particles, simulations which 

resolve the motion of single particles (Lagrangian representation) 

are overly computationally expensive [6] . Eulerean models, in 

which particles are represented by a concentration or density, pro- 

vide a computationally cheap alternative. The advection–diffusion 

model in particular includes particle-interaction through a diffu- 
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sion term while forces can be included through an adaptation of 

the bulk-velocity. Since the positions of particles are not resolved 

in Eulerean representations, a fluid model is needed which im- 

plicitly accounts for particle presence and in which the particle- 

fluid interaction can be accurately modelled. A common approach 

to achieve this is through the procedure of volume-averaging , pi- 

oneered by Anderson and Jackson [7] . Using this procedure, a 

set of equations for the fluid phase can be derived, which inher- 

ently contain the interaction with particles [8–10] . The resulting 

volume-averaged Navier–Stokes (VANS) equations are extensively 

used in different multiphase models – they for example form the 

basis of the two-fluid model, but can also be used to simulate the 

fluid phase for discrete element methods (DEM) and multiphase 

particle-in-cell (MP-PIC) methods [11,12] . 

For conventional CFD methods, especially FVM, volume- 

averaged models are well established [11] . For lattice Boltzmann 

methods (LBM) [13,14] , whose importance has steadily increased in 

recent years, no comprehensive implementation has yet been es- 

tablished. The great advantage of the LBMs lies in their scalability, 
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which makes them particularly well suited for implementation on 

high performance computers [15,16] . They are based on the Boltz- 

mann equation, a fundamental equation of statistical mechanics 

and thermodynamics, and therefore rely on a mesoscopic density 

function. As a result, macroscopic quantities such as momentum, 

density and pressure are not directly used. The convergence of the 

methods towards the macroscopic partial differential equations is 

generally proven through Chapman–Enskog analysis [13] . For the 

Navier–Stokes equations the procedure is well established whereas 

proving convergence for the VANS equations is more challenging. 

Multiple LB schemes for the VANS equations have been suggested, 

for example those of Guo and Zhao [17] , Zhang et al. [18] and Song 

et al. [19] , but as far as the authors of this paper are aware, none 

of these schemes have yet been used for an Euler–Euler LBM for 

dense particulate flows. Furthermore, for none of these schemes 

grid convergence in the case of a non-uniform porosity has been 

demonstrated, while porosity gradients even occur in simple par- 

ticulate flows such as sedimentations. Accordingly, for a broader 

applicability for multiphase flows, a scheme which handles large 

porosity gradients is required. To the knowledge of the authors, 

the only paper investigating analytical and numerical convergence 

for such cases was provided by Blais et al. [12] , who introduced a 

scheme that requires multiple additional forcing terms to retrieve 

the correct VANS equations. 

The aim of this paper is to establish a stable Euler–Euler LBM 

for multiphase flows, which accurately incorporates a two-way 

coupling between fluid and particles. This includes the introduc- 

tion of a novel VANS LBM, which relies on the manipulation of the 

streaming step and is required to handle both spatially and tem- 

porally fluctuating particle concentrations, without the use of non- 

physical forcing terms. 

The Euler–Euler VANS LBM is expected to form a first step to- 

wards a model for dense particulate flows, however some effects 

are not included in this work. We make the following assumptions: 

The fluid is incompressible and the hydrodynamic interaction is re- 

stricted to a quadratic drag-force. Turbulence, subgrid-stresses and 

the subsequent effective viscosity are not considered. The partic- 

ulate phase is assumed to be of uniform size and density while 

the particle-interaction is modelled through diffusion. Seeing as 

the diffusion coefficient is chosen to be constant, the close-packing 

limit is not considered. While these assumption make the Euler–

Euler VANS LBM, as presented here, inadequate for dense particu- 

late flow, the simple equations for the fluid enable test-cases with 

analytical solutions and allow for an assessment of the schemes 

stability in test-cases with high porosity gradients. Seeing as the 

fluid’s forces are simply implemented using a scheme by Guo et al. 

[20] , an extension of the hydrodynamic forces should prove to be 

rather straightforward. 

A short introduction to the VANS equations, the advection- 

diffusion equation and coupling-approaches is provided in 

Section 2 . The standard LBM, VANS LBM, and advection-diffusion 

LBM will be introduced in Section 3 , followed by some remarks on 

the implementation of the phase-coupling. Here, Guo and Zhao’s 

forcing scheme for drag forces [17] is extended to non-static 

particles. The coupled Euler–Euler VANS LBM is then introduced 

in Section 3.5 Grid-convergence for VANS LBM to an analytical 

solution is investigated for two test cases with a uniform, static 

particle phase, as well as two test cases with spatially and tem- 

porally fluctuating particle-concentrations in Section 4 . Then, the 

Euler–Euler VANS LBM is validated by simulating a Rayleigh-Taylor 

instability. In each test case, a standard LBM forcing scheme will 

be compared to the adapted forcing scheme from Section 3.4 . 

The results will be discussed in Section 5 , while the VANS 

LBM’s performance in the hydrodynamic limit is investigated in 

Appendix A using Chapman–Enskog analysis. 

2. Mathematical modeling 

2.1. The volume-averaged Navier–Stokes equations 

In order to derive the VANS equations, an averaging operation 

〈·〉 is used, which, for some function φ at position x , is given by 

〈 φ〉 (x ) = 

∫ 
� φ(y ) g(x − y ) χ(y ) dy ∫ 

� g(x − y ) χ(y ) dy 
. (1) 

g : � → R is a smoothing kernel which is normalized to yield one 

when integrated over the entire domain � ⊂ R 

d . The phase iden- 

tification function χ : �→ {0, 1} assumes the value one if x is oc- 

cupied by the fluid and zero elsewhere. The denominator ε(x ) := ∫ 
� g(x − y ) χ(y ) dy in Eq. (1) represents the fluid’s volume fraction 

in x , which is commonly referred to as porosity or void . Using 

a suitable averaging operator [21] , the new governing equations 

for the fluid phase can be derived from the Navier–Stokes equa- 

tions. In these new equations, the bulk-flows are resolved and the 

fluid-particle interaction is implicitly included through the hydro- 

dynamic force term F h and a subgrid-stress term σSG which repre- 

sents particle-induced stresses and turbulence [22] . This subgrid- 

stress is neglected in this work, which allows for simpler analytical 

solutions for the test cases. 

The resulting mass- and momentum conservation equations 

with density ρ , velocity u , body force F f and pressure p at posi- 

tion x and time t are given by Enwald et al. [8] 

∂ 

∂t 
ερ + ∇ · (ερ〈 u 〉 ) = 0 (2) 

∂ερ〈 u 〉 
∂t 

+ ∇ · (ερ〈 u 〉〈 u 〉 T  ) + ε∇〈 p〉 
= μ�(ε〈 u 〉 ) + εF f + F h + ∇ · σSG , (3) 

These equations are called the volume-averaged Navier–Stokes equa- 

tions . It is clear that Eqs. (2) and (3) still closely resemble the 

Navier–Stokes equations with a density that is scaled by the poros- 

ity; in fact, they are recovered for ε → 1. This similarity can be uti- 

lized for the derivation of a VANS LBM scheme. 

It should furthermore be noted, that the initial problem with 

complicated boundary conditions is transformed into a smoother 

problem through the usage of the averaging operator, but now in- 

cludes the terms F h and σSG which need to be modelled to repre- 

sent the complex particle-scale behaviour. 

2.2. The advection-diffusion equation 

The particle phase can be modelled by an advection-diffusion 

model. Particle presence is represented by the quantity ρp , the 

mass of particles per volume of the flow, which under the assump- 

tion of identical particles is proportional to the particle concen- 

tration. The advection-diffusion equation, as it is used here, is a 

mass-conservation equation which includes the dispersion of par- 

ticles along gradients: 

∂ρp 

∂t 
+ ∇ · (ρp u p ) = ∇ · (k ∇ρp ) , 

where u p is the bulk particle velocity. The diffusion coefficient k is 

assumed to be constant in this work. As a result, there is no mech- 

anism to ensure that the particle concentration will not grow be- 

yond close packing, which needs to be addressed in future works. 

2.3. Coupling 

Phase-coupling concerns the interaction between the phases. It 

includes the transfer of mass, momentum and energy between the 

phases [22] . For dilute particulate flows the interaction is often 



limited to the fluid exerting forces on the particles, referred to as 

one-way coupling. In dense flows one needs to consider that the 

hydrodynamic forces affect the fluid phase equally, which, when 

included, is referred to as back-coupling and subsequently leads to 

a model with two-way coupling. While there is no necessary ex- 

change of mass between particles and fluid in a particulate flow, 

there is the displacement of fluid by the particles. In the VANS- 

equations this is incorporated through the use of the porosity, 

which is entirely determined by the particle phase and given by 

ε = 1 − ρp 

˜ ρp 
. (4) 

˜ ρp is the material density of the particles, thus a particle’s mass- 

volume ratio, as opposed to the particle density ρp , which de- 

scribes the presence of particulate mass within the two-phase 

flow. 

The momentum exchange is given by the hydrodynamic force 

which may include, among others, drag force, pressure force, 

virtual-mass force. According to Newtons’ second law, the force ex- 

erted by the fluid onto the particles is returned equally onto the 

fluid, that is 

F f→ p = −F p→ f . (5) 

The choice F h := F p → f leads to the signs in Eqs. (7) and (9) . 

3. Discretization 

3.1. The lattice Boltzmann method 

LBM can be understood to be a discretization approach to the 

Navier Stokes equations [23] , the advection-diffusion equation or 

other target equations. It is centred around the probability distri- 

bution function f , that is defined on a discrete phase space, consist- 

ing of a regular grid �h for spatial resolution and a limited number 

of accepted velocities ξi . Depending on the dimension d and the 

number of allowed velocities q , the resulting scheme is denoted by 

D d Q q . The expected mass in point x to move with velocity ξi is 

then written as f i ( x , t ) for i ∈ { 0 , . . . , q − 1 } . 
The governing equation for the distribution function is given 

by 

f i (x + ξi δt, t + δt) − f i (x , t) = 

1 

τ
( f eq 

i 
(x , t) − f i (x , t)) , 

where δt denotes the time step length. The right hand side of the 

equation is given by a BGK collision operator which includes the 

relaxation time τ , related to the fluid’s viscosity, as well as the 

equilibrium function f 
eq 
i 

, given by a discrete Maxwell–Boltzmann 

distribution 

f eq 
i 

= w i ρ
(

1 + 

ξi · u 

c 2 s 

+ 

( ξi · u ) 2 

2 c 4 s 

− u · u 

2 c 2 s 

)
, (6) 

with speed of sound c s and weights w i . 

The macroscopic quantities are recovered by taking the mo- 

ments of f i ∑ 

i 

f i = ρ
∑ 

i 

ξ f i = ρu , 

while the pressure is represented through the density p = ρc 2 s , 

making the LBM weakly compressible. 

The standard LBM is implemented in a two-step scheme: Alter- 

nately, the left-hand side and the right-hand side are calculated in 

a streaming step 

f i (x + ξi δt, t + δt) = 

ˆ f i (x , t) 

and a collision step 

ˆ f i (x , t) = 

(
1 − 1 

τ

)
f i (x , t) + 

1 

τ
f eq 
i 

(x , t) . 

Fig. 1. Illustration of a streaming step for an LBM with scaled density. The top line 

represents the porosity, while the lower two lines show a distribution function be- 

fore and after a streaming step. At time t , the fluid is at rest and the distributions 

functions are symmetric. After the streaming step at time t + δt the central node 

has a distribution that is significantly slanted to the left, corresponding to an un- 

wanted acceleration towards the region of low porosity. 

The first incorporates the temporal shift of densities while the lat- 

ter describes the redistribution of densities due to internal colli- 

sions in the fluid. Forces can furthermore be included through a 

scheme suggested by Guo et al. [20] , by adapting the velocity in 

Eq. (6) and redistributing f i ’s. In Section 4 , a D2Q9 discretisation 

as well as a D3Q19 discretisation will be used. The corresponding 

values for ξi , w i and c s can be found e.g. in [24] . 

3.2. LBM for the VANS equations 

To incorporate the similarity of the Navier–Stokes and VANS 

equations into an LBM scheme, Zhang et al. [18] suggest to scale 

the density function with the porosity. Accordingly, the density 

function is redefined to yield ∑ 

i 

f i = ερ
∑ 

i 

ξ f i = ερ〈 u 〉 , 

with the adapted equilibrium-function 

f eq 
i 

= εw i ρ
(

1 + 

ξi · 〈 u 〉 
c 2 s 

+ 

( ξi · 〈 u 〉 ) 2 
2 c 4 s 

− 〈 u 〉 · 〈 u 〉 
2 c 2 s 

)
. (7) 

Using Chapman–Enskog analysis, macroscopic equations can then 

be derived, yielding results similar to the VANS equations, but with 

an incorrect pressure term ∇( εp ) [18] . In the case of an isobaric 

fluid at rest in a domain filled with a spatially fluctuating poros- 

ity, the pressure term ∇(εp) = p∇ε would lead to a non-physical 

acceleration of the fluid. To remedy this, Zhang et al. suggest a 

correcting force term F pc = p∇ε. But when investigated by Blais 

et al. [12] it was found not to adequately solve test cases with non- 

constant porosity. 

According to the authors of this paper, the issue with the ap- 

proach lies in the usage of a correcting force term, which inter- 

venes in the collision step. As illustrated in Fig. 1 for a simple one- 

dimensional test case, the streaming step of an LBM with scaled 

density distributions skews the velocity. Therefore, the authors of 

this paper propose a modification of the streaming step to retrieve 

the correct pressure term ( Fig. 2 ). 

To achieve this, the density distribution is split into two parts 

which are streamed independently; one part given by πi = w i 

∑ 

j f j 
and a remainder υi , such that f i = πi + υi . In rough terms, π i con- 

tains the density part of the distribution which is subsequently re- 

sponsible for the pressure, whereas υi incorporates the remaining 

information. 



Fig. 2. Illustration of the Poiseuille test case. F L is the driving force, while u x 
schematically shows the profile of the velocity in x -direction and explicit forcing. 

By scaling π i by 1 
ε(x ,t) 

before and rescaling it by ε(x + ξ δt, t + 

δt) after the streaming step, the problem in the equilibrium case of 

Fig. 1 is adequately resolved. The rescaling procedure corresponds 

to an adaptation of the streaming step to 

f i (x + ξi δt, t + δt) = ε(x + ξi δt, t + δt ) 
πi (x , t ) 

ε(x , t ) 
+ υi (x , t ) 

= f i (x , t) + πi (x , t) 

× ε(x + ξi δt, t + δt) − ε(x , t) 

ε(x , t) 
, 

which, combined with the collision step, gives an adapted lattice 

Boltzmann equation 

f i (x + ξδt, t + δt) − f i (x , t) 

= 

1 

τ
( f eq 

i 
− f i ) + πi (x , t) 

ε(x + ξi δt, t + δt) − ε(x , t) 

ε( x , t) 
. (8) 

An investigation of this scheme in the hydrodynamic limit using 

Chapman–Enksog analysis is shown in Appendix A . Relying on the 

assumption that density fluctuations remain relatively small, the 

VANS momentum equations can be recovered. 

3.3. LBM scheme for the advection-diffusion equation 

The LBM with BGK collision operator can also be adapted to 

simulate the advection-diffusion equation. Using the density func- 

tion g i , the density can once again be recovered by ρp = 

∑ 

i g i . For 

the equilibrium function one can use g 
eq 
i 

= w i ρp (1 + 

ξi ·u p 
c 2 s 

) , while 

the relaxation-time is chosen to be τp = k + 

δ t 
2 and u p is computed 

through a first order approximation 

u p (x , t + δt) 

= u p (x , t) + 

1 

ρp 
(−∇ · (ρp u p (x , t) u p (x , t) T  ) + (1 − ε) F p − F h ) , 

(9) 

with body force F p . The authors of this paper refer to [25] for fur- 

ther details. 

3.4. Drag forces in LBM 

To include the force interaction between the fluid and particle 

phase, a forcing scheme by Guo et al. [20] is used. It requires a 

redistribution of the f i ’s, as well as adapting the velocity used in 

the equilibrium distribution, as given by Eq. (7) . This velocity u 

eq 

is obtained by extrapolating the fluid’s velocity to time t + 

δt 
2 in 

accordance to Newton’s second law 

u 

eq = 

1 

ερ

(∑ 

i 

ξi f i + 

δt 

2 

(F h + εF f ) 
)
. (10) 

It should be noted that the hydrodynamic force generally includes 

the drag force, leading to an implicit relationship between the 

force-shifted velocity and velocity-dependent drag force. For sim- 

ple drag laws this relationship can be resolved, which could im- 

prove accuracy as well as stability of some methods. Here, an ap- 

proach by Guo and Zhao [17] for porous media with a quadratic 

drag law is extended to a dynamic particle phase. Therefore, the 

hydrodynamic force in this section is also assumed to be limited 

to a quadratic drag force 

F h = F d (u rel ) = −c 0 u rel − c 1 u rel | u rel | , 
with parameters c 0 and c 1 and u rel = u − u p . For drag laws which 

are not of this form, a second order approximation could be used 

in order to implement the scheme. 

By introducing the extrapolated particle velocity u 

eq 
p := u p + 

δt 
2 ρp 

(−∇ · (ρp u p u T

 

p ) + (1 − ε) F p − F d (u 

eq 

rel 
)) and extrapolated rela- 

tive velocity u 

eq 

rel 
:= u 

eq − u 

eq 
p , Eq. (10) can be adapted to yield 

u 

eq = 

1 

ερ

(∑ 

i 

ξi f i + 

δt 

2 

εF f + 

δt 

2 

F d (u 

eq 

rel 
) 

)

= 

1 

ερ

(∑ 

i 

ξi f i + 

δt 

2 

εF f + 

δt 

2 

(
−c 0 u 

eq 

rel 
− c 1 u 

eq 

rel 
| u 

eq 

rel 
| )

)
. 

Subtracting the extrapolated particle velocity u 

eq 
p from both sides, 

gives an implicit equation for u 

eq 

rel 

u 

eq 

rel 
= 

1 

ερ

∑ 

i 

ξi f i + 

δt 

2 ρ
F f − u p + 

δt 

2 

∇ · (ρp u p u T

 

p ) 

− δ t 

2 ̃  ρp 
F p + 

δt 

2 

(
1 

ερ
− 1 

ρp 

)(
−c 0 u 

eq 

rel 
− c 1 u 

eq 

rel 
| u rel | 

)
. 

Through the introduction of an auxiliary variable 

v := 

1 

ερ

∑ 

i 

ξi f i + 

δt 

2 ρ
F f − u p + 

δt 

2 ρp 
∇ · (ρp u p u T

 

p ) −
δt 

2 ̃  ρp 
F p 

which includes all velocity-independent terms, this relation can be 

explicitly solved [17] by 

u 

eq 

rel 
= 

v 

c ∗
0 

+ 

√ 

c ∗
0 

2 + c ∗
1 
| v | , (11) 

where c ∗
0 

= 

1 
2 (1 + 

δt 
2 ( 

1 
ρ − 1 

ρp 
) c 0 ) and c ∗

1 
= 

δt 
2 ( 

1 
ρ − 1 

ρp 
) c 1 . The drag 

force can accordingly be reconstructed by 

F d (u 

eq 

rel 
) = −c 0 u 

eq 

rel 
− c 1 u 

eq 

rel 
| u 

eq 

rel 
| . 

3.5. Euler–Euler VANS LBM 

By combining the VANS LBM from Section 3.2 and the 

advection-diffusion LBM from Section 3.3 the Euler–Euler VANS 

LBM is formed. For each time step, the following steps are 

executed: 

(i) ε is determined from ρp according to Eq. (4) 

(ii) the hydrodynamic and body forces are determined 

(iii) the new equilibrium velocity is determined ( Eq. (12) or 

Eq. (13) ) 

(iv) the particle velocity is adapted according to (9) 

(v) fluid and particles perform collide and stream 



Steps (ii) and (iii) are implemented for two different schemes. 

One takes the implicit drag-velocity relation from Section 3.4 into 

consideration while the other does not. The first variant, in which 

the velocity is simply shifted according to Eq. (10) will be referred 

to as explicit forcing scheme . The drag force in (ii) will be deter- 

mined at time t , using u rel = u − u p . Accordingly, the equilibrium 

velocity in step (iii) will be given by 

u 

eq = 

1 

ερ

(∑ 

i 

ξi f i + 

δt 

2 

F h (u − u p ) + 

δt 

2 

εF f 
)
. (12) 

For the implicit forcing scheme , the drag force in (ii) is determined 

using u 

eq 

rel 
from Eq. (11) . The velocity for the equilibrium distribu- 

tion in step (iii) is then recovered using the definition of u 

eq 

rel 
, that 

is 

u 

eq = u 

eq 

rel 
+ u 

eq 
p 

= u 

eq 

rel 
+ u p + 

δt 

2 ρp 

(
− ∇ · (ρp u p u T

 

p ) + (1 − ε) F p − F d (u 

eq 

rel 
) 
)
. 

(13) 

4. Results 

To validate the novel VANS LBM scheme, four simple two- 

dimensional test cases with analytical solutions are examined. The 

first two are fluid flows through a homogeneous, static particle 

phase and follow the example of Guo and Zhang [17] . The third 

case is a periodic fluid flow through a square box filled with a 

static fluid phase, but with a porosity that fluctuates sinusoidally 

in direction of the flow, which is relevant for correctly validating 

the pressure term. The fourth test case investigates the fluid flow 

through a moving particle phase with a sinusoidal concentration. 

In the last test case, the Euler–Euler VANS LBM is assessed by 

simulating a Rayleigh–Taylor instability. All two-dimensional test 

cases rely on a D2Q9 discretisation, whereas the Rayleigh–Taylor 

test case uses a D3Q19 discretisation for the fluid phase and a 

D3Q7 discretisation for the particle phase. All test cases are im- 

plemented for both implicit and explicit forcing. 

4.1. Porous Poiseuille flow 

The plane Poiseuille flow is a flow bounded by two infinitely 

extending planes. Near the boundary planes, the fluid is slowed 

down due to the application of no-slip boundaries, leading to a 

parabolic flow pattern for one-phase flows. In the generalized ver- 

sion of the Poiseuille flow investigated in this section, drag forces 

are added and the influence of the porosity is included, leading to 

a slightly different steady-state solution, which will be stated sub- 

sequently. 

The simulation of this test case is carried out in a non- 

dimensional domain of size 2 × 1. Boundary conditions in x - 

direction are chosen to be periodic, while a bounce-back bound- 

ary condition is imposed at height y = 0 and y = 1 . The Reynolds 

number Re is chosen to be 10 and the channel is filled with 

a constant particle presence, yielding a porosity ε = 0 . 9 . A con- 

stant force F f in x -direction drives the flow, while a linear drag 

force F d = −(1 − ε) c 0 〈 u 〉 with c 0 = 10 counteracts it, resulting in 

a symmetric steady-state velocity, which can analytically be deter- 

mined [17] to be 

u 

s (y ) = u r 

(
1 − cosh (r(y − 1 / 2)) 

cosh (r/ 2) 

)
, (14) 

with r = 

√ 

Re c 0 and reference velocity u r = 

ε
(1 −ε) c 0 

F f . In order 

to normalize the reference velocity to one, F f is chosen to be 

( 
(1 −ε) c 0 

ε , 0) . The simulation runs until t = 20 , when a steady-state 

has been achieved, for discretisation lengths δx ranging from 

1 
10 to 
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Fig. 4. Relative error of the Poiseuille test case for different mesh resolutions δx . 

1 
50 . In Fig. 3 the profile of the x -component of the velocity of both 

the analytical and numerical solution is plotted over the height of 

the channel. As shown, the velocity profile for the Poiseuille test 

case is in excellent agreement with the analytical solution. In Fig. 4 

one finds the relative error plotted over the inverse discretisation 

length. It can be seen that both the explicit and implicit forcing 

scheme from Section 3.5 yield a second order convergence, while 

the explicit forcing scheme performs marginally better. 

In fact, the second order convergence is expected seeing that for 

ε = const one gets ∇(εp) = ε∇p. For the same reason, the rescal- 

ing procedure in the streaming step yields the same results as the 

conventional streaming procedure and accordingly the convergence 

should match that of the standard LBM. 

4.2. Porous couette flow 

The Couette-flow is a flow bounded by two planes which move 

relative to each other. For one-phase flows this leads to a linear 

velocity profile between the planes. Through the inclusion of drag 

forces and porosity, the generalised Couette flow in this section 



Fig. 5. Illustration of the Couette test case. The upper plane deives the flow and u x 
schematically shows the velocity in x -direction. 
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Fig. 6. Velocity profile of the Couette test case for mesh resolution δx = 

1 
50 

and 

explicit forcing. 

once more has a slightly different solution. Just as in the first test 

case, the 2 × 1 channel has a constant porosity ε = 0 . 9 and a lin- 

ear drag law with c 0 = 10 . Unlike the first test case, the flow is 

not driven by a force, but by the moving upper boundary plane 

as illustrated in Fig. 5 . On the lower boundary plane, at y = 0 , a 

bounce-back condition is imposed, the upper plane at y = 1 has 

a velocity boundary with velocity v = (1 , 0) . In x -direction peri- 

odic boundary conditions are imposed. The steady-state solution 

for this case is then given by Guo and Zhao [17] 

u 

s (y ) = v 
sinh (ry ) 

sinh (r) 
, 

with r = 

√ 

Re 1 −ε
ε c 0 . 

In Fig. 6 we find the velocity-component in x -direction of both 

the numerical and analytical solution plotted over the height of 

the channel. Again, the two solutions are in excellent agreement. 

In Fig. 7 the relative error is plotted over the inverse discretisa- 

tion length. Considering that the test case again uses a constant 

porosity, the same reasoning as for the Poiseuille test case holds 

true and once more a second order convergence for both forcing 

schemes can be observed. 
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Fig. 7. Relative error of the Couette test case for different mesh resolutions δx . 

Fig. 8. Illustration of the variable porosity test case. The upper curve represents the 

spatial fluctuation of ε over the length of the channel. A Force F L drives the flow. 

4.3. Variable porosity in space 

This test case was chosen in order to determine the perfor- 

mance of the scheme in the presence of porosity gradients and 

consequently to validate the pressure term. The domain is given 

by a square channel with dimensions 2 × 1. The porosity varies 

sinusoidally over the length of the channel and is chosen to be 

ε(x ) = 1 + a ( sin (πx ) − 1) , with a = 0 . 1 . The flow is driven by a 

constant force F f in x -direction and the boundaries are chosen to 

be periodic, thus the driving force is solely counteracted by the 

drag force given by F d = ε2 (1 − ε) 〈 u 〉 . While this drag would not 

correspond to any physical drag law (due to the cubic influence of 

the porosity), it does allow for the derivation of a simple analyti- 

cal steady-state solution, namely u 

s = 

F f 

εac 0 
. Accordingly, the driving 

force is chosen to be F f = ac 0 to obtain the solution u 

s = 

1 
ε . 

A schematic representation of the test case has been included 

in Fig. 8 , where the curve of the porosity has been superimposed 

over the channel. 

In Fig. 9 the velocity in x -direction is plotted over the length of 

the channel. We once more find excellent agreement with the an- 

alytical solution. For both forcing schemes there is a second order 

convergence as can be observed in Fig. 10 , where the relative error 

is plotted over the inverse discretisation length. 
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Fig. 9. Velocity profile of the variable porosity test case for mesh resolution δx = 

1 
50 

and explicit forcing. 
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Fig. 10. Relative error of the variable porosity test case for different mesh resolu- 

tion δx . 

4.4. Variable porosity in space and time 

In order to investigate the performance for temporally fluctu- 

ating porosities, the previous test case was also implemented for 

a particle phase moving with a constant velocity u p = (0 . 5 , 0) . As 

a result, the porosity is given by ε(x, t) = 1 + a 
(

sin (π(x − 0 . 5 t)) −
1 
)

and the drag law is given by F d = ε2 (1 − ε) c 0 (〈 u 〉 − u p ) . a, c 0 

and F f , as well as the boundary conditions remain unchanged. The 

corresponding analytical solution is given by u 

s = u p + 

1 
ε . 

The test case is illustrated in Fig. 11 , where the porosity at two 

points in time has been superimposed in order to illustrate the 

temporal development of the porosity. In Fig. 12 , the x -component 

of the analytical and simulated velocity is plotted over the length 

of the channel for time t = 20 . As shown, the numerical results are 

in good agreement with the analytical solution. From Fig. 13 it can 

be seen that the relative error is of the order of magnitude 10 −3 

which, while small, seems to be a systematic error. 

Fig. 11. Illustration of the moving variable porosity test case. The solid curve repre- 

sents the spatial fluctuation of ε over the length of the channel, as does the dotted 

line for some later time. A Force F L drives the flow. 
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Fig. 12. Velocity profile of moving variable porosity test case for mesh resolution 

δx = 

1 
50 

and explicit forcing. 
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Fig. 13. Relative error of the moving variable porosity test case for different mesh 

resolutions δx . 



Fig. 14. Illustration of the initial setting of the Rayleigh–Taylor test case at the 

y = 0 . 0 0 075 m plane. Dark regions ( ε1 ) represent regions of high particle concen- 

tration, while light regions ( ε0 ) represent pure fluid. The effective gravitational force 

F g accelerates particles downwards, growing the perturbation at the center. u rep- 

resents the general flow direction of the test case: The perturbation moves down- 

wards through the center, while pure fluid moves upward at the sides of the do- 

main. 

4.5. Rayleigh–Taylor 

A Rayleigh–Taylor instability occurs when a heavy fluid is 

placed over a lighter fluid. Gravitational forces accelerate the heavy 

fluid downward. In small perturbations, this leads to an acceler- 

ation of the surrounding fluid towards the perturbation, conse- 

quently leading to its growth. As a result, the bulk of the up- 

per mass moves through these perturbations, while the light fluid 

moves upwards around it, leading to high shear rates and vortices 

at the fluids’ interface, similar to a Kelvin–Helmholtz instability. 

The phenomenon can also be observed when one substitutes 

the heavier fluid phase with a suspension consisting of a light fluid 

and heavy particles. This suspension behaves similar to a fluid, 

leading to the same phenomenon. 

For this test case this was realized in a three- 

dimensional simulation of a channel with dimensions 

0.0015 m × 0.0015 m × 0.0045 m. At z = 0 m and z = 0 . 0045 m 

a bounce-back boundary condition is imposed, while in x and 

y -direction periodic boundary conditions are chosen. The fluid 

phase has a kinematic viscosity μ f = 1 · 10 −4 kg 
m s and density 

ρ = 10 0 0 kg 

m 

3 . 

The top fifth of the channel is occupied by 10.0 0 0.0 0 0 spherical 

particles of radius r = 2 · 10 −6 m and density ρp = 1010 kg 

m 

3 , lead- 

ing to an initial porosity of ε1 ≈ 0.85. Additionally, a small spheri- 

cal perturbation of particle-rich fluid is introduced, centred around 

(0.0 0 075 m, 0.0 0 075 m, 0.0 036 m) with radius 4 . 5 · 10 −5 m . 

The particles’ motion is simulated using the advection-diffusion 

model, as described in Chapter 3.3 using the diffusion coefficient 

k = 8 · 10 −9 m 

2 

s . 

The flow is driven by the gravity force on the particles, coun- 

teracted by the buoyancy force, leading to an effective force F p = 

(1 − ε)(ρ − ˜ ρp ) g , where g = (0 , 0 , −9 . 81) m 

s 2 
is the gravitational ac- 

celeration. 

The phase interaction is restricted to the Stokes’ drag 

F d = (1 − ε) 
9 ρν f 

2 r 2 

(〈 u 〉 − u p 

)
. (15) 

The initial setup of this test case is schematically depicted in 

Fig. 14 . The discretisation lengths are given by δx = 2 . 5 · 10 −5 m 

and δt = 1 . 459 · 10 −4 s . The Péclet-number can be determined to 

be Pe = 

0 . 0045 m 

k 

√ | g | 0 . 0045 m (ρ − ˜ ρp ) / ̃  ρp ≈ 53 . 

For the explicit forcing scheme no stable results were obtained. 

As depicted in Fig. 15 , the particle concentration contains large 

oscillations, which grow and cause extreme density fluctuations 

within a few time steps. The implicit forcing scheme however 

Fig. 15. Particle density ρp scaled by a factor 1 
10 0 0 

for the explicit forcing scheme illustrated on the plane x = 0 . 0 0 075 m for different time steps. t = 5 δt t = 6 δt include the 

oscillations, that cause the scheme to be unstable. 



Fig. 16. Particle density ρp scaled by a factor 1 
10 0 0 

for the implicit forcing scheme illustrated on the plane x = 0 . 0 0 075 m for different time steps. From time 1 s to 2 s, the 

growth of the protrusion can be observed. t = 2 . 5 s to 3.5 s show the unfolding of the protrusion, as well as the circulatory motion accelerating the outer particles upwards. 

proves to be more stable. Fig. 16 shows the temporal develop- 

ment of the particle concentration. Blue color indicates regions of 

low particle concentrations or high porosity (e.g. ε ≈ 1), whereas 

red indicates regions of high particle concentration or low porosity 

(e.g. ε ≈ 0.83). 

As depicted in Fig. 16 (a), the particle concentrations still closely 

resembles the initial setting with the perturbation at the centre, al- 

though diffusion blurred the boundary between clear and particle- 

laden fluid. At time t = 1 . 5 s ( Fig. 16 (b)) the perturbation slowly 

grows, while the particle concentration next to it starts to de- 

crease. In Fig. 16 (c) at time t = 2 s , one can observe an increased 

rate of growth of the protrusion which almost contains the bulk of 

particle mass. In Fig. 16 (d) of a secondary instability starts to form 

at the tip of the protrusion, similar to a Kelvin-Helmholtz insta- 

bility. It is formed by the downward motion of the particle-laden 

fluid and upward motion of the pure fluid around it, causing high 

shear stresses. In Fig. 16 (e) nearly all particles move downwards 

through the centre, while the instability at the tip of the protru- 

sion continues growing. At time t = 3 . 5 s ( Fig. 16 (e)) a portion of 

the particle load has reached the bottom, while the outer parts of 

the protrusion are accelerated outward and upward due to the cir- 

culatory motion of the fluid in the domain. 

The qualitative motion of the particle concentration is in agree- 

ment with Zhang’s simulation of a sedimentation process using La- 

grangian particles [26] as one can clearly discern the acceleration 

of particles through the middle, the unfolding of the head of the 

protrusion, as well as the recirculation upwards after the motion. 

5. Conclusion 

In this paper, a Euler–Euler LBM for particulate flows is in- 

troduced which incorporates the displacement of fluid by parti- 

cles. For the fluid phase the volume-averaged Navier–Stokes equa- 

tions are used, in which the presence of particles is incorporated 

through the use of the fluid’s volume fraction ε, commonly re- 

ferred to as porosity. For the particles an advection-diffusion model 



with constant diffusion coefficient is chosen. The coupling ap- 

proach between the phases consists of the porosity’s dependency 

on ρp and drag forces acting on both particle and fluid according 

to Newton’s second law. To improve stability, an adapted forcing 

scheme for quadratic drag laws is introduced in Section 3.4 . In or- 

der to obtain an LBM for the VANS equations, an adapted stream- 

ing step is proposed, which scales part of the probability density 

function f i for the fluid phase, depending on the local porosity. 

This novel VANS LBM’s behavior in the hydrodynamic limit is 

investigated in Appendix A . While the mass conservation equa- 

tion is slightly different to that of the VANS equations, the scal- 

ing procedure in the streaming step ensures the correct density 

for incompressible flows. The momentum conservation equation 

relies on the assumption that fluctuations in pressure remain small 

whenever there are large porosity gradients. With this assumption, 

the momentum equation of the VANS equations is in fact retrieved 

in the hydrodynamic limit. 

The performance of the novel VANS LBM and the Euler–Euler 

VANS LBM for particulate flows is tested in Section 4 . In four 

simple test cases with analytical solutions, it is shown that the 

VANS LBM has second order convergence in the presence of a 

static particle-phase for both the explicit forcing scheme (explicit) 

as well as the implicit forcing scheme, even in the presence of 

porosity gradients. For the non-static test case one finds that the 

results are in good agreement with the analytical solution, how- 

ever, no convergence is obtained. The analytical solution can be 

recovered up to an error of 6 · 10 −3 . While the explicit forcing 

scheme yields better results than the implicit scheme in the an- 

alytical test cases, it proves to be unstable for the Euler–Euler 

model as shown in the Rayleigh–Taylor test case. For the implicit 

forcing scheme, the temporal development of the concentration 

closely resembles other simulations of Rayleigh–Taylor instabilities. 

Since the test case heavily depends on fluid-particle interaction, it 

can be assumed, that Euler–Euler VANS LBM accurately incorpo- 

rates the coupling. To fully capture the physics of dense particu- 

late flows, some additional modifications of the Euler–Euler VANS 

LBM scheme are required. Other hydrodynamic interactions such as 

shear induced forces, virtual mass forces and other drag laws could 

easily be included. The subgrid-stress could be incorporated using 

a Smagorinsky model. Extending the VANS scheme to compress- 

ible fluid would also greatly improve its usability. The biggest hur- 

dle towards an implementation for dense particulate flow lies in 

the behaviour near close-packing of the advection-diffusion model. 

This could perhaps be improved through a porosity dependant dif- 

fusion coefficient or by deriving an averaged expression for the 

forces or stresses near close packing. Improving this aspect should 

be the priority in future works, but most of the aforementioned 

changes should be made for the model to become viable for dense 

particulate flows. The VANS LBM could also be applied to other 

multiphase and multicomponent flows and could easily be com- 

bined with discrete element methods or potentially be adapted to 

develop a new two-fluid LBM. 

Appendix A. Chapman–Enskog analysis of the novel scheme 

This section provides an analysis of the novel scheme. The no- 

tations and procedure will be analogous to that of Blais et al [12] . 

The aim is to investigate the behaviour of the scheme in the hydro- 

dynamic limit and to determine their relation to the VANS equa- 

tions, as given by (2) and (3) 

∂ 

∂t 
(ερ) + ∇ ·

(
ερ〈 u 〉 ) = 0 

∂ 

∂t 
ερ〈 u 〉 + ∇ ·

(
ερ〈 u 〉〈 u T

 〉 ) + ε∇〈 p〉 = μ�
(
ε〈 u 〉 ) + F h . 

For this result we use the adapted lattice Boltzmann Eq. (8) from 

Section 3.2 

f i ( x + ξi δt, t + δt) − f i (x , t) 

= 

1 

τ
( f eq 

i 
− f i ) + (ε(x + ξi δt, t + δt) − ε(x , t)) 

w i 

∑ 

j f j (x , t) 

ε(x , t) 
, 

(A.1) 

as well as the equilibrium function 

f eq 
i 

= ερw i 

(
1 + 

ξi · 〈 u 〉 
c 2 s 

+ 

( ξi · 〈 u 〉 ) 2 
2 c 4 s 

− 〈 u 〉 · 〈 u 〉 
2 c 2 s 

)
. 

For simplicity’s sake the averaging operator 〈·〉 is omitted in the 

following derivation. 

The moments of the equilibrium function are given by ∑ 

i 

f eq 
i 

= ερ

j eq 
α := 

∑ 

i 

f eq 
i 

ξiα = ερu α

�eq 

αβ
:= 

∑ 

i 

f eq 
i 

ξiαξiβ = c 2 s ερδαβ + ερu αu β

S eq 

αβγ
:= 

∑ 

i 

f eq 
i 

ξiαξiβξiγ = c s 
2 ερ(u αδβγ + u βδαγ + u γ δαβ ) . 

With the use of an expansion parameter λ the different scales 

are separated, yielding 

f i = f (0) 
i 

+ λ f (1) 
i 

+ λ2 f (2) 
i 

+ O(λ3 ) , 

∂ t = λ∂ (1) 
t + λ2 ∂ (2) 

t , ∇ = λ∇ 

(1) . 

Inserting this into Eq. (A.1) and sorting the different powers of λ
gives 

λ0 : 0 = − 1 

τ
( f eq 

i 
− f (0) 

i 
) ⇔ f eq 

i 
= f (0) 

i 

λ1 : (∂ (1) 
t + ξi ∇ 

(1) ) f (0) 
i 

= − ω 

δt 
f (1) 
i 

+ w i 

∑ 

j f 
(0) 
j 

ε
(∂ (1) 

t + ξi ∇ 

(1) ) ε. 

(A.2) 

By applying the derivative ∂ (1) 
t + ξi · ∇ 

(1) to Eq. (A.2) this results 

in 

ω 

δt 
(∂ (1) 

t + ξi · ∇ 

(1) ) f (1) 
i 

= (∂ (1) 
t + ξi · ∇ 

(1) ) 2 f (0) 
i 

+ 

w i 

∑ 

j f 
(0) 
j 

ε
(∂ (1) 

t + ξi · ∇ 

(1) ) 2 ε, (A.3) 

where the derivative of 
w i 

∑ 

j f 
(0) 
j 

ε has been neglected, which is valid 

if pressure fluctuations remain relatively small whenever there are 

large porosity gradients. One could furthermore argue, that this is 

correct since π i and υi are streamed independently instead of de- 

termined anew after the streaming step. 

Combining (A.3) with the terms of magnitude λ2 gives: 

λ2 : ∂ (2) 
t f (1) 

i 
+ (1 − ω 

2 

)(∂ (1) 
t + ξi · ∇ 

(1) ) f (1) 
i 

= −ω 

δt 
f (2) 
i 

+ 

w i 

∑ 

j f 
(0) 
j 

ε
∂ (2) 

t ε + 

w i 

∑ 

j f 
(1) 
j 

ε
(∂ (1) 

t + ξi · ∇ 

(1) ) ε. (A.4) 

Taking the moments of Eqs. (A.2) and (A.4) , while using that 0 = ∑ 

i f 
(1) 
i 

= 

∑ 

i f 
(2) 
i 

= 

∑ 

i ξi f 
(1) 
i 

and 0 = 

∑ 

i w i ξi 

∑ 

j f 
(0) 
j 

due to sym- 

metry, as well as ερc 2 s I = 

∑ 

i w i ξi ξi 

∑ 

j f 
(0) 
j 

, results in 

∑ 

i 

λ : ∂ (1) 
t (ερ) + ∇ 

(1) · (ερu ) = ρ∂ (1) 
t ε, (A.5) 

∑ 

i 

λ2 : ∂ (2) 
t (ερ) = ρ∂ (2) 

t ε, 



∑ 

i 

ξi λ : ∂ (1) 
t (ερu ) + ∇ 

(1) · (ερc 2 s I + ερuu T

 ) = ρc 2 s I · ∇ 

(1) ε, 

∑ 

i 

ξi λ
2 : ∂ (2) 

t (ερu ) + 

(
1 − ω 

2 

)
∇ 

(1) · �(1) = 0 . 

(A.6) 

The corresponding macroscopic equations are given by ∑ 

i 

λ + λ2 : ε∂ t ρ + ∇ · (ερu ) = 0 , 

∑ 

i 

ξ(λ + λ2 ) : ∂ t (ερu ) + ∇ · (ερuu T

 ) + ε∇p 

= 

(
1 − ω 

2 

)
∇ · �(1) 

. 

�(1) can be derived through the third moment of Eq. (A.2) 

∑ 

i 

ξi ξi λ : δ(1) 
t �(0) + ∇ 

(1) · S (0) = 

ω 

δt 
�(1) + ρc 2 s I ∂ 

(1) 
t ε. (A.7) 

In order to derive these quantities Einstein notation is used. 

In order to simplify (∂ (1) 
t �(0) − ρc 2 s I ∂ 

(1) 
t ε) αβ = ε∂ (1) 

t (ρδαβc 2 s ) + 

∂ (1) 
t (ρεu αu β ) , (A.5) and (A.6) are used, which gives 

ε∂ (1) 
t ρ = −(ερu α) , α

∂ (1) 
t (ερu α) = −ε(ρδαβc 2 s ) , β −(ερu αu β ) , β . 

Accordingly, 

εδ(1) 
t (ρδαβc 2 s ) + ∂ (1) 

t (ρεu αu β ) 

= εδ(1) 
t (ρδαβc 2 s ) + u α∂ (1) 

t (ρεu β ) + u β∂ (1) 
t (ρεu α) 

+ u αu β∂ (1) 
t (ρε) 

= −(ερu γ ) , γ δαβc 2 s − u α(ε(ρc 2 s ) , β −(ερu βu γ ) , γ ) 

− u β (ε(ρc 2 s ) , α −(ερu αu γ ) , γ ) + u αu β∂ (1) 
t (ρε) . (A.8) 

For ∇ 

(1) · S (0) one obtains (
c s 

2 ερ(u αδβγ + u βδαγ + u γ δαβ ) 
)
, γ

= c s 
2 (ερu α) , β + c s 

2 (ερu β ) , α + c s 
2 δαβ (ερu γ ) , γ . (A.9) 

Inserting the results from Eqs. (A.8) and (A.9) into Eq. (A.7) while 

eliminating M 

3 terms, where M is the Mach number, gives 

�(1) 
αβ

= δt τ (−εu α(ρc 2 s ) , β −εu β (ρc 2 s ) , α

+ (ερc 2 s u α) , β +(ερc 2 s u β ) , α

= −c 2 s τδt(ρ(εu α) ,β + ρ(εu β ) ,α ) . 

Inserting this into the conservation equation yields 

∂ t (ερu β ) + (ερu αu β ) ,α + ε · (ρc 2 s δαβ ) ,α

= −c 2 s 

(
1 − ω 

2 

)
δt τ

(
ρ(εu α) ,β + ρ(εu β ) ,α

)
,β

. 

Substituting 〈 p〉 = ρc 2 s and ν = (τ − 1 
2 ) c 

2 
s δt results in the macro- 

scopic equations 

ε∂ t ρ + ∇ · (ερ〈 u 〉 ) = 0 

∂ t ερ〈 u 〉 + ∇ · (ερ〈 u 〉〈 u 〉 T  ) + ε∇〈 p〉 
= ν∇ · (ρ∇(ε〈 u 〉 ) + ρ∇(ε〈 u 〉 ) T  ) . 
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