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Full quantum treatment of charge dynamics in amorphous molecular semiconductors
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We present a treatment of charge dynamics in amorphous molecular semiconductors that accounts for the
coupling of charges to all intramolecular phonon modes in a fully quantum mechanical way. Based on ab initio
calculations, we derive charge transfer rates that improve on the widely used semiclassical Marcus rate and
obtain benchmark results for the mobility and energetic relaxation of electrons and holes in three semiconductors
commonly applied in organic light-emitting diodes. Surprisingly, we find very similar results when using the
simple Miller-Abrahams rate. We conclude that extracting the disorder strength from temperature-dependent
charge transport studies is very possible but extracting the reorganization energy is not.
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I. INTRODUCTION

Amorphous polymeric and molecular organic semiconduc-
tors are crucial compounds used in organic devices such as
organic field-effect transistors (OFETs), organic photovoltaic
(OPV) cells, and organic light-emitting diodes (OLEDs). The
modeling of charge dynamics in these materials is essential
for the further development of organic devices. Systematic
modeling started with the work of Bässler in the 1990s [1].
It was assumed that due to the disorder the charge carriers
are localized and hop nonadiabatically between localization
sites by phonon-assisted tunneling, or “hopping.” The early
studies made use of the Miller-Abrahams (MA) hopping rate
[2], kMA = k0 if �E < 0 and kMA = k0 exp(−�E/kBT ) if
�E > 0, where �E is the electronic energy change, T is
temperature, kB is Boltzmann’s constant, and k0 is a prefactor
proportional to the square of the electronic coupling J be-
tween the sites, assumed to decay exponentially with intersite
distance. The advantage of using the MA rate is its simplicity:
no material-specific information is needed for describing the
energy dependence of the rate. It was established that the
strength of the energetic disorder, modeled by a Gaussian
density of states (DOS), plays a central role for both the steady-
state mobility and energetic relaxation of charge carriers [1].
The resulting model is known as the Gaussian disorder model
(GDM). It was later realized that filling of the DOS by only
a small fraction of carriers can already strongly increase the
charge-carrier mobility [3–5], requiring an extension of the
GDM [6].

Present-day commercial OLEDs make use of amorphous
molecular organic semiconductors. The theoretical advantage
of considering molecular instead of polymeric semiconductors
is that the localization sites are clearly defined: they coincide
with the molecules. Recently, several groups made progress
in evaluating charge dynamics in these materials from ex-
plicit calculations of the morphology, the on-site energies,
the intermolecular electronic couplings, and the molecular
reorganization energy λ [7–10]. The semiclassical Marcus

hopping rate [11] was used,

kMarcus = 2π

h̄

J 2

√
4πλkBT

exp

[
− (�E + λ)2

4λkBT

]
. (1)

In Marcus theory, the coupling of the phonon modes to the
charge is treated classically, which means that Eq. (1) is valid
only if the phonon energy h̄ωi � kBT for all modes i. Because
of the π conjugation, intramolecular modes involving carbon-
carbon bond vibrations couple strongly to the charges. These
modes have typical energies in the range 0.1–0.2 eV, i.e., almost
one order of magnitude larger than kBT at room temperature,
invalidating a semiclassical approach and the use of Eq. (1).
It is of paramount importance to study the consequences of
going beyond the semiclassical approximation by including
the charge-phonon coupling fully quantum mechanically and
to provide benchmark results for the charge dynamics that do
not suffer from uncontrolled approximations. That is the goal
of this paper.

While Eq. (1) predicts a vanishing conductivity in the limit
T → 0, a quantum treatment of the phonon modes, accounting
for nuclear tunneling through a classically forbidden region
of nuclear arrangements accompanying the charge transfer,
explains the observed finite conductivity in this limit in
chemically doped in-plane diodes and ferroelectric field-effect
transistors of amorphous semiconducting polymers [12]. In a
recent study of low-energy tails of external quantum efficiency
(EQE) spectra of OPV cells of C60 mixed with different donor
molecules, a failure of the application of Eq. (1) in describing
the EQE tails was attributed to quantum-mechanical freeze-out
of high-energy phonons [13]. These two examples point to the
importance of considering the quantum character of phonons
in studying charge dynamics. We note that the impact of a
full quantum treatment of phonon modes on charge transport
has been considered for organic crystals [14] but, as far as we
know, has not yet been considered for amorphous molecular
semiconductors, where the percolative nature of the charge
transport [15] adds an additional important complexity.
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This paper is organized as follows. In Sec. II we provide
the expression for the full quantum charge transfer rate that
is the basis of this work, as derived from Fermi’s golden rule.
In Sec. III we apply this expression to calculate the transfer
rates of electrons and holes in three molecular semiconductors
employed in OLEDs based on ab initio calculations of all inter-
molecular phonon frequencies and reorganization energies for
simulated morphologies of these semiconductors. In Sec. IV
we calculate the resulting mobilities of electrons and holes
as well as their energetic relaxation in these three materials.
Section V contains a summary and conclusion. Derivations
of the formulas, the values of the calculated intermolecular
phonon frequencies and their corresponding reorganization
energies, and various checks and comparisons can be found
in the appendixes.

II. FULL QUANTUM CHARGE TRANSFER RATE

Our description involves a charge, electron or hole, that can
reside at two weakly electronically coupled molecules α =
1,2. The charge couples with a strength gαi to phonon modes
i with frequency ωi . The Hamiltonian is

H =
∑

α

Eαc†αcα +
∑

i

h̄ωib
†
i bi

+
∑
α,i

gαi h̄ωic
†
αcα(b†i + bi) + J (c†1c2 + c

†
2c1), (2)

where c†α (cα) creates (annihilates) a charge on molecule α and
b
†
i (bi) creates (annihilates) a phonon in mode i. Since first-

principles calculations have shown that J < 0.01 eV in the
molecular semiconductors studied here [16], we can treat the
last term in Eq. (2) as a perturbation H ′, causing nonadiabatic
charge transfer between the molecules. The first part of the
Hamiltonian can be diagonalized by a polaron transformation
[17]. Applying Fermi’s golden rule with H ′ as the perturbation,
we obtain the transfer rate from molecule 1 to 2 by summing
over all possible transitions from thermally weighted initial
states to final states, with different numbers of phonons in the
various modes, and the charge residing on molecule 1 or 2 [17]:

k = 2π

h̄
J 2 exp

(
− �E

2kBT

)
exp

[
−

∑
i

λi

h̄ωi

1 + zi

1 − zi

]

×
∑

m1,m2,m3,...

Im1

[
2

(
λ1

h̄ω1

) √
z1

1 − z1

]

× Im2

[
2

(
λ2

h̄ω2

) √
z2

1 − z2

]
Im3

[
2

(
λ3

h̄ω3

) √
z3

1 − z3

]
· · ·

× δ

(
�E +

∑
i

mi h̄ωi

)
, (3)

with zi ≡ exp (−h̄ωi/kBT ) and λi ≡ h̄ωi

∑
α g2

αi being the
reorganization energy associated with mode i. The integers
mi in Eq. (3) are the numbers of created (positive mi) or

FIG. 1. Transfer rates at T = 300 K vs energy difference �E between two sites with electronic coupling J = 1 meV and coupling to one
phonon mode with varying frequency ω and reorganization energy λ. Red circles and solid lines: full quantum rate [prefactor of δ function
in Eq. (3) divided by h̄ω]. Blue dash-dotted curves: Marcus rate. Dashed green lines: MA rate, scaled to reproduce the full quantum rate at
�E = 0.
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annihilated (negative mi) phonons in mode i accompanying the
transfer, and Imi

are modified Bessel functions. The δ function
reflects energy conservation. A derivation of the rate equation
(3) as well as an alternative expression that allows efficient
numerical computation is given in Appendix A.

Using the properties of the modified Bessel functions, one
can show that if for all modes h̄ωi � kBT , Eq. (3) becomes
equal to the Marcus rate equation (1) with λ = ∑

i λi . In the
case of a continuous phonon spectrum, Eq. (3) becomes equal
to a result given by Egger et al. [18]. The Marcus-Levich-
Jortner formulation (MLJ) [19,20], which goes beyond the
semiclassical approximation, assumes an initial state without
phonons in the modes that are treated quantum mechanically.
As a consequence, this theory does not satisfy detailed balance.
As is easily checked, Eq. (3) does satisfy detailed balance.
Appendix B shows how the MLJ rate is obtained from the full
quantum rate equation (3) and contains a comparison of the two
rates for the three semiconductors investigated in this work.

In Fig. 1 we show the �E dependence of the full quantum
rate equation (3) at room temperature (T = 300 K) for the
case of one phonon mode for different values of its frequency
and coupling strength. A typical value J = 1 meV is chosen
for the electronic coupling. For h̄ω = kBT/2 (left column),
the Marcus rate equation (1) is approximately recovered, as
expected, while for h̄ω = 2kBT and 8kBT (middle and right
columns) Eq. (1) is inaccurate. For h̄ω = 8kBT and λ = h̄ω

or 2h̄ω the full quantum rate is significantly larger than the
Marcus rate around �E = 0, in accordance with the rate
enhancement by nuclear tunneling [12]. Interestingly, the �E

dependence of the full quantum rates for h̄ω = 8kBT is close
to that of the MA rate, in particular for λ = h̄ω. The reason is
that for that case the prefactors of the δ function in Eq. (3) for
m = 0 and m = 1 are approximately equal.

III. ELECTRON AND HOLE TRANSFER RATES:
APPLICATION TO α-NPD, TCTA, and SPIRO-DPVBi

We now turn to three specific molecular semiconductors
employed in OLEDs, α-NPD [N,N ′-di(1-naphthyl)-N,N ′-
diphenyl-(1,1′-biphenyl)-4,4′-diamine] and TCTA [tris(4-
carbazoyl-9-ylphenyl)amine], both used as hole conductors
and hosts for phosphorescent emitters, and spiro-DPVBi
[2,2′,7,7′-tetrakis(2,2-diphenylvinyl)spiro-9,9′-bifluorene],
used as an electron conductor and fluorescent emitter [21].
We recently studied charge transport in these materials using
Marcus theory [16] on the basis of a simulated morphology
and ab initio calculations of the molecular on-site energies,
reorganization energies, and electronic couplings. In Fig. 2(a)
we display for these materials the cumulative reorganization
energy λ(ω) = ∑

ωi<ω λi for electrons and holes of 20
molecules randomly chosen from an amorphous sample as
simulated in Ref. [16], taking into account all intramolecular
modes. Appendix C explains how the frequencies ωi and
electron and hole reorganization energies λi of these modes
were obtained for the three materials and includes tables of
their calculated values.

Clearly visible in Fig. 2(a) are the large contributions to λ of
modes involving C-C bond vibrations in the range 0.1–0.2 eV.
However, there are also important contributions from various
dihedral rotations and other low-energy modes, particularly for

FIG. 2. (a) Cumulative reorganization energies for electrons and
holes on 20 molecules randomly chosen from α-NPD, TCTA, and
spiro-DPVBi samples. (b) Energy dependence of transfer rates at T =
300 K for J = 1 meV. Red curves: full quantum rates for all 400
combinations of molecules from (a), using λcl = 0.01 eV. Blue dash-
dotted curves: Marcus rate using the average reorganization energy
λ̄ of the 20 molecules. Dashed green lines: MA rate with prefactor
scaled to reproduce μfull in Fig. 3(a) at T = 300 K and F = 0.

electrons and holes in spiro-DPVBi and for holes in α-NPD
and TCTA, resulting in quasicontinuous spectra up to about
0.2 eV. Additionally, small contributions involving C-H bond
vibrations are visible just below 0.4 eV.

In the amorphous solid phase, apart from coupling to in-
tramolecular modes, charges couple to intermolecular modes.
Our present calculational framework does not allow us to eval-
uate this coupling. However, intermolecular modes will have
low frequencies and can therefore be treated classically. Their
effect can thus be accommodated by introducing a “classical”
reorganization energy λcl and replacing the δ function in Eq. (3)
by the right-hand side of Eq. (1) with λ = λcl (excluding
the factor 2πJ 2/h̄), leading to a Gaussian broadening. We
expect λcl to be considerably smaller than the intramolecular
reorganization energies, but a small nonzero value is required
in the charge dynamics calculations in the next section to allow
for charge transfer at the various �E values occurring in the
amorphous phase. In Appendix D we show for electrons in
α-NPD and TCTA (the two most critical cases) that in a broad
range 0.001 < λcl < 0.05 eV the room-temperature mobility
in the amorphous phase is practically independent of λcl. In
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all results presented henceforth we take the computationally
convenient value λcl = 0.01 eV.

In Fig. 2(b) we show for this value and J = 1 meV the �E

dependence of the full quantum rates at room temperature for
all 400 combinations of the molecules from Fig. 2(a), adding
the phonon coupling spectra of two molecules to obtain the
spectrum of their combination. The quasicontinuous spectra
wash out features in the rates, except for electrons in α-NPD
and TCTA, for which the coupling to low-energy phonons is
relatively small. For these two cases features related to the
0.2 eV phonons are clearly visible. The results are reminiscent
of those for h̄ω = 8kBT at room temperature and λ = h̄ω

≈ 0.2 eV in Fig. 1. They can be understood as originating from
a dominant mode of energy h̄ω ≈ 0.2 eV, with low-frequency
modes “filling up” to a varying degree the regions in between
integer multiples of this energy.

We also show in Fig. 2(b) the Marcus rates for the average
reorganization energy λ̄ of all combinations of molecules (the
values are, respectively, λ̄ = 0.120, 0.085, and 0.299 eV for
electrons in the three materials and λ̄ = 0.212, 0.184, and
0.212 eV for holes). In addition, we show MA rates with a
prefactor tuned to reproduce the room-temperature zero-field
mobilities (see the next section). The Marcus and the MA
rates roughly follow the quantum rates in the displayed energy
range, but differences up to an order of magnitude do occur.
A comparison between the quantum rates and the MLJ rates
is given in Fig. 4 in Appendix B, showing that these rates
are inapplicable to modeling charge dynamics in amorphous
molecular semiconductors.

We note that the scale of the phonon energies is about 0.1 eV,
which is also the energy scale of the electron-phonon coupling
since the electron-phonon coupling constants gαi are of the
order of unity for the important phonon modes. The on-site
energy difference between two neighboring molecules is of
the order of the disorder strength, which is also of the order of
0.1 eV. With values of J that are, at most, 0.01 eV [16], the
energy scale of the electronic coupling is at least a factor of 10
smaller than that of the other terms in the Hamiltonian (A1).
This justifies the use of perturbation theory in the electronic
coupling in this work.

IV. MOBILITIES AND ENERGETIC RELAXATION OF
ELECTRONS AND HOLES: APPLICATION TO α-NPD,

TCTA, AND SPIRO-DPVBi

In evaluating the charge-carrier mobilities μ we follow the
same procedure as in earlier work [16,22]. With a stochastic
expansion method [23], simulated morphologies of the ma-
terials in relatively small simulation boxes are stochastically
expanded to a collection of sites representing molecular centers
of mass in boxes of size 100 × 100 × 100 nm3, large enough
to allow reliable evaluation of μ by solving a master equation.
A Gaussian DOS is taken for the site energies of electrons
and holes, with standard deviations σ equal to those of ab
initio calculations of the energies of the lowest unoccupied and
highest occupied molecular orbitals (LUMO and HOMO) [24],
respectively, of 1000 molecules in the simulated morphology
(the values are, respectively, σ = 0.087, 0.100, and 0.156 eV
for electrons in the three materials and σ = 0.087, 0.136, and
0.122 eV for holes [16]). We neglect spatial correlations in the

site energies; they only weakly increase μ in the considered
materials [16]. The electronic couplings J between sites at a
certain intersite distance are obtained by the stochastic method
described in Ref. [22]. We randomly assign a label in the range
1–20 to each site and attribute one of the 400 transfer rates of
Fig. 2(b) to each pair of electronically coupled sites (correcting
the prefactor for the actual value of J ) according to its label
combination. We account for the presence of an electric field
F by adding an appropriate term to �E.

Figure 3(a) shows the resulting F dependence of the full
quantum mobilities μfull at T = 300 and 200 K, which we
compare to μMarcus and μMA obtained with the Marcus and
MA rates. Since for spatially uncorrelated disorder the F

dependence of μ is approximately independent of the carrier
concentration c at not too high F and c [6], we take a convenient
value c = 10−4 carriers per site, which is also realistic for
OLEDs under operational conditions. The F -dependent μ

at a different (not too high) c can be obtained from the
shown curves using the universal c dependence of μ given
in Ref. [15]. The mobilities μMA were obtained by tuning
the prefactor in the MA rate such that the mobilities μfull at
T = 300 K and F = 0 are reproduced. The values of the MA
prefactor correspond to, respectively, k0/J

2 = 2.92 × 1016,
3.46 × 1016, and 1.12 × 1016 s−1eV−2 for electrons in the
three materials and k0/J

2 = 1.79 × 1016, 2.41 × 1016, and
2.15 × 1016 s−1eV−2 for holes. It is gratifying to see that all
these prefactors are of comparable magnitude.

Extremely large differences between μfull, μMarcus, and μMA

do not occur in Fig. 3(a), which should be ascribed to the
washing out of most of the differences in the rates in Fig. 2(b)
by the energetic disorder. Still, significant differences between
μfull and μMarcus of up to a factor of 3 do, in some cases, occur.
Quite strikingly, in those cases μMA yields a better description.
By evaluating μMarcus using the separately calculated reorga-
nization energies (see Tables I–III in Appendix C) instead of
their average, leading to virtually the same results, we checked
that the differences between μfull and μMarcus are not caused by
taking the average reorganization energy for the latter case.

Figure 3(b) shows the dependence of the F = 0 mobilities
on σ̂ 2 ≡ (σ/kBT )2 at a very low carrier concentration c =
10−6, where the c dependence of μ has become almost neg-
ligible. For comparison, we draw dashed lines corresponding
to μ ∝ exp(−Cσ̂ 2) with C = 0.4, as approximately found in
Ref. [16]. We conclude that this dependence is still obeyed
rather well. Again, we observe that μMA quite accurately
describes μfull. At low T we observe an enhancement of μfull

with respect to μMarcus, amounting to a factor of about 3 for
holes in α-NPD at the lowest considered T , which can be
attributed to nuclear tunneling. However, at room temperature
(dotted line) this effect is, in all cases, unimportant.

We finally study energetic relaxation of carriers, which
is claimed to play a crucial role in the functioning of bulk
heterojunction OPV cells [25,26]. This relaxation has pre-
dominantly been studied using the MA rate [1,25,26], and it
is important to investigate the use of the full quantum rate.
We evaluate energetic relaxation by solving a time-dependent
master equation [27] in a 50 × 50 × 50 nm3 box with an equal
occupational probability of all sites as the initial condition.
Figure 3(c) shows for the three materials the time evolution
of the average energy 〈E〉 of electrons and holes relaxing in
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FIG. 3. (a) Field-dependent mobilities at T = 300 and 200 K and
carrier concentration c = 10−4, where e is the charge unit and a is
the average intersite distance (1.01, 1.05, and 1.19 nm, respectively,
in the three materials [16]). The results are averages over ten disorder
realizations. Red circles and solid lines: full quantum rates μfull. Blue
squares and dash-dotted lines: Marcus rates μMarcus. Green diamonds
and dashed lines: MA rates μMA, scaled to reproduce μfull at T = 300
K and F = 0. (b) Dependence of mobilities on σ̂ 2 ≡ (σ/kBT )2 for
c = 10−6 and F = 0. Dotted lines indicate T = 300 K, and dashed
lines indicate slopes corresponding to μ ∝ exp(−0.4σ̂ 2). (c) Time-
dependent average energy, with respect to the center of the DOS, of
carriers initially released at arbitrary sites (T = 400 K for electrons
in spiro-DPVBi and 300 K for all other cases). Dotted lines indicate
full relaxation.

the Gaussian DOS. The temperature is T = 300 K, except for
electrons in spiro-DPVBi, where for computational stability
reasons related to the large value of σ we took T = 400 K.
The results of using full quantum, Marcus, and MA rates are
almost indistinguishable.

V. SUMMARY AND CONCLUSION

Summarizing, we have studied the charge dynamics in three
molecular semiconductors used in OLEDs with a hopping rate
that includes the coupling to all intramolecular phonon modes
in a fully quantum mechanical way, improving on the widely
used semiclassical Marcus rate. In some cases we found a
significant modulation of the rate associated with C-C bond
vibrations. Benchmark results for the mobility and energetic
relaxation of electrons and holes are obtained that are free from
uncontrolled approximations. We find that nuclear tunneling
can affect the mobility at low temperature. Surprisingly good
results for the mobilities as well as the energetic relaxation
of charge carriers are obtained with the simple and material-
independent Miller-Abrahams rate, which can be used as a
computationally cost-effective alternative. We conclude that
extracting the disorder strength from temperature-dependent
charge transport studies, as initially proposed by Bässler [1],
is very possible but extracting the reorganization energy is not.
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APPENDIX A: DERIVATION OF THE FULL QUANTUM
CHARGE TRANSFER RATE

In this appendix we give the derivation of the full quantum
charge transfer rate equation (3). We start from the Hamiltonian
equation (2), which we repeat here for convenience:

H =
∑

α=1,2

Eαc†αcα +
∑

i

h̄ωib
†
i bi

+
∑
α,i

gαi h̄ωic
†
αcα(b†i + bi) + J (c†1c2 + c

†
2c1). (A1)

Part of the phonon modes couples to the charge on site 1
(g1i �= 0, g2i = 0), and the other part couples to the charge
on site 2 (g1i = 0, g2i �= 0). We treat the last term, H1, of
the Hamiltonian, containing the electronic coupling J , as a
perturbation causing transitions between the eigenstates of
the first part, H0, of the Hamiltonian (first three terms). We
apply the Schrieffer-Wolff polaron transformation [17] to the
Hamiltonian and define

H̄0 ≡ eSH0e
−S, H̄1 ≡ eSH1e

−S,

S ≡
∑
α,i

gαic
†
αcα(b†i − bi). (A2)

By applying the Baker-Campbell-Hausdorff theorem,

eSAe−S = A + 1

1!
[S,A] + 1

2!
[S,[S,A]]

+ 1

3!
[S,[S,[S,A]]] + · · · , (A3)
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and the (anti)commutation relations for the creation and annihilation operators in Eq. (A1), we obtain, after some algebra,

H̄0 =
∑

α

Ēαc̄†αc̄α +
∑

i

h̄ωi b̄
†
i b̄i , H̄1 = J (c̄†1c̄2X

†
1X2 + c

†
2c1X

†
2X1), (A4)

with

c̄†α = eSc†αe−S, c̄α = eScαe−S, b̄†α = eSb†αe−S, b̄α = eSbαe−S, Ēα ≡ Eα − λα, λα ≡
∑

i

g2
αi h̄ωi, Xα ≡ e

∑
i gαi (b̄

†
i −b̄i ).

(A5)

The creation and annihilation operators in H̄0 and H̄1 are transformed operators creating and annihilating polarons (c̄†α and c̄α)
and “displaced” phonons (b̄†α and b̄α).

We consider initial states |i〉 where the polaron is at site 1 with ni phonons in mode i and final states |f 〉 and where the polaron
is at site 2 with ni + mi phonons in mode i. The matrix element for the transition |i〉 to |f 〉 induced by the perturbation is

〈f |H̄1|i〉 = J

[ ∏
i,site 1

〈ni + mi |eg1i (b̄
†
i −b̄i )|ni〉

][ ∏
i,site 2

〈ni + mi |e−g2i (b̄
†
i −b̄i )|ni〉

]
. (A6)

The phonon matrix elements in this expression can be easily evaluated:

〈ni + mi |eg1i (b̄
†
i −b̄i )|ni〉 = e− 1

2 g2
1i (−g1i)

mi

[
ni!

(ni + mi)!

] 1
2

Lmi

ni

(
g2

1i

)
,

〈ni + mi |e−g2i (b̄
†
i −b̄i )|ni〉 = e− 1

2 g2
2i (g2i)

mi

[
ni!

(ni + mi)!

] 1
2

Lmi

ni

(
g2

2i

)
, (A7)

where Lm
n (x) is an associated Laguerre polynomial. Inserting these matrix elements in Eq. (A6) and squaring leads to

|〈f |H̄1|i〉|2 = J 2
∏

i

exp

[
− λi

h̄ωi

](
λi

h̄ωi

)mi ni!

(ni + mi)!

[
Lmi

ni

(
λi

h̄ωi

)]2

, (A8)

with λi ≡ h̄ωi

∑
α g2

αi being the reorganization energy associated with mode i.
We now apply Fermi’s golden rule to the transitions between all thermally populated initial states and all final states. The

probability pni
to have ni phonons in mode i is

pni
= (1 − zi)z

ni

i , zi ≡ e−h̄ωi/kBT . (A9)

This yields the following expression for the rate k for a transition of the polaron from site 1 to 2:

k = 2π

h̄

∑
n1,n2,...

pn1pn2 · · ·
∑

m1,m2,...

|〈f |H̄1|i〉|2δ
(

�E +
∑

i

mi h̄ωi

)

= 2π

h̄
J 2

∑
n1,n2,...

(1 − z1)zn1
1 (1 − z2)zn2

2 · · ·
∑

m1,m2,...

δ

(
�E +

∑
i

mi h̄ωi

)∏
i

exp

[
− λi

h̄ωi

](
λi

h̄ωi

)mi ni!

(ni + mi)!

[
Lmi

ni

(
λi

h̄ωi

)]2

,

(A10)

where �E ≡ Ē2 − Ē1. We now use the identity

∑
n

n!
[
Lm

n (x)
]2

zn

(n + m)!
= x−mz− 1

2 m

1 − z
e−2x z

1−z Im

(
2x

√
z

1 − z

)
(A11)

to obtain Eq. (3):

k = 2π

h̄
J 2 exp

(
− �E

2kBT

)
exp

[
−

∑
i

λi

h̄ωi

1 + zi

1 − zi

] ∑
m1,m2,m3,...

Im1

[
2

(
λ1

h̄ω1

) √
z1

1 − z1

]
Im2

[
2

(
λ2

h̄ω2

) √
z2

1 − z2

]

× Im3

[
2

(
λ3

h̄ω3

) √
z3

1 − z3

]
· · · δ

(
�E +

∑
i

mi h̄ωi

)
, (A12)

where Imi
is a modified Bessel function.
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We continue to derive an expression for the transition rate k that allows efficient numerical computation. To this end we move
the factor exp(−�E/2kBT ) in Eq. (A12) inside the sum, where, by virtue of the δ function, it can be replaced by

exp

(
− �E

2kBT

)
→ exp

(∑
i mi h̄ωi

2kBT

)
. (A13)

We furthermore write the δ function in Eq. (A12) as an integral,

δ

(
�E +

∑
i

mi h̄ωi

)
= 1

2πh̄

∫ ∞

−∞
dt exp

[
i

(
�E +

∑
i

mi h̄ωi

)
t/h̄

]
, (A14)

and use the Jacobi-Anger identity
∞∑

m=−∞
Im(x) exp(imθ ) = exp(x cos θ ), (A15)

with θ = ωit − ih̄ωi/2kBT , to obtain

k = J 2

h̄2 exp

[
−

∑
i

λi

h̄ωi

1 + zi

1 − zi

] ∫ ∞

−∞
dt exp

[
i
�Et

h̄
+

∑
i

λi

h̄ωi

(
1 + zi

1 − zi

cos(ωit) + i sin(ωit)

)]
. (A16)

We now add a “classical mode” with reorganization energy λcl and frequency ωcl for which h̄ωcl � kBT . In Eq. (A16) we replace∑
i by

∑′
i , which now also contains the classical mode. For the classical mode we can make the following approximations:

cos(ωclt) ≈ 1 − (ωclt)
2/2, sin(ωclt) ≈ ωclt. (A17)

Inserting these approximations into Eq. (A16) leads to

k = J 2

h̄2 exp

[
−

∑
i

λi

h̄ωi

1 + zi

1 − zi

] ∫ ∞

−∞
dt exp

[
i
(�E + λcl)t

h̄
− λclkBT t2

h̄2 +
∑

i

λi

h̄ωi

(
1 + zi

1 − zi

cos(ωit) + i sin(ωit)

)]
, (A18)

which is an exact result in the limit ωcl → 0. Due to the
addition of the classical mode, which makes sure that the
integrand decays to zero for t → ±∞, the integral over time
can be numerically performed with high accuracy for all
values of �E. We note that an arbitrary number of classical
modes can be added in this way. The Gaussian factor in the
integrand of Eq. (A18) corresponds to the broadening of the δ

function in Eq. (A12) [Eq. (3) in the main text] to a Gaussian,
as mentioned in the main text, with a standard deviation√

2λclkBT .

APPENDIX B: RELATION AND COMPARISON TO THE
MARCUS-LEVICH-JORTNER RATE

The Marcus-Levich-Jortner (MLJ) formulation [19,20],
which goes beyond the semiclassical approximation, assumes
an initial state without phonons in the modes that are treated
quantum mechanically. Thermal excitations in the classically
treated modes are still accounted for. This means that in
Eq. (A18) we should take the limit T → 0 but keep T finite in
the second term in the exponent of the integrand. As a result,
we obtain

kMLJ = J 2

h̄2 exp

[
−

∑
i

λi

h̄ωi

] ∫ ∞

−∞
dt exp

[
i
(�E + λcl)t

h̄
− λclkBT t2

h̄2 +
∑

i

λi

h̄ωi

exp(iωit)

]
, (B1)

which is an expression that allows more efficient numerical computation than the familiar expression for the MLJ rate:

kMLJ = 2π

h̄

J 2

√
4πλclkBT

exp

[
−

∑
i

λi

h̄ωi

] ∞∑
m1=0

∞∑
m2=0

∞∑
m3=0

· · ·
(

λ1
h̄ω1

)m1

m1!

(
λ2
h̄ω2

)m2

m2!

(
λ3
h̄ω3

)m3

m3!
· · · exp

[
−

(
�E + λcl + ∑

i mi h̄ωi

)2

4λclkBT

]
.

(B2)

By expanding exp [
∑

i
λi

h̄ωi
exp(iωit)] in a Taylor series and

performing the time integral in Eq. (B1) one can show that
Eqs. (B1) and (B2) are equivalent.

In Fig. 4 we compare the �E dependence at room tem-
perature of the MLJ rates (B1) (blue curves) with that of
the full quantum rates (A18) (red curves) for 20 randomly

chosen molecular pairs of the three materials studied in this
paper for electrons and holes. As in the main text, we have
taken J = 1 meV and λcl = 0.01 eV. It is clear that for
�E < 0 the MLJ rates are, in general, reasonably accurate
(yet in some specific cases they are still significantly off)
but that they are inapplicable for �E > 0, where they are
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FIG. 4. Full quantum rates (red curves) and MLJ rates (blue curves) for electron and hole transfer at room temperature as a function of �E

for 20 randomly chosen pairs in the three materials studied in this work for J = 1 meV and λcl = 0.01 eV.

much too small. In the percolative transport in the disordered
amorphous semiconductors studied in this work, the charge-
carrier mobility is determined by “difficult but necessary” hops,
which will almost always have �E > 0. Hence, the MLJ rates
are inapplicable to modeling charge dynamics in amorphous
molecular semiconductors.

APPENDIX C: CALCULATION OF THE
INTRAMOLECULAR PHONON FREQUENCIES AND

REORGANIZATION ENERGIES

Morphologies of α-NPD, TCTA, and spiro-DPVBi were
obtained using the Metropolis Monte Carlo–based simulated
annealing protocol DEPOSIT [28], which was applied to sim-
ulate the deposition of about 1000 molecules in the vertical
direction in simulation boxes of a lateral size of 7 × 7 nm2 with
periodic boundary conditions in the lateral directions. For each
material we randomly selected 20 molecules and calculated
their intramolecular phonon mode frequencies ωi , the reorga-
nization energies λi associated with all modes i, and their total
reorganization energies λ for charging with an electron or a
hole. The calculations were performed using density functional
theory (DFT) with a def2-SV(P) [29] basis set and a B3LYP
[30] functional as implemented in TURBOMOLE [31]. Every
molecule is surrounded by an environment of 100 effective
all-electron potentials to take into account the confinement of
the molecule by the surrounding molecules [32].

The total reorganization energies λ for electrons and holes
were calculated using Nelsen’s four-point procedure. They are
split into charging (λ0) and decharging (λ∗) contributions. The
results are given in Tables I–III for the three materials. The
frequencies ωi and reduced masses μi of the phonon (normal)
modes were obtained from the mass-weighted Hessian matrix

of force constants. The displacements of all atoms in all
three Cartesian directions from their equilibrium positions
for the neutral molecule to the equilibrium positions for the

TABLE I. Reorganization energies λ0 for charging and λ∗ for
decharging and the sum

∑
i λi of the reorganization energies associ-

ated with all intramolecular phonon modes for 20 α-NPD molecules
randomly chosen from a simulated sample of about 1000 molecules.
The values indicated with an asterisk (*) were obtained with the
linearization method explained in the text.

α-NPD electron α-NPD hole

λ0 (eV) λ∗ (eV)
∑

i λi (eV) λ0 (eV) λ∗ (eV)
∑

i λi (eV)

0.066 0.072 0.067 0.116 0.104 0.108
0.061 0.061 0.061 0.110 0.102 0.103
0.058 0.057 0.059 0.096 0.104 0.106
0.057 0.055 0.057 0.154 0.157 0.170
0.057 0.056 0.057 0.053 0.062 0.062
0.061 0.060 0.061 0.137 0.129 0.130
0.061 0.060 0.062 0.159 0.135 0.188
0.060 0.058 0.060 0.127 0.110 0.139
0.060 0.060 0.061 0.087 0.081 0.089
0.063 0.061 0.063 0.067 0.060 0.067
0.057 0.064 0.060 0.098 0.091 0.098
0.057 0.055 0.057 0.092 0.086 0.074∗

0.063 0.065 0.064 0.103 0.096 0.099
0.062 0.064 0.063 0.094 0.086 0.090
0.062 0.062 0.063 0.106 0.108 0.105
0.056 0.055 0.056 0.116 0.117 0.097∗

0.059 0.064 0.060 0.071 0.066 0.071
0.061 0.062 0.063 0.114 0.113 0.108
0.055 0.058 0.056 0.138 0.147 0.125∗

0.061 0.060 0.062 0.122 0.116 0.115

075203-8



FULL QUANTUM TREATMENT OF CHARGE DYNAMICS IN … PHYSICAL REVIEW B 97, 075203 (2018)

TABLE II. Same as Table I, but for TCTA.

TCTA electron TCTA hole

λ0 (eV) λ∗ (eV)
∑

i λi (eV) λ0 (eV) λ∗ (eV)
∑

i λi (eV)

0.032 0.034 0.033 0.017 0.017 0.016
0.053 0.048 0.053 0.072 0.062 0.070
0.033 0.035 0.033 0.120 0.142 0.104∗

0.040 0.041 0.041 0.108 0.115 0.083∗

0.043 0.042 0.043 0.083 0.086 0.071∗

0.037 0.043 0.038 0.079 0.070 0.070∗

0.041 0.041 0.043 0.088 0.091 0.088
0.039 0.038 0.039 0.085 0.085 0.081
0.043 0.041 0.044 0.149 0.111 0.082∗

0.031 0.033 0.032 0.085 0.117 0.099∗

0.067 0.220 0.069∗ 0.232 0.108 0.040∗

0.036 0.036 0.037 0.077 0.077 0.076
0.028 0.031 0.029 0.085 0.090 0.087
0.032 0.038 0.032 0.085 0.091 0.092
0.043 0.042 0.043 0.082 0.077 0.076
0.034 0.035 0.035 0.087 0.087 0.084
0.032 0.033 0.033 0.113 0.141 0.147∗

0.027 0.030 0.028 0.083 0.077 0.077
0.033 0.035 0.034 0.078 0.077 0.076
0.037 0.038 0.039 0.080 0.078 0.077

charged molecule were decomposed in displacements �qi of
the phonon modes i. The reorganization energies λi were then
obtained as λi = 1

2μiω
2
i �q2

i .
When the charge-phonon coupling is linear in the displace-

ments �qi of the phonon modes and when these displacements
are within the harmonic regime, which are the conditions
for applicability of the Hamiltonian (2), we have λ0 = λ∗ =∑

i λi . We see from Tables I–III that this is almost always, to

TABLE III. Same as Table I, but for spiro-DPVBi.

spiro-DPVBi electron spiro-DPVBi hole

λ0 (eV) λ∗ (eV)
∑

i λi (eV) λ0 (eV) λ∗ (eV)
∑

i λi (eV)

−0.052 0.535 0.166∗ 0.087 0.103 0.101
0.173 0.149 0.197 0.133 0.198 0.149
0.210 0.216 0.239 0.133 0.131 0.133
0.151 0.150 0.136∗ 0.089 0.091 0.099
0.091 0.104 0.099 0.067 0.067 0.066
0.138 0.139 0.142 0.095 0.088 0.096
0.134 0.116 0.147 0.067 0.069 0.068
0.180 0.164 0.131∗ 0.069 0.077 0.070
0.232 0.258 0.191∗ 0.107 0.197 0.191∗

0.147 0.169 0.173 0.103 0.099 0.106
0.129 0.124 0.140 0.081 0.215 0.085
0.171 0.183 0.189 0.071 0.072 0.074
0.115 0.106 0.119 0.064 0.070 0.067
0.159 0.143 0.167 0.097 0.159 0.104
0.088 0.105 0.101 0.077 0.080 0.081
0.155 0.133 0.175 0.081 0.098 0.090
0.164 0.148 0.183 0.073 0.078 0.076
0.102 0.105 0.105 0.106 0.097 0.111
0.227 0.205 0.158∗ 0.097 0.094 0.096
0.094 0.099 0.098 0.074 0.173 0.076

a reasonable approximation, the case. In cases where
∑

i λi

calculated with this method was 30% larger than λ0 we used a
different method to calculate the λi’s. In those cases, indicated
with an asterisk (*) in Tables I–III, we used a linearization
method in which we calculated the derivatives ∂E/∂qi of the
total energy of the charged molecule with respect to the phonon
mode coordinates qi in the equilibrium structure of the neutral
molecule. From these derivatives we calculated �qi as �qi =
(∂E/∂qi)/μiω

2
i and from these the reorganization energies

λi = 1
2μiω

2
i �q2

i . In this way we obtain the leading linear term
of the charge-phonon coupling. Tables I–III show that this
method always yields reasonable values of

∑
i λi . We note,

however, that the method is necessarily approximate because
in these cases the displacements are beyond the linear regime
of the charge-phonon coupling and/or beyond the harmonic
regime. Because these cases are rare, they have no significant
effect on the results presented in this paper. We also note that
for the first spiro-DPVBi molecule in Table III, λ0 is negative
for charging by an electron. The reason is that the molecule is
in a local minimum and can gain energy by crossing a barrier
in the direction of the equilibrium structure of the charged
molecule. This is accompanied by a very large positive value
of λ∗. However, also for this case

∑
i λi as calculated with the

linearization method has a reasonable value.

APPENDIX D: INFLUENCE OF λcl ON CHARGE
TRANSFER RATES AND MOBILITIES

Equation (A18) with λcl = 0.01 eV is used in this work to
calculate the full quantum transfer rates, mobilities, and energy

(a) (b)

(c) (d)

FIG. 5. (a) and (b) Room-temperature full quantum transfer rates
as a function of energy difference �E as calculated with Eq. (A18) for
electrons in α-NPD and TCTA, respectively, for J = 1 meV. Green
lines: λcl = 0.001 eV. Red lines: λcl = 0.01 eV [same as in Fig. 2(b)].
Blue lines: λcl = 0.05 eV. (c) and (d) Electron mobilities μ in α-
NPD and TCTA, respectively, as a function of electric field F for the
different values of λcl in (a) and (b). The scale of the vertical axis in
the main panels is the same as in Fig. 3(a). The insets have a reduced
vertical scale to make the differences visible.
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relaxation of electrons and holes in α-NPD, TCTA, and spiro-
DPVBi. We investigate the effect of using different values of
λcl in Fig. 5. Figures 5(a) and 5(b) show the room-temperature
rates for electron transfer in α-NPD and TCTA, respectively,
for λcl = 0.001 eV (green lines), 0.01 eV [red lines, same
results as in Fig. 2(b)], and 0.05 eV (blue lines). Figures 5(c)
and 5(d) show the corresponding room-temperature mobilities

as a function of electric field. While detailed features in the
rates clearly depend on the value of λcl, the variations in the
mobilities do not exceed 40%. (Note that λcl varies by a factor
of 50!) This shows that the mobilities are quite insensitive to
the choice of λcl. The two considered cases of electrons in
α-NPD and TCTA are the most critical. For the other cases the
mobilities are even less sensitive to the choice of λcl.
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