
quantum numbers such as energy band index, etc. QPs obey a 
dispersion relation ω = εpσ. QPs of generic systems exist in 
weakly excited states, and for a number of different reasons, 
as shown below. The existence of QPs allows one to make 
use of the powerful methods of weak coupling or mean-field-
like theories such as Hartree–Fock theory, density functional
theory, renormalized perturbation theory, kinetic theory, and 
more.

The concept of QPs, as developed in the 1940s and 1950s 
in the examples of the quantum liquids 4He and 3He, has since 
been used to describe many other types of quantum liquids, 
like conduction electrons in metals, nucleons in nuclear mat-
ter, and systems of bosonic excitations (phonons, plasmons, 
excitons, …) in solids, with great success. It has been found 
that at a phase transition into an ordered state, entirely new 
QPs may appear—while the old QPs change their character.
In particular, the conservation of quantum numbers is lost if 
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Abstract
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1. Introduction

The theoretical description of classical matter—e.g. a classi-
cal liquid—is complex, in the sense that concepts known from 
weakly interacting systems such as dilute gases cannot easily 
be generalized to apply in the case of dense, strongly interact-
ing systems. The reason is that the collision rate of an atom in 
a liquid is so high that individual particle-like excitations are 
not well defined.

In contrast, in quantum matter—i.e. in systems of strongly 
interacting quantum particles at low temperature—it has been 
found that well-defined particle-like ‘elementary’ excitations 
do exist: so-called quasiparticles (QPs). The quantum numbers 
of a QP in a translation invariant system are its momentum p 
(or crystal momentum in a crystalline solid) and its spin (or 
pseudospin) projection σ (assuming spin, or pseudospin con-
servation), occasionally supplemented by additional internal 



the corresponding symmetry is broken in the ordered state. 
Nonetheless, well-defined QPs may still exist, even though 
their number, or spin, or momentum is no longer conserved. 
At a quantum phase transition, it is often found that QPs 
become critical, i.e. their properties are given by universal 
scaling laws.

With the discovery of the quantum Hall effects in the early 
1980s, an entirely new class of QPs came into view, enabled 
by the topological properties of these materials. In their sim-
plest form, they are of chiral character—i.e. they have one
sense of direction along the edges of a quantum Hall sample, 
as dictated by the applied magnetic field. Later, it was shown 
that even in the absence of an external magnetic field, chi-
ral QPs may emerge in semiconductors with ‘inverted’ band
structure and sufficiently strong spin–orbit coupling. In the
fractional quantum Hall effect, more exotic QPs may appear, 
as a consequence of the electron–electron interaction in con-
junction with a strong magnetic field. Some of these vortex-
like excitations are found to have fractional charge, and may 
have fractional statistics. Others are found to behave in many 
respects like fermions moving in a much reduced magnetic 
field, as if they combined with an even number of flux quanta 
to form ‘composite fermions’. Most recently, zero energy
excitations at the edges of a topological superconductor are 
coming into focus: Majorana zero modes (MZM), or ‘half’
chiral fermions. These excitations share the property that par-
ticle and antiparticle are identical with the Majorana fermi-
ons originally proposed in the 1930s. On the other hand, the 
exchange statistics of MZMs in two dimensions is not that 
of fermions but—much more sophisticated—that of ‘nonA-
belian anyons’.

This article aims to give an overview of the many princi-
ples and concepts used to demonstrate the existence of QPs, 
as well as of the character and properties of QPs in different 
situations. The emphasis is on qualitative aspects rather than 
a full and detailed mathematical derivation of the QP states in 
each case.

2. Fermionic and bosonic QPs in a historical
perspective

2.1.  Fermi systems

The first appearance of fermionic QPs in hindsight may have 
been in the Sommerfeld theory of metals [1, 2]. Although at 
that time neither the name ‘fermion’ nor the notion of ‘QPs’
was known, the model of a non-interacting electron gas (the 
‘Fermi gas’) has many of the identifying features of what is
known nowadays as the ‘Fermi liquid phase’. The entirely
new feature of the Fermi gas as compared to classical systems 
is the fact that at low temperatures T � TF, the Fermi temper
ature, most of the fermions are frozen in the Fermi sea, and 
only a fraction T/TF of the particles are in excited states, and 
take part in thermodynamic and linear response processes at 
low frequencies and long wave lengths. These may be identi-
fied as fermionic QPs. So, for spin 1/2 fermions of mass m, 
in contact with a particle reservoir at chemical potential μ 
described by the Hamiltonian

H =
∑
k,σ

(
k2

2m
− µ)c+kσckσ ,� (1)

where c+kσ , ckσ are creation and annihilation operators of 
fermions in momentum and spin eigenstates |k,σ〉, the equi-
librium occupation number is given by the Fermi function 

nkσ = [e(k2/2m−µ)/T + 1]−1. At T  =  0, there is a sharp bound-
ary separating occupied and non-occupied states in momen-
tum space, called the Fermi surface, defined by the chemical 
potential µ = TF = k2

F/2m. This defines the Fermi wave num-
ber kF, which is related to the particle density by n = k3

F/3π2,
equal to the Fermi volume in momentum space enclosed by 
the Fermi surface times the spin degeneracy factor, 2. We use 
units for which Planck’s constant � = 1 and Boltzmann’s con-
stant kB  =  1. The QP energy and occupation number are then 
defined as

ε
(0)
kσ =

k2

2m
− µ,

n(0)
kσ =

1

eε
(0)
kσ /T + 1

. (2)

2.1.1.  Landau quasiparticles in Fermi liquids.   Even though 
the Sommerfeld theory of metals appeared to work quite 
well, it remained a puzzle why one should be allowed to 
neglect electron–electron interaction effects. After all, the
energy scale of the Coulomb interaction between two elec-
trons separated by a lattice spacing is of order eV, and hence 
is much larger than the excitation energies (thermal energies, 
electric and magnetic field induced energy shifts) of interest. 
The answer was given by Landau in a series of fundamen-
tal papers [3]. Landau pointed out that even in the presence 
of interaction, there exist fermionic excitations—nowadays
called Landau QPs—which, while not absolutely stable, live
long enough to be useful for describing the many-body state 
of a weakly excited interacting Fermi system. These QPs are 
in one-to-one correspondence with the bare particles, i.e. they 
carry the same quantum numbers (k,σ) (for a comprehensive 
account of phenomenological Fermi liquid theory see [4, 5]). 
Landau even provided a derivation from microscopic theory, 
later elaborated in a number of pioneering works [6–9]. In the
meantime, it has been shown that the Landau Fermi liquid 
state corresponds to a stable fixed point of a suitably defined 
renormalization group flow [10].

In microscopic theory, Landau QPs are identified as poles 
of the single fermion Green’s function G in the complex fre-
quency ω  plane. In terms of the self-energy Σ we have

Gkσ(ω + i0) =
1

ω − εkσ + µ− Σkσ(ω + i0)

≈ Zkσ

ω − ε∗kσ + iΓkσ
+ Ginc, (3)

where ε∗kσ = Zkσ(εkσ − µ+ ReΣkσ(0)) is the energy,
Γkσ = ZkσImΣkσ(0) is the relaxation rate and Zkσ = limω→0
(1 − ∂ReΣkσ/∂ω)

−1 is the weight factor of QPs. The non-
QP contributions Ginc are largely inaccessible (except by 
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Γ is sufficiently small compared to the excitation energies of
interest, e.g. Γ � T , the QPs may be assumed to be stable, i.e.
Γ may be put to zero. It follows that the density of states N∗

0
of QPs at the Fermi level is given by that of a free Fermi gas
of particles of mass m∗, N∗

0 = m∗kF/π
2 . Correspondingly, the

low temperature specific heat C is given by C = π2

3 N∗
0 T ∝ m∗.

The single particle spectral function Akσ(ω) = −Im
{Gkσ(ω + i0)} is, within certain limits, directly accessible in
angle resolved photo emission experiments (ARPES) [11, 12]. 
The QP peak is often clearly seen, and its width as a function 
of frequency ω  at fixed momentum k is equal to the QP relax-
ation rate Γkσ. Conversely, analyzing the peak structure of 
Akσ(ω) at fixed ω  as a function of εkσ provides information on 
ImΣkσ(ω) = Γkσ(ω)/Zkσ(ω). The distinction between these 
two QP peak widths will be of importance in so-called non-
Fermi liquid situations, when the QP weight factor Zkσ(ω) 
may depend on energy ω  (see below).

It is useful to consider the QP peak in the spectral function 
as function of momentum or better, of εk (dropping a pos-
sible spin dependence for simplicity), instead of as a func-
tion of frequency ω . Provided the momentum dependence 
of Im{Σkσ(ω + i0)} is negligible, which is usually the case,
the spectral function is a simple narrow Lorentzian of width 
Im{Σ}; i.e. there is no incoherent background. This allows
one to integrate the spectral function over εk, with no unknown 
renormalization factors involved. One may define a QP distri-
bution function labeled ‘momentum integrated’ as

δnkσ(r, t) =
∫

dεk1

2π
δGσ(k1 = k̂|k1|,ω = ε∗kσ; r, t),� (4)

where

δGσ(k,ω; r, t) =
∫

dr1dt1ei(k·r1−ωt1)

δ〈ψ†
σ(r + r1/2, t + t1/2)ψσ(r − r1/2, t − t1/2)〉. (5)

2.1.2.  Fermi liquid interaction.  As the Landau QPs are not 
eigenstates of the system they do interact. The effect of this 
Fermi liquid interaction on the QP energy at position r and at 
time t may be expressed as

δεkσ(r, t) =
∑
k′,σ′

fkσ,k′σ′δnk′σ′(r, t),� (6)

so that a change in QP distribution δnk′σ′ is seen to lead to 
a change in QP energy. For systems with a spherically sym-
metric Fermi surface, it is useful to expand fkσ,k′σ′ in terms of 
Legendre polynomials Pl,

fkσ,k′σ′ = (1/N∗
0 )

∞∑
l=0

[Fs
l + σσ′Fa

l ]Pl(k̂ · k̂′), (7)

where the dimensionless Landau parameters Fs,a
l  have been 

introduced. The above theory was originally developed for
electrically neutral systems, such as liquid 3He. It also applies
to charged systems where the long-range part of the Coulomb
interaction is screened by external charges, as for conduc-
tion electrons in metals. For charged system in general the
Coulomb interaction should be separated out by replacing
fkσ,k′σ′ → fkσ,k′σ′ + 4πe2/q2 [13]. In the quasiclassical limit,
the Fourier components of the QP distribution δnkσ(q,ω) may 
be shown to obey the Landau–Boltzmann equation

(ω − v∗
k · q)δnkσ + v∗k · q

(
∂n(0)

k
∂ε∗k

)
[δεkσ + δεext

kσ] = Ic,� (8)

where n(0)
k = [exp(ε∗k/T) + 1]−1 is the Fermi function,

v∗
k = k/m∗, δεext

kσ is the QP energy shift induced by an exter-
nal field, and Ic is the QP collision term. A derivation of the 
Landau–Boltzmann equation from microscopic theory based
on the Green’s function formalism of Kadanoff and Baym
[14] and using the momentum integration technique (for an
application in the electron–phonon problem see [15]) may be
found in [16].

Alternatively, the spectral function may be integrated over 
ω , leading to the ‘energy integrated’ QP representation. In
this language, the response functions χρ

l  of a Fermi liquid
(in the charge/spin channel denoted by ρ = s, a, with angular 
momentum l  =  0,1,..), describing the change of the density 
component in the (l, ρ)-channel induced by an external field 
δhρ

l  of the same symmetry, may be expressed in terms of QP
quantities, amended by non-QP contributions in the form of
renormalization constants Rρ

l ,Φρ
l  [7, 8]

χρ
l (q, ν) = (Rρ

l )
2Z2χρ

QP,l(q, ν) + Φρ
l

χρ
QP,l =

∑
α

∫
dΩk

8π
Pl
−(2l + 1)Z2N∗

0 v∗k · q
ν − v∗k · q[1 + F ]

Pl. (9)

Here, Pl = Pl(cos θ) is a Legendre polynomial, and cos θ = 
(k · q)/kq. The QP partial susceptibility χρ

QP,l = δnρl /δhρl  receives 
a screening correction caused by the residual Landau Fermi 
liquid interaction, given by the operator F  represented by a 
matrix in momentum and spin space, Fkσk′σ′ = N∗

0 fkσ,k′σ′. 
The static QP susceptibilities are found from equation (9) as

χρ
QP,l(q →0, 0) =

N∗
0

1 + Fρ
l /(2l + 1)

,� (10)

where Fρ
l  is a corresponding Landau parameter. It is interest-

ing to note that the susceptibilities of the conserved quanti
ties—particle and spin density, and possibly momentum
density—are exactly given by the QP contribution; i.e. the
non-QP terms are given by Rρ

0 = Rs
1 = Z−1 and Φρ

0 = Φs
1 = 0.

The only other case admitting an exact determination of R,Φ 
is that of the spincurrent density, where Ra

1 = 1 + Fa
1/3 and

Φa
1 = (Fs

1 − Fa
1)/[3(1 + Fs

1/3)] [8].
It follows from the above that the susceptibil-

ity χs,a
QP,l(q →0, 0) may diverge if the Landau parameter

Fs,a
l → −(2l + 1). This has been interpreted as indicating

the formation of an ordered state if Fs,a
l < −(2l + 1). The

numerical methods), but are often not needed to calculate 
observable properties. It is useful to introduce a parametriza-
tion of the QP energy in terms of the effective mass m∗ as 
ε σ = vF(k − kF), where the renormalized Fermi velocity is
defined as v F

∗ = kF/m∗. If the momentum dependence of Σ is
negligible, one finds m /m∗ = Z . Provided the relaxation rate 



(l = 0; a)-channel, this is nothing but a ferromagnetic insta-
bility of an itinerant interacting fermion system, which is
often preëmpted by a first order transition [18, 19]. The situa-
tion is similar in the charge channel (l = 0; s), where a diverg-
ing compressibility signals phase separation. As for the l  =  1 
channels, it may be shown that the corresponding susceptibili-
ties are bound by a sum rule, and may not diverge [20]. This 
is obvious in the charge channel, where χs

1(q →0, 0) = N0,
the bare density of states, using the effective mass relation 
[4, 5] m∗/m = 1 + Fs

1/3. One may wonder what may happen
when 1 + Fs

1/3 → 0, or even turns negative. First of all, Fermi
liquid theory is no longer applicable in this limit, because the 
region of validity in k-space shrinks to zero. This follows 
from the requirement that the QP energy should be less than 
the microscopic energy scale, set by the bare Fermi energy 
kF|k − kF|/m∗ � k2

F/2m. Furthermore, by rewriting the effec-
tive mass relation in terms of the dimensionful Landau inter-
action parameter f s

1, m∗/m = [1 − N0f s
1/3]−1 one sees that f s

1
would have to tend to −∞ to let m∗ → 0, which is unphysical.

In the spin channel case one also finds χa
1(q →0, 0) = N0,

since the non-QP parameters Ra
1 and Φa

1 conspire to remove
any dependence on the Landau parameters. In both cases, 
the pole at Fs,a

l = −(2l + 1) is canceled by a corresponding
zero in the numerator. The issue here is that although the QP
susceptibility may diverge, this does not necessarily imply
the divergence of a physical—i.e. observable—susceptibil-
ity. The argumentation presented by Pomeranchuk, namely 
that the QP energy change δEQP =

∑
l,r |δnl,rk′σ′ |2/χs,a

QP,l
induced by a corresponding change of the QP occupation, 

δnkσ =
∑

l,m(δnl,s + σδnl,a)Ylm(k̂), does represent the actual
energy change, is based on the assumption of the one-to-one 
correspondence of QPs and particles. This correspondence 
is not strictly valid. Rather, except for the case of conserved 
quantities (the l  =  0 channels), non-QP contributions enter. 
However, if the QP distribution is interpreted as the momen-
tum integrated Green’s function, the resulting kinetic equa-
tion  captures what would be called non-QP effects in the 
energy-integrated formulation. This will be shown in the 
following.

The identical result for χρ
1  may be obtained within Fermi 

liquid theory employing the Landau–Boltzmann equation—
equation (8) (and hence the momentum integrated QP distribu-
tion function)—by realizing that the physical susceptibilities
χρ

1 express the response of the respective current densities

jρ =
∑
k,σ

sρσvk[δnkσ − (∂n(0)
k /∂εk)δεkσ]� (11)

(where ss
σ = 1, sa

σ = σ) to external fields, χρ
1 = δjρi /δAρ

i . Here, 
δAρ

i  is the ith component of an external vector field causing
the energy shifts δεext

kσ = [σk · δAa + k · δAs]/m. Note that χρ
1

differs from χρ
QP,1 by the second term in the square brackets 

of the expression for jρ [20]. This ‘backflow term’ provides
what has been termed ‘non-QP’ corrections in the energy inte-
grated formulation presented above. The analogous analysis 

for higher angular momentum channels, l  >  1, provides indi-
cations that the Pomeranchuk instability may not exist at all 
[20]. It appears as a very general conclusion of the above dis-
cussion that whereas the energy-integrated formulation seems 
to suggest that the QP picture of linear response only holds 
for the l  =  0 channels, the momentum integrated formulation 
in the form of the kinetic equation equation (8) is also valid 
for the higher l channels, if proper attention is paid to the col
lision term.

Application of Fermi liquid theory to systems of reduced 
symmetry requires introducing further parameters, and there-
fore weakens its predictive power. For a crystalline solid, the 
orbital rotation symmetry is restricted to lattice symmetry 
operations—in principle limiting the usefulness of Fermi liq-
uid theory applied to conduction electrons in metals. However, 
the usually existing approximate symmetries often suffice to 
allow interpreting observables such as the specific heat and the 
spin susceptibility in terms of simple Fermi liquid theory. A 
further case for which the introduction of many more param
eters may be avoided is that of metals containing transition 
metal, rare-earth or actinide ions with strong atomic spin–orbit
interaction. The effect of this interaction may be absorbed 
into the ionic total angular momentum multiplet structure. 
Usually, the ground state multiplet is a doublet, characterized 
by a pseudospin 1/2, which then may take the role of the bare 
electron spin. The spin–orbit component of the electron–elec-
tron interaction is small. A quite different situation arises in 
the case of neutron matter or nuclear matter, where spin–orbit
and tensor forces are known to be strong. The Fermi liquid 
interaction does then depend on the spin orientations of the 
incoming and outgoing particle–hole pairs in a general form,
fpσ,p′σ′ → fpσ, p′σ′, where σ,σ′ denote a 2 × 2 spin matrix.
Keeping the total angular momentum and the total spin of 
an interacting particle–hole pair as conserved quantities, the
Fermi liquid interaction may be parametrized as [21]

fpσ,p′σ′ = f s
pp′ + f a

pp′σ · σ′ + hpp′S(q̂) + kpp′S(P̂) + lpp′A(q̂, P̂),
� (12)

S(q̂) = 3(σ·q̂)(σ′·q̂)− σ · σ′,� (13)

A(q̂, P̂) = (σ × σ′) · (q̂ × P̂),� (14)

where q̂ = (p − p′)/|p − p′| and P̂=(p + p′)/|p + p′|. The
additional interaction functions hpp′ , kpp′ , lpp′ may again be 
expanded in terms of Legendre polynomials. The relative 
weakness of the nuclear forces (as compared to liquid 3He or 
strongly correlated electron systems) makes it possible to cal-
culate the extended set of Landau parameters in perturbation 
theory. There is, however, a further complication: the contrib
ution of multipair processes, which are outside the reach of 
Fermi liquid theory, may be estimated to be appreciable [21].

2.1.3.  QP relaxation rate.  As seen above, a further conse-
quence of the QP interaction is a finite decay rate Γkσ. At 
low temperatures T � TF, the dominating channel is two-
QP scattering. The corresponding scattering amplitude 
a(k1,σ1; k2,σ2; k3,σ3; k4,σ4), describing transitions of 

phenomenon is termed ‘Pomeranchuk instability’ [17]. 
Although, from the above, it seems like such instabilities 
should easily occur, in practice they tend to be elusive. In the 



particle 1 scattering off particle 2 and ending in states 3,4 may 
be taken to be a function of only the two angles θ,φ subtended 
by the momentum vectors, defined as cos θ = k1 · k2/|k1||k2| 
and cosφ = (k1 × k2) · (k3 × k4)/|k1 × k2||k3 × k4| as one
may put | kj| = kF, j = 1, . . . , 4. The decay rate Γkσ is then
given by the golden rule expression

Γk1σ1 =
∑
2,3,4

w(1, 2; 3, 4)nk2σ2(1 − nk3σ3)(1 − nk4σ4)δkδσδε,

(15)
where w = 2π|a|2, with the scattering amplitude a, and
δk, δσ , δε ensure conservation of momentum, spin, and energy.
It is useful to introduce the dimensionless scattering ampl
itude A = N∗

0 a and its spin singlet and triplet components 
A(0,1). The momentum summations may be expressed in terms 
of three energy integrals and an angular average over θ,φ, (see 
[5, 22]):

Γk1 =

∫
dε∗k2

∫
dε∗k3

∫
dε∗k4

1
v∗k4

kF
nk2(1 − nk3)(1 − nk4)δε〈W〉

=
ε∗2

k1
+ (πT)2

ε∗F

π

64
〈W〉,

〈W〉 =
∫ 1

0
d(cos

θ

2
)

∫ 2π

0

dφ
2π

W, W = |A(0)|2 + 3|A(1)|2.
(16)

The relaxation rate is found to vanish as the square of the 
temperature or excitation energy, which guarantees that the 
condition Γk1σ1 � T , |ε∗k1

| is satisfied in the limit of vanish-
ing energy, independent of the QP interaction strength. As a 
further consequence the inelastic contribution to the resistiv-
ity of weakly disordered metals is found to obey a T2-law in a 
temperature window governed by the competition of phonon 
contributions, electron–electron interaction effects and impu-
rity scattering.

2.1.4.  Luttinger theorem.  An important relation connecting 
the microscopic physics with Landau Fermi liquid theory is 
that the occupation number of plane wave states at T  =  0, 

nkσ = −
∫ 0
−∞ dωImGkσ(ω + i0), has a discontinuity of size 

Zkσ at the Fermi energy ε∗kσ = 0, which marks the Fermi
surface in momentum space. In the presence of anisotro-
pic potentials, such as given in a crystalline solid, ε∗kσ will 
be anisotropic, and so will be the Fermi surface. As may be 
expected from the one-to-one correspondence of QPs and bare 
particles, the volume of the manifold of occupied QP states in 
momentum space—the Fermi volume VF—is nonetheless con-
served, as stated by Luttinger’s theorem [23]. A more recent
non-perturbative derivation of Luttinger’s theorem points out
its topological origin [24].

2.1.5.  Microscopic model theories of the Fermi liquid.  The 
Fermi liquid theory provides the correct framework for describ-
ing the properties of interacting fermion systems, and enables 
the connection of various observable quantities in a consistent 
way. It does, however, not allow one to actually calculate the 
effective mass and the Landau parameters. Even more than 
fifty years after its instigation, it is often difficult to obtain 
reliable results for these parameters in strongly correlated 

systems. Nonetheless, there are certain qualitative traits that 
have been identified by a number of approximate treatments, 
like the Gutzwiller approximation [25–28], dynamical mean
field theory (DMFT) [29–32], slave particle theories [33–36],
parquet equations [37], and more. For example, a Fermi sys-
tem with strong short range repulsive interaction near half 
filling (fermions in the Hubbard model) shows an enhanced 
effective mass m∗, a strong repulsive density–density interac-
tion, as described by the Landau parameter Fs

0 (both diverging
at half-filling for a sufficiently strong bare interaction, indicat-
ing a Mott–Hubbard metal–insulator transition), and on the
other hand a weak ferromagnetic spin exchange interaction 
(Fa

0).

2.1.6.  Heavy fermion systems.  The most extreme exam-
ple of a Fermi liquid is the system of conduction electrons 
hybridizing with almost localized f-electrons in the so-called 
heavy fermion metals [38]. In these systems, the local magn
etic moments formed by the nearly singly occupied f-states 
undergo the Kondo effect, i.e. the moments get screened, and 
a many-body resonance of width TK (the Kondo temperature) 
forms close to the Fermi energy [39]. As a result, conduction 
electrons are scattered resonantly, and spend on average a time 
of order 1/TK at each lattice site, before they move on. As a 
consequence, the conduction electrons acquire a dramatically 
enhanced effective mass m∗/m ∝ TF/TK. At low temperature
T � TK, the motion becomes coherent throughout the lattice,
and a band of heavy fermions forms. Since TK is typically a 
few kelvin, the effective mass ratio may be as large as 103. In 
other words, the QP weight factor is then Z ∼ 10−3. Nonethe-
less, Fermi liquid theory is found to be obeyed [38].

2.1.7.  Resilient QPs and Hidden Fermi liquid.  Recently it 
has been found, quite unexpectedly, in model calculations 
for certain strongly correlated systems [40, 41]—where the
resistivity obeys the T2-law at low T < TFL, but significant 
deviations from this law are found in a temperature window 
TFL < T < Tinc—that so-called resilient QPs (RQPs) none-
theless appear to be well-defined. Within that temperature 
window, the specific heat coefficient shows significant temper
ature dependence, suggesting a temperature dependent effec-
tive mass m∗(T). Even more surprisingly, it is found that the 
relaxation rate of these RQPs approximately follows the law 
Γ ∝ T2, as expected for a genuine Fermi liquid. This peculiar
state has therefore been termed ‘Hidden Fermi liquid’.

Considering the expression for Γk  presented above, we 
note that, adopting the plausible assumption that the QP scat-
tering cross section has negligible energy dependence in the 
energy range specified by TFL < ε∗k < Tinc, one finds using 
v∗

k4
∝ 1/m(ε∗k4

) that

ΓkF(ω = 0, T) =
π3

64
〈W〉T2

εF
〈m∗(ε)

m
〉

〈m∗(ε)

m
〉 =

∫ dε∗k2

T

∫ dε∗k3

T
m∗(ε∗k4

)

m
nk2(1 − nk3)(1 − nk4),

(17)
where ε∗k4

= ε∗k2
− ε∗k3

 follows from energy conservation
(we put ε∗k = 0). The double averaging over the energy 
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F

V(k, k′; q,ω) = (vk·vk′ − (vk·q)(vk′ · q)
q2 )

4πe2/c2

q2 − iγ|ω|/q
,

(18)
where vk = k/m is the fermion velocity and c is the speed 
of light. This interaction is unscreened, and therefore singular 
in the limit q,ω/q → 0. The so-called Landau damping term
∝ |ω|/q accounts for the decay of a transverse photon into a
particle–hole pair. As a consequence of the singular behavior
of the interaction in the limit q,ω/q → 0 the electron self-
energy becomes enhanced for low ω

Σkσ(ω + i0) ∝ (vF/c)2[ω ln |ω| − iπ|ω|].� (19)

It follows that in the limit ω → 0, the QP weight factor tends 
to zero Z(ω) ∝ 1/ ln |ω|, rather than approaching a constant
value, and the QP relaxation rate Γ(ω) ∝ |ω|/ ln |ω| is only
barely less than the QP energy, rather than vanishing as ω2. 
However, since Γ(ω)/|ω| → 0 for ω → 0, QPs are still well
defined. An interacting Fermi system showing such border-
line behavior has been termed a ‘Marginal Fermi liquid’
(MFL) [45].

At finite temperature, the specific heat C(T) ∝ T ln(T0/T),
and the QP relaxation rate Γ(T) ∝ |T|/ ln |T| of MFLs is sin-
gular for T → 0. In a solid state system, a metal, this singu-
larity is unobservably small, because the prefactor is of order 
(vF/c)2 ∝ 10−6. The situation is different in high-energy
physics, when in a relativistic quark–gluon plasma the pro-
cess of quarks exchanging transverse gluons leads to non-
Fermi liquid behavior of the above type, where now the ratio 
of quark Fermi velocity and speed of light is of order unity 
[46, 47]. One finds, then, that the inverse viscosity and the 

electrical conductivity vary as T5/3, and the inverse thermal 
conductivity as const (as compared to T2 and T for a bona fide 
Fermi liquid) [47]. Similar effects arise in relativistic electron 
plasmas as are found in the core of neutron stars [48, 49].

2.2.  Bose systems

2.2.1.  Phonons and rotons in Bose liquids.  Another system 
which played a leading role in developing the concepts of QPs 
is superfluid 4He, a system of bosons [50–52]. There one finds
two types of well-defined QPs, phonons (ω = cq) and rotons 
(ω = ∆+ q2/2µ), as first postulated by Landau on the basis of
the observed thermodynamic properties, and later demonstrated 
in inelastic neutron scattering experiments. The phonons, first
shown to exist in a microscopic model calculation for a weakly
interacting gas by Bogoliubov [53], appear actually as a con-
sequence of the broken U(1) gauge symmetry in the super-
fluid state. The appearence of sound-like excitations is not too
surprising. After all, sound waves exist already in the normal
phase. In the superfluid, the sound velocity hardly changes with
temperature. Additional well-defined QP excitations are the
rotons, a kind of optical phonon excitation centered at a finite
wave vector. Using variational methods, Feynman and co-work-
ers derived the energy spectrum in good agreement with experi-
ment [54, 55]. The roton minimum Δ shows an abrupt change
as one enters the superfluid phase [55]. The build-up of the con-
densate leads to a two-fluid picture consisting of a superfluid
and a normal component of the system—the latter given by the
subsystem of thermal excitations. These two components show 
two collective modes: first and second sound—an in-phase and
a counter-phase oscillation of the two components, representing 
a density wave and a temperature wave respectively.

3. Principles underlying the existence of QPs

In the following, we discuss the various principles that may 
protect the integrity of QPs.

3.1. The Pauli principle for Fermi systems

The key to the understanding of Fermi liquid theory is to real-
ize the drastic phase space restriction for collision processes 
between QPs at low T. As mentioned above, on account of 
the Pauli principle most of the fermions are frozen in the 
Fermi sea and only a fraction T/TF may participate in any 
thermal excitation processes. In addition, the probability for a 
binary collision process is proportional not only to the density 
of available collision partners, but also to the density of the 
available—i.e. empty—final states. Considering energy and
momentum conservation in collision processes, only one of 
the final states may be freely chosen; the other one is then 
fixed. This means that the QP relaxation rate is proportional to 
the square of the QP density (∝ T/TF), or [3]

Γ = λ2T2/TF,� (20)

where λ is a dimensionless scattering amplitude (see the 
discussion above). Unless λ acquires critical T-dependence, 

dependence of the effective mass may be expected to result 
in a weakly varying temperature dependence of 〈m∗(ε)/m〉, 
such that approximately Γ ∝ T2. This is to be contrasted with 
a naive analysis of the FL result Γ ∝ T2/ε∗ ∝ T2m∗(T), 
which would suggest strong deviations from the T2-law. To 
be clear, resilient QPs may exist if the scattering cross sec-
tion remains energy independent over a much larger T-regime 
as expected. In this regime it is, however, not necessary that 
m∗ is T-independent. Hidden Fermi liquid behavior has been 
identified in the thermodynamic, transport and optical data of 
several transition metal oxides [42].

2.1.8. Singular interaction: marginal Fermi liquid. The above 
presentation of Fermi liquid theory assumes the interactions 
between fermions to be short ranged. Long-ranged interac-
tions may appear as fundamental interactions, such as the 
interaction between electrical charges induced by exchange 
of transverse photons of current–current type, or as effec-
tive interactions mediated by quantum fluctuations n ear a  
quant um critical point to be discussed below. Another cause 
for singular behavior of QPs is reduced dimensionality, in 
particular in one-dimensional systems. Here, we briefly 
sketch the case of the interaction of two fermions of momenta 
k + q/2, k′ − q/2 scattering into states k − q/2, k′ + q/

q
2

by exchange of a transverse gauge boson of momentum  
and energy ω , which in the limit q, ω/q → 0 may be shown 
to take the form [43, 44]



ω = cq − iαq2.� (21)

The damping term is seen to vanish faster than the excitation 
energy αq2/cq → 0 for q → 0. This is the only well-defined
mode in a fluid, since transverse sound and heat waves are 
overdamped. The distinguishing feature of a solid is its shear 
stiffness, giving rise to well-defined transverse sound modes. 
If we adopt the view that a solid is a broken-symmetry phase 
(continuous translational symmetry is broken down to discrete 
lattice translations), we may identify the transverse sound 
mode as the corresponding Goldstone mode (see below).

3.3.  Elasticity of the mean field of a quantum liquid

In any liquid, the interaction of the particles causes a mean 
field in which a given particle is moving. In a classical liquid, 
this mean field is rapidly fluctuating, and the particle relax-
ation rate is very fast, so that there is no stable single particle 
excitation. By contrast, in a quantum liquid such as 3He, the 
Pauli principle may inhibit rapid fluctuations of the mean field, 
which forms a kind of elastic medium, described by the Fermi 
liquid interaction energy. The oscillations of this medium in 
space and time, known as zero sound [3], constitute a new 
type of QP. In an isotropic Fermi liquid like 3He, they may 
be classified according to their angular dependence and spin 
dependence. The deviation of the QP occupation from the 
equilibrium value may thus be expressed in an expansion in 

spherical harmonics Ylm(k̂) as

δnkσ =

∞∑
l=0

l∑
m=−l

[δns
lm + σδna

lm]Ylm(k̂),

δns,a
lm (r, t) ∝ exp[−iωs,a

lm (q)t + iqr]. (22)

The collective frequencies ωs,a
lm (q) may be found as eigen-

modes of the Landau–Boltzmann equation—equation
(8)—neglecting the collision term. The effect of collisions
is to weakly damp the modes provided ωs,a

lm τ � 1, where
τ = (2Γ)−1 is the QP collision time (the decay time of QP–
hole pairs, hence the factor of 2). We recall that, as pointed out 
below equation  (11), the non-QP contributions are included 
in this formulation. The bosonic zero sound QPs will, how-
ever, be overdamped if the excitation energy happens to lie 
inside the particle–hole continuum, i.e. if energy and momen-
tum conservation allow the decay of a QP of energy ωs,a

lm (q)

into a particle–hole pair of fermions of energy ε∗k+q − ε∗k.
They are well defined if a sufficiently strong interaction or 
an external field pushes the collective mode dispersion out-
side the particle–hole continuum. The dispersion of density
type zero sound (l  =  m  =  0,s) in the case of strong repulsion 
is given by [4, 5] ωs

00(q)/qvF = (c1/vF)[1 + (2/15)(m∗/m)
(1 + Fs

2/5) + O((vF/c1)
4)], where c1 is the velocity of first

sound, given by c1/vF = [(1 + Fs
0)(3 + Fs

1)]
1/2. Here, vF is

the unrenormalized Fermi velocity, and Fs
l  are the spin-sym-

metric Landau parameters. In liquid 3He, longitudinal (ωs
00),

transverse (ωs
11) and spin zero sound (ωa

00) have been observed
in ultrasound experiments [57–59].

3.4. The Goldstone theorem

The Goldstone theorem [60] states that whenever a continu-
ous symmetry is broken, the system will acquire a new gap-
less excitation with dispersion ω ∝ qα, α > 0, provided the 
interactions are short-ranged. The most well-known examples 
are probably the spin-waves in a magnetic system (e.g. ferro- 
or antiferromagnetic) reflecting the breaking of rotation sym-
metry in spin space. It has already been mentioned above 
that transverse sound in a solid may be considered to be a 
Goldstone mode. In the case of the superfluids 4He and 3He, 
the breaking of U(1) gauge symmetry leads to the emergence 
of a new sound mode—which is, however, almost indistin-
guishable from the usual sound mode. The breaking of rota-
tion symmetry in spin space and orbital space in superfluid 
3He gives rise to several more Goldstone modes (see below). 
It is worth noting that the Goldstone theorem does not guar-
antee well-defined, i.e. weakly damped Goldstone modes. 
These modes may be overdamped, depending on the system. 
For example, orbital waves in superfluid 3He-A, generated 
by the broken orbital rotation symmetry, have a dispersion 
ω ∝ iq3 in the limit of low temperature. A general discussion
of the requirements to be met in order to ensure well-defined
Goldstone modes may be found in [61].

3.5.  Elasticity of the order parameter field

A further mechanism generating new bosonic QPs may exist 
in ordered systems characterized by an order parameter 
field. Massive collective modes (ω(q → 0) > 0) represent-
ing bosonic QPs may arise through oscillations of the order 
parameter field in space and time. For this to happen, the order 
parameter should have internal structure, in the form of pre-
ferred directions in orbital or spin space or some other internal 
space [62], or else should have a subsidiary pair amplitude 
in a channel different from the equilibrium pairing channel 
[63]. The equilibrium form of this structure is determined by 
the minima of the condensation energy. Oscillations about this 
fixed structure may occur at frequencies of the order of the 
condensation energy per particle. Such oscillations have been 
found to exist in superfluid 3He, where they lead to prominent 
peaks in the sound absorption as a function of temperature 
[64]. Even in isotropic superconductors a massive collec-
tive mode may be found in principle: the oscillation of the 

i.e. diverges as T → 0, or grows large near a thermal phase 
trans ition   (see   the   discussion   below), the  QP  relaxation rate
satisfies Γ � T at low T, implying that Landau QPs are well 
defined.

3.2. Conservation laws

The longest-known mechanism establishing QP excitations is 
based on the restriction of the dynamics of a system coming 
from conservation laws. These lead to the hydrodynamic equa-
tions of a fluid or an elastic medium. The one well-defined QP 
excitation created in this way is longitudinal sound, obeying 
the dispersion law [56]



when, e.g. protons, neutrons and electrons (all of them fermi-
ons!) form 4He-atoms, which are bosons on the scale of ener-
gies far below the binding energy of the atom. The conduction 
electrons of a superconductor form ‘Cooper pairs’—loosely
bound electron pairs—which may exist only in the presence
of the filled Fermi sea. The spatial extension of Cooper pairs, 
ξ0, is large compared to the lattice spacing b, such that at any
given point (ξ0/b)3 � 1 Cooper pairs overlap. Any other
even-number cluster of electrons, e.g. four bound electrons, 
would serve the purpose equally well, but these higher order 
clusters are expected to be much less stable. In conventional 
superconductors, the pairing shows up in that the electric 
charge of a Cooper pair appears to be 2e. For Cooper pairs to 
form, it is necessary that the effective QP interaction has an 
attractive component. The attraction may originate ‘from out-
side’—e.g. from the coupling to the crystal lattice excitations,
as in the initial BCS theory; or ‘from inside’—specifically,
by exchange of excitations within the system, such as spin 
fluctuations.

The order parameter of a superconductor below the critical 
temperature Tc is the amplitude [75, 76]

ψkσσ′ = 〈ckσc−kσ′〉� (23)

of pairs of total momentum zero. The order parameter thus 
defined has at least two degrees of freedom, a global phase 
and a modulus, ψ = |ψ|eiφ. In an actual system the equilib-
rium state is characterized by a coherent superposition of 
states with different phases φ, and the defining feature of the 
superconducting state is the phase stiffness, i.e. changing the 
phase in space costs energy. Since the absolute value of the 
phase is not observable (whereas phase differences are), it is 
sufficient to assume one fixed value of the phase.

The fact that a Cooper pair overlaps in space with a huge 
number of neighboring Cooper pairs implies that mean field 
theory works very well. The mean field Hamiltonian, named 
after Bogoliubov and de Gennes, is found to be [77, 78]

HBdG =
∑
k,σ

ξk,σc†k,σck,σ +
1
2

∑
k,σ,σ′

(∆∗
k,σσ′c−k,σ′ck,σ + c†k,σc†−k,σ′∆k,σ′σ)

− 1
2

∑
k,σ,σ′

∆∗
k,σσ′ψkσσ′ . (24)

Here, the ‘gap parameter’ ∆ is defined by

∆k,σσ′ =
∑

k′,σ1,σ′
1

Vk,σσ′;k′σ1σ′
1
ψk′σ1σ′

1
,

� (25)

where V is the pair interaction. The Hamiltonian equation (24) 
may be diagonalized by a Bogoliubov transformation in the 
form

HBdG =
∑
k,σ

Ekσb†
k,σbk,σ + Econd,� (26)

where Econd is the energy of the pair condensate. Fermionic 
excitations, termed ‘Bogoliubov QPs’ (BQPs) [77], are cre-
ated by operators

b†k,σ =
∑
σ′

(u∗k,σσ′c†k,σ′ − v∗k,σσ′c−k,σ′),� (27)

magnitude of the order parameter about its equilibrium value. 
It is hard to detect, however, since its frequency, ω = 2∆, is at 
the border of the pair breaking continuum. It has been argued 
that in special cases, when coupling of the mode to a pho-
non mode pulls the frequency into the gap, its observation has 
been possible [65].

In a generalized sense, defects of the order parameter field 
may also be considered as QPs. Prominent examples are the 
vortex excitations in the superconductive state and domain 
walls in a magnetically ordered system.

3.6. Topological constraints

QP excitations may be protected by topological constraints. 
The first example of this type is a vortex excitation in a Bose 
superfluid [66] or a type-II superconductor. A s mentioned 
above, a vortex is a defect in the order parameter field of the 
superfluid. In a Bose superfluid or a conventional superconduc-
tor, a vortex carries vorticity of the superfluid flow. Superflow 
is directly connected with the macroscopic quantum phase φ 
of the many-body wave function since the superfluid veloc-
ity is vs ∝ ∇φ, and the phase must be unique (modulo 2π).
It follo∫ws that the vorticity, a line integral around the vortex 
core, dsvs, must be quantized. This implies that a vortex 
excitation cannot simply disappear. It may do so only at the 
boundary to a normal-state region where the order parameter 
vanishes.

In a similar way, vortex-like excitations in the fractional 
quantum Hall state, Laughlin QPs [67], are protected by the 
quantization of the magnetic flux they carry (see below).

The above examples are made possible by the strong effect 
of interparticle interactions leading to a quantum condensed 
state. Topologically protected QPs may even appear in non-
interacting systems, such as in the integer quantum Hall effect, 
where a strong magnetic field in combination with Anderson 
localization leads to the existence of conducting edge states of 
chiral character [68, 69]. In recent years, the possibility of topo-
logically protected QP states has sparked tremendous interest 
[70, 71], as these states may offer a new route towards quant um 
information processing devices [72]. Along these lines, it has 
been proposed that the quantum Hall effect may even be real-
ized without magnetic field i n c ertain s emiconductors, a s a  
‘quant um spin Hall effect’ (QSHE) (see below). Here the magn-
etic field i s r eplaced, i n s ome s ense, b y t he s pin–orbit i nter-
action (of the Rashba-type), and one needs an inverted band 
structure (valence and conduction band interchanged) [73, 74].

4. QPs in ordered media

4.1. Superconductors and isotropic Fermi superfluids

As reviewed above, Fermi systems are forced by the Pauli 
principle to have at most singly occupied single particle 
states, unlike Bose systems, in which the particles prefer to 
condense into the lowest single particle state, as far as inter-
action permits. However, as proposed by Bardeen, Cooper 
and Schrieffer (BCS) [75], fermions may avoid the Pauli law 
by forming boson-like entities. This happens in a trivial way 



 

Ekσ =
√

ξ2
kσ + (∆k∆∗

k)σσ .� (28)

In the case of an isotropic superconductor, we have 
ψkσσ′ = ψ−kσσ′ = ψPkσσ′ = iτ y

σσ′ψk, where Pk is the mani-
fold of momentum vectors generated by the operations P of
the point group of the lattice, τ y is the second Pauli matrix, 
and the last equation follows from the antisymmetry property 
of fermionic wave functions. Here the gap parameter ∆k  is 
diagonal in spin space, but generically depends on momen-
tum—even though the k-dependence is usually neglected
for an isotropic superconductor—because ∆k  is everywhere
finite on the Fermi surface, meaning that the energy spectrum 
has a full gap.

The number of BQPs is not conserved, since two BQPs with 
quantum numbers (kσ;−k,−σ) may coalesce into a Cooper
pair, and vice versa. Actually any pair (k + q,σ;−k,−σ) may
coalesce, provided the extra momentum q (and corresponding 
energy) will be transferred to phonons. It follows from the 
above that the character of fermionic QPs changes qualita-
tively at the transition to the superconducting state. It is worth 
asking how the Landau QP properties change on approach-
ing Tc. We may expect that the appearence of superconduct-
ing fluctuations close above Tc—i.e. superconducting regions
of extension of the coherence length ξ(T) ∝ (T − Tc)

−1/2

diverging at Tc, fluctuating in time at a rate 1/τGL ∝ (T − Tc),
vanishing at Tc—will lead to an increase in the QP decay rate.
Indeed, it may be shown that on the initial approach to Tc, the 
QP relaxation rate increases [79–81] compared to the T2-law
of a normal Fermi liquid

Γ(T) ∝ λ2T , for tG < T/Tc − 1 < Tc/TF,� (29)

where tG = (a/ξ0)
2d/(4−d) (a  =  lattice constant; ξ0 = coher-

ence length at T  =  0; d  =  spatial dimension) marks the 
entrance into the true critical regime governed by interacting 
fluctuations as given by the Ginzburg criterion [82]. The exis-
tence criterion for QPs, Γ(T)/T < 1, is met here in the case of 
weak coupling superconductors, considering that the coupling 
constant, estimated as λ = 1/ ln(TD/Tc), is then less than 
unity. Here, we have used the expression for the transition 
temperature Tc = TD exp(−1/λ), where TD is the width of
the region in energy over which the pair interaction is attrac-
tive. Inside the critical regime, T/Tc − 1 < tG, the situation
depends on whether the fermions are charged or neutral. In 
a charged system, the transition to a type I superconductor 
is likely first order [83]. In strong coupling superconductors, 
QPs are presumably ill defined in the limit T → Tc.

On the other side of the transition, at T < Tc, one may 
expect fluctuations signaling the breakdown of the ordered 
state. One distinguishes longitudinal and transverse fluctua-
tions, i.e. fluctuations of the modulus and of the phase of the 
order parameter. The spectrum of longitudinal fluctuations 
is gapped, which means they do not contribute much to the 

increase in QP scattering cross section. The transverse fluc-
tuations are gapless, but in a charged system they couple 
to the electromagnetic field, and thereby acquire a gap (a 
‘mass’) as well. So, both types of fluctuations (in three dimen-
sions) do not boost the BQP decay rate in a charged system. 
There is, however, a more important change: the energy gap 
in the Bogoliubov QP spectrum will be washed out when 
Γ(T) � ∆(T). Here we may estimate [84]

Γ(T) ≈ λ2(T2
c /TF)[1 − cB(∆/Tc)

2], 0 < 1 − T/Tc � 1.
� (30)

Using ∆(T) = c∆Tc(1 − T/Tc)
1/2, the crossover temper

ature Tx beyond which BQPs are no longer well defined is 
then found as (Tx/Tc − 1) ≈ (λ2Tc/c∆TF)

2, i.e. Tx is within
10−6 of Tc for conventional superconductors. It is worth 
noting that the QP relaxation rate has a discontinuity in its 
temperature derivative at Tc. At low T � ∆, the number of
QPs is exponentially small: nBQP ∝ exp(−∆/T), and there-
fore Γ(T) ∝ exp(−∆/T).

There are two order parameter collective modes in an 
isotropic superfluid: oscillations (i) of the phase φ(r, t) (the 
Goldstone mode) and (ii) of the modulus |ψ(r, t)| in space and
time. The equilibrium state of a superconductor is continu-
ously degenerate with respect to changing the global phase 
φ. This implies that in the limit of infinite wavelength, oscil-
lations of the phase should not cost any energy—i.e. these
excitations are gapless. However, in an electrically charged 
system, such as a superconductor, these phase modes are 
coupled to the electromagnetic field, and in this way both the 
phase mode and the transverse electromagnetic field modes 
acquire a gap (Anderson–Higgs mechanism [85–88]). In a
neutral superfluid, the phase mode is observable as a den-
sity mode (a sound mode) with linear dispersion ω = cABq, 
called the Anderson–Bogoliubov mode. The second collective
mode is the oscillation of |ψ(r, t)| about its equilibrium value
with dispersion ωq = 2∆+ cAq2 + iγ. This mode is known 
as the Higgs particle in particle physics [89]. The energy 2∆ 
is the minimal energy required to break a Cooper pair into 
its fermionic constituents, and therefore marks the border of 
the ‘pair-breaking continuum’ in the pair excitation spectrum.
As a consequence, this mode is again overdamped (damping 
rate γ), and is usually not observed. Actually, the mode is so 
strongly damped that its decay is non-exponential in time 
[90, 91]. In a Cooper-paired Fermi system, such as a usual 
superconductor or superfluid 3He, the equation of motion of 
the order parameter describes reactive dynamics as expressed 
by a second order time derivative, leading to the above real-
valued mode frequency (leaving aside the damping rate γ  for 
the moment). In contrast, the dynamics of a bosonic superfluid 
order parameter is relaxational, and the equation  of motion 
of ψ(r, t) [92, 93] contains a first order time derivative. In 
that case, the amplitude mode of the order parameter is over-
damped: ωq = iΓ + cAq2—i.e. is not well defined. The rea-
son for the difference is that the BCS-theory is particle–hole
symmetric, prohibiting a first order time derivative. However, 
particle–hole symmetry may exist even in bosonic systems.
Systems of ultracold bosons on a lattice are particle–hole sym-
metric along a line in the chemical potential–dimensionless

where the coefficients u,v are given by u k,σσ′ = 
δσσ′ (ξkσ + Ekσ)/Dk,σ and vk,σσ′ = ∆k,σσ′ /Dk,σ, with 
Dk,σ = [2Ekσ(ξkσ + Ekσ)] (a unitary state is assumed here). 
We note that a BQP is a superposition of a particle and a hole. 
The spectrum of BQPs is found as



ψkσσ′ =
µj

Aµj(iτ yτµ)σσ′ k̂j, (31)

where τµ,µ = x, y, z are the Pauli matrices, and k̂j, j = 1, 2, 3 
are the three components of the unit vector in k-space. This 
should be contrasted with a single complex order parameter in 
the case of conventional superconductors. As a consequence, 
one has several equilibrium states, depending on pressure, 
temperature, magnetic field, boundary conditions, etc. The 
two main phases are the A-phase at elevated pressure and 
temperature, and the B-phase at low T. The anisotropies of 
the orbital and spin parts of the pair wave function in the case 
of non-s wave pairing lead in general to an anisotropic energy 
gap function ∆kσ in the Bogoliubov QP dispersion.

In the A-phase, the order parameter matrix is given by 
Aµj = ψdµ(mj + inj), where m⊥n,(d) and l = m × n are
unit vectors in orbital (spin) space. The energy gap follows as 
|∆A

kσσ′ | = δσσ′∆0 sin θk, where k · l =kF cos θk, and has point
nodes along the z-axis, assuming l to point along the z-axis. 
In the B-phase Aµj = ψRµj, where Rµj is an arbitrary rotation 
matrix specifying a relative rotation of spin and orbital space. 
The balanced superposition of all available substates in this 
case leads to an isotropic gap ∆B

kσσ′ = δσσ′∆.
Whereas the BQP properties in the B-phase are very similar 

to those of an isotropic superfluid, in the A-phase the zeroes 
of the gap lead to physical quantities varying as power laws in 
temperature, rather than exponential as T → 0. The relaxation

rate of BQPs depends strongly on the their position on the 
Fermi surface,

ΓA
k‖l ∝ (T2/TF)(T/∆0(0))2,� (32)

ΓA
k⊥l ∝ exp(−∆0/T).� (33)

Even more remarkable is the fact that the orbital part of the 
order parameter is closely coupled to the QP system, since 
the preferred direction l = m × n forms the axis of the gap.
A rotation of l therefore implies a change of the energy of the 
QP system.

Different combinations of symmetries, aside from the 
gauge symmetry, are broken in the two phases. In the A-phase, 
the breaking of rotation symmetry separately in spin space 
and in orbital space generates spin waves and orbital waves 
as the corresponding Goldstone modes. Here, the spin waves 
have a linear spectrum ω ∝ q, and are weakly damped at low 
q. Actually liquid 3He is not completely spin rotation invari-
ant, because of the dipole interaction of the nuclear spins,
which couples spin and orbital space. In the pair correlated
state, the effective dipole interaction is substantially enhanced
by the fact that the preferred directions of the Cooper pairs
are aligned [99]. This fact introduces gaps in the spin wave
spectra. Leaving that aside, the broken rotational invariance in
orbital space gives rise to orbital wave modes. These are, how-
ever, overdamped, because—as pointed out above—rotation
of l changes the BQP energies and leads to BQP production, 
such that the dispersion near Tc is found as ω ∝ i1/2q2.

The internal structure of the orbital part of the order param
eter of the A-phase, defined by the triad l, m, n of mutually 
perpendicular unit vectors, offers two possible pair vibration 
modes [101]: oscillations of (i) the angle �(m, n) (clapping
mode), (ii) the angle between l and (m, n) (flapping mode). 
Both modes are reasonably well defined. The clapping mode 
is stabilized by the minimum in the condensation energy, 
and consequently ωcl ≈ 1.2∆(T), of order of the temper
ature dependent energy gap. By contrast, the flapping mode 
is actually an oscillation of the condensate vector l against 
the preferred direction ln defined by the BQP axis. As the QPs 
disappear for T → 0, so does the restoring force and therefore
ωfl ∝ ∆(T) near Tc, but ωfl ∝ T  at low T. These modes have
been detected as peaks in the ultrasound attenuation [98].

In the B-phase, the symmetry of relative rotations in spin 
and orbital space is broken. The associated Goldstone modes 
are three spin–orbit waves with linear dispersion. In addition,
two types of pair-vibration modes appear, in which the iso-
tropic gap parameter shows a quadrupolar deformation with 
real or imaginary valued amplitude (called real squashing 
mode and squashing mode). The frequencies of these modes 
are ωq = (8/5)1/2∆+ O(q2) and ωq = (12/5)1/2∆+ O(q2) 
respectively [100, 103, 104]. The fact that the squares of the 
frequencies add up to the square of the pair-breaking fre-
quency (8/5)∆2 + (12/5)∆2 = (2∆)2 follows from the 
supersymmetry of the Hamiltonian [102]. In contrast to the 
corresponding A-phase modes, the squashing modes are 
undamped in the limit T → 0. These modes have also been
detected as peaks in the ultrasound attenuation [64, 98].

interaction plane, which has led to the search for, and the dis-
covery of evidence of, the Higgs mode in such a system [94]. 
In certain anisotropic magnetic insulators, when the order 
parameter (the sublattice magnetization of an X  −  Y-model)) 
has the symmetry of a complex-valued scalar and obeys reac-
tive dynamics, the equivalent of the Higgs mode has also been 
identified [89, 95, 96].

4.2. Anisotropic superfluids: Helium 3

One of the best examples of the various types of QP is offered 
by liquid 3He. In the temperature range from about 100 mK 
down to a few mK and in the pressure range from ambient 
pressure up to the melting pressure of about 30 bar it is per-
fectly described by Fermi liquid theory in the strong cou-
pling re
Landau QP weight f

gime, i.e. with parameters 
actor is correspondingly small, 

m∗/m, Fs
0, Fs

1 �
Z
1. The

1. � 
Nonetheless, thermodynamic and transport properties may be 
described quantitatively within the QP picture.

At temperatures below 2.6(1.0) mK at melting (ambient) 
pressure a phase transition into superfluid phases occurs [22], 
[97–100]. Owing to the strong repulsive interaction between 
3He-atoms at short distances, pair formation in a relative 
s-wave state, as in electron pairing in conventional supercon-
ductors, may be ruled out. The effective many-body interac-
tion between QPs as inferred from the normal Fermi liquid
properties [22] or from a microscopic model using the so-
called direct interaction as a starting point [37] may be shown
to favor p-wave and, by the Pauli principle, spin triplet pairing. 
The then available three orbital and three spin substates lead
to a complex order parameter 

∑ 
Aµj of 3 × 3 tensor structure



ε∗kσ = ε∗k − σh,� (34)

where h ∝ |M|, and the spin quantization axis is chosen to
be along M. The broken spin rotation invariance generates 
Goldstone modes—weakly damped spin waves of quadratic
dispersion ω ∝ q2 [105, 106]. The number of fermionic QPs 
of given spin projection is no longer conserved, as scattering 
of QPs off spin wave excitations may flip the spin.

We now consider how the Landau QP properties in the 
paramagnetic state (T > Tc) change upon approaching the 
transition temperature Tc into the ferromagnetic phase. The 
spectrum of spin fluctuations in three dimensions at low q,ω 
and near Tc is given by [107]

ImχFM(q,ω + i0) = Im
N0

tγ + (q/kF)2 − iω/vFq
,� (35)

where t = T/Tc − 1, and γ  is a critical exponent (γ = 1 in
mean field approximation). We neglect a possible logarith-
mic correction factor to the q2-term [108]. Scattering of QPs 
off these fluctuations leads to an enhanced relaxation rate 
Γ, which may be calculated as the imaginary part of the self-
energy in one-loop approximation

Γk(T) = ZImΣk(ω = 0) = Zu2
∫

dν
2π

∫
ddq
(2π)d [ f (ν) + b(ν)]

× Im{Gk+q(ν + i0)}Im{χFM(q, ν + i0)}, (36)

where u ∝ N−1
0  is the interaction, and f (ν), b(ν) are the Fermi

and Bose functions, respectively (we have dropped the spin 
label, which is irrelevant in the paramagnetic state). Replacing 
the spectral function ImG by the corresponding δ-function, 
and using that the QP weight factor Z is a constant, one may 
first do the angular integration for the case of d  =  3 dimen-
sions to find 〈ImGk+q〉 ∝ 1/vFq. Further approximating the
Fermi and Bose functions by cutoffs, one gets

Γk(T) ∝ u2
∫ T

0
dν

∫
q2dq

1
vFq

Im{ N0

tγ + (q/kF)2 − iν/vFq
}.

(37)
The remaining integral over q is governed by the singu-
lar behavior of the spin fluctuation propagator in the limit 
t, ν → 0, controlled by a lower cutoff of the q-integration 
at q/kF ≈ tγ/2 , provided tγ > ν/vFq → t−γ/2T/vFkF. The
result, after doing the ν -integration, is

Γk(T) ∝ λ2t−3γ/2 T2

TF
, t3γ/2 > T/TF.� (38)

The QP relaxation rate is seen to grow on approaching Tc until 
it reaches a plateau value of Γ ≈ λ2Tc, at t3γ/2 < T/TF  (here 
λ ≈ N0u is a dimensionless coupling constant). The relaxation
rate usually still satisfies Γ(Tc) < Tc, assuming Tc � TF, so
that λ � 1. So, QPs remain reasonably well defined at weak 
coupling.

4.4.  Antiferromagnets

In metallic systems, an antiferromagnetic ordered state usu-
ally appears below a temperature TN in the form of an incom-
mensurate spin density wave M(Q) = M0 cos(Q · r), where
the wave vector Q is usually large, of the order of a reciprocal 
lattice vector. Again spin rotation invariance is broken, and 
the corresponding Goldstone modes are spin waves with dis-
persion ω ∝ q in the limit of small q [106]. The spectrum of 
fermionic QPs develops a gap

εAFM
k,σ =

1
2
{(ε∗k+Q,σ + ε∗k,σ)± [(ε∗k+Q,σ − ε∗k,σ)

2 + h2
Q]

1/2}.
� (39)
The number of QPs of given spin projection is again no longer 
conserved, as scattering of QPs off spin wave excitations may 
flip the spin, and simultaneously change the QP momentum 
by Q.

In the paramagnetic phase, the QP relaxation rate again 
increases as T → TN , on account of enhanced scattering off
antiferromagnetic spin fluctuations with energy spectrum 
[107]

Im{χAFM(q,ω)} = Im{ N0

tγA + (q − Q)
2
/k2

F − iω/vFQ
},

where t  =  T/TN  −  1, and the exponent γA = 1 in mean field 
approximation. Since the exchange process involving an anti-
ferromagnetic spin fluctuation necessarily implies a change of 
momentum of the initial QP on the Fermi surface by Q, the 
final state will usually be far from the Fermi surface, except 
if the initial momentum is near a ‘hot spot’ k ≈ kh where
ε∗kh

= ε∗kh+Q = 0 (assuming there are ‘hot spots’). From the
imaginary part of the self energy in one-loop approximation, 
the initial increase of Γ at a hot spot is found—following the
steps described for the ferromagnetic case—as

Γkh ∝ u2
∫ T

0
dν

∫
d3qIm

N0

tγA + (q/kF)2 − iν/vFQ

∝ λ2t−γA/2 T2

TF
, tγA > T/TF. (40)

(This time, the angular integration produces 〈ImGk+q〉 ∝
1/vFQ.) The growth of Γkh ∝ t−γA/2 is seen to be slower

than in the ferromagnetic case (assuming γA = 1). Again, 

Γkh reaches a plateau value of Γkh ≈ λ2T3/2
N /T1/2

F , this time 
at tγA = T/TF , where QPs are still reasonably well defined, 
assuming TN � TF.

5. The transformation of quasiparticles
at a quantum critical point

At a quantum critical point (QCP), i.e. an end point of a phase 
boundary at T  =  0, separating the disordered from a continu-
ously forming ordered phase, quantum fluctuations govern the 
behavior of the system in a wide regime of the phase diagram 
extending to finite temperature [109, 110]. The system may 
be tuned through the critical point by variation of a control 

4.3. Ferromagnets

In a ferromagnetic metal a ferromagnetic polarization M of 
conduction electrons leads to a Zeeman splitting of Landau 
QP states, such that



Z = Z(ω), m∗ = m∗(ω) (we suppress a possible additional 
dependence on the position on the Fermi surface, k‖, or on 
the distance from the Fermi surface, k⊥), where ω  denotes the
QP excitation energy. Assuming a power law dependence of 
the self energy, Σ(ω) ∝ −i(i|ω|)1−η as obtained from a self-
consistent perturbative treatment [120–123] or equivalently
a renormalization group study of the spin-fermion model of 
AFM criticality [123], it is found that the ratio of QP peak width 
and energy, Γ/ω = (1 − η)−1 cot[(1 − η)π/2] < 1, provided
0 < η � 0.36. The case η → 0 is known as a ‘Marginal Fermi
liquid’ [45]. Therefore, provided the self energy is not too sin-
gular, i.e. η � 0.36, we may still use the concept of QPs—now
in the form of ‘critical QPs’—in calculating properties like the
self energy Σ(ω), or the antiferromagnetic spin susceptibility 
χ(q,ω). In other words, we may approximate the single par-
ticle spectral function at low energy by

ImG(k,ω) ≈ Z(ω)δ[ω − Z(ω)εk].� (41)

The spectrum of spin fluctuations is given by [120–123]

Imχ(q,ω) = Im
N0

r + (q − Q)
2
/k2

F − iλ2
Qω/vFQ

,� (42)

where r is the tuning parameter, r ∝ (H − Hc)
2ν , ν  is the criti-

cal exponent of the correlation length, H is the tuning field, 
e.g. a magnetic field. We have applied two factors of vertex
correction λQ to the last term in the denominator—the so-
called Landau damping term. In microscopic theory, the ver-
tex corrections, which may be shown to diverge as λQ ∝ Z−1

[124], are attached to the two ends of a renormalized bubble 
diagram.

The QP effective mass m∗ and relaxation rate Γ, may be 
calculated, as defined above, from the self energy Σ. In low-
est approximation, so-called one-loop order, the self energy 
given by a single spin fluctuation exchange process, as in 
equation  (40), is highly anisotropic, showing critical behav-
ior only near so-called ‘hot spots’—see the discussion above
equation (40). There exists, however, a higher order process, 
which may contribute critical behavior all over the Fermi sur-
face. It involves exchange of a pair of antiferromagnetic spin 
fluctuations of small total momentum. The corresponding 
combined fluctuation χE may be viewed as an exchange 
energy fluctuation. Provided the QP effective mass is singu-
larly enhanced, this contribution gets enhanced by vertex cor-
rections λQ ∝ Z−1 at the ends of the AFM spin fluctuation
propagators, and additionally by vertex corrections λv ∝ Z−1

at the ends of the propagatorχE. As a result, the vanishing of 
the bare ImχE(ω) ∝ ωd−1/2 is overcompensated by a factor
λ2d+1

Q λ2
v, such that the spectrum of the energy fluctuation 

propagator including the vertex corrections is highly singular 
[122, 123]. In one-loop order in χE, one finds a scale-depend-
ent effective mass:

m∗(ω)

m
= Z−1 (ω) ∝ ω−η ,

η =

{ 1
4 , d = 3
1
8 , d = 2

.

parameter (pressure, magnetic field, chemical composition, 
…). The conventional theory of quantum criticality starts from 
the assumption that the relevant critical degrees of freedom are 
the fluctuations of the order parameter, for which a φ4-field 
theory may be formulated, the Landau–Ginzburg–Wilson the-
ory [111, 112]. In contrast to the classical theory of criticality 
near a continuous phase transition, which may be phrased in 
terms of static (time-independent) fields, quantum criticality 
requires consideration of the dependence of the fluctuation 
amplitude on imaginary time. As a consequence, the effective 
dimensionality of the system is larger than the space dimen-
sion d, viz. deff = d + z, where the dynamical critical expo-

nent z (controlling the relation of spatial and temporal scaling 
of the fluctuations, ω  ∝ qz) accounts for the dimensionality of 
time. One frequently finds d eff > 4, the upper critical dimen-
sion of φ4-field theory, implying that the system is in the 
Gaussian regime—or, in other words, the interaction between 
fluctuations scales to zero. The system properties may then be 
calculated in a controlled way.

Of particular interest are magnetic quantum phase trans-
itions in metals [113], which in principle involve two criti-
cal subsystems—that of the order parameter and that of 
the fermionic QPs. The criticality of fermionic excitations 
shows up in a critical growth of the effective mass m∗ as the 
QCP is approached, which is experimentally easily detected 
through a divergence of the electronic specific heat coefficient 
C/T ∝ m∗, as the temperature tends to zero and the control
parameter approaches its critical value. When a divergence
of m∗ is not observed, the conventional theory of quantum 
criticality is applicable. If, however, experiment indicates 
a diverging m∗, a new theoretical description is called for: 
one which considers critical bosons (representing the order 
parameter fluctuations) and critical fermions (the Landau 
QPs, correspondingly modified). Prominent compounds in 
this class are the heavy fermion systems CeCu6−xAux near a 
doping concentration of x  =  0.1 (m∗ ∝ T−α, α ≈ 0.1, or log-
arithmic) [114], and YbRh2Si2 (m∗ ∝ T−α, α ≈ 0.3) [115]. In 
these systems, which both show an antiferromagnetic QCP, 
the observed properties strongly deviate from those of a Fermi 
liquid—which is why these phases are termed ‘Non-Fermi 
liquids’. It has been argued that Fermi liquid notions are not 
applicable any more, and a completely different description 
is called for [116–119]. This may not necessarily be the case, 
as proposed in the recent work of Abrahams, Schmalian and 
the present author [120–123]. Rather, in the critical regime, 
Landau QPs mutate into critical QPs characterized by a scale-
dependent effective mass m∗(ω) ∝ ω−η, where ω  denotes
the QP energy, or temperature, whichever is largest. Critical
QPs may be shown still to obey the QP criterion Γ(ω) < ω , 
provided η � 0.36. In the following, the main results of that 
theory will be reviewed.

5.1. Critical Fermi liquid near an antiferromagnetic quantum 
critical point

We generalize the QP form of the single particle Green’s 
function, equation  (3), by allowing the QP weight factor—
and therefore the effective mass—to be energy dependent,
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Γ(T) = (1 − η)−1 cot[(1 − η)π/2]T , (H/Hc − 1)νz � T/ε∗F,
� (43)
whereas the prefactor of the T2-law in the Fermi liquid regime 
grows upon approach to the QCP, until the plateau value in the 
critical regime is reached:

Γ(T) ∝ |H/Hc − 1|−zνT2/ε∗F, T/ε∗F � (H/Hc − 1)νz.� (44)

We thus find, again—similarly to the case of thermal phase
transitions in metals considered above—that the QP relax-
ation rate increases upon approach to the critical point, fol-
lowing a power law in the control parameter (which is now 
|H/Hc − 1|, and was |T/Tc − 1| before), but assumes a con-
trol-parameter-independent, though temperature-dependent 
value Γ ∼ T  (which is  ∼Tc in the case of the thermal trans
ition) in the critical regime.

The strong coupling theory described in the above is an 
example of a mean field theory of transport quantities captur-
ing a dynamical equilibration process [125]. Here, the balance 
of bosonic and fermionic fluctuations is the physical reason 
for the emergence of a new strong coupling theory. Similar 
approaches may be used to describe the Kondo effect in the 
weak and strong coupling regimes [125] or the Anderson 
localization problem [126, 127].

6. Quasiparticles with fractional quantum numbers

The QPs based on quasiclassical principles, such as the 
Landau QPs or collective wave excitations such as spin waves, 
reviewed above, may be completely destroyed by quantum 
fluctuations. We now briefly review two cases where this hap-
pens, and where new types of QPs appear instead. The first 
example is a strictly one-dimensional system of fermions 
interacting via short range interactions (for a textbook presen-
tation see [128]). There, a Landau QP breaks up into two frac-
tional QPs carrying the charge (chargons of charge Q  =  −e 
and spin S  =  0) and the spin (spinons of charge Q  =  0 and 
spin S  =  1/2).

A second example is that of fractional QPs in the quantum 
Hall effect at non-integer fillings ν  (see [69, 129]). There, one 
appears to have Laughlin QPs carrying charge νe, e.g. at fill-
ings of the lowest Landau level of ν = 1

3 , 1
5 , . . .. Near half-

filling, ν = 1/2, the picture of ‘composite fermions’ forming
a Fermi liquid in an effective low magnetic field appears to be 
quite successful.

6.1.  Spinons and chargons in one-dimensional systems

The effect of interactions on the properties of a system of par-
ticles depends on its dimensionality. Whereas in dimensions 
d � 2 two particles may avoid interacting by moving past
each other at a sufficiently large distance, this is not possible 
in one dimension. Consequently, interactions have a funda-
mental effect, even in the weak coupling limit. While in a clas-
sical system two particles of low energy may not be able to get 
past each other at all, quantum particles may tunnel through 
each other even then.

It has been found early on that the proper excitations in 
one-dimensional electron systems are bosonic charge and spin 
excitations, described by density operators

ρν,r(q) =
∑

k

[c+rkF+k+q,↑crkF+k,↑ + νc+rkF+k+q,↓crkF+k,↓],� (45)

where ν = ρ,σ = +,− indicate charge/spin, and r = ±
denotes the excitation branch centered at momenta k = ±kF.
Within the Tomonaga–Luttinger model [131–133], including
forward scattering interaction processes of fermions on the 
same branch, H4 =

∑
ν,r

∑
q g4νρν,r(q)ρν,r(−q) and on dif-

ferent branches H2 = 2
∑

ν

∑
q g2νρν,+(q)ρν,−(−q), these

excitations are non-interacting. We neglect backward scatter-
ing processes and spin-flip scattering (g2σ = 0), for simplic-
ity. The energies of charge and spin excitations are found to 
be ω = uρq and ω = uσq  at momentum q, generically with 
different velocities, uν = [(vF + g4ν/π)

2 − (g2ν/π)
2]1/2.

These bosonic excitations show up as power law singulari-
ties in the single-particle spectral function, e.g. for uρ > uσ 
at momentum k − kF = κ > 0 (kF is the Fermi momentum)
[134]

Ak(ω) ∼ |ω − uρκ)|(δ−1)/2, ω ≈ uρκ,

∼ θ(ω − uσκ)(ω − uσκ)
δ−1/2, ω � uσκ

∼ θ(−ω − uρκ)(−ω − uρκ)δ/2, ω � −uρκ,
� (46)

where δ = (Kρ + K−1
ρ − 2)/4 and the ‘Luttinger parameters’ are 

defined as Kρ = [(πvF + g4,ρ − g2,ρ)/(πvF + g4,ρ + g2,ρ)]
1/2.

The spectral function equation (46) shows two fractional power 
law QP peaks at ω = uρ(k − kF), and ω = uσ(k − kF), indi-
cating ‘chargon’ and ‘spinon’ excitations, respectively. At the
lower peak (here, ω = uσκ), Ak(ω) shows threshold behavior. 
Unfortunately, these structures in the spectral function are not 
easily observed in tunneling or photoemission experiments.

A more accessible observable showing signatures of the 
above singular structures is the conductance of a quantum 
wire with a single impurity attached to charge reservoirs. 
Here, a natural approach is to calculate the conductance G 
directly, in the framework of a fermionic representation. The 
way to do this is to first determine the leading scaling contrib
utions to the conductance in perturbation theory, to formulate 
a renormalization group (RG) scheme for the conductances 
as functions of scaling variables like the length of the wire, 

The dynamical critical exponent z and the correlation length 
exponent ν  follow as z = 4, ( ) and ν = , ( ) in the case of 
three-dimensional (two-dimensional) AFM spin fluctuations 
in a three-dimensional metal. These exponents are in excel-
lent agreement with available experimental data on YbRh2Si2 
(d  =  3) and CeCu6−xAux (d  =  2) [120–123].

The scale dependence of the QP relaxation rate in the criti-
cal regime is found to be linear in both cases (d  =  3, 2), as 
anticipated



GK

1 − G
=

GK
0

1 − G0

(
T
T0

)2(1−K)

,� (47)

where K = Kρ is the Luttinger parameter defined above, and 
G0 = G(T0), where T0 is a sufficiently high reference temper
ature at which the effect of interactions is weak. It follows 
that for repulsive interaction, K  <  1, the conductance van-
ishes in the limit T → 0 as G ∝ T2(1−K)/K → 0, whereas for
attractive interaction, the conductance scales to its maximal 
value 1 − G ∝ T2(K−1) → 0. The above result is in agreement
with results obtained by several different alternative methods 
[140–142]

6.2.  Quasiparticles in the quantum Hall effect

The signature of the quantum Hall effect (QHE) is 
the quantization of the Hall conductance σxy of a two-
dimensional electron system in a strong magnetic field B 
perpendicular to the x  −  y plane, such that σxy(B) forms 
well-defined plateaus in the vicinity of certain magnetic 

field values, σxy = νGQ in units of the quantum of conduc-

tance GQ = e2

2π� , while the longitudinal conductance van-
ishes exponentially, σxx ∝ exp(−∆H/T) → 0, in the limit
T → 0 [143, 144] (for a review of experiment and theory
see [69, 129, 130]). The magnetic field leads to a quantiza-
tion of the single particle energy into discrete Landau levels 
εk → ωc(n + 1

2 ), n = 0, 1, 2, . . . with the cyclotron frequency
ωc =

eB
mc. The degeneracy NΦ = L2B/Φ0 = (L/�)2/2π of the 

Landau levels is proportional to the sample area L2, and is 
equal to the number of magnetic flux quanta Φ0 = 2πc

e  thread-
ing the sample (here, � =

√
c/eB is the magnetic length). In 

the expression for the conductance, ν = N/NΦ is the filling 
factor of the Landau levels (N is the electron number). At high 
magnetic fields, the Landau level separation is large, such that 
at low temperatures thermal excitation of electrons into higher 
Landau levels is completely negligible.

6.2.1.  Chiral quasiparticles of the integer quantum Hall 
effect.  The integer quantum Hall effect (IQHE) is char-
acterized by Hall conductance plateaus at integer fillings, 
ν = 1, 2, . . . [143]. The effect may be understood by realizing
that ever-present disorder potentials localize all electrons in

the bulk of a Hall sample, whereas conducting states exist 
along the edges (in two dimensions, arbitrarily weak disorder 
is found to localize all states [145]). These states are strictly 
‘chiral’—i.e. have a sense of direction in accordance with the
cyclotron orbits, such that scattering processes (by impurities, 
phonons) may not change the sense of direction of an elec-
tron, leading to dissipationless transport. The quantization 
of σxy is dictated by gauge symmetry [68, 146]. Interaction 
effects are thought to be negligible in this case, because those 
require Landau level mixing, which is highly suppressed by 
the large gap ωc. This is immediately seen by recognizing 
that the wave function of the completely filled first Landau 
level is given by

ψν=1(z1, z2, ...zN) =
∏
j<k

(zj − zk) exp[−
1
2

∑
l

|zl|2],� (48)

where zj = (xj + iyj)/� is a complex-valued dimensionless 
coordinate—(xj, yj) denoting the cartesian coordinates of the
jth particle and � the magnetic length defined above. The expo-
nential factor expresses the confinement of the particles by 
the magnetic field (particles are trapped in cyclotron orbits). 
Any function of the type of equation (48) featuring a polyno-
mial prefactor (analytic function) is inside the Hilbert space 
spanned by the lowest Landau level states. The wave function 
ψν=1 is unique, i.e. it is not changed by interaction effects, 
as long as mixing of higher Landau levels is negligible. The 
state described by ψν=1 is incompressible, as addition of an 
electron requires finite energy ωc.

One may consider the chiral fermions of the IQHE a 
new class of QPs protected by topological constraints (here 
imposed by the external magnetic field). As pointed out by 
Thouless and co-workers [147], the quantization of the Hall 
conductance is closely related to the existence of nontrivial 
topological invariants of the Bloch wave functions of elec-
trons on a lattice in a strong magnetic field. Chiral QPs are not 
‘fractional’ in the narrow sense of the word, and might have
been listed in the later section on topological matter as well.

It had been suggested early on that a ‘Quantum Anomalous 
Hall Effect’ might occur in certain lattices, even in the
absence of an external magnetic field, if time reversal invari-
ance is broken by a magnetic flux distribution of vanishing 
average or a magnetically ordered subsystem [148, 149]. An 
experimental realization of this prediction has been found 
in thin films of chromium-doped (Bi,Sb)2 Te3 [150]. More 
recently, it has been predicted and experimentally verified that 
the QHE may also exist without an applied magnetic field or 
magnetically ordered structures, if the magnetic field is effec-
tively provided by the spin–orbit interaction, and if in addition
the band structure of the system is inverted, i.e. the valence 
band is on top of the conduction band in the insulating bulk  
[73, 74]. In this case, chiral fermions in edge states may allow 
for counterpropagating dissipationless currents of spin up 
and down electrons (quantum spin Hall effect). Such systems 
are termed ‘topological insulators’: they feature topological
conducting states (e.g. chiral states) on the surface of a bulk 
insulator. The quantum spin Hall effect has been observed in 
HgTe/CdTe quantum well structures [151]. Below, we will 

the temperature, or the bias voltage, to calculate the relevant 
RG-β-functions, and to find the fixed points of the RG-flow 
and the full solutions of the RG-equations near the stable 
fixed points. For a two-lead junction, and in lowest order in 
the interaction, this program has been first carried out in [135, 
136]. It was later found that even at strong coupling, the sum-
mation of an infinite class of diagrams of the ladder (or RPA) 
type makes it possible to obtain results in complete agreement 
with those obtained from bosonization, conformal field the-
ory, Bethe-ansatz, where available [137–139]. For example, 
the conductance G of a two-lead junction of spinless TLL-
wires as a function of temper ature T is obtained in form of the 
implicit equation [137]
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ψν=1/3(z1, z2, ...zN) =
∏
j<k

(zj − zk)
3 exp[−1
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∑
l

|zl|2].� (49)

Here, the polynomial prefactor expresses the mutual repul-
sion of particles exerted by the Coulomb repulsion, by van-
ishing rapidly whenever two particles approach each other. 
The trial wave function may be shown to give an excellent 
estimate of the ground state energy. The corresponding state 
is incompressible.

As proposed by Laughlin, QP (quasihole) excitations may 
be created by the following thought experiment: an infinitely 
thin solenoid holding a flux quantum Φ0 is adiabatically passed 
through the electron fluid at any position z0. The effect of this 
operation on the ground state wave function is approximately

ψq
ν=1/3(z1, z2, ...zN) = Q({zl}; z0)

∏
j<k

(zj − zk)
3 exp[−1

2

∑
l

|zl|2]
(50)

Q({zl}; z0) =
∏

l

(zl − z0) , quasiholes� (51)

Q({zl}; z0) =
∏

l

(
∂

∂zl
− z0) , QPs. (52)

The application of the flux thread generates a local elec-
tric charge e∗ associated with the QP/hole generated by the 
screening response of the system. A corresponding counter-
charge is formed at the edges of the sample, in order to main-
tain charge neutrality, or else QPs and -holes are created in 
pairs. An intuitive way to identify the value of e∗ is obtained 
by observing that at ν = 1

3 the average flux per electron is 
L2B/N = 3Φ0. An excitation carrying one unit of flux should 
therefore be expected to have fractional charge e∗ = ±e/3.
This is exactly what is found in a more detailed analysis. The 
excitation energy is gapped, and is of order (e∗)2/�. These QPs 
are ‘topologically protected’, since the magnetic flux carried
by a QP is quantized, similar to the vorticity of a vortex excita-
tion in a type-II superconductor. The fractional charges near 
ν = 1

3 , 1
5 , . . . have been detected by measuring the shot noise

of the back current of the edge channels of a quantum Hall
bar setup [154, 155], and by analyzing the excitation spectra

of quantum dots observed in scanning tunneling experiments 
[156, 157].

It has been conjectured [158, 159] that the fractionally 

charged QP excitations of the Laughlin states at ν = 1
2p+1 , 

p = 1, 2, . . . and similar are anyons with (Abelian) fractional 
statistical angle θ = πν . This means that the wave func-
tion acquires a phase factor of eiθ when identical QPs are 
exchanged in a counterclockwise sense.

In the first generation of experiments, Hall plateaus were 

identified not only at filling factors ν = 1
2p+1, but more gen-

erally at ν = p
qp+1, p = ±1,±2, . . . ; q = 2, 4, . . .. These

fractions may be derived in the framework of the composite 
fermion picture reviewed below. Later, additional plateaus 
were found for the lowest Landau level [152], and for higher 
fillings [153]. These may be interpreted in the framework of 
the hierarchy picture: changing the filling fraction (by chang-
ing the magnetic field or electron density) away from the 
center of a quantum Hall plateau will lead to the creation of 
QPs. These are interacting, and may again condense into a 
Laughlin-like state [160, 161]. By this mechanism, one can 
generate Hall plateaus at any fractional filling ν = p/q with 
an odd integer denominator q [130]. For increasing q one 
expects these states to be more and more fragile, since the 
charge of the QP in a state at ν = p/q is ±e/q, and hence the
Coulomb gap is expected to be a decreasing function of q. The 
finite width of the Hall plateaus arises because if only a few 
QPs are present (at fillings close to the center of a Hall pla-
teau), they will be pinned to impurities, and will not condense 
into a new hierarchy state.

6.2.3.  Composite fermions.  The composite fermion picture 
of the FQHE invokes an adiabatic mapping of the fraction-
ally filled Landau level system to an integer filled Landau 
level system [162, 163]. One assumes that each electron 
binds a vortex containing an even number 2p of flux quanta 
to form a ‘composite fermion’ (CF). We note that moving
quantum objects attached to flux lines containing an even 
number of flux quanta do not generate an Aharonov–Bohm
quantum phase. Suppose the CFs move in a magnetic field 
B∗, such that the filling factor ν∗ = NΦ0/L2B∗ = q is inte-
ger. If we assume now that the attached flux is smoothed 
in space, the magnetic field seen by the electrons would be 
B = B∗ + 2pNΦ0/L2 = (1 + 2pq)B∗, corresponding to a fill-
ing factor ν = q/(1 + 2pq). Here q = ±1,±2, . . .(allowing
positive or negative B∗), and p = 1, 2, . . . (p  =  0 corresponds 
to the integer QHE fillings). We recall that the fractional fill-
ings ν  found in this way are in excellent agreement with the 
experimentally identified Hall plateaus.

The CF picture has been confirmed within a variational wave 
function approach [163]. The CF energies, obtained as expecta-
tion values of the Coulomb interaction with the CF wave func-
tion agree with energy values obtained by exact diagonalization 
of the electron Hamiltonian projected on to the lowest Landau 
level to within 0.1%. The calculated energy gaps for various 
FQH states are in good agreement with experimental data.

A microscopic model of the CF picture exists in the form 
of a Chern–Simons (CS) gauge field theory [164], for which
the flux quanta are assumed to be idealized flux lines attached 

have a somewhat closer look at these and other examples of 
topological matter.

6.2.2. Laughlin quasiparticles of the fractional quantum Hall 
effect. Even more interesting is the fractional QHE, featuring 
Hall plateaus at rational filling factors ν  =  ,  , . . . [144]. At 
the high magnetic fields necessary to achieve ν <1, the Lan-
dau level spacing is the largest energy scale, such that Landau 
level mixing by the Coulomb interaction and the spin Zeeman 
splitting may be neglected: electrons occupy states in the low-
est Landau level, and are completely spin polarized. In the 
partially filled lowest Landau level, the kinetic energy is com-
pletely quenched, and interaction effects govern the behavior 
of the system. As shown by Laughlin [67], the ground state of 
the system is particularly stable at special filling factors—in 
other words, all excitations then have a large energy gap. For 
instance, at ν = , Laughlin proposed a trial wave function



Of particular interest is the case of a half-filled lowest 
Landau level, ν = 1

2, for which B∗ = 0 (ν∗ → ∞, q → ∞,
p  =  1), i.e. the composite fermions may be assumed to form a 
Fermi liquid, barring additional ordering phenomena such as 
a superconducting phase or a Wigner crystal. According to the 
Chern–Simons theory, the CFs interact by way of a fictitious
gauge field, which is necessarily unscreened, and therefore 
long-ranged. The single particle properties of CFs are found 
to be highly singular, while the two-particle properties largely 
follow the Fermi liquid paradigm [164]. The singularities—
e.g. in the density of states or the specific heat—follow from
the singular nature of the current–current interaction—equa-
tion (18)—induced by the transverse gauge field components
[164]. Singular behavior shows up in transport properties (via 
the phase relaxation rate), once the localizing effect of dis
order in these systems is taken into account [165, 166].

The transport properties of quantum Hall systems near 
half-filling of the lowest Landau level in the temperature 
range from about 1 K down to the lowest accessible temper
atures are dominated by the scattering of composite fermions 
at impurities [164, 167, 168]. However, the interaction of 
CFs with impurities is unusual in two respects. First, in high 
mobility quantum Hall samples, the donor atoms are doped 
into a remote δ-layer, such that the random Coulomb poten-
tial created by the charged donor ions—which are statistically
distributed within the δ-layer—is a long-range correlated,
smoothly varying potential (kFd ∼ 10 − 20, where d is the
spacer distance). Second, the static charge density variation 
caused by the random potential is associated with a (fictitious) 
static random magnetic field (RMF), due to the inhomogene-
ous flux tube distribution following from the inhomogeneity 
in particle density. The effect of the RMF turns out to domi-
nate the usual potential scattering. The transport properties 
of composite fermions in the RMF may be described in the 
classical approximation. This is justified by the large value 
of the parameter kFd , meaning that the extension of quantum 
mechanical wavepackets ∼ k−1

F  is much less than the scale 
of variation of the magnetic field or vector potential, d. The 
interaction of the CFs with the RMF is peculiar in that it is 
characterized by strong forward scattering off (unscreened) 
transverse gauge fluctuations (see scattering of electrons by 
the transverse electromagnetic field), leading to a divergence 
in the integrated cross section. This singularity is removed in 
the so-called transport cross section  by an additional factor 
(1 − cosφ), which weighs a scattering process with respect to
the corresponding momentum transfer q = kF

√
2(1 − cosφ)

(here, φ is the scattering angle). Consequently, the Born 
approximation result for the conductivity is finite. Depending 
on the typical magnitude B0 of the RMF, one may distinguish 
two transport regimes: (i) diffusive transport if the cyclotron 
radius R0 � d; (ii) percolative transport for R0 � d, when
most trajectories are localized around hills and valleys of 

the RMF, and only ‘snake states’ along the contours of zero
field contribute to transport. In finite effective magnetic field, 
one finds various regimes of magnetotransport characterized 
by memory effects, classical localization in strong effective 
magnetic field, and strong damping of quantum oscillations 
and resonances. The composite fermion picture of the com-
pressible state of quantum Hall systems near half-filling of the 
lowest Landau level has been extremely successful in account-
ing for the observed transport properties. The agreement of 
classical or quasi-classical transport theory with experiment is 
in many cases quantitative [167, 168].

The successes of the CF theory as represented in the 
Chern–Simons theory notwithstanding, there are fundamen-
tal problems with the CS theory, in that it does not preserve 
the particle–hole symmetry of the ν = 1/2 QHE problem
[169]. A recent proposal of an effective field theory of CFs as 
charge-neutral massless particle–hole symmetric Dirac fermi-
ons carrying a Berry phase of π, appears to solve the problem, 
while preserving the established good properties of CF theory 
[170–173].

Even more exotic states have been predicted to exist at fill-
ings such as ν = 5/2. The QP excitations in these Moore–Read
states are thought to obey non-Abelian fractional statistics and 
have been termed ‘nonabelians’ [174]. Within the CF theory,
the Moore–Read state may be obtained as a spinless p-wave
pairing state [175]. Open issues concerning the particle–hole
symmetry appear to have been resolved [170].

The FQHE states cannot be classified in the framework 
of the conventional theory of spontaneous symmetry break-
ing. Different FQHE states all have the same symmetry, and 
represent new states of matter that contain a completely new 
kind of order: topological order. The existence of FQH liq-
uids indicates that there is a whole new universe beyond the 
paradigm of symmetry breaking, waiting to be explored. The 
new type of orders represented by FQHE states extend our 
understanding of quantum phases of condensed matter in new 
directions. The new phenomena of chiral edge states, frac-
tional charge, fractional statistics, and others encountered in 
the QHE exemplify the powerful concept of emergence in 
many-body systems.

7. QPs in Dirac materials

A wide class of conducting materials, like graphene [176–178],
topological insulators [74, 180], high temperature d-wave 
superconductors [181], or 3He-A, share a fundamental prop-
erty: their low-energy fermionic excitations behave as mass-
less Dirac particles rather than non-relativistic fermions. This 
emergent phenomenon in condensed matter systems defines 
the unifying framework for a class of materials [179] called 
‘Dirac materials’ [182]. These seemingly diverse materials
exhibit universal properties that are a direct consequence of 
the Dirac spectrum of QPs. For example, the fermionic spe-
cific heat is expected to show similar power law temperature 
dependence in these systems, as a consequence of the pres-
ence of the nodes in the excitation spectrum. Other universal 
features include transport properties like the dc conductivity, 

to each electron. The CS-theory provides a good framework 
for calculating transport properties, but fails to explain both 
the size of the energy gap ∆∗ protecting the QH states at inte-
ger fillings ν∗ and the lack of dependence of the CF energies 
on the bare electron masses.



H =
∑

k

2∑
α,β=1

c†k,αHα,β(k)ck,β , (53)

where α,β  are pseudospin labels referring to the two sublat-
tices A, B. The Hamiltonian matrix Hα,β is off-diagonal, as 
nearest neighbor hopping on the honeycomb lattice necessar-
ily involves a change of sublattice:

Hαβ(k) =
(

0 εk

ε∗k 0

)
� (54)

with εk = −t(eiτ 1k + eiτ 2k + eiτ 3k) and τ j, j  =  1, 2, 3 are
the vectors connecting to the nearest neighbor lattice sites on 
the honeycomb lattice. The two bands of energy Ek = ±|εk|
touch at the corners of the hexagonal Brillouin zone, EK = 0. 
Of the six corners, two are inequivalent, and may be chosen 
as K and K′ = −K. In the neighborhood of K, K′, the disper-
sion is linear:

Hαβ(−K + p) = vFσαβ·p =H∗
αβ(K + p),� (55)

where σαβ is the vector of Pauli matrices σx,σy in pseudospin 
space. This is identical in form to the Hamiltonian of mass-
less Dirac fermions in two dimensions, with the speed of light 
replaced by the Fermi velocity vF. One may show that a mass 
term ∝ mv2

Fσ
z in the above Hamiltonian is absent as long as

inversion symmetry (parity) and time reversal symmetry are 
preserved.

Very generally, any two-dimensional crystal with trigonal 
symmetry may host Dirac fermion excitations in the corners, 
K and K′, of their hexagonal Brillouin zone. This may be used
to design artificial Dirac materials. Successful experimental 
realizations have been reported for lithographically patterned 
two-dimensional electron gases in semiconductors, for metal 
surfaces with hexagonal assemblies of CO molecules, and for 
ultracold atoms trapped in honeycomb optical lattices (for a 
review see [184]).

The effect of the Coulomb interaction between the Dirac 
electrons in general may be taken into account within a Fermi 
liquid framework [185]. A special situation arises when the 
chemical potential is tuned to the Dirac point, µ = 0. Since the 
density of states vanishes linearly in that case, N(E) ∝ |E|/v2

F,
there are no charges available to screen the Coulomb inter-
action V, meaning that the static interaction is singular in 
the limit q → 0, V(q) = e2/ε0q. Here, ε0 is the background
dielectric constant. The polarization bubble also shows a sin-
gularity, Π(q,ω + i0) = −q2/4

√
v2

Fq2 − (ω + i0)2 , imply-
ing threshold behavior of the real and imaginary parts at 
ω = ±vFq. Evaluating the self-energy in one-loop approx
imation using the dynamically screened Coulomb inter-
action Vsc(q,ω) = V(q)/[1 − V(q)Π(q,ω)] (similar to 
equation (36)), one finds [185]

ImΣk=0(ω + i0) ∝ α2|ω|� (56)

Zk=0 ∝ 1/[α2 ln(Λ/|ω|)]� (57)

Γk=0 ∝ |ω|/ ln(Λ/|ω|),� (58)

where α = e2/ε0vF is a dimensionless coupling constant. This 
reveals that the system looks like a marginal Fermi liquid [45], 
caused by the singular nature of the Coulomb interaction. In 
the context of the discussion above of quantum critical behav-
ior in metallic systems, we note that the velocity should get 
renormalized, too, as vF → v∗F = ZvF. Additional renormal-
ization of vF arises through the momentum dependence of the 
self energy. Since, however, the coupling constant is inversely 
proportional to the velocity, it will actually grow when ω → 0. 
Inserting the behavior α ∝ Z−1 into equation (57), one finds a 
self-consistent equation for Z with the solution Z ∝ ln(Λ/|ω|),
indicating a growing Z in the limit ω → 0, and hence a return 
to Fermi liquid behavior. A careful analysis of the renormal-
ization group flows of Z and vF leads to the same conclusion: 
that in the very low energy regime the system becomes a 
Fermi liquid again (Z  >  0), although the QP relaxation rate 
keeps varying linearly with ω  [185]. In fact, undoped gra-
phene (µ = 0) is at a quantum critical point, separating two 
Fermi liquid phases of electrons and holes. The quantum criti-
cal regime has been dubbed a ‘Dirac liquid’ [186]. At finite
temperature and at low excitation energy ω � T  the scatter-
ing rate τ−1 ≈ 2ImΣ ∝ α2T  is a linear function of temper
ature. Nonetheless, contrary to what one might expect, the 
dc conductivity tends to a nearly temperature independent 
limit. This behavior arises as a result of cancellation of the 
T-dependence of τ−1 and the compressibility κ ∝ T/v2

F  when
the conductivity is expressed as σ = e2κD = (c/α2)GQ,
where D = (v2

F/2)τ  is the diffusion coefficient. Note that the
factors v2

F cancel, but the prefactor 1/α2 gets renormalized,
depending logarithmically on T [187].

7.2.  Weyl semimetals

As demonstrated above, Dirac physics emerges at points in 
k-space defined by the crossing of bands. Band crossings
are also known to exist in three dimensions [188]. In the

and the optical conductivity [183]. For example, Dirac QPs 
are capable of tunneling through arbitrarily high potential bar-
riers (Klein tunneling), leading e.g. to a universal finite con-
ductivity of graphene tuned to the Dirac point by varying the 
gate voltage.

7.1. Graphene

In graphene, a single layer of carbon atoms tightly packed 
in a honeycomb crystal lattice, the charge carriers behave 
as massless relativistic particles (Dirac fermions), and move 
with little scattering under ambient conditions. This is a con-
sequence of its peculiar electronic band structure, featuring 
two Dirac cones in the Brillouin zone. Each unit cell of the 
hexagonal Bravais lattice contains two carbon atoms, which 
give rise to two sublattices A and B. Obviously, atoms in sub-
lattice A are surrounded by three nearest neighbors in sub-
lattice B, and vice versa. In the neighborhood of the Fermi 
level, the relevant electronic states are the out-of-plane carbon 
pz- orbitals. These form π-bonds with neighboring atoms, and 
the resulting π-bands can be modeled by a nearest-neighbor 
tight-binding Hamiltonian:



connection A(k) =i n0
n=1〈unk|∇k|unk〉 and the Berry curva-

ture F(k) = ∇k × A(k) [191, 192], involving a summation
over occupied bands. The invariant I is defined by integrals in 
momentum space over a volume (dτ ) and having surface (dl) 
covering half the two-dimensional Brillouin zone (defined so 
that k and −k are never both included) [193]:

I =
1

2π

[∮
A(k) · dl −

∫
F(k)dτ

]
mod2.� (59)

This definition may be extended to three-dimensional systems 
by introducing six invariants by specifying six different inte-
gration volumes, of which four are independent [194, 195].

The change of the invariant across an interface separating 
two materials is intimately related to the occurrence of mass-
less surface states closing the energy gap at the interface [74]. 
The meaning of topologically distinct insulators and emergent 
gapless edge states can be demonstrated in the model of a two-
component (two bands labeled by a pseudospin index) Dirac 
Hamiltonian in two spatial dimensions of spinless particles 
with mass m,

H(k) = vFσ · k + mv2
Fσ

z,� (60)

leading to energy eigenvalues Ek = ±
√

v2
Fk2 + (mv2

F)
2 (here

k = (kx, ky) and σ is the vector of pseudospin Pauli matrices). 
The important observation is now that systems with posi-
tive or with negative mass m are topologically inequivalent. 
A smooth deformation of H(k) from the m  >  0 case into the 
m  <  0 case is not possible without closing the gap (m → 0).
Changing positive m into negative m is equivalent to invert-
ing the band structure by exchanging valence and conduc-
tion bands. Assuming now that the mass m = m(y) varies as a 
function of position across an interface located at y  =  0, from 
positive at y  >  0 to negative at y  <  0, one finds that at given 
energy inside the gap there exists exactly one solution of the 
Dirac equation extended along x but localized in y, of the form

Ψqx(x, y) = eiqxx exp[−
∫ y

0
dy′m(y′)vF]

(
1
1

)
,� (61)

with energy E(qx) = vFqx. This band of states has a positive 
group velocity dE(qx)/dqx = vF and represents a right-mov-
ing chiral edge mode. Note that the solution, equation (61), of 
the Dirac equation— equation (60)—in the case of constant
mass (a normal insulator) would diverge exponentially for 
y → −∞, and is therefore not acceptable. Rather, for a time-
reversal invariant normal insulator, there exist pairs of surface 
states such that at any energy at least two states with group 
velocities of opposite sign are available.

Generically, a topological insulator may be modeled by 
two copies of the Hamiltonian (60) (for example one each for 
spin up and down) describing pairs of counter-propagating 
time-reversed states:

HTI(k) =
(

H(k) 0
0 H∗(−k)

)
,� (62)

After a unitary transformation, σyH∗(−k)σy = vFσ · k−mv2
Fσ

z,
the lower right block is equal to H(k) with a sign change of 
the mass term.

While the quantum spin Hall effect is only realized in two 
dimensions, the concept of TI can be extended to three-dimen-
sional materials. Using first-principles calculations within 
density functional theory, the feasibility of converting ternary 
half-Heusler compounds into a new class of three-dimensional 
topological insulators (3DTI) has been explored [196]. As a 

neighborhood of such crossing points, the bands are neces-
sarily linear in momentum, which defines a three-dimensional 
Dirac-like nodal point. Provided the chemical potential may 
be tuned to lie at the crossing point, and if there is no other 
band nearby, the system is a three-dimensional semimetal with 
a linear Dirac spectrum, which may be classified as a Dirac 
mat erial. If there are just two single bands crossing, the situ-
ation resembles that of the Weyl equation of particle physics. 
The Weyl equation is the massless limit of the Dirac equation, 
in which case the four components of the Dirac spinor sepa-
rate into two independent two-component solutions. Materials 
with no degeneracy in the crossing bands, creating a so-called 
Weyl point, are therefore often referred to as Weyl semimetals 
[189]. Apart from solid state systems, superfluid 3He-A may 
also be considered a Weyl system [190].

8. Topological matter

We have already encountered examples of topological matter 
in the above, in the form of the quantum Hall systems and 
in the vortex state of superfluids or superconductors. While 
these examples have been known for a few decades, more new 
classes of topological materials have been identified recently.

8.1. Topological insulators

One of the first examples of topological insulators (TI) are the 
quantum spin Hall effect (QSHE) systems described above, 
strongly spin–orbit coupled time-reversal invariant (TRI) 
materials featuring inverted band structure in the bulk, lead-
ing to conducting states of nontrivial topology on the surface 
[73]. As is the case of normal insulators, valence and con-
duction bands of a TI are separated by an energy gap in the 
entire Brillouin zone. The conductance and valence bands are, 
however, inverted with respect to their normal ordering as a 
function of energy. At the surface of a TI, or at any boundary 
to a normal insulator, one finds massless Dirac surface states 
of chiral nature, unless time-reversal symmetry is broken. The 
effect of interactions in causing decay of these excitations 
is limited by the energy gap of the bulk insulator, requiring 
thermal activation processes with exponentially suppressed 
probability.

Two insulators are defined to be topologically equivalent, 
if their Hamiltonians can be smoothly deformed into each 
other without closing the band gap. Insulators can be clas-
sified b y a  Z2 t opological i nvariant I  =  0,1 [73]. I nsulators 
which are non-equivalent to the vacuum (I  =  1) are termed 
‘topological insulators’, while all others are called ‘nor-
mal insulators’ (I  =  0). In two dimensions, the topological 
character of the Bloch states unk(r) for band n and crystal 
momentum k ∑ of a lattice Hamiltonian is encoded in the Berry



γ1 = c† + c,

γ2 = i(c† − c).
(63)

It follows that γ†
1 = γ1, γ†

2 = γ2. In some sense, γ1,2 repre-
sent the ‘real and imaginary parts’ of the electron operator,
c = 1

2 (γ1 + iγ2). The operators γ1,2 indeed obey fermionic 

anticommutation relations, [γα1 , γα2 ] = 2δα1,α2. Majorana fer-
mions are linear superpositions of particles and antiparticles, 
and as such may only appear in systems where particle num-
ber is not conserved. One such system is (as described above) 
that of Bogoliubov QPs in a superconductor. As may be seen 
from equation (27), BQPs are linear combinations of particles 
and holes of momentum k and −k, and are therefore not equal
to their antiparticles—in other words, they are not Majorana
fermions. One may, however, define four component spinors 
in particle–hole and spin space out of two-component BQP
operators, essentially doubling the degrees of freedom, which 
then have the Majorana fermion characteristics [202]. To be 
sure, this does not mean that BQPs are electrically neutral 
particles.

Particles and antiparticles in the context of condensed mat-
ter are QPs of positive or negative excitation energy. The only 
way to form Majorana type excitations is, therefore, out of zero 
energy states, located in the middle of the gap. Such modes 
may be found in the core of vortices, and at domain walls 
or boundaries. In fact, in an early paper on vortex motion in 
superfluid 3He, it was found that the most symmetric A-phase 
vortex has a QP energy spectrum En = −ω0n, n = 0,±1, . . .
[203], in contrast to the case of s-wave superconductors (and 
also 3He-B), where En = −ω0(n + 1/2), n = 0,±1, . . .
[204]. The momentum dependence of the order parameter 
may be characterized by a topological invariant N, which for 
odd integer values guarantees the existence of a zero energy 
mode [205]. Generally speaking, the existence of zero modes 
requires that the zero point energy ω0/2 is compensated by an 
energy shift induced by a Berry phase [206].

Paired fermion states with broken parity and time-rever-
sal symmetry and the possible appearance of Majorana edge 
states, called Majorana zero modes (MZM), have been pro-
posed by several authors [175, 207–210]. A single unpaired
MZM can exist only in an infinite system. In systems of finite 
size, Majorana modes always appear in pairs, reflecting the 
fact that such systems always contain an integral number of 
electrons. An interesting situation arises when the partners of 
a pair are spatially separated sufficiently far that their wave 
functions have little overlap. Local probes may then detect a 
single MZM. In general, localized BQP states with energy  +E 
inside the gap necessarily have a partner at  −E. Such finite-
energy pairs are not topologically protected, because they can 
simply be pushed out of the energy gap by perturbing fields. 
However, a single unpaired bound state at E  =  0 is protected, 
because it cannot move away from E  =  0.

A closer look at the exchange statistics of MZMs in 
two dimensions reveals that they are not simple fermions. 
Instead, the superconducting state in the background gives 
rise to additional phase changes. The zero modes are more 
correctly described as non-Abelian anyons [174, 175], [208–
210]. The associated higher degree of quantum entanglement 
makes MZMs a promising building block of future quantum 
computers.

The simplest model system that shows unpaired MZMs is 
the Kitaev chain [207]. It describes a one-dimensional system 
of spinless fermions, which may be realized in the presence 
of spin–orbit coupling (SOC) and a Zeeman field. The Kitaev

prototype system, the electronic structure of LaPtBi has been 
demonstrated to exhibit a distinct band-inversion feature. The 
3DTI phase may be realized in LaPtBi by applying uniaxial 
strain along the [0  0 1] direction, which opens a band gap while 
preserving the inverted band order. A definitive proof of the 
strained LaPtBi as a 3DTI is provided by directly calculating 
the topological Z2 invariants in such systems without inver-
sion symmetry.

There exist, in particular, so-called strong three-dimen-
sional topological insulators, carrying an odd number of two-
dimensional chiral Dirac fermions on each surface [193, 195]. 
The occurrence of surface states in strong three-dimensional 
TIs can be understood analogously to the two-dimensional 
case. A complete symmetry classification of topological 
quant um matter   can  be found in [197].

8.2. Topological crystalline insulator

As sketched above, for a TI, a strong spin–orbit interaction is 
necessary to generate an inverted band structure. The role of 
spin–orbit coupling may be substituted by point-group sym-
metries of the crystal [198]. Each spin component may then 
be considered separately, as a spinless fermion model. In the 
case of tetragonal crystal symmetry the combined symmetry 
TU, where T denotes time reversal (which in this case of spin-
less fermions is complex conjugation), and U denotes the rota-
tion by π/2 about the c-axis, is found to protect topological 
surface states in this topological crystalline insulator (TCI) 
residing in the high symmetry surfaces perpendicular to the 
c-axis. In contrast to the usual TI surface states, these states
have quadratic dispersion [198].

A different point group symmetry, mirror symmetry, has 
been predicted to give rise to a TCI in the narrow-gap semi-
conductor Pb1−xSnx(Se,Te) system [199]. One finds metallic 
surface states with an even number of Dirac cones on high-
symmetry crystal surfaces, such as {0  0 1}, {1  1 0} and {1  1 1}.
Experimental studies of Pb1−xSnxSe have indeed shown that it 
is a TCI for x  =  0.23 [200]. Temperature-dependent angle-
resolved photoelectron spectroscopy demonstrates that the 
material undergoes a temperature-driven topological phase 
transition from a trivial insulator to a TCI.

8.3. Majorana fermions in topological superconductors

Majorana fermions were introduced in the early days of 
quant um field t heory a s constrained s olutions o f the D irac 
equation [201]. These particles are identical to their antipar-
ticles and are therefore electrically neutral. In the context of 
condensed matter physics, one may define creation operators 
of Majorana fermion character γ1,2 out of the usual electron 
operators c†, c as



H =
i
4

∑
k,α,β

Bαβ(k)γ
†
k,αγk,β (64)

(comprising all superconducting mean field models), where 
γk,β are the lattice Fourier components of the Majorana fer-
mion operators γj,β , β = 1, 2 at each lattice site j, and k is
crystal momentum (−π � k � π), one may define a topologi-
cal invariant [207]

M = sgn {Pf [B(0)]Pf [B(π)]} .� (65)

Here, Pf [B(k)] is the Pfaffian of the antisymmetric matrix 
Bαβ. The labels α,β  may include additional quantum num-
bers, such as spin or orbital quantum numbers. In case 
M  =  −1, and the spectrum is gapped, the system is a topo-
logical superconductor. While this condition may be easily 
analyzed for any concrete system, there is an even simpler 
definition available for weak superconductors (gap parameter 
∆ smaller than all relevant energy scales in the problem, e.g.
the band width). In that case, the number ν  of Fermi points
kF in the interval [0,π] is found to determine the sign of the
invariant, M = (−1)ν.

Various candidate systems of topological superconductors 
have been proposed theoretically and studied experimentally 
as reviewed in [202, 206, 211, 212]. A principle obsta-
cle standing in the way of physical realizations of Kitaev’s
proposal is the electron spin. In usual realizations of a one-
dimensional system, electron spin causes all states to be 
doubly degenerate, thus leading to an even number of Fermi 
points. Promising candidate systems are semiconductor nano
wires, such as InSb, proximity coupled to superconductors. In 
these semiconductors the spin Kramers degeneracy is lifted 
by the strong spin–orbit interaction. A magnetic field applied
perpendicular to the wire induces a gap at the Γ-point, leav-
ing a single Fermi point, required to get M  =  −1 in the gap 
region. There are experimental indications that MZMs have 
been observed in such systems [202, 213]

9. Summary

Since its first appearance in the 1940s, the idea of QPs in 
quantum matter has found ubiquitous applications. The notion 
of QPs allows one to apply concepts of quasiclassical physics to 
quantum systems, in suitably adapted form. In particular, trans-
port properties—or, more generally, dynamical properties—
may be expressed in a transparent form within the framework of 
the kinetic theory of QPs. From the point of view of microscopic 

theory, the most astounding fact is the existence of well-defined 
QP excitations even in strongly interacting systems, with prop-
erties very different from those of the bare particles. The energy 
spectrum may be completely changed, as given by an effec-
tive mass very different from the bare mass (Landau QPs in 
heavy fermion systems), a dispersion changed from quadratic 
to linear (phonons in superfluid Bose systems), or an energy 
gap (Bogoliubov QPs in superconductors or superfluids, or QPs 
in metallic antiferromagnets). The QPs are not energy eigen-
states, but interact in a way described by a renormalized scatter-
ing amplitude. For the QP states to be well-defined, the effect 
of interaction should be weak in the sense that their decay rate 
should be less than their excitation energy. This may be ensured 
by a number of different reasons, such as (i) limited phase space 
for interaction processes, (ii) low density of excitations, (iii) 
weak interaction or (iv) topological constraints.

The overriding simplifying feature in weakly excited (but pos-
sibly strongly interacting) systems, where QPs are well defined, 
is the low number of excitations, allowing a controlled expan-
sion. The time- and space-dependent changes of the QP number 
induced by external fields may then be obtained by solution of a 
Boltzmann-type kinetic equation amended by mean field terms 
(the Landau–Boltzmann equation  for Fermi liquids or similar
equations for phonons and other bosons). The collision term in 
these equations, governing the transport properties, may then be 
restricted to two-QP collisions. In the absence of QP conserva-
tion, decay and coalesence processes may dominate.

An important question is how physical properties may be 
calculated in terms of QP properties. In the case of the Fermi 
liquid, one may show that the response of conserved quanti-
ties may be entirely expressed in terms of QP quantities. This 
is, however, not the rule: already the response of the currents 
of the conserved quantities, the particle and spin current den-
sities, is completely different from what is obtained by a naive 
application of the QP picture as embodied in the Pomeranchuk 
stability analysis. It is then necessary to amend the QP theory 
with non-QP correction terms. The way out of this problem 
is to define a momentum-integrated QP distribution function, 
which may be shown to obey the Landau–Boltzmann equa-
tion, including the above-mentioned non-QP correction terms.

Even if the stability of QP excitations in weakly excited 
systems is guaranteed by the small number of QPs, one 
may ask if the small factor of density (T/εF  in the case of a 
Fermi liquid) may be offset by a diverging scattering strength 
as expected near a continuous phase transition where order 
parameter fluctuations abound. It turns out that in all cases 
considered (superfluid, magnetic order) the QP relaxation rate 
Γ stays finite at the transition, and Γ(Tc) < Tc in the weak
coupling limit (transition temperature much less than micro-
scopic energy scales such as the Fermi energy). In that case,
QPs are still well-defined. One may expect that in strong cou-
pling situations, QPs lose their meaning, although reliable
results are necessarily difficult to obtain here.

A noteable exception is a certain strong coupling regime 
at quantum critical points of metals. In such systems, it is fre-
quently found that not only do the (bosonic) order parameter 
fluctuations show critical behavior, but so do the fermionic 
QPs. The latter are then characterized by a diverging effective 

model, which is simple and exactly soluble, thus provides a 
paradigm for MZMs in one spatial dimension. In qualita-
tive terms, the ground state of the system is either given by 
Majorana fermions bound into electrons at each site (the trivial 
phase) or two nearest-neighbor Majoranas bound into pairs 
(topological phase). In the latter phase, one unpaired Majorana 
fermion is left at each end of the chain, forming an MZM. It 
is as if one electron were fundamentally delocalized, one half 
sitting at either end of the chain. It is interesting to ask how one 
may determine if a given system is a topological superconduc-
tor. For one-dimensional lattice models with Hamiltonian



mass. Provided that the interaction of the bosonic fluctuations 
is still sufficiently weak and the effective mass is enhanced 
by additional quantum fluctuations (e.g. ferromagnetic fluc-
tuations on top of the antiferromagnetic fluctuations of the 
quantum critical point), the system may enter a strong cou-
pling regime for which the critical properties may be calcu-
lated in a controlled way. Fermionic QPs are still well defined 
in this regime, even though the effective mass becomes a 
scale-dependent quantity.

A drastic change of the character of fermionic excitations 
in conducting systems may occur as a consequence of reduced 
dimensions. For example, in one-dimensional metals, even the 
weakest interaction leads to a break-up of Landau QPs into 
fractional excitations carrying charge or spin only (sometimes 
called chargons and spinons). These excitations show up as 
two singularities in the single particle spectral function. An 
observable consequence of this behavior is the emergence of 
scaling of the conductance of a quantum wire as a function 
of temperature, bias voltage or the wire length. The corre
sponding power laws are found to depend on the interaction 
strength. A further example of the emergence of fractional 
QPs is a two-dimensional electron system in strong magnetic 
field showing the quantum Hall effect. In the limit of very 
strong magnetic field, such that only the lowest Landau level 
is occupied, one finds Hall plateaus at certain fractional fill-
ing factors. As shown by Laughlin, these special many-body 
states have QP excitations carrying fractional charge, and 
should obey Abelian fractional exchange statistics.

Yet another type of QPs is present in the so-called Dirac 
materials, where QPs are found as solutions of the massless 
Dirac equation. A prominent example is the two-dimensional 
system graphene. Tuned to the neutrality point (chemical 
potential µ = 0), graphene is at a quantum critical point, with 
unusual QP and electrical screening properties. The QPs are 
found to be well defined in spite of the singular Coulomb inter-
action, but the QP relaxation rate is significantly enhanced, 
varying as in the case of a marginal Fermi liquid.

The currently most exciting new development is the discov-
ery of topological materials featuring topologically protected 
QPs. They may be found at the surface of unusual crystal-
line solids, which are characterized by a band structure with 
inverted bands, meaning that the valence band is on top of the 
conduction band, and there is a full gap; hence, the name ‘top-
ological insulator’. The band inversion may be achieved by
a strong spin–orbit coupling combined with suitable hopping
amplitudes and lattice structure. The role of the spin–orbit
potential may be substituted by a special lattice symmetry. As 
a result, one finds chiral QPs—i.e. QPs moving in one direc-
tional sense only, like along the boundary of a two-dimen-
sional system. These QPs may decay only by action of a time 
reversal symmetry breaking perturbation, such as scattering 
by magnetic impurities.

A very different type of topological QP may appear as a 
Majorana zero Mode (MZM) in topological superconduc-
tors. This is a Bogoliubov QP (BQP) state in a vortex core 
residing in a two-dimensional superconductor or at the ends 
of a superconducting wire, with the unusual property of sit-
ting in the gap center, at zero energy. The lowest BQP state 

in a vortex core of a usual superconductor is bound to have 
finite energy forced by zero point fluctuations. In a topologi-
cal superconductor, the zero point fluctuation effect may be 
compensated by an unconventional Berry phase contribution. 
A BQP residing in a state of zero energy is equal to its antipar-
ticle, and hence has the characteristics of a Majorana fermion. 
There are two different MZMs per electron, which are, loosely 
speaking, the real and imaginary parts of the electron operator. 
This indicates that Majoranas are bound to exist only in pairs. 
The two MZMs making up an electron may be spatially sepa-
rated, e.g. at the ends of a topological superconductor wire, 
forming a strongly protected, highly entangled quantum state. 
Such systems are considered to be promising building blocks 
of future quantum processing devices.
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