

EXTENSION OF SERPENT2/SUBCHANFLOW COUPLING FOR HEXAGONAL FUEL ASSEMBLIES

Yousef Alzaben, Claus-Robert Ziegahn, Victor. H. Sánchez-Espinoza

KIT – The Research University in the Helmholtz Association

PAR

Presentation Outline

- Motivations and Objectives.
- Serpent and SubChanFlow Overview.
- General Coupling Approach.
- Peculiarities of the Hexagonal Geometry.
- Extended Coupling Demonstration:
 - VVER-1000 FA Description.
 - VVER-1000 FA Modelling.
 - Comparison between Serpent2 and TRIPOLI4 at HZP condition.
 - Demonstration of the thermal-hydraulic feedback effect.
- Summary.

Motivations and Objectives

Motivations:

- Providing a high-fidelity tool for a more accurate prediction of local safety parameters for:
 - Eastern PWR reactors (e.g. VVER).
 - Lead-cooled fast reactors.

Objectives:

- Extending the current spatial mapping and data exchange of Serpent2/SubChanFlow for hexagonal geometries.
- Testing the new implementation against a single VVER-1000 FA.

Serpent and SubChanFlow Overview

• Serpent:

- A reactor physics dedicated Monte Carlo Code developed at VTT.
- Has a built-in Doppler Broadening routine that result in an accurate temp. modeling.
- Can accurately represent $S(\alpha,\beta)$ thermal scattering data at any selected temp.
- Version 2.1.29 was used in this study.

• SubChanFlow:

- A sub-channel thermal-hydraulics code developed by INR/KIT.
- Can handle both rectangular and hexagonal geometries.
- Available fluids: water, lead, lead-bismuth, sodium, helium, and air
- Version 3.5 was used in this work.

General Coupling Approach

- Internal coupling.
- Power relaxed according to:

$$\phi^n = \frac{1}{n} \sum_{i=1}^n \phi^i$$

- Convergence criteria is set for:
 - Δk_{eff}
 - l²-norm for Doppler temperature.
 - l²-norm for Moderator density.

Peculiarities of the Hexagonal Geometry *Spatial Mapping*

1/

Serpent:

SubChanFlow:

PHYSOR 2018: Reactor Physics Paving the Way Towards More Efficient Systems

Peculiarities of the Hexagonal Geometry *Data Exchange*

- From SubChanFlow to Serpent2:
 - Averaging 6 or 5 or 4 sub-channel fluid conditions.
 - Doppler temperature are computed as:

 $T_{\text{Doppler}} = (1 - \alpha) T_{f,c} + \alpha T_{f,s}$

- Cladding temperature is calculated as the average of inner and outer clad surface temperatures.
- Gap temperature is calculated as the average of pellet surface and inner clad surface temperatures.
- From Serpent2 to SubChanFlow:
 - Pin Power or Fuel Assembly total power.

VVER-1000 FA Description

• Based on VVER lattice benchmark defined within NURISP Project.

VVER-1000 FA Modeling

- Boundary conditions:
 - Serpent: Neutron flux radially reflective and axially black.
 - SubChanFlow: Coolant inlet temperature of 561.66 K and outlet pressure of 15.711 MPa.
- Nuclear data library: JEFF3.1.1
- Pin-wise coupling of 30 axial meshes for the TH feedback.
- Neutron histories: 100,000 particles/cycle; 500 cycles; and 150 inactive cycles.
- Convergence Criteria:
 - $\Delta k_{eff} = 5 \text{ pcm}$
 - l^2 -norm for Doppler temperature = 0.5%
 - l^2 -norm for Moderator density = 0.5%

Comparison between Serpent2 and TRIPOLI4 at HZP condition

					T4		0.953												
					(SSS2-	-T4)/T4 No	* 100			-2.3%									
	Valuo				110.		1	1.028	40	0.912									
	value							1.044		0.937									
TRIPOLI4 K_{∞}	1.2940	$00 \pm$						0.000	-1.5% 47	1.020	-2.6% 37	0.001							
	4.4E-5							0.990		1.020 1.031		0.901 0.930 3.1%							
	1 20024							48		38		29							
Serpent2 K _∞	$1.28924 \pm$					0.988		0.991		1.011		0.901							
	8 0F	5					0.989		0.995		1.027		0.926						
	0.712	-)					49		39		30		22						
Reactivity		_				1.028		0.995		0.999		1.013		0.902					
1.66	285					1.016		0.995		0.998		-1.2%		-2.6%					
difference (pcm)						50		40		31		23		16					
					1.047 1.030		1.031		1.023		0.999 0.998		1.014		0.896 0.926				
					1.6%		1.1%		0.9%		0.1%		-1.2%		-3.2%				
					51	4 0 40	41	0.000	32		24		17	4.000	11	0.004			
				1.055		1.049		0.000		1.024		0.992		1.020		0.904			
				1.4%		1.9%		-		1.3%		-0.5%		-0.6%		-2.7%			
• Movingung mi	10		0.000	52	1.052	42	1.056	33	1.036	25	1 000	18	0.987	12	1.017	7	0.013		
• Maximum pi	L II		0.000		1.032		1.025		1.016		0.991		0.994		1.031		0.913		
nouvon nolotiu	10		-		2.2%		3.0%		2.0%		0.9%		-0.7%		-1.3%		-2.6%		
power relativ	/e	1.068	53	1.059	43	1.031	34	1.046	26	1.017	19	0.994	13	0.996	8	1.023	4	0.927	
differences is	7	1.044		1.028		1.005		1.018		1.011		0.987		0.997		1.043		0.953	
unterences is	5	2.3% 54		3.0%		2.6%		2.8%		0.6%		0.7%		-0.1%		-1.9%		-2.7%	
within 20/	1.08	5	1.074		1.059	55	1.045	21	0.000	20	1.024	14	0.990		0.999	5	0.891	2	0.94 7
WILLIIII 370	1.05	5	1.043		1.035		1.027		0.000		1.008		0.989		1.012		0.906		0.980
	2.9%	0	5.0% 45		2.5% 36		28		21		1.5% 15		10.1%		-1.3% 6		-1./% 3	-	-3.4% 1

PHYSOR 2018: Reactor Physics Paving the Way Towards

Demonstration of the thermal-hydraulic feedback effect

Summary

- Serpent2/SubChanFlow coupling has been extended for hexagonal geometries.
- A proof-of-implementation was demonstrated on a single VVER-1000 FA.
- The outcomes of the demo case proved the consistency of correct mapping between the two fields.
- This work pave the way for more realistic applications such as simulating full VVER-1000 reactor core at HFP condition.