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Abstract
In solid mixing the raw materials typically differ at least in one material property, such as particle size, solid density and
wetting properties, which in turn influence particle mobility. For example, smaller particles can percolate through the voids of
larger ones under the influence of strain and gravity. This may produce fine particle accumulation at the bottom of the mixing
vessel which results in undesired, inhomogeneous final products. When wet particles with different wetting properties need
to be mixed, heteroagglomeration may occur as another segregation mechanism. We present a new capillary bridge force
model to study segregation in moist cohesive mixing processes using DEM. New analytical equations of best fit are derived
by solving the Young–Laplace equation and performing a regression analysis, in order to investigate discontinuous mixing
processes of dry and moist materials with different particle sizes and different contact angles. Compared to a dry mixing
process, mixing efficiency is improved by the addition of a small amount of liquid. While percolating segregation is reduced,
heteroagglomerates occur in the wet mixing process.
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1 Introduction

1.1 Problem description

Solid mixing is one of the main industrial unit operations in
mechanical process engineering. Although a variety of mix-
ing principles and mixers are available, segregation effects
may occur in different industrial applications, which can
result in a reduced product quality. Particle size is the most
important factor in particle segregation [1,2]. For example,
smaller particles can move through the voids between bigger
particles and accumulate at the bottom as a result of grav-
ity. Hence, mixing components that differ greatly in size are
more likely to segregate due to percolation than mixing com-
ponents with smaller size differences [3]. This percolating
segregation is less pronounced when smaller particle ranges
or powders with large cohesive strength need to be mixed
[4].
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By adding small amounts of liquid, the differing motions
of the mixing components are compensated by interparticle
liquid bridge forces. Smaller particles can adhere to bigger
particles, resulting inmore homogeneous products [1]. How-
ever, liquid bridge forces depend on the liquid properties [5]
and on the particle properties like size or wetting behaviour
[6]. This in turn may improve or deteriorate the mixing result
depending on whether emerging agglomerates may be bro-
ken or not [7]. For example, if components with different
wetting behaviour like limestone powder and non-expanded
polystyrene need to be mixed, water accumulates selectively
in the limestone, such that heteroagglomerates are formed
[8].Agglomerates consisting ofmainly one component are an
undesirable inhomogeneity. Accordingly, it cannot generally
be assumed that the addition of liquidminimizes segregation.
This has to be assessed on a case by case basis depending on
the feed and product characteristics.

This research is aimed at understanding segregation like
percolation and heteroagglomeration in more detail using
numerical methods. In particular, it is observed how liq-
uid and especially different wetting properties of the mixing
components influence segregation. For this purpose, the liq-
uid bridge model in the Discrete Element Method (DEM) is
developed further for more accurate numerical simulations.



1.2 State of modellingmoist particulate solids in
DEM

The DEM is a numerical method to investigate complex
movement of bulk materials, which allows optimizing fore-
casts for particulate-related processes. Based on the ideas of
Cundall and Strack [9], the particle is represented as a regular
sphere with mass mi that is accelerated by field and contact
forces according to Newton’s law of motion (Eq. 1):

mi
d �ui
dt

= mi �g +
l∑

j=1

�Fc,i j . (1)

Subsequent integration over a short time step dt with an
explicit finite difference method leads to the velocities �ui
and the positions of each particle i . In the case of solid mix-
ing, the forces acting on each particle are composed of the
gravitational force mi �g and contact forces �Fcn,i j , the latter
resulting from particle–particle and particle-wall collisions.
The contact force between element i and j is modeled as a
spring and damping system, composed of an elastic �Fel,i j and
a dissipative term �Fdis,i j . The elastic term defines the kinetic
energy storage during a collision as a function of the spring
constant kn , the normal vector �ni j , and the virtual overlap
δn . The damping term describes kinetic energy dissipation
depending on the damper constant ηn and the relative speed
�unrel,i j between the particles i and j (Eq. 2):

�Fcn,i j = �Fel,i j + �Fdis,i j = − knδ
1,5�ni j︸ ︷︷ ︸

spring term

− ηn �unrel,i j︸ ︷︷ ︸
damping term

. (2)

The DEM simulations are performed with EDEM 2.7, a
commercial software in which the contact model according
to Tsuji et al. [10] is used.

In moist mixing processes with small amounts of liq-
uid, stable, rotationally symmetric liquid bridges are formed,
which produce an attractive force due to capillary pres-
sure and surface tension. When simulating moist particle
systems, the attractive liquid bridge force �Fb,i j has to be addi-
tionally implemented in Newton’s law of motion (Eq. 1)).
Various approaches have been developed to investigate the
liquid bridge force at constant liquid volumes. All these
approaches have in common that the liquid bridge is sta-
ble up to a critical particle separation distance at which
the bridge ruptures. Mikami et al. [11] were among the
first authors to develop a regression expression for the liq-
uid bridge force and the rupture distance based on the
numerical solution of the Young–Laplace equation. Their
model has been used successfully to perform a DEM sim-
ulation of a fluidized bed. Remy et al. [12] transferred
this model to cohesive batch mixing processes and vali-
dated their numerical findings experimentally using particle

image velocimetry. This work provided interesting insights
into mixing kinetics and local agglomeration in a bladed
mixer at different moisture contents. However, this model is
restricted to the contact interactions ofmonodisperse spheres.
Soulie et al. [13] expanded the dimensionless liquid bridge
force model to polydisperse granular materials, which was
used by Anand et al. [14] to investigate the segregation of
cohesive particle systems during discharge from a drain fun-
nel. When transferred to mixing processes, this model could
be used to describe the contactmechanisms between particles
consisting of the samematerial.However inmixingprocesses
there are often two materials that differ, for example, in solid
density and wetting properties.

The complete mathematical description of liquid bridges,
a problem already known for over two centuries, is still not
solved, as obvious from the work of Lian and Seville [6].
On the basis of many numerical calculations, they presented
new explicit analytical equations to describe the liquid bridge
force, the liquid volume and the rupture distance. Their
equations cover a wide field of different particle sizes and
represent a very good approximation for the description
of a polydisperse bulk material with a broad size distribu-
tion. These closed-form equations would be ideal, if variable
wetting characteristics were included as well. Butt and
Kappl [15] extended the Derjaguin [16] approximation with
the simplification of a mean cosine of the contact angles, in
order to take into account both different particle radii and dif-
ferent contact angles. This toroidal approximation is based
on the assumption of a very small half filling angle and is
consequently limited to small liquid bridge volumes only.

1.3 Objective

In summary, the implementation of liquid bridges in DEM
and the numerical simulation of moist, cohesive bulk mate-
rials can be accomplished already with simplifying assump-
tions. However, the existing liquid bridge models are often
limited to only one group of particles or just describe simplis-
tic monodisperse systems. These models offer only limited
applicability when dry and moist particles with different
properties, such as particle size and wetting behaviour, have
to be simulated. For this reason, we developed new analytical
equations of best fit for the liquid bridge force, the rupture
distance, and the liquid redistribution. These equations are
used subsequently to investigate the mixing process of dry
and moist bulk materials.

2 Mixing technology

2.1 Batchmixer and simulation settings

The geometry used for theDEMsimulationswas a computer-
aided design (CAD) model (Fig. 1a) of a pharmaceutical



Fig. 1 3D Visualization of the discontinuous mixer (a) and screenshots of the initial condition (b) and different mixing times tM (c), (d) showing
the percolating segregation. The rotational speed is set to 36 rpm. Figure 1 corresponds to the gray dashed line in Fig. 2

Table 1 Material properties used in the simulations

Properties Value Unit

Filler particle ri 0.92 [mm]

Additive particle r j 0.46 [mm]

Particle density ρP 2.500
[
kg/m3

]

Wall density ρsteel 7800
[
kg/m3

]

Shear modulus Gp of particles 216 [MPa]

Shear modulus Gsteel of steel (mixer) 8000 [MPa]

Coefficient of restitution ep , particle to
particle

0.6 [–]

Coefficient of restitution esteel , particle to
particle

0.7 [–]

Poisson’s ratio of particles vP 0.25 [–]

Poisson’s ratio of steel vsteel 0.3 [–]

Static friction of particles on glass μs,p 0.5 [–]

Static friction of particles on steel μs,steel 0.32 [–]

Rolling friction of particles on glass μr ,p 0.005 [–]

Rolling friction of particles on steel
μr ,steel

0.02 [–]

mixer. At the bottom of the mixing vessel, a three-blade
impeller rotates at different rotational speeds. The mixing
vessel is cylindrical with a diameter of 111.4mmand a height
of 70.3 mm, resulting in a volume of approximately 685 ml
(without the impeller). For our study, 50,000 particles per
particle fraction were created in all simulations with a ran-
dom distribution algorithm leading up to 100,000 particles in
total. The red additive particle fraction was generated after
the gray filler fraction resulting in the initial state shown in
Fig. 1b. The filler particles are two times bigger than the
additive component.

TheHertz-Mindlin contactmodel parameterswere selected
in conformity with other works [12,17] in order to describe
glass beads. A compilation of the mechanical and physical
properties used in the simulation is given in Table 1.

2.2 Evaluation of mixing processes

In order to evaluate the quality of mixing, the composition of
N virtual samples need to be taken and analyzed. The com-
position of each sample ci fluctuates around an average value
c̄. As the number of particles is defined in the pre-processing
step of the simulation, it is not necessary to calculate the aver-
age value. The same number of filler and additive particles
leads to an average number composition of c̄ = 0.5. In order
to avoid compensation of positive and negative deviations
(ci (t) − c̄), the square of the differences (ci (t) − c̄)2 is used
to calculate the empirical variance s (t)2 (Eq. 3). Based on
the empirical variance, the well-known [18] and often used
relative standard deviation RSD is determined as a mixing
index according to Eq. (4):

s (t)2 = 1

N

N∑

i=1

(ci (t) − c̄)2 , (3)

RSD =
√
s (t)2

c̄
. (4)

It is impossible to reach ideal homogeneity RSDid = 0,
because random particle motions always occur in solid mix-
ing processes. The best achievable quality of mixing is
characterized by the uniform random mixture RSDr , which
corresponds to the smallest detectable relative standard devi-
ation. In the case of constant solid density, this limiting value
can be estimated with the sample mass mP and the mass of
a single additive particle mA according to Eq. (5):

RSDr =
√
s2r
c̄

=
√
c̄ (1 − c̄) · mA

mP

c̄
. (5)

The mixing efficiencies shown in Fig. 2 are determined
by taking 16 randomly distributed sampling locations, which
are analyzed every 0.2 s. With an average sampling mass of



Fig. 2 Mixing efficiencies determined for different rotational speeds
(particle size ratio Ψ = ri/r j = 2.0, simulation time tMax = 20 s)

mp = 3.0 g, approximately 600 particles are detected per
sample.

In the completely segregated initial state at themixing time
tM = 0 (see Fig. 1a), the additive particles are located on top
of the coarse filler particles, which is specified by the rel-
ative standard deviation RSDtM=0 = 1. When starting the
mixing process at 36 revolutions per minute, homogeneity
improves with progressing mixing time until the best homo-
geneity is reached after 10 s (see also Fig. 1c). With further
mixing homogeneity declines again as smaller particlesmove
through the voids of the coarse particles and begin to accumu-
late at the bottom of the vessel (Fig. 1d). After 20 s of mixing
most of the additive particles are located at the bottom, which
is reflected by an increased RSD. This percolating segrega-
tion mechanism still exists at higher rotational speeds. Due
to the higher energy input, more dispersive particle motions
occur resulting in less pronounced convective transport in
the direction of the gravity field. Consequently, an increase
in speed leads to better temporary and final homogeneities.
However, the best possible quality of mixing (RSDr ) cannot
be reached in all three conditions.

As mentioned in Sect. 1, the addition of liquid influences
this segregation effect. Due to cohesive forces, the relative
particle mobility can be reduced and thus, homogeneity may
be improved. Eventually the addition of liquid may cause
a change of segregation mechanism towards heteroagglom-
eration, due to different wetting characteristics between the
various types of particles. In order to investigate the change of
segregation mechanisms in DEM simulations, an extension
of the existing liquid bridges has to be carried out.

3 Liquid bridge model

Depending on the moisture content, wet particle systems can
exist in either the pendular liquid bridge state, the funicular

state, or the capillary state. Research reported here cov-
ers moist mixing processes with small amounts of liquid,
which can be sufficiently described by liquid bridge net-
works. When a small amount of liquid is introduced between
two contacting solid particles, a stable, rotationally sym-
metric meniscus is formed (Fig. 3) which can produce an
attractive liquid bridge force due to capillary pressure �p
and surface tension γ . The relationship between capillary
pressure and surface tension between the two fluid phases is
given by the elliptic Young–Laplace differential equation in
dimensionless form (Eq. 6),

2H∗ = Δp · ri j
γ

= Ÿ (X)
(
1 + Ẏ (X)2

) 3
2

− 1

Y (X)
(
1 + Ẏ (X)2

)1/2 , (6)

where H∗ is the dimensionless mean curvature and Y and
X are the dimensionless coordinates with respect to the har-
monic radius ri j given by Eq. (7):

ri j = 2rir j
ri + r j

, Y = y

ri j
, X = x

ri j
. (7)

3.1 Numerical solution of the Young–Laplace
equation

As a first approximation, Fisher [19] presented the liquid
bridge profile as a toroid (constant meridional radius) which
leads to a capillary bridge force that characterizes liquid
bridges with very small volumes only. In order to determine
the exact liquid bridge profile for every possible bridge geom-
etry and hence, to derive the exact liquid bridge force, numer-
ical methods have to be used. Hotta et al. [20] were among
the first to solve the Young–Laplace equation with numeri-
cal methods for a sphere-plate application. Schubert [21] first
published solutions for the sphere–sphere application with-
out explicitly explaining the numerical approach, so that the
often cited work of Lian et al. [22] serves as a basis for the
numerical calculation of the liquid bridge force as a function
of the separation distance. They assume a constant liquid
volume while separating two solid particles up to a critical
rupture distance sB . Beyond the critical rupture distance, no
stable liquid bridge profile can be observed. It is found that
the rupture distance for capillary bridges between same grain
particles depends on the cubic root of the liquid volume v.
For this reason, the solution of the Young–Laplace equation
was approximated by a truncated Taylor series (Eq. 8), which
describes the meridian liquid bridge profile Y (X):



Fig. 3 Sketch of a liquid bridge between two unequal spheres with different contact angles. By definition the three phase contact line of particle i
is set to x = 0

Yi+1 = Yi + (Xi+1 − Xi ) Ẏi + 1

2
(Xi+1 − Xi )

2Ÿi ,

i = 0, 1, 2, . . . . (8)

A subsequent substitution Q = Ÿ 2 +1 transforms Eq. (6)
into the Bernoulli Eq. (9), whose integration constant C is
determined by using the boundary conditions at X = 0 and
X = D (Eqs. 10 and 11):

Y
(
1 + Ẏ 2

)0,5 + H∗Y 2 = C, (9)

Y (0) = Ri sin (βi ) , Ẏ (0) = − cot(βi + θi ), (10)

Y (D) = R j sin
(
β j

)
, Ẏ (D) = cot(β j + θ j ), (11)

where Ri = ri/ri j and R j = r j/ri j are the dimensionless
particle radii. As boundary condition of Eq. (9) the half filling
angle β j on particle j has to match the predefined half filling
angle at the three phase contact line. In addition, the gradient
of the curvature and the gradient of particle j in the contact
line must differ around the contact angles θ j . For a contact
angle of zero, both gradients (particle andbridgeprofile)must
be the same. The integration constant, which correlates the
boundary conditions between particles i and j , is calculated
from Eq. (12):

Y (0)
(
1 + Ẏ (0)2

)0,5 + H∗Y (0)2 = Y (D)
(
1 + Ẏ (D)2

)0,5

+H∗Y (D)2 = C . (12)

The liquid bridge profile (Eq. 9) was calculated with the
following numerical procedure. The particle radii and con-
tact angles were predefined and the dimensionless particle

distance S = s/ri j was initially set to zero. Subsequently, a
value of Y (0)was selected that can be used to approximately
describe the dimensionless liquid bridge volume V = v/r3i j ,
which is calculated by integration over the interval x = 0
and x = d according to Eq. (13):

V = π

r3i j

∫ d

0
y2 (x) dx

−π

6

[
3y2 (0) hi + h3i + 3y2 (d) h j + h3j

]
, (13)

where hi and h j are the spherical cap heights of each particle
that are calculated by simple geometric relationships and d
is the distance between both three-phase contact lines (see
Fig. 3). The mean curvature H∗ is not known and is calcu-
lated via a Newton iteration scheme to reach an error smaller
than 10−6 in the contact angle of particle j . At this time, if
the liquid bridge volume does not meet the predefined value,
a correction of Y (0) is made using an interval halving itera-
tionmethod. This procedure is repeated until an error smaller
than 10−6 is reached in the liquid bridge volume as well as in
the contact angle of particle j . The discretization of�X is set
small enough to guarantee this error value. Once a solution
is found for the initial condition, the separation distance is
increased in order to calculate the liquid bridge profile Y (x)
for a constant liquid bridge volume. The increase of the sep-
aration distance cannot be carried out infinitely (Fig. 4). At
a critical distance, no further solution exists for the corre-
sponding liquid bridge volume.

As well as this stable solution, a second physically unsta-
ble solution exists that also meets the criteria of the boundary
conditions (Eqs. 10 and 11), as observed in an earlier numer-
ical study [22]. The criterion when both solutions converge



Fig. 4 Numerical solution of
the Young–Laplace equation as
a function of the dimensionless
separation distance S for a set of
different volumes v [mm3] in
terms of the dimensionless neck
height Ymin, the boundary
condition Y (0) which correlates
to the half filling angle βi , the
dimensionless mean curvature
H∗, and the dimensionless
liquid bridge force F∗
(ri = 2 mm; r j = 1 mm and
θi = θ j = 0◦)

characterizes the critical rupture distance SB . Due to the
surface tension, the liquid bridge tends to the state with min-
imized interfacial energy, which is described by the stable
solution.

The dimensionless liquid bridge force F∗ acting between
two solid particles is composed of the forces arising from
surface tension and capillary pressure. With the calculated
liquid bridge profile, the dimensionless bridge force F∗ can
be obtained at the bridge neck height Ymin or at the three-
phase contact line using Eqs. (14a) or (14b). As the capillary
pressure is constant over the local coordinate X , both equa-
tions lead to the same result:

F∗ = F

γ ri j
= 2πYmin

[
1 + H∗Ymin

]
, (14a)

F∗ = F

γ ri j
= 2πY (X)

[
1/

(
1 + Ẏ (X)2

)0,5

+H∗Y (X)

]
X = 0 or X = D. (14b)

Figure 4 displays plots of the numerical solution for a
set of different volumes. As shown in Eq. (14a), the force
decreases with decreasing neck height and mean curvature,
while a minimum is observed in the height of the three-
phase contact line of particle i , which correlates to the half

filling angle βi . Additionally, the force decreases monoton-
ically with increasing separation distance for all volumes,
while larger liquid volumes remain stable over a bigger range.
Willett et al. [23] used this numerical procedure to show a
very good agreement between experimentally measured and
numerically calculated capillary forces. Lian and Seville [6]
recently presented new closed-form equations obtained by
the numerical solution of Young–Laplace’s equation. Their
new equations characterize a bulk material with a broad size
distribution. We used the numerical method to calculate the
liquid bridge forces between two particles of different mate-
rials. Accordingly, the contact angle of particle j has been
varied, while a size difference exists between particle i and
j . This results in variable wetting behaviours of the additive
material (red particles) in the DEM simulations.

3.2 Regression analysis

Due to the high computational effort required for DEM sim-
ulations, the Young–Laplace equation cannot be solved for
each contact event. Hence, we performed a regression anal-
ysis in order to implement the liquid bridge force as an
additional empirical equation in Newton’s law of motion
(Eq. 1).



Fig. 5 Dimensionless liquid
bridge force as a function of the
separation distance S for a
contact angle of θ j = 0◦ (a) and
θ j = 60◦ (b). The green
curvatures represent the
equation of best fit (Eq. 15)

(a) (b)

Fig. 6 a Rupture distance SB as
a function of the dimensionless
liquid bridge volumes V and
different contact angles of the
additive material (particle j). b
Transfer ratio TFi = Vi/V
calculated from the bridge
profile at rupture distance for the
same set of liquid bridge
volumes and contact angles. The
green curves represent the
equations of best fit Eqs. (16)
and (17)

(a) (b)

Figure 5 shows the numerical results and the equation of
best fit (Eq. 15) of the dimensionless liquid bridge force for
a contact angle of θ j = 0◦ (Fig. 5a) and θ j = 60◦ (Fig. 5b).
Comparison reveals a reduction of the liquid bridge force as
the contact angle increases.Moreover, the empirical equation
found is in very good agreement with the calculated results.

F∗ = exp (A + BS) ,

A =
(
−0.2θ2j − 0.09θ j + 1.68

)

· V
(
−0.0005θ2j +0.0005θ j−0.0013

)

,

B = −0.1 − 1.1/V (0.52−0.005θ j). (15)

The numerical solutions also give information about the
rupture distances and the transfer ratios. Regarding the rup-
ture distance (Fig. 6a), a reduction is found with decreasing
liquid volume. Similar to the case of equally sized parti-
cles the rupture distance scales with the volume raised to the
power of approximately one third Eq. (16):

SB = (
0.936 − 0.235θ j

) · V 0.32. (16)

In the case of liquid bridge rupture, it is natural to assume
the rupture event to happen at the thinnest part of the liq-

uid bridge at Ymin [24]. Thus, the liquid bridge volume
separates into two different amounts Vi and Vj remain-
ing with the single particles. For spheres of the same size
with the same contact angle, the simple case is that both
particles gain the same amount of liquid, characterized by
TFi = Vi/V = Vi/

(
Vi + Vj

) = 0.5. When differently
sized particles with variable contact angles are considered,
the transfer ratio has to be calculated by integrating the liq-
uid bridge profile and subtracting the corresponding spherical
cap volume. In the case shown here (Fig. 6b) a transfer ratio
higher than 0.5 is observed. This indicates a larger amount of
liquid remaining with the bigger particle. Secondly, almost
no liquid is transferred to small particles with high contact
angles. This results in particularly poor wetting properties.
Again, the set of data is described very well by means of a
fit Eq. (17), which ensures transfer ratios between 0 and 1:

TFi = C + (1 − C) ·
(
1 − 1

(1 + V )

)D

,

C = − 0.073θ2j + 0.44θ j + 0.53,

D = 0.076θ2j − 0.186θ j + 0.3. (17)



Table 2 Applicability of different liquid bridge models

References Applicability Bridge force F∗ Rupture distance SB Transfer ratio TFi

Lian et al. [22] Same spheres – SB = (θ; V ) –

Mikami et al. [11] Same spheres F∗ = (θ; V ; S) SB = (θ; V ) 50/50%

Willett et al. [23] Polydisperse material F∗ = (θ; V ; S) SB = (r1; r2; θ; V ) –

Soulie et al. [13] Polydisperse material F∗ = (
ri ; r j ; θ; V ; S)

– –

Butt and Kappl [15] Approximation (valid for small
volumes)

F∗ = (
ri ; r j ; θi ; θ j ; V ; S)

– –

Lian and Seville [6] Polydisperse material F∗ = (
ri ; r j ; θ; V ; S)

SB = (r1; r2; θ; V ∗) –

This work Different materials with fixed
particle size ratio

F∗ = (
θ j ; V ; S)

SB = (
θ j ; V

)
TFi = (

θ j ; V
)

3.3 Comparison of liquid bridgemodels

Table 2 shows a comparison of liquid bridge models which
have been applied in DEM simulations. All these mod-
els have in common that the unknown liquid bridge force
can be calculated as function of the liquid bridge volume
V and the particle separation distance S. The difference
between these models is the applicability. Lian et al. [22] and
Mikami et al. [11] focused on same spheres,Willett et al. [23],
Soulie et al. [13] and Lian and Seville [6] derived expressions
for polydisperse materials.

The model presented in this work is valid for the contact
interaction between different materials, with the restriction
of a fixed particle size ratio of two. The contact angles of
both particles are the same in the existing models. In this
work a variable contact angle of the smaller particle can be
used, while a contact angle of zero is assigned to the bigger
particle. In comparison to previously published relationships
(e.g. [7] and [17]) this leads to a lower range of bridge sta-
bility, when the contact angle θ j is increased (Fig. 6a). This
is a physically meaningful result, explained by the simulta-
neous size and contact angle difference of additive and filler
particle. If the liquid transfer between the bigger filler and
smaller additive particle needs to be modelled, it would be
an incorrect simplification to assume an equal redistribution
to both contacting particles, which underlines Eq. (17) as a
crucial aspect.

Willett et al. [23] measured capillary forces experimen-
tally for perfect wetting bridges between sapphire spheres
(radii of 2.381 and 1.191 mm) and 127.8 nl of dimethylsilox-
ane as a liquid (γ = 20.6 mN/m). Their experiment showed
a very good agreement with the numerical solution of the
Young–Laplace equation and is covered by both our model
and the other models (Fig. 7). All model equations describe
the case with ideal wetting (θi = θ j = 0◦) very precisely.
The slight overestimation of the Derjaguin approximation
[16] at zero separation and large liquid bridge volumes has
already been reported by Pitois et al. [25] and has been made
more accurate by the recently published closed-form equa-

Fig. 7 Comparison of different model equations and the experimental
data obtained byWillett et al. [23] for wetting bridges between sapphire
spheres. Capillary bridge force F as a function of the separation distance
s

tion [6]. Our model equation is not intended to improve the
existing models but to extend the range of capillary bridge
force, rupture distance and transfer ratio calculation as shown
in Table 2. The contact interaction between a filler and an
additive particle cannot be described satisfactorily in DEM
simulations without this model extension. The validation of
the new capillary bridge model for particle pairs with dif-
ferent diameters and different contact angles is still an open
issue. Here, more experimental data for such configurations
is needed.

3.4 Implementation

The equation of best fit for the liquid bridge force is imple-
mented as an additional term in Newton’s law of motion.
However, Eq. (15) cannot be used for every contact event.
Depending on the contact partners, three cases have to be
distinguished. The liquid bridge force and rupture distance
model proposed byMikami et al. [11] is applied,when a same
grain (i − i)or a sphere-wall (i − wall) contact occurs.Con-



Fig. 8 a Spherical cap model according to Shi and McCarthy [24].
The liquid that is covered by the dark grey caps will contribute to the
liquid bridges. The light grey surface displays liquid that is still avail-
able for additional liquid bridges, b illustration of the contact radius

that is used for contact detection in the liquid bridge model. The liq-
uid bridges would rupture after the physical contact if contact radius
definition would be missing

sequently, our model (Eq. 15) is applied to the contact event
of the different mixing components (i − j) only.

A liquid bridge is formed instantly,when the physical radii
of the particles overlap each other. The same applies to the
formation of a liquid bridge between a sphere and the wall. In
the event of liquid bridge formation, the volume of the liquid
bridge is calculated according to the spherical capmodel [24].
In the schematic model shown in Fig. 8a, the liquid content
(Li ) on particle i will contribute to three liquid bridges. The
liquid bridges are composed of liquid from both contacting
particles. As an example: the liquid bridge volume in the
upper left is composed of a fraction of liquid contents Li and
L j . Thus, the main part of the liquid content Li in Fig. 8a is
still available for additional liquid bridges on particle i . By
means of a geometrical tangent construction, the area of the
spherical cap and hence, the contributing liquid contents Vk,i
and Vk, j are determined according to Eq. (18):

Vk,i or j = Li or j

2

⎛

⎝1 −
√√√√1 − Ri or j

2

(
Ri + R j

)2

⎞

⎠ . (18)

The sumof the two partial volumes yields the liquid bridge
volume (Eq. 19) which is used to calculate the liquid bridge
force:

V = Vk,i + Vk, j . (19)

The liquid bridge force is calculated as a function of sepa-
ration distance as long as the rupture distance is not exceeded.
When the rupture distance SB is reached, the liquid bridge
will rupture and the force will disappear. In order to repre-
sent this behaviour in the DEM simulation, a contact radius
has to be defined. This guarantees contact detection beyond

physical contact (Hertz model). When selecting the contact
radius, contact detection must be ensured as long as the rup-
ture distance is not reached and no ’third’ particle should slip
into an existing liquid bridge. Accordingly, the contact radius
should not be too small, but not too big either. In our case, a
contact radius rc 1.3 times larger than the physical radius is
determined as an optimum (Fig. 8b). Since the liquid bridge
force occurs simultaneously with the physical contact force
and negative separation distances are not possible, the sep-
aration distance S is set to zero when calculating the liquid
bridge force during a physical contact.

After rupturing, the liquid volume is distributed accord-
ing to the corresponding transfer ratio (see Eq. 17). Again,
a case distinction is carried out. In the case of same sized
particles with the same contact angles, the liquid will split
in half (TFi = 0.5). In the case of particle-wall collision, no
liquid will be transferred, characterized by TFi = 1. The
wall remains dry and the liquid returns to the previously
contacting particle. Due to the proportional calculation of
the liquid volume and the inclusion of the transfer ratio, liq-
uid transportation in bulk materials can be simulated by the
DEM.

In addition to liquid bridge forces in the normal direc-
tion, viscous forces arise from the presence of moisture. The
relationship between viscous and capillary forces is charac-
terized by the capillary number Ca, which is calculated by
Eq. (20), where η is the dynamic viscosity and u is a charac-
teristic velocity. For the characteristic velocity, we used the
maximum relative velocity in the normal direction unrel,max
from the simulation of a dry mixing process at a rotational
speed of 108 rpm (see Fig. 2). As we only focus on water
as a liquid, it is a reasonable assumption to neglect viscous
forces (see Eq. 20) because of the very small capillary num-
ber.



Fig. 9 Simulation of two wet
mixing processes at 108 rpm
with different contact angles of
the additive component. Total
amount of added water
ml,total = 20.37 g, surface
tension γ = 0.073 N/m. a
Mixing efficiency as a function
of the dimensionless time
(tMax = 20 s). b 3D
visualization of solid mixing
process (corresponding to the
dashed line θ j = 0◦)

(a) (b)

Ca = ηu

γ
= ηunrel,max

γ

= 0.001 Pas · 0.68 m/s

0.073 N/m
= 0.009. (20)

We also neglected the gravitational force of the liquid.
In the simulation shown in the following Sect. 4, the total
amount of added water (5 wt%) is set to ml,total = 20.37 g
which is quite low in comparison to the total amount of par-
ticulate solids (msolids = madditive + mfiller = 50.97 g +
407.7 g = 458.7 g). If the gravitational force is related to the
liquid bridge force, the modified ’liquid Bond number’ Bol
will reach a maximummagnitude of 0.003. Hence, the liquid
bridge force is at least 100 times larger than the force due to
gravity (Eq. 21). The gravitational and viscous forces have
already been discussed in the work of Remy et al. [12], who
made a first DEM simulation of wet monodisperse spheres
in a bladed mixer. Gravitational and viscous forces were
neglected in their work as well.

Bol,max = gravitational force

liquid bridge force

= gvρ f

2π yminγ − π y2minΔp
= 0.003. (21)

4 Comparison of dry and wet mixing

4.1 Influence of the contact angle

In the simulation of a wet mixing process the same initial
conditions as shown in Fig. 1b were chosen, with the dif-
ference being that we allocated a liquid content of 5 wt%
of the particle mass to each gray filler particle. Accordingly,
the total amount of liquid is perfectly distributed throughout
the filler material in the beginning. The filler material has a
contact angle of θi = 0◦. In this idealized system each gray

particle is covered by a thin liquid layer, while the red addi-
tive component is dry, corresponding to 0 wt% of liquid. At
this time (tM/tMax = 0), liquid bridges already exist between
contacting filler particles. However, no liquid is transferred at
this point of time. Virtual sampling and determining the mix-
ing efficiency allow for a quantitative comparison between a
dry and a wet mixing process (Fig. 9a).

The results of the dry mixing process were already shown
in Fig. 2, where the uniform random mixture RSDR is not
reached. Due to liquid addition, interparticle forces appear
and reduce the relative particle mobility. It takesmore time to
distribute the additive particles in the cohesive filler material,
which is indicated by the increase of mixing efficiencies. A
smaller particle mobility than that seen for dry free-flowing
material occurred in a tumbler mixer as well [26]. Com-
pared to the dry mixing process, the final homogeneity of
wet mixing is improved. This effect is similar to the reduc-
tion observed in segregation intensity for cohesive flows in
a tumbling blender with a simplified cohesion model [27].
Even in wet mixing, however, the ideally mixed state cannot
be achieved. This is due to the fact that a change of seg-
regation mechanism occurs. While percolating segregation
is observed during dry mixing, size-dependent heteroag-
glomerates are formed behind the blades of the mixing tool
(Fig. 10) in the wet mixing process, resulting in a decrease
of homogeneity. In this region low stress intensity is induced
which causes suboptimal deagglomeration. In addition, an
accumulation of the additive particle can be found at the
vessel wall (Fig. 9b), which might be improved by a higher
energy input or a conical vessel wall, as indicated in the work
of Nakamura et al. [28].

Comparison of additive particles with different wetting
properties reveals differences in the mixing process. Due to
the smaller and shorter liquid bridge forces at a contact angle
of θ j = 60◦, the relative standard deviation decreases faster
compared to the other wet mixing process (Fig. 9a). Hence,
the final state is reached more quickly. Final homogeneity is



Fig. 10 3D Visualization of the bottom of the mixing vessel at the end of mixing (tM/tMax = 1) that show heteroagglomerates behind the blades
of the mixing tool. a θ j = 0◦ (corresponding to the dashed line in Fig. 9a). b θ j = 60◦ (corresponding to the dotted line in Fig. 9a)

Fig. 11 Simulation of two wet
mixing processes at 108 rpm
with different contact angles of
the additive component. Total
amount of added water
ml,total = 20.37 g, surface
tension γ = 0.073 N/m. (a):
Illustration of liquid distribution
as a function of the
dimensionless time. b 3D
visualization of the liquid
distribution (corresponding to
the dashed line θ j = 0◦)

(a) (b)

better compared to a low contact angle. Percolating segrega-
tion is not completely compensated by the addition of liquid.
Accumulation of additive particles can still be observed in
the gap between the mixing tool and the mixing vessel. This
mechanism is a more pronounced at a high contact angle
(Fig. 10b). As a result of the different liquid bridge forces,
rupture distances and transfer ratios, less heteroagglomerates
consisting of additive particles are observed at a high contact
angle.

4.2 Liquid transfer

The distribution of liquid is shown in Fig. 11a. In the begin-
ning of mixing the wet filler particles are colored blue,
indicating a liquid content of 5 wt%, while the dry addi-
tive particles are colored red. With progressing mixing time,
the additive particles change their color from red to green.
The blue filler particles lose some liquid, which is shown
by the turquoise color. Only a small part of the total liquid
content is transferred to the additive particles, while most

of the liquid remains in the filler material. This is explained
by the fact that smaller particles can carry less liquid than
larger particles. Figure 11a shows the speed of liquid distri-
butionwithin the additive component. At a low contact angle,
approximately 7%of the total liquid is transferred to the addi-
tive component. Only approximately 1% is transferred when
a high contact angle is chosen. The reduced liquid adsorption
by the smaller particles in the case of a high contact angle
is a logical, physical result. Poor wetting properties mean
less affinity to water. In the case of good wetting properties,
more collisions are necessary to transfer the liquid. Hence,
the equilibrium state is reached quicker, when a high con-
tact angle is used. This observation, in turn, underlines the
slightly faster mixing efficiency at a contact angle of 60◦ in
Fig. 9a.

The reason why a steady-state of uniformly distributed
liquid will be reached at the end of mixing is based on the
spherical cap model (see Fig. 8). Several collisions are nec-
essary to achieve a complete liquid exchange process [24].
At steady-state, the liquid contributing to a newly created liq-



Fig. 12 Mixing efficiency as a
function of the dimensionless
time (tMax = 20 s), surface
tension γ = 0.073 N/m. a
Simulation of three wet mixing
processes at 108 rpm with
different contact angles between
the filler and the additive
component in order to
investigate the influence of
liquid content. b Simulation of
six wet mixing processes with
5 wt% of liquid at different
rotational speed

(a) (b)

uid bridge is exactly the same as the liquid transferred after
rupturing. Hence, no further liquid exchange takes place,
resulting in homogeneously distributed liquid at the end of
mixing.

When liquid is drawn and dispersed between the particles,
a uniform liquid distribution seems logical at first glance due
to wetting, agglomeration, breakage and liquid migration.
However, Mani et al. [29] observed a depletion of liquid in
shear bands with uniform velocity gradient and proposed
a new diffusive liquid dynamics model depending on the
local shear rate [30]. If those flow dynamics were taken into
account in thiswork, a fluctuation around themean stationary
end value in Fig. 11 would most likely be feasible. Addition-
ally, it is a rough assumption in our model to distribute the
liquid as a thin film on a poor wetting additive material. For
this reason, partial wetting of the particle surface [21] and
droplet modelling has to be taken into account in ongoing
work. Then, experimentally observed selective enrichment
of liquid in the wetting filler component [8] might be observ-
able in numerical simulation as well.

4.3 Influence of liquid content and rotational speed

Simulations were performed using different amounts of
liquid and different rotational speeds. The variation of dif-
ferent liquid contents shows an almost undetectable effect
(Fig. 12a). From a mathematically point of view this is
due to the small volume dependency of the liquid bridge
force at small particle distances as shown in Fig. 5 and dis-
cussed byButt andKappl [15]. Hence, the volume-dependent
rupture distance has a smaller influence on the dispersive par-
ticle mobility than the contact-angle-dependent liquid bridge
force. As a result, the size of the agglomerates is hardly
changed with the amounts of liquid. This effect has already
been observedwith small amounts of liquid in a bladedmixer
[12]. However, we cannot observe a liquid content depen-
dent optimum [12,26] which may be explained due to the
different mixing principles, different geometries and higher

shear forces. This observation, however, is limited due to the
assumption of the pendular liquid bridges in this work. It
still remains questionable how the mixing efficiency is influ-
encedwhenmoving into the funicular regime at higher liquid
contents.

The effect of blade rotation speed on the mixing effi-
ciency was investigated computationally at three different
speeds: 36, 108 and 216 rpm, respectively. A direct cor-
relation between the dispersive particle mobility and the
rotational speed can be observed in Fig. 12b. Due to higher
shear forces smaller agglomerates are formedwhich aremore
mobile than bigger ones. This results in an enhancement of
mixing kinetics indicated by the fast decrease of the RSD.
The effect of breaking up more coherent particle bonds is
observed at higher tumbler speeds as well [27]. There is lit-
tle energy input at 36 rpm, which is not sufficient to reach the
final homogeneity after a simulation time tmax of 20 s. The
speed increase up to 216 rpm results in a better end homo-
geneity compared to 108 rpm, explained by less agglomerate
formation at themixing tool blades.Comparingdifferent con-
tact angles of the additive component, a faster decrease of the
RSD can be observed for larger contact angles at the three
different rotational speeds. This smaller dispersive particle
mobility results from the slightly lower cohesive forces at
60◦.

5 Conclusion

We present new empirical functions for the liquid bridge
force, the transfer ratio, and the rupture distance by solving
the Young–Laplace equation numerically. These equations
can be used for a liquid contact event in the DEM simulation
of different materials, but are limited to a particle size ratio
of two and θi = 0◦. Using the new model equations, it is
possible to simulate mixing processes of dry and wet parti-
cles. Quantitative comparison of a completely dry and partly
wet mixing processes reveal an improvement in homogene-



ity when a small amount of liquid is added to the mixing
components. Due to interparticle liquid bridge forces, perco-
lating segregation is reduced. Because of the size difference
between the filler and the additive component, heteroagglom-
eration occurs at the mixing tool blades. This change in
segregation mechanism reduces homogeneity. Accordingly,
the best technically possible homogeneity cannot be achieved
even in moist mixing processes. Differences are observed
when varying the contact angle of the additive component.
More heteroagglomerates behind the mixing tool occur in
the case of a small contact angle of the additive component.
While the total amount of liquid virtually has no influence
on the degree of mixing, the particle mobility increases with
rotational speed. Dynamic liquid migration, partial wetting
of the particle surface and droplet modelling might improve
the liquid distribution model in ongoing work.
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