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Abstract. This study describes and evaluates the Fire
Including Natural & Agricultural Lands model (FINAL)
which, for the first time, explicitly simulates cropland and
pasture management fires separately from non-agricultural
fires. The non-agricultural fire module uses empirical re-
lationships to simulate burned area in a quasi-mechanistic
framework, similar to past fire modeling efforts, but with
a novel optimization method that improves the fidelity
of simulated fire patterns to new observational estimates
of non-agricultural burning. The agricultural fire compo-
nents are forced with estimates of cropland and pas-
ture fire seasonality and frequency derived from observa-
tional land cover and satellite fire datasets. FINAL ac-
curately simulates the amount, distribution, and seasonal
timing of burned cropland and pasture over 2001–2009
(global totals: 0.434×106 and 2.02×106 km2 yr−1 modeled,
0.454× 106 and 2.04× 106 km2 yr−1 observed), but carbon
emissions for cropland and pasture fire are overestimated
(global totals: 0.295 and 0.706 PgCyr−1 modeled, 0.194 and
0.538 PgCyr−1 observed). The non-agricultural fire module
underestimates global burned area (1.91×106 km2 yr−1 mod-
eled, 2.44× 106 km2 yr−1 observed) and carbon emissions
(1.14 PgCyr−1 modeled, 1.84 PgCyr−1 observed). The spa-
tial pattern of total burned area and carbon emissions is gen-
erally well reproduced across much of sub-Saharan Africa,
Brazil, Central Asia, and Australia, whereas the boreal zone
sees underestimates. FINAL represents an important step in

the development of global fire models, and offers a strategy
for fire models to consider human-driven fire regimes on cul-
tivated lands. At the regional scale, simulations would ben-
efit from refinements in the parameterizations and improved
optimization datasets. We include an in-depth discussion of
the lessons learned from using the Levenberg–Marquardt al-
gorithm in an interactive optimization for a dynamic global
vegetation model.

1 Introduction

Vegetation fire is an important force for the Earth system at
local, regional, and global scales. It can shape ecosystems
(Bond and Kelley, 2005; Staver et al., 2011), affect human
health (Johnston et al., 2012; Marlier et al., 2012; Hahn et al.,
2014), exacerbate or mitigate anthropogenic climate change
(Ward et al., 2012; Ciais et al., 2013), and cause direct eco-
nomic damage (Doerr and Santín, 2013; Bryant and West-
erling, 2014). Fire occurrence can even affect the likelihood
of more burning, through positive and negative feedbacks re-
sulting from fire’s impact on weather, climate, and vegetation
(Laurance and Williamson, 2001; Balch et al., 2008; Zhang
et al., 2008). Anthropogenic climate change and increases in
atmospheric carbon dioxide concentrations have already in-
creased – or can be expected to increase – the frequency and
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severity of burning in some parts of the world, while other re-
gions could see decreased burning (Gillett et al., 2004; West-
erling et al., 2006; Flannigan et al., 2009; Krause et al., 2014)

A full accounting of the importance of vegetation fire to
the Earth system at present as well as historically and into
the future requires the use of dynamic global vegetation mod-
els (DGVMs). These simulate processes of vegetation estab-
lishment, growth, mortality, disturbance, and competition at
large scales using varying levels of mechanism, which allows
the regional- and global-level biogeochemical implications
of ecosystem dynamics to be fully estimated. When DGVMs
are coupled with models of the soil, atmosphere, and oceans,
the resulting Earth system models (ESMs) even simulate how
these major components of our planet interact with and feed
back upon one another. To understand the complex nature
of fire’s role in the Earth system, realistic models of vege-
tation burning must consequently be designed and incorpo-
rated into DGVMs.

However, fire does not exist solely at the interface of cli-
mate and vegetation. Humans play an important role in reg-
ulating the fire regimes of many regions around the world
(Flannigan et al., 2009; Bowman et al., 2011; Archibald
et al., 2013). This can come about as a result of many pro-
cesses, one of which is fire’s use as a tool to manage agri-
cultural lands. Croplands can be burned to facilitate planting
or harvest; for example, sugarcane is typically burned before
being harvested, and farmers in many parts of the world burn
their crop wastes in the field after harvest (Yevich and Logan,
2003). Pastures and rangelands often see regular burning to
reinvigorate the soil and control non-palatable weeds (Uhl
and Buschbacher, 1985; Laris, 2002).

The way people burn croplands and pasture in a given re-
gion can differ from how the ecosystems there would burn in
the absence of humans, in terms of both frequency and sea-
sonal timing (Le Page et al., 2010; Magi et al., 2012; Rabin
et al., 2015). This is significant for modeling efforts because
it suggests a decoupling of agricultural fire from the mecha-
nisms governing non-agricultural fire. For example, whereas
the fire regime of southern Mali might naturally be domi-
nated by large burns late in the dry season, humans have im-
posed a regime of small, scattered early burning to avoid such
hard-to-control fires (Laris, 2002, 2011).

Unfortunately, previous development of global fire models
has mostly glossed over the distinction between agricultural
management burning and other burning. Anthropogenic ef-
fects on fire are most commonly modeled as dependent solely
on population density, not land use (e.g., Venevsky et al.,
2002; Arora and Boer, 2005; Pechony and Shindell, 2009;
Thonicke et al., 2010; Li et al., 2012; Melton and Arora,
2016; Hantson et al., 2016; Rabin et al., 2017). Moreover,
the effect of population density is only to increase or de-
crease the amount of fire relative to that which would oc-
cur naturally – not to affect the intra-annual timing of fire.
There are a few exceptions. The LPJ-LMfire model (Pfeiffer
et al., 2013) includes functions to simulate how pre-industrial

societies could manage cropland and pasture using fire, but
these depend on assumptions that may not apply as well to
modern agricultural practices. A fire model developed for the
Community Land Model (CLM) by Li et al. (2013) simulates
cropland fire, with annual burned area based on socioeco-
nomic data (population density and gross domestic product)
and timing based on observations, but pasture is not simu-
lated as a land cover/use type distinct from grassland. The
HESFIRE model (Le Page et al., 2015) accounts for how the
amount of human land use (cropland and urban areas) affects
burning, but again pasture is not considered. Neither of these
latter two models, moreover, take into account how human
activity can affect the timing of fire.

To some extent, the neglect of pasture burning in particu-
lar – or its convolution with non-agricultural burning – can be
attributed to a lack of data. Cropland and a number of other
vegetation types can, like fire, be algorithmically mapped us-
ing medium-resolution satellite imagery. Overlaying maps of
vegetation type and burned area allows the generation of ob-
servational datasets of fire activity on different land covers
(e.g., Giglio et al., 2010). However, no such map of global
pasture distribution exists – only maps at relatively coarse
resolutions describing the fraction of each grid cell that is
pasture (e.g., Ramankutty et al., 2008; Klein Goldewijk et al.,
2010). When developers of global fire models have designed
and parameterized models of non-agricultural burning, they
have thus been limited in their choice of observational data
with which to constrain their models. The options have been
to either focus on regions with low fractions of cropland
and/or pasture (thus potentially biasing their parameteriza-
tion towards parts of the world inhospitable to agriculture)
or to use a dataset “contaminated” with signals from crop-
land and/or pasture burning. Recently, however, Rabin et al.
(2015) used a statistical method to estimate burned area as-
sociated with cropland, pasture, and non-agricultural lands
at regional scales based on observations of total burned area
and estimated land use/cover distributions. This presents an
opportunity to create a fire model that not only explicitly sim-
ulates burning practices on cropland and pasture, but also to
develop a model of non-agricultural burning based on a purer
observational signal.

However, the choice of reference data is only the first step
in model development. Model fitting, also referred to as op-
timization or parameterization, is also critical, and many dif-
ferent methods can be used. Empirical fire models have often
been fitted against observations of weather, climate, vegeta-
tion state, and anthropogenic factors using regression-type
methods (e.g., Archibald et al., 2009; Lehsten et al., 2010) or
multidimensional search algorithms (Knorr et al., 2014). Be-
cause these methods treat fuel availability as an independent
variable, however, they ignore how fire affects the fuel avail-
able for future burning. This fire–biomass feedback can be
accounted for by running the fire model interactively with
vegetation for parameterization purposes. This process is
performed in combination with data from the literature when
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possible, but it is rather manual and based on trial and error.
Ideally, model fitting would combine the best parts of these
two approaches to algorithmically search parameter space for
the “best” set of values based on how the model actually per-
forms. Le Page et al. (2015) recently used the Metropolis
Markov Chain Monte Carlo method to do just this in fitting
the HESFIRE model. This stand-alone model accounts for
fuel availability indirectly, with parameterizations based on
precipitation and time since fire. Unfortunately, because of
the need for high numbers of iterations, this method cannot
be feasibly applied in fire models that are coupled with com-
putationally expensive DGVMs.

Here we describe the development and performance of a
DGVM-coupled fire model that uses the new disentangled
estimates of burned area associated with cropland and pas-
ture (Rabin et al., 2015) to enable true separation of fire
patterns and processes between non-agricultural and agricul-
tural land. A module for non-agricultural fire is fit against the
purer, non-agricultural burning data – i.e., observational esti-
mates excluding fire on cropland and pasture – using an algo-
rithm that explores parameter space interactively with the fire
and vegetation model. Cropland and pasture fire are explic-
itly simulated – for the first time, in the case of modern-day
pasture fire – by a different module using derived climatolo-
gies.

2 Fire model

The Fire Including Natural & Agricultural Lands (FINAL)
model comprises two different sub-models, simulating fire
on agricultural and non-agricultural land separately. Here
we describe the model’s structure, beginning with the land
and vegetation model within which it has been developed,
then detailing the separate setups used for simulating non-
agricultural and agricultural fire, and finally explaining the
simulation of fire’s effects on vegetation.

2.1 Land and vegetation model

The land model LM3, run by the National Oceanic & Atmo-
spheric Administration Geophysical Fluid Dynamics Labo-
ratory (NOAA-GFDL), is a state-of-the-art global dynamic
vegetation and land surface model that can be run either
offline or interactively with atmosphere and oceans in the
GFDL Earth System Model (Shevliakova et al., 2009; Dunne
et al., 2013). It simulates five different live plant biomass
pools: leaves, heartwood, sapwood, labile carbon, and fine
roots. The “stem” biomass pool is comprised of the heart-
wood, sapwood, and labile carbon pools. One of five differ-
ent plant “species,” representing biome types with different
physiological properties, is assigned to each point based on
bioclimatic envelopes and amount of biomass. Here, LM3 is
run at a spatial resolution of 2◦ latitude by 2.5◦ longitude.

One of the most interesting features in LM3 is that it uses
sub-grid cell units called tiles, which allow land in differ-
ent land use types (and in different stages of recovery from
land use) to have distinct simulated vegetation and soil. Grid
cells can have one each of “natural,” cropland, and pasture
tiles, along with several “secondary” tiles representing land
in different stages of recovery from wood harvesting or agri-
cultural abandonment. Other, non-vegetated tiles represent
glaciers and lakes. Tiles are not spatially arranged, instead
existing effectively as a list within each grid cell. Wood har-
vest and land use transitions occur once per year. At the same
time, secondary tiles are merged together if they have similar
amounts of heartwood biomass; this prevents the computa-
tional burden from becoming unreasonable.

The tiled structure of LM3 could allow it to simulate the
heterogeneity of vegetation that fire can create across a land-
scape, and cropland and pasture tiles could have fire occur
in a completely different way than non-agricultural tiles. The
original LM3 fire model did not burn cropland and pasture
at all; elsewhere, fire happened once per year based on fuel
loading, drought, and historical fire frequency (Shevliakova
et al., 2009). The next two sections will describe the structure
of the new fire models developed for non-agricultural (natu-
ral and secondary; Sect. 2.2) and agricultural (cropland and
pasture; Sect. 2.3) tiles.

2.2 Burned area: non-agricultural land

The fire model for non-agricultural lands is based on that de-
veloped for the Community Land Model (CLM) by Li et al.
(2012, 2013). Total burned area (BA) in the natural and sec-
ondary fire model is calculated as the product of the number
of fires (Nfire) and burned area per fire (BApf):

BA=Nfire×BApf. (1)

2.2.1 Number of fires

Lightning and humans both serve as sources of ignitions,
some fraction of which actually become fires. Li et al. (2012)
modeled their equation for the density of lightning ignitions
after that elaborated by Prentice and Mackerras (1977). At
each time step, the number of ignitions from lightning (In,
ignitions km−2) is a function of latitude (3, radians) and the
density of lightning flashes (L, flashes km−2):

In = L× (5.16+ 2.16cos[33])−1. (2)

The number of anthropogenic ignitions (Ia, ignitions km−2)
is a function of population density (people km−2):

Ia =
(
βIa ×PD

)
×

(
6.8×PD

−0.6
)
. (3)

With βIa representing the rate of ignitions per person at
each time step and PD representing population density (peo-
ple km−2), the first part of Eq. (3) gives a starting value for
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density of anthropogenic ignitions per time step. (Hence-
forth, β will denote parameters determined during our op-
timization routine as described in Sect. 2.6. The final values
of these parameters can be found in Table 3.) The second
part of Eq. (3) is intended to represent the fact that each per-
son can be expected to light fewer fires as population density
increases (Venevsky et al., 2002).

To calculate the number of ignitions actually becoming
fires (Nfire), the total number of ignitions (AT [In+Ia], where
AT is the area of the tile in km2) is multiplied by five func-
tions that vary from zero to one, representing the suppres-
sive effects of relative humidity (fRH), soil moisture (fθ ),
aboveground biomass (fAGB), temperature (fT ), and popula-
tion density (fPD ):

Nfire = AT (In+ Ia)× fRH× fθ × fAGB× fT × fPD . (4)

Li et al. (2012) calculate the effect of relative humidity on
number of fires as

fRH =max
(

0,min
[

1,
0.7−RH
0.7− 0.3

])
, (5)

where RH (range 0–1) is the relative humidity in the tile.
Relative humidity ceases limiting fire (i.e., fRH = 1) below
RH= 0.3, and it suppresses all fire above RH= 0.7. How-
ever, the artificial limitation of this formulation to the range
[0,1] would cause problems during our parameterization,
which requires a continuously differentiable function. In-
stead we used the Gompertz function:

fRH = exp
(
−βRH,1× exp

[
−βRH,2×RH]) . (6)

This function also varies between zero and one, with the
parameter βRH,1 controlling the location of the curve along
the x axis and βRH,2 determining the steepness of the func-
tion as it decreases from one to zero.

Li et al. (2012) formulate the effect of soil moisture on
number of fires as

fθ = exp

(
−π ×

[
θ

θe

]2
)
, (7)

where θ is relative soil moisture over the top 5 cm and θe
is a parameter determining the soil moisture level where ap-
proximately 95 % of fires are suppressed. This is a contin-
uously differentiable function, but for consistency we used
(like fRH) a Gompertz function:

fθ = exp
(
−βθ,1× exp

[
−βθ,2× θ ]) . (8)

In addition to flammability as determined by fuel moisture,
Li et al. (2012) calculate the effect of above-ground biomass
on number of fires as

fAGB =max
(

0,min
[

1,
AGB−AGBlo

AGBup−AGBlo

])
, (9)

where AGB (kgCm−2) is the sum of aboveground biomass
in the heartwood, sapwood, labile carbon, live leaf, and leaf
litter pools. (80 % of the total biomass carbon in the heart-
wood and sapwood pools is assumed to be in the above-
ground stem, with the remainder in coarse roots.) The pa-
rameters (kgCm−2) determine the levels of aboveground
biomass below which fire is impossible (AGBlo) and above
which biomass is no longer limiting (AGBup). However, as
with fRH, the fact that this function is not continuously dif-
ferentiable would create problems for parameterization, so
we used a Gompertz function instead:

fAGB = exp
(
−βAGB,1× exp

[
−βAGB,2×AGB]) . (10)

The effect of temperature on number of fires is calculated
as

fT =max
(

0,min
[

1,
T − Tlo

Tup− Tlo

])
, (11)

where T (◦C) is the temperature of the canopy. The T∗ pa-
rameters (◦C) serve the same purpose as the parameters in
the original formulation of fAGB (Eq. 9); that is, no fire can
occur (fT = 0) at or below Tlo and temperature does not limit
fire (fT = 1) at or above Tup. After Li et al. (2013), we set Tlo
to −10 ◦C and Tup to 0 ◦C. Because we did not include this
function in the optimization, we did not convert it to a Gom-
pertz function as we did with fRH and fAGB.

The suppressive effect associated with increasing popula-
tion density on all potential fires (as opposed to just anthro-
pogenic ignitions, as accounted for in Eq. 3) is calculated as

fPD = 1−
(
0.99− 0.98× exp

[
−βPD ×PD

])
= 1− fsupp, (12)

where PD is human population density (people km−2).
fPD → 0.01 as PD→∞, and fPD = 0.99 where PD = 0, af-
ter Li et al. (2012). βPD determines the shape of the function
between these limits.

Li et al. (2013) also included a suppressive effect of per
capita gross domestic product (GDP) on number of fires.
This was based on the idea that relatively wealthy parts of
the world might have more valuable property to protect and
a better capacity for suppression than less developed regions.
However, for several reasons, we chose not to include this
function. First, although globally gridded maps of GDP ex-
ist for the past 25 years or so (van Vuuren et al., 2007), no
existing data sets describe the distribution of economic sta-
tus before 1990. Second, the functions elaborated by Li et al.
(2013) are somewhat ad hoc, not taking into account other
variables that might be responsible for the observed relation-
ships. Bistinas et al. (2014), for example, showed that an ap-
parent relationship between GDP and burned area (Aldersley
et al., 2011) can be better explained as an emergent property
resulting from the effect of population density. That result
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Table 1. Combustion completeness and mortality values for each “species” and tissue pool. Note that “stem” refers to both aboveground and
belowground stem biomass, and that “root” refers only to fine roots. n/a – not applicable.

Combustion completeness Mortality

Species Leaf Stem Root Litter Leaf Stem Root Litter

C4 grass 0.85 1.00 0.00 0.85 0.85 0.00 0.20 n/a
C3 grass 0.85 1.00 0.00 0.85 0.85 0.00 0.20 n/a
Tropical tree 0.70 0.15 0.00 0.50 0.70 0.60 0.10 n/a
Temperate deciduous tree 0.70 0.10 0.00 0.45 0.70 0.55 0.07 n/a
Evergreen tree 0.75 0.20 0.00 0.55 0.75 0.65 0.13 n/a

does not deal with GDP per capita, of course, but it does in-
dicate the care that must be taken to avoid confounding vari-
ables when modeling fire. We thus declined to include GDP
effects on burning in our model.

2.2.2 Burned area per fire

Burned area per fire is calculated in the CLM fire model
based on an approximation of individual fires having ellip-
tical shapes, with the point of ignition being one focus and
the fastest spread occurring along the major axis (Fig. S1;
van Wagner, 1969). It is made up of three main components:
duration, shape, and rate of spread.

Up to a certain point, fires become more elongated with
increasing wind speed. That is, higher winds increase the
length-to-breadth ratio (LB; Fig. S1):

LB= 1+ 10× (1− exp[−0.06W ]), (13)

where W is wind speed (ms−1) at 10 m above ground level.
High winds also increase rate of downwind spread relative
to the rate of upwind spread, which can also be thought of as
increasing the head-to-back ratio (HB; Fig. S1). HB is related
to LB as

HB=
LB+

√
LB2− 1

LB−
√

LB2− 1
. (14)

Forward rate of spread (ROSf, ms−1) – i.e., spread rate
downwind from an ignition – is a function of wind speed, fuel
moisture, and vegetation type. Vegetation type (“species”
sensu LM3) determines the maximum possible rate of spread
in a tile. We initially defined maximum rate of spread for
each species (ROSmax,sp) based on values used by Li et
al. (2012 and Corrigendum) for similar plant functional types
(PFTs): 0.4 ms−1 for C3 and C4 grass, 0.3 ms−1 for tropi-
cal and evergreen trees, and 0.22 ms−1 for temperate decidu-
ous trees. However, we included maximum rate of spread for
tropical tree and C3 and C4 grass in the optimization (βROStt
and βROSgr, respectively; Sect. 2.6), so 0.4 and 0.3 ms−1 rep-
resent their starting values. Their final values can be found in
Table 3.

Note that although Li et al. (2012 and Corrigendum) actu-
ally used 0.22 ms−1 for all forest types other than needleleaf,

we increased the initial value of maximum rate of spread in
tropical tree tiles closer to that given by Li et al. (2012 and
Corrigendum) for shrub PFTs (0.34 ms−1). This was done
because the rate of spread in tropical savannas is much higher
than that in tropical closed forests (especially moist forests),
but LM3 has no “shrub” or “savanna” species, with the result
that much of the world’s tropical savannas are classified as
“tropical tree.”

The rate of spread realized by any given fire increases with
wind speed towards the limit of ROSmax,sp according to the
function g(W):

gW =
2LB

1+HB−1 × g0, (15)

where

g0=
1+HB−1

max
2LBmax

. (16)

Here, LBmax = 11 and HBmax ≈ 482 are the limits of LB and
HB as W →∞ (Eqs. 13 and 14).

Fires spread more slowly in wet conditions, so fuel mois-
ture is considered in rate of spread. Li et al. (2012) multiplied
rate of spread by fRH (Eq. 5) as well as fRH(θ), the latter
being identical to fRH except with soil moisture (θ ) replac-
ing relative humidity (RH). However, we substituted fRH(θ)

with fθ for simplicity and transparency. Thus, the complete
equation for forward rate of spread in FINAL is as follows:

ROSf = ROSmax,sp× g(W)× fRH× fθ . (17)

The final component of burned area per fire is the length of
time between ignition and extinction. After Li et al. (2012),
we set fire duration (d , seconds) to 24 h (86 400 s).

BApf =
π × (ROSf× d)

2

4× 106
×LB

×

(
1+HB−1

)2
. (18)

Li et al. (2013) also include functions that reduce burned
area per fire based on population density and GDP per capita.
We did not include either of these. The issues with using
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GDP per capita are described in Sect. 2.2.1. Population den-
sity might be considered a more trustworthy and meaning-
ful statistic, but as with the GDP functions, the method used
by Li et al. (2013) to describe the effect of population den-
sity on fire size was somewhat ad hoc and did not take
into account possible confounding factors. Moreover, our
model optimization (Sect. 2.6) would have essentially seen
the functions relating population density to number of fires
and burned area per fire as one large, complicated function.
For simplicity and parsimony, we consequently did not in-
clude an effect of population density on burned area per fire.

Several limits are imposed on BApf. If the burned area cal-
culated at a time step (i.e., BApf×Nfire) is greater than the
area of the tile that has not yet burned that day (At,un), BApf
is adjusted for consistency:

BApf =
At,un

Nfire
. (19)

Moreover, we add a limitation to fire size based on land-
scape fragmentation, based on the idea that fragmentation
of the landscape into burnable and unburnable patches tends
to prevent fires from reaching their maximum possible size
(Archibald et al., 2009; Hantson et al., 2015). Maximum pos-
sible fire size as a function of tile size and fraction unburnable
area in the grid cell is modeled after the function described
by Pfeiffer et al. (2013):

BApf,max =At × (1.003 (20)

+exp
[

16.607− 41.503×
Ag,burnable

Ag

])−2.169

.

Here, Ag refers to the area of land (including non-vegetated
“land” such as glaciers or lakes) in the grid cell, and
Ag,burnable refers to the area of vegetated land in the grid cell
other than cropland. BApf,max is calculated at the end of each
model day – after burning, tile splitting, and land-use transi-
tions have occurred – and applied to the following day.

Burned area is calculated at every fast time step (30 model
minutes) and accumulates throughout each day. At the end of
each model day, burning occurs (Sect. 2.4).

2.3 Burned area: cropland and pasture

Burned area on cropland and pasture tiles is estimated in a
simpler way than that on natural and secondary tiles. At the
beginning of each month, some fraction of each cropland and
pasture tile burns according to a mean monthly climatology
of burned fraction of cropland and pasture. These gridded
climatology maps are based on results from the “unpack-
ing” analysis of Rabin et al. (2015), which provided monthly
estimates of burned area associated with cropland, pasture,
and non-agricultural (“other”) land. For each of 134 regions
around the world, using the GFED3s burned area data (Ran-
derson et al., 2012), Rabin et al. (2015) estimated the F̂k,m

parameters in the following equation:

BAm =
N∑
i=1

(
F̂c,mAc,i,m+ F̂p,mAp,i,m+ F̂o,mAo,i,m

)
, (21)

where the summation is over all N grid cells in the region,
Ak,i,m represents the area of each land use type (cropland c,
pasture p, and non-agricultural land/“other” o) in grid cell
i in month m, and BAm is the total burned area in the re-
gion in that month. This calculation was performed for each
of the 108 months in 2001–2009. Each parameter F̂k,m thus
represents the net influence of land use k on fire in the av-
erage grid cell in the region that month. In some instances,
F̂k,m can be negative, which was interpreted to represent a
suppressive influence of k on fire on other land use types.
Here we use the climatological mean results for F̂c and F̂p,
constrained to non-negative values in order to focus on how
much burning actually occurs on cropland and pasture, rather
than including their suppressive influences:

BAk,t = F̂k,MAk,i,t , (22)

where k ∈ {c,p} and M ∈ [1,12] is the month of the year
corresponding to time step t . Note that, in Rabin et al.
(2015), forcing F̂k,m ≥ 0 resulted in estimates of total
burned area (i.e., burned area summed across all three
land cover/use types) slightly greater than the value from
GFED3s: 4.93 Mhayr−1 as opposed to 4.68 Mhayr−1. Be-
cause the land cover distributions used in the unpacking
(Rabin et al., 2015) differ slightly from those used in this
study, burned fraction for each grid cell in the unpacked data
was adjusted here so that the model output would match the
burned area from the unpacking.

2.4 Fire effects

Carbon in the leaves, stems, and aboveground litter of a
burned tile is combusted (i.e., transferred to the smoke pool;
Sect. 2.5) according to species-specific fractional combus-
tion completeness (CC) values, based on those used by
Li et al. (2012). The remaining non-combusted biomass in
leaves, stems, and fine roots is subjected to species- and pool-
specific fractional mortality (M; i.e., transferred to above-
or belowground litter), again based on values from Li et al.
(2012). Combustion completeness and mortality values used
here can be found in Table 1. Note that although the heart-
wood and sapwood pools are assumed to be 80 % above-
ground (“stems”) and 20 % belowground (“coarse roots”),
CCstem and Mstem are the same for both above- and below-
ground pools. This was necessary because LM3 assumes a
constant 80–20 % split. However, fire-killed heartwood and
sapwood is transferred to aboveground or belowground litter
proportionally.

If less than 1 km2 of a tile burns, the tile’s biomass is re-
duced according to CC×BF and (1−CC)×M×BF, where
BF is the burned fraction of the tile. This is the method that
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has been used by every other global fire model previously de-
veloped. However, it does not reflect the reality that an actual
fire results in a mosaic where only part of the landscape has
been burned. To better represent this process, when ≥ 1 km2

burns in a given day, FINAL splits the tile into two new tiles
– one burned and one unburned. Biomass on the burned tile
is reduced by CC and (1−CC)×M , while the unburned tile
is not affected. This “fire tile splitting” occurs on all land
cover types except cropland. The 1 km2 threshold was set to
reduce computational demand and avoid calculation errors
associated with small tiles.

2.5 Other changes

The implementation of daily fire and associated tile splitting
necessitated many adjustments to parts of the LM3 code base
not dealing with fire directly. Previously, tiles would only be
created and/or merged once per year, and secondary vege-
tation was the only land type allowed to have multiple tiles
within a single grid cell. The code for land transitions needed
to be reworked to allow daily splitting and merging. We also
changed the code to allow all vegetation types, instead of
just secondary land, to have multiple tiles. The criteria for
merging tiles were also altered to be based on aboveground
biomass available for fire (AGB in Eq. 9) instead of heart-
wood. Moreover, we changed the binning structure by which
tiles are determined to have similar-enough biomasses to be
merged. Previously, bin edges were located at 0.5, 1, 2, 3, 4,
5, 6, 8, 10, and 1000 kgCm−2. To better sample ranges of
biomass where fuel is limiting, we replaced the first two bin
edges with 0.1, 0.3, 0.5, 0.7, 0.9, and 1.1 kgCm−2. Finally,
various aspects of carbon accounting throughout the model
needed to be adjusted for daily tile splitting and merging.

More frequent fire also required other changes. The orig-
inal LM3 fire module burned once annually at the end of
each year, with the burned carbon being emitted gradually
over the course of the next year to avoid sudden unrealistic
pulses of emissions. With the new fire model operating daily,
burned carbon from one day is now emitted over the course
of the next day. Previously, grazing of pasture happened once
per year, but in order to more reasonably simulate emis-
sions from pasture fire we made grazing occur daily. We also
boosted the fraction of live leaf biomass removed by grazers
from ∼ 0.07 to 4 % day−1 for the main runs (FINAL.0 and
FINAL.1; Table 2). This resulted in more realistic estimates
of aboveground biomass in pasture, and of annual global con-
sumption of biomass by grazers.

Finally, the original LM3 model did not explicitly simulate
aboveground dead biomass, which is an important compo-
nent of the fuel bed in some ecosystems, affecting fire spread
and/or emissions. We thus used the version of LM3 with the
Carbon, Organisms, Rhizosphere, and Protection in the Soil
Environment model (CORPSE; Sulman et al., 2014), which
in addition to simulating the dynamics of soil organic mat-
ter also simulates leaf litter and coarse wood litter pools. The Ta
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default setting for CORPSE is to simulate 15 different below-
ground soil cohorts (age classes); to improve computational
efficiency, we set CORPSE to simulate only one.

2.6 Parameter optimization

Simply copying exact parameters from the model described
by Li et al. (2012, 2013) was not possible for a number
of reasons. First, here we separately model cropland, pas-
ture, and non-agricultural burning. Li et al. (2013), in com-
parison, included special modules for cropland, deforesta-
tion, and peat fire – pasture burning being convolved with
all other fire. Now that we have extracted the influence of
pasture (a significant source of fire activity that often dif-
fers from what might be expected under a totally “natural”
fire regime) from non-agricultural burning, we expect to find
different relationships between fire and its driving variables.
Second, CLM is of course a different model than LM3, with
its own idiosyncrasies and biases distinct from those of LM3.
Although Li et al. (2012, 2013) strove to parameterize their
equations based on independent data as much as possible,
some functions were entangled with how their model itself
worked. Third, as described in Sect. 2.5, we added some pro-
cesses and removed others. Fourth, Li et al. (2012, 2013)
tested their model against version 3 of the Global Fire Emis-
sions Database (GFED3) burned area dataset (Giglio et al.,
2010), whereas we used the GFED3s dataset (Randerson
et al., 2012), which includes an additional estimate of burn-
ing from small fires and thus has significantly more burned
area than GFED3. Finally, Li et al. (2012, 2013) used differ-
ent climatic forcing data than we did.

All these differences meant that we needed to reparame-
terize at least some parts of the non-agricultural fire model.
Here we begin by briefly walking through the algorithm used
to carry out the optimization, and then describe the parame-
ters that we chose to optimize.

2.6.1 The Levenberg–Marquardt algorithm

We used the Levenberg–Marquardt method as the basis of
our optimization routine. This algorithm uses the first deriva-
tives of a performance metric with respect to each parameter
to iteratively move through parameter space in search of a
local minimum of the sum of squared errors. It starts with an
initial guess, then evaluates the sum of squared errors S in
non-agricultural burned area between the unpacked data and
the estimates generated by the model:

S =

M∑
m=1

N∑
i=1

(
BAmod,i,m−BAunp,i,m

)2
. (23)

(Here, the summation is performed across all M months in
the parameterization run period and all N sample grid cells
selected for the optimization.) The algorithm then generates
a new parameter set guess and the model is rerun. If the

new guess decreases the sum of squared errors, it is “ac-
cepted,” with a new guess then being generated based on it.
If not, it is “rejected,” and a new guess is generated based
on the original guess. Guesses are adjusted by interpolating
between steps that would be generated by either the gradi-
ent descent method or the Gauss–Newton algorithm, lean-
ing more towards the former when far from a minimum and
the latter when near a minimum. More detailed information
on the Levenberg–Marquardt algorithm, including its deriva-
tion, can be found in Levenberg (1944), Marquardt (1963),
and Transtrum and Sethna (2012).

Briefly, we ran the model for 1991–2009 in a sample of
241 grid cells. A Python script evaluated the model perfor-
mance and suggested a new parameter set, which was fed
back into the model. The Python script then checked the per-
formance of the new parameter set, accepted that set if its
performance was improved relative to the previous set, and
generated a new guess. This process continued until the rou-
tine encountered at least five rejected parameter set guesses.
We did not optimize over all grid cells because of computa-
tional limitations; even with all 241 grid cells being run in
parallel, each iteration of the optimization took around two
hours. More details on our implementation of the algorithm,
including how the grid cells in the sample were selected, can
be found in Appendix A.

Four optimizations were performed, with slightly varying
initial conditions (Table 3) in order to enhance the robustness
of the results. Optimization 1 was performed using the pa-
rameter values from the literature or from Gompertz curve
fitting; Optimizations 2–4 used parameter values sampled
from a ±25 % uniform distribution around the Optimization
1 values. Note that we began the optimization runs in 1991
even though only the 2001–2009 data would be used for com-
parison to observations; the idea was to allow for the vege-
tation and fire regime in at least some of the grid cells (es-
pecially in regions where frequent fire is the norm) to equi-
librate given the fire frequency of each new iteration of the
model.

2.6.2 Parameters chosen

From the equation for anthropogenic ignitions (Ia, Eq. 3),
we optimized βIa , which can be thought of as controlling a
sort of “baseline” value for how many ignitions each person
can be expected to provide at each time step. Technically, we
optimized βIa,m, which is describes the baseline number of
ignitions per person per month instead of per time step (of
which there are 48 per day):

βIa,m = βIa × 48×
365
12
. (24)

All other things being equal, higher values of βIa,m result
in more fires.

We also optimized βPD from the function describing hu-
man suppression of all non-agricultural fires as a function
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Table 3. Initial and final parameter sets for each optimization. Here, values are rounded to nearest 10−4; full-precision values can be found
in Table S1 in the Supplement. Optimization 1 did not complete successfully.

Initial 1 Final 1 Initial 2 Final 2 Initial 3 Final 3 Initial 4 Final 4

βAGB,1 7.3157 – 6.6137 188.3871 6.2754 8.7635 6.0616 9.1026
βAGB,2 4.1100 – 4.7921 3.9331 3.8471 2.6877 3.6518 2.5379
βIa,m 0.0035 – 0.0033 0.2994 0.0036 0.0024 0.0041 0.0026
βPD 0.0250 – 0.0254 0.0037 0.0218 0.0447 0.0253 0.0509
βRH,1 0.0062 – 0.0055 6.1731 0.0052 0.0069 0.0056 0.0069
βRH,2 −9.1912 – −9.0809 1.3763 −7.5288 −7.1413 −6.1629 −5.5102
βθ,1 0.0750 – 0.0763 0.6524 0.0866 0.1211 0.0905 0.1169
βθ,2 −6.3741 – −7.3291 −2.3150 −8.4253 −8.1072 −9.3429 −9.5276
βROStt 0.3000 – 0.3128 1.5886 0.3452 0.6855 0.4041 0.7761
βROSgr 0.4000 – 0.3742 3.1388 0.4112 0.2602 0.4622 0.2924

of population density (fPD , Eq. 12). All other things being
equal, a higher value of this parameter would result in a faster
approach of the fraction suppressed towards its upper limit.

Because the LM3 definition of a “species” to describe veg-
etation type is so broad, we thought it would be especially
important to pay attention to several biome-specific maxi-
mum rate of spread parameters in FINAL. The “tropical tree”
type in LM3 encompasses a wide range of real-world biomes,
from tropical rainforests to semiarid shrublands. The rates
of spread for fire in these systems are quite different, and
so we included maximum rate of spread in tropical tree re-
gions (βROStt) in the optimization. We also included the rate
of spread in C3 and C4 grasslands (βROSgr), because prelim-
inary testing showed strong overestimates in regions domi-
nated by the C4 grass species in particular.

Finally, we optimized parameters from fRH (βRH,1 and
βRH,2, Eq. 6), fθ (βθ,1 and βθ,2, Eq. 8), and fAGB (βAGB,1
and βAGB,2, Eq. 10). We generated initial guesses for these
parameters by fitting Gompertz functions, with the upper
asymptote set at 1, to the corresponding functions from Li
et al. (2012). Fitting was performed using the MATLAB
Curve Fitting Toolbox (MATLAB and Curve Fitting Tool-
box Release 2014b, The MathWorks, Inc., Natick, Mas-
sachusetts, United States.)

Note that we did not optimize all possible parameters in
the model. For example, we did not include the parameters
affecting the upper and lower asymptotes of fPD (Eq. 12) in
the interest of limiting the degrees of freedom with regard
to the combined population density functions. Given that we
were already optimizing two parameters governing the effect
of population density on number of fires (βIa,m and βPD ), we
decided to exclude the other parameters in Eq. (12). The rest
of the parameters that we did not optimize were excluded
in the interest of somewhat limiting the scale of the opti-
mization procedure. This is especially true with regard to the
parameters in Eq. (13) (governing the effect of wind speed
on fire length : breadth ratio) and Eq. (20) (governing the ef-
fect of decreasing burnable area on maximum fire size). The
parameters in these equations are generally based on phe-

nomena external to global vegetation modeling – Eq. (13) is
derived from empirical equations used by the Canadian For-
est Service (Arora and Boer, 2005), and Eq. (20) is derived
from an experiment performed by Pfeiffer et al. (2013) in-
dependent of any fire or vegetation model. Because tropical
savanna grid cells, with the highest initial sums of squared
errors, were expected to exert the most influence on the op-
timization procedure (Fig. A3), we focused on optimizing
parameters regarding variables that are known to be influ-
ential there. Other parameters – such as temperature, or the
rate of spread in boreal forests – might not have been well-
constrained in this procedure because of their low importance
in cells with high initial error.

3 Experimental setup and analysis

3.1 Experimental runs

Spinup of the land to pre-industrial conditions began with a
“bare ground” scenario and ran for 300 years, during which
climate forcings (Sect. 3.2) from 1948 to 1977 were repeat-
edly cycled through. During spinup, atmospheric CO2 con-
centration was held constant at 286 ppm and land use was
turned off. Next, we simulated years 1861–1947, using re-
peated 1948–1977 climate forcings but historical land use
and atmospheric CO2 concentration (Sect. 3.2). Finally, the
model was run from 1948 to 1991 with historical climate
forcings, land use, and atmospheric CO2. This run – referred
to as LM3_ORIG (Table 2) – provided initial conditions for
other model runs, including the optimization. Note that the
daily grazing intensity (Sect. 2.5) was set at its default value
of ∼ 0.07 % for LM3_ORIG.

The new model (Sects. 2.2–2.5), with new parameters as
described in Sect. 4.1 and Table 3, was run from 1948 to
2009 (FINAL.1; Table 2). This run began with initial con-
ditions as produced for the beginning of 1948 by the origi-
nal LM3 run described above (LM3_ORIG). An experimen-
tal run with the complete new model structure but all set-
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Figure 1. Mean fractional land cover of (a) non-agricultural land,
(b) cropland, and (c) pasture over 2001–2009 as simulated in model
runs (after Hurtt et al., 2011). Gray cells did not contain any of the
indicated land cover type.

tings as initially guessed in the parameterization (FINAL.0)
was also performed, which when compared to FINAL.1
would allow us to explore where the optimization improved
or worsened model performance. For both FINAL.0 and
FINAL.1, daily grazing intensity (Sect. 2.5) was set at 4 %.

3.2 Input data

The LM3 land and vegetation model is run “offline” in this
study, meaning that it is forced by a set of meteorological
and radiation-related variables without any interaction be-
tween the land and atmosphere. The variables used here to
force LM3 – daily precipitation, surface air pressure, spe-
cific humidity, wind vectors, and downward longwave and
shortwave radiation – are taken from the observation-based
dataset developed by Sheffield et al. (2006). All variables are
interpolated to the spatial and temporal resolution of the LM3
fast time step, here set to 30 model minutes. Carbon diox-
ide (CO2) concentrations are taken from Meinshausen et al.
(2011). Historical data on land use transitions and wood har-

vesting come from the harmonized dataset created by Hurtt
et al. (2011) for use in Earth system models. The mean dis-
tributions of cropland, pasture, and non-agricultural land in
this study over 2001–2009 are presented in Fig. 1.

As discussed above (Sect. 2.3), cropland and pasture
burning is forced using climatologies from (Rabin et al.,
2015). For the non-agricultural fire model, we used a gridded
monthly climatology of lightning flash rate (flasheskm−2)
based on data from the Lightning Imaging Sensor (LIS)
and Optical Transient Detector (OTD) remote instruments.
Specifically, we used the LIS/OTD low-resolution monthly
time series (LRMTS) described by Cecil et al. (2014). This
dataset is provided at a 2.5◦× 2.5◦ resolution, which we in-
terpolated to match the LM3 resolution of 2◦ latitude by 2.5◦

longitude. The version of LRMTS that we used, v2.3, in-
cluded maps of flash rate for each month in the period 1996–
2014. We found the average of each month (January, Febru-
ary, etc.) and used these to build our climatology.

Non-agricultural burning in FINAL also requires input
data on population density. We used the historical population
density estimates from HYDE 3.1 (Klein Goldewijk et al.,
2010), coarsened from their original 5 min resolution to the
LM3 resolution (2◦ latitude by 2.5◦ longitude). We interpo-
lated population density linearly between each time point in
the HYDE dataset.

3.3 Evaluation

The new model’s performance in terms of recreating ob-
served patterns of burned area and fire carbon emissions is
evaluated here by comparison against GFED3s and the un-
packed fire data. In addition to global totals of mean annual
fire activity, we assess the spatial distribution of fire using
maps of mean annual burned fraction and emissions. Unfor-
tunately, due to the short satellite record of fire occurrence,
the model must be evaluated against the same time period
used for calibration. The model can thus be expected to per-
form less well outside 2001–2009.

The accuracy of seasonal fire trends is tested by compar-
ing the difference between the intra-annual timing of burned
area simulated by the model with the timing as estimated by
the unpacking analysis. This is quantified using mean phase
difference, as described by Kelley et al. (2013). Each grid
cell’s annual pattern of fire can be described as a vector in
the complex plane:

V i =
(
xm,i,θm

)
, (25)

where xm,i is the mean burned area in monthm for grid cell i,
and θm is an arbitrary angle unique to monthm and calculated
for all grid cells as

θm = 2π
(m− 1)

12
. (26)

The mean vector Li for each grid cell has end points that
can be described in Cartesian coordinates as the origin and
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Figure 2. Trace plots showing the progression of sum of squared errors (SSE) (a), the percent change in SSE between each accepted
parameter set (b), and each of the ten parameters (c–l) over the length of the optimization. x axes show iteration number, y axes show sum
of squared errors or parameter guess value, and color of points indicate whether the associated parameter set guess was accepted (blue) or
rejected (red).

(
Lx,i,Ly,i

)
, where

Lx,i =

12∑
m=1

xm,i cos(θm) (27)

and

Ly,i =

12∑
m=1

xm,i sin(θm) . (28)

The phase (Pi), defined where fire occurrence is not dis-
tributed evenly across all months, describes the mean timing
of the fire season:

Pi = arctan
(
Ly,i

Lx,i

)
. (29)

The phase in terms of the day of the year can be calculated as
Pi
2π ×365. Mean phase difference (MPD), which is used here
to describe the difference in timing of the fire season between
model results and observations, is calculated as

MPD=
1
π

arccos

(∑N
i=1 cos

[
Pi,mod−Pi,obs

]
N

)
, (30)

where modeled and observed phases are designated with
the subscripts mod and obs, respectively. MPD varies from
zero to one, with MPD= 0 if all modeled phases corre-
spond exactly to observed phases and MPD= 1 if all mod-
eled phases differ from observed phases by the maximum
possible amount (6 months).

4 Results

4.1 Optimization

Of the four optimization runs performed, only three com-
pleted successfully (Appendix A). In Optimization 1, the al-
gorithm repeatedly increased βRH,2, resulting eventually in
model crashes. Optimizations 3 and 4 resulted in similar final
functional forms; we chose to discard Optimization 4 since
its final sum of squared errors (SSE; 3.667×109) was higher
than that of Optimization 3 (3.657× 109).

We were thus left with Optimizations 2 and 3; we used
the final parameter sets from both of these for global model
runs. Optimization 2 initially seemed like it might be the
better candidate, since the SSE of its final parameter set
(3.240× 109) was lower than that of Optimization 3. How-
ever, although Optimization 2’s final guess performed better
in the selected grid cells during optimization, it actually per-
formed worse than Optimization 3’s best guess – and indeed,
worse than Optimization 2’s initial guess! – when run for the
entire globe. This suggests that using SSE as the sole crite-
rion for model selection is not sufficient. This issue, and the
specifics of the Optimization 2 results, will be discussed fur-
ther in Sects. 5.3 and 5.4. For the remainder of this paper,
except where specified, results will refer to those from Opti-
mization 3 and the global model runs using its final parame-
ter set. In this section, we discuss only the raw results from
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Optimization 3. A discussion of what the results imply for
LM3 and fire modeling generally can be found in Sect. 5.3.
Figures in the Supplement illustrate the difference in sum of
squared errors in optimized grid cells for model runs with the
initial and final parameter sets from Optimization 3 (Fig. S2)
and Optimization 2 (Fig. S3).

Optimization 3 resulted in final parameter values and func-
tional shapes broadly similar to the initial guesses. Figure 2
shows the progression of the parameter guesses, along with
the sum of squared errors associated with each parameter set
guess, through Optimization 3. After an initial drop in SSE
over the first six guesses, subsequent guesses did not result
in much improvement, with SSE not differing by more than
0.001 % between accepted guesses after the 19th iteration
(Fig. 2a–b). The optimization was stopped after the 42nd it-
eration, at which point seven consecutive guesses had been
rejected. The functions resulting from the new parameter set
are visualized, in comparison with how they were in the Li
et al. (2012, 2013) model as well as in the initial optimization
guess, in Fig. 3.

In Optimization 3, the density of anthropogenic igni-
tions Ia decreased at all positive levels of population den-
sity (Fig. 3a). Moreover, the parameter βPD – which con-
trols anthropogenic suppression of burning fPD – increased
(Fig. 2e), meaning that a larger fraction of ignitions (both
lightning and anthropogenic) are suppressed wherever popu-
lation density is greater than zero, though most noticeably be-
tween densities of ∼ 10–100 peoplekm−2 (Fig. 3b). The net
effect is to reduce unsuppressed anthropogenic ignitions (i.e.,
Ia× fPD ) relative to the initial guess: the peak dropped from
3.6×10−5 to 1.8×10−5 ignitionsday−1, with the location of
the peak shifting from 18.6 to 9.1 peoplekm−2 (Fig. 3e).

The fRH and fθ functions in Optimization 3 do not dif-
fer much from the initial guess to the final accepted guess
(Fig. 3c–d). (It should be noted, however, that the initial
guesses for parameters in fRH resulted in a less suppres-
sive function than in Li et al. (2012, 2013), while the initial
fθ was more suppressive.) Altogether – i.e., taking into ac-
count moisture effects on both ignition success probability
and rate of spread – burned area in FINAL is proportional
to (fRH× fθ )

3. The bulk of this net impact on flammability
caused by the changes to fRH and fθ is concentrated in the
range of 0–20 % soil moisture and 0–50 % relative humidity,
with grid cells in this zone seeing a reduction in flammabil-
ity (i.e., fraction of unsuppressed ignitions becoming fires) of
around 0.1 between the initial and final guesses. The impact
of the changes to the moisture functions is most clearly seen
in the Sahara Desert (Fig. S4d).
βAGB,1 increased and βAGB,2 decreased (Fig. 2). These

changes resulted in a rightward shift of the function and a
decrease in the slope from low to high biomasses (Fig. 3).
Biomass is thus more limiting in Optimization 3’s final pa-
rameter set than in its initial one. Whereas the original pa-
rameter set gave fAGB = 0.99 at AGB= 1.67, the final func-
tion does not reach that value until AGB= 2.52.

Optimization 3 saw maximum rate of spread decrease
more than 35 % for grassland (Fig. 2l) between the initial and
final guesses, a result which likely has to do with the model
overestimating fire in these low-biomass systems. This pa-
rameter decreased sharply for most of the optimization, but
as fAGB appropriately began to take on more of the respon-
sibility for regulating fire there, grassland maximum rate of
spread began to increase back towards its initial guess. Max-
imum spread rate nearly doubled for the “tropical tree” veg-
etation type (Fig. 2k), due to a tendency towards underesti-
mation of burned area in that biome.

Comparing the results of FINAL.0 with FINAL.1, we
can see that much of the improvement came in regions where
the initial parameter set severely overestimated burned area
(Fig. 4). A map of sum of squared errors (Fig. 4d) can be used
to visualize performance improvement as would be “seen” by
the optimization algorithm for included grid cells. Arid re-
gions tended to see the most improvement, as evident in the
Sahara, parts of the western United States, the dry savannas
and shrublands of Africa and Australia, and the west and cen-
tral Asian steppes. Moister savannas, as well as the Caatinga,
were most negatively impacted by Optimization 3; the boreal
zone and Southeast Asia also suffered but to a lesser degree.
A map showing model-output SSE change of only the op-
timized grid cells (Fig. S2c) suggests that, contrary to our
expectations, tropical savanna regions did not dominate the
optimization. Instead, relatively lower-burning dry subtropi-
cal savannas and temperate steppes saw the largest improve-
ments, with tropical savannas often seeing worsened perfor-
mance.

4.2 Model performance

4.2.1 Burned area

Figure 5 compares, over 2001–2009, maps of mean an-
nual burned fraction (i.e., fraction of land area) from run
FINAL.1 with those from GFED3s (Randerson et al., 2012)
and the unpacking analysis. Figure 6a shows the difference
in mean annual burned fraction between the model and the
unpacked observations, against which the non-agricultural
model was parameterized. Considering all land cover types
combined, the new fire model recreated the general pattern of
annual fire activity well compared with both GFED3s (Ran-
derson et al., 2012) and the unpacked data (Figs. 5a, b, f; 6a).
The largest modeled overestimates relative to the unpacked
data occurred in the grasslands and shrublands of western
South America, the western Caatinga of northeast Brazil, and
at various points throughout the African savannas (Fig. 6a).
Most of the severe model underestimation relative to the un-
packed data occurred in the African tropical savannas, as well
as (to a lesser extent) the tropical savannas of northern Aus-
tralia (Fig. 6a).
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Figure 3. Optimization 3: changes in functions that were optimized, from original Li et al. (2012, 2013) functions (solid gray), to initial
guesses with Gompertz-style functions where necessary (dashed red), to final parameter set (solid blue). Color bar in panel (f) indicates
difference in the cubed product of fθ and fRH (range 0–1) between the original and new parameterizations, with blue indicating a lower
value in the new parameterization.

The modeled burned fractions of cropland and pasture
match the unpacked numbers almost exactly (Figs. 6c,d),
which is not surprising considering that the unpacked data
were used to force the model on cropland and pasture tiles.
There are some notable discrepancies, however. Specifically,
there is too much cropland fire in one European grid cell and
too little in several grid cells in northern Australia (Fig. 6c).
Pasture fire did not experience such severe error in burned
fraction anywhere (Fig. 6d).

The strong correspondence of modeled cropland and pas-
ture fire with the unpacked observations (as expected since
the latter were directly used to drive the former) suggests that
the majority of the error seen in total burning must be asso-
ciated with fire on non-agricultural lands. Indeed, although
the non-agricultural fire model generally captured the world-
wide distribution of fire – with tropical savannas, grasslands,
and shrublands generally dominating burned area – the fit
is by no means perfect (Fig. 6b). There are a number of re-
gions where the model simulates little to no non-agricultural
burning but the unpacked data show significant amounts of
fire (Figs. 5e,i) . This phenomenon is especially noticeable in
the eastern African savannas, the shrublands of western Aus-
tralia, and throughout the tropical and temperate grasslands,
savannas, and shrublands of South America.

Worldwide, the non-agricultural fire model underesti-
mated burned area, with 1.91× 106 km2 yr−1 simulated as
having burned – an underestimate of 22 % relative to the
unpacked estimate (Table 4). Unsurprisingly given the spa-
tial results presented above, global averages for cropland and
pasture were much better – 0.434× 106 km2 yr−1 (4 % un-
derestimate) and 2.02× 106 km2 yr−1 (1 % underestimate),
respectively. Mean annual global burned area across all land
covers over 2001–2009 was modeled as 4.36×106 km2 yr−1,
an underestimate of 6.7 % relative to GFED3s and an un-
derestimate of 12 % relative to the unpacked total. The time
series of annual burned area over 2001–2009 for each land
cover from the model (i.e., FINAL.1) are compared with
the GFED3s and unpacked estimates in Fig. 7a.

The non-agricultural fire model performed well in terms of
simulating the within-year timing of burned area (Figs. S5e,
i). This was reflected in the results for combined burning
across all land cover types, which corresponded well with
both GFED3s and unpacked burned area (Figs. S5a–b, f);
the phase of model-estimated fire was 32 days later than ob-
served for all fire combined as compared with total unpacked
fire (mean phase difference MPD= 0.18), and 49 days later
than observed for non-agricultural fire specifically (MPD=
0.27).
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Figure 4. Change in non-agricultural fire model performance for Optimization 3. (a–b) Mean annual burned fraction on non-agricultural
lands from the initial guess (a) and the final parameter set (b; identical to Fig. 5i) (c–d) Difference between runs FINAL.0 and FINAL.1
in correspondence of modeled to unpacked non-agricultural burning (Fig. 5e) as measured by mean annual burned fraction (c) and sum of
squared errors of burned area evaluated at monthly resolution (d). For (c) and (d), blue indicates improvement by FINAL.1 over FINAL.0.

Figure 5. Mean annual burned fraction over 2001–2009. (a): from GFED3s (Randerson et al., 2012); (b–e): observational estimates from
unpacking analysis; (f–i): model-estimated. (i is identical to Fig. 4c.)
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Figure 6. Absolute error in mean annual burned fraction (a–d) and fire carbon emissions (e–h) for each land cover type: model-estimated
minus observational estimates from unpacking analysis.

Table 4. Global mean annual burned area and associated carbon emissions, 2001–2009. FINAL.0 and FINAL.1 refer to experimental runs
(Table 2) with Optimization 3 (Table 3). T: total; C: cropland; P: pasture; O: other land.

Burned area (106 km2 yr−1) C emissions (PgCyr−1)

T C P O T C P O

GFED3s 4.68 0.332* – – 2.48 n.d. – –
Unpacked 4.93 0.454 2.04 2.44 2.57 0.194 0.538 1.84
FINAL.0 5.89 0.434 2.02 3.43 2.03 0.295 0.707 1.03
FINAL.1 4.36 0.434 2.02 1.91 2.14 0.295 0.706 1.14

∗ Midpoint of values for cropland burning with (0.208) and without (0.456) including cropland-natural
mosaic.

4.2.2 Carbon emissions

Just as the model tended to underestimate total global burned
area, it also underestimated carbon emissions from fire (Ta-
ble 4). The 2.14 PgCyr−1 simulated by the model repre-
sents an underestimate of 14 % relative to GFED3s and of
17 % relative to the unpacking data. This is again princi-
pally due to non-agricultural fire, for which the model simu-
lated 1.14 PgCyr−1 as opposed to the unpacked estimate of

1.84 PgCyr−1 – an underestimate of 38 %. Agricultural fire
emissions were actually overestimated, with 0.295 PgCyr−1

for cropland and 0.706 PgCyr−1 for pasture – overestimates
of 52 and 31 % compared to the unpacked values of 0.194
and 0.538 PgCyr−1, respectively.

The spatial distribution of errors in total fire carbon emis-
sions (Fig. 6e) generally reflects the distribution of errors in
simulated burned area (Fig. 6a). As with burned area, there
are sizable regions where the model simulates little to no
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Figure 7. Annual time series of observed and model-estimated burned area (a) (km2), and fire carbon emissions (b) (PgCyr−1), from 2001 to
2009. Dashed lines: observational estimates of total and by-land cover fire emissions from Rabin et al. (2015). Solid blue lines: observations
of total emissions from GFED3s (Randerson et al., 2012). Other solid lines: model-estimated total and by-land cover fire emissions.

non-agricultural fire carbon emissions but the unpacked data
show otherwise (Fig. 8e, i). Cropland fire emissions, as with
burned area, are underestimated in northern Australia; there
are also two regions in central Africa where cropland fire
emissions are overestimated despite essentially correct an-
nual burned fraction (Fig. 8c, g). The areas of slightly un-
derestimated pasture burned fraction are not apparent on the
map of pasture fire emissions error; large overestimates of
emissions from pastures in the tropical savanna biome are
instead the most apparent aberrations (Fig. 8d, h).

5 Discussion

5.1 Model performance in context: burned area

In terms of spatial distribution, the model tends to over-
cluster non-agricultural burned area relative to the unpacked
estimate. That is, it tends (especially in savanna regions) to
simulate a highly spatially heterogeneous distribution of non-
agricultural burned area, with some areas burning very little
and others burning far too much (Fig. 5). It is important to
consider, however, that although the unpacking method gen-
erates accurate estimates of total burned area at the level of
each analysis region, the burning tends to be too evenly dis-
tributed within each region (Rabin et al., 2015). This results
in an overly smooth map, as can be seen by comparing maps
(a) and (b) in Fig. 5. Non-agricultural burning in the real
world might thus exhibit more spatial clustering than is ap-
parent in Fig. 5e. The burned area smoothing resulting from
the use of relatively large unpacking regions in the boreal

zone (and especially in Russia; Fig. 1 in Rabin et al., 2015)
may have contributed to the model’s poor performance there.

To get a sense of the spatial clustering of real-world non-
agricultural fire, we have constructed a map of mean annual
“GFED3s non-agricultural” burned fraction by subtracting
unpacked cropland and pasture burned fraction from mean
annual GFED3s total burned fraction. (The exact numbers
from this map are not very meaningful, since it is possible to
have values less than zero in grid cells where unpacking es-
timated more cropland and pasture burning than all burning
observed by GFED3s; the purpose of this exercise is only
to examine spatial heterogeneity.) A map of the coefficient
of variation in 6× 6 grid cell (12◦ latitude× 15◦ longitude)
kernels across this map is compared with similar maps for
mean annual modeled and unpacked non-agricultural fire in
Fig. S6. As expected, the coefficient of variation is much
higher in the GFED3s data than the unpacked data, indicating
stronger spatial clustering of non-agricultural fire in the real
world. The fact that the model simulates more heterogeneity
than the unpacked estimate therefore indicates that the model
is capturing heterogeneity in fire drivers that are important to
actual fire patterns. This is not to say, of course, that the het-
erogeneous patterns simulated by the model exactly match
the observations – in some places they do not, as is apparent
in Fig. 5.

Although savanna regions may have shown the largest
absolute difference in modeled vs. unpacked fire activity,
smaller differences can be just as important in other ar-
eas. For example, the GFED3s and unpacked data show a
mean annual burned fraction of 1–5 % for the boreal forests
of central Alaska and northwestern Canada (Figs. 5a–b, e),
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Figure 8. Mean annual fire carbon emissions. (a): from GFED3s (Randerson et al., 2012); (b–e): observational estimates from unpacking
analysis; (f–i): model-estimated.)

which would correspond to a mean fire return interval of 20–
100 years. While this is a low rate of burning relative to trop-
ical savannas, for example, it still represents an important
process for the structure and function of that ecosystem. The
non-agricultural fire model captures almost no boreal forest
fire whatsoever (Fig. 5i), which should hamper the ability
of LM3 to accurately simulate vegetation there. One possi-
ble contribution to this deficit is the importance of multi-day
fires in the boreal region. We followed Li et al. (2012) in
assuming that all fires last 24 h, but this assumption is not
well-supported by the literature. Korovin (1996) found that
almost 60 % of forest fires in Russia over 1947–1992 lasted
longer than one day, and that fires lasting longer than 10 days
accounted for nearly 70 % of the burned forest area. Stocks
et al. (2003) found a similar importance of very large (and
thus presumably long-lasting) fires in Canada, with individ-
ual burns of more than 20 000 ha comprising over 65 % of
mean annual burned area over 1959–1997. Ideally, FINAL
would replicate this pattern by explicitly modeling the du-
ration of individual fires based on evolving weather condi-
tions. Several global fire models have introduced such a com-
ponent, but with mixed results. The LPJ-LMfire model de-
veloped by Pfeiffer et al. (2013), which allows fires to burn
for about four hours per day until they experience signifi-
cant precipitation, actually tends to overestimate boreal for-
est fire. The HESFIRE model (Le Page et al., 2015) also al-
lows fires to burn indefinitely, calculating twice per day an
extinction probability based on fuel load, attempted suppres-
sion intensity, landscape fragmentation, and weather condi-
tions. However, like FINAL, HESFIRE simulates too little

fire in the boreal region (Le Page et al., 2015). A new ver-
sion of FINAL, FINAL.2, does include multi-day fire, and
is successfully able to reproduce the distribution of fire fre-
quency binned by duration in boreal Canada. However, even
with that and other changes impacting fire behavior in the
boreal zone, FINAL.2 still does underestimate burned area
there (Ward et al., 2018).

5.2 Model performance in context: emissions

The tendency of FINAL.1 to underestimate total global
2001–2009 burned area is reflected in an underestimate of
the associated carbon emissions – by 7 and 14 %, respec-
tively, relative to GFED3s (Table 4). GFED3s and the un-
packing data show respective average emissions densities
of 0.53 and 0.52 kgCm−2 of burning for all fire combined,
whereas FINAL.1 gives 0.49 kgCm−2 (based on Table 4).
The largest discrepancy in fire carbon emissions density be-
tween the modeled and unpacked estimates is on cropland,
where FINAL.1 simulates 0.68 kgCm−2 but the unpack-
ing analysis gives only 0.43 kgCm−2 (59 % overestimate;
Table 4). Emissions density on pasture are also overesti-
mated, by 33 %; non-agricultural emissions density is under-
estimated by 21 %.

Given how extensive pasture burning is at a global scale,
it is especially important to understand why the C emissions
from pasture fire were so significantly overestimated – espe-
cially in the tropics (Fig. 8d, h). Emissions from pasture fires,
as with all fires, are the product of three quantities: burned
area, aboveground biomass, and combustion completeness.
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The model simulates burned pasture area quite accurately
(Table 4), and it is unclear how incorrect combustion com-
pleteness would affect emissions over long time scales. We
thus conducted a detailed examination of grazing intensity
and pasture biomass simulated by LM3, which can be found
in Appendix B. Briefly, it appears that excess dead woody
material is to blame for overestimates of pasture (and prob-
ably cropland) fire emissions density. At least in the tropics,
this is partially due to the fact that much slash wood remain-
ing during forest clearance is simulated as being left on the
ground, when in reality it is mostly burned away shortly after
cutting. The fact that LM3 uses a single global value for graz-
ing intensity may also contribute to mis-estimates of pasture
burning emissions, but this is likely outweighed by the effect
of dead wood.

Note that the records of fire emissions in the GFED
product are not purely observation-based. GFED emis-
sions estimates are generated by forcing a version of
the Carnegie-Ames-Stanford-Approach (CASA) model with
GFED burned area, using vegetation type and soil moisture
to determine combustion completeness (van der Werf et al.,
2006, 2010). Biases may exist in that model that result in in-
correct estimates of aboveground biomass and/or combustion
completeness. Apparent discrepancies between GFED3s and
FINAL-simulated fire emissions thus may not represent true
errors by FINAL relative to reality.

5.3 What do optimization results suggest?

Optimization resulted in fewer anthropogenic ignitions and
stronger anthropogenic suppression for any given value of
population density (Fig. 3a–b, e). This suggests that, by
grouping together non-agricultural fires with pasture fires,
previous modeling efforts may have overestimated the con-
tribution of humans to burning on non-agricultural land. That
is, by extracting a “pure” non-agricultural fire signal, our
study shows that pasture burning practices may have been
responsible for much of what was once characterized as gen-
eral anthropogenic fire, and that humans enhance fire on
non-agricultural lands less than once believed. In terms of
the general shape of net anthropogenic influence on non-
agricultural fires – including the location and width of the
peak – our results do not differ substantially from the func-
tion described by Pechony and Shindell (2009) or that used
by Li et al. (2012; Fig. 3e). Knorr et al. (2014), in com-
parison, used the Levenberg–Marquardt algorithm to fit a
simple empirical fire model in a non-interactive fashion
and found that the peak was actually located closer to a
population density of 0.1 peoplekm−2 than to the value of
∼ 10 peoplekm−2 that we found here.

When considering the results of this optimization, it is im-
portant to keep in mind that even if the Li et al. (2012, 2013)
model had been used in LM3 without modification, perfor-
mance would have differed from the original CLM version.
Structural differences between CLM and LM3 result in dif-

ferent vegetation dynamics and micrometeorology relevant
for fire. We also used a different source for climate forcing
data and calibrated our model based on different burned area
data. These and other differences create uncertainty about ex-
actly why any given function’s parameters shifted as they
did during our optimization. The Fire Model Intercompari-
son Project (FireMIP; Rabin et al., 2017) could be informa-
tive in this regard.

As mentioned in Sect. 4.1, Optimization 2 performed bet-
ter than Optimization 3 in the 241 grid cells chosen for opti-
mization but not when considering all grid cells. The great-
est differences between these two final parameter sets have
to do with anthropogenic ignitions. Whereas Optimization 3
resulted in decreased ignitions per person and increased sup-
pression (Fig. 3), Optimization 2 decreased suppression and
greatly increased ignitions per person (Fig. S7). This extreme
human burning parameterization – far in excess of empiri-
cal estimates and functions in other fire models – explains
the worsened performance of Optimization 2’s final param-
eter set in Europe, South and Southeast Asia, and the east-
ern United States (Fig. S8). Optimization 2 also resulted in
a “backwards” shape for fRH, where lower relative humidity
results in less fire. Additionally, fRH is never much greater
than 0.2, and fθ is never much greater than 0.5. The net result
of Optimization 2 is that it performs worse than Optimization
3 across much of the United States, Central America, Eu-
rope, South and Southeast Asia, and Australia (Fig. 9). On
the other hand, Optimization 2 outperforms Optimization 3
across most of the boreal zone and in the Cerrado; the two
perform similarly in the southern African savannas but Opti-
mization 2 performs slightly better in the north (Fig. 9).

5.4 Levenberg–Marquardt optimization: lessons
learned

One of the limitations of the Levenberg–Marquardt algo-
rithm is that it can only “move downhill.” At every iteration,
it searches for new parameters in the direction of lower sum
of squared errors from the current point in parameter space,
even though the set of parameters with the lowest possible
sum of squared errors may be in a totally different direction.
As an analogy, imagine a person given the task of finding the
lowest point in a city. Using a “downhill-only” algorithm,
this person would literally walk downhill from their starting
point and stop when they reach a point – the local minimum –
where continued travel in any direction would be uphill. The
person might more thoroughly search the city for its lowest
point by occasionally turning uphill and/or randomly taking
a bus to a totally different part of the city – analogous to the
behavior of the Metropolis–Hastings or simulated annealing
algorithms. Levenberg–Marquardt being a downhill-only al-
gorithm is not a fatal flaw, especially when the initial pa-
rameter set guess is well-informed based on the literature.
It may well represent an improvement in methodology over
the manual trial-and-error approach. But it is important to re-
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Figure 9. Difference in non-agricultural fire model burned area sum of monthly squared errors (SSE) between Optimizations 2 and 3. Blue
represents areas where the latter performs better.

member that Levenberg–Marquardt should not be expected
to produce the universally best possible parameter set.

Another, potentially more serious limitation of the
Levenberg–Marquardt algorithm is its use of the sum of
squared errors (SSE) as a metric to gauge model perfor-
mance. While the setup used here does account for accuracy
of burned area simulations in both space and time, SSE tends
to result in a bias towards improving performance in grid
cells where the model simulates burned areas much higher or
much lower than observations. This tendency to reduce ab-
solute error would be fine if the goal of optimization were
to produce a model that accurately simulates burned area
for its own sake, but relative error can be more reflective of
how well the model simulates the state of the vegetation. For
example, assume two hypothetical 1000 km2 grid cells: one
dominated by tropical grassland, where observations show
100 % annual burning but the model simulates 25 %; and one
dominated by boreal forest, where observations show 1 % an-
nual burning but the model simulates 0.25 %. In both cases,
the model is producing 75 % less fire than what actually oc-
curs – a difference that could be extremely important to the
simulated structure and function of both ecosystems. How-
ever, because the absolute error in the grassland grid cell
(−750 km2 yr−1) is so much greater than that in the boreal
forest grid cell (−7.5 km2 yr−1), the former will, all other
things being equal, have a much greater influence on the di-
rection and magnitude of the step towards the next parameter
set guess. Our use of an equirectangular grid – with cells
of constant size in terms of latitude and longitude but not
physical area – means that cells from high latitudes are much
smaller than cells from the tropics, which exacerbates this
issue. Because the observations show that tropical savannas
burn far more than any other biome, the absolute errors are
highest there (Fig. 6). These regions thus likely drive most
of the optimization, which could have led to the neglect of
performance in, for example, the boreal region. An optimiza-
tion algorithm that took relative error into account might thus

improve performance in low-fire regions, while worsening it
where fire is frequent.

The fact that Levenberg–Marquardt only considers the
SSE of a parameter set can lead to situations as observed
with Optimization 2, where the final parameter values result
in functions that bear little resemblance to those derived from
empirical analyses (Fig. S7). A different algorithm could pe-
nalize extreme functional forms and thus preferentially stay
near more reasonable parameter values.

Simply substituting an alternative measurement for SSE in
a Levenberg–Marquardt context would be less than ideal for
addressing these issues. In addition to being the performance
metric – i.e., the statistic by which the algorithm determines
whether a parameter set has resulted in improved model per-
formance – SSE is an inherent part of the mathematics in
the Levenberg–Marquardt algorithm generating the direction
and size of the step from the most recently accepted guess to
the next accepted guess (Levenberg, 1944; Marquardt, 1963;
Transtrum and Sethna, 2012). Using a different performance
metric would still result in guesses designed to minimize
SSE. This would at best reduce the efficiency of the algo-
rithm, and at worst result in searches orthogonal to the di-
rection of improved performance. To most effectively avoid
the problems inherent with SSE, a completely different al-
gorithm – preferably one that can use any arbitrary perfor-
mance metric – would be needed. The Markov Chain Monte
Carlo method (MCMC) is one such option, which has the ad-
ditional benefit, as discussed above, of being a global search
algorithm. It has been widely used in the Earth sciences, in-
cluding by Le Page et al. (2015) to fit a global fire model.
Those authors used as their performance metric a combina-
tion of (a) accuracy of classification of grid cells into burned
fraction bins and (b) level of correspondence between model-
simulated and observed interannual variability. However, be-
ing a global search, MCMC requires many iterations to con-
verge on an optimal solution – Le Page et al. (2015) re-
ported iteration counts of hundreds to over a thousand. The
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deeply model-interactive setup used here – where the com-
plete model of soil, vegetation, and fire was forced with cli-
matic data for 19 model years – took around two hours per
iteration with all 241 grid cells being run in parallel, which
made MCMC and similar many-iteration algorithms compu-
tationally infeasible.

The choice of grid cells and initial conditions is also ex-
tremely important to any automated model fitting algorithm.
The robustness of our results is enhanced by our use of differ-
ent initial parameter set guesses (Knorr et al., 2014; Le Page
et al., 2015). A more structured and informed approach to
sampling grid cells for the optimization – and increasing the
number of grid cells – would further improve confidence in
the selected parameter set. A larger set of grid cells might
have prevented Optimization 2 from traveling in the direc-
tion it did, with improved performance in the optimized grid
cells but worsened performance overall. Region-specific op-
timizations might also be beneficial; although the general
influences of different variables on fire might be consistent
across biomes, vegetation structure and other factors likely
mean that the relative importance of things like relative hu-
midity or population density vary between, e.g., boreal and
temperate forests, or tropical savannas in South America and
Africa.

6 Conclusions: regional variations in pattern and
practice

FINAL represents the first attempt in a dynamic global vege-
tation model to separate present-day cropland, pasture, and
non-agricultural burning. The importance of this can be
seen, for example, in differences between pasture and non-
agricultural land in the timing of the fire season – especially
in Central Asia (Fig. S5). These land use/cover types also
differ in fire frequency, as exhibited for example in northern
Australia (Fig. 5). Overall, the combined fire model tends
to perform well over much of sub-Saharan Africa, Brazil,
Central Asia, and Australia. However, non-agricultural burn-
ing specifically is not well-represented in several impor-
tant regions; these include eastern sub-Saharan Africa, South
American savannas and grasslands, interior Australia, South
and Southeast Asia, and the boreal zone (Fig. 5). The strong
limitation of fire by soil moisture may have much to do with
performance in those parts of the world (Sect. 5.3). The ap-
parent deficiencies of the non-agricultural fire module – the
first to be tested against globally gridded estimates of non-
agricultural burning – may reflect the need to more funda-
mentally rethink how non-agricultural fire is represented in
global models.

The use of climatologies for cropland and pasture burned
area is a significant limitation of FINAL.1. It allows very lit-
tle interannual variability (Fig. 7) – only what results from
changing agricultural area. Perhaps more importantly, how-
ever, the use of a climatology based on just nine years of
observations makes it difficult to justify the use of the model
very far into the past or future. Economic development can
result in changes in technology, types of crops, and legisla-
tive priorities (banning crop fires, for example), all of which
can affect the amount and timing of agricultural fire. Climate
change has and will continue to affect the timing, length, and
quality of growing seasons (Porter et al., 2014); the asso-
ciated impacts on planting and harvest date will affect the
timing of crop residue burning, and people will shift the
timing of burns to match the shifting phenology of pasture
vegetation. It is thus important to understand what infor-
mation people consider in their decisions of whether, when,
and how much to burn. Literature reviews and new research
could shed light on traditional methods for climate forecast-
ing based on changes in the weather and vegetation (e.g., Ka-
gunyu et al., 2016), as well as how these cues might be tied
to the timing of prescribed fire for various purposes (e.g.,
Laris, 2002). Advanced analytical methods could also be
applied to climate and fire history observations to look for
lagged, region-specific relationships of agricultural burning
with weather at weekly to monthly time scales.

While temporal variation is neglected, this first version of
FINAL does begin to account for regional variation in agri-
cultural fire management practices. Other aspects of FINAL
and LM3, as with many global fire and vegetation models,
could be improved by representing such geographic varia-
tion. Livestock grazing intensity, as discussed above, is one
important example. The shape of the population density–fire
relationship also likely varies across the world. Some fire
models include a spatially dependent human ignitions term
(Thonicke et al., 2010) to account for this effect. Incorpo-
rating this geographic variation into FINAL could improve
performance, but it would be important to do so based on in-
dependent analyses so as to avoid simply compensating for
the model’s errors.

Data availability. The fire model and optimization code are avail-
able for download on GitHub (Rabin, 2017). Model outputs will be
made available by the corresponding author upon request.
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Appendix A: Levenberg–Marquardt algorithm:
implementation

Our implementation of the Levenberg–Marquardt algorithm
(Fig. A1) began with a Bash script that set up the files and
directories necessary to run the fire model at the 241 points.
These points would then be run for 1991–2009 in parallel.
Once this first iteration was complete, a Python script calcu-
lated the sum of squared errors (S) over each grid cell (c),
year (y), and month (m):

S =

241∑
c=1

2009∑
y=2001

12∑
m=1

(
Ec,y,m−Oc,y,m

)2
. (A1)

Here, E refers to the model-estimated burned area, and
O refers to an observation-based estimate of burned area.
Specifically, we focused on non-agricultural lands, using as
our “observations” estimates generated for each month and
year by the method detailed in Rabin et al. (2015) but with
F̂k estimates restricted to non-negative values. The Python
script then generated a new parameter set guess based on the
initial values of the parameters and saved a flag telling the
Bash script to run the model again with the new guess.

After this and subsequent model runs, another Python
script would calculate the associated value of the sum of
squared errors (St ) and compare it to the sum of squared er-
rors from the most recently accepted guess (S∗). If St < S∗,
the current parameter set guess (βt ) would be “accepted” and
become the new value of β∗, and λ would be decreased. Oth-
erwise, βt would be “rejected,” with β∗ retaining its previ-
ous value, and λ being decreased. In either case, a new guess
would then be generated based on β∗ and the new value of λ,
the model would be run again, and the process would repeat
(Fig. A1).

The Python script we developed was based on a MATLAB
routine for Levenberg–Marquardt solutions of nonlinear least
squares problems called marquardt.m (Nielsen, 2001), fur-
ther documented in Nielsen (1999). Besides porting it to
Python, we made a number of changes to the original code.
Some restructuring was related to the fact that the new pa-
rameter sets could not be evaluated within Python. Others
were to incorporate new features, such as the limited multi-
plicative damping based on work by Transtrum and Sethna
(2012).

Nielsen (2001) uses a somewhat complex method to up-
date δ after every each iteration (Fig. A2). If St ≥ S∗, λ
is multiplied by a value ν, whose initial value is 2 and is
doubled after every rejected guess. If a guess is accepted
(St < S∗), ν is reset to 2, and λ is decreased. We made some
changes to the original code as a result of the aforementioned
restructuring, with λ being reduced as

λ= λ×max

(
1
3
,1−

[
S

dLt−1
− 1

]3
)
, (A2)

Setup

End

Model 
runs

Calculate 
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1st

model 
run?

< previous 
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Yes Yes

No No

Generate 
new guess

∆SSE 
tiny?
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Step 
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No

Yes

Max 
runs? Yes
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Figure A1. Flowchart describing our implementation of the
Levenberg–Marquardt algorithm. Blue shading indicates operations
related to running the model; all other steps occur in Python.
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Figure A2. Method for updating λ, after Nielsen (1999, 2001).

where

dLt−1 = δt−1×
(
λ× δt−1− JT

×f .
)
. (A3)

Note that there have been many methods proposed over the
years for updating the damping parameter in the Levenberg–
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Figure A3. Summary of performance of Optimization 1 initial guess in grid cells chosen for optimization with regard to non-agricultural
burning. (a) Map of sum of squared errors. (b) Histogram of error in mean annual burned area.

Marquardt algorithm. These impact the size of the steps the
algorithm takes while searching through parameter space,
with implications for efficiency. However, the math by which
the algorithm determines which direction on each dimension
to move is unaffected.

The algorithm has several possible stop conditions. We set
a maximum of 300 iterations, which was never reached. The
algorithm would also stop if the Python script detected that
the gradient was decreasing very slowly:

||JT
×f ||2 ≤ 10−15, (A4)

if the step size was very small:

||δt ||2 ≤ 10−15
× ||β∗

||2, (A5)

or there was an issue of near-singularity in one of the matri-
ces involved in solving for the new parameter step:

||δt ||2 ≥
||β∗
||2

ε
, (A6)

where ε is the smallest number allowed by the numerical pre-
cision of the Python environment. However, in practice, we
usually ended up halting the algorithm manually. Each iter-
ation took about two hours, and once we noticed neither the
sum of squared errors nor any parameter changing by very
much, we would stop the runs. This could have been avoided
by choosing more appropriate threshold values for the stop
conditions, but likely did not appreciably impact the results.

We initially selected 250 land cells at random from the
LM3 grid, but rejected 9 for various reasons (all glacier, all
lake, etc.). This left us with 241 grid cells which we would
use for the optimization. Preliminary tests, however, revealed
a few problems with the selection: a bias towards improv-
ing model fit in grid cells with strong model underestima-
tion was evident (i.e, grid cells where the model simulated
too much fire were undersampled), and the high northern
latitudes – which make up a small fraction of global land

area and an extremely small fraction of global fire activity –
were judged to be oversampled. We got rid of 14 of those far
northern grid cells (from Greenland and the Canadian tun-
dra), then selected 23 new cells to bring us up to 250. The
new cells were specifically selected from cells where a pre-
liminary model run either underestimated or overestimated
non-agricultural burned area relative to the unpacked data.
Unfortunately, the model’s performance in that preliminary
run did not well match how the model actually performed in
our optimization run. As such, we ended up oversampling ar-
eas of underestimation, leading to a bias towards making the
model burn too much. We then culled the most extreme un-
derestimated grid cells one by one until the sums of squared
errors from underestimated and overestimated grid cells gen-
erated by the initial guess were approximately equal. This
left us again with 241 grid cells, whose locations and initial
sum of squared errors are shown in Fig. A3a. A histogram
of the mean annual error in burned area of the initial guess
(Fig. A3b) shows that the positive and negative errors in this
new dataset are approximately balanced.

Appendix B: Grazing intensity and pasture biomass

Here, we compare aspects of LM3 and FINAL with regard to
grazing intensity and pasture biomass; this allows us to not
only test whether FINAL appears to be overestimating actual
pasture fire emissions, but if so, to also diagnose possible
causes.

A widespread overestimation of biomass in tropical savan-
nas would at least partially explain the tendency toward over-
estimated pasture fire carbon emissions there (Fig. 6d, h). Be-
cause most of the world’s pasture fire occurs in this biome
(Fig. 5), it would also explain the 31 % overestimate of mean
annual global pasture fire carbon emissions (Table 4). Excess
simulated plant matter in tropical savannas could result from
any or all of several factors. It is possible, for example, that
grazing intensity is unrealistically low.
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Figure A4. Mean aboveground carbon pools on pasture over 2001–2009. Grid cells composed of< 20 % pasture are shown in gray; note that
color scales differ between sub-figures. (a): live leaves; (b): aboveground live stem; (c): leaf litter; (d): woody litter; (e): total aboveground
biomass.

LM3 does not appear to have simulated too little grazing
at a global level. With the rate of grazing set to 4 % of leaf
biomass each day, the FINAL.1 run simulated the consump-
tion by livestock of 1.54 PgCyr−1 globally over 2001–2009.
This compares favorably with previously published estimates
of carbon flows to livestock. Wirsenius (2000) estimated that
domesticated grazers consumed 1.33 PgC in 1990, not count-
ing draft animals. Krausmann et al. (2008), working on the
year 2000, estimated that livestock (including draft animals)
consumed 1.9 PgC. Haberl et al. (2007) estimated that the
average grazing pressure on pasture for the year 2000 was
41 gCm−2, which again compares favorably with the simu-
lated value from FINAL.1 of 45 gCm−2 yr−1 over 2001–
2009.

Although the global amount of grazed vegetation seems to
have been simulated well (as discussed above), much vari-
ation likely exists among regions in how intensely land is
grazed. This is not captured by the assumption in our model
of a 4 % daily grazing rate. Combustion completeness val-
ues being too low would also lead to too-high estimates of
aboveground biomass, but the possible effect of this on esti-
mated emissions is unclear. Increasing combustion complete-
ness would increase fire emissions in the short term, but as
any individual pasture tile grew older and approached equi-
librium biomass, fire emissions might be no different. That
is, decreased biomass with increased combustion complete-
ness might not change emissions density.

The amount of leafy vegetation on pastures – not just that
consumed – also appears to have been simulated well. On av-
erage over 2001–2009, FINAL.1 simulated 3.4 kgCm−2 of

aboveground biomass on pastures, including both live veg-
etation and dead material. This was broken down into live
leaves (0.22 kgCm−2), live stems (0.94 kgCm−2), leaf lit-
ter (0.45 kgCm−2), and dead woody material (1.8 kgCm−2);
these pools are mapped for the world’s major pasture re-
gions in Fig. A4. In their work in the Waikato region of
New Zealand – a moist, temperate ecosystem dominated by
C3 grasses – Hanna et al. (1999) defined active pastures
as containing no more than 0.2 kgCm−2 of live leaves or
0.15 kgCm−2 of dead material. FINAL.1 simulated less
than 0.1 kgCm−2 of live leaf tissue in New Zealand, and
indeed the world’s temperate pastures seem to satisfy the
≤ 0.2 kgCm−2 criterion (Fig. A4a). The tropics generally see
much higher modeled pasture leaf biomass; in all cases, leaf
biomass does not much exceed 0.25 kgCm−2 (Fig. A4a). Uhl
and Kauffman (1990) describe a pasture in eastern Amazonia
with 0.6 kgCm−2 of nonwoody material; this is close to the
simulated value of combined live and dead leaf C (Fig. A4a,
c). Kauffman and Cummings (1998), looking at three other
pastures in Amazonia, found a range of 0.8–1.5 kgCm−2 of
fine fuels, which included both live and dead leaf material as
well as fine woody debris. Again, this corresponds well with
our results (Fig. A4a, c), although we do not simulate fine
woody debris. Kauffman and Cummings (1998) also found
1.3–5.2 kgCm−2 of large downed trunks remaining from the
initial clearance of forest for pasture; the simulation produces
levels of woody litter in that range for pastures in the Atlantic
Forest region of Brazil and in southern China (Fig. A4d).
Savadogo et al. (2007) found a mean of 0.045 kgCm−2 of
live biomass in the tree and bush savanna of Burkina Faso
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– a value similar to that of the combined live leaf and stem
pools simulated by LM3 (Fig. A4a, b).

However, LM3 does seem to have overestimated pasture
biomass in tropical savanna regions when including dead
woody material. In that same part of Burkina Faso, Savadogo
et al. (2007) found a mean of 0.07 kgCm−2 of dead material,
whereas LM3 simulated values of around 0.2–0.3 kgCm−2

(Fig. A4c, d). Ottmar et al. (2001) found that land in the
Cerrado with a significant herbaceous layer (campo limpo,
campo sujo, and cerrado ralo) generally tended to have less
than 1 kgCm−2 of aboveground live and dead biomass; LM3
simulated about 1–1.5 kgCm−2 (Fig. A4e). It is not clear
whether the sites examined by Ottmar et al. (2001) were ac-
tively grazed; if not, pastures there would be expected to have
even less biomass, in which case LM3’s overestimate would
be more pronounced.

The fact that FINAL does not explicitly simulate fire as-
sociated with land clearance likely contributes to its overes-
timation of pasture (and cropland) fire emissions density. In
the version of LM3 used here, biomass killed during land

use transitions can be either harvested or wasted. Harvested
wood biomass goes to one of three long-lived virtual emis-
sions pools, while wasted biomass is transferred to litter. But
in reality, wood remaining after harvest (also known as slash)
is often burned, especially in the high-biomass moist tropical
forest biome. The emissions involved are significant: tropi-
cal deforestation burns were estimated by van der Werf et al.
(2010) to contribute up to 15 % of global annual fire CO2-
C emissions on average. Instead of breaking this out into a
separate flux, LM3 and FINAL are conflating land clearance
fire emissions with the emissions from subsequent burning of
the cleared land for agricultural management. This is unfor-
tunately not a mere accounting quirk; the use of one or two
burns to get rid of most of the remaining slash wood means
that fire emissions drop rapidly a few years after land clear-
ance, whereas LM3 and FINAL simulate a gradual decrease
over time.

Geosci. Model Dev., 11, 815–842, 2018 www.geosci-model-dev.net/11/815/2018/



S. S. Rabin et al.: A global fire model with agricultural burning practices 839

The Supplement related to this article is available online
at https://doi.org/10.5194/gmd-11-815-2018-supplement.

Author contributions. All authors contributed to the conceptual de-
sign of the model and to editing this article. SSR and SLM con-
tributed code. SSR and DSW performed optimizations and model
runs. SSR composed most of this article, analyzed model results,
and produced figures. BIM also contributed to figure design.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Sam Rabin was supported by a National
Science Foundation Graduate Research Fellowship, and by the
Carbon Mitigation Initiative. Brian I. Magi was supported by
NSF BCS-1436496. Special thanks to Stijn Hantson and the three
anonymous reviewers for their helpful comments.

The article processing charges for this open-access
publication were covered by a Research
Centre of the Helmholtz Association.

Edited by: Tomomichi Kato
Reviewed by: three anonymous referees

References

Aldersley, A., Murray, S. J., and Cornell, S. E.: Global
and regional analysis of climate and human drivers
of wildfire, Sci. Total Environ., 409, 3472–3481,
https://doi.org/10.1016/j.scitotenv.2011.05.032, 2011.

Archibald, S., Roy, D. P., van Wilgen, B. W., and Scholes,
R.: What limits fire? An examination of drivers of burnt
area in Southern Africa, Glob. Change Biol., 15, 613–630,
https://doi.org/10.1111/j.1365-2486.2008.01754.x, 2009.

Archibald, S., Lehmann, C. E. R., Gomez-Dans, J. L., and
Bradstock, R. A.: Defining pyromes and global syndromes
of fire regimes, P. Natl. Acad. Sci. USA, 110, 6442–6447,
https://doi.org/10.1073/pnas.1211466110, 2013.

Arora, V. K. and Boer, G. J.: Fire as an interactive component
of dynamic vegetation models, J. Geophys. Res., 110, G02008,
https://doi.org/10.1029/2005JG000042, 2005.

Balch, J. K., Nepstad, D. C., Brando, P. M., Curran, L. M.,
Portela, O., de Carvalho, O., and Lefebvre, P.: Negative fire feed-
back in a transitional forest of southeastern Amazonia, Glob.
Change Biol., 14, 2276–2287, https://doi.org/10.1111/j.1365-
2486.2008.01655.x, 2008.

Bistinas, I., Harrison, S. P., Prentice, I. C., and Pereira, J. M.
C.: Causal relationships versus emergent patterns in the global
controls of fire frequency, Biogeosciences, 11, 5087–5101,
https://doi.org/10.5194/bg-11-5087-2014, 2014.

Bond, W. J. and Kelley, J. E.: Fire as a global “herbivore”: the ecol-
ogy and evolution of flammable ecosystems, Trends Ecol. Evol.,
20, 387–394, https://doi.org/10.1016/j.tree.2005.04.025, 2005.

Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J.,
Cochrane, M. A., D’antonio, C. M., DeFries, R., Johnston, F. H.,
Keeley, J. E., and Krawchuk, M. A.: The human dimension of
fire regimes on Earth, J. Biogeogr., 38, 2223–2236, 2011.

Bryant, B. P. and Westerling, A. L.: Scenarios for future wild-
fire risk in California: links between changing demography,
land use, climate, and wildfire, Environmetrics, 25, 454–471,
https://doi.org/10.1002/env.2280, 2014.

Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Grid-
ded lightning climatology from TRMM-LIS and OTD:
Dataset description, Atmos. Res., 135–136, 404–414,
https://doi.org/10.1016/j.atmosres.2012.06.028, 2014.

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C.,
Le Quéré, C., Myneni, R., Piao, S., and Thornton, P.: Carbon and
Other Biogeochemical Cycles, in: Climate Change 2013: The
Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Cli-
mate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,
V., and Midgley, P. M., Cambridge, United Kingdom and New
York, NY, USA, 2013.

Doerr, S. H. and Santín, C.: Wildfire: A burning issue for in-
surers?, Tech. rep., available at: https://www.lloyds.com/
news-and-insight/risk-insight/library/natural-environment/
wildfire-report (last access: 7 November 2015), 2013.

Dunne, J. P., John, J. G., Shevliakova, E., Stouffer, R., Krast-
ing, J. P., Malyshev, S., Milly, P. C. D., Sentman, L., Adcroft,
A. J., Cooke, W., Dunne, K., Griffies, S. M., Hallberg, R. W.,
Harrison, M. J., Levy, H., Wittenberg, A. T., Phillips, P. J.,
and Zadeh, N.: GFDL’s ESM2 Global Coupled Climate–Carbon
Earth System Models. Part II: Carbon System Formulation and
Baseline Simulation Characteristics, J. Climate, 26, 2247–2267,
https://doi.org/10.1175/JCLI-D-12-00150.1, 2013.

Flannigan, M. D., Krawchuk, M., and de Groot, W. J.: Implications
of changing climate for global wildland fire, Int. J. Wildland Fire,
18, 483–507, 2009.

Giglio, L., Randerson, J. T., van der Werf, G. R., Kasibhatla, P.
S., Collatz, G. J., Morton, D. C., and DeFries, R. S.: Assess-
ing variability and long-term trends in burned area by merging
multiple satellite fire products, Biogeosciences, 7, 1171–1186,
https://doi.org/10.5194/bg-7-1171-2010, 2010.

Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Flanni-
gan, M. D.: Detecting the effect of climate change on
Canadian forest fires, Geophys. Res. Lett., 31, L18211,
https://doi.org/10.1029/2004GL020876, 2004.

Haberl, H., Erb, K. H., and Krausmann, F.: Human appropria-
tion of net primary production (HANPP), available at: http:
//isecoeco.org/pdf/2007_march_hanpp.pdf (last access: 6 April
2016), 2007.

Hahn, M. B., Gangnon, R. E., Barcellos, C., Asner, G. P., and
Patz, J. A.: Influence of Deforestation, Logging, and Fire
on Malaria in the Brazilian Amazon, PLoS One, 9, e85725,
https://doi.org/10.1371/journal.pone.0085725.t003, 2014.

Hanna, M. M., Steyn-Ross, D. A., and Steyn-Ross, M.: Es-
timating Biomass for New Zealand Pasture Using Opti-

www.geosci-model-dev.net/11/815/2018/ Geosci. Model Dev., 11, 815–842, 2018

https://doi.org/10.5194/gmd-11-815-2018-supplement
https://doi.org/10.1016/j.scitotenv.2011.05.032
https://doi.org/10.1111/j.1365-2486.2008.01754.x
https://doi.org/10.1073/pnas.1211466110
https://doi.org/10.1029/2005JG000042
https://doi.org/10.1111/j.1365-2486.2008.01655.x
https://doi.org/10.1111/j.1365-2486.2008.01655.x
https://doi.org/10.5194/bg-11-5087-2014
https://doi.org/10.1016/j.tree.2005.04.025
https://doi.org/10.1002/env.2280
https://doi.org/10.1016/j.atmosres.2012.06.028
https://www.lloyds.com/news-and-insight/risk-insight/library/natural-environment/wildfire-report
https://www.lloyds.com/news-and-insight/risk-insight/library/natural-environment/wildfire-report
https://www.lloyds.com/news-and-insight/risk-insight/library/natural-environment/wildfire-report
https://doi.org/10.1175/JCLI-D-12-00150.1
https://doi.org/10.5194/bg-7-1171-2010
https://doi.org/10.1029/2004GL020876
http://isecoeco.org/pdf/2007_march_hanpp.pdf
http://isecoeco.org/pdf/2007_march_hanpp.pdf
https://doi.org/10.1371/journal.pone.0085725.t003


840 S. S. Rabin et al.: A global fire model with agricultural burning practices

cal Remote Sensing Techniques, Geocarto Int., 14, 89–94,
https://doi.org/10.1080/10106049908542121, 1999.

Hantson, S., Lasslop, G., Kloster, S., and Chuvieco, E.: Anthro-
pogenic effects on global mean fire size, Int. J. Wildland Fire,
24, 589–596, https://doi.org/10.1071/WF14208, 2015.

Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C.,
Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo,
P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler,
T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Man-
geon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der
Werf, G. R., Voulgarakis, A., and Yue, C.: The status and chal-
lenge of global fire modelling, Biogeosciences, 13, 3359-3375,
https://doi.org/10.5194/bg-13-3359-2016, 2016.

Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J.,
Fischer, G., Fisk, J. P., Hibbard, K., Houghton, R. A., Janetos,
A., Jones, C. D., Kindermann, G., Kinoshita, T., Klein Gold-
ewijk, K., Riahi, K., Shevliakova, E., Smith, S., Stehfest, E.,
Thomson, A., Thornton, P., van Vuuren, D. P., and Wang, Y. P.:
Harmonization of land-use scenarios for the period 1500–2100:
600 years of global gridded annual land-use transitions, wood
harvest, and resulting secondary lands, Climatic Change, 109,
117–161, https://doi.org/10.1007/s10584-011-0153-2, 2011.

Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T.,
Marlier, M. E., DeFries, R. S., Kinney, P. L., Bowman, D. M.
J. S., and Brauer, M.: Estimated global mortality attributable to
smoke from landscape fires, Environ. Health Persp., 120, 695–
701, https://doi.org/10.1289/ehp.1104422, 2012.

Kagunyu, A., Wandibba, S., and Wanjohi, J. G.: The use of indige-
nous climate forecasting methods by the pastoralists of Northern
Kenya, Pastoralism, 6, 1–6, https://doi.org/10.1186/s13570-016-
0054-0, 2016.

Kauffman, J. B. and Cummings, D.: Fire in the Brazilian Amazon 2.
Biomass, nutrient pools and losses in cattle pastures, Oecologia,
113, 415–427, 1998.

Kelley, D. I., Prentice, I. C., Harrison, S. P., Wang, H., Simard, M.,
Fisher, J. B., and Willis, K. O.: A comprehensive benchmarking
system for evaluating global vegetation models, Biogeosciences,
10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013, 2013.

Klein Goldewijk, K., Beusen, A., Van Drecht, G., and De Vos,
M.: The HYDE 3.1 spatially explicit database of human-induced
global land-use change over the past 12,000 years, Global
Ecol. Biogeogr., 20, 73–86, https://doi.org/10.1111/j.1466-
8238.2010.00587.x, 2010.

Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of hu-
man population density on fire frequency at the global scale,
Biogeosciences, 11, 1085–1102, https://doi.org/10.5194/bg-11-
1085-2014, 2014.

Korovin, G. N.: Analysis of the distribution of forest fires in Russia,
in: Fire in Ecosystems of Boreal Eurasia, edited by: Goldammer,
J. G. and Furyaev, V. V., Dordrecht, The Netherlands, 112–128,
1996.

Krause, A., Kloster, S., Wilkenskjeld, S., and Paeth, H.: The sensi-
tivity of global wildfires to simulated past, present, and future
lightning frequency, J. Geophys. Res.-Biogeo., 119, 312–322,
https://doi.org/10.1002/(ISSN)2169-8961, 2014.

Krausmann, F., Erb, K.-H., Gingrich, S., Lauk, C., and
Haberl, H.: Global patterns of socioeconomic biomass flows
in the year 2000: A comprehensive assessment of sup-

ply, consumption and constraints, Ecol. Econ., 65, 471–487,
https://doi.org/10.1016/j.ecolecon.2007.07.012, 2008.

Laris, P.: Burning the seasonal mosaic: Preventative burning strate-
gies in the wooded savanna of southern Mali, Hum. Ecol., 30,
155–186, 2002.

Laris, P.: Humanizing Savanna Biogeography: Linking Human
Practices with Ecological Patterns in a Frequently Burned Sa-
vanna of Southern Mali, Ann. Assoc. Am. Geogr., 101, 1067–
1088, https://doi.org/10.1080/00045608.2011.560063, 2011.

Laurance, W. and Williamson, G.: Positive feedbacks among for-
est fragmentation, drought, and climate change in the Amazon,
Conserv. Biol., 15, 1529–1535, 2001.

Lehsten, V., Harmand, P., Palumbo, I., and Arneth, A.: Mod-
elling burned area in Africa, Biogeosciences, 7, 3199–3214,
https://doi.org/10.5194/bg-7-3199-2010, 2010.

Le Page, Y., Oom, D., Silva, J. M. N., Jönsson, P., and
Pereira, J. M. C.: Seasonality of vegetation fires as mod-
ified by human action: Observing the deviation from eco-
climatic fire regimes, Global Ecol. Biogeogr., 19, 575–588,
https://doi.org/10.1111/j.1466-8238.2010.00525.x, 2010.

Le Page, Y., Morton, D., Bond-Lamberty, B., Pereira, J. M. C., and
Hurtt, G.: HESFIRE: a global fire model to explore the role of an-
thropogenic and weather drivers, Biogeosciences, 12, 887–903,
https://doi.org/10.5194/bg-12-887-2015, 2015.

Levenberg, K.: A method for the solution of certain non-linear prob-
lems in least squares, Q. Appl. Math., 2, 164–168, 1944.

Li, F., Zeng, X. D., and Levis, S.: A process-based fire
parameterization of intermediate complexity in a Dynamic
Global Vegetation Model, Biogeosciences, 9, 2761-2780,
https://doi.org/10.5194/bg-9-2761-2012, 2012.

Li, F., Levis, S., and Ward, D. S.: Quantifying the role of fire in
the Earth system – Part 1: Improved global fire modeling in the
Community Earth System Model (CESM1), Biogeosciences, 10,
2293–2314, https://doi.org/10.5194/bg-10-2293-2013, 2013.

Magi, B. I., Rabin, S., Shevliakova, E., and Pacala, S.:
Separating agricultural and non-agricultural fire season-
ality at regional scales, Biogeosciences, 9, 3003–3012,
https://doi.org/10.5194/bg-9-3003-2012, 2012.

Marlier, M. E., DeFries, R. S., Voulgarakis, A., Kinney, P. L.,
Randerson, J. T., Shindell, D. T., Chen, Y., and Faluvegi,
G.: El Niño and health risks from landscape fire emis-
sions in southeast Asia, Nat. Clim. Change, 3, 131–136,
https://doi.org/10.1038/nclimate1658, 2012.

Marquardt, D. W.: An Algorithm for Least-Squares Estimation of
Nonlinear Parameters, J. Soc. Ind. Appl. Math., 11, 431–441,
https://doi.org/10.1137/0111030, 1963.

Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma,
M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper,
S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., and van Vu-
uren, D. P.: The RCP greenhouse gas concentrations and their
extensions from 1765 to 2300, Climatic Change, 109, 213–241,
https://doi.org/10.1007/s10584-011-0156-z, 2011.

Melton, J. R. and Arora, V. K.: Competition between plant
functional types in the Canadian Terrestrial Ecosystem
Model (CTEM) v. 2.0, Geosci. Model Dev., 9, 323–361,
https://doi.org/10.5194/gmd-9-323-2016, 2016.

Nielsen, H. B.: Damping parameter in Marquardt’s method, Tech.
Rep. IMM-REP-1999-05, Lyngby, Denmark, 1999.

Geosci. Model Dev., 11, 815–842, 2018 www.geosci-model-dev.net/11/815/2018/

https://doi.org/10.1080/10106049908542121
https://doi.org/10.1071/WF14208
https://doi.org/10.5194/bg-13-3359-2016
https://doi.org/10.1007/s10584-011-0153-2
https://doi.org/10.1289/ehp.1104422
https://doi.org/10.1186/s13570-016-0054-0
https://doi.org/10.1186/s13570-016-0054-0
https://doi.org/10.5194/bg-10-3313-2013
https://doi.org/10.1111/j.1466-8238.2010.00587.x
https://doi.org/10.1111/j.1466-8238.2010.00587.x
https://doi.org/10.5194/bg-11-1085-2014
https://doi.org/10.5194/bg-11-1085-2014
https://doi.org/10.1002/(ISSN)2169-8961
https://doi.org/10.1016/j.ecolecon.2007.07.012
https://doi.org/10.1080/00045608.2011.560063
https://doi.org/10.5194/bg-7-3199-2010
https://doi.org/10.1111/j.1466-8238.2010.00525.x
https://doi.org/10.5194/bg-12-887-2015
https://doi.org/10.5194/bg-9-2761-2012
https://doi.org/10.5194/bg-10-2293-2013
https://doi.org/10.5194/bg-9-3003-2012
https://doi.org/10.1038/nclimate1658
https://doi.org/10.1137/0111030
https://doi.org/10.1007/s10584-011-0156-z
https://doi.org/10.5194/gmd-9-323-2016


S. S. Rabin et al.: A global fire model with agricultural burning practices 841

Nielsen, H. B.: marquardt.m, p. 2, available at: http://www2.imm.
dtu.dk/projects/hbn_software/marquardt.m (last access: 22 Fen-
ruary 2018), 2001.

Ottmar, R. D., Vihnanek, R. E., Miranda, H. S., Sato, M. N., and
Andrade, S. M. A.: Stereo Photo Series for Quantifying Cerrado
Fuels in Central Brazil, Volume I, Tech. Rep. Gen. Tech. Rep.
PNW-GTR-519, 2001.

Pechony, O. and Shindell, D. T.: Fire parameterization
on a global scale, J. Geophys. Res., 114, D16115,
https://doi.org/10.1029/2009JD011927, 2009.

Pfeiffer, M., Spessa, A., and Kaplan, J. O.: A model for global
biomass burning in preindustrial time: LPJ-LMfire (v1.0),
Geosci. Model Dev., 6, 643–685, https://doi.org/10.5194/gmd-6-
643-2013, 2013.

Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M.,
Iqbal, M. M., Lobell, D. B., and Travasso, M. I.: Food Secu-
rity and Food Production Systems, in: Climate Change 2014:
Impacts, Adaptation, and Vulnerability. Part A: Global and Sec-
toral Aspects. Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change, edited by Field, C. B., Barros, V. R., Dokken, D. J.,
Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi,
K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S.,
Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White,
L. L., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 485–533, 2014.

Prentice, S. and Mackerras, D.: The ratio of cloud to cloud-ground
lightning flashes in thunderstorms, J. Appl. Meteorol., 16, 1–6,
1977.

Rabin, S. S.: FINAL, pp. 1–2,
https://doi.org/10.5281/zenodo.574451, available at:
https://github.com/samsrabin/FINAL, 2017.

Rabin, S. S., Magi, B. I., Shevliakova, E., and Pacala, S. W.:
Quantifying regional, time-varying effects of cropland and
pasture on vegetation fire, Biogeosciences, 12, 6591–6604,
https://doi.org/10.5194/bg-12-6591-2015, 2015.

Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest,
M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D.
S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W.,
Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voul-
garakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison,
S., and Arneth, A.: The Fire Modeling Intercomparison Project
(FireMIP), phase 1: experimental and analytical protocols with
detailed model descriptions, Geosci. Model Dev., 10, 1175–
1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.

Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A.: Farm-
ing the planet: 1. Geographic distribution of global agricultural
lands in the year 2000, Global Biogeochem. Cy., 22, GB1003,
https://doi.org/10.1029/2007GB002952, 2008.

Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M.,
and Morton, D. C.: Global burned area and biomass burning
emissions from small fires, J. Geophys. Res., 117, G04012,
https://doi.org/10.1029/2012JG002128, 2012.

Savadogo, P., Zida, D., Sawadogo, L., Tiveau, D., Tigabu, M., and
Odén, P. C.: Fuel and fire characteristics in savanna–woodland of
West Africa in relation to grazing and dominant grass type, Int. J.
Wildland Fire, 16, 531–539, https://doi.org/10.1071/WF07011,
2007.

Sheffield, J., Goteti, G., and Wood, E. F.: Development of a
50-year high-resolution global dataset of meteorological forc-
ings for land surface modeling, J. Climate, 19, 3088–3111,
https://doi.org/10.1175/JCLI3790.1, 2006.

Shevliakova, E., Pacala, S. W., Malyshev, S., Hurtt, G. C.,
Milly, P. C. D., Caspersen, J. P., Sentman, L. T., Fisk,
J. P., Wirth, C., and Crevoisier, C.: Carbon cycling un-
der 300 years of land use change: Importance of the sec-
ondary vegetation sink, Global Biogeochem. Cy., 23, GB2022,
https://doi.org/10.1029/2007GB003176, 2009.

Staver, A. C., Archibald, S., and Levin, S.: Tree cover in sub-
Saharan Africa: rainfall and fire constrain forest and savanna as
alternative stable states, Ecology, 92, 1063–1072, 2011.

Stocks, B. J., Mason, J. A., Todd, J. B., Bosch, E. M., Wot-
ton, B. M., Amiro, B. D., Flannigan, M. D., Hirsch, K. G.,
Logan, K. A., Martell, D. L., and Skinner, W. R.: Large for-
est fires in Canada, 1959–1997, J. Geophys. Res., 108, 8149,
https://doi.org/10.1029/2001JD000484, 2003.

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., and
Pacala, S. W.: Microbe-driven turnover offsets mineral-mediated
storage of soil carbon under elevated CO2, Nat. Clim. Change, 4,
1099–1102, https://doi.org/10.1038/nclimate2436, 2014.

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong,
L., and Carmona-Moreno, C.: The influence of vegetation, fire
spread and fire behaviour on biomass burning and trace gas emis-
sions: results from a process-based model, Biogeosciences, 7,
1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010.

Transtrum, M. K. and Sethna, J. P.: Improvements to the Levenberg-
Marquardt algorithm for nonlinear least-squares minimiza-
tion, available at: http://arxiv.org/abs/1201.5885 (last access:
18 November 2015), 2012.

Uhl, C. and Buschbacher, R.: A disturbing synergism between cat-
tle ranch burning practices and selective tree harvesting in the
eastern Amazon, Biotropica, 17, 265–268, 1985.

Uhl, C. and Kauffman, J.: Deforestation, fire susceptibility, and po-
tential tree responses to fire in the eastern Amazon, Ecology, 71,
437–449, 1990.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,
Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability
in global biomass burning emissions from 1997 to 2004, Atmos.
Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-
2006, 2006.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G.
J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S.,
Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the
contribution of deforestation, savanna, forest, agricultural, and
peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735,
https://doi.org/10.5194/acp-10-11707-2010, 2010.

van Vuuren, D. P., Lucas, P. L., and Hilderink, H.: Down-
scaling drivers of global environmental change: En-
abling use of global SRES scenarios at the national
and grid levels, Global Environ. Chang., 17, 114–130,
https://doi.org/10.1016/j.gloenvcha.2006.04.004, 2007.

van Wagner, C. E.: A simple fire-growth model, Forest. Chron., 45,
103–104, https://doi.org/10.5558/tfc45103-2, 1969.

Venevsky, S., Thonicke, K., Sitch, S., and Cramer, W.: Simulating
fire regimes in human-dominated ecosystems: Iberian Peninsula
case study, Glob. Change Biol., 8, 984–998, 2002.

www.geosci-model-dev.net/11/815/2018/ Geosci. Model Dev., 11, 815–842, 2018

http://www2.imm.dtu.dk/projects/hbn_software/marquardt.m
http://www2.imm.dtu.dk/projects/hbn_software/marquardt.m
https://doi.org/10.1029/2009JD011927
https://doi.org/10.5194/gmd-6-643-2013
https://doi.org/10.5194/gmd-6-643-2013
https://doi.org/10.5281/zenodo.574451
https://github.com/samsrabin/FINAL
https://doi.org/10.5194/bg-12-6591-2015
https://doi.org/10.5194/gmd-10-1175-2017
https://doi.org/10.1029/2007GB002952
https://doi.org/10.1029/2012JG002128
https://doi.org/10.1071/WF07011
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1029/2007GB003176
https://doi.org/10.1029/2001JD000484
https://doi.org/10.1038/nclimate2436
https://doi.org/10.5194/bg-7-1991-2010
http://arxiv.org/abs/1201.5885
https://doi.org/10.5194/acp-6-3423-2006
https://doi.org/10.5194/acp-6-3423-2006
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.1016/j.gloenvcha.2006.04.004
https://doi.org/10.5558/tfc45103-2


842 S. S. Rabin et al.: A global fire model with agricultural burning practices

Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Ran-
derson, J. T., and Hess, P. G.: The changing radiative forcing of
fires: global model estimates for past, present and future, Atmos.
Chem. Phys., 12, 10857–10886, https://doi.org/10.5194/acp-12-
10857-2012, 2012.

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swet-
nam, T. W.: Warming and earlier spring increase west-
ern U.S. forest wildfire activity., Science, 313, 940–943,
https://doi.org/10.1126/science.1128834, 2006.

Wirsenius, S.: Human Use of Land and Organic Materials: Mod-
eling the Turnover of Biomass in the Global Food System, PhD
thesis, Department of Physical Resource Theory, Chalmers Uni-
versity of Technology and Göteborg University, Göteburg, Swe-
den, 2000.

Yevich, R. and Logan, J. A.: An assessment of bio-
fuel use and burning of agricultural waste in the de-
veloping world, Global Biogeochem. Cy., 17, 1095,
https://doi.org/10.1029/2002GB001952, 2003.

Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N.,
Chin, M., and Wang, H.: A regional climate model study of
how biomass burning aerosol impacts land-atmosphere inter-
actions over the Amazon, J. Geophys. Res., 113, D14S15,
https://doi.org/10.1029/2007JD009449, 2008.

Geosci. Model Dev., 11, 815–842, 2018 www.geosci-model-dev.net/11/815/2018/

https://doi.org/10.5194/acp-12-10857-2012
https://doi.org/10.5194/acp-12-10857-2012
https://doi.org/10.1126/science.1128834
https://doi.org/10.1029/2002GB001952
https://doi.org/10.1029/2007JD009449

	Abstract
	Introduction
	Fire model
	Land and vegetation model
	Burned area: non-agricultural land
	Number of fires
	Burned area per fire

	Burned area: cropland and pasture
	Fire effects
	Other changes
	Parameter optimization
	The Levenberg--Marquardt algorithm
	Parameters chosen


	Experimental setup and analysis
	Experimental runs
	Input data
	Evaluation

	Results
	Optimization
	Model performance
	Burned area
	Carbon emissions


	Discussion
	Model performance in context: burned area
	Model performance in context: emissions
	What do optimization results suggest?
	Levenberg--Marquardt optimization: lessons learned

	Conclusions: regional variations in pattern and practice
	Data availability
	Appendix A: Levenberg--Marquardt algorithm: implementation 
	Appendix B: Grazing intensity and pasture biomass 
	Author contributions
	Competing interests
	Acknowledgements
	References

