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Abstract Phenomenological studies performed for non-
supersymmetric extensions of the Standard Model usually
use tree-level parameters as input to define the scalar sec-
tor of the model. This implicitly assumes that a full on-shell
calculation of the scalar sector is possible – and meaning-
ful. However, this doesn’t have to be the case as we show
explicitly at the example of the Georgi-Machacek model.
This model comes with an appealing custodial symmetry
to explain the smallness of the ρ parameter. However, the
model cannot be renormalised on-shell without breaking the
custodial symmetry. Moreover, we find that it can often hap-
pen that the radiative corrections are so large that any con-
sideration based on a perturbative expansion appears to be
meaningless: counter-terms to quartic couplings can become
much larger than 4π and/or two-loop mass corrections can
become larger than the one-loop ones. Therefore, conditions
are necessary to single out parameter regions which cannot be
treated perturbatively. We propose and discuss different sets
of such perturbativity conditions and show their impact on the
parameter space of the Georgi-Machacek model. Moreover,
the proposed conditions are general enough that they can be
applied to other models as well. We also point out that the
vacuum stability constraints in the Georgi-Machacek model,
which have so far only been applied at the tree level, receive
crucial radiative corrections. We show that large regions of
the parameter space which feature a stable electroweak vac-
uum at the loop level would have been – wrongly – ruled out
by the tree-level conditions.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 The Georgi-Machacek model . . . . . . . . . . . . .

a e-mail: mkrauss@th.physik.uni-bonn.de
b e-mail: florian.staub@kit.edu

2.1 Unbroken custodial symmetry . . . . . . . . . .
2.2 Broken custodial symmetry . . . . . . . . . . . .
2.3 Renormalisation of the scalar sector of the

Georgi-Machacek model . . . . . . . . . . . . .
2.3.1 MS renormalisation . . . . . . . . . . . . .
2.3.2 On-shell renormalisation . . . . . . . . . .

3 Theoretical constraints . . . . . . . . . . . . . . . . .
3.1 Tree-level unitarity constraints . . . . . . . . . .
3.2 Vacuum stability constraints . . . . . . . . . . .

3.2.1 Tree-level considerations . . . . . . . . . .
3.2.2 Loop effects . . . . . . . . . . . . . . . . .

3.3 Perturbativity constraints . . . . . . . . . . . . .
4 Results . . . . . . . . . . . . . . . . . . . . . . . . .

4.1 Numerical setup . . . . . . . . . . . . . . . . . .
4.2 Input parametrisation . . . . . . . . . . . . . . .
4.3 Perturbativity constraints . . . . . . . . . . . . .

4.3.1 Dependence on sH . . . . . . . . . . . . .
4.3.2 Dependence on heavy scalar masses . . . .
4.3.3 Dependence on large quartic couplings . .
4.3.4 Impact on parameter regions . . . . . . . .

4.4 Vacuum stability . . . . . . . . . . . . . . . . .
4.4.1 Stabilising UFB directions . . . . . . . . .
4.4.2 Stabilising meta-stable regions . . . . . . .
4.4.3 De-stabilising stable regions . . . . . . . .

4.5 The global picture . . . . . . . . . . . . . . . . .
4.5.1 Perturbativity . . . . . . . . . . . . . . . .
4.5.2 Vacuum stability constraints . . . . . . . .
4.5.3 Maximal sH . . . . . . . . . . . . . . . . .

5 Summary and conclusions . . . . . . . . . . . . . . .
A Vertices . . . . . . . . . . . . . . . . . . . . . . . . .
B One-loop corrections . . . . . . . . . . . . . . . . . .
C Counter-terms . . . . . . . . . . . . . . . . . . . . .
D Tree-level unitarity conditions with SARAH . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . .

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5676-5&domain=pdf
http://orcid.org/0000-0002-6250-2319
mailto:mkrauss@th.physik.uni-bonn.de
mailto:florian.staub@kit.edu


 185 Page 2 of 46 Eur. Phys. J. C   (2018) 78:185 

1 Introduction

Already five years have past since the discovery of a new
scalar at the LHC [1,2]. In the meantime, the properties of
this particle have been measured with an astonishing pre-
cision. All coupling measurements agree very well with the
expectations for the standard model (SM) Higgs boson. Thus,
this particle is at least a SM-like Higgs. Maybe, it is theHiggs,
i.e. the only fundamental scalar which exists in nature and
which is involved in the breaking of the electroweak (ew)
gauge symmetry. However, it is much too early to draw this
conclusion and there is still plenty of space where new Higgs-
like particles as predicted by models beyond the SM (BSM)
might show up. The motivation to introduce new scalars in
BSM models can be quite different and either stem from a
top-down approach like a new proposed symmetry, or from
a bottom-up approach where new scalars are needed to get
some specific feature in the model. One can count supersym-
metric models, models with a grand unified theory or models
with an extended gauge sector to the first category, models
like those with only additional scalar doublets or triplets to
the second one. The interesting feature of these models is that
they can offer very interesting, phenomenological effects like
changes in the couplings of the SM-like Higgs to fermions
or vector bosons, charged or even doubly-charged scalars, or
signatures of additional light or heavy neutral scalars. Mod-
els with additional Higgs triplets are constrained by the ρ-
parameter which relates MW , MZ and the weak mixing angle.
This parameter is measured to be very close to one. While
additional doublets only contribute loop corrections to this
parameter, vacuum expectation values (VEVs) of triplets, vT ,
usually enter already at the tree-level. This imposes an upper
limit on vT of just a few GeV [3,4]. However, this constraint
can be circumvented if several triplets are arranged in such
a way that they obey a new (custodial) symmetry: in this
case, the tree-level contributions to δρ cancel and the triplet
VEVs can be much larger. This was the original idea pro-
posed in Refs. [5,6]. The model known today as the ‘Georgi-
Machacek’ (GM) model comes with one complex and one
real triplet. The impact of loop corrections to the ρ-parameter
in the presence of triplets were considered in literature and
potentially large effects were found [7].

Many other aspects of the GM model were studied in
detail in the last years like the properties of the couplings
of scalars [8–18] or vector bosons [19], or the potential sig-
natures at colliders [20–28]. Not only the phenomenological
consequences of the new states were explored, but also the
theoretical properties of the extended Higgs sector were stud-
ied. This was used to impose constraints on the parameters of
the model. For instance, limits for the quartic couplings were
derived from the unitarity of the tree-level 2 → 2 scattering
[29,30]. Also the stability of the ew vacuum was checked,
and dangerous regions in which the potential is unbounded-

from-below (UFB) were singled out [31,32]. However, all of
these constraints have up to now only been studied at low-
est order in perturbation theory and it has not been checked
whether the conclusions still hold once loop corrections are
included. Moreover, it was so far not clear if higher-order
corrections could even be implemented in a sensible way or
if some regions in parameter space cannot be treated per-
turbatively. If this were the case, Born-level results would
not be good approximations of the ‘full’ result, but might
be completely meaningless. This is actually an issue which
has so far hardly been discussed in any non-supersymmetric
BSM model, which might sound surprising as it was already
shown in Ref. [33] for the SM that a naive limit like λ < 4π

is too weak and that perturbation theory can break down
at much smaller coupling values. Among the reasons why
this breakdown of perturbation theory has not been checked
exhaustively for many BSM models are the missing but nec-
essary higher order results: the only rigorous way to claim
a breakdown of perturbation theory is to calculate observ-
ables at different loop levels and compare the residual scale
dependence which, if a perturbative treatment is possible,
must shrink from every order to the next. This would make it
necessary to calculate decays or scattering processes at least
up to the two-loop level, which would cause a tremendous
amount of work. However, some results can be obtained in an
easier way which should give more sophisticated hints as to
when perturbation theory is in trouble than the simple rules
of thumb which say that a quartic coupling must be smaller
than some factor times π . A first idea in that direction was
shown in Ref. [34] where the one- and two-loop corrections
to the scalar masses in the MS scheme were compared. If
the two-loop corrections become larger than the one-loop
corrections, this already points already towards a problem.
Indeed, it has been shown in Ref. [34] at the example of the
GM model that the two-loop corrections can be several times
as large as the one-loop corrections.

We are going to investigate this potential breakdown of
perturbation theory in the GM model in more detail in this
work. We propose different conditions which could be used
to check for dangerous regions in parameters space. These are
not only the size of the one- and two-loop corrections in the
MS scheme, but also the values of the counter-terms (CTs)
when performing an on-shell (OS) normalisation of the scalar
sector at the one-loop level. Since these CTs will enter at all
higher loop levels, they cannot be too large without disturbing
the convergence of the loop series. The methodology which
we develop to apply perturbativity constraints is not restricted
to the GM model, but can be applied similarly to other BSM
models.

A second main aim of this work is the promotion of the
vacuum stability constraints to the loop level: as we will see,
the loop corrections in the GM model are always sizeable.
Even if perturbation theory might still be under control, tree-

123



Eur. Phys. J. C   (2018) 78:185 Page 3 of 46  185 

level results can be very misleading. For instance, it was
shown in Ref. [35] that UFB directions in two Higgs doublet
Models (THDM) usually disappear once loop corrections are
included. We will find similar results for the GM model.
We will show that many parameter regions which seem to
pass all tree-level constraints are often in conflict with the
constraints from perturbativity. On the other side, parameter
regions which are unstable at tree-level become stable once
the loop corrections are included. We will present some indi-
cations where these effects are most likely to happen in the
parameter space of the GM model.

This work is organised as follows: in Sect. 2, we explain
the basic ingredients of the GM model with and without the
custodial symmetry, as well as the two different normali-
sation schemes, MS and OS, which we use in this paper.
In Sect. 3, the existing tree-level constraints on the model
are summarised, and our new constraints are explained. In
Sect. 4, the impact of our new constraints is discussed. We
start with specific examples to discuss the impact of the per-
turbativity constraints as well as the loop-improved vacuum
stability checks before we explore the consequences in the
full parameter space. We conclude in Sect. 5. The appendix
contains a long collection of additional material: all tree-level
couplings of all scalars, the expressions for the one-loop cor-
rections to self-energies and tadpoles as well as the necessary
CTs to renormalise the scalar sector of the GM model on-
shell.

2 The Georgi-Machacek model

In the GM model, the SM is extended by one real scalar
SU (2)L -triplet η with hypercharge Y = 0 and one complex
scalar triplet χ with Y = −1 (using the notation Qem =
T3L + Y ). Those can be written as

η = 1√
2

(
η0 −√

2
(
η−)∗

−√
2 η− −η0

)
,

χ = 1√
2

(
χ− √

2(χ0)∗
−√

2 χ−− −χ−
)

. (2.1)

with (η0)∗ = η0.

2.1 Unbroken custodial symmetry

After imposing a global SU (2)L × SU (2)R symmetry on
the model, the most compact way to write the Lagrangian in
a form which explicitly conserves this custodial symmetry
is to re-express the Higgs doublet � as a bi-doublet under
SU (2)L × SU (2)R and the two scalar triplets as a bi-triplet:

� =
(

φ0∗ φ+
φ− φ0

)
, 
 =

⎛
⎝ χ0∗ η+ χ++

χ− η0 χ+
χ−− η− χ0

⎞
⎠ .

(2.2)

The scalar potential can then be written as

V (�,
) = μ2
2

2
Tr�†� + μ2

3

2
Tr
†
 + λ1

[
Tr�†�

]2

+ λ2Tr�†� Tr
†


+ λ3Tr
†

†
 + λ4

[
Tr
†


]2

− λ5Tr
(
�†σ a�σ b

)
Tr

(

†ta
tb

)

− M1Tr
(
�†τ a�τ b

)
(U
U †)ab

− M2Tr
(

†ta
tb

)
(U
U †)ab,

where τ a and ta are the SU (2) generators for the doublet
and triplet representations respectively, and U is for instance
given in Ref. [30].

After EWSB, the neutral, complex fields φ0 and χ0 split
in CP eigenstates,

X0 → 1√
2

(
X0
R + i X0

I
)

(2.3)

with X = {φ, χ}. The vacuum expectation values (VEVs) of
the triplets read

〈η〉 = 1√
2

(
vη 0
0 −vη

)
, 〈χ〉 =

(
0 vχ

0 0

)
, (2.4)

while the doublet VEV is 〈φ0〉 = vφ/
√

2 as usual. The gauge
boson masses then read at tree level

M2
W = 1

4
g2

2

(
v2
φ + 4

(
v2
η + v2

χ

))
,

M2
Z = 1

4

(
g2

1 + g2
2

) (
v2
φ + 8v2

χ

)
. (2.5)

If the custodial symmetry is preserved, the triplet VEVs are
identical, vη = vχ , and there are no tree-level contributions
to electroweak precision observables as a consequence. The
electroweak VEV v can then be written as

v2 = v2
φ + 8v2

χ � 246 GeV, (2.6)

so that the massive gauge bosons end up with the known SM
tree-level masses, and it is common to define the angle

sH ≡ sin θH = 2
√

2
vχ

v
, cH ≡ cos θH = vφ

v
. (2.7)

The minimisation conditions for the scalar potential read

0 = ∂V

∂vφ

= vφ

(
μ2

2 + 4λ1v
2
φ + 6λ2v

2
χ

− 3λ5v
2
χ − 3

2
M1vχ

)
, (2.8)
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0 = ∂V

∂vχ

= 3vχ

(
μ2

3 + 2λ2v
2
φ − λ5v

2
φ − 6M2vχ

+ 4λ3v
2
χ + 12λ4v

2
χ

)
− 3

4
M1v

2
φ, (2.9)

which we solve for μ2
2 and μ2

3 to eliminate these parame-
ters from the scalar potential. Note that we have assumed
all parameters to be real, resulting in CP conservation in the
scalar sector.

The mass eigenstates of the scalar fields can be divided into
singlets, triplets and fiveplets under the custodial symmetry.
At tree level, the masses within each triplet and fiveplet are
degenerate, and, using the above equations, are given by

m2
5 = M1

4vχ

v2
φ + 12M2vχ + 3

2
λ5v

2
φ + 8λ3v

2
χ

= v

(
sH (3

√
2M2 + sHλ3v) + c2

H (
M1√
2sH

+ 3

2
λ5v)

)
,

(2.10)

m2
3 = v2

φ + 8v2
χ

4vχ

(
M1 + 2vχλ5

) = vM1√
2 sH

+ 1

2
λ5v

2.

(2.11)

The mass matrix of the CP-even scalars reads in the basis
(φ0

R, η0, χ0
R)

m2
h0 =

⎛
⎜⎜⎜⎜⎜⎝

8c2
Hλ1v

2 − v
2cH M̃ − v√

2
cH M̃

· v
(√

2(c2
H M1+3s2

H M2)+2sH v(s2
H (λ3+λ4)+c2

Hλ5)
)

2sH

v2
(
2s2

Hλ4−c2
Hλ5

)
√

2
− 3sH M2v

· · v
(

2s3
H v(λ3+2λ4)+c2

H (
√

2M1+sHλ5v)
)

2sH

⎞
⎟⎟⎟⎟⎟⎠

, (2.12)

where

M̃ = M1 + √
2sHv(λ5 − 2λ2). (2.13)

After the diagonalisation, one mass eigenstate corresponds
to the fiveplet mass, Eq. (2.10), whereas the other two mix
to form the mass eigenstates h and H .

They are given in the gauge basis by [30]

h = cos α H0
1 − sin α H0′

1 ,

H = sin α H0
1 + cos α H0′

1 , (2.14)

where

H0
1 = φ0

R, H0′
1 =

√
1

3
η0 +

√
2

3
χ0
R. (2.15)

2.2 Broken custodial symmetry

Without the custodial symmetry, the most general gauge-
invariant and CP-conserving form of the Higgs potential is
given by [36]

V = m2
φ(φ†φ) + m2

χ Tr(χ†χ) + m2
ηTr(η2)

+ μ1φ
†ηφ + μ2(φ

T (iτ2)χφ + h.c.)

+ μ3Tr(χχ†η) + λ(φ†φ)2

+ ρ1

(
Tr(χ†χ)

)2 + ρ2Tr(χ†χχ†χ) + ρ3Tr(η4)

+ ρ4Tr(χ†χ)Tr(η2) + ρ5Tr(χ†η)Tr(ηχ)

+ σ1Tr(χ†χ)φ†φ + σ2φ
†χ†χφ + σ3Tr(η2)φ†φ

+ σ4(φ
†χ†ηφc + h.c.). (2.16)

Note that the above equation differs from Ref. [36] in χ ↔
χ† because of the differing definitions ofχ . Here,φc = iτφ∗.
For easier comparison with the limit of conserved custodial
symmetry, we re-write the potential as

V = μ2
2(φ

†φ) + μ2
χ Tr(χ†χ) + 1

2
μ2

ηTr(η†η) + 4λ1(φ
†φ)2

+ 2(φ†φ)
(

2λ2aTr(χ†χ) + λ2bTr(η†η)
)

+ 2λ3aTr
(
(η†η)2

)
+ 2λ3b

(
Tr

(
(χ†χ)2

)

+ 3Tr(χ†χχχ†)
)

+ 4λ3cTr(χ†χη†ηχ†η†χη)

+ λ4a

(
Tr(η†η)

)2 + 4λ4b

(
Tr(χ†χ)

)2

+ 4λ4cTr(η†η)Tr(χ†χ) − λ5a(φ
†χ†χφ − φ†χχ†φ)

+ √
2λ5b(φ

†ηχ†φc + h.c.)

+ 1√
2
M1aφ

†ηφ + 1

2
M1b

(
φT (iτ2)χφ + h.c.

)

+ 3
√

2M2

(
Tr(χ†χη) + h.c.

)
. (2.17)

At the tree-level where custodial symmetry is conserved, we
have

λNa = λNb ≡λ2, N = {2, 5}, (2.18)

λNa = λNb = λNc ≡λ3, N = {3, 4}, (2.19)

as well as

M1a = M1b ≡M1, (2.20)

μ2
χ = μ2

η ≡μ2
3. (2.21)
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The parameters of Eqs. (2.16) and (2.17) are related via

λ1 = 1

4
λ, λ2a = 1

4

(
σ1 + 1

2
σ2

)
,

λ2b = 1

2
σ3, (2.22)

λ3a + λ4a = 1

2
ρ3, λ3b = −1

4
ρ2, λ3c = 1

4
ρ5,

λ4b = 1

4

(
ρ1 + 3

2
ρ2

)
, λ4c = 1

4
ρ4, (2.23)

λ5a = −1

2
σ2, λ5b = − 1√

2
σ4, (2.24)

μ2
2 = m2

φ, μ2
χ = m2

χ , μ2
η = 2m2

η,

M1a = √
2 μ1, M1b = 2μ2, M2 = − μ3

6
√

2
. (2.25)

The tadpole equations in the case of broken custodial sym-
metry read

0 = ∂V

∂vφ

= vφ

2
(2μ2

2 + 8λ1v
2
φ − M1avη + 4λ2bv

2
η

− 2M1bvχ − 4λ5bvηvχ + 8λ2av
2
η − 2λ5av

2
χ ), (2.26)

0 = ∂V

∂vχ

= −M1bv
2
φ

2
− λ5bv

2
φvη

+ vχ (2μ2
χ + 4λ2av

2
φ − λ5av

2
φ − 12M2vη

+ 8λ4cv
2
η + 8λ3bv

2
χ + 16λ4bv

2
χ ), (2.27)

0 = ∂V

∂vη

= −M1av
2
φ

4
+ μ2

ηvη + 2λ2bv
2
φvη

+ 4λ3av
3
η + 4λ4av

3
η

− λ5bv
2
φvχ − 6M2v

2
χ + 8λ4cvηv

2
χ . (2.28)

After solving these equations for μ2
2, μ2

χ and μ2
η, the CP-

even scalar mass matrix is at tree level given by

m2
h0 =

⎛
⎜⎜⎜⎜⎜⎝

8λ1v
2
φ − 1

2vφ

(
4vχλ5b − 8vηλ2b + M1a

) − vφ(−8vχλ2a+2vχλ5a+2vηλ5b+M1b)√
2

· 32v3
ηλ3a+32v3

ηλ4a+4vχv2
φλ5b+M1av

2
φ+24M2v

2
χ

4vη
− v2

φλ5b+4vχ(3M2−4vηλ4c)√
2

· · v2
φ(2vηλ5b+M1b)+32v3

χλ3b+64v3
χλ4b

4vχ

⎞
⎟⎟⎟⎟⎟⎠

, (2.29)

and the mass of the physical pseudo-scalar state is

m2
A =

(
8v2

χ + v2
φ

) (
vηλ5b

2vχ

+ M1b

4vχ

)
. (2.30)

The mass matrix for the singly-charged scalars reads, in Lan-
dau gauge,

m2
H± =

⎛
⎜⎜⎜⎝
M̃bvχ + M̃avη − M̃avφ

2 − M̃bvφ

2

· 4M̃2v2
χ +2v2

φλ5bvχ +M̃av
2
φ

4vη
− 1

2 λ5bv
2
φ − M̃2vχ

· · M̃bv
2
φ+2vηλ5bv

2
φ+4M̃2vχ vη

4vχ

⎞
⎟⎟⎟⎠,

(2.31)

where

M̃a = M1a + 2vχλ5b, M̃b = M1b + 2vχλ5a,

M̃2 = 6M2 + 4vηλ3c, (2.32)

and the mass of the doubly-charged scalar is given by

m2
H±± = v2

φλ5a + 8v2
χλ3b + vηv

2
φλ5b

2vχ

+M1bv
2
φ

4vχ

+ 12M2vη. (2.33)

2.3 Renormalisation of the scalar sector of the
Georgi-Machacek model

So far, the scalar sector of the GM model has only been
studied at tree level in the literature. The only exception is
Ref. [34] which has pointed out that an on-shell renormal-
isation of the model is not possible without breaking the
custodial symmetry. Moreover, it was found that the loop
corrections to the scalar mass matrices can become huge.
Here we are going to apply two different renormalisation
schemes to this model. We start with the discussion of a MS
scheme, before we turn to an on-shell scheme.

2.3.1 MS renormalisation

The easiest option to renormalise the scalar sector of the GM
model is to use the MS scheme which is applicable to any
model. Another advantage of this scheme, beside its general
applicability, is that it makes large loops corrections imme-
diately visible without hiding them in counter-terms.1 The
renormalisation procedure is as follows:

1. We match the measured SM parameters (αs , αew,mf,GF )
to the running MS parameters at the scale Q = MZ . The
matching procedure is explained in Ref. [37].

1 When speaking about ‘counter-terms’, we always refer to the finite
part.
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2. We run the SM parameters using three-loop SM renor-
malisation group equations (RGEs) to the scale of new
physics, which we set to either m5 or mH . At this scale,
the model-specific input parameters (λ1,…λ5, M1, M2,
sH ) are taken as input. In addition, we solve the tadpole
equations to obtain the numerical values of the quadratic
mass terms.

3. All tree-level masses are calculated and the shifts to the
SM gauge and Yukawa couplings are included. This is
done by imposing that the eigenvalues of the one-loop
corrected mass matrix of the fermions

m(1L)
f (p2

i ) = m(T )
f − �̃S(p

2
i ) − �̃R(p2

i )m
(T )
f

−m(T )
f �̃L(p2

i ) (2.34)

agree with the running MS masses. In the gauge sector,
the electroweak coupling is shifted as

αGM
ew (Q) = αSM

ew (Q)

1 − αew
2π


ew
with


ew = 4

3
log(mH±±/Q) + 1

3

2∑
i=1

log(mH±
i

/Q).

(2.35)

The changes in the weak mixing angle are calculated from
the Z and W self-energies, see Ref. [37] for more details
of the matching procedure at the example of the MSSM.

4. In order to ensure that we are operating at the bottom
of the potential at each order of perturbation theory, we
demand that the loop-corrected tadpole equations fulfil

Ti + δ(n)ti = 0. (2.36)

Here, Ti are the tree-level tadpoles, and δ(n)ti are the shifts
at the n-loop level. These conditions introduce the only
three finite CTs which we need:

δ(n)μ2
2 = − δ(n)tv, (2.37)

δ(n)μ2
η = − δ(n)tη, (2.38)

δ(n)μ2
χ = − δ(n)tχ . (2.39)

Note that the breaking of the custodial symmetry at the
loop level already becomes visible at this stage due to
δ(n)tη �= δ(n)tχ and therefore μη �= μχ . We will make use
of the functionality of the tools SARAH/SPheno which
are able to calculate δ(n)ti up to two-loop.

5. We calculate the one-loop corrections � to the scalar mass
matrices. At the one-loop level, the full dependence on
the external momenta is included, while at two-loop, the
approximation p2 = 0 is used. The pole masses are the

eigenvalues of the loop-corrected mass matrix calculated
as

M (2L)
φ (p2) = M̃ (2L)

φ − �φ(p2)(1L) − �φ(0)(2L).

(2.40)

Here, M̃φ is the tree-level mass matrix including the shifts
Eqs. (2.37)–(2.39). The two-loop self-energies are avail-
able for all real scalars in SARAH/SPheno. For charged
scalars, the scalar masses are available at the one-loop
level,

M (1L)
φ (p2) = M̃ (1L)

φ − �φ(p2)(1L). (2.41)

The calculation of the one-loop self-energies in both cases
is done iteratively for each eigenvalue i until the on-shell
condition

[
eigM (n)

φ (p2 = m2
φi

)
]
i
≡ m2

φi
(2.42)

is fulfilled.
We present the explicit expressions for the one-loop cor-
rections to the tadpoles and self-energies in “Appendix B”.
The two-loop corrections are too long to be presented in
this work. However, they are available in the
Mathematica format and can be sent on demand or
generated automatically with SARAH.

In the MS scheme, all masses receive finite corrections at
the loop level. Thus, mass parameters used as input are only
Lagrangian (MS) parameters which are different from the
values of the pole masses. This has the drawback that one
can’t use physical parameters as input. On the other side, as
we already mentioned, it makes the presence of large loop
corrections immediately visible. Moreover, if one wants to
draw the connection to a more fundamental theory which
predicts the Lagrangian parameter at a higher scale, one must
start with the running MS parameters at the given scale and
include the higher order corrections to all masses.

2.3.2 On-shell renormalisation

In an OS scheme, the tree-level masses and rotation angles are
taken to be equivalent to the loop-corrected ones. Therefore,
an OS scheme has the advantage that physical parameters
can directly be used as input. This scheme is often the pre-
ferred option if a sufficient number of free parameters exists
to absorb all finite corrections. However, one needs to be care-
ful as this is not always possible. The best known exception
are supersymmetric models: the SUSY relations among the
terms in the potential reduce the number of free parameters
and make a full OS calculation of the Higgs sector even in the
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simplest models impossible. Also the custodial symmetry of
the GM model reduces the number of free parameters and
there are not sufficient CTs to renormalise the scalar sector
on-shell. Therefore, we need to give up this symmetry at the
loop level and introduce CTs for all potential parameters

x → x + δx , x ∈ {λ1, λ2a, λ2b, λ3a, λ3b, λ3c,

λ4a, λ4b, λ4c, λ5a, λ5b, M1a, M1b, M2, μ
2
2,m

2
η,m

2
χ }

(2.43)

With this extended set of CTs, it is now possible to renor-
malise the scalar sector completely on-shell. We are doing
this at the one-loop level using a similar ansatz as in Ref. [38]
for the THDM. The CTs are fixed by the following renormal-
isation conditions:

δTi + δ(1L)ti ≡ 0, (2.44)

δMh + �h ≡ 0, (2.45)

δMA + �A ≡ 0, (2.46)

δMH+ + �H+ ≡ 0, (2.47)

δMH++ + �H++ ≡ 0. (2.48)

Here, δTi and δM� are the counter-term contributions to the
tadpoles and mass matrices. δti are the one-loop corrections
to the tadpoles, and �� are the one-loop self-energies. For
simplicity we assume that �� are calculated with vanishing
external momentum, i.e. p2 = 0. This approximation is jus-
tified because we are only interested in the overall size of
the CTs and their impact on the vacuum stability constraints.
The explicit expressions for the CTs stemming from these
conditions are given in “Appendix C”.

In order to obtain the finite values for the CTs, we perform
the following steps:

1–3. These steps to get the parameters at the renormalisation
scale are identical to the MS calculation.

4. The one-loop tadpoles and self-energies are calculated.
5. Equations. (C.1)–(C.14) are used to obtain the finite

values for the CTs.

As explained, the custodial symmetry gets broken by the
one-loop shifts in the parameters λi . This effect is triggered
by the hypercharge and one might expect that it is rather mild.
This was for instance also found in Ref. [36] where the effects
of custodial symmetry breaking through RGE evolution have
been studied. However, if we compare the dominant contri-
butions to the CTs of δλ3b and δλ3c, see Eqs. (C.3) and (C.4),
we find for small sH

δλ3b − δλ3c � 1

s2
Hv2

(
�H++ + �A

22 − 2 �H+
33

)
. (2.49)

The divergence for sH → 0 is caused because the trilinear
coupling M2 becomes huge in this limit for fixed m5. Includ-
ing only the contributions from the ew gauge couplings and
assuming the new scalars to be degenerate, we get form5 
 v

δλ3b − δλ3c � g2
1

16π2

m2
5

s2
Hv2

, (2.50)

i.e. the effects are enhanced by a factor m2
5/(sHv)2.

3 Theoretical constraints

3.1 Tree-level unitarity constraints

The first, and already at tree level rather severe, constraint on
the parameter space of the GM model is perturbative unitarity
of the 2 → 2 scalar field scattering amplitudes. This means
that the 0th partial wave amplitude a0 must satisfy either
|a0| ≤ 1 or |Re[a0]| ≤ 1

2 . The scattering matrix element M
is given by

M = 16π
∑
J

(2J + 1)aJ PJ (cos θ), (3.1)

where J is the angular momentum and PJ (cos θ) are the
Legendre polynomials. At the tree level, the 2 → 2 ampli-
tudes are real, which is why one usually uses the more severe
constraint |Re[a0]| ≤ 1

2 , which leads to |M| < 8π . For
analysing whether perturbative unitarity is given or not, it
is common to work in the high energy limit, i.e. the dom-
inant tree-level diagrams contributing to |M| involve only
quartic interactions. All other diagrams with propagators
are suppressed by the collision energy squared and can be
neglected. Moreover, effects of electroweak symmetry break-
ing (EWSB) are usually ignored, i.e. Goldstone bosons are
considered as physical fields.

The condition |M| < 8π must be satisfied by all of
the eigenvalues x̃i of the scattering matrix M. M must be
derived by including each possible combination of two scalar
fields in the initial and final states. The explicit expressions
for the eigenvalues x̃ for conserved custodial symmetry are
for instance given in Refs. [29,30]. They can be translated
into the following tree-level unitarity conditions:

√
(6λ1 − 7λ3 − 11λ4)

2 + 36λ2
2 + |6λ1 + 7λ3 + 11λ4| < 4π,√

(2λ1 + λ3 − 2λ4)
2 + λ2

5 + |2λ1 − λ3 + 2λ4| < 4π,

|2λ3 + λ4| < π,

|λ2 − λ5| < 2π. (3.2)

Without the custodial symmetry, the eigenvalues of the
scattering matrix have not been calculated before, but are
given here for the first time. Still most eigenvalues of the
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more complicated scattering matrix have simple, analytical
expressions:

± 8(2λ3b + λ4b), (3.3)

± 4(2λ4b + λ3b), (3.4)

± 2

(
2λ3a + 2(λ4a + λ4b) + 3λ3b

±
√

(2λ3a − 3λ3b + 2λ4a − 2λ4b)2 + 8λ2
3c

)
, (3.5)

± 8(2λ3c + λ4c), (3.6)

± 4(2λ4c + λ3c), (3.7)

± (4λ2a − λ5a), (3.8)

± 2(2λ2a + λ5a), (3.9)

± 2

(
2λ1 + 2λ4b − λ3b ±

√
(2λ1 + λ3b − 2λ4b)2 + λ2

5a

)
,

(3.10)

± 2

(
2λ1 + 2λ4c − λ3c ±

√
(2λ1 + λ3c − 2λ4c)2 + λ2

5b

)
,

(3.11)

± 1

2

(
− 4λ2a − 4λ2b − λ5a

±
√

(4λ2a − 4λ2b + λ5a)2 + 8λ2
5b

)
, (3.12)

±
(

2λ2a + 2λ2b − λ5a

±
√

(−2λ2a + 2λ2b + λ5a)2 + 8λ2
5b

)
. (3.13)

Three other eigenvalues are the solutions x1,2,3 of the poly-
nomial

0 = 384
[
2λ1

(
5(λ3a + λ4a)(3λ3b + 4λ4b) + (3λ4c + λ3c)

2)
− 2λ2aλ2b(3λ4c + λ3c) + 5λ2

2a(λ3a

+ λ4a) + λ2
2b(3λ3b + 4λ4b)

]

+ x
[
16(2(3λ1(5λ3a + 5λ4a + 6λ3b + 8λ4b)

− (3λ4c + λ3c)
2 + 5(λ3a + λ4a)(3λ3b + 4λ4b))

− 3λ2
2b − 6λ2

2a)
]

+ x2 [4(5λ3a + 5λ4a + 6λ1 + 6λ3b + 8λ4b)] + x3.

(3.14)

These expressions were extracted from SARAH as described
in appendix D.

From these eigenvalues, we can derive the following tree-
level unitarity conditions in the case of broken custodial sym-
metry

|2λ3b + λ4b| < π, (3.15)

|2λ3c + λ4c| < π, (3.16)

|2λ3a + 2(λ4a + λ4b) + 3λ3b|
+

√
(2λ3a − 3λ3b + 2λ4a − 2λ4b)2 + 8λ2

3c) < 4π,

(3.17)

|2λ4b + λ3b| < 2π, (3.18)

|2λ4c2 + λ3c| < 2π, (3.19)

|4λ2a − λ5a | < 8π, (3.20)

|2λ2a + λ5a | < 4π, (3.21)

|4λ2a + 4λ2b + λ5a |
+

√
(4λ2a − 4λ2b + λ5a)2 + 8λ2

5b < 16π, (3.22)

|2λ2a + 2λ2b − λ5a |
+

√
(−2λ2a + 2λ2b + λ5a)2 + 8λ2

5b < 8π, (3.23)

|2λ1 + 2λ4b − λ3b| +
√

(2λ1 + λ3b − 2λ4b)2 + λ2
5a < 4π,

(3.24)

|2λ1 + 2λ4c − λ3c| +
√

(2λ1 + λ3c − 2λ4c)2 + λ2
5b < 4π,

(3.25)

max(x1,2,3) < 8π. (3.26)

Even though we will always assume that the custodial sym-
metry is conserved at tree-level, we will make use of these
‘generalised’ unitarity constraints in combination with new
perturbativity constraints as explained in Sect. 3.3.

3.2 Vacuum stability constraints

3.2.1 Tree-level considerations

Another theoretical constraint which has already been stud-
ied in the context of the GM model is the vacuum stability
constraint at tree-level. In general, there are two possible sit-
uations which can cause an instability of the vacuum with
correct EWSB: either directions in the scalar potential exist
in which the potential is unbounded from below, or other
local minima exist in the scalar potential which are deeper
than the ew one.

Unbounded from below UFB directions exist if quartic cou-
plings fulfil specific conditions. The simplest condition is
λ1 < 0 since in this case the potential approaches −∞
for vφ → ∞. The full list of tree-level conditions to avoid
unboundedness from below in the case of conserved custo-
dial symmetry was derived in Ref. [30]. It reads:

λ1 > 0, (3.27)

λ4 >

{− 1
3λ3, λ3 ≥ 0,

−λ3, λ3 < 0,
(3.28)

123



Eur. Phys. J. C   (2018) 78:185 Page 9 of 46  185 

λ2 >

⎧⎪⎪⎨
⎪⎪⎩

1
2λ5 − 2

√
λ1

( 1
3λ3 + λ4

)
, λ5 ≥ 0 ∧ λ3 ≥ 0,

ω+(ζ )λ5 − 2
√

λ1(ζλ3 + λ4), λ5 ≥ 0 ∧ λ3 < 0,

ω−(ζ )λ5 − 2
√

λ1(ζλ3 + λ4), λ5 < 0,

(3.29)

with

ω±(ζ ) = 1

6
(1 − B(ζ ))

±
√

2

3

[
(1 − B(ζ ))

(
1

2
+ B(ζ )

)]1/2

,

B(ζ ) =
√

3

2

(
ζ − 1

3

)
. (3.30)

Equation (3.29) must be satisfied for all values of ζ ∈ [ 1
3 , 1

]
.

If the custodial symmetry is broken, more conditions need
to be checked. These conditions were derived in Ref. [36]
assuming two simultaneously non-vanishing field directions.
We have re-derived these conditions using our parametrisa-
tion, shown below. Not derived in Ref. [36] were UFB con-
ditions on the “custodial” direction with 〈η0〉 = 〈χ0〉 �= 0
and 〈φ0〉 �= 0 which we also present here. The set of UFB
conditions reads

λ1 > 0, (3.31)

λ3a + λ4a > 0, (3.32)

λ3b + 2λ4b > 0, (3.33)

λ3b + λ4b > 0, (3.34)

λ3c + √
2
√

(λ3a + λ4a)(λ3b + 2λ4b) + 2λ4c > 0, (3.35)√
2
√

(λ3a + λ4a)(λ3b + 2λ4b) + 2λ4c > 0, (3.36)√
(λ3a + λ4a)(λ3b + λ4b) + λ4c > 0, (3.37)

λ3c + √
(λ3a + λ4a)(λ3b + λ4b) + λ4c > 0, (3.38)

4λ2a + 4
√

2
√

λ1(λ3b + 2λ4b) − λ5a > 0, (3.39)

4λ2a + 4
√

2
√

λ1(λ3b + 2λ4b) + λ5a > 0, (3.40)

λ2a + 2
√

λ1(λ3b + λ4b) > 0, (3.41)

λ2b + 2
√

λ1(λ3a + λ4a) > 0, (3.42)

λ3a + 2λ3b + λ4a + 4λ4b + 4λ4c > 0, (3.43)

2λ2a + λ2b + 2
√

λ1(λ3a + 2λ3b + λ4a + 4(λ4b + λ4c))

− (λ5a/2) − λ5b > 0. (3.44)

Note that after translating the parameters according to
Eqs. (2.22)–(2.25), Eqs. (3.37) and (3.38) differ w.r.t. the
fourth and fifth line in Eq. (12) of Ref. [36] in that we do
not have a factor 2 in front of the square-root. The last two
conditions are shown here for the first time.
Other minima Even if the potential is bounded from below
in all possible field directions, additional minima are usu-
ally present. In these minima, the sum of all neutral VEVs

√
v2
η + 4(v2

χ + v2
φ) usually doesn’t agree with the measured

value of 246 GeV, i.e. those minima are not viable. Moreover,
also minima can occur at which charge is broken sponta-
neously by the VEV of a charged scalar. If any of those min-
ima is the global minimum of the scalar tree-level potential,
then the ew minimum is unstable. If tunnelling is assumed
to be instantaneous on cosmological scales – as it is usually
done – this vacuum configuration is forbidden. All possible
minima of the scalar potential at tree-level can be found by
solving the minimisation conditions of the potential, i.e. in
the most general case a set of seven coupled, cubic equations
must be solved. Another method of finding all minima by
using a re-parametrisation of the scalar potential is discussed
in Ref. [30].

3.2.2 Loop effects

Up to now, the vacuum stability in the GM model has only
been checked at tree level. However, using UFB conditions
at tree level can be very misleading since these conditions
involve very large field excursions – which demand a proper
treatment of radiative corrections. Usually, the best method
to deal with very large field excursions is to use the RGE-
improved potential. In the limit of very large VEVs, the
potential can be approximated very well by the tree-level
potential where the running quartic couplings are inserted.
Thus, to single out UFB directions, it is necessary to check
that the conditions hold in the limit

λN → λN (Q)|Q→∞, N = 1, . . . , 5. (3.45)

It has already been pointed out in the context of the THDM
[35] that UFB directions usually disappear in the RGE-
improved potential in the presence of large quartic couplings.
This can be understood from the general form of the RGEs:
bosonic contributions increase the size of the quartic cou-
plings with increasing energy while fermionic contributions
decrease them. We can confirm that a similar observation
holds in the GM model. If we forget for a moment the break-
ing of the custodial symmetry via hypercharge effects, the
one-loop RGEs for the quartic couplings are given by [36]:

16π2βλ1 = 9g4
2

32
− 9g2

2λ1

+ 3

2

(
64λ2

1 + 8λ1y
2
t + 12λ2

2 + λ2
5 − y4

t

)
,

(3.46)

16π2βλ2 =3g4
2

2
− 33g2

2λ2

2

+ 2λ2

(
24λ1 + 8λ2 + 28λ3 + 44λ4 + 3y2

t

)

+ 4λ2
5, (3.47)
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Fig. 1 The scale dependence of two combinations of quartic couplings.
The input parameters at mt have been λ1 = 0.05, λ2 = 0.5, λ3 = −1.5,
λ4 = 1, λ5 = 5. Negative values would point towards UFB directions,
i.e. it is shown that these directions disappear at large energy scales

16π2βλ3 =3g4
2

2
− 24g2

2λ3 + 80λ2
3 + 96λ3λ4 − λ2

5, (3.48)

16π2βλ4 =3g4
2

2
− 24g2

2λ4

+ 8
(
λ2

2 + 3λ2
3 + 14λ3λ4 + 17λ2

4

)
+ λ2

5,

(3.49)

16π2βλ5 = 1

2
λ5

(
−33g2

2 + 8(4λ1 + 8λ2

− 2λ3 + 4λ4 + λ5) + 12y2
t

)
. (3.50)

We show the running of the two coupling combinations λ3 +
λ4 and 4λ2 −|λ5|+4

√
2
√

λ1(λ3 + 2λ4) in Fig. 1. The input
values at mt were chosen to be λ1 = 0.05, λ2 = 0.5, λ3 =
−1.5,λ4 = 1,λ5 = 5, i.e. both combinations of couplings are
negative at mt . This would give the impression of two UFB
directions. However, we already see at scales which are below
one TeV that both combinations of couplings turn positive.
Thus, the UFB directions disappear once the loop effects
are included. Since the running of the quartic couplings is
usually very fast and since the scale at which the couplings
(or combinations of them) change their sign is not far above
the input scale, we can assume that the dominant radiative
effects are also covered by the effective potential without an
RGE resummation. See also Ref. [35] for a similar discussion
in the context of the THDM.

We will use in our numerical studies the one-loop effective
potential V (1)

EP to check the vacuum stability. The different
ingredients are

V (1)
EP = VTree + V (1)

CT + V (1)
CW. (3.51)

Here, V (1)
CT is the counter-term potential, and the sum VTree +

V (1)
CT is given by Eq. (2.17) and replacing

λN → λ̃Nx ≡ λN + δλNx . (3.52)

Note, the derived CTs depend on the ew VEVs, i.e. they
result in a cancellation between VCT and VCW only at the ew
minimum, but not at other positions of the potential. Thus,
the conditions Eqs. (2.44)–(2.48) don’t imply that the full
one-loop potential is in general identical to the tree-level
potential. The Coleman-Weinberg potential V (1)

CW is given by
[39]

V (1)
CW = 1

16π2

all fields∑
i

ri siCim
4
i

(
log

m2
i

Q2 − ci

)
, (3.53)

with ri = 1 for real bosons or Majorana fermions, otherwise
2; Ci = 3 for quarks, otherwise 1; {si , ci } = {− 1

2 , 3
2 } for

fermions, { 1
4 , 3

2 } for scalars and { 3
4 , 5

6 } for vector bosons. As
for the other calculations, we choose Q = m5 or Q = mH

depending on the choice of the input as described in Sect. 4.2.
It is important to stress that, for the check for spontaneous
charge breaking via VEVs of the charged scalars at the
loop level, the calculation of the physical masses must be
adjusted. The reason is that the additional VEVs, which can
be potentially present, also mix particles with different elec-
tric charge. If we assume no spontaneous CP violation, this
results in a 7×7 mass matrix for CP-even (�) and a 6×6 mass
matrix for CP odd scalars (�). Analogously, both fermions
and vector bosons of the same colour mix. Thus, in this case
the more explicit expression for the CW potential is

V (1)
CW = 1

16π2

[
1

4

(
7∑

i=1

m4
�i

(
log

m2
�i

Q2 − 3

2

)

+
6∑

i=1

m4
�i

(
log

m2
�i

Q2 − 3

2

))

− 3
6∑

i=1

m4
Qi

(
log

m2
Qi

Q2 − 3

2

)

− 1

2

9∑
i=1

m4
Li

(
log

m2
Li

Q2 − 3

2

)

+ 3

4

4∑
i=1

m4
Vi

(
log

m2
Vi

Q2 − 5

6

) ]
. (3.54)

Because of the length of the mass matrices in the case of
charge breaking VEVs, we don’t give them explicitly in this
paper. Instead, we provide on request the SARAH model files
for the charge breaking GM model to generate them.

3.3 Perturbativity constraints

As we have seen, the GM model provides in principle a suf-
ficient number of CTs to renormalise all masses on-shell if
the custodial symmetry is given up at the loop level. How-
ever, this does not yet ensure that such an on-shell calculation
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would also be trustworthy as one always needs to assume that
the perturbative expansion is working. If this is not the case,
then the calculation of the CTs and also all other loop cal-
culations are not meaningful. Naively, one might expect that
problems with perturbativity occur once quartic couplings
O(4 π) are involved, or that at least the tree-level unitarity
constraints are strong enough to filter out points which vio-
late perturbation theory. However, it was shown for the SM
that problems can occur much earlier [33] and that a better
limit for the quartic coupling in the SM is 2 π . In the spe-
cific case of the GM model, it was pointed out in Ref. [34]
that problems with perturbation theory can show up for even
smaller coupling values. It was observed that, in sizeable
regions of the parameter space of the GM model, the two-
loop corrections to masses can become larger than the one-
loop contributions. This was demonstrated at the example
of the SM-like Higgs mass for which the one- and two-loop
corrections in the MS scheme were compared. Of course, for
a robust statement about whether perturbation theory is still
working or has already broken down, it would be necessary
to compare physical processes and their scale dependence at
different loop levels. However, this is hardly possible in the
GM model – or any other BSM model. Therefore, we want to
use information which is easier accessible to get some indica-
tion whether loop calculations for a given parameter point are
trustworthy or not. For this, we are going to check the effects
of four different conditions which might point towards the
breakdown of perturbation theory. These conditions are:

1. A parameter point is considered to violate perturbation
theory if the two-loop corrections to at least one scalar
mass are larger than the one-loop corrections, i.e.

|(m2
φ)Tree − (m2

φ)1L| < |(m2
φ)2L − (m2

φ)1L|. (3.55)

This is very close to the ansatz of Ref. [34]. However,
we do not only consider the SM-like mass, but test all
three neutral CP-even states, i.e. φ = h1,2,3. In addition,
we impose a lower threshold on |(m2

φ)Tree − (m2
φ)1L| of

202 GeV2 for this test. The reason for this exception is
that the one-loop corrections might be very small due to
an accidental cancellation which is not any more present
at two-loop level – which would therefore otherwise lead
to a constraint according to Eq. (3.55) without actually
violating perturbation theory.

2. A parameter point is considered to violate perturbation
theory if the CT to at least one parameter is larger than
the tree-level value of this parameter times some constant,
i.e.

∣∣∣∣δxx
∣∣∣∣ > v. (3.56)

For the most conservative choice, v = 1, this forbids
points with |δx | > |x |. We apply this constraint to all
quartic couplings.

3. A parameter point is considered to violate perturbation
theory if the CT of at least one quartic coupling becomes
larger than some fixed value, i.e.

|δx | > c · π. (3.57)

We are going to test c within 1 and 4. Since δx enters
the two-loop corrections, a CT as large as 4π is for sure
problematic. However, problems might occur even for
smaller values as one has seen in the SM.

4. A parameter point is considered to violate perturbation
theory if the generalised unitarity constraints Eqs. (3.15)–
(3.26) are violated when inserting the renormalised cou-
plings, i.e.

|M(λNx → λN + δλNx )| > 8π. (3.58)

This condition is similar to the third condition but doesn’t
involve any (arbitrary) upper limit on the quartic cou-
plings. In addition, it indicates the robustness of the uni-
tarity constraints under radiative corrections. Of course,
to be sure if the unitarity constraints are really violated
or not, one would need to calculate in addition the vir-
tual and real corrections to all possible 2 → 2 scattering
processes.

All four conditions are not rigorous in the sense that they
can provide a definite answer if perturbation theory is still
working or not. It is also in some sense a matter of taste which
condition is considered as the most reasonable or reliable
one. However, as we will see, one can get some very clear
hints if problems with perturbation theory are present or not.
In particular, if several conditions fail at the same time, one
should be tempted to take results obtained from a calculation
at Born- or even one-loop-level with care.

4 Results

4.1 Numerical setup

For our numerical study we used the Mathematica pack-
age SARAH [40–44] with the implementation of the GM
Model discussed in Ref. [45]. In a first step, we used
the model files to generate a spectrum generator based
on SPheno [46,47]. SPheno calculates by default the
mass spectrum at the full one-loop level and includes all
important two-loop corrections to the neutral scalar masses
[34,48,49]. Special care is needed at the two-loop level to
avoid the so-called Goldstone boson catastrophe [50]. In
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addition, SPheno calculates all decay modes of the parti-
cles at tree- and one-loop-level [51], including the modes
discussed recently in Ref. [18]. This information is also used
to write the files necessary to test a parameter point with
HiggsBounds [52–54]. SPheno performs in addition a
calculation of flavour and precision observables like δρ or
g − 2 [55].
For this project, we have extended the list of precision observ-
ables by the oblique parameters S, T and U [56]. The main
reason for this was mainly that δρ, respectively the T param-
eter can’t be used to constrain the GM model: even if the
tree-level contribution vanishes for vχ = vη, the one-loop
correction is formally next-to-leading order. Thus, a fine-
tuned CT can be added to cancel this contribution in prin-
ciple. Therefore, we use the S parameter as main constraint
as proposed in Ref. [32]. We also compared our numerical
values of a full one-loop calculation of the S parameter with
those obtained with gmcalc and usually found agreement
within 5–10%.
We have modified one instance ofSPheno to include the CTs
to keep the scalar sector on-shell as explained in Sect. 2.3.2.
A second version was kept unmodified and used to get the
size of the one- and two-loop corrections to the masses in the
MS scheme, see Sect. 2.3.1 for more details.
We further used Vevacious [57] to test the stability of the
one-loop effective potential. The necessary model files have
been generated with SARAH. Here, we use two two differ-
ent implementations: the standard one with only the three
standard VEVs for the neutral scalars, and one with the pos-
sibility that all seven scalars can obtain a VEV. Since the
check of the vacuum stability with seven VEVs is quite time
consuming, we only test points which have passed all other
constraints.2 As input for Vevacious, we used the spec-
trum files written by SPheno. Vevacious automatically
adjusts the counter-term potential based on CTs which are
present in the SPheno spectrum file.3

We made use of gmcalc [58] to double-check the tree-level
constraints like tree-level unitarity, unboundedness from
below and the presence of other minima as well as the calcu-
lation of the S parameter as already mentioned. In order to cir-
cumvent the command line input, we have modifiedgmcalc
to read in a file with all necessary parameters (λi , Mi , μ

2
i )

as well as the running electroweak VEV as calculated by
SPheno. In addition, we added a function to write the results
for the tree-level unitarity check, the check for other minima
as well as unbounded-from-below directions into an external
file in a SLHA-like format. The different codes are combined
in numerical scans using the tool SSP [59].

2 We find that roughly 1% of the otherwise valid points have a deeper
global minimum where electric charge is broken spontaneously.
3 In practice,Vevacious checks for SLHA blocks starting withTREE
and LOOP in the spectrum files.

4.2 Input parametrisation

At the tree-level, i.e. with conserved custodial symmetry, and
after applying the tadpole conditions, there are seven free
Lagrangian parameters

λ1, λ2, λ3, λ4, λ5, M1, M2.

In addition, the relative size of the SU (2)-doublet and -triplet
VEVs, controlled by sH , is a free parameter. In principle,
these parameters could directly be used as input. However,
the overall majority of randomly chosen points would then
be ruled out by the requirement to have a CP-even scalar
mass with ∼ 125 GeV. Therefore, it is convenient to use mh

directly as input. We have explored two different sets of input
parameters:

1. Input I: here, we use the SM-like Higgs mass mh as
input, together with the mixing angle α between the CP-
even neutral SU (2)-doublet and -triplet components. In
addition, the heavy Higgs mass mH is used as input to
set the overall mass scale of the new scalars. Using those
input parameters,λ1, M1 and M2 are calculated according
to

M1 =
3sH

√
2 − 2s2

H

(
t2
α + 1

)
v2(2λ2 − λ5) − 2

√
3m2

h tα + 2
√

3m2
H tα

3
√

1 − s2
H

(
t2
α + 1

)
v

,

(4.1)

M2 = 1

9s2
H

√
1 − s2

H

(
t2
α + 1

)
v2

[
v
(
m2

h tα

(
−3

√
2 − 2s2

H sH tα

+ 2
√

3s2
H − 2

√
3

)
,−3sH

√
2 − 2s2

H

(
t2
α + 1

)
v2 (

2λ2
(
s2
H − 1

)

+ s2
H (−(λ3 + 3λ4)) − λ5s

2
H + λ5

) )

+ m2
H v

(
−2

√
3s2

H tα − 3
√

2 − 2s2
H sH + 2

√
3tα

) ]
, (4.2)

λ1 = − m2
h + m2

H t
2
α

8
(
s2
H − 1

) (
t2
α + 1

)
v2

, (4.3)

where tα = tan α. The full list of input parameters for
this choice is

mh, mH , α, λ2, λ3, λ4, λ5, sH . (4.4)

The advantage of this input is that Higgs constraints can
easily be kept under control by choosing small or moder-
ate values of sH and α at the same time. The disadvantage
is that the independent handling of sH and α implies a
tuning of the other dependent tree-level parameters. As a
result, loop corrections can have a significant impact, as
we will see below.
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2. Input II: here, we use mh and m5 instead of λ1 and
M1 as input. Moreover, M2 is set relative to M1 via a
dimensionless parameter r12. The used relations are

M1 = sH
(
v2

(
3λ5

(
s2
H − 1

) − 2λ3s2
H

) + 2m2
5

)
√

2v
(
(6r12 − 1)s2

H + 1
) , (4.5)

M2 = r12M1, (4.6)

λ1 = 1

32
(
s2
H −1

)
v2

(
v

(√
2s3

H v(λ3+3λ4)−s2
H (M1+3M2)+M1

)
−√

2m2
hsH

)

×
[
3sH

(
s2
H −1

)
v2

(
4M1sH v(λ5−2λ2)+2

√
2s2

H v2(λ5−2λ2)
2+√

2M2
1

)

+ 4m2
hv

(
−√

2s3
H v(λ3 + 3λ4) + s2

H (M1 + 3M2) − M1

)
+ 4

√
2m4

hsH
]
.

(4.7)

Thus, the full list of free parameters for this input is

mh, m5, λ2, λ3, λ4, λ5, r12, sH . (4.8)

The advantage of this input is that one has direct con-
trol over the SM-like Higgs mass as well as the BSM
scale � m5. On the other side, the mixing between the
SM-like Higgs and the other states is not an input, i.e. it
can in principle become very large. This will then cause
conflicts with Higgs coupling measurements.

Other proposed input sets, which we don’t explore fur-
ther in the following, are: {mh, λ2, λ3, λ4, λ5, M1, M2},
{mh,mH ,m3,m5, α, M1, M2}, and {mh,m5, λ2, λ3, λ4,

M1, M2}.
We are going to start now to investigate the loop con-

straints on the GM model using the two input sets defined
above. We start with a discussion of the perturbativity con-
straints before we turn to the vacuum stability constraints.
First, we concentrate on specific parameter regions to study
the different effects. In a second step, we consider the global
picture by performing random scans over large parameter
ranges.

4.3 Perturbativity constraints

4.3.1 Dependence on sH

We start with discussing the role of sH since it was shown
in Ref. [34] that large sH usually implies large radiative cor-
rections. For this reason we consider the parameter point

λ2 = 0.1, λ3 = 0.5, λ4 = − 0.02, λ5 = 0.1,

α = 20◦, with mH = 300 GeV or 800 GeV.

The tree-level masses of the three CP-even scalars are shown
in Fig. 2. As can be seen, a large separation between m5 and
mH can be present for both small and large sH . In general,
the very heavy states for small values of sH do also increase
the size of the loop effects as we will see.

m5

mH

mh

m5

mH

mh

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

500

1000

1500

2000

sH

m
h i
[G

eV
]

Fig. 2 The (tree-level) masses of the three CP-even states as function
of sH for two different values of mH : 300 GeV (blue) and 800 GeV
(dashed red). The other input parameters are: λ2 = 0.1, λ3 = 0.5,
λ4 = −0.02, λ5 = 0.1, α = 20◦

Consequently, we find that perturbativity constraints are
not only important for large sH , but that they can also be
significant for small sH . This is shown in Fig. 3 where we
show the size of the different loop effects. In the first row of
Fig. 3, we show the ratio of the different CTs normalised to
the tree-level coupling. Here, we have defined

δλn/λn ≡ Max{|δλna/λn|, |δλnb/λn |}, n = 2, 5, (4.9)

δλn/λn ≡ Max{|δλna/λn|, |δλnb/λn |, |δλnc/λn|}, n = 3, 4.

(4.10)

We see that for mH = 300 GeV, the couplings λ3, λ4 and
λ5 fail the constraint δλ/λ < 1 for values of sH up to 0.2.
And again for sH > 0.4, λ3 is in conflict with this constraint.
For mH = 800 GeV, there is always a contribution which
violates this bound over the entire range of sH . This choice to
define perturbativity seems to be quite strong. It might also
give a ‘false-positive’ result since large δλ/λ can easily occur
if the tree-level quartic is very small. This means that there
is some tuning of parameters at tree level which gets spoilt
by the loop corrections. In this case, it can happen that the
perturbative series behaves well and that higher order terms
remain small corrections to the one-loop terms. Therefore, a
more robust limit is to check the absolute size of the CTs: if
those are very large, e.g. > 4π , then higher order corrections
are expected to become more and more important. Therefore,
in the second row of Fig. 3 the absolute size of the counter-
terms is shown. Here, we defined

δλn ≡ Max{|δλna|, |δλnb|}, n = 2, 5, (4.11)

δλn ≡ Max{|δλna|, |δλnb|, |δλnc|}, n = 3, 4. (4.12)

The qualitative behaviour of the different lines looks very
similar to the case of δλ/λ. Note that for mH = 800 GeV
and small sH , the CTs to some quartic couplings can become
as large as O(104 GeV). This demonstrates how bad the
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Fig. 3 The relative (first row) and absolute (second row) size of the
counter-terms to the quartic couplings λi as a function of sH . The third
row gives the absolute value of different eigenvalues of the scattering
matrix when using the renormalised quartic couplings as input. The
fourth row shows the size of the one- and two-loop corrections to the

scalar masses in the MS scheme. The red line in the second row indi-
cates values of π , 2π and 4π and in the third row of 8π . On the left we
set mH = 300 GeV, on the right mH = 800 GeV. The other parameters
are analogous to Fig. 2

perturbation theory can behave and that an OS calculation,
although formally possible, is not well defined in this param-
eter region. In this example, because of the steep increase of
δλ3 towards small values of sH , the bounds on sH are rather

independent of the choice of the maximal value for the quar-
tic CT, i.e. |δλ| < 2π and |δλ| < 4π result in approximately
the same bounds.
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Since the maximal value of |δλ| which we still consider as
viable is arbitrary, we also test another condition to get an
upper limit of |δλ| which is the behaviour of the scalar 2 → 2
scattering. For that, we calculate the eigenvalues of the scat-
tering matrix with the renormalised couplings instead of the
tree-level values. This not only gives hints for the pertur-
bative behaviour of the parameter point but also indicates
the robustness of the tree-level unitarity constraints under
radiative corrections. We show in the third row of Fig. 3 the
absolute values of the eigenvalues y1 . . . y6 defined as

y1 = Max
{

8|2λ̃3b + λ̃4b|, |2λ̃3c + λ̃4c|,

2

(
|2λ̃3a + 2(λ̃4a + λ̃4b) + 3λ̃3b|

+
√

(2λ̃3a − 3λ̃3b + 2λ̃4a − 2λ̃4b)2 + 8λ̃2
3c

) }
, (4.13)

y2 = Max
{

4|2λ̃4b + λ̃3b|, 4|2λ̃4c + λ̃3c|
}

, (4.14)

y3 = Max

{
|4λ̃2a − λ̃5a |, 1

2

(
|4λ̃2a + 4λ̃2b + λ̃5a |

+
√

(4λ̃2a − 4λ̃2b + λ̃5a)2 + 8λ̃2
5b

)}
, (4.15)

y4 = Max

{
2|2λ̃2a + λ̃5a |, |2λ̃2a + 2λ̃2b − λ̃5a |

+
√

(−2λ̃2a + 2λ̃2b + λ̃5a)2 + 8λ̃2
5b

}
, (4.16)

y5 = 2Max
{
|2λ̃1 + 2λ̃4b − λ̃3b|

+
√

(2λ̃1 + λ̃3b − 2λ̃4b)2 + λ̃2
5a,

|2λ̃1 + 2λ̃4c − λ̃3c| +
√

(2λ̃1 + λ̃3c − 2λ̃4c)2 + λ̃2
5b

}
,

(4.17)

y6 = Max(x1,2,3), (4.18)

where x1,2,3 are the solutions of the polynomial of Eq. (3.14).
All yi should be smaller than 8π . We find that this in general
results in stronger constraints than those from the condition
|δλ| < 2π . For mH = 300 GeV, these ‘loop corrected’
unitarity constraints are comparable to those from δλ/λ < 1,
while formH = 800 GeV, they are a bit weaker: not the entire
parameter range is in conflict with this condition in contrast
to |δλ/λ < 1| which is violated everywhere.

We now turn to the constraints using the MS calculation.
The size of the one- and two-loop corrections to the CP-even
masses is shown in the fourth row in Fig. 3. We see that
these corrections could cause shifts of hundreds of GeV in
the masses, i.e. for small and large sH , they can be as large
as the tree-level values. Moreover, we find that the two-loop
corrections can be larger than the one-loop corrections. This
reflects again a breakdown of perturbation theory.

In Fig. 4, we summarise the limits on sH using the different
perturbativity limits. We see that for mH = 300 GeV the
overall limits from δλx/λx and |δλx | are quite similar. We
further observe that the limits from the one- and two-loop
MS corrections are slightly weaker for small sH but stronger
for large sH . All in all, we find that for mH = 300 GeV, a
sizeable range of sH is still allowed by all constraints. This is
different tomH = 800 GeV where |δλx/λx | is violated in the
entire range, while for the other three sets of constraints still
a window in sH exists where these constraints are fulfilled. It
is interesting to note that the constraint from h3 and λ3 give
quite similar results. Thus, there is an obvious correlation
between the size of the one-loop CTs in the OS scheme and
the hierarchy between the one- and two-loop corrections in
the MS scheme.

Before we move to the impact of the other parameters
on the perturbative behaviour of the model, we comment on
the dependence on the different input choices. It has already
been shown in Ref. [34] that the loop corrections are usually
small for sH if mh and m5 are used as input, but not α. We
also find this for our input choice II, cf. Eq. (4.8). As shown
in Fig. 5 on the right column, one can go up to sH = 0.7
for m5 = 300 GeV without running into obvious problems
with perturbation theory. However, there is a strong correla-
tion between sH and α and for large sH the mixing between
the SM-like Higgs and the triplets becomes so large that this
causes conflicts with Higgs observables as indicated by the
vertical dashed line. We find a similar behaviour for input
choice I if we impose a correlation between α and sH ‘by
hand’: if we demand α = 75sH

◦
rad , then we can also go up

to very large values for sH together with mH = 300 GeV
without running into trouble with perturbativity. However,
again the region of sH > 0.3 is ruled out by the Higgs con-
straints. Hence, the overall picture between both input modes
is comparable. We also learn from this comparison that large
loop corrections occur if the chosen mixing angle α is far
away from a natural value which is correlated with sH . As
a consequence, we use for the further examples with Input
I values of sH between 0.2 and 0.3 and take α between 10◦
and 20◦.

4.3.2 Dependence on heavy scalar masses

We have already seen in the last subsection during the dis-
cussion about the dependence of the loop corrections on sH
that the loop corrections usually become more important the
heavier the new scalars are. The reason is that large scalar
masses imply large values for the trilinear couplings M1 and
M2 which enter the scalar loop corrections. One finds for
instance that the one-loop corrections to the neutral CP-even
Higgs with mass m5 scales as
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Fig. 4 Comparison of the perturbativity limits of the parameter point of
Fig. 2. The left-hand side corresponds tomH = 300 GeV, the right-hand
side to mH = 800 GeV. We show here the allowed parameter ranges
which fulfil different sets of constraints. (i) hi : |(m2

hi
)Tree − (m2

hi
)1L| >

|(m2
hi

)2L −(m2
hi

)1L|; (ii) δλx : |δλx | < π (2π) [solid line (dashed line)];
(iii) |δλx/λx | < 1., (iv) yi are the absolute values of different eigenval-
ues of the scattering matrix when using λN + δλNx as input


m2
5 ∼ m2

5

(
1 + C

m2
5

v2

)
. (4.19)

Here, we have neglected all quartic couplings and expressed
M1, M2 by m5. The coefficient C is a complicated function
of sH and of the ratio M1/M2. The important point is that it
is usually much larger than 1

16π2 and can become O(1) for
large sH and/or large ratios.

We show the impact in Fig. 6a where we give the size of
the loop corrections using a fully numerical calculation as a
function of mH . The other parameters are set to

λ2 = 0.1, λ3 = 1, λ4 = − 0.1,

λ5 = 0.1, α = 20◦, sH = 0.25.

In all four different formulations of perturbativity constraints
shown in Fig. 6a, we find that large mH is generically more
constrained than lower masses, i.e. the values of the CTs
as well as the size of the loop-corrected MS masses increase
with increasingmH , up to a few specific values where cancel-

lations among the different loop contributions are present. In
the lower panel of Fig. 6a we present the size of the one- and
two-loop corrections to the neutral CP-even MS masses. We
observe that, for values of mH above 1.1 TeV (1.3 TeV), the
two-loop corrections to h2 (h3) are larger than the one-loop
corrections. Thus, in this example, the strongest perturba-
tivity constraints in the MS scheme are actually not due to
the loop corrections to the SM-like state but due to the new
scalars. For the SM-like state we see a short range between
600 and 800 GeV where the two-loop corrections are larger
than the one-loop corrections. However, this is obviously
because the one-loop corrections are suppressed by an acci-
dental cancellation. Therefore, we extend the MS perturba-
tivity limit by a threshold for the minimal size of the one-loop
corrections, cf. Sect. 3.3: only if the one-loop corrections to
the squared masses are larger than (20 GeV)2 and if the two-
loop corrections are larger than the one-loop corrections, we
consider this as breakdown of perturbation theory.
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Fig. 5 On the left: the same as Fig. 3 for mH = 300 GeV with the
additional condition α = 75sH

◦
rad . On the right-hand side, we use

input choice II as defined in Eq. (4.8), i.e. (mh,m5) as input instead

of (mh,mH , α) with m5 = 300 GeV, λi = 0.2 and r12 = 0.15. The
vertical orange dashed line shows the HiggsBounds limit

For the one-loop CTs in the OS scheme, shown in the upper
two panels of Fig. 6a, we find again that the strongest lim-
its on perturbativity stem from the constraint |δλx/λx | < 1.
Looking at the unitarity constraints, shown in the third panel,
we end up with a similar upper bound on mH ≤ 800 GeV for
this particular parameter point, more than ∼ 200 GeV lower
than the limit from the MS mass corrections. The constraint
|δλx | < π , in turn, leads to a limit onmH of 1.2 TeV, which is

in-between the one obtained from the loop corrections tomh2

and mh3 . Using a weaker upper limit of 2π or 4π wouldn’t
lead to any constraint in the tested parameter range. Quali-
tatively, however, we observe a clear correspondence of the
perturbativity constraints formulated in the MS scheme and
the ones from the OS CTs. In Fig. 6b, we show the ranges of
allowed mH for this scenario, analogously to Fig. 4.
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(a) The size of the different loop effects. See Fig. 3 for
more details.

(b) Comparison of the different perturbativity limits.
See Fig. 4 for more details.

Fig. 6 Perturbativity limits as a function of mH . The other parameters are chosen as λ2 = 0.1, λ3 = 1, λ4 = − 0.1, λ5 = 0.1, α = 20◦, sH = 0.25

4.3.3 Dependence on large quartic couplings

So far, we have not considered the role of the quartic cou-
plings on the perturbativity limits. Unlike in the THDM, the
quartic couplings in the GM model are usually not taken very
large, i.e. O(10). This is due to the tree-level unitarity limits
in this model which already severely constrain combinations

of couplings to be much smaller than 4π , see Eq. (3.2). For
instance, if we assume only λ3 and λ4 to be non-negligible at
tree-level, then large λ3 is only allowed if it cancels against a
large λ4, confining both parameters to a narrow strip around
λ3 = − 11λ4

7 ± 2π
7 which is cut off at roughly λ4 � 2.

On λ5, however, there are comparably weak tree-level uni-
tarity constraints, i.e. |λ5| 
 1 is easily possible without
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(a) The size of the different loop effects. See Fig. 3 for
more details.

(b) Comparison of the different perturbativity limits.
See Fig. 4 for more details.

Fig. 7 Perturbativity limits as function of λ5. The other parameters are chosen as: λ2 = 0.1, λ3 = 0.5, λ4 = − 0.1, α = 20◦, sH = 0.3,
mH = 750 GeV

violating any unitarity limit. On the other hand, λ5 enters the
one- and two-loop corrections, i.e. large effects are expected
there. This is depicted in Fig. 7a where the loop effects are
plotted as a function of λ5. The other parameter values are
set to

λ2 = 0.1, λ3 = 0.5, λ4 = − 0.1,

α = 20◦, sH = 0.3, mH = 750 GeV. (4.20)

For positive values of λ5, there is a fast increase in the size of
the loop corrections. In particular the two-loop corrections to
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the SM-like Higgs grow very quickly and are as large as the
tree-level mass for λ5 � 2. For the second-lightest Higgs, the
two-loop corrections are larger than the one-loop corrections
for λ5 � 2.25. This roughly corresponds to the value at which
δλ3 � π , depicting again the correlation between the two-
loop corrections in the MS scheme and OS CTs. For positive
values of λ5, similar constraints are also found when using
the condition |δλx/λx | < 1 or the ‘loop improved’ unitarity
constraints. For negative values of λ5, in turn, these two sets
of conditions are much more restrictive: they would forbid
values of λ5 below −2, while the other two sets of conditions
are fulfilled until λ5 � − 4.

We now turn to the other quartic couplings. Even though
those are constrained to smaller values than λ5 due to the tree-
level unitarity bounds, the one-loop corrections to those quar-
tics can turn out to be so large that we end up with stronger
perturbativity constraints on λ1···4 than on λ5. An indication
is already seen in Fig. 7 where it is actually the counter-terms
to λ3 which become problematic much earlier than those to
λ5. In Fig. 8a, we show the loop effects as a function of λ2.
The other input values are set to

λ3 = 0.5, λ4 = − 0.1, λ5 = 0.1,

α = 20◦, sH = 0.25, mH = 600 GeV.

We find almost continuously increasing CTs and loop cor-
rected masses for increasing λ2. The two sets of constraints
which have been the most restrictive ones on the other exam-
ples (|δλx/λx | < 1 and the unitarity constraints) are already
violated for λ2 � 0.2. In this case, this is quite similar to
the upper limit which is obtained from the two-loop cor-
rections to h3. On the other hand, when using the absolute
size of the CTs or the two-loop corrections of the first two
scalar masses as constraints, the limits are much weaker and
range between λ2 � 1 · · · 1.5, comparable with the tree-level
unitarity constraints. The constraints from the different per-
turbativity requirements are summarised in Fig. 8b.

4.3.4 Impact on parameter regions

We have seen in the last subsections that the loop corrections
in the GM model can become huge, indicating a breakdown
of perturbation theory. Of course, it is difficult to define an
absolute condition when this breakdown takes places. We
have investigated four sets of conditions which ended up in
different constraints on the parameters. Which conditions are
applied depend on how conservative one wants to be. How-
ever, the important observation is that at some point all con-
ditions point towards severe conflicts with the perturbative
expansion: if the CT to a quartic coupling is O(100) and if the
two-loop corrections are larger than the one-loop corrections
by an order of magnitude, it is clear that one has entered the
strongly coupled regime of the model.

We demonstrate at one example the impact of the differ-
ent perturbativity constraints on the parameter space which
seems to be valid at tree-level. We show in Fig. 9 an overlay
of the allowed parameter space at tree-level and the differ-
ent loop constraints in the (mH , sH ) plane for four different
values of λ2. The other parameters have been set to

λ3 = 0.5, λ4 = − 0.1, λ5 = 0.1, α = 20◦.

The green shaded areas in Fig. 9 show the parameter space
which is allowed at the tree level. The areas shaded in red
(blue) [brown] indicate when the MS two-loop correction
to mh1 (mh2 ) [mh3 ] becomes larger than the corresponding
one-loop correction. The other contour lines show the OS
perturbativity bounds as well as tree-level unitarity bounds
calculated with the renormalised couplings λ̃: the blue lines
show the contours of constant Max(|δλx |) of π (dotted), 2π

(dashed) and 4π (full line). The black lines show the contours
of constant ratios Max(|δλx/λx |) of 1 (dotted), 2 (dashed)
and 4 (full line). Finally, the unitarity bounds are represented
by the red contours, showing constant scattering eigenvalues
of 4π (dotted), 8π (dashed) and 16π (full line).

The first observation is that in neither of the four subfig-
ures, any of the parameter space features generalised scatter-
ing amplitudes with yi < 4π . As in the previous examples,
we will however always use the less restrictive bound of 8π ,
as defined in Eq. (3.58). In the left upper panel of Fig. 9,
we present the case λ2 = 0.5. We observe that in this case,
the loop corrections behave comparatively well – most of
the parameter space which is allowed at tree level is still
viable if the higher-order constraints are taken into account.
The only exception is the ratio of CTs over the tree-level
coupling which would exclude most of the valid parame-
ter space if we were to apply the most restrictive bound of
Max(|δλx/λx |) < 1. We further observe that the other, less
conservative OS bounds agree well with the MS conditions.

For increasing values of λ2, the perturbativity constraints
invade more and more the valid tree-level regions. Finally,
for λ2 = 1.25, nearly the entire parameter space which is
allowed at tree-level seems to demand a non-perturbative
handling.

In all four examples in Fig. 9 we see that the strongest
constraints always come from the ratios Max(|δλx/λx |) < v,
especially if v = 1 is considered as the maximally-allowed
ratio. However, also using v = 2 or 4 as bounds, these limits
are always stronger than the ones from the absolute values
of |δλx | < cπ , even if we apply c = 1 or 2 as condition.
The exclusion regions when demanding that the tree-level
unitarity constraints calculated with renormalised couplings
should be fulfilled are comparable with those from the rela-
tive size of the CTs when imposing < 8π for the maximal
eigenvalue of the scattering matrix. If eigenvalues up to 16π

are accepted, the condition becomes more comparable to the
ones on the absolute value of the CTs with c = 1.
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(a) The size of the different loop effects. See Fig. 3 for
more details. Here,the vertical black lines shows the
tree-level unitarity constraints.

(b) Comparison of the different perturbativity limits.
See Fig. 4 for more details.

Fig. 8 Perturbativity limits as function of λ2. The other parameters are chosen as: λ3 = 0.5, λ4 = − 0.1, λ5 = 0.1, α = 20◦, sH = 0.25,
mH = 600 GeV

Similarly, also the hierarchy between the one- and two-loop
corrections to the scalar masses leads to quite severe con-
straints. It is in particular interesting to see that for different
parameter points the corrections to different masses are more
important. Because of this complementarity, the superposi-
tion of the constraints from all three masses cover a signif-

icant part of the parameter space. The constraints from the
absolute size of the quartic couplings result, for this example,
in the weakest limits.

Quite generically, however, we observe again clear corre-
lations between the size of the CTs and the hierarchy between
the one- and two-loop corrections in the MS scheme.
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Fig. 9 Impact of the perturbativity constraints in the (mH , sH ) plane
for different values of λ2 on regions which are allowed at tree-level
(green areas). The other parameters are set to λ3 = 0.5, λ4 = − 0.1,
λ5 = 0.1, α = 20◦. The shaded area indicates the Higgs mass con-
straints (|(mhi )

2)Tree −(m2
hi

)1L| > |(m2
hi

)2L −(m2
hi

)1L|) [red: h1; blue:
h2; brown: h3]. The blue lines are the contours of constant values for

Max(|δλx |) = cπ [dotted: c = 1; dashed: c = 2; full c = 4]. The black
lines indicate Max(|δλx/λx |) > v [dotted: v = 1; dashed: v = 2; full:
v = 4]. The red lines show when the tree-level unitarity limits calcu-
lated with λ̃’s are violated when setting an upper limit on the scattering
eigenvalues of 4π (dotted), 8π (dashed) or 16π (full)

Finally, we want to show some constraints on a partic-
ular benchmark, the so-called ‘H5plane’, which has been
promoted for the Georgi-Machacek model recently, see
Refs. [61,62]. This plane is characterised by only two free
parametersm5 and sH . The other parameters are fixed accord-
ing to

mh = 125 GeV, λ3 = − 0.1, λ4 = 0.2,

λ2 = 0.4
m5

1 TeV
, M1 =

√
2 sH
v

(m2
5 + v2), M2 = M1

6
.

(4.21)

Obviously, the input parametrisation for this plane is different
from the standard input choices I and II defined above. We
have modified our code accordingly.

It has already been shown in Ref. [34] that there are, what
appears to be, serious problems with perturbativity for large
values of m5. This was shown using the MS scheme, with
the result that in large regions of the parameter space the 2-
loop mass correction to the SM-like Higgs must are larger
than the 1-loop correction. In Fig. 10, we now show the con-
straints arising from all other perturbativity conditions. As
can be seen from there, the perturbativity constraints cut
deeply into the parameter space of the H5plane. In partic-
ular, demanding in the OS scheme that |δλx/λx | < 1 (thick
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Fig. 10 Constraints on the parameter space in the m5-sH plane using
the other parameters according to eq. (4.21). Points above the black
(blue) thick line are excluded due to theoretical tree-level bounds (direct
LHC searches [60]) according to Ref. [61]. The grey shaded area with
the red contour lines shows the OS perturbativity constraints based on
the relative size of the counter-terms. The red contours correspond to
Max(|δλx/λx |) = 1, 2, 4, 16 and 64. The yellow shaded area corre-
sponds to the unitarity constraints using renormalised parameters. The
black dashed contours correspond to the associated scattering eigen-
values of 4 π , 8 π , 16 π and 64 π . As the green contour we show the
MS constraints from the size of the two-loop corrections vs. the one-
loop corrections. Regions tainted green do not pass the constraint, i.e.
Max(|(m2

φi
)2L − (m2

φi
)1L|/|(m2

φi
)Tree − (m2

φi
)1L|) > 1, i = 1, 2, 3.

Finally, the purple shaded area corresponds to the perturbativity con-
straints on the absolute size of the CTs. The purple dot-dashed contours
correspond to Max(|δλx |) = 2 π and 4 π

red contour line) only leaves valid parameter space below
m5 � 500 GeV. Only considering the perturbative unitar-
ity cuts using renormalised couplings and demanding 8 π to
be the upper limit (thick black dashed contour line), instead
leaves points up to about 1.2 TeV. The loosest constraints
come from the absolute size of the CTs. Only the parameter
space below m5 � 2.1 TeV (2.5 TeV) violates this condition
if the cut |δλx | < 2 π (4 π) is applied. In addition to the
MS constraints already discussed in Ref. [34] for the light-
est neutral scalar, we include the same condition for the two
heavier neutral scalars. In fact, it turns out that the 2-loop
corrections to the second mass eigenstate (corresponding to
m5) are the most dangerous. The parameter space in conflict
with Max(|(m2

φi
)2L − (m2

φi
)1L|/|(m2

φi
)Tree − (m2

φi
)1L|) > 1

is shown in green.
Also shown in the figure are the constraints extracted from

Ref. [61]: only points below the black solid line are allowed
from theoretical tree-level constraints. Note that for large sH ,
this line is in agreement with the loop-level unitarity bound

– considerable deviations however appear below sH � 0.4.
The parameter space above the blue line is excluded from
the LHC direct searches for doubly-charged scalars [60]. In
total, depending on how conservative a perturbativity cut is
applied, the left-over parameter space of the H5plane is either
small or even just a tiny strip.

4.4 Vacuum stability

So far, we have discussed one-loop perturbativity constraints
on the parameter space of the GM model, a new kind of
constraint which, to the best of our knowledge, has not been
discussed in literature in the context of the GM model – or any
other BSM model – before. However, also the impact of loop-
corrections on well-known constraints which already exist at
tree level is expected to be significant. Here we turn to the
discussion of the vacuum stability constraints and show how
the impact of the loop corrections can alter the conclusions
drawn on that basis. A discussion of these effects for the
THDM was done in Ref. [35], and we can find here quite
similar features for the GM model.

4.4.1 Stabilising UFB directions

We start with unbounded-from-below directions which exist
for the tree-level potential for many different field combi-
nations. We have already discussed in Sect. 3.2.1 that these
directions are very often expected to disappear once loop
effects are included. While we have focused in Sect. 3.2.1
on the RGE-improved potential containing only quartic cou-
plings – which is a valid approach in the limit of very large
scales – we use here the one-loop effective potential. There
are mainly two reasons for that: (i) the running of the quar-
tic couplings is usually very fast, i.e. the scale at which the
couplings or combinations of them change their sign is not
for away from the input scale. Thus this scale is often not
much higher than the scale of the dimensionful parameters
in the potential. (ii) Even if the UFB conditions are satisfied
at higher scales, this doesn’t mean that those points are nec-
essarily stable: it can and will happen that the potential in
the UFB directions is deformed to a local minimum which is
deeper than the electroweak one. In order to check this, one
needs to find all minima of the effective potential and com-
pare their depths. We do this explicitly at one example in
Fig. 11 where we compare the vacuum stability at tree level
and at the one-loop level as a function of tree-level input
value λ3 as well as mH . We used as further input

λ2 = 0.1, λ4 = −0.1, λ5 = 0.1, α = 15◦, sH = 0.23.

At tree level, the most constraining condition λ3/3 +λ4 < 0
for the presence of a UFB direction, cf. Eq. (3.43), therefore
becomes
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Fig. 11 Comparison of the vacuum stability at tree-level and one-loop
level. The shaded areas represent the stability of the potential at tree-
level: unbounded from below direction exist (red), other minima deeper
than the ew vacuum exist (orange), the ew vacuum is stable (green). The
green hatching indicates a stable ew vacuum at one-loop whereas no
hatching corresponds to a metastable vacuum at one-loop. Black lines
show the value of constant λ3/3 + λ4 at tree level, and the blue ones of
min{λ3a + 2λ3b + λ4a + 4λ4b + 4λ4c, λ3a + λ4a, λ3b + 2λ4b, λ3b +
λ4b, λ3c + √

2
√

(λ3a + λ4a)(λ3b + 2λ4b) + 2λ4c} at one-loop. The
black area is forbidden by the tree-level unitarity conditions. The grey
shaded area indicates the perturbativity constraints. The other parameter
values are λ2 = 0.1, λ4 = − 0.1, λ5 = 0.1, α = 15◦, sH = 0.23

λ3 < 0.3. (4.22)

This rules out a large fraction of parameter space in the shown
plane. Moreover, also for λ3 > 0.3, other and deeper minima
than the ew one are present at tree-level. As a consequence,
the tree-level potential is only stable in a small region with
λ3 � 1 and mH < 900 GeV. At the one-loop level, there
are finite corrections to the quartic couplings. Therefore, the
most constraining conditions to not have a UFB direction in
the combined tree-level and CT potential become

min{λ3a + 2λ3b + λ4a + 4λ4b + 4λ4c, λ3a

+ λ4a, λ3b + 2λ4b, λ3b + λ4b,

λ3c + √
2
√

(λ3a + λ4a)(λ3b + 2λ4b) + 2λ4c} > 0,

(4.23)

with λNx = λN + δλNx . The contours for constant val-
ues of Eq. (4.23) are also shown in Fig. 11: negative values
appear only for a rather small region with mainly λ3 < 0 and
mH < 1 TeV. Thus, the UFB directions in the other parts of
the plane disappeared already just because of the CTs inde-

pendently of the other one-loop corrections.4 As expected,
not the entire region where the loop potential doesn’t have
a UFB direction also provides a stable ew vacuum. There is
still a non-negligible region where the ew minimum is not
the global minimum of the scalar potential. Nevertheless,
the region with the ew minimum as the global minimum is
significantly larger than at tree-level.

A similar mechanism also works for other UFB directions.
In Fig. 12 we show the λ5 − mH plane and consider the
condition

λ2 − 1

4
|λ5| + √

2λ1(2λ4 + λ3) > 0 (4.24)

which is violated in the depicted (λ5,mH ) plane at tree-level
roughly for λ5 < −1 (up to some corrections stemming
from the changes in λ1 in this plane). We show for compari-
son again the contours of the equivalent conditions for UFB
directions in the tree-level plus CT potential, i.e.

min{4λ2a − |λ5a | + 4
√

2λ1(2λ4b + λ3b),

2λ2a + λ2b + 2
√

λ1(λ3a + 2λ3b + λ4a + 4(λ4b + λ4c))

− 1

2
λ5a − λ5b} < 0, (4.25)

cf. Eqs. (3.39), (3.40) and (3.44). The difference between
these lines is not as pronounced as in Fig. 4.23 – however,
the regions with a stable minimum at the one-loop level are
still significantly larger than at tree-level. This means that
also in this example the loop corrections from the Coleman-
Weinberg potential are very important to stabilise the UFB
directions. In the entire plane the more stringent condition of
Eq. (4.25) is 4λ2a −|λ5a |+ 4

√
2λ1(2λ4b + λ3b), which cor-

responds to the direction 〈H0〉 = 〈χ−〉 = 〈φ−〉 = 〈χ−−〉 =
〈φ0〉 = 0, 〈H+〉 = x〈χ0〉. In this direction, the terms pro-
portional to 〈χ0〉4 in the CW potential which don’t come
together with a logarithm are

VCW ∼ 1

32π2

(
64(λ2

2 + 8λ2
3 + 20λ3λ4 + 17λ2

4)

+ 4λ2
5 + 4(8λ2(6λ1 + 2λ2 + 7λ3 + 11λ4)

+ 2(2λ1 + 4λ2 − λ3 + 2λ4)λ5 + 3λ2
5)x

2

+ 3(64λ2
1 + 12λ2

2 + λ2
5)x

4
)
. (4.26)

In the next step, for achieving an insight into the question
where the UFB directions go at one-loop, we add these
terms to the tree-level + counter-term potential according
to Eq. (3.51) and re-derive the UFB condition of Eq. (4.24)
for the modified potential. The corresponding dashed blue
contour lines are shown in Fig. 12. We see that the corre-
sponding values are positive over the entire parameter range

4 One can check that the additional loop corrections are also positive.
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Fig. 12 Comparison of the vacuum stability at tree-level and one-
loop level. The shaded areas represent the stability of the poten-
tial at tree-level: unbounded from below direction exist (red), other
minima deeper than the ew vacuum exist (orange), the ew vac-
uum is stable (green). Hatched regions feature a stable ew min-
imum at one-loop. Black lines show the value of constant λ2 −
1
4 |λ5| + √

2λ1(2λ4 + λ3) using the tree-level input values, and the

full blue ones of Min{4λ2a − |λ5a | + 4
√

2λ1(2λ4b + λ3b), 2λ2a +
λ2b + 2

√
λ1(λ3a + 2λ3b + λ4a + 4(λ4b + λ4c)) − 1

2 λ5a − λ5b}. For
the dashed blue lines, the term of Eq. (4.26) was added in addition to
the tree-level + CT potential and the UFB condition of 4λ2a + λ5a +
4
√

2λ1(2λ4b + λ3b) > 0 has been re-derived. The grey shaded area
indicates the perturbativity constraints. The other parameter values are
λ2 = 0.1, λ3 = 0.5, λ4 = −0.1, α = 20◦, sH = 0.33

– which means that the tree-level UFB direction becomes
bounded from below at the one-loop level.

4.4.2 Stabilising meta-stable regions

If no UFB direction exists, the ew vacuum could still be
unstable due to the existence of other minima deeper than
the one with correct EWSB. This case was to some extent
already mentioned in the last subsection. Here we are going
to investigate it in more depth. In Fig. 13, we show the differ-
ence 
V between the ew minimum and the panic vacuum,

V = VEWSB − Vpanic. The panic vacuum is defined as the
minimum which is deeper than and closest in field space to the
ew vacuum, i.e. the one to which the ew vacuum configura-
tion would tunnel to eventually. 
V is a positive-semidefinite
quantity: if the desired (i.e. ew) vacuum configuration corre-
sponds to the global minimum of the potential, then such a
panic vacuum does not exist (or is exactly as deep as the ew
minimum) and we define 
V = 0. Positive values of 
V
are, in turn, reached if there is a non-ew panic vacuum. The
contour lines drawn in the figure correspond to lines of con-

stant
√

v2
φ + 4(v2

η + v2
χ ). On the left-hand plane of Fig. 13,

we present the result at the tree-level, and on the right-hand
side with the full one-loop corrections included. The other
parameters were set to

λ2 = 0.1, λ4 = − 0.1, λ5 = 0.1, α = 20◦, sH = 0.33.

We see that at tree-level, only in one corner of the depicted
parameter region, the ew minimum is also the global mini-
mum of the potential. The depth5 of this minimum is about
−107GeV4. For λ3 < 0.8 and/or mH > 600 GeV, minima
occur which are deeper than the ew one by several orders of

magnitude. Note that the sum of all VEVs
√

v2
φ + 4(v2

η + v2
χ )

for these other minima is in the TeV range, i.e. clearly larger
than the ew scale. Nevertheless, those minima are not ‘too
far’ away in field space, meaning that the tunnelling from the
ew to the panic vacuum is very fast. We are going to quantify
this statement below.

5 The ‘depth’ is the difference of the potential with a given VEV con-
figuration compared to the potential with all VEVs vanishing.
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Fig. 13 The scalar potential at the tree-level (left) and one-loop level
(right): the colour indicates the difference between the panic mini-
mum and the electroweak minimum. The contour lines are constant

values for
√

v2
φ + 4(v2

η + v2
χ ). The other parameters are set to λ2 = 0.1,

λ4 = − 0.1, λ5 = 0.1, α = 20◦, sH = 0.33

Turning to the vacuum structure of the one-loop poten-
tial, shown on the right in Fig. 13, we observe that the ew
vacuum corresponds to the global minimum of the potential
for a much larger region of the depicted parameter space.
Up to mH � 1200 GeV, values of λ3 exist for which the ew
potential is stable. Obviously, the one-loop corrections can
be large and positive: they manage to overcompensate the
potential difference at tree-level of 10 orders of magnitude.
This large value is not surprising because one could estimate

the corrections to be O(
m4

H
16π2 ). Only for small values of λ3,

the other minima remain deeper than the ew one.
We conclude this discussion with a brief analysis of

the tunnelling rate. We have calculated the tunnelling
from the desired to the panic vacuum using the code
CosmoTransitions [63] in combination with
Vevacious. The result is shown in Fig. 14, where we have
zoomed into the region 600 GeV < mH < 900 GeV of the
right-hand side of Fig. 13. We find that there is only a narrow
band where the life-time of the ew minimum is comparable
to the age of universe when calculating the tunnelling rate at
zero temperature. These points could in principle be consid-
ered as ‘long-lived’, i.e. viable. However, once the thermal
corrections are included as explained in Ref. [64], they also
usually become short-lived. Therefore, from now on, we are
going to consider all points which feature a deeper panic vac-
uum as not viable. This is similar to the THDM where it was
also found that the tunnelling to deeper minima is always
very fast on cosmological time scales [35,65].

4.4.3 De-stabilising stable regions

So far, we have discussed the situation that the stability of
the potential is increased once loop corrections are included.

Fig. 14 Zoom into the parameter plane of the right-hand side of Fig. 13
and presenting the calculated life-time of the electroweak vacuum nor-
malised to the life-time of the universe at zero temperature

We found this situation to appear far more often than the
opposite effect. However, it can also happen in some cases
that the stability of the ew potential is decreased via the loop
corrections. The reason is that the loop corrections are often
positive. Thus, if they are larger than the depth of the ew
minimum at tree-level, they can push it to positive values.
Consequently, the minimum with all VEVs set to zero is
deeper at the loop-level. In other words, it can happen that
the ew symmetry is restored by the loop corrections. We show
an example of this situation in Fig. 15. Here, the stability at
tree level and the one-loop level is shown in the (mH , sH )

plane for
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Fig. 15 Comparison of the vacuum stability at tree level and the one-
loop level. The shaded areas represent the stability of the potential
at tree level: unstable (orange) or stable (green). The green hatched
area is stable at the one-loop level. The green, purple and red contour
lines show the depth of the loop-corrected ew minimum: the values
are sign(V ) log10 |V/GeV4|. The grey shaded area indicates the pertur-
bativity constraints where we have used the MS condition. The other
parameter values are λ2 = 1, λ3 = 0.9, λ4 = − 0.2, λ5 = 0.2, α = 15◦

λ2 = 1, λ3 = 0.9, λ4 = − 0.2, λ5 = 0.2, α = 15◦.

The tree-level vacuum is stable in a strip around the line
(sH = 0.7,mH = 250 GeV) to (sH = 0.35,mH =
450 GeV). However, once the loop corrections are included,
the depth of the ew potential in a large fraction of this area
becomes positive. This is indicated by the green, purple
and red contour lines which show the logarithmic values
for negative, zero, and positive potential depth of the ew
minimum. For mH = 250 GeV, all points which are sta-
ble at the tree level are actually unstable at the loop level.
For mH = 350 GeV, still more than half of the sH range
which is allowed at tree level is forbidden after the inclusion
of loop corrections. Only for mH ≥ 450 GeV, all the points
which are stable at tree level are also stable at the one-loop
level. In general, we find that the restoration of the ew sym-
metry at the loop-level appears mainly in parameter regions
with small mH and not too small sH . On the other side, we
find that the entire area which is ‘below’ the green band, i.e.
where the tree-level ew vacuum is unstable, is stabilised at
the loop level. Hence, the overall picture that loop corrections
increase the parameter space in which the vacuum is stable,
still holds.

4.5 The global picture

We have discussed so far the perturbativity constraints as well
as the loop-improved vacuum stability constraints at selected
examples. As the final step, we want to obtain an impression
of the ‘global picture’, i.e. the impact of these constraints in
a wide fraction of the full parameter space of the GM model.
For this purpose, we performed random scans for both input
choices according to Eqs. (4.4) and (4.8), in the following
parameter ranges:

1. Input I:

aλ2, λ3, λ4 ∈ [−1, 1], λ5 ∈ [−2.5, 2.5],
mH ∈ [200 GeV, 2000 GeV],

α ∈ [3◦, 50◦], sH ∈ [0.05, 0.95].

2. Input II:

λ2, λ3, λ4 ∈ [−1, 1], λ5 ∈ [−2.5, 2.5],
m5 ∈ [200 GeV, 2000 GeV],
r12 ∈ [10−2, 102], sH ∈ [0.05, 0.95].

The values of the λ’s were chosen to ensure that a large
fraction of them are in agreement with tree-level unitar-
ity conditions, i.e. to make the scan more efficient. The
scans were carried out until for each input choice, 250,000
points were collected which (i) have a tachyon-free parti-
cle spectrum, (ii) which pass the tree-level unitarity con-
straints and (iii) which are in agreement with the S parame-
ter. Afterwards, these points were confronted with different
cuts. First, the experimental constraints on the Higgs cou-
plings were applied using HiggsBounds. In the second
step, the consequences of the tree-level constraints (UFB,
other minima) were compared to the loop-improved vacuum
stability constraints and to the perturbativity constraints in
addition. In the case of the perturbativity cuts, we made two
choices:

1. weak condition (“Weak P.”): the condition that correc-
tions to the scalar masses calculated in the MS scheme
must be smaller at two-loop than at one-loop is applied.
In addition, an upper limit for the absolute value of the
CTs for the quartic couplings of 2π has been set.

2. strong condition (“Strong P.”): the condition that the gen-
eralised tree-level unitarity conditions must be fulfilled
for the renormalised quartic couplings is applied.

A summary of the number of points surviving the differ-
ent cuts is given in Table 1. Passing the HiggsBounds
constraints (column ‘HB’) is taken as a prerequisite for the
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Table 1 Summary of the results of a random scan using Input I and
II. A sample with 250,000 points each has been generated which pass
the tree-level unitarity constraints. The numbers give the points surviv-
ing the different cuts. As weak perturbativity cut we applied the MS
condition based on the hierarchy of the one- and two-loop corrections
to the masses of the CP-even neutral scalars. The strong cut uses the

generalised unitarity constraints with renormalised couplings. Under
‘Agreement’, we list the number of points which pass both the tree-
and loop-level constraints. We show in brackets how many of the points
passing the tree-level constraints also pass the loop constraints and vice
versa

Input HB Tree-Level Loop-Level Agreement

UFB Stability Stability Weak P. Strong P. Weak P. Strong P.

I 121,034 23,417 2114 12,749 3220 1558 1150 (54%, 35%) 662 (31%, 42%)

II 159,588 27,316 14,288 34,143 14,222 5704 7105 (49%, 49%) 3258 (22%, 57%)

subsequent columns. The numbers in the columns “Tree-
Level” as well as in “Loop-Level” show a cutflow in itself,
i.e. points which pass “Tree-Level Stability” also pass the HB
as well as Tree-Level UFB constraints, and points which pass
“Loop-Level Weak/Strong P.” also pass the HB and Loop-
Level Stability constraints. Points which pass the loop-level
constraints do not necessarily also pass the tree-level con-
straints and vice versa, in accordance with the previous obser-
vations that tree-level constraints are often changed signif-
icantly at the loop level. In the last column “Agreement”,
we compare the numbers from the tree- and loop-level con-
straints: first, we show the number of points which pass
both tree and loop constraints. In brackets, we show which
percentage of points which pass tree-level constraints also
pass the one-loop constraints and vice versa. For instance,
54% of those points which pass the tree-level cuts are still
viable after imposing the loop-level “Stability” and “Weak
P.” conditions. In turn, out of all points which pass the lat-
ter, only 35% would have also been considered viable at
tree-level. A cross-check of the viability of the results is that
the fraction of points which have passed the “Strong P.” cut
and are also in agreement with the tree-level conditions is
always larger than the analogue with the “Weak P.” cuts.
This means that the stronger constraints are more stringent
in filtering out points at which the loop corrections have a
large impact.

The overall result is that the theoretical constraints at tree
level have a misidentification rate of about 50%. That means
that roughly half of the points which seem to be viable when
applying tree-level conditions are in conflict with the loop
conditions. On the other side, also a large fraction of points
which look fine at the loop level would have been discarded
if only tree-level conditions had been used. If the strong per-
turbativity cut is applied, only one third (Input I) respec-
tively one fourth (Input II) of the points which appear to
be valid at tree level also pass the loop constraints. Since
these are quite large effects, it is important to understand
them in some more detail. In the following subsections, we
are therefore going discuss the effects and try to pin down
where the differences between tree- and loop-level are most
pronounced.

4.5.1 Perturbativity

The main difference between the two input modes I and II is
the treatment of α: while it is an input parameter for Input
I, it is dynamically calculated for Input II from the other
parameters by diagonalisation the scalar mass matrix. One
finds approximately the following dependence of α on the
other parameters

sin 2α ∼ sH

√
1 − s2

H

m2
3

m2
h − m2

H

. (4.27)

Therefore, usually a correlation between sH and α is vis-
ible and α is naturally large for large sH . On the other
side, for Input I one can, in principle, choose α arbitrar-
ily small independently of sH . The only constraint is that
this could lead to tachyons in the scalar sector. To get a pic-
ture from the possible values of α for the two input modes,
we present in the first row of Fig. 16 the minimal value of
α which we found in our random scans in the (mH , sH )

respectively (m5, sH ) planes. As expected, for Input II, the
minimal values of α tend to be larger for large sH than
for Input I. Of course, since both inputs are related by just
a re-parametrisation, they should be equivalent at the end.
However, in order to keep α small for large sH , some tun-
ing in the other parameters is required which is not easily
achieved in a random scan. Thus, from this point of view,
Input I looks much more promising to find points which
pass the constraints on the Higgs couplings. This is also
confirmed in the second row of Fig. 16 where we show the
minimal value of α in the same planes after the Higgs con-
straints have been applied. There are parameter regions like
sH > 0.3,mH > 1200 GeV which are hardly accessible
via Input II when choosing the input randomly, but which
are populated for Input I. However, we had already observed
in Sect. 4.3.1 that the perturbativity constrains are in par-
ticular strong for cases in which some tension between the
values of sH and α is present. This is also nicely confirmed
in our random scan. If we apply in addition to the Higgs
coupling constraints the perturbativity constraints, as done
in the last row in Fig. 16, we can observe that the two input
modes show quite similar results even in the random scans.
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Fig. 16 Results of the parameter scan. First row: the minimal value
of α found in the (mH , sH )-plane for Input I (left) and the (m5, sH )-
plane for Input II (right). In the second row, we show the same figures

after applying the HiggsBounds cuts, and in the third row after both
HiggsBounds and weak perturbativity cuts

All regions where only for Input I, points had survived the
HiggsBounds cuts, are in conflict with the (weak) pertur-
bativity constraints. Thus, the accessible regions as well as

the minimal value of α in these regions look very similar
once the HiggsBounds constraints are combined with the
perturbativity constraints.
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Fig. 17 Fraction of points passing the weak (first row) or strong (second row) perturbativity cut. Only points which have initially passed the
HiggsBounds checks are taken into account. The left column is for Input I, the right one for Input II

We can confirm this picture also from another point of
view. In Fig. 17, we show the fraction of points which pass
the weak or strong perturbativity constraint in the (mH,5, sH )

planes for Input I respectively Input II. One finds that these
cuts are particularly strong for Input I in the case of (i) large
sH and mH or (ii) very small sH . In these parameter regions,
up to 100% of the points require a non-perturbative treatment.
Is is remarkable that the ‘strong’ cut as we called it since it
affects on average more points, can be even less restrictive
than the ‘weak’ cut in some regions of parameter space. This
is especially the case for Input I and small mH in combina-
tion with large sH . However, one should note that the number
of points per bin in these regions is also smaller than in other
regions. For Input II, we find in contrast only a soft depen-
dence on sH as long as it is below 0.5 (strong cut) or 0.3
(weak cut). On the other side, a strong tendency is visible
that the perturbativity cuts are more important for increasing
m5.

In general, it is worth noticing that even in those parameter
regions where the perturbativity cuts are the least constrain-
ing, they still affect at least 15% of the shuffled points.

4.5.2 Vacuum stability constraints

We now turn to the vacuum stability constraints and dis-
cuss the main differences between the tree-level and loop-
improved constraints. A comparison between the tree-level
and one-loop constraints in the (mH , sH ) and (m5, sH ) plane
for Input I and II, respectively, is shown in Fig. 18. In this
figure, we consider all points which are either stable at the
tree- or one-loop-level and show the fraction of points which
are also stable at loop- or tree-level, respectively. Thus, these
plots present

R = #|stable at loop|stable at tree

#|stable at loop
or

R = #|stable at tree|stable at loop

#|stable at tree
(4.28)

For Input I, we find that at most 60% of the points per bin
which are stable at the one-loop level would also have passed
the tree-level constraints. In other words, the misidentifica-
tion rate that stable points are considered as unstable from
tree-level considerations (‘false negative’) is at least as large
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Fig. 18 First row: fraction of those points which are stable at one-loop and also pass the tree-level constraints. Second row: fraction of those points
which are stable at tree-level and pass also the loop constraints. The left columns shows the results for Input I, the right column for Input II

as 40%. For Input II, the ‘false negative’ misidentification
rate can go down to 20%. However, this is only the case
for a small band of very small m5 of 200–300 GeV. Other-
wise, this misidentificatio rate is often 70% and more. For
Input I, parameter regions exist where nearly all points with
a stable vacuum at the loop-level would be ruled out by the
tree-level constraints. This is in particular the case for very
small sH or for somewhat large sH (∼ 0.4) together withmH

above 500 GeV. For Input II, there is also one spot where
the misidentification rate is close to 100% at sH ∼ 0.35,
m5 ∼ 800–1000 GeV.

In contrast, the large majority of points which pass the
tree-level constraints is also stable at the loop-level. The
main exception is for Input I in the limit of large sH and
small mH where the loop corrections restore the ew symme-
try as explained in Sect. 4.4.3. In these regions, the misiden-
tification rate that points are assumed to be stable based on
tree-level consideration is up to 30%. In all other parameter
regions, it is significantly smaller and at most a few per-
cent. Since the effect of symmetry restoration comes with

large sH together with rather small values of α, it is much
less pronounced for Input II. Consequently, the ‘false pos-
itive’ misidentification rate is, with the exception of one
bin, always below 10% in the (m5, sH ) plane. Since for the
vacuum stability constraints, and in particular for the check
against UFB directions, the quartic couplings are crucial, we
show in Fig. 19 the ‘false negative’ misidentification rate
also in the (λ2, λ4) and (λ3, λ5) planes for Input I and II. The
overall situation for both input modes is quite comparable.
One finds in particular for negative λ2 and/or λ4 that a large
majority is mis-categorised. Only for λ2 → 1, λ4 → 1, more
than 50% of the points which are stable at the loop-level are
also considered ‘stable’ from tree-level checks. The reason
is that, although the loop corrections are in principle more
important for larger quartic couplings, large λ2 and λ4 make
it less likely that a given parameter point fails one of the
tree-level checks for UFB directions.

In the lower row of Fig. 19, which gives the results for the
(λ3, λ5) plane, the picture changes. Here we find that most of
the points for which the tree-level checks also return ‘stable’
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Fig. 19 Fraction of those points out of the parameter scan which are stable at one-loop and also pass the tree-level constraints. The results are
shown in the (λ2, λ4) (upper row) and the (λ3, λ5) plane (lower row). The left column uses the points with the input choice I, the right column uses
Input II

if the point is deemed stable at one-loop reside around small
absolute values of λ3 and λ5. In this case, the misidentifica-
tion goes down below 60% for Input I and even below 30%
for Input II. On the other side, if either |λ3| or |λ5| are large,
less than 20% of the points are categorised correctly. The rea-
son is that for large couplings, the loop corrections are even
more important. In contrast to λ2 or λ4, the quartic coupling
λ5 enters the UFB checks as |λ5|, i.e. UFB directions are
as likely for large positive λ5 as they are for large negative
values. In the case of λ3, points with large negative tree-level
values for that coupling are likely to have a UFB direction at
tree-level which becomes bounded from below after includ-
ing the loop corrections, analogous to λ2 and λ4; recall also
the example of Fig. 11. At large positive λ3, in turn, a point
which is considered unstable at tree level because of a deeper
non-ew minimum of the scalar potential can become stable
at one-loop after the inclusion of the large loop corrections
as we have seen at the example of Fig. 13.

Finally, we want to remark again what is particularly
noticeable in Fig. 13: one clearly sees that, if a point passes
the loop-level constraints, there is in general a higher chance
that it also passes all tree-level tests if Input II is used rather
than Input I. This is a result of the smaller amount of param-
eter tuning which is needed in average (i.e. for a randomly
chosen parameter point) if α is calculated rather than used as
an input.

4.5.3 Maximal sH

We want to close the discussion of our random scans by
checking the maximal allowed value of sH which is possible
in the different parameter regions when applying the vari-
ous tree- and loop-level constraints defined above. Here, we
concentrate on Input II because of the larger number of valid
points when using both tree- and loop-level checks. I.e., we
consider a comparison between results of the lowest order
and higher orders of perturbation theory as more robust for
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Fig. 20 Maximally allowed value for sH using different sets of con-
straints. Upper left figure: maximal value of sH in the (m5, r12) plane
for Input II after the HiggsBounds cut and all loop constraints. For
the perturbativity cuts, we have used the weak conditions. Upper right
plane: the relative difference to the maximal value when using only
tree-level constraints and not checking for perturbativity (depicted is

100
sLoop
H −sTree

H
sTree
H

). In the second row, the difference is shown if tree-level

vacuum stability constraints are combined with the weak perturbativity
cuts (left), or the one-loop vacuum stability is checked but the pertur-
bativity constraints are not applied (right). The purple regions are not
accessible if the tree-level cuts are applied. In the black bins, no point
was found in our random scan after applying the one-loop perturbativity
constraints on points with a stable tree-level vacuum

this input choice. In the first row of Fig. 20, we show the
maximal value of sH which we find after applying the weak
perturbativity constraints and checking the stability of the
one-loop effective potential. We see that very large values
are only possible for r12 < 0 (i.e. opposite signs for M1 and
M2) and small m5 below 500 GeV. For increasing r12 or m5,
the maximal possible value of sH quickly goes down to 0.3
and less. We can now compare these values with smax

H which
we would find in the same plane if we apply the tree-level
vacuum conditions and if we don’t check for perturbativity.
The results are depicted as well in the first row of Fig. 20, on
the right-hand side. First of all, a band with large r12, shown
in purple, wouldn’t have been accessible at all under these
conditions. Close to this region, i.e. still for r12 � 1, the
relative changes in smax

H can be 150% and more. Of course,

in total numbers this means for this parameter region rather
moderate shifts of 0.01–0.10 in the maximal possible value
of sH . In the other parameter regions, the relative differences
in smax

H are not too pronounced; they lie between − 25 and
+100%. Nevertheless, these are effects which are not negli-
gible even if one has averaged over thousands of points, i.e.
the general behaviour of the model is affected. Of course, for
a single point which should be for instance used for collider
studies, it is even more important to apply robust checks to
test whether the point is allowed or not.

In the second row of Fig. 20, we show the difference in
smax
H when using the tree-level checks and either the weak per-

turbativity constraints (lower left plane) or the loop-corrected
vacuum stability checks (lower right plane). If one would
use the tree-level vacuum stability conditions and apply the
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weak perturbativity conditions in addition, the sample of
points considered as ‘valid’ will shrink. Therefore, also smax

H
becomes smaller. The differences can be up to -50% for large
m5. On the other side, if only the loop-improved vacuum sta-
bility checks were used without perturbativity checks (right-
hand plot), the sample of ‘valid’ points would increase signif-
icantly, resulting in larger positive shifts of smax

H up to 500%
for large r12. Moreover, a rather large region in the parameter
space would seem accessible in this case: the region at large
r12 and large m5 which is purple in the lower right plane but
white in the upper right figure appears to be allowed if the
perturbativity constraints are disregarded.

This shows that the two proposals to improve the the-
oretical checks for parameter points in the GM model are
complementary, and we stress that a check of the stability at
the loop level is only meaningful if the perturbative series is
trustworthy.

5 Summary and conclusions

We have investigated in this work the perturbative behaviour
of the Georgi-Machacek model, focussing on the scalar sec-
tor. An on-shell renormalisation of the scalar masses and mix-
ing angles is formally possible once the custodial symmetry is
given up at the loop level. However, it has been shown that in
large regions of parameter space, very large loop corrections
can appear, pointing towards the breakdown of perturbation
theory. Therefore, these regions are most likely strongly cou-
pled although naive limits for the quartic couplings would not
indicate this. For a definite answer to the question whether
the perturbative expansion works or not, it would be nec-
essary to check for the decrease in the scale dependence of
different physical processes – which is so far hardly possible
in most BSM models since one would need to calculate the
two-loop results for several decay or scattering processes.

We have therefore proposed a set of easily-accessible
checks which should help to get an impression of how
well the perturbative expansion works. These checks either
include conditions on the size of the counter-terms to the
quartic couplings which should be fulfilled in an on-shell
scheme, or use the hierarchy between the one- and two-
loop corrections to the scalar masses in the MS scheme. The
methodology developed in this work therefore solely relies
on calculations which are, as of late, possible in an automated
way for many BSM models via the Mathematica package
SARAH. The perturbativity conditions proposed here are thus
a lot more sophisticated than the simple tree-level checks and
at the same time already easily calculable with the help of
modern particle physics computer tools.

We have shown at the example of the Georgi-Machacek
model that those comparably easily-accessible conditions
are, in many parameter regions, sufficient to be certain that

perturbation theory is not applicable: we have found exam-
ples in which the counter-terms to quartic couplings are larger
than 100 or in which the two-loop mass corrections are sev-
eral orders of magnitude larger than the one-loop corrections.
There are, however, also regions where the results are not
that clear. For instance if the two-loop corrections are com-
parable to the one-loop corrections or if counter-terms are of
order one. Here, it is still a matter of taste or conservatism if
one assumes that Born-level or one-loop results for masses
or processes are still reliable. Although in these cases, we
cannot provide a definite yes/no answer to the question of
perturbativity, we think that this work has pointed out the
potential problems with perturbativity arising in particular in
non-supersymmetric models in the presence of sizeable quar-
tic couplings. We further hope that the presented ansätze are
a step forward towards more reliable checks of this issue in
the future.

In the specific case of the Georgi-Machacek model, we
could identify several parameter regions where the loop cor-
rections tend to be large. In particular, we found that a check
for perturbativity is inevitable if (i) the new scalar masses are
large, i.e. 1 TeV or more, (ii) if there is a mismatch between
the actual values of sH and the scalar mixing angle α either
due to the choice of the input parameters or due to acciden-
tal cancellations, or (iii) if quartic couplings become large
(although still well below the limits from the tree-level uni-
tarity conditions).

The second main outcome of this work is that we have
revised the checks for vacuum stability, which have so far
only been done at tree-level, by including loop corrections.
We have shown that those tree-level checks are usually not
reliable in the Georgi-Machacek model. In particular, in
many cases, a vacuum configuration which appears to fea-
ture an unstable electroweak vacuum at the tree level turns
out to be stable once the one-loop corrections are included.
This is the case as (i) a change in hierarchy between dif-
ferent minima of the scalar potential can easily occur at the
one-loop level, and (ii) because field directions which appear
to be unbounded from below at the tree level turn out to be
bounded after the inclusion of the loop corrections. The oppo-
site case that the vacuum is destabilised at the loop level is
much less likely. Depending on the parameter regions, we
found misidentification rates of the tree-level checks com-
pared to the more reliable loop-level checks of up to 100%.
In the entire parameter region which we have checked, the
misidentification rate was always above 15%. Therefore, we
conclude that, for a reliable prediction if a point has a stable
or unstable electroweak vacuum, tree-level conditions are
not sufficient. On the other side, one needs to be sure that
perturbation theory is working if loop corrected checks for
the vacuum stability shall be applied. This shows the strong
connection between the two topics discussed in this work.
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A Vertices

The Feynman rules for the GM model are partially given
in Refs. [20,30,66]. These works focused on the couplings
which are important for collider phenomenology like cubic
scalar couplings, or the couplings of the scalars to vector
bosons or fermions. However, other couplings which are
important for loop corrections like the quartic scalar cou-
plings or the interactions with ghosts have not yet been given
explicitly in literature. Therefore, we provide in the follow-
ing all couplings of the scalars in the GM model in the limit
of conserved custodial symmetry and also of no CP violation,
i.e. all parameters are taken to be real. The expressions for
the general case are available via SARAH.

We define the following rotation matrices

ZH =
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1 0 0

0 −
√

2
3

1√
3

0 1√
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⎠ (A.3)

which diagonalise the mass matrices given in Eqs. (2.29)–
(2.31) in the limit of the conserved custodial symmetry.

In the following, the vertices are categorised according
to inclusion of scalar (S), fermionic (F) or vector (V) par-
ticles. The conventions are as follows: Chiral vertices are
parametrised as

�L
Fi Fj Sk PL + �R

Fi Fj Sk PR,

where PL ,R are the usual polarisation projectors. The
momentum flow in scalar-scalar-vector (SSV) vertices is
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μ
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where pμ are the momenta of the external fields.
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(
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(A.58)
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(A.62)
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(
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)
Z+
i3 (A.63)

SVV
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�H−−W+
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�L
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B One-loop corrections

Here we give the expressions for the one-loop tadpoles and
self-energies. For that, we refer to the vertices listed in the
last subsection. Since the corrections are applied to the mass
matrices but not the mass eigenstates, external gauge eigen-
states must be used. Therefore, the rotation matrices of these
states must be replaced by the identity matrix. We label the
corresponding fields as x̌ .

In addition, we introduce the following abbreviations:

X (a, b) =X (p2, a, b) X = {B0, B1,G0, F0} (B.1)

LR =L ↔ R (B.2)

The results are expressed via Passarino Veltman integrals
[67]. The basic integrals are

A0(m) = 16π2Q4−n
∫

dnq

i (2π)n

1

q2 − m2 + iε
, (B.3)

B0(p,m1,m2) = 16π2Q4−n
∫

dnq

i (2π)n

1[
q2 − m2

1 + iε

][
(q − p)2 − m2

2 + iε

] ,

(B.4)

with the renormalization scale Q. All the other, necessary
functions can be expressed by A0 and B0. For instance,

B1(p,m1,m2) = 1

2p2

[
A0(m2) − A0(m1)

+(p2 + m2
1 − m2

2)B0(p,m1,m2)

]
,

(B.5)

and

F0(p,m1,m2) =A0(m1) − 2A0(m2)

− (2p2 + 2m2
1 − m2

2)B0(p,m1,m2),

(B.6)

G0(p,m1,m2) =(p2 − m2
1 − m2

2)B0(p,m1,m2)

− A0(m1) − A0(m2) (B.7)
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Tadpoles
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Self-energies

1. CP-even Higgs
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2. CP-odd Higgs

�A
i, j (p

2) = −B0

(
m2

η+ ,m2
η+

)
� Ǎ0
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i , Ǎ
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3. Charged Higgs
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j ,η−,η̄Z

− B0

(
m2

η+ ,m2
ηZ

)
�Ȟ−
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�Ȟ+

i ,Ȟ−
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j ,ha ,ha

+
3∑

a=1

2∑
b=1

B0

(
m2

H+
a

,m2
A0
b

)
�∗
Ȟ−
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(B.11)

4. Doubly-charged Higgs

�H++
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(

− m2
W

2
+ A0

(
m2

W

))

+ 2�H−−,H++,Z ,Z

(
− m2

Z

2
+ A0

(
m2

Z

))

− 1

2

2∑
a=1

A0

(
m2

A0
a

)
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+
3∑

b=1
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(
m2

H−− ,m2
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)

+
3∑
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(B.12)

C Counter-terms

Here we present the counter-terms necessary to renormalise
the scalar sector of the GM model on-shell.

δλ1 = − 1

8
v−3
φ

(
− vφ�H

11 + δt1
)

(C.1)

δλ2a = +δλ2b + 1

8
v−2
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13

)

+ 1

2
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φ

(
8v2
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φ

)−1(
4
√
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(
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))
(C.2)
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χ

(
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χ
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φ + √
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23 + �++)

− 4v2
φvχ

(
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2δt3 + vφ

(
− 3�H+

13

− �H+
12 + √

2�A
12

))

− 32v3
χ

(√
2δt3 + vφ

(
− �H+
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))

+ 8vφv2
χ

(
v
(
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− �H+
33 + �A
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(
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(C.3)

δλ3c = 1
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(
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√
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)
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(C.14)

We have imposed here δλ3a = δλ3b. The remaining two
parameters are chosen as δλ2b = δλ4c = 0.

D Tree-level unitarity conditions with SARAH

The tree-level unitarity conditions can be obtained with
SARAH as follows

1 (* loading SARAH and the model *)

2 << SARAH.m

3 Start ["Georgi -Machacek "];

4

5 (* extracting all scalars *)

6 AllScalars = ↪→
Transpose[Select[Particles[GaugeES], ↪→
#[[4]] == S &]][[1]];

7

8 (* Creating all possible 2-tuples with the ↪→
scalars and the complex conjugates ↪→
ones *)

9 AllScalars = Join[AllScalars , conj /@ ↪→
AllScalars ];

10 pairs = Intersection[Map[Sort [#] &, ↪→
Tuples[AllScalars , {2}], {1}]];

11

12 (* calculating the scattering matrix *)

13 ScatterMatrix =

14 Table[

15 (* symmetry factors *)

16 If[pairs [[i2 , 2]] === pairs [[i2 , 1]], ↪→
1/Sqrt[2], 1]

17 If[pairs [[i1 , 2]] === pairs [[i1 , 1]], ↪→
1/Sqrt[2], 1]
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18 (* derivation *)

19 D[

20 D[

21 D[

22 D[

23 LagSSSS[GaugeES], (* the ↪→
scalar potential in SARAH *)

24 pairs [[i1 , 1]]],

25 pairs [[i1 , 2]]],

26 pairs [[i2 , 1]]],

27 pairs [[i2, 2]]],

28 {i1 , 1, Length[pairs]}, {i2 , ↪→
1,Length[pairs ]}];

29

30 (* Taking the eigenvalues *)

31 Eigenvalues[ScatterMatrix]

This method can also be used for any other model imple-
mented in SARAH. Only if coloured scalars are present in the
model, one needs to take care of the colour factor in addition.
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