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Abstract

We introduce an unconventional interpretation of the fermion mass matrix elements. As the full rota-
tional freedom of the gauge-kinetic terms renders a set of infinite bases called weak bases, basis-dependent 
structures as mass matrices are unphysical. Matrix invariants, on the other hand, provide a set of basis-
independent objects which are of more relevance. We employ one of these invariants to give a new 
parametrisation of the mass matrices. By virtue of it, one gains control over its implicit implications on 
several mass matrix structures. The key element is the trace invariant which resembles the equation of a 
hypersphere with a radius equal to the Frobenius norm of the mass matrix. With the concepts of alignment 
or misalignment we can identify texture zeros with certain alignments whereas Froggatt–Nielsen structures 
in the matrix elements are governed by misalignment. This method allows further insights of traditional 
approaches to the underlying flavour geometry.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

After different trials to understand the various unsolved aspects of fermion masses and mixing, 
the so-called flavour puzzle still lacks for a satisfactory explanation. In spite of this, some hints 
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could already be pointing out for a theory of flavour, see for example Refs. [1–5]. The common 
approaches have mainly concerned on introducing zeros (texture zeros) in the mass matrices in 
order to reduce the number of parameters [6–13], the use of flavour symmetries which at the 
same time can justify some of the aforementioned zeros [14], the use of hierarchical fermion 
masses to unveil the structure in fermion mixing [1,15], the Froggatt–Nielsen mechanism [16] or 
extra dimensions to produce hierarchical fermion masses and mixing angles [17], among others.

The main puzzle arises from the complete arbitrariness in which the mass matrices appear in 
the Standard Model (SM), proportional to the Yukawa couplings of fermions to the Higgs field, 
such that after electroweak symmetry breaking, a generic fermion mass matrix is given by

M = v√
2

⎛⎝ |y11|eiδ11 |y12|eiδ12 |y13|eiδ13

|y21|eiδ21 |y22|eiδ22 |y23|eiδ23

|y31|eiδ31 |y32|eiδ32 |y33|eiδ33

⎞⎠ , (1)

with v = 246 GeV the Higgs vacuum expectation value. There are in general much more param-
eters allowed than physical. Moreover, the question why there are three generations, so why are 
they 3 × 3 matrices stays unclear. We do not intend to resolve this open question here but rather 
like to scrutinise the underlying arbitrariness. A new level of understanding may be gained by a 
study of the generic properties of these mass matrices and identification which or how many of 
the available parameters can be physical at the end. Later, one may find a fundamental reason 
behind its construction. Regarding this two-level approach, in this letter, we provide a way to 
dissolve the initial arbitrariness and understand some of the phenomenological observations that 
have already been made. The second part lies beyond the scope of our present work.

In the limit of massless fermions, e.g. vanishing Yukawa couplings, the matter sector of the 
Standard Model reveals a very large accidental symmetry. This symmetry allows for some arbi-
trariness in the choice of a weak basis.1 The largest flavour symmetry is given by the following 
global symmetries on the fermion fields:

GF ⊃ U(3)FL × U(3)aR × U(3)bR, (2)

which holds for both quarks and leptons, where F = Q, � stands for the left-handed doublet 
fields and a = u, ν and b = d, e for the right-handed singlets if we add 3 right-handed neutrinos 
to the Standard Model to be symmetric in the quark and lepton sector.2 The mass matrices Ma

and Mb are modified by these weak basis transformations,

M ′
a = LQMaR

†
a and M ′

b = LQMbR
†
b, (3)

where left- and right-handed fields are transformed independently

ψF
L → LF , (4a)

ψa
R → Ra, (4b)

ψb
R → Rb, (4c)

with Xy ∈ U(3)
y
X unitary transformations, meaning X†

yXy = XyX
†
y = 1.

1 A weak basis is a particular choice of U(3) transformations which leave the neutral and charged current interactions 
invariant.

2 In general, models for neutrino masses involve a much broader range of possibilities. For our study, the explicit UV 
complete theory of neutrino masses does not play a role and we can even work with the field content of the pure SM only 
(no right-handed neutrinos and only effective mass operators for the light neutrinos).
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Basically, this ambiguity reveals (3 ×9) = 27 free parameters which have to be balanced with 
(9 × 2 × 2) = 36 arbitrary parameters in the mass matrices like Eq. (1). In addition, there is a 
freedom of a global rephasing in each fermion sector, known as global baryon or lepton number 
which remains after introducing the masses. Thus, the number of physical parameters3 apparently 
is given by 36 − 27 + 1 = 10 which decomposes to the six masses, three mixing angles and one 
complex phase. In the case of e.g. light Majorana neutrinos, their mass matrix is constrained to 
be complex, but symmetric, so the counting is slightly different, especially because no U(3)νR
freedom exists. We then have 2 × 9 arbitrary parameters from the complex 3 × 3 charged lepton 
masses and 2 × 6 = 12 parameters from the complex symmetric neutrino Majorana mass, see 
also Section 6. In total, we are left with 30 − 18 = 12 physical parameters: compared to the pure 
Dirac case there are two more complex phases, the well-known Majorana phases.

In the course of this letter, we present a novel route on how to relate the initially free param-
eters of the mass matrices with the weak basis transformations and define a new interpretation
for the individual mass matrix elements on a geometrical argument. By geometrical reasoning 
(as e.g. alignment/misalignment), we can dissolve the arbitrariness within a weak basis and give 
a way to study underlying flavour patterns through a systematical procedure. While there exists 
already an exhaustive literature on the problem how weak basis transformations affects flavour 
structures and texture zeros in a general way, see e.g. Refs. [8,10–13], our geometrical approach 
differs from them in its easiness and originality.

This letter is organised as follows: in Section 2, we propose a new spherical parametrisation 
for the magnitude of the mass matrix elements following from the matrix invariants. In Section 3, 
we relate the angles of the spherical mass matrix to the physical angles and discuss an explicit 
two-family description in Section 4. We examine the nature of texture zeros in Section 5 and in 
Section 6 we explore similar considerations for the case of Majorana neutrinos. The description 
of large fermion mass hierarchies by small angles can be found in Section 7 relating to Froggatt–
Nielsen-like models. Finally, in Section 8 we conclude.

2. The spherical mass matrix interpretation

Let M be a generic 3 × 3 complex mass matrix,

M =
⎛⎝m11 m12 m13

m21 m22 m23
m31 m32 m33

⎞⎠ . (5)

Its Singular Value Decomposition (SVD) is given as

M =
3∑

j=1

�jmj r
†
j (6)

where �j and rj are the singular vectors corresponding to the j -th singular value (mass) mj . They 
set up the left and right unitary transformations L and R of Eq. (3), which diagonalise the two 
hermitian products of M : L†MM†L = diag(m2

1, m
2
2, m

2
3) and R†M†MR = diag(m2

1, m
2
2, m

2
3), 

respectively.

3 Unphysical is the full rotational freedom of the gauge-kinetic terms.
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A complex 3 ×3 matrix has three invariants that do not change under the left and right unitary 
transformations:

ξ = 1

2

[
Tr
[
MM†

]2 − Tr

[(
MM†

)2
]]

= m2
1m

2
2 + m2

2m
2
3 + m2

1m
2
3, (7)

D = det
[
MM†

]
= m2

1m
2
2m

2
3, (8)

R2 = Tr
[
MM†

]
= m2

1 + m2
2 + m2

3, (9)

which can be expressed in terms of the singular values or masses. Conversely, this same set can 
be written using the mass matrix elements,

ξ = x1x2 + x1x3 + x2x3 − (|y1|2 + |y2|2 + |y3|2), (10)

D = x1x2x3 − x1|y3|2 − x2|y2|2 − x3|y1|2 + 2 Re(y1y
∗
2y3), (11)

R2 = x1 + x2 + x3, (12)

where we have abbreviated

x1 = |m11|2 + |m12|2 + |m13|2, (13a)

x2 = |m21|2 + |m22|2 + |m23|2, (13b)

x3 = |m31|2 + |m32|2 + |m33|2, (13c)

y1 = m11m
∗
21 + m12m

∗
22 + m13m

∗
23, (13d)

y2 = m11m
∗
31 + m12m

∗
32 + m13m

∗
33, (13e)

y3 = m21m
∗
31 + m22m

∗
32 + m23m

∗
33. (13f)

Of course, all these equations are well-known facts and these relations already have been ex-
ploited in the flavour physics context, see e.g. Ref. [18,19]. Nevertheless, we want to state a very 
pictorial interpretation, which can be shown to be a powerful parametrisation of the mass matrix 
arbitrariness. In this interpretation the trace invariant suggests a parametrisation of the matrix el-
ements describing the surface of a hypersphere. As can be easily seen, the trace of the hermitian 
product is given by the sum of squared matrix elements which also defines the Frobenius norm 
||M||F . Thus, we have the relation

R2 = Tr
[
MM†

]
= ||M||2F =

∑
i,j

|mij |2. (14)

This is the equation of a hypersphere in n2 dimensions, for i, j = 1, . . . n and n = 2, 3 for most 
of our purposes. It suggests a very elegant way of parametrising the individual matrix elements 
in terms of spherical coordinates.

In the following, we define a slightly different notion of flavour space than what is usually un-
derstood. Mass terms are usually written in terms of Lorentz-invariants and are explicitly flavour 
dependent. If we wished to introduce flavour invariance we would find that it requires a more 
careful treatment. The notion of a flavour symmetry or a democratic approach as the one pro-
posed in Ref. [2] are part of some of the trials to extend the flavour invariance of the kinetic terms 
to the Yukawa sector.
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Let us already put our personal bias in the choice of coordinate system. The final values, 
however, do not depend explicitly on that choice as always a certain transformation can be found 
that redefines the axes.4 For the hypersphere equation (14), the complex nature of the matrix 
elements plays no role, so for the following we consider a real 3 × 3 matrix

M̃ =
⎛⎝m̃11 m̃12 m̃13

m̃21 m̃22 m̃23
m̃31 m̃32 m̃33

⎞⎠ , (15)

with

m̃11 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 sinφ5 sinφ6 sinφ7, (16a)

m̃12 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 sinφ5 sinφ6 cosφ7, (16b)

m̃13 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 sinφ5 cosφ6, (16c)

m̃21 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4 cosφ5, (16d)

m̃22 = R sinχ sinφ1 sinφ2 sinφ3 cosφ4, (16e)

m̃23 = R sinχ sinφ1 sinφ2 cosφ3, (16f)

m̃31 = R sinχ sinφ1 cosφ2, (16g)

m̃32 = R sinχ cosφ1, (16h)

m̃33 = R cosχ. (16i)

The angles are φi ∈ [0, 2π), i = 1, . . . , 7, and χ ∈ [0, π]. The mass matrix is then written as,

M̃ = R

⎛⎜⎜⎝
sinχ

(∏6
i=1 sinφi

)
sinφ7 sinχ

(∏6
i=1 sinφi

)
cosφ7 sinχ

(∏5
i=1 sinφi

)
cosφ6

sinχ
(∏4

i=1 sinφi

)
cosφ5 sinχ

(∏3
i=1 sinφi

)
cosφ4 sinχ

(∏2
i=1 sinφi

)
cosφ3

sinχ sinφ1 cosφ2 sinχ cosφ1 cosχ

⎞⎟⎟⎠.

(17)

Although it does not look very advantageous to express the mass matrix elements like this, we 
can immediately draw some useful applications out. First, we see directly how the matrix ele-
ments can be interrelated: an adjustment in one element also affects the others unless it means 
exact alignment in one angle or only a small misalignment. Second, we can with a certain choice 
of angles immediately produce “texture zeros”: null mass matrix elements at distinct positions. 
For example, a vanishing m11 then could be obtained by setting φ7 = 0 without severely influ-
encing any other matrix element (notice that cosφ7 = 1 in m12 and the angle appears nowhere 
else). Similarly, for m13 = 0 one chooses φ6 = π

2 , and so on. Third, we discover that Froggatt–
Nielsen-like patterns can easily be produced for small angles, see Section 7: misalignment instead 
of alignment. We are going to give a more physical connection to the observable and well-known 
flavour angles in Section 3.

It is easy to relate the mass matrix entries in this interpretation as a 9-dimensional vector

−→
m = (m̃11, m̃12, m̃13, m̃21, m̃22, m̃23, m̃31, m̃32, m̃33)

T

4 This freedom can be characterised by the independent permutation of columns and rows S3L × S3R , where S3 is the 
group of permutations of three identical objects.
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Fig. 1. Visualisation of the angles χ , φ1, and φ7. The other φi follow analogously; the coordinate xij represents the axis 
relating i-th and j -th generation ∼ ψ̄L,iψR,j .

to some flavour space, where we define the axes accordingly:

−L=
3∑

i,j=1

ψL,im̃ijψR,j ≡
3∑

i,j=1

m̃ij x̂ij , (18)

with x̂ij a unit vector in the i–j direction, where the first index refers to the left-handed fermions 
and the second one to the right-handed. Surely, the individual x̂ij -directions cannot be treated 
independently as they are the outer product of some flavour vectors and calculus rules for outer 
products apply. Nevertheless, we consider the vectors x̂ij as basis of the 9 dimensional vector 
space spanned by the mass matrix elements describing the surface of a hypersphere. The apparent 
redundancy gets reduced later on.

In this interpretation, it can be easily seen that the angle χ represents the deviation of the 
mass vector −→m from the 3–3 axis (χ = 0 means full alignment with the third generation of left-
and right-handed fields5). The other angles represent the relative orientation with respect to two 
axes, so φ1 interpolates between the 3–2 and the 3–1 axis and φ2 between 3–1 and 2–3 and so 
forth, see Fig. 1. Notice that in our specific parametrisation from above, the last angle φ7 has 
the axis flipped with respect to the usual convention (i.e. in three dimensions) and φ7 = 0 means 
alignment with the 1–2 axis rather than 1–1, which is very useful for the application in flavour 
physics.

3. Relating mass matrix elements to physical angles

We show briefly in the following how the eight angles in the spherical mass matrix interpreta-
tion can be related to the physical angles in the mixing matrices and masses. The Frobenius norm 
of a general complex and rectangular m × n matrix A is given by the square root of the sum of 
its matrix elements aij squared,

||A||F =
√

Tr
(
AA†)=

√√√√ m∑
i=1

n∑
j=1

|aij |2. (19)

In return, this relation may be seen as an hypersphere equation in m × n dimensions with 
the Frobenius norm as radius of the sphere. The corresponding spherical coordinates require
(m × n − 1) angles and one radius.

On the other hand, this complex matrix has a number of q non-zero and positive singular 
values, σi > 0. This defines its rank to be q . The Frobenius norm can also be expressed in terms 
of the singular values as

5 It is interesting to notice how this is approximately true for the known values of the charged fermion masses.
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||A||F =
√√√√ q∑

i=1

σ 2
i , (20)

and similarly, this characterises the surface of a q-dimensional hypersphere.
For the following, we restrict ourselves to the flavour-physical case of square matrices, in 

particular with dimension three. We work on the surface of unit sphere, where the radius is an 
overall scaling factor and can be factored out by normalising the matrix to its Frobenius norm

Ā = A

||A||F . (21)

For the normalised singular values, we define

σ̄1 = sinα sinβ, σ̄2 = sinα cosβ, σ̄3 = cosα, (22)

with α, β ∈ [0, π2 ] for all σ̄i > 0. The three matrix invariants expressed through Eqs. (22) are then

R̄2 = Tr
(
ĀĀ

†
)

= 1, (23)

D̄ = det
(
ĀĀ

†
)

= sin4 α sin2 β cos2 α cos2 β, (24)

ξ̄ = 1
2

[
Tr
[
ĀĀ

†
]2 − Tr

[(
ĀĀ

†
)2
]]

= sin2 α
(

sin2 α sin2 β cos2 β + cos2 α
)

. (25)

Eq. (22) shows that two angles are enough to describe the normalised singular values spectra, 
which is equivalent to the fact that only two independent mass ratios are relevant. This can be 
trivially extended to the n family case.

The next step is to reconsider the hypersphere made out of the matrix elements which carries 
more information than the singular value spectrum. In this case, a nine dimensional hypersphere 
requires a set of eight angles as written in Eq. (16). These eight angles are to be related with 
the two “angles” describing the span of the singular values and furthermore 2 × 3 from the left 
and right unitary rotations. The two angles most tightly related to the singular values can be read 
from comparison with Eq. (16) and we find χ and φ3 to be important here. The other six angles, 
however, have to be related via the usual SVD

Mf = L
†
f �f Rf , (26)

where we have three mixing angles in Lf and Rf each. Furthermore, the unitary transformations 
acting on the left-handed fields are physical in the sense that their combined product

V = LaL
†
b, (27)

describes the mixing matrix of the charged current interaction and thus the angles of V are the 
observable quantities. The right-handed rotations disappear from phenomenology.

The SVD is independent of the normalisation factor and is given in an explicit form with the 
singular values of Eq. (22)

M̄ ≡ M

||M||F = L†

⎛⎝sinα sinβ 0 0
0 sinα cosβ 0
0 0 cosα

⎞⎠R. (28)

The unitary transformations L and R can be parametrised by three angles and six complex phases 
each. Some of the phases are redundant and can be absorbed in the fermion fields, so let us 
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for simplicity first study the rotation matrices as real matrices. The right hand side of Eq. (28)
embraces eight independent angles: two from the singular values and three coming from each 
unitary transformation, the same amount as in M̄ .6 The right transformations R, however, are 
unphysical in the sense that they drop out from physical observables and only the left rotations L
play a role. Furthermore, whenever the same left transformation L is used in both mass matrices, 
the charged current remains invariant, so this adds three more unobservable angles. Hence, from 
the right transformations, there are three unphysical angles for up- and down-type fermions each, 
whereas from the left ones, three more are included to the sum, reaching a total of nine unphysical 
angles; this freedom can be used e.g. to remove mass matrix elements, i.e. introduce “texture 
zeros”. The singular values in the reduced form lack one more parameter each, which is the 
Frobenius norm and sets the scale of the largest mass.

It is then a simple task to determine the “angles” α and β as functions of the (normalised) 
singular values. With the definition of Eq. (22), the σ̄i are the singular values of the matrix M̄
and one easily finds tanβ = σ̄1/σ̄2 and correspondingly sinβ tanα = σ̄1/σ̄3 for the ratios of first 
to second and third generation masses. So we have the identities,7

sinβ =
√

σ̄ 2
1

σ̄ 2
1 + σ̄ 2

2

, (29a)

sinα =
√

σ̄ 2
1 + σ̄ 2

2

σ̄ 2
1 + σ̄ 2

2 + σ̄ 2
3

. (29b)

4. The two-flavour philosophy

Although two-flavour scenarios mostly lack the complexity of the “true” three-family con-
struction, it is very helpful to see what is going on and provide a gateway to further complications.

Let us consider an arbitrary 2 × 2 mass matrix,

m =
(

m11 m12
m21 m22

)
, (30)

with real matrix elements mij . A singular value decomposition of this matrix is given by m =
L†�R with U(2)-matrices L and R and the diagonal matrix of singular values � = diag(σ1, σ2)

with σ2 � σ1 > 0. The matrix invariants relate the (somewhat arbitrary) entries of m with the 
singular values, so from the trace,

Tr
[
mm†

]
= |m11|2 + |m12|2 + |m21|2 + |m22|2 = σ 2

1 + σ 2
2 = Tr

[
�2
]

≡ r2. (31)

This equation constrains the matrix elements to the surface of a four-dimensional sphere and also 
correlates the two singular values with a circle, σ1 = r sin ζ and σ2 = r cos ζ with ζ ∈ [0, π2 ] to 

6 This observation is rather trivial, since the number of independent parameters has to be balanced on the two sides, 
and for the SVD an overall factor plays no role.

7 We employ sin(arctanx) = x√ .

1+x2
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avoid any negative σk . Consequently, we can write

m = r

(
cos θL − sin θL

sin θL cos θL

)(
sin ζ 0

0 cos ζ

)(
cos θR sin θR

− sin θR cos θR

)
= r

(
sin ζ cos θL cos θR + cos ζ sin θL sin θR sin ζ cos θL cos θR − cos ζ sin θL cos θR

sin ζ sin θL cos θR − cos ζ cos θL sin θR cos ζ cos θL cos θR + sin ζ sin θL sin θR

)
.

(32)

It is very intriguing to also look at the left-symmetric product in this way and discuss its relation 
to the choice of a weak basis. We have

mm† = r2

2

(
1 − cos(2ζ ) cos(2θL) − cos(2ζ ) sin(2θL)

− cos(2ζ ) sin(2θL) 1 + cos(2ζ ) cos(2θL)

)
, (33)

what trivially tells us, that θL = 0 is the basis in which mm† is diagonal and �σ 2 = σ 2
2 − σ 2

1 =
cos(2ζ ).

On the other hand, we can also use the spherical mass matrix interpretation to find

m = r

(
sinχ sinφ1 sinφ2 sinχ sinφ1 cosφ2

sinχ cosφ1 cosχ

)
. (34)

It is not a straightforward task to build a direct connection between these angles and those ap-
pearing in Eq. (32).8 However, the usefulness of this approach does not lie in a functional relation 
between matrix elements and mixing angles but rather in the minimalistic picture it offers to gen-
erate zero matrix elements or hierarchical elements and a complementary understanding of both 
of them.

For small angles ρ ≡ χ ∼ φ1 ∼ φ2 
 0 we can perform a Taylor expansion and find

m ∼
(

ρ3 ρ2

ρ − 2
3ρ3 1 − ρ2

2

)
+O(ρ4) and mm† ∼

(
0 ρ2

ρ2 1

)
+O(ρ4), (35)

which also justifies the discussion about hierarchical matrix elements and a vanishing 1–1 entry 
in the Appendix of Ref. [1]. Similarly, by setting φ2 → 0, we insert one texture zero. Therefore, 
we see that there is a basis where,

m = r

(
0 sinχ sinφ1

sinχ cosφ1 cosχ

)
, (36)

and one reaches the same conclusion up to O(ρ3) as under the small angle approximation from 
Eq. (35). Furthermore, we can put Eq. (36) into the form of a Cheng–Sher ansatz |mij | ∼ √

mimj

[20], exploiting sin(χ) =√1 − cos2 χ = √
(1 − cosχ)(1 + cosχ) (which works for χ ∈ [0, π2 ]). 

Defining

m1 = r√
2
(1 − cosχ) and m2 = r√

2
(1 + cosχ), (37)

8 A similar structure, however, can appear if instead of rotating flavour space one shears it. So, e.g. one finds

m = r

(
1 tan ζ sinφ1 cosφ2
0 1

)(
sin ζ 0

0 cos ζ

)(
1 0

tan ζ cosφ1 1

)
= r

(
tan ζ sin ζ sinφ1 cosφ1 cosφ2 sin ζ sinφ1 cosφ2

sin ζ cosφ1 cos ζ

)
+ r

(
sin ζ 0

0 0

)
.
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we have together with φ1 = π
4

m =
(

0
√

m1m2√
m1m2

1√
2
(m2 − m1)

)
. (38)

5. Physical and unphysical zeros

It has become common use to introduce null mass matrix elements defined as a certain 
“ansatz” and (or) put initially complex mass matrices into hermitian form, arguing that weak 
basis transformations allow them [6–8,10,11,13]. In this section, we shall give a direct explana-
tion of their origin in our interpretation of mass matrices and comment on which texture zeros 
can be called unphysical and which other can only be due to a physical origin (e.g. a symmetries 
of the Lagrangian), reproducing the conclusions already reached in the literature, see Refs. [8,
10,11,13].

Consider the n family case. As no right-handed charged currents have been observed, right-
handed transformations in family space are unphysical; thus, giving a total of n(n − 1) arbitrary 
unphysical angles per fermion sector. On the other hand, unitary transformations preserving 
flavour invariance in the charged current interactions (weak basis transformations) will contribute 
to this number with n(n −1)/2. This set of angles, 3n(n −1)/2 in total, is the one responsible for 
producing unphysical zeros in a mass matrix or equal mass matrix elements. The key difference 
from our approach with others is that in a very simple manner one can track the consequences 
of making a null element on the other matrix elements. By introducing these zeros, the vector 
on the surface of the hypersphere gets aligned along certain axes in flavour space as can be seen 
from the following subsection.

5.1. Nearest-Neighbour-Interaction form

For n = 3, we have 9 arbitrary and unphysical angles to which we can assign any value. From 
Eq. (16), we see that under the choice

φ2,4,6 = π

2
and φ7 = 0, (39)

we easily generate the following well-known mass matrix, so-called Nearest-Neighbour-Inter-
action form [8]

|M| =
⎛⎝ 0 A 0

A′ 0 B

0 B ′ C

⎞⎠ , (40)

with

A = R sinχ sinφ1 sinφ3 sinφ5, (41a)

A′ = R sinχ sinφ1 sinφ3 cosφ5, (41b)

B = R sinχ sinφ1 cosφ3, (41c)

B ′ = R sinχ cosφ1, (41d)

C = R cosχ. (41e)

We can then reexpress the spherical coordinates by the mass matrix elements as
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tanφ5 = A

A′ , (42a)

tanφ3 =
√

1 +
(

A

A′

)2

, (42b)

tanφ1 =
√√√√1 +

(
1 +

(
A

A′

)2
)(

A2

A′B

)2
B

B ′ . (42c)

Moreover, we still have one more free angle by which we could choose A′ = A, that is φ5 = π/4. 
Although this would only hold for one of the two mass matrices per fermion sector.

5.2. Inclusion of complex phases

The three unitary matrices giving rise to the weak basis transformations imply a total of 
[3n(n + 1) − 2]/2 arbitrary (unphysical) complex phases. For n = 3 we have 17 free phases. In 
order to correctly introduce them in the spherical mass matrix interpretation, we need to subtract 
the number of phases gone when producing null mass matrix elements. Take for example our 
previous case, this implies having 17 − 8 = 9 unphysical phases left. The matrices have in total 
10 complex phases. Through an appropriate choice of phases, we are allowed to keep one inde-
pendent phase; which could also have been anticipated if after introducing the textures zeros, one 
realises that only one linear combination of phases remains in Eqs. (13), γ = δ21 +δ33 −δ31 −δ23. 
Therefore, by redefining them in such a way that only one δ21 survives we get

Ma =
⎛⎝ 0 Aa 0

A′
a 0 Ba

0 B ′
a Ca

⎞⎠ , Mb =
⎛⎝ 0 Abe

iγ 0
Abe

−iγ 0 Bb

0 B ′
b Cb

⎞⎠ , (43)

giving a total of ten independent parameters in accordance with the ones appearing in the mass 
basis. So we see that by relating the weak basis transformations to the spherical mass matrix 
interpretation allows us to directly write the matrix forms with all their redundancy now ripped 
off.

5.3. Hermiticity and texture zeros

By demanding hermitian matrices, there is a cost one should pay, which is on one hand 6 of 
the 9 angles have been employed while on the other, 12 of the 17 available phases have also 
been used. Therefore, the introduction of further constraints as null matrix elements should be 
limited to only 3 free angles and 5 complex phases. So equally distributing three null mass matrix 
elements between two matrices is impossible. That is, within the traditional approach, no parallel 
structures with zero elements can be obtained via weak basis transformations when hermiticity 
has been first invoked.9 Within our approach this can also be done. However, taking a look at 
Eqs. (16), an alternative scenario appears in which parallel structures seem to be allowed. In the 
following we will discuss the former scenario (no-parallel structures) and then we will clarify 
the issue of the alternative one (parallel structures).

9 Parallel structures are such matrix structures, where both matrices in the same fermion sector (quark or lepton) shares 
their matrix form.
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Let us show it. For the former point, first apply the hermiticity condition and thereafter the 
spherical mass matrix interpretation. The space of the hypersphere now gets reduced from nine 
dimensions to only six with the matrix elements given by

m̃11 = R sinχ sinφ1 sinφ2 sinφ3 sinφ4, (44a)

m̃12 = R sinχ sinφ1 sinφ2 sinφ3 cosφ4, (44b)

m̃13 = R sinχ sinφ1 sinφ2 cosφ3, (44c)

m̃22 = R sinχ sinφ1 cosφ2, (44d)

m̃23 = R sinχ cosφ1, (44e)

m̃33 = R cosχ. (44f)

Note, that for a hermitian matrix, one has an overcounting for the Frobenius norm from the 
off-diagonal elements, so we define the mass matrix as

M =

⎛⎜⎜⎝
m̃11

1√
2
m̃12e

iδ12 1√
2
m̃13e

iδ13

1√
2
m̃12e

−iδ12 m̃22
1√
2
m̃23e

iδ23

1√
2
m̃13e

−iδ13 1√
2
m̃23e

−iδ23 m̃33

⎞⎟⎟⎠ . (45)

In this sense, we have now five angles from which two may correspond to the singular values 
and the other three allow to introduce texture zeros. Nevertheless, in total we have no more than 
three free angles for both matrices. So following this, we can produce the next kind of no-parallel 
weak basis matrices,

Ma =
⎛⎝ 0 Aa 0

Aa Ba Ca

0 Ca Da

⎞⎠ , Mb =
⎛⎝ Ab Bbe

iβ 0
Bbe

−iβ Cb Db

0 Db Eb

⎞⎠ , (46)

thus reaching the traditional conclusions [11]. Apparently, we have chosen φa
4 = 0, φa(b)

3 = π
2 . 

First of all, there is no physical meaning attached to any of those zeros in a certain weak basis like 
the one we have singled out here. We have to reduce the number of free parameters to ten—how 
this is achieved should have no influence on the observable physics. Second, there can be no 
parallel structures for hermitian matrices with only one complex phase. However, with φb

4 = 0, 
one either has to introduce an additional phase or one can construct a prediction of one of the SM 
parameters in terms of the others. This is only valid by ad hoc assumptions or proposing a kind 
of flavour symmetry. In the latter case, there is, of course, a physical meaning associated with it; 
see for example [21].

One remark about alternative scenarios and possible loopholes in our interpretation: Notice 
that if we had considered φb

2 = π
2 in the second matrix we could have found a parallel structure. 

And moreover, for φb
3 = 0 and φa

3 = 0 plus an adequate initial reordering of the matrix entries, 
we could have found another parallel structure. Therefore, it seems that we can indeed build par-
allel structures with more than three independent texture zeros together with hermiticity. What 
seems to be wrong? Both alternative scenarios reach a weak basis with less than ten arbitrary 
parameters. But this contradicts our interpretation on the angles which corresponded to the free-
dom in the weak basis transformations (one cannot have a weak basis with less than ten arbitrary 
parameters). Hence, the alternative scenarios are not valid within the approach.
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5.4. Deviations from hermiticity in the Nearest-Neighbour-Interaction form

From the point of view of our approach and the traditional ones, producing the Nearest-
Neighbour-Interaction form together with an hermitian matrix, is impossible. However, from 
Eq. (43), we could work out the deviations from hermiticity if we work in the small angle ap-
proximation (further results about small angles in the next section). With the assignment

φ
a(b)
7 = 0, φ

a(b)
2,4,6 = π

2
, φa

5 = π

4
, φa

1 = π

4
+ εa

1 , and φb
1,5 = π

4
+ εb

1,5,

where εj 
 1, we get the following:

Ma �
⎛⎝ 0 Aa 0

Aa 0 Ba

0 Ba Ca

⎞⎠+ εa
1

⎛⎝0 0 0
0 0 Ba

0 −Ba 0

⎞⎠+O
(
(εa

5 )2
)

, (47)

Mb �
⎛⎝ 0 Abe

iβ 0
Abe

−iβ 0 Bb

0 Bb Cb

⎞⎠+ εb
1

⎛⎝0 0 0
0 0 Bb

0 −Bb 0

⎞⎠+ εb
5

⎛⎝ 0 Abe
iβ 0

−Abe
−iβ 0 0

0 0 0

⎞⎠
+O

(
(εb

1,5)
2
)

. (48)

It can be readily seen how the presence of the small deviations helps to the counting of ten 
free parameters within the weak basis. This approach reduces from four to three parameters, as 
previously used [12,22], to measure the deviations from hermiticity. It is a straightforward task 
to determine that this set of parameters reproduce both the masses and the mixing in the quark 
sector.

6. Majorana neutrinos

Massive neutrinos are not part of the renormalisable Standard Model. There is, however, one 
single operator at dimension five that can generate very small neutrino masses for the left-handed 
neutrinos only [23], without introducing right-handed neutrinos. The UV-completion of this op-
erator will reveal some new physics at the scale �NP. This operator requests the resulting mass 
matrix to be of the Majorana type, meaning complex but symmetric. It is a gauge- and Lorentz-
invariant construction:

L5 = 1

2

cαβ

�NP

(
L̄c

LαH̃ ∗)(H̃ †LLβ

)
+ h. c. , (49)

where LL = (νL, eL)T and H = (H+, H 0)T are the left-handed lepton and the Higgs doublet 
of the SM, respectively; we follow the usual notation for the charged conjugated Higgs field as 
H̃ = iσ2H

∗. The coefficients cαβ are arbitrary numbers, but supposed to be O(1) numbers or 
show some rather mild hierarchy which is imprinted in the neutrino mass spectrum. The whole 
operator is suppressed by the new physics scale, ∼ 1/�NP , which can be O(1010...14 GeV).

We want to study the different zero elements that could arise from weak basis transformations. 
The flavour group for the lepton sector is

GF ⊃ U�
L(3) × Ue

R(3). (50)

The above group of transformations can be used to diagonalise the charged lepton mass matrix. 
In this weak basis, which we could call the charged lepton basis, the symmetrical mass matrix 
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of neutrinos gets diagonalised by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. So 
we immediately reach the conclusion that as no freedom is left to still make weak basis transfor-
mations, any texture zero in the neutrino mass matrix will be physical as long as we are in the 
charged lepton basis.

6.1. Weak bases

Let us consider those weak bases where the charged lepton mass matrices are still non-
diagonal. This discussion not only reproduces some known facts, as of Ref. [24], but, if extended, 
may provide further observations. From the six free angles, we can choose four of them as φe

7 = 0
and φe

2,4,6 = π
2 in the spherical mass matrix interpretation, to get e.g.

Me =
⎛⎝ 0 Aae

−iδ 0
A′

ee
iδ 0 Be

0 B ′
e Ce

⎞⎠ . (51)

The neutrino mass matrix, however, has to be symmetric. We change the notation slightly and 
perform a renaming φ → ω in the angles to show the difference. Hence, we have the following 
entries

m̃ν
11 = Rν sinχν sinων

1 sinων
2 sinων

3 sinων
4, (52a)

m̃ν
12 = Rν sinχν sinων

1 sinων
2 sinων

3 cosων
4, (52b)

m̃ν
13 = Rν sinχν sinων

1 sinων
2 cosων

3, (52c)

m̃ν
22 = Rν sinχν sinων

1 cosων
2, (52d)

m̃ν
23 = Rν sinχν cosων

1, (52e)

m̃ν
33 = Rν cosχν, (52f)

of the complex symmetric matrix

Mν =

⎛⎜⎜⎝
m̃ν

11e
iϕν

11 1√
2
m̃ν

12e
iϕν

12 1√
2
m̃ν

13e
iϕν

13

1√
2
m̃ν

12e
iϕν

12 m̃ν
22e

iϕν
22 1√

2
m̃ν

23e
iϕν

23

1√
2
m̃ν

13e
iϕν

13 1√
2
m̃ν

23e
iϕν

23 m̃ν
33e

iϕ33

⎞⎟⎟⎠ . (53)

From the two remaining unphysical degrees of freedom, we can induce several texture zeros 
in the neutrino masses, e.g. with ων

4 = 0 and ων
3 = π

2 we find

Mν =
⎛⎝ 0 Aνe

−iα1 0
Aνe

−iα1 Bν Cνe
−iα2

0 Cνe
−iα2 Dν

⎞⎠ . (54)

It is outside the scope of this work to provide an exhaustive list of different weak basis matrix 
forms. Therefore, the take-home message lies in the simplicity of the spherical mass matrix 
interpretation on studying matrices in different weak bases.

6.2. Phenomenological application: the Altarelli–Feruglio model

The charged lepton basis is ideal to get further insights into the masses or mixing of neutrinos, 
as everything is extracted from their mass matrix. In this regard, the famous Altarelli–Feruglio 
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model provides us with a good example [25,26]. The model implements the A4 non-Abelian and 
discrete symmetry group inside a Froggatt–Nielsen framework. It naturally implies tribimaximal 
mixing (TBM) for the PMNS matrix [27]:

UTBM =

⎛⎜⎜⎜⎝
√

2
3

√
1
3 0

−
√

1
6

√
1
3 −

√
1
2

−
√

1
6

√
1
3

√
1
2

⎞⎟⎟⎟⎠ . (55)

Its weak point, however, is that the reactor mixing angle is predicted to be exactly zero, θν
13 = 0, 

so it is in the meantime excluded by experimental observation [28–30]. Nevertheless, the main 
ingredient of the model, the underlying tribimaximal mixing, still can be relevant for a partial 
diagonalisation. The fact, that neutrino masses are less hierarchical than charged fermion masses, 
suggests a more democratic flavour pattern, which is related to tribimaximal mixing.

Three main features characterise the Altarelli–Feruglio mass matrix: mν
12 = mν

13, mν
22 = mν

33, 
and mν

22 = −2mν
12. Under the spherical mass matrix interpretation we look for the consequences 

of implementing them starting from the charged lepton basis.
We assume the following assignment of the real matrix elements:

m̃ν
11 = Rν sinχν sinων

1 sinων
2 cosων

3, (56a)

m̃ν
12 = Rν sinχν sinων

1 sinων
2 sinων

3 sinων
4, (56b)

m̃ν
13 = Rν sinχν sinων

1 sinων
2 sinων

3 cosων
4, (56c)

m̃ν
22 = Rν sinχν sinων

1 cosων
2, (56d)

m̃ν
23 = Rν sinχν cosων

1, (56e)

m̃ν
33 = Rν cosχν. (56f)

The equality of m̃ν
12 = m̃ν

13 implies a basis choice in which ων
4 = π

4 . On the other hand, with 
m̃ν

33 = m̃ν
22 one needs tanχν ≥ 1 and thus χν ∈ [π

4 , π2 ). Note how one may identify the particular 
choice of the elements with a particular orientation of the mass vector in the flavour basis. Last, 
we require m̃ν

22 = −2m̃ν
12 and see that it is only fulfilled with ων

3 = 3π
2 and ων

2 = 5π
4 . Under these 

conditions one gets the following mass matrix,

|Mν | =
⎛⎝ 0 aν aν

aν −2aν bν

aν bν −2aν

⎞⎠ , (57)

where we have aν = Rν

2
√

2
sinχν sinων

1 and bν = Rν√
2

sinχν cosων
1 , and the relation

tanχν sinων
1 = −√

2. (58)

Notice that it does not reproduce the full Altarelli–Feruglio mass matrix (e.g. mν
11 = 0). There-

fore, we expect a deviation from tribimaximal mixing, which is actually required by experiment. 
The vanishing 1–1 element in our case is a direct consequence of the spherical mass matrix 
interpretation as the individual elements are not fully independent.

Let us decompose the mass matrix into a democratic part and a remainder which only has 2–3 
mixing
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|Mν | =
⎛⎝aν aν aν

aν aν aν

aν aν aν

⎞⎠+
⎛⎝−aν 0 0

0 −3aν bν − aν

0 bν − aν −3aν

⎞⎠ . (59)

The first term gets diagonalised by the tribimaximal mixing matrix. After that, we have

|M ′
ν | =

⎛⎜⎝ 1
3 (−6aν + bν)

√
2

3 (3aν − bν) 0√
2

3 (3aν − bν) 2bν

3 0
0 0 −2aν − bν

⎞⎟⎠ , (60)

which still requires a further diagonalisation. This, however, can be done trivially. The full PMNS 
matrix is then given by the initial tribimaximal mixing matrix, corrected with the diagonalisa-
tion of Eq. (60). Since there are furthermore only two independent parameters, aν and bν , the 
mass spectrum as well as the neutrino mixing matrix can be fully determined by a fit to the 
experimentally known mass squared differences only. With the most recent results of [31]10

�m2
21 = 7.40 × 10−5 eV2, and �m2

31 = 2.494 × 10−3 eV2,

we obtain, assuming normal hierarchy and ignoring the errorbars, we get two real and positive 
solutions for aν and bν , that are very close

aν ∈ {0.0127,0.0138} eV, and (61a)

bν ∈ {0.0274,0.0257} eV. (61b)

This determines the neutrino mass spectrum to be for the two solutions

mν
3 = {0.0527,0.0533} eV, mν

2 = {0.0190,0.0205} eV, mν
1 = {0.0169,0.0186} eV,

(62)

and the PMNS matrix for both the cases

|UPMNS| =
⎧⎨⎩
⎛⎝0.727 0.686 0

0.485 0.514 0.707
0.485 0.514 0.707

⎞⎠ ,

⎛⎝0.724 0.690 0
0.488 0.512 0.707
0.488 0.512 0.707

⎞⎠⎫⎬⎭ . (63)

Apparently, this PMNS matrix cannot describe the true neutrino phenomenology, which is also 
not surprising: the Altarelli–Feruglio models were invented to predict a θν

13 = 0, and staying 
within the underlying pattern for the mass matrix, we cannot generate a non-vanishing entry 
there.

It is, however, astonishingly simple to correct for a non-vanishing 1–3 mixing. The Altarelli–
Feruglio matrix cannot have a 1–3 mixing: from Eq. (59), we see that the non-democratic part 
of the mass matrix does not mix the first and third generation. We can nevertheless accommo-
date for it by a small misalignment of the two elements m̃ν

12 and m̃ν
13, simply with the choice 

ων
4 = π

4 + ε, leading to a corrected mass matrix

|Mν | =
⎛⎝ 0 aν + δν aν − δν

aν + δν −2aν bν

aν − δν bν −2aν

⎞⎠+O(ε2), (64)

10 Similar results can be found in other sources like [32]. We only perform a proof of principle here and also do no error 
analysis, just to see whether we roughly get the right numbers.
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with δν = aνε. With δν , we have a handle on θν
13 and in order to generate sin θν

13 ≈ 0.15, we find 
δν = 0.005 eV and one set of solutions with

aν = 0.0126 eV, and bν = 0.0263 eV, (65)

resulting in a slightly modified mass spectrum

mν
3 = 0.0526 eV, mν

2 = 0.0187 eV and mν
1 = 0.0166 eV. (66)

This naïve correction still has some tension in comparison with the global fit values of the PMNS 
matrix. We find

|UPMNS| =
⎛⎝0.696 0.702 0.150

0.398 0.551 0.733
0.598 0.451 0.663

⎞⎠ . (67)

We nowadays have strong hints of CP violation in neutrino oscillations, besides the fact 
that the third mixing angle is definitely non-zero. Furthermore, recent global fits tend towards 
a rather maximal CP -phase in the Standard Parametrisation (δCP = 234+43

−31
◦ [31]), which is 

compatible with δCP ≈ −90◦. TBM mixing is thus ruled out and the Altarelli–Feruglio model 
has to be adjusted for this, including CP violation. This easily can be accommodated within 
the approach presented above. Let us consider an imaginary perturbation, ων

4 = π
4 + i ε, and thus 

sin(ων
4) ≈ (1 + i ε)

√
2, we can simply multiply δν with a maximal complex phase ei π/2. Keeping 

δν = 0.005, to achieve a large sin θν
13 ≈ 0.15, this modifies slightly the mass eigenvalues. Hence, 

to reproduce the proper �m2, we have to refit the aν and bν parameters and find

aν = 0.0127 eV, and bν = 0.0285 eV, (68)

and correspondingly

mν
3 = 0.0528 eV, mν

2 = 0.0193 eV and mν
1 = 0.0172 eV. (69)

The PMNS matrix now has a complex phase and is given by

UPMNS =
⎛⎝ 0.742 0.668 −0.00715 + 0.148 i

−0.463 + 0.101 i 0.524 + 0.0456 i −0.696 − 0.0673
−0.463 − 0.101 i 0.524 − 0.0456 i 0.699

⎞⎠ . (70)

This has surprisingly a CP -phase δCP = −0.485π in accordance with the global fit.

7. Small angles and hierarchies

Generically, it is believed that any kind of hierarchy in the eigenvalues (singular values) of 
a mass matrix has to be already coded in the hierarchical structure of the individual matrix ele-
ments, as was proposed by Froggatt and Nielsen [16]

−LFN =
∑
n,ψ

ψ̄L,iψR,jHλ
ψ
ij

( ϕ

�

)nij + h. c. , (71)

where ψi are generic fermions with i = 1, 2, 3 counting the number of generations, H being 
the SM Higgs doublet breaking electroweak gauge symmetry and ϕ a flavon field breaking the 
continuous and global flavour symmetry. The flavour symmetry is assumed to be an Abelian 
U(1)F global symmetry and the “coupling constants” λψ are supposed to be arbitrary O(1)
ij
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numbers, where the additional scale � refers to a larger scale at which new degrees of freedom 
are integrated out. So the final “Yukawa couplings” as effective couplings of the SM fermions to 
the SM Higgs are given by

Y
f
ij = λ

f
ij

( 〈ϕ〉
�

)nij

, (72)

with nij ∈ N being the sum of the corresponding U(1)F charges. The hierarchical fermion 
masses are then encoded in powers of a small parameter ε = 〈ϕ〉/�. As numerical example: 
take � to be 10 TeV and 〈ϕ〉 to be of the electroweak scale ∼ 100 GeV, then ε � 10−2.

Therefore, apparently, a hierarchical matrix configuration can only be attached to the idea of 
a complicated mechanism fully responsible for it. The art of finding a viable UV-completion of 
this model typically leads to vastly extended sets of matter and scalar fields and may not be called 
aesthetic. In the following, we explore a different route to arrive at a very similar suppression of 
small numbers by high powers employing the spherical mass matrix interpretation. The small 
numbers then arise from a small misalignment of the mass vector with respect to the underlying 
flavour basis.

Let us consider all the angles very close to zero, so the actual vector in the 9-dimensional space 
points along the m33-axis. Surprisingly, one finds immediately Froggatt–Nielsen-like structures. 
Let us take all angles to be of the same order, say ε ≡ χ ∼ φ

a(b)
k 
 1, and we get

|M| ∼ R

⎛⎝ε8 ε7 ε6

ε5 ε4 ε3

ε2 ε 1

⎞⎠ , (73)

without referring to a Froggatt–Nielsen (FN) mechanism of Eq. (71). Notice also, that the pat-
tern of Eq. (73) is not unique and, moreover, there is no reason not to treat individual angles 
individually. A very obvious transformation of this kind is χ → χ − π

2 , then the 3–3 element 
becomes ∼ ε and the power of epsilons is reduced by one on the other elements. The key part in 
this construction is, that—depending on the alignment in the abstract high dimensional space—
hierarchies can be generated by the choice of the basis and a hierarchical basis as suggested by 
the FN mechanism does not imply hierarchy of new physics scales. Finally, the relevant object 
to construct the mixing matrix is the left-hermitian product

|MM†| ∼ R2

⎛⎝ε12 +O(ε14) ε9 +O(ε11) ε6 +O(ε8)

ε9 +O(ε11) ε6 +O(ε8) ε3 +O(ε5)

ε6 +O(ε8) ε3 +O(ε5) 1 + ε2 +O(ε4)

⎞⎠ (74)

which shows a strong hierarchical structure.
Now, let us give a twist to the story. As previously noted, hierarchical mass ratios are a di-

rect consequence of only two small angles, if we assign spherical coordinates to the singular 
values in a similar manner. Accordingly, there is no need to have all the eight angles as small 
numbers, φi, χ 
 1. So to produce mass hierarchies, we actually do not need such a very strong 
suppression in all matrix elements. It is sufficient to have the following kind of mild hierarchical 
structures:

|M| ∼ R

⎛⎝ε2 ε2 ε2

ε2 ε2 ε

ε ε 1

⎞⎠ ⇒ |MM†| ∼ R2

⎛⎝ε4 ε3 ε2

ε3 ε2 ε

ε2 ε 1 + ε2

⎞⎠ . (75)
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8. Conclusions

We have introduced a new and innovative interpretation of the fermion mass matrix elements 
in the SM. This interpretation allows cross-relations to weak basis transformations. The key ele-
ment is found in one of the matrix invariants involving the trace of the left-hermitian product. Its 
equation simultaneously describes the surface of a nine dimensional hypersphere with its radius 
equal to the Frobenius norm of the mass matrix. This interpretation is trivially not constrained 
to three families but applies to all n × n mass matrices. The idea of assigning to each matrix 
element a basis of spherical coordinates, provides a framework to correlate their magnitudes in a 
very simple manner. Moreover, it can be seen from this approach that individual matrix elements 
cannot be set to zero without affecting also others. There are eight angles needed in the spherical 
mass matrix interpretation which can be furthermore related to the weak basis angles and the sin-
gular values of the mass matrices. Therefore, this interpretation also allows to relate introduction 
of null elements, so-called texture zeros, to a geometrical alignment in the underlying flavour 
space.

A very compelling application of this approach has been found in the neutrino sector. The 
main characteristics of the neutrino mass matrix in the Altarelli–Feruglio can be mapped to a 
set of conditions for the angles in the spherical mass matrix interpretation. Within the Altarelli–
Feruglio model, we have been able to fully determine the mass spectrum as well as the neutrino 
mixing matrix. By virtue of a small correction in terms of a perturbation of one of the angles, we 
furthermore could reproduce a large reactor angle which is initially zero in that model. Moreover, 
with a purely imaginary perturbation, the value of the Dirac CP -phase in the PMNS matrix turns 
out to be close to the value favoured by the global fit.

In the same approach, with a small misalignment, it is easy to reproduce Froggatt–Nielsen 
like patterns for hierarchical mass matrices without the need of introducing a new physics scale 
or a complicated UV-completion for such suppression. Nevertheless, the mechanism behind this 
misalignment stays unclear at this stage. The spherical mass matrix interpretation is not to be seen 
as a dynamical model of flavour but shall rather help to simplify model assumptions behind such 
models. With the interpretation of aligning or misaligning individual mass matrix elements with 
a certain direction in flavour space, it might be possible to draw conclusions going further than 
texture zeros. We want to remind, that actually the flavour bases for the up and down sector are 
not fully independent in the spherical mass matrix interpretation and thus, in a deeper analysis, 
relations between up- and down-type fermion masses shall be revealed.
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