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Abstract

Multi-camera systems are being deployed in a variety of vehicles and mobile
robots today. Applications of such systems range from driver assistance func-
tions such as rendering a virtual panoramic view to surround sensing, which is
a prerequisite for partially and fully automated driving. In order to derive met-
ric quantities such as angles and distances from camera images and to establish a
consistent representation of the vehicle environment, both, the geometric imaging
characteristics of the individual cameras and the relative positions and orientations
have to be known.

In particular the estimation of the relative positions and orientations, which are de-
scribed by the extrinsic calibration, is troublesome since it can only be performed
with the system being fully set up and since non-negligible changes of the pa-
rameters have to be expected over the life cycle of the vehicle due environmental
influences. To eliminate the need for cost and labor intensive maintenance, contin-
uous self-calibration is highly desirable.

Self-calibration typically builds upon overlapping field of views of cameras, which
enables estimating the extrinsic calibration parameters using image correspon-
dences. Motion-based calibration on the other hand does not impose constraints
on the fields of view. However, the almost planar motion of typical road vehicles
constitutes a special case in which only a subset of the calibration parameters can
be inferred. To circumvent this problem additional constraints can be imposed,
e.g. by using the ground plane as a natural reference object. In a theoretical analy-
sis we determine the sets of parameters that can be inferred from different vehicle
motion classes and camera configurations.

For visual surround sensing typically cameras with ultra-wide angle lenses, such
as fisheye lenses, are employed. In order to establish image correspondences in the
presence of strong geometrical distortions introduced by the lens and large view-
point variations we propose an image warping method that exploits the knowledge
about the geometric imaging process and performs a coarse scene approximation.
In addition, we present a method for tracking the ground plane in the presence of
structural outliers such as other planes in the scene.

Building upon the observability analysis and proposed methods we present an
extended Kalman filter-based algorithm for continuous extrinsic camera self-
calibration. The filter exhibits high flexibility with regard to incorporating differ-
ent measurement constraints, has a particularly low number of internal parameters,
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and relies solely on image data.

In an extensive evaluation we assess our algorithm quantitatively using real-world
data. We compare results based on different motion models and combinations of
measurement constraints against a reference calibration. It is found that the best
results are obtained by combining all of the proposed measurement constraints.
Using several examples we demonstrate that the achieved accuracy is sufficient for
most applications.

Keywords: Self-calibration, Extrinsic Calibration, Multi-Camera System, Sur-
round Sensing



Kurzfassung

Multikamerasysteme werden heute bereits in einer Vielzahl von Fahrzeugen und
mobilen Robotern eingesetzt. Die Anwendungen reichen dabei von einfachen
Assistenzfunktionen wie der Erzeugung einer virtuellen Rundumsicht bis hin
zur Umfelderfassung, wie sie fiir teil- und vollautomatisches Fahren bendotigt
wird. Damit aus den Kamerabildern metrische GroBen wie Distanzen und Winkel
abgeleitet werden konnen und ein konsistentes Umfeldmodell aufgebaut werden
kann, muss das Abbildungsverhalten der einzelnen Kameras sowie deren relative
Lage zueinander bekannt sein.

Insbesondere die Bestimmung der relativen Lage der Kameras zueinander, die
durch die extrinsische Kalibrierung beschrieben wird, ist aufwendig, da sie nur
im Gesamtverbund erfolgen kann. Dariiber hinaus ist zu erwarten, dass es iiber
die Lebensdauer des Fahrzeugs hinweg zu nicht vernachlédssigbaren Veridnderun-
gen durch duflere Einfliisse kommt. Um den hohen Zeit- und Kostenaufwand
einer regelméBigen Wartung zu vermeiden, ist ein Selbstkalibrierungsverfahren
erforderlich, das die extrinsischen Kalibrierparameter fortlaufend nachschitzt.
Fiir die Selbstkalibrierung wird typischerweise das Vorhandensein iiberlappender
Sichtbereiche ausgenutzt, um die extrinsische Kalibrierung auf der Basis von Bild-
korrespondenzen zu schitzen. Falls die Sichtbereiche mehrerer Kameras jedoch
nicht iiberlappen, lassen sich die Kalibrierparameter auch aus den relativen Be-
wegungen ableiten, die die einzelnen Kameras beobachten. Die Bewegung typis-
cher Stralenfahrzeuge lidsst dabei jedoch nicht die Bestimmung aller Kalibrierpa-
rameter zu. Um die vollstindige Schitzung der Parameter zu ermoglichen, lassen
sich weitere Bedingungsgleichungen, die sich z.B. aus der Beobachtung der Bo-
denebene ergeben, einbinden. In dieser Arbeit wird dazu in einer theoretischen
Analyse gezeigt, welche Parameter sich aus der Kombination verschiedener Be-
dingungsgleichungen eindeutig bestimmen lassen.

Um das Umfeld eines Fahrzeugs vollstindig erfassen zu konnen, werden typi-
scherweise Objektive, wie zum Beispiel Fischaugenobjektive, eingesetzt, die einen
sehr groen Bildwinkel ermoglichen. In dieser Arbeit wird ein Verfahren zur Bes-
timmung von Bildkorrespondenzen vorgeschlagen, das die geometrischen Verzer-
rungen, die sich durch die Verwendung von Fischaugenobjektiven und sich stark
dndernden Ansichten ergeben, beriicksichtigt. Darauf aufbauend stellen wir ein
robustes Verfahren zur Nachfiihrung der Parameter der Bodenebene vor.
Basierend auf der theoretischen Analyse der Beobachtbarkeit und den vorgestell-
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ten Verfahren stellen wir ein robustes, rekursives Kalibrierverfahren vor, das auf
einem erweiterten Kalman-Filter aufbaut. Das vorgestellte Kalibrierverfahren
zeichnet sich insbesondere durch die geringe Anzahl von internen Parametern,
sowie durch die hohe Flexibilitéit hinsichtlich der einbezogenen Bedingungsglei-
chungen aus und basiert einzig auf den Bilddaten des Multikamerasystems.

In einer umfangreichen experimentellen Auswertung mit realen Daten vergleichen
wir die Ergebnisse der auf unterschiedlichen Bedingungsgleichungen und Bewe-
gungsmodellen basierenden Verfahren mit den aus einer Referenzkalibrierung be-
stimmten Parametern. Die besten Ergebnisse wurden dabei durch die Kombination
aller vorgestellten Bedingungsgleichungen erzielt. Anhand mehrerer Beispiele
zeigen wir, dass die erreichte Genauigkeit ausreichend fiir eine Vielzahl von An-
wendungen ist.

Schlagworte: Selbstkalibrierung, Extrinsische Kalibrierung, Multikamerasys-
tem, Umfelderfassung



CONTENTS

VII

Contents

(Notation and Symbols|

(1 Introduction|

1.1 _Problem Statement| . . . . . . . . . . . . . . . .. ...

(1.2 Contribution|. . . . . . . . . . .
(1.3 ThesSiS OVEIVIEW! . . . . v v v v o e e e e e e e e e e e e

2 Fundamentals|

2.1 Overlapping Fieldsof View|. . . . . . .. ... .. ... .....

2.2  Motion-Based Calibration| . . . . . . . . . . . . . . ... ....

2.3  Scene Constraints| . . . . . . . . . . .. e

2.4 Bayesian Filtering and Optimization| . . . . . . .. ... .. ...

3 Camera Model and Two-View Geometry|

13.1 The Perspective CameraModel|. . . . . ... ... ... .....

3.2 TheFisheyelens| . . . . . ... ... ... .. ... .. ...,

3.2.1  Geometric CameraModell . . . .. ... ... ... ...

13.2.2 Noncentrality| . . . . ... ... ... ... ........

13.2.3  Light Falloff and Vignetting| . . . . ... ... ......

3.3 Two-View Geometry| . . . . . . . . ... ... .. ... ...

3.3.1 Camera Pose and Pose Transformation| . . . ... .. ..

13.3.2  Epipolar Geometry and the Essential Matrix|. . . . . . . .

13.3.3  Plane Induced Homography| . . . . ... ... ... ...

XI

() B S N

o

12
13
14



VIII

CONTENTS

[4 Extrinsic Camera Calibration|

4.1 _Definition of the Reference Frame| . . . . . . . . ... ... ...
4.2 Motion-based Calibration| . . . . . . ... ... ... .......
4.2.1 Hand-Eye Calibration| . ... ... ... .........
4.2.2 The Ground Plane| . . ... ... ... ... .......
4.2.3 Classesof Motion| . . . . .. ... .. ... .......

4.2.4  Computation of Extrinsic Calibration Parameters| . . . . .

4.25 Summary| . . ...

4.3 Calibration from Overlapping Fields of View| . . . . .. ... ..

5

Establishing Point Correspondences|

15.1 Wide Baseline Matching| . . . . ... ... ... ... ......

15.2  Scene Geometry Approximation| . . . . . . . . .. ... .. ...

15.3 Image Resampling and Smoothing| . . . . . ... ... ... ...

Robust Homography Estimation|

16.1 Planar Parallax Decomposition| . . . . . . ... ... .. .....
6.2 Local Adaptive Thresholds| . . . . . . .. ... ... ... ....
16.3  Sequential Testing and Updating| . . . . . . ... ... ... ...

7

Continuous Self-Calibration Based on Kalman Filtering|

7.1 Recursive Filtering| . . . . . . . ... ... oL

|7.2 _Parameterization and Motion Models|. . . . . . ... ... .. ..
I7.3  Extended Kalman Filter Update Stage| . . . . ... ... .. ...

7.4 Initialization and Recovery of Vehicle Velocity| . . . . . .. . ..

Experimental Evaluation|

8.1 Evaluation Dataset| . . . . . . . . . . . . .. .. ... ... ...

8.2 Ground Truth and Error Metricl . . . . . . . . . ... ... ....

8.3 Initialization and Parameter Tuning|. . . . . . . . ... ... ...

8.4 Quantitative Evaluation| . . . . . . .. ... ... .........

57
58
59
63

67
68
71
73
76



CONTENTS IX

8.4.1 Motion-Based Calibrationl . . ... .. ... ... .... 86

18.4.2 Overlapping Fields of View| . . . ... ... ....... 92

18.4.3  Visual Odometry Loop Closure Error| . . . .. ... ... 93

18.4.4  Assessing Calibration Results at Runtime| . . . . . . . .. 95

8.5 Qualitative Results| . . . . . ... ... ... ... ... ... 98
8.5.1 Visual Odometry| . . . . . ... ... ... ....... 99

8.5.2 Virtwal Top View| . . . . . ... ... ... .. ... .. 100

8.5.3 Stereo Rectification|. . . . . . ... ... ... ... .. 102

19 Conclusion and Future Research Directions| 107
A Appendix| 111
IA.1 Constructing Orthonormal Matrices from Two Vectors| . . . . . . 111
IA.2 Rodrigues Formula for Rotation Matrices| . . . .. ... .. ... 111
|IA.3 Instantaneous Center of Rotation . . . . . . .. ... ... .... 112
IA.4 Derivation of Equation (6.3)] . . . . ... ... ... ... .... 112
IA.5 Extended Kalman Filter|. . . . . ... ... ... ... ...... 113
IA.6 Sequential Processing Algorithm| . . . . . ... ... ... .... 114
IA.7 Derivation of Equation (7.8) . . . . .. ... ... .. ...... 115
A8 BoxPlots| . . ... ... .. 117

IA.9 Additional Information on Quantitative Results| . . . . . . . . .. 118




CONTENTS




NOTATION AND SYMBOLS XI

Notation and Symbols

Acronyms

2D/3D
ASIFT
BRIEF
RANSAC
SIFT
FAST

2/3-Dimensional

Affine Scale Invariant Feature Transform

Binary Robust Independent Elementary Features
Random Sample Consensus

Scale Invariant Feature Transform

Features from Accelerated Segment Test

General Notation

Scalars
Vectors
Matrices
Estimates

Correspondences

Regular, lower case: a, b, c, ...

Bold: a, b, X, ...

Bold, upper case: A, B, X, ...

Hat operator: a, K EAJ,

Prime: x & xX,ueu, X < X...

Geometric Entities and Transformations

C,I
XC, YC, ZC
X = (X,Y,2)"

x = (z,y,2)"
u=(u,v)"
1= (Iy,la,13)"

Camera and image

Camera coordinate frame axes

World point

Ray

Image point

Line in image coordinates

Camera calibration matrix

Projection into the image, u = k (X) = k (x)
Focal length and Principal point

Homography and Essential matrix



X1II

NOTATION AND SYMBOLS

h()
T R, t

AT, AR, At
r

a, 0

r

S

n

c = (0,0,c,
A, A

)T

Plane induced image to image projection

Motion induced transformation, rotation, and translation
Rigid transformation, orientation, and displacement
Radius

Off-axis angle and rotation angle

Rotation axis direction (unit length)

Instantaneous center of rotation

Plane normal vector

Shift of the projection center

Scale factor and vector and vector of scale factors
Unobservable angle and scale factor

Image to image mapping and Jacobian

2D parallax vector

Matrices

3-vectors

2-vector

Scalar residual

Probabilistics and Kalman Filtering

State vector and covariance matrix

A priori and a posteriori state vector
Vector of measurements and error free measurements

Scalar and vector-valued measurement constraint func-
tion and Jacobian

State transition function and Jacobian
Process noise vector and covariance matrix
Measurement noise and covariance matrix
Kalman gain

Normal distribution

Standard deviation

Probability density function

Probability density function of the noncentral y? distri-
bution



NOTATION AND SYMBOLS XIII

F(;-) Cumulative noncentral x? distribution
vy Noncentrality coefficient of noncentral x? distribution
v, False positive and true positive rate
0 Threshold
Indexing
C Number of cameras
c,d=40,...,C -1} Camera indeces
r Index of the reference camera C”
N Number of 2D/3D points
i=40,...,N—1} Point index
t, k Continuous time and discrete time index
o T, Y Camera height, radius, and plane normal vector
in the coordinate frame of camera C¢ at time k
AT AR, At Relative transformation, orientation, and dis-

placement between cameras C° and C"

AT AR At°7?  Relative transformation, orientation, and dis-
placement between cameras C¢ and C?

Rir Orthonormal matrix constructed from two vec-
torsn, and r

R: Rotation matrix with rotation axis direction r
and angle 6

€|, €L Parallel and perpendicular part

Further Symbols

Gg=0W¥E) Undirected simple graph with vertices V' and edges £

O3x1 Zero vector of dimension three

diag (+) Diagonal matrix

I35 Identity matrix of dimension three

] Skew-symmetric matrix related to the cross product

()" Transpose

B Determinant

| - H2 Euclidean norm



XIV NOTATION AND SYMBOLS




1 Introduction

Surround sensing is a key prerequisite for automated vehicles and mobile robots
to operate in unconfined environments. Accurate information about the relevant
static and dynamic environment is required at all times and in all situations in
order to allow for safe operation. To achieve this goal, information from dif-
ferent, complementary sensors is usually combined [Becl4, |Gro09]. Advanced
driver assistance systems for instance, which can be found in many automobiles
today, typically combine a radar and a camera system [Ben14,|Std13]]. While radar
sensors provide accurate range and relative velocity measurements, the camera
system performs various detection and classification tasks. The role of vision sys-
tems becomes increasingly important as currently no other sensor offers the same
versatility [Ranl6]. For example, by changing the lens we can trade angular res-
olution for field of view, which qualifies cameras as a short and mid-range sensor
[Sti01, [Std13]. Typically, cameras on mobile robots and cars have no moving
parts, making them durable and inexpensive to manufacture. However, the major
advantage of cameras lies in the various kinds of information that captured images
provide. Extracting the information is one of the major challenges on the way
towards automated driving. Yet, since the early deployment of camera-based ad-
vanced driver assistance systems for lane departure warning, more functions have
been introduced successively [Horl3, [Fle15], allowing to extract a richer set of
information about the surrounding scene.

To capture the complete environment of a vehicle, either a single omnidirectional
camera, i.e. a camera with a 360° field of view in the horizontal plane, or a dis-
tributed multi-camera setup can be employed. While omnidirectional cameras
seem appealing due to the single camera body and viewpoint it is often difficult or
undesirable to mount them in a position with an unobstructed field of view (e.g. on
top of a mobile robot) in practical applications. For this reason, multi-camera sys-
tems are usually preferred. Furthermore, the offsets between the cameras can be
advantageous, for example to estimate the absolute scale of the velocity [Kaz12].
An omnidirectional panorama image can be constructed from just two cameras
equipped with fisheye (ultra wide-angle) lenses. An example is shown in Figure
Despite the seamless appearance, objects on the two meter wide stripe in front
and behind the vehicle do not appear in the image. For this reason, typically four
cameras are employed in practice.

To fuse the information from multiple cameras and to relate geometric quantities
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Figure 1.1: An omnidirectional panorama image is generated from images cap-
tured by a calibrated, vehicle-mounted two-camera setup. Despite the large camera
offset of almost two meters, the panorama image appears seamless (except for im-
age regions obstructed by parts of the vehicle). This is due to the the distant scene
and homogeneity of the asphalt texture. The area marked in red in the top image
is not visible in the image. The axes of the camera coordinate frames are colored
red and blue, respectively.



in the image and the world, the mapping from the 3D world into a 2D image has
to be known. The mapping comprises information about the pose (orientation and
displacement) of the camera as well as the projection from the camera coordinate
frame into the image. Camera calibration is the process (and the result) of estimat-
ing the underlying model parameters. We refer to the parameters as extrinsic and
intrinsic parameters, respectivel Calibration is generally a complex and time
consuming process. While intrinsic calibration can be performed for each camera
individually prior to its deployment, extrinsic calibration requires the cameras to
be mounted to the respective vehicle or robot.

In order to reduce the effort of calibration and to compensate for external factors
such as temperature variations and mechanical stress which may cause the extrin-
sic calibration to become inaccurate over time, self-calibration is highly desirable.
Self-calibration is the process of inferring the model parameters directly from ob-
servations without the need for special calibration procedures or equipment.

In this thesis we build the theoretic foundation for extrinsic camera self-calibration
and present and evaluate a Kalman filter-based approach which relies solely on
image data. To this end, we identify and combine different cues that provide infor-
mation about the calibration parameters. Motion-based calibration is carried out
by estimating the frame-to-frame camera motion using corresponding features in
successive images. Planar motions are common among mobile robots and road
vehicles and represent a degenerate case for motion-based calibration. We over-
come this problem by leveraging scene constraints. In particular, we make use of
the ground plane as a natural reference object. A novel algorithm for ground plane
estimation is presented that is robust with respect to sparse as well as structural
outliers and can be integrated seamlessly into Kalman filters. Large baselines and
strong geometric distortions hinder establishing feature correspondences between
the images of cameras with overlapping fields of view to a degree where they are
not used for calibration [Rull10b, [Hen13]]. We compensate these distortions using
prior knowledge about the scene and camera configuration. As a result, low com-
plexity feature detectors and matchers can be employed.

In contrast to existing approaches (e.g. [Pagl4]) we employ a single extended
Kalman filter with low state vector dimensionality which reduces the overall com-
plexity. We evaluate the approach qualitatively as well as quantitatively using
real-world data.

I'Photometric camera calibration is not considered here.
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1.1 Problem Statement

In this thesis we address the problem of continuous extrinsic self-calibration of
vehicle-mounted multi-camera systems. Since any calibration will deteriorate over
time, self-calibration is the only way to ensure reliable long-term operation. A
self-calibration algorithm should be able to run in the background continuously
and process incoming data as it arrives. It has to perform this task during regular
operation and should hence leverage all available information sources. These in-
clude in particular motion, epipolar, and scene constraints.

Typical applications include experimental setups, end-of-line calibration, and re-
calibration during long-term operation. Therefore, an initial guess of the cali-
bration parameters which can be obtained through simple external measurements
should be sufficient for the algorithm to converge under normal circumstances.

In addition, a versatile solution should work with different numbers of cameras and
independently of other sensor modalities. Camera systems for surround sensing
typically employ ultra-wide angle (e.g. fisheye) lenses. The calibration algorithm
should thus be able to cope with strong geometric distortions.

1.2 Contribution

The contributions of this thesis are the following:

e We present a comprehensive analysis of several classes of motion, sensors,
and algorithms with respect to degenerate cases. A combination of a class
of motion, sensor, and algorithm is degenerated if the calibration yields am-
biguous solutions. For these cases we present algorithms to determine the
parameter values of the subset of unambiguous parameters. Additionally, we
derive a criterion to identify degenerate camera configurations which cannot
be calibrated using overlapping fields of view.

e To compensate for large viewpoint variations as well as geometrical distor-
tions caused by fisheye lenses we introduce an image preprocessing step that
uses prior knowledge about the camera configuration and scene geometry.
Images are warped prior to extracting feature point correspondences in order
to establish image similarity. In turn, low complexity feature detectors and
matching algorithms can be employed.

e A novel ground plane estimation algorithm for fisheye cameras is presented
which is designed to be robust with respect to sparse outliers among putative
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image correspondences as well as to structural outliers such as other planes
in the scene. The algorithm can be integrated seamlessly and efficiently into
Kalman filters.

e A new algorithm for extrinsic camera self-calibration is presented and eval-
uated. The algorithm is based on Kalman filtering which provides flexibility
with respect to additional information sources and renders real-time process-
ing possible.

e In an extensive evaluation we assess the new extrinsic self-calibration al-
gorithm quantitatively using real-world data. We compare different motion
models, varying frame rates, and evaluate the influence of overlapping fields
of view.

1.3 Thesis overview

The thesis is structured as follows. In Chapter [2| we review related work. The
chapter is partitioned with respect to the constraints that are imposed to estimate
the calibration parameters. The constraints are fundamental to the calibration pro-
cess and specific to the application, camera configuration, and environment. Nu-
merous approaches, including the one presented in this thesis, impose multiple
constraints. Here, we focus on the ones which most fundamental to each approach.
In Chapter [3|we introduce the fundamentals of perspective (standard) cameras and
highlight the differences to cameras equipped with fisheye lenses. We focus in par-
ticular on the geometric and photometric characteristics. The chapter closes with
a brief introduction to two-view geometry.

Chapter (4| provides the theoretic foundation for extrinsic camera calibration. The
methods and approaches to calibrate a multi-camera systems are diverse, but rely
only on a small number of constraints. In this chapter, we introduce the concepts
of motion-based calibration, the ground plane, and calibration using overlapping
fields of view (Figure [I.2). The identification of degenerate cases is an impor-
tant aspect of calibration. The detection of such cases is difficult in practice since
measurement noise makes any system appear observable. A theoretical analysis of
specific scenarios enables detecting degenerate cases prior to a practical or simu-
lated evaluation.

The estimation of camera motion, the ground plane, and the relative pose between
rigidly coupled cameras proposed in this thesis relies on image point correspon-
dences. To compensate for the large extent of multi-camera setups and resulting
viewpoint variations, as well as geometrical distortions caused by fisheye lenses,
we propose an image warping step in Chapter (S| Captured images are warped



6 1. INTRODUCTION

Figure 1.2: Left: Multi-camera setup with overlapping fields of view. To illustrate
the fields of view of fisheye cameras image data is projected onto spherical sectors.
The boundaries of the overlapping fields of view are indicated by blue patches on
the ground plane and grey planes elsewhere. Right: Virtual camera rotation. To
simplify establishing image point correspondences one of the cameras is virtually
rotated. As a result, the position of infinitely distant objects coincides in both
images. Throughout this thesis the reference cameras is colored orange, other
cameras are colored blue.

into virtual camera views such that corresponding image regions coincide. To this
end, the scene geometry is approximated by the ground plane in close proximity
and by infinitely distant objects elsewhere. In the latter case, the warped image
corresponds to that of a virtually rotated camera (see Figure[I.2). As a result, low
complexity feature detection and matching algorithms can be employed.

In Chapter [6] we present an algorithm for robust ground plane estimation. The
proposed method is designed to be robust with respect to sparse gross outliers
but also to other structures in the scene with similar parameters. So called struc-
tural outliers such as sidewalks are hard to identify due to their inner coherence
and may introduce significant bias. Given an estimate of the camera motion and
ground plane we sample image point correspondences between successive images,
starting with correspondences that exhibit the highest probability to be associated
correctly and update the motion and ground plane estimate sequentially. The pre-
sented sequential testing and updating scheme is designed to be seamlessly inte-
grable into Kalman filters. Figure[I.3]shows a comparison between a standard and
the proposed approach.

In Chapter [7| we combine the findings and methods introduced in the previous
chapters and present an algorithm for extrinsic camera self-calibration. The algo-
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Figure 1.3: Side-by-side comparison between the output of a standard approach
for ground plane estimation (left) and the proposed method (right) for an image
captured with a side-facing, vehicle-mounted fisheye camera. In the left image
two planes are detected. Image point correspondences associated with either plane
are marked orange and green. While one of the estimated planes can be associated
with the sidewalk the other one does not correspond to any real plane in the scene.
In the right image the output of our method is shown. Most of the shown image
point correspondences (blue) are located on the road, as desired.

rithm is based on an extended Kalman filter which has been applied successfully
in similar scenarios. The state vector of the Kalman filter comprises the extrinsic
calibration parameters as well as the ground plane parameters and the parameters
of the applied motion model. A planar and a general one are considered. By ap-
plying a stratified update scheme, a partially updated state vector is made available
for robust ground plane estimation.

In Chapter (8| we evaluate the proposed extrinsic self-calibration algorithm us-
ing real-world data from a vehicle-mounted multi-camera system. The results are
assessed quantitatively using acquired ground truth. Ground truth facilitates the
comparison between the different motion models, algorithm settings, and infor-
mation sources. During evaluation the algorithm is initialized using a set of 20
calibration parameter vectors that have been generated through random sampling
(Figure [I.4a). Quantitative results are obtained for all permutations of the 20 ini-
tial parameter sets and 20 evaluation sequences. In addition, we present qualitative
results using three typical applications for multi-camera systems, namely visual
odometry, generation of a virtual top view of the vehicle surrounding, and stereo
rectification. An example is shown in Figure|1.4b

Finally, in Chapter [9] we summarize our work, highlight important findings, and
discuss potential directions of future research.
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(a) Ground truth camera poses and samples for initialization.

(b) Corresponding epipolar curves.

Figure 1.4: Ground truth camera poses and a subset of drawn samples for Kalman
filter initialization (top). Large coordinate axes indicate the ground truth cam-
era poses. Smaller coordinate axes visualize a subset of the initialization samples
which are offset by 0.5 meters (transparent spheres) and rotated by up to 15° with
respect to the ground truth. For reference vehicle tires and the rear axle are super-
imposed. In the bottom figure simultaneously captured images from the front (left)
and right-facing (right) cameras are shown, respectively. Corresponding epipolar
curves are superimposed. Matching curves have the same color.



2 Fundamentals

Multi-camera systems are employed in increasing numbers and more areas of ev-
eryday life. The methods and approaches used to calibrate these systems are as
diverse as their respective fields of application. In this chapter we review relevant
approaches from the literature and state-of-the-art solutions. We focus in particu-
lar on mobile robots and road vehicles.

We structured the related work presented in this chapter predominantly with re-
spect to the underlying constraints that are imposed to estimate the calibration pa-
rameters. These constraints are fundamental to the calibration process and specific
to the application, camera configuration, and environment (although other criteria
for categorization could be applied as well). Figure shows a taxonomy of ex-
trinsic multi-camera calibration, without claiming thoroughness or completeness.

The fundamental assumption upon which all presented approaches build is the
rigidity of the camera setup. The relative displacements and orientations between
the cameras are assumed to be either fixed permanently, or within specific time
frame From this, further constraints can be derived. Work focusing on simulta-
neously observed scene points is presented in Section and work focusing on
motion-based calibration and exploiting the scene structure is presented in Section
and Section respectively.

Given an existing multi-camera setup, the constraints that can be applied are
mostly predetermined by the physical arrangement of the cameras, the fields of
view, the area of application, and the environment, leaving few design choices.
However, one remaining aspect is the algorithm. In Section we review the
related work from the perspective of the underlying algorithm.

2.1 Overlapping Fields of View

The literature offers a plethora of works on the calibration of cameras in stereo con-
figurations, 1.e. with large overlapping fields of view. The standard approach to
this problem is to establish (multi-camera) image correspondences. From these an
initial estimate of the relative orientation and displacement can then be determined
by means of relative pose estimators (e.g. [NisO4b]). Typically, the initial result

'Continuous parameter drifts are usually modeled by assuming changes to only occur between
discrete points in time.
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Figure 2.1: A taxonomy of extrinsic multi-camera calibration. The classifica-
tion of the approach presented in this thesis is highlighted cursive black. The ap-
proaches often cannot be assigned uniquely to one class since multiple constraints
or configurations might be exploited simultaneously.

is refined using bundle adjustment (e.g. [Tri00b, Har0O3]). Bundle adjustment is
a technique to simultaneously optimize the 3D scene structure and camera poses.
The constraint underlying the relative pose estimation is the epipolar constraint
(see Chapter |3) while bundle adjustment is based on the collinearity equations
[Luh06] which state that the camera projection center, image point, and 3D scene
point were aligned at the time of recording.

A limitation of approaches employed in unconstrained environments is that the
overall scale of the system cannot be determined without additional extraneous
information and therefore remains ambiguous. To overcome this limitation and
to simplify the process of establishing image correspondences customized cali-
bration objects with known dimensions are commonly used. The description and
discussion of algorithms working in unconstrained environments as well as with
calibration objects can be found in standard literature such as [HarO3|] and are not
discussed here for brevity.

Nonetheless, we want to highlight the work of Dang et al. [Dan09] who presented
a framework based on Kalman filtering for continuous stereo self-calibration of an
active stereo system. It is shown that the combination of different constraints (two-
view epipolar and multi-view collinearity) yields both accurate and robust results.
In the work presented herein we follow this idea and combine different constraints
to improve the overall robustness and accuracy.

In general, calibration methods that exploit overlapping fields of view achieve the



2.1. OVERLAPPING FIELDS OF VIEW 11

highest accuracy. To enable applying the same methods and constraints to multi-
camera setups with non-overlapping fields of view, Kumar et al. [KumOS8] and
Lébraly et al. [Lébl0a] propose to create overlapping fields of view temporarily
during calibration using mirrors. Kumar et al. [KumOS8] propose to install planar
mirrors to allow all cameras to observe a single calibration object. By varying the
position and orientation of the mirrors different virtual view points of the calibra-
tion object are generated. The extrinsic calibration parameters can be estimated
uniquely from the virtual camera poses. Later, Lébraly et al. [Lébl0a]] present a
modified approach that uses markers which are attached to the mirror to estimate
the pose of the mirror directly.

Asynchronous Image Correspondences

From the perspective of calibration, image correspondences between syn-
chronously captured images are most preferable since the underlying epipolar ge-
ometry comprises the desired calibration information. However, such correspon-
dences can only be established between cameras with overlapping fields of view.
Asynchronous image correspondences, on the other hand, can be established if the
cameras observe the same part of the scene, but not necessarily at the same time.
Prerequisites for the calibration based on asynchronous image correspondences are
that the motion of the camera setup is known or can be estimated, and the scene
remains static during data acquisition.

An early approach adopting this concept for road vehicles is the work of Lam-
precht et al. [LamO7]. To calibrate a multi-camera setup with non-overlapping
fields of view, first, the 3D positions of traffic signs with respect to the vehicle are
estimated. Once the traffic signs leave the field of view of the camera their posi-
tion is predicted using known vehicle motion. As the traffic signs enter the field
of view of another camera the relative orientation and displacement between the
cameras is estimated by minimizing the error between the predicted and observed
traffic sign positions.

The work of Carrera et al. [Carl1] generalizes this concept. While a robot per-
forms a set of preprogrammed motions the attached cameras separately estimate
their motion and reconstruct the 3D scene. The reconstructions are then registered
and jointly optimized providing the relative pose between the cameras. Due to the
scale ambiguity of the monocular scene reconstruction, the displacement between
the cameras can be estimated only up to scale.

Heng et al. [Henl3] present a further extension to this approach. The trajecto-
ries estimated by each vehicle-mounted camera individually are registered with
respect to the vehicle-supplied trajectory in order to obtain an initial calibration
and scale estimate. Image point correspondences between asynchronously cap-
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tured images are then used to refine the initial extrinsic calibration estimate along
with the camera intrinsics using bundle adjustment. The scene, which was recon-
structed during the calibration can itself be used as a calibration object. Heng et
al. [Henl4, Henl5|] follow this idea to calibrate vehicle-mounted multi-camera
setup with non-overlapping fields of view. Similarly, Li et al. [Lil3] use a large
calibration object that can be observed partly by multiple cameras at the same
time. Strauss et al. [Str14] propose combining multiple planar calibration targets
into a rigid, three dimensional calibration object. The calibration parameters and
relative poses between the calibration objects are estimated jointly using bundle
adjustment. Due to the known scale of the calibration objects these methods yield
a Euclidean calibration?]

2.2 Motion-Based Calibration

Motion-based extrinsic multi-camera calibration builds on the rigid coupling be-
tween the cameras and in particular on the different types of motions observed
when the setup is moved. Due to the resemblance of the underlying mathemati-
cal formulation of the problem to a calibration problem in the robotic community
between a robot gripper and a gripper mounted camera, this problem is often re-
ferred to as hand-eye calibration [Tsa89, Shi89]. An early work in the context of
motion-based camera to camera calibration is that of Luong and Faugeras [LuoO1],
who estimate the extrinsic calibration of a stereo camera without using overlapping
fields of view. While the camera setup is moved, each camera estimates its mo-
tion. The extrinsic calibration between the cameras is then estimated up to scale
from only two incremental motions by solving the hand-eye calibration problem
explicitly.

Esquivel et al. [Esq07] propose a similar approach but aim at processing complete
sequences. In addition, critical motions such as translation only or planar motion
are examined and the authors recommend switching the motion model if degener-
ated cases are detected.

Mubhle et al. [Muhl11] approach the problem of critical motions by incorporating
a priori knowledge. The a priori knowledge ensures that the underlying optimiza-
tion problem is well-conditioned. The authors further introduce a metric which
quantifies the influence of the a priori knowledge on the final estimate and a trans-
formation to remove the bias introduced by the a priori estimate.

Lébraly et al. [LEb10b] focus explicitly on planar motion and present a dedicated
solution to the problem. Instead of using incremental motion estimates the camera

2We use the term Euclidean, i.e. with known scale, to distinguish from metric calibration, i.e. with
respect to a similarity transformation.



2.3. SCENE CONSTRAINTS 13

motions and scene structure are estimated jointly. After determining an initial so-
lution the relative orientation and in-plane translation are estimated using bundle
adjustment.

We exemplarily mention the work of Brookshire and Teller [Brol 1, Brol2] who
presented a modified solution to the hand-eye calibration problem for arbitrary
sensors that provide Euclidean incremental motion estimates. To detect singular
motions a statistical measure is used which provides a lower bound on the cali-
bration accuracy. This concept is applied to both in-plane motions [Brol1] and
general motions [Brol2]. In addition, they also propose a solution for sensor sys-
tems that provide data asynchronously.

Caspi and Irani [Cas02] relax the requirement of known temporal alignment. By
finding the maximum correlation between rotation amplitudes the temporal offset
between two image sequences 1s found. After aligning the video sequences tem-
porarily the relative orientation between the cameras is estimated.

Pagel et al. consider a similar setup to the one we examine herein. In a series
of works [Pagll1, [Pagl2b, [Pagl2a, Pagl4| they present a hierarchical approach
based on repeated parameter estimation, propagation between camera modules,
and fusion. After applying a method similar to that of Lébraly et al. [Lébl0b] to
obtain and register motion estimates a Kalman filter derivative is used to simul-
taneously refine extrinsic calibration parameters, sparse scene structure, camera
motion, and ground plane estimates. The final estimate is obtained by fusing the
individual estimates from each camera module. It is implicitly assumed that the
camera translation directions are parallel and the relative camera velocity ratios
remain constant within short time periods. In this thesis, we follow the idea of a
filtering-based approach but reduce the algorithm complexity by employing only
a single extended Kalman filter with low state vector dimensionality and relax the
requirements on the vehicle motion.

2.3 Scene Constraints

The scenes in which multi-camera systems are deployed commonly contain cues
that can be exploited for calibration. Road and parking spot markings have been
used extensively hitherto (e.g. [Lill]). Many approaches, including the one pre-
sented herein, assume the surface the vehicle is driving on to be sufficiently flat to
be approximated to be a plane in the vicinity of the vehicle. A single scene plane
such as the ground plane constrains three out of the six degrees of freedom of the
relative pose transformation (two angles and one distance), and does not necessi-
tate overlapping fields of view.

Miksch et al. [Mik10a] propose to estimate the ground plane during straight driv-
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ing by first estimating the vehicle translation direction. After an image rectification
step that aligns image rows with the translation direction, only two corresponding
points on the ground plane have to be identified in two successive images to find
the ground plane parameters. The relative orientation between multiple cameras
can be computed by aligning the observed ground plane normal, height, and trans-
lation directions.

Ruland et al. [Rull0b] estimate the in-plane position of a camera with respect to a
vehicle frame by exploiting the non-holonomic motion of typical automobiles and
estimating the ground plane induced homography.

The problem of estimating the orientation of camera with respect to a vehicle frame
is closely related to homography estimation. For example, Miksch et al. [Mik10b]
and Ruland et al. [RullOa] present approaches in this regard using known vehicle
odometry. An overview of several approaches, without focusing on calibration, is
given in Chapter|[6]

2.4 Bayesian Filtering and Optimization

In the remainder of this chapter we elaborate on the algorithms used to estimate
the calibration parameters from image measurements and imposed constraints. We
can classify these algorithms into general optimization and filtering techniques.
General optimization techniques such as bundle adjustment perform batch opti-
mization using either all available measurements (global optimization) or specific
subsets such as a fixed number of recent measurements (local optimization). In
contrast, (Bayesian) filtering techniques fuse image measurements sequentially by
updating the estimate and the associated probability distribution accordingly.
Bundle adjustment is considered the gold standard ([Har03]) and is known to bet-
ter cope with nonlinearities and outliers than filtering-based approaches. For this
reason, it is frequently used in offline calibration methods with mild resource and
time constraints (e.g. [Léb10b, |Carl1, Henl3!Str14,|Urb16b]).

Self- and online-calibration problems are naturally incremental and are therefore
traditionally approached using filtering techniques (e.g. [Dan09, Han12, Sch13,
Pagl4,Muel6]]). However, the development of efficient and incrementally work-
ing optimization frameworks (e.g. [Kae08| Kuel 1]) renders their application pos-
sible even for this type of application. The problem of increasing number of mea-
surements can either be tackled by continuously summarizing measurements and
results, as in filtering approaches, or by keeping only a subset of measurements
and discard the remainder. The subset typically consists of a limited number of
most recent observations. In contrast, Maye et al. [May13] present a framework
for self-supervised data aggregation that selects a subset of data based on an infor-
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mation theoretic measure. Despite the advantages of information-based measures
these approaches tend to be particularly susceptible to outliers which spuriously
indicate a high gain in information.

In this work we present a filtering-based approach that avoids structure compu-
tation entirely (except for the ground plane), and thus significantly reduces the
overall complexity. The state vector of the employed extended Kalman filter com-
prises only the extrinsic calibration, ground plane, and motion parameters. Special
attention is paid to the problem of outliers (Chapter[5|and Chapter|[6) as well as the
problem of nonlinearities (Chapter|7)).
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3 Camera Model and Two-View
Geometry

A camera maps the 3D world into a 2D image. The mapping comprises informa-
tion about the pose (orientation and displacement) of the camera coordinate frame
with respect to a reference coordinate frame (e.g. a world frame) as well as the pro-
jection from the camera coordinate frame into the image. The goal of this thesis
1s to recover the former, the location and orientation of a camera coordinate frame
with respect to a reference frame while considering the properties of fisheye cam-
eras. Compared to cameras with standard lenses, the imaging properties of fisheye
cameras differ in both their geometric and their photometric characteristics. This
chapter gives an overview of these fundamental differences. First, a standard cam-
era model is introduced in Section which is then used to elaborate on fisheye
cameras in Section Parameters associated with the camera model are referred
to as intrinsic calibration parameters. In contrast, the extrinsic calibration parame-
ters describe the external geometric relation between the camera coordinate frame
and the reference frame.

In the second part of this chapter, two fundamental (extrinsic) geometric relations
of two-view geometry are reviewed, namely the plane induced homography and
the essential matrix. Both will be used frequently throughout this thesis. In the
following only rotationally symmetric camera models are considered. More liter-
ature on camera models can be found in, e.g., [Har03!Gen06, Stul 1].

3.1 The Perspective Camera Model

The mapping from the camera coordinate frame into the image is described by the
camera model. A model of particular interest is the perspective camera mode
[HarO3]. On the one hand, many real cameras can be described by this model
directly or by adding correction terms. On the other hand, its mathematical formu-
lation is particularly simple due to its linearity in homogeneous coordinates. For
this reason it is used extensively as a standard model in theoretical considerations.
The camera model will be explained in more detail in the following.

'Sometimes referred to as finite projective model.
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Principal axis

Figure 3.1: Projection of a 3D point X to the image point u under the central
projection. The ray x, originating from the optical center of camera C contains
u and X. The image point u and the principal point ug lie in the image plane,
depicted in blue. The origin of the image coordinate system is located in the top
left corner and the image coordinate axes u and v are aligned with the axes of
camera coordinate frame. The angle between the principal axis and x 1is the off-
axis angle a. The axes of the camera coordinate frame are given in red, green, and
blue, respectively. This color convention is kept throughout this thesis.

We consider the central projection, i.e. the projection from a point onto a plane,
depicted in Figure[3.1] The projection center of a camera C coincides with the ori-
gin of the Cartesian camera coordinate frame. Within the image plane, Z; = =z,
where zy > 0, we define a 2D Cartesian image coordinate frame with coordinates
u and v. The u and v-axes are parallel to the X and Y¢-axes of the camera co-
ordinate frame, respectively. The principal axis intersects the image plane in the
principal point ug = (uo, Uo)T. The three intrinsic calibration parameters ug, v,
and z, are sufficient to define the mapping of a 3D point X = (X,Y, Z)" in the
camera coordinate frame to the point u = (u, v)T in the image. Using homoge-
neous coordinates [Har0O3] the mapping can be written as a linear mapping

AU 20 0 Uo X
M| =10 2y vg Y |, 3.1)
A 0 01 Z

_.C

where C is the camera calibration matrix, and A € R \ {0} is a scale factor. The
3-vector (Au, \v, )\)T represents the point u in homogeneous coordinates. The
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non-homogeneous 2-vector can be obtained by dividing by A and discarding the
last row. Due to the homogeneous representation, equation holds for any
nonzero multiplicative scaling of C as well as X. In Euclidean space, the scaling
of X can be interpreted as the shift along the line through the origin and X. Every
point on the line, except for the origin, is projected to u. This also means that
a point with negative Z value is projected to real image coordinates. This does
not generally pose a problem for perspective cameras since we know that a point
being visible in the image has to be in front of the camera. However, if camera
lenses exhibit an angle of view of more than 180°, as it is the case for the cameras
used during our experiments, disambiguating in this way is no longer possible. To
resolve this issue we restrict the scale factors to positive values only. In conse-
quence, only points on the ray x = (z,y, z)T, are projected to u (cf. Figure(3.1).
The restriction of the sign of the scale factor to positive values allows discriminat-
ing between points on either side of the plane Z = 0, but requires to keep track
of the sign during computation.

The presented ideal camera model is linear in homogeneous coordinates. However,
real lenses and especially wide-angle lenses do not exhibit these linear character-
istic. Typically, an image compression can be observed with increasing distance
from the principal point for wide-angle lenses. The effect is most obvious for
straight lines in the world appearing curved in the image. These radial distortions
can be modeled by augmenting the linear model by a correcting term. The correc-
tion is applied after projecting the 3D point into the image. Let u, = (u,, vu)T
be the coordinates of the undistorted point in the image plane. The coordinates of
the point in the radially distorted image are given by

ug=uy (I1+A(r)), (3.2)

where A (-) is typically chosen to be an even polynomial [Har03!} Jdh04) Gen06]],
and r = |lu, —ugl|, is the radius, i.e. the distance from the principal point.
Correction terms A (+) are used multiple times throughout this chapter to model
deviations from a design model.
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3.2 The Fisheye Lens

Fisheye lenses are ultra wide-angle lenses that are often capable of capturing a
whole hemisphere. The large field of view comes at the price that many desirable
properties of the perspective camera cannot be obtained, most prominently linear-
ity is lost. Straight lines in the world are not imaged as straight lines. This section
gives an overview of fisheye lens characteristics, starting with the geometric cam-
era model.

3.2.1 Geometric Camera Model

Due to the large field of view it is not possible to model the nonlinear prop-
erties of cameras with fisheye lenses as deviations from the linear model, i.e.
lens distortions. To demonstrate this, we consider the projection of a point
X = (X,Y, O)T into the image using equation (3.1). After multiplying the point
with the calibration matrix, the last component of the point remains zero. It is not
possible to convert the point to finite coordinates and thus to Euclidean 2-space.
In consequence, equation cannot be applied.

For fisheye lenses it is common to describe the mapping from the world into the
image in terms of spherical coordinates, i.e. by the off-axis angle o between
the ray x and the principal axis (cf. Figure [3.1)), and the azimuth angle in the
image plane. In case of rotational symmetry, there is a direct relationship be-
tween the radius r and the off-axis angle o. For example, the standard camera
model follows r ~ tan («). For fisheye lenses there exist various classical design
models that exhibit specific properties [Stull]]. Three prominent models are the

e stereographic model r~tan (%),
e equidistant model r e~ a,
e and equisolid angle model r~ sin (§).

The functions are shown in Figure The stereographic mapping is locally dis-
tortion free, i.e. within a sufficiently small region objects are imaged as being
captured by a perspective camera with a narrow field of view. Furthermore, the
intersection angle of imaged lines is only affected by perspective distortions, but
not by lens distortions. Hence, the mapping preserves angles locally.

The equidistant mapping function is linear in the off-axis angle, and the equisolid
angle model maintains a constant ratio between image area and corresponding
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Figure 3.2: Radius r as a function of the off-axis angle « for four different projec-
tion models. The projection models are (from top to bottom), perspective model
(black), stereographic model (blue), equidistant model (green), and equisolid an-
gle model (orange). In case of the perspective mode, the radius approaches infinity
as the off-axis angle approaches /2.

solid angle. Figure shows an image captured with a fisheye lens with equidis-
tant projection function and a corresponding image which has been generated us-
ing a perspective camera model. Note that the white marking on the ground is
straight in the perspective camera image but not in the image of a fisheye camera.
Furthermore, significant magnification near the image boundary can be observed.
Mapping functions of real fisheye lenses may deviate from the ideal models. To
compensate for this behavior polynomial correction terms as in equation can
be applied. Throughout the rest of the thesis, we abstract from the used model and
intrinsic calibration parameters and write

u=k(X)=k(x), (3.3)

to describe the projection of a 3D point or corresponding ray into the image, where
K (-) is the projection function. The back-projection of a point to a ray is given by

x=r"'(u). (3.4)

To render the back-projection to a ray unique, one typically requires z = 1 or
x|, = 1. We further require the mapping to be well-defined within the image
region and to be continuously differentiable.
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Figure 3.3: Image captured using a fisheye lens with equidistant projection (left),
and corresponding image generated using a perspective camera model. The pro-
jection of the image border of the perspective image mapped into the fisheye image
is shown in orange. The horizontal angle of view is 170° and 100°, respectively.

3.2.2 Noncentrality

The fundamental assumption for the derivation of the ideal perspective camera
model in Section was the existence of a unique projection center. This prop-
erty is highly desirable, as it allows separating intrinsic and extrinsic camera prop-
erties. However, for real lenses the position of the projection center may deviate
with increasing off-axis angle. For lenses with a narrow field of view, the effect is
usually small and thus often disregarded. However, for fisheye lenses, the devia-
tion can be within the same order of the size as the lens [Gen06]. In the following
we introduce a mathematical model for the deviation of the projection center and
show how the noncentral camera model can be approximated by a central camera
model with minimal error.

For rotationally symmetric lenses, the deviation of the projection center can be
modeled by a displacement along the principal axis [Gen06]. An illustration is
shown on the left-hand side of Figure [3.4]for rays with increasing off-axis angles.
The point ¢ 1s the convergence point for decreasing off-axis angles. For increas-
ing off-axis angles, the projection center moves forward along the principal axis.
Gennery proposes modeling the displacement as ¢ («) = (0,0, cz(a))T,
where

¢, (@) = ( @ 1) (Ao + Aa)), (3.5)

sin (o)

A (-) is an even polynomial, and A is a constant. The first factor ensures that
the displacement vanishes for small angles but increases to infinity as the off-axis
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Figure 3.4: Illustrations of the displacement of the projection center along the
principal axis in the X¢-Z¢c-plane of the camera coordinate frame for rays with
small (blue) and large (orange) off-axis angles (solid lines). The point c is the
convergence point for decreasing off-axis angles. Left: A ray x; originates from
a displaced projection center c;. Right: The noncentral camera model is approxi-
mated by a central camera with projection center c,y;,.. Corresponding rays origi-
nating from the c,,,. are shown as dashed lines. Note that corresponding rays are
parallel.

angle approaches 180°. The second factor determines the displacement magnitude.
If the distance to the observed scene is sufficiently large, the error introduced by
disregarding the deviation of the projection center becomes insignificant. For the
calibration of large field of view cameras, however, it is common to use small
calibration targets which are placed closely to the camera to achieve considerable
coverage in the image (e.g. [Mei07]]). For this reason, using a central camera
model during calibration will result in an incorrect mapping between the radius r in
the image and the off-axis angle. This can be avoided by using a noncentral camera
model during calibration and approximating the result by a central camera model.
To this end, Schonbein et al. [Sch14] propose to choose the projection center of
the approximated central camera such that it minimizes the Euclidean distance to
the rays corresponding to the image points of a uniformly sampled image. The
process is illustrated on the right-hand side of Figure In contrast to using a
central camera model during calibration, the angular error of the approximated
model decreases the farther an object is located from the camera. Throughout the
rest of the thesis, we assume the camera model to be central and apply equations

(3.3) and (3.4).
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3.2.3 Light Falloff and Vignetting

Examining the image on the left-hand side of Figure we notice a gradual re-
duction in image intensity towards the image boundary as well as a sudden tran-
sition to black in the image corners. These effects are caused by light falloff and
vignetting and can be partially compensated. Light falloff is inherent to optical
systems and is, for this reason, also referred to as natural vignetting. It is caused
by light entering and exiting the optical system at oblique angles, less light en-
tering the optical system, as well as the light being distributed over a larger area
on the sensor. Under certain assumptions, the falloff is proportional to cos*(c)
[Jdh04, Luh06]. In practice however, the assumptions were found to rarely apply,
even for standard lenses, and in particular for fisheye lenses [AggO1,Jdh04]. The
characteristic of the light falloff depends strongly on the lens design and should be
determined though calibration.

Vignetting refers to the physical obstruction (which is not caused by the aperture
stop). One commonly differentiates between three classes of vignetting [Gol10]:

e Mechanical vignetting is caused by obstructing elements blocking incidental
light before it can enter the lens. In the image on the left-hand side of Figure
the lens mount limits the diagonal angle of view and causes a sudden
transition to black in the image corners.

e Optical vignetting refers to light being blocked by elements within the lens
body such as edges or mechanical stops. Despite the downside, optical vi-
gnetting can also be used to improve the overall lens performance, e.g. by
blocking misguided rays.

e Pixel vignetting is not caused by the lens but by the image sensor. Only a
part of the total area of a pixel on the sensor is light sensitive. At oblique
angles, it is more likely that light is blocked by obstructing elements on the
sensor, yielding an angle dependent characteristic. To compensate for the
insensitive area, micro lenses are commonly used to direct the incident light
onto light sensitive area, thus effectively enlarging it. However, micro lenses
may even reduce the angle range at which light is accepted [Jdh04]. Pixel
vignetting is particularly prominent for wide-angle lenses [Luh06]. This
effect is increased if non-matching lenses and image sensors are combined.

The intensity reduction seen in Figure 1s caused by a superposition of vi-
gnetting and light falloff. For image processing, the gradual reduction in image
intensity can be disadvantageous. This is for example the case when the intensity
gradient caused by light falloff and vignetting within a typically sized image patch
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Figure 3.5: Side-by-side comparison between the original image (left) before and
after applying vignetting and light falloff compensation (right). Note the severe in-
tensity reduction towards the image boundary in the original image, and the almost
even intensity across the ground in the compensated image. In the compensated
image reduced brightness around the clouds in sky can be observed. This is due to
overexposure in the original image.

becomes significant, or when comparing image patches from two images with op-
posing gradients. In general, it is possible to compensate for vignetting and light
falloff due to the linearity of the effects [Jdh04]. Assuming an image sensor with
linear response, 1.e. a proportional relationship between irradiance and image in-
tensity, the compensation can be carried out by pixel wise multiplication with a
compensation factor. The compensation factor can be determined experimentally
by measuring the pixel intensity in the image with respect to a constant illumi-
nation source. An exemplary result is shown in Figure After compensation
we observe an almost even intensity profile on the ground. Mechanical vignetting,
however, cannot be compensated as no image information is available.

3.3 Two-View Geometry

In the remainder of this chapter we consider the extrinsic relations between two
camera views. The fundamental relation between two perspective views of a scene
is the epipolar geometry. It is independent of the scene content and depends only
on the relative camera orientations and displacements as well as the camera intrin-
sic calibration parameters. It can be described concisely by the essential matrix.
A second relation arises for 3D points being located on a plane in the scene. The
plane induces a homography between perspective views, a one-to-one relation be-
tween image points. For the two relations to be meaningful, we assume the two
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views to be either acquired simultaneously or restrict the scene to be rigid in case
that the views are acquired with a temporal offset. Both scenarios are geometri-
cally equivalent [HarQ3]. Before elaborating on the two geometric relations we
introduce the transformations between coordinate frames in 3-space.

3.3.1 Camera Pose and Pose Transformation

The pose of a camera encompasses the orientation and displacement of the camera
coordinate frame with respect to a reference coordinate frame. Given the coordi-
nates of a 3D point X in the camera coordinate frame, the coordinates of the same
point in the reference coordinate frame X’ = (X', Y”’, 7’ )T are given by

X' = ARX + At, (3.6)

where AR is the 3 x 3 orientation matrix and At is the 3 x 1 displacement vector.
Using homogeneous coordinates, the transformation can be written more concisely
using matrix notation

X' X
Y’ AR At| | Y
r | T AT (3.7)
Z 05, 1 Z
1 1

=:AT

The transformations between coordinate frames can either be constant over time or
time dependent. To emphasize the difference we use different notation and expres-
sions. The time independent pose transformation between coordinate frames is
given by equations (3.6) and (3.7)) and will be called orientation and displacement.
Similarly, the transformation between a coordinate frame at time £ and k£ + 1 is
given by T, and will be called rotation and translation. The rotation matrix and
translation vector are R, and t,, respectively. When necessary, a camera index c
is used to differentiate between multiple cameras.

3.3.2 Epipolar Geometry and the Essential Matrix

Epipolar geometry is the inherent relation of two views. It is determined by the
relative pose of the cameras and their intrinsic calibration parameters only, and
independent of the scene. For a perspective camera the relation is encapsulated
in concise form in the fundamental matrix. The fundamental matrix describes the
relationship between an image point in one view and a corresponding epipolar line
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Epipolar
line

Epipolar plane

Figure 3.6: Epipolar geometry of a moving perspective camera. The epipolar
plane contains the two camera centers as well as the 3D point X. The intersections
of the epipolar plane and the image planes form the epipolar lines.

in the other view. However, for fisheye cameras, or other cameras with nonlin-
ear projection function, the fundamental matrix cannot be applied and the relation
becomes more complicated, typically resulting in a point to curve relationship in
the image. A specialization of the fundamental matrix that separates intrinsic and
extrinsic calibration parameters is the essential matrix. It formulates the two-view
relationship for rays instead of image points and is thus applicable to arbitrary
cameras with known intrinsic parameters. In the following we elaborate on epipo-
lar geometry and derive the essential matrix.

Suppose a moving camera C that acquires image at time k£ and k + 1. The two
camera centers at time k£ and £+ 1 and a 3D point X define a plane which is
called the epipolar plane. The rays back-projected from the image points of X are
x and x’, respectively. This is depicted in Figure Using the rays and the trans-
formation between the camera poses the epipolar plane in the second view can be
constructed by computing the cross product between the ray x’ and the translation
vector

' =x' x t,. (3.8)

The epipolar plane is then given by ((1')7,0)7, where 1’ corresponds to the (non-
unit) plane normal. Note that 1’ represents a line in 2D projective geometry and
thus a homogeneous vector. The inner product of a point with 1 is zero if the point
lies on the plane, and by definition

0= (1) R,x. (3.9)
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Replacing 1’ in equation (3.9) by equation (3.8) yields

0=(x'xt;) Rux = (x)" [t], Ry X, (3.10)

——
::Ek

where E,, is the essential matrix, and [-],, is a mapping of a 3-vector to a skew-
symmetric matrix

0 —z2 vy
x]l, =12 0 —=xf. (3.11)
—y x 0

The essential matrix is of rank two and has five degrees of freedom, namely the
three parameters describing the rotation and two parameters describing the direc-
tion of the translation. Note that equation holds for any nonzero scaling
of E, and hence of t,. The essential matrix can be estimated from five corre-
sponding rays [Nis04b]], however, yielding multiple solutions. For disambiguation
additional correspondences are required. Furthermore, the decomposition of the
essential matrix into a rotation and translation direction is also ambiguous [Har0O3]].
However, throughout the rest of the thesis, we assume the correct decomposition
to be known.

Equation (3.10) imposes only a single constraint on the rays x and x’, i.e. the
epipolar constraint. In the image of a perspective camera, the epipolar plane is im-
aged as a line called the epipolar line, intersecting the image of X and the camera
center (cf. Figure[3.6). The image of the camera center is the called the epipole.
In cameras with fisheye lenses the epipolar lines appear in general as curves.

3.3.3 Plane Induced Homography

If points in the scene are located on a plane, the corresponding rays of two views
are related by a homography, x’ = Hx. The homography matrix H is a non-
singular 3 X 3 matrix and comprises information about the relative camera poses
and the scene plane. It can be interpreted as the projection of a point onto the
plane followed by the projection into the second view. In the following we derive
the homography matrix.

A plane in Euclidean 3-space can be defined by the unit normal vector n and the
distance to the plane /. Without loss of generality, we define & > 0. A 3D point
X located on the plane satisfies

n'X +h =0. (3.12)



3.3. TwWO-VIEW GEOMETRY 29

Figure 3.7: A moving camera acquires images at time k£ and k£ + 1. The rays
x and x’, corresponding to the 3D point X on the scene plane, are related by a
homography.

Given the ray x corresponding to the point X located the plane the correct scale A
can be found by substituting Ax for X in equation (3.12) and solving for A,

h

nTx’

A= (3.13)
After determining the scale, the 3D point can be transferred from one coordinate
frame to the other by applying the relative pose transformation (equation (3.6)).
We assume, again, a moving camera C that acquires images at time k£ and &k + 1
(see Figure . By dividing both sides of the relative pose transformation X' =
R, X +t, by ascale factor and substituting for A on the right-hand side, we obtain

T T
x’:ka—M - R,{;—M X. (3.14)
hk: hk:
ey

The homography matrix H has eight degrees of freedom and can be estimated
from four corresponding image points [Har03|]. The decomposition of the homog-
raphy matrix into the rotation, translation and plane is ambiguous, yielding four
possible solutions [MalO7]. Besides two different solutions for the rotation matrix,
the translation and the plane, one ambiguity is caused by the simultaneous change
in the signs of t;, and n, yielding the same homography matrix. Furthermore,
only the ratios t, /h,; can be determined. The ambiguity is caused by a faster mov-
ing camera and a more distant plane resulting in the same homography as a slower
moving camera and a closer plane. In the following chapters we assume the correct
decomposition to be known in the following.
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4 Extrinsic Camera Calibration

To estimate the extrinsic camera calibration several constraints can be used. Com-
mon are the epipolar constraint for simultaneously observed 3D points (cf. Chapter
3.3.2) and the rigid coupling between multiple cameras mounted on a rig. For self-
calibration we combine several constraints to increase the robustness and to avoid
degenerate cases. Pure translation, for example, renders motion-based calibra-
tion degenerate. Detecting degenerate cases is difficult in practice as measurement
noise and errors in feature matching render classical tests such as rank analysis
ineffective. Statistical measures [Broll, Brol2, May14|] provide a means to de-
tect degenerate cases if the underlying statistical assumptions hold. A theoretical
analysis of specific scenarios based on error-free data allows detecting degenerate
cases prior to a practical or simulated evaluation.

In this chapter, we present a comprehensive analysis of several classes of motion,
sensors, and algorithms for motion estimation with respect to degenerate cases.
The problem of detecting such cases is closely related to observability analysis in
control theory. A system is called observable if its state can be recovered uniquely
in finite time from its outputs and known inputs [BS93]. In the following we
(informally) adopt the term to denote parameters whose values can be inferred.
Our contribution with respect to motion-based calibration is twofold. We iden-
tify degenerate cases among the combinations of classes of motion, sensors and
employed algorithms and, in addition, determine the observable parameters for
degenerate configurations. Besides the rigidity constraint between cameras we in-
corporate the ground plane as a natural reference object into the analysis. As input
we assume error free observations of the motion and ground plane parameters. The
results are summarized concisely in Table[4.1]

In addition, we consider the extrinsic calibration of a multi-camera system from
pairwise overlapping fields of view. Jointly observed 3D points allow estimating
the essential matrix, and hence to recover the relative orientation and displace-
ment direction. For a multi-camera setup a unique solution (up to an unknown
scale factor) can only be determined if enough overlapping fields of view between
different cameras exist and if the cameras are not in a critical configuration. To
detect whether a unique solution (up to scale) can be derived, we employ a matrix
rank test. Before presenting our analysis on motion-based extrinsic multi-camera
calibration we introduce necessary definitions. Parts of the work presented in this
chapter have been published in [Knol4a].
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4.1 Definition of the Reference Frame

The goal of this thesis is metric calibration of a multi-camera system. The term
metric denotes that the calibration is unique up to a similarity transformation, i.e.
a pose transformation and a scale. For the calibration process, the parameters cor-
responding to the seven degrees of freedom of a similarity transformation have
to be defined by means of a datum deﬁnitio The datum definition enables the
mapping of relative observations onto absolute parameter values and is required
to avoid singularities. The datum definition corresponds to defining an Euclidean
(reference) coordinate frame as well as a scale. This can be carried out by defining
one camera coordinate frame in a multi-camera setup as the reference coordinate
frame (located at 03,1 and with identity orientation matrix) and keeping one base-
line, 1.e. the distance between two cameras, fixed. Minimal datum definitions, as
in this example, which constrain exactly seven degrees of freedom are favorable
as they avoid possible inconsistencies in the datum definition which could be mis-
interpreted as errors in the observations [LuhQ6].

A disadvantage of the fixed datum is that the covariance matrix associated with the
estimated calibration parameters of each camera does not reflect the inner accu-
racy of the camera system, i.e. the accuracy independent of the choice of reference
coordinate frame [Gra80, [Tri00a]. The position and orientation of the reference
camera coordinate frame are assumed to be error-free, whereas other camera coor-
dinate frames are subject to inaccuracies. For this reason, other datum definitions
such as the free net adjustment are favored [Luh06, TriO0b]. In free net adjustment
seven linear independent constraints are introduced that prevent perturbations of
the centroid of camera centers, orientation, and scale with respect to initial (pro-
vided) estimates. However, gradual drifts caused by, e.g., numerical inaccuracies
are not corrected. Typically, Lagrangian multipliers are used as a means to im-
pose these constraints. The free net adjustment provides optimal inner accuracy
[Luh06].

It is possible to switch between different datum definitions without introducing
errors 1if the corresponding parameter transformations are linear [Tri00b]. For this
reason, Triggs et al. [Tri00b]] propose applying a simple and convenient datum def-
inition during estimation and apply an optimal datum definition afterwards, thus,
reducing the number of parameters and the computational cost. We adopt this ap-
proach and apply the minimal datum definition as presented in the example. To
this end, a dedicated reference camera coordinate frame, denoted C", is selected.
All cameras ¢ = 0, ..., C' — 1 are related to the reference camera coordinate frame
via relative pose transformations AT (cf. Section . This means in partic-

!'In the literature often the term gauge fixing is used instead of the geodesic term datum definition.
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Figure 4.1: Schematic representation of the multi-camera system. Several camera
coordinate frames are related to the reference coordinate frame via relative pose
transformations. The image plane of the reference camera is shown in orange.
This color convention is kept throughout the thesis.

ular that a point X° given in the coordinate system of camera C¢ and a point X"
given in the coordinate system of the reference camera are related by

X :ATC}i . .1

The relation between the cameras is depicted in Figure Without loss of gener-
ality, we define » = 0, such that AT" = I4.4. Furthermore, the reference coordi-
nate frame is associated with the current pose of the reference camera, thus moving
with the vehicle. The transformation between two cameras can be computed by
concatenating and inverting pose transformations. For example, the transforma-
tion from camera C' to C? is given by (AT?)"'AT".

Different definitions of the scale are used in this thesis to allow for simple deriva-
tions. For example, for a vehicle moving in the plane parallel to the ground plane
the distance of the reference camera center to the ground is used to define the
scale. Alternatively, the traveled distance of a camera center between two time
steps could also be used. Some sensors, such as calibrated stereo cameras already
provide a scale. In this case only the six degrees of freedom of the reference coor-
dinate frame have to be constrained.

It should be noted that a comparison between calibration results is only possible if
the same datum definition is applied. Gradual drifts, as in the case of the free net
adjustment, have to be compensated [Tr100b].
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4.2 Motion-based Calibration

In the following we examine the estimation of the extrinsic calibration parame-
ters on the basis of the rigidity constraint between cameras for different classes
of motion and, optionally, the ground plane. Four different classes of motion are
analyzed, namely linear motion, circular motion, planar motion, and general (un-
constrained) motion. The classes resemble the typical driving maneuvers straight
driving, turning, and driving on planar ground. General motion takes further ef-
fects such as pitching, rolling, as well as nonplanar translation into account. For
each class of motion, we present an algorithm to compute the observable parame-
ters. This is done for both a multi-camera system of monocular cameras without
overlapping fields of view, as well as a system of multiple cameras that provide
instantaneous depth measurements (e.g. stereo cameras).

As input we assume error free observations of the rotations and translations, and
optionally the ground plane normal and distance of the ground plane to the cam-
era center (camera height). Monocular camera systems suffer from the problem
of scale ambiguity, i.e. the scale of the translation cannot be recovered. For this
reason we further distinguish between pairwise evaluation of consecutive frames,
in which case we use the ground plane as a reference object, and using image
triplets. By using the ground plane, the translation velocity with respect to the
camera height can be recovered, which allows propagating information about rela-
tive velocities. This concept will be explained in more detail in this chapter. Image
triplets allow propagating scale information by means of triangulating and repro-
jecting 3D points as in classical structure from motion approaches [HarO3]].

4.2.1 Hand-Eye Calibration

Originally, hand-eye calibration referred to the estimation of the rigid relative pose
between the coordinate frame of a camera mounted on the gripper of a robot and
the coordinate frame of the gripper itself [Tsa89,|Shi89]. To estimate the transfor-
mation, the gripper performs a known motion while the camera captures a known
calibration object. The gripper motion, camera motion, and the unknown pose
transformation form a circle of temporal and spatial transformations. Applied to a
setup of two rigidly coupled cameras (instead of one camera and the gripper) we
can write the concatenation of transformations in the characteristic form

"AT® = AT°TS. (4.2)

The circle of transformations is depicted in Figure Due to the rigid coupling
of the cameras AT is constant over time. Equation (4.2) plays a fundamental
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Figure 4.2: Hand-eye calibration. The transformations between the poses of a
moving system of two rigidly coupled cameras form the characteristic circle of
spatial and temporal relations.

role in motion-based extrinsic calibration and will be used extensively throughout
this thesis. In contrast to the original problem, the motions of the cameras are not
known and have to be estimated from observations.

Equation (4.2)) can be decomposed into one equation relating rotations and orien-
tations

r AR® = ARRY, 4.3)
and one equation relating the displacement and translation vectors
(R — Isxs) At° +t), — ARt], = 0. 4.4)

In the following we discuss some properties of equations and in
the context of motion-based camera calibration. For pure translational motion
(R}, = Isx3 and due to the rigid coupling R§ = I3.3) equation holds for
any AR°. For R}, # I5.3, equation (4.3) imposes only two constraints on the
orientation matrix. The angle about the rotation axis cannot be recovered. Further-
more, the matrix R} — I3 is singular and has rank two if R} # I3y3 [Tsa88].
Hence, for a known orientation matrix AR° equation (4.4) imposes up to two
constraints on At and leaves one degree of freedom. The displacement along
the rotation axis cannot be recovered. We further note that for pure translational
motion the first term in equation vanishes and the equation holds for any dis-
placements. However, two constraints are imposed on AR due to the alignment
of the translation vectors.
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4.2.2 The Ground Plane

In this thesis, the ground plane serves as a reference object for calibration. If the
ground plane is observed by one or multiple cameras, additional constraints can be
imposed on the parameters of the relative orientations and displacements between
cameras as well as the parameters of the camera motion. In the following we
introduce the mathematical relations between ground plane normals in multiple
images as well as the relations between camera heights induced by the ground
plane.

The relation between the observed ground plane normal in consecutive frames is
given by

nj 1 = Ryng. (4.5)

Likewise, the relation between the normal in the coordinate frame of a camera C¢
and the reference camera is given by

n; = AR nj. (4.6)
The relation between the camera heights in consecutive frames is given by
he1 = Di — (i) €5 4.7)

Correspondingly, the relation between the height of the reference camera and the
height of a camera C¢ is given by

i =hp + (n;)" AtC. (4.8)

Notice that we can compute the height ratio of the camera centers in consecutive
frames, h{,_ ; /h{, using the results of the homography matrix decomposition, R,
n{, and t{ /h{. To this end, we divide equation by hj, and propagate the
ground plane normal using equation (4.5). In a similar manner the height ratio of
the reference camera center and the camera center of C¢, h, /h7., can be computed
from equation (4.8)).

Consequently, equations (4.5) to (4.8) enable propagating information about the
height of camera centers over time and can be used to relate the height of all
camera centers to the height of the reference camera.
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4.2.3 Classes of Motion

In the following we define the different classes of motion that serve as the ba-
sis for our analysis. The motions resemble the typical driving maneuvers straight
driving, turning, and driving on planar ground with and without rolling, pitching,
and deflections. For the definition of planar and circular motion, i.e. turning, we
make use of the instantaneous center of rotation as a means of motion parameter-
ization. The definition of the instantaneous center of rotation can be found in the
Appendix[A.3] The definitions of the four classes of motion listed in the following
are illustrated in Figure

e Linear motion is the translation along a straight line without rotation, Rf =
I3x3, t7, 1 X t§ = O3x1, and [t} ||, = [|t7||,. The translation direction
vectors of each camera are aligned and in consequence, all cameras move
at the same velocity. We further assume the translation to be parallel to the
ground plane (n®)” t{ = 0. Linear motion resembles a straight driving
maneuver and has only one degree of freedom, the velocity (non-uniform
linear motion).

e Circular motion resembles a turning maneuver. It is the motion along the cir-
cumference of a circle, thus the instantaneous center of rotation is constant
over time for each camera, respectively, s; = s°. Furthermore, the rotation
axis direction coincides with the normal of the ground plane r{ = r® = n¢,
and the translation is parallel to the ground plane (n®)7t¢ = 0. Circular mo-
tion has also only one degree of freedom, the angular velocity (non-uniform
circular motion).

e Planar motion is the translation in the plane parallel to the ground plane and
the rotation about the ground plane normal (n€)7t¢ = 0, and r§ = r¢ = n°.
In contrast to circular motion s, is not constant over time. Planar motion has
three degrees of freedom, namely the two parameters of the instantaneous
center of rotation in the plane and the angular velocity.

e General motion is unconstrained and has the full six degrees of freedom.

In this thesis we do not make use of the constraints imposed by the non-holonomic
motion of vehicles that adhere to the Ackermann steering principle. This type
of motion would allow to describe planar motion using only two parameters but
requires estimating the center and orientation of the rear axle.
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General motion

Figure 4.3: Schematic illustration of the four classes of motion that serve as the
basis for our analysis. The classes are linear motion (translation along a straight
line), circular motion (along the circumference of a circle), planar motion (motion
in a plane), and unconstrained, general, motion.
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4.2.4 Computation of Extrinsic Calibration Parameters

In the following we present the derivation of the observable parameters for each
class of motion defined in Section[4.2.3] The derivations are based on the rigidity
constraint between cameras (Section and optionally the ground plane (Sec-
tion [4.2.2). In addition, we distinguish between two different sensor outputs, a
system of monocular cameras and a system of cameras that provide instantaneous
depth measurements, e.g. stereo cameras.

Monocular systems suffer in general from the problem of scale ambiguity. Herein
we tackle this problem by using either the ground plane as a reference object, an
approach that uses at least image triplets, e.g. [NisO4b], or both. Next, we elabo-
rate on the sensors and employed approaches and define the scale for datum defini-
tion for each of the three cases. Without loss of generality, we assume consecutive
poses to be used starting at time index k.

e Pairwise evaluation of consecutive images in monocular sequences renders
the propagation of velocity information impossible. Although it is in gen-
eral possible to infer some information about the extrinsic calibration pa-
rameters, we restrict our analysis to the case of simultaneous observation of
the ground plane. In this case the decomposition of the homography matrix
(equation ) yields the scaled translation t{, /h{, which serves as inputs.
It was shown in Section how relative velocity and camera height in-
formation can be propagated over time and between cameras by using the
constraints imposed by the ground plane. Thus, for datum definition we de-
fine the scale by the camera height of the first camera pose of the reference
camera hj..

e If image triplets are used, 3D points can be triangulated from the first two
cameras and then be used in the third camera to estimate the relative pose, a
process called resectioning. This is depicted on the left hand side of Figure
Since we assume error free inputs we make no distinction between vi-
sual odometry approaches [Scall} NisO4a] and classical bundle adjustment
[Tri00b]. It is common to define the scale for each camera such that the dis-
tance between first two camera poses is equal to one, t§/A\° = 1, where A is
a camera dependent scale factor. For datum definition we define the scale by
the translation distance between the first two camera poses of the reference
camera A". Notice the resemblance in the datum definition between image
triplets and pairwise evaluation of images. If the ground plane is observed,
we adopt the datum definition of pairwise evaluation of consecutive frames.

e When using sensors that provide instantaneous depth measurements it is
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Figure 4.4: A 3D point reconstructed from image triplets (left) and a moving
stereo camera with a triangulated 3D point (right). The translation distance be-
tween the first two frames is A°. The point triangulated from the corresponding
cameras is used to propagate the scale information to the third camera pose by,
e.g., resectioning. The stereo camera provides instantaneous depth measurements.
Triangulated 3D points are used for motion estimation.

possible to directly recover the translation t; and the correct height 7. In
this case no scale has to be defined for datum definition as it is provided
by the measurements. This is depicted on the right hand side of Figure
Note that we treat a stereo camera as a single camera. The coordinate frame
of the camera is associated with either of the stereo cameras.

Depending on the class of motion, sensor, and employed motion estimation ap-
proach, not all parameters can be observed. To express ambiguities we use the
parameters 7 and w. The parameter 7 denotes an unobservable scale factor and w
denotes an unobservable angle.

In the following, only two-camera systems (C' = 2) are considered. The extension
to multiple cameras is straightforward. For example, a three-camera system can be
treated as two separate two-camera systems that share the reference camera. Fur-
thermore, while incorporating multiple cameras might improve the robustness of
the estimation in case of noisy observation, there is no difference in the cases ex-
amined here. In addition to the observability of parameters, the number of required
consecutive poses is also of particular interest [Tsa89, Esq07]. In general, a low
number of required consecutive poses is favorable. The results of the derivations
alongside with the minimum number of required poses are presented concisely in
Table Next we present the derivations ordered by classes of motion.
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Linear Motion

Linear motion is the motion along a straight line. As there is no rotation, equation
(4.3) holds for any choice of AR, and equation (4.4) simplifies to

r = AR, (4.9)

which imposes two constraints on the relative orientation. The rotation angle about
the translation direction, however, cannot be observed. Thus, equation holds
for any relative camera orientation of the form th AR, where th w 1s arota-
tion about the (non-unit) rotation axis t; with angle w. The relative displacement
cannot be recovered.

If the ground plane is observed, equation (4.6)) can be employed. Due to the trans-
lational motion the observations of the plane normals are time independent

n" = ARn°. (4.10)

By definition, the plane normal n° is orthogonal to the translation vectors tj.
Combined, equations and provide enough constraints to determine
the relative orientation. To this end, we compose two auxiliary rotation matrices
by constructing orthonormal right handed bases from the translation vectors and
observed plane normals, th’m and th,nc. To construct the matrices we use
Gram-Schmidt orthonormalization. This is explained in more detail in Appendix
A.1l The two rotation matrices Rtgnr and th,nc represent the transformations
from a translation vector and normal vector aligned coordinate frame into the cam-
era coordinate frames. The relative orientation is then given by

AR = Ry, ,HTRZ;C ne- (4.11)

Note that only the translation direction is of interest here. In addition to the rela-
tive orientation, the relative height ratio h°/h" can be determined from the obser-
vations of the scaled translations tj, /h° by enforcing ||t} |, = ||t%||,. The correct
camera heights can be measured directly if the sensor provides instantaneous depth
measurements. To recover the observable parameters, only two consecutive poses
are required.

Circular Motion

Circular motion is the motion along the circumference of a circle. The rotation
axis directions of all cameras are aligned in the world and are time independent,
yielding

I~ AR (4.12)
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Equation holds for any relative orientation R+ , AR, thus the orientation
about r" remains ambiguous. In the case of circular motion, the observations of
the ground plane normals do not provide additional information as they are aligned
with the rotation axis directions.

If the translation velocities ||t are known, one can determine the circle radii

oIl

2 sin (sz )

(4.13)

where 6}, is the (camera independent) angular velocity. If only scaled translations
are observed, one can determine the radius to height, 7¢/h¢, or radius to scale
factor ¢/ ratio. As in the case of linear motion, the observable parameters can
be recovered from only two consecutive poses.

Planar Motion

Planar motion differs from circular motion in that the instantaneous center of rota-
tion is time dependent. We make use of the property to compute the relative orien-
tation between cameras by exploiting that the direction of the vectors sj. | —s, are
aligned (cf. Figure . Using the displacements Asj, = s}, ; — s, we construct
auxiliary rotations matrices from Asj and r¢ using Gram-Schmidt orthonormal-
ization, R As? re- The relative orientations are then given by

AR’ = Rasyrr Rage e (4.14)

Note that As?, and the rotation axis are orthogonal and only the directions of As{
are of interest. If at least image triplets or the ground plane are used one obtains

Asf /A or Asf /h°, respectively. Next, we derive the camera displacements.
We divide equation (4.4) by A"which leads to

AtC tC A€ t7
R, — 1 — AR¢-E £k _—0 4.15
( 3x3) G e T ; (4.15)

such that all translations appear normalized. We stack the equations of two con-
secutive motions and rewrite the result in form of a linear system of equations

R; — Lz  —ARty/A | (At [ /N @16
b~ T —ARE /] | /X AT '

-~

=:A

c
k
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For planar motion the matrices A} are rank-deficient and do not constrain the
nonplanar parts of the displacement vectors. In other words, the linear equation
systems hold for any scaled displacement vectors of the form At“/\" +
7°r", with 7¢ € R. Without using the ground plane we cannot determine the
nonplanar part of the displacements, At . The planar part Atﬁ can be computed

by augmenting equation (4.16) by
0=(")" At = (") (At] + AtS), (4.17)

thus enforcing At = 0.
If the ground plane is used we can substitute A and A" for A° and A". The nonpla-
nar part of the camera displacements can then be computed directly from

AtS /R" =n" (h°/h" — 1) (4.18)

(cf. equation (4.8)), where h¢/h" is obtained from the linear equation system
(4.16).

In case of planar motion all parameters can be recovered if the ground plane is
observed. At least three consecutive poses or correspondingly two consecutive
motions are required, respectively. This comes at no surprise as using only one
motion is equivalent to the case of circular motion. The special case of combining
linear and circular motion is not covered.

General Motion

General motion has six degrees of freedom and is unconstrained. Metric calibra-
tion is possible in all considered cases. The relative orientations can be determined
by constructing auxiliary rotation matrices from the time dependent rotation axis
directions

AR’ =Rup oy Rie e (4.19)
The camera displacement can be determined by solving the linear equation sys-
tem (4.16). The matrix A§ is not rank-deficient in the case of general motion.
This approach requires two motions or correspondingly three consecutive poses,
respectively. However, if the ground plane is observed only two consecutive poses
or one motion is required, respectively.
The relative camera orientations can be determined from the ground plane normals
and rotation axis directions as

AR’ =Ry nr Rl . (4.20)
k' k
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For the derivation of the camera displacements we substitute /7 and hj for A° and
A" in equation (4.13), respectively, rendering the equation time dependent. We
then use equation (4.8) to substitute k¢ /h% by 1 + (n})T At®/h§, which yields,
after rearranging

" At° et
R — Loxs — AR (nf)” - = AR £ -k
_ 'k k k

4.21)

The matrix B has in general full rank. Hence, At°/\" can be computed by
solving the linear equation system.

4.2.5 Summary

We have derived algorithms to determine the observable extrinsic calibration pa-
rameters for each of four different classes of motion and different sensor outputs
as well as different approaches for motion estimation. The results are presented
concisely in Table We observe that neither pure translation nor pure circular
motion provide enough information to recover the extrinsic calibration, indepen-
dent of the algorithm input. For planar motion, the ground plane is required as a
reference object to enable metric calibration. For general motion, metric calibra-
tion is always possible in general. Interestingly, by using the ground plane, only
two consecutive poses are required. When using the ground plane, image triplets
do not provide additional information. However, when using noisy observations,
this approach is likely to outperform pairwise evaluation of images.
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4.3 Calibration from Overlapping Fields of View

In the remainder of this chapter we elaborate on the extrinsic calibration of a multi-
camera system using pairwise overlapping fields of view.

If the fields of view of two cameras overlap and corresponding image points can
be established the relative orientation and displacement direction, comprised by
the essential matrix (cf. Section[3.3.2)), can be estimated. However, the scale of
the displacement, i.e. the baseline, cannot be recovered. In a multi-camera system
several overlapping fields of view may exist. If certain conditions are met, met-
ric calibration based on the epipolar constraint is possible. In the following these
conditions are elucidated. To this end, the multi-camera system and the relative
pose transformations are represented as a graph. We make use of established defi-
nitions of graph theory to formulate two necessary conditions which, if met, allow
to apply a matrix rank test which yields a binary measure of the observability of
the (metric) extrinsic calibration.

Graphs are commonly used in computer vision as a means to model mathemat-
ical problems (e.g. [Tri00al]) and in particular in mutli-camera calibration (e.g.
[BajO8]). We represent the mutli-camera system as an undirected simple graph
G = (V,€) [Reil2], where a camera is represented by a vertex ¢ € V, where V is
the set of vertices. The set of edges is £. If two cameras have overlapping fields
of view and the relative orientation and displacement direction can be estimated
we call the cameras adjacent and they are joined by an edge. In the following only
multi-camera systems with more than two cameras are considered (C' > 2). A two
camera system, as stated above, can be calibrated metrically if the essential matrix
can be estimated. This case can be regarded as a special, trivial case.

A multi-camera system can be calibrated metrically from pairwise overlapping
fields of view only if the two following necessary conditions hold.

e The graph has to be connected, i.e. any two cameras are linked by a sequence
of pairwise adjacent cameras.

e All edges have to be contained in at least one simple cycle, i.e. a sequence of
adjacent vertices starting and ending at the same vertex without repetitions
of vertices and edges (except for the first and last vertex).

The first condition ensures that the relative orientation between all cameras can
be derived. If the graph is connected, the relative orientation between any two
cameras c and d can be computed by following the pat from camera C¢ to C¢
and concatenating the relative orientation matrices corresponding to the traversed

2We define a path as the ordered sequence of edges.



4.3, CALIBRATION FROM OVERLAPPING FIELDS OF VIEW 47

Figure 4.5: Four-camera system with overlapping fields of view (left) and corre-
sponding graph representation G (right). To illustrate the fields of view of fisheye
cameras image data is projected onto spherical sectors. The boundaries of the
overlapping fields of view are indicated by blue patches on the ground plane and
grey planes elsewhere. The corresponding graph representation is shown on the
right. The orange circle represents the reference camera (r = 0) and blue circles
represent the remaining cameras. The edges indicate overlapping fields of view
from which the relative orientation and displacement direction can be estimated,
respectively.

edges. In particular, the relative orientation with respect to the reference camera,
ARS, c € {0,...,C — 1}, can be computed.

The concatenation of relative poses along a circular path in the graph has to yield
an identity matrix. The second conditions ensures that this constraint can be im-
posed on all edges. Figure illustrates the overlapping fields of view and the
corresponding graph representation of the four-camera system used for experi-
mental evaluation. The graph shown in the figure is a cycle graph and therefore
meets both conditions. However, if all cameras centers were aligned the baselines
could not be recovere To identify such configurations we apply a matrix rank
test.

To this end, first the relative displacement directions are computed and transformed
into the reference coordinate frame. For example, the relative displacement direc-
tion from camera C' to camera C? in the reference coordinate frame is given by

30nly pairwise camera constraints are considered.
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(At? — At') /| At? — At'||,. The individual displacements At® with respect
to the reference camera are unknown, but the relative displacement directions can
be computed directly using the (known) relative orientation and decomposition of
the essential matrix.

Next, for each simple cycle in the graph, a matrix is constructed by appending the
displacement direction vectors corresponding to the edges in the cycle. Without
loss of generality, the signs of the displacement directions vectors are chosen such
that they are always pointing at the (camera) vertex with the higher index. The
matrices are then stacked together such that each column corresponds to one edge.
Direction vectors of edges not contained in simple cycle are set to zero. The multi-
camera system can be calibrated metrically if and only if the rank of the matrix is
equal to the number of edges minus one. For the example in Figure we form
the homogeneous system of equations

At! At —At! At® — At? At by
=0 ; 4.22
[AtH], 7 [[AtZ—At]], [[At3—At2]],’ [[At3]], 3x1 ( )

The matrix is of size 3 X 4 and contains only one simple cycle. Recall that
At" = 0341. The four-camera system can thus be calibrated metrically if the
rank of the matrix is three. By enforcing AY A = 1 we obtain the non-trivial so-
lution of the equation system which yields the vector of baselines A. Instead of
using all simple cycles in a graph it is sufficient to only consider the elements of a
cycle basis.

The matrix rank test can only be applied to error free data and is thus of little
relevance in practice. However, it can be used as a means to identify singular con-
figurations. E.g. the matrix is of rank two if the four camera centers are coplanar
and of rank one if the camera centers are collinear. Furthermore, a cycle graph
of length five cannot be calibrated metrically since the corresponding matrix can
have rank three at most.

The camera centers of the system used in the experimental evaluation are not
coplanar. An offline extrinsic calibration approach based on overlapping fields

of view using a similar system for evaluation is presented in our previous work
[Knol4a].
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S [Establishing Point
Correspondences

Establishing image point correspondences is fundamental to our calibration ap-
proach. The correspondences are used to estimate the relative pose between ad-
jacent cameras, camera motion, and the ground plane. Large spatial camera dis-
placements accompanied by severe lens distortions render the detection of putative
correspondences difficult. This holds in particular in close proximity, e.g. within
the order of magnitude of the baseline. Correspondences in this range are of par-
ticular interest to calibration as they allow for a more accurate estimation of the
camera displacement.

Therefore, we propose warping the images prior to extracting feature correspon-
dences to establish image similarity. To this end, we approximate the scene by
the ground plane in close proximity and infinitely distant objects elsewhere. This
approach is applied to both, cameras that are either offset spatially as in a stereo
setup or both spatially and temporarily as it is the case for a moving monocular
camera. This allows treating both cases uniformly. Earlier versions of the work
presented in this chapter have been published in [Knol4a] and [Knol4b].

5.1 Wide Baseline Matching

The literature offers a large variety of different methods to establish image point
correspondences. In the following we give a brief overview and highlight work
relevant to the problem of wide baseline matching. Typically, the task of establish-
ing image correspondences is divided into three steps. First, distinctive points or
regions are detected in the image, e.g. corners or blobs. A descriptor is then used
to capture local image properties and the information is stored in a feature vector.
Finally, the feature vectors are matched across images to establish putative corre-
spondences. The methods are commonly classified by their invariance with respect
to different image transformations, such as spatial or range transformations, and
their computational complexity [He1l2, MikO35].

Invariance against certain spatial transformations can be achieved by normal-
izing image regions prior to extracting the feature vector. The transformation
normalizing the image region can, e.g., be derived from an analysis of the sec-
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Configuration Treetop Automobile Marking

Figure 5.1: Two images captured simultaneously from a right and rear-facing camera mounted on our test vehicle are
shown (top). The three orange and blue squares indicate the position of the magnified corresponding patches (treetop, car,
marking). The configuration of the cameras is shown in the bottom left.
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ond moment matrix of intensity gradients from the dominant gradient direction
[Mik05, [Low99]. Invariance of the feature descriptor is not required.

A different approach was presented by Morel and Yu [MorQ9]. Instead of nor-
malizing image regions, multiple different viewpoints are simulated by distort-
ing the images accordingly. All distorted image regions are then compared us-
ing the scale invariant feature transform (SIFT) [Low99]. The distortion caused
by the simulated viewpoints is approximated by an affine transformation. The
method is thus termed affine SIFT (ASIFT). Through various techniques it is pos-
sible to achieve invariance to shifts (e.g. [Ros06]), Euclidean transformations (e.g.
[Rub11]), similarity transformations (e.g. [Low99,|Leul 1])), affine transformations
(e.g. [MorQ9]), and projective transformations [Bro02] to some extent.

In addition, feature detectors and descriptors have been proposed that account for
the geometric image distortions introduced by wide-angle lenses (e.g. [Urbl6al]).
However, these algorithms do consider the perspective distortions caused by large
viewpoint variations.

Figure[5.T|exemplary shows two images captured simultaneously from a right and
rear-facing camera mounted on our test vehicle. Three magnified corresponding
image patches are shown. While the treetop is similar in appearance, the ground
in front of the parked automobile is skewed and the parking spot markings are sig-
nificantly distorted.

To quantify the image distortion, we employ the metric proposed by Morel and Yu
[MorQ9]. The geometric image distortions are approximated by an affine transfor-
mation. The transition tilt corresponds to the ratio of eigenvalues of the upper left
two by two affine transformation matrix. Geometrically, it corresponds to change
of the aspect ratio of a rotated window. In the example shown in Figure the
transition tile is approximately 2.4 below the parked vehicle and 7 on the parking
spot markin

ASIFT has been shown to work under severe distortions. Applying it to this ex-
ample, we were able to establish some correspondences in the most distinctive
regions such as on the line markings, but the method failed in case of their ab-
sence. For this reason, and due to the high complexity of ASIFT we approach
the problem differently. We use estimates of the current camera configuration and
ground plane to warp images in order to compensate image distortions between
two views. To this end, we apply a coarse approximation of the scene. This allows
using feature detectors and descriptors which are not invariant to geometric dis-
tortions but have a significantly lower computational complexity. The employed
algorithms are the features from accelerated segment test (FAST) feature detector
by Rosten and Drummond [Ros06] and the binary robust independent elementary
features (BRIEF) feature descriptor by Calonder et al. [Cal10].

'Ground plane and camera poses are known from a reference calibration.
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5.2 Scene Geometry Approximation

To compensate for the strong distortions between corresponding image regions our
goal is to find an image mapping that allows warping one image into the other such
that these regions coincide. Warping is applied prior to the feature detection and
extraction.

In unobstructed image regions the mapping relating both images is defined by the
camera configuration, the geometric imaging characteristics of the camera, and the
3D scene geometry. The scene geometry is not known a-priori and its estimation is
not within the scope of this thesis. Hence, we approximate the scene by geometric
primitives. This approach was proposed for the ground plane in the context of
stereo vision by Burt et al. [Bur95], where equi-disparity on the road is obtained
by applying a linear transformation to a stereo rectified image pair [Har03].

We adopt this concept and apply it to spatially as well as spatially and temporarily
offset cameras. Objects above the ground plane are assumed to be infinitely far
away. Thus, the scene is approximated by the ground plane in close proximity and
infinitely distant objects elsewhere. Stereo rectification is not applied.

In the following we derive the mappings for image warping. The notation differs
slightly from the previous chapters as spatially and temporarily offset cameras are
treated in a unified way. For this reason, time indices were omitted. However, the
mappings are time dependent in general.

Let the relative pose transformation AT between two cameras, the ground plane
normal n in the coordinate system of the first camera, and the corresponding height
h be given. The transformation of a 3D point X from the first into the second
camera coordinate system is then given by X’ = ARX + At (cf. Chapter [3).
If the point is located on the ground plane the relation between the corresponding
rays x < x; 1s given by the homography

Atn”
X, = (AR _oon ) x = Hx. (5.1)
h

The mapping relating the image points also has to take the nonlinear projection
onto the image plane into account. We write the image to image mapping as u, =
kHr™ () =%, (u)

For infinitely distant objects we apply an infinite homography [HarO3], i.e. for
h — oo the second term in equation (5.1) vanishes. The transformation simplifies
to a rotation

x.. = ARx, (5.2)

and the corresponding mapping between the image points is given by ul =
k (AR k! (u)) = ®__ (u). Figure|5.2|illustrates the two mappings.

oo
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Figure 5.2: Illustration of the mappings ¥, and W .. The original camera setup is
shown in the upper left corner. The image captured by the first camera (orange) is
warped into the image captured by the second camera (blue). When applying the
ground plane induced mapping, the warped image appears as being captured from
the viewpoint of the second camera. The mapping via the infinite homography
corresponds to a rotation of the camera accompanied by image distortions due to
the different intrinsic parameters of the cameras (right).

5.3 Image Resampling and Smoothing

Image resampling is applied to warp the image I captured by the first camera into
the image I’ captured by the second camera. Without loss of generality, we define
the first image to be the source image and the second image to be the target image.
Image resampling requires filtering and subsequent sampling. Ideally, filtering
and sampling would not introduce aliasing or blur. However, magnified image re-
gions are inevitably missing higher spatial frequency content. For this reason, we
propose applying an appropriate smoothing filter to the target image so that both
images exhibit the same local smoothness. In the remainder of this section, we
will present the resampling filter and appropriate smoothing filter.

To resample the image, we apply the method published by Heckbert [Hec89]
which is summarized briefly in the following. Ideal resampling consists of the
following four stages [Smi83]:

1. The continuous image is reconstructed using image interpolation.
2. The result is (forward) warped according to the mapping.
3. Pre-filtering is applied to band-limit the signal.

4. The output is sampled at integer positions.

It was shown in [Hec89] that these four stages can be rearranged and combined
into a single filter that works on sampled positions only. To this end, the sampling
grid of the target image is warped backwards into the source domain, yielding the



54 5. ESTABLISHING POINT CORRESPONDENCES

resampling grid. The resampling grid does not coincide with the sampling grid of
the source image in general, thus interpolation is required. Instead of applying the
pre-filter to the warped image, the filter is also warped backwards into the source
domain. The interpolation filter and warped pre-filter are then combined into a
single filter. This step works for linear filters such as Gaussian filters which are
closed under convolution. The resulting filter is space variant in general due to the
space variant mapping.

In many applications, Gaussian filters are unpopular as they introduce significant
blur [Szel0]. Greisen et al. [Grel2] present an approach based on the work of
Heckbert that reduces the blurring by careful adjustment of the filter parameters.
However, it was shown by Calonder et al. [Call0Q] that smoothing prior to feature
extraction yields better results. Furthermore, the rapidly diminishing tails of the
Gaussian function allow for truncation without introducing significant aliasing.
For these reasons, we employ Gaussian filters for reconstruction and pre-filtering.
The reconstruction and pre-filter have identical covariance matrices 3 [Hec89]. A
point u’ on the sampling grid in the target image and the corresponding point u,.
on the resampling grid in the source image are related by u’ = ¥ (u,.) (cf. section
. The mapping is then linearized around u,, ¥ (u,g + Au,) ~ JAu, +
W (u,), where J is the Jacobian matrix evaluated at u,.q. The covariance matrix
of the Gaussian filter applied to the source image is then

> =X+J1'23°T (5.3)

1.e. the convolution of the reconstruction filter and inversely transformed pre-filter.
We transform the covariance matrix into the target domain

=323 =12 + %, (5.4)

to obtain the corresponding smoothing filter applied to image I’. Since both filters
are applied before feature extraction and matching this processing step is termed
pre-warping and smoothing. Figure[5.3|shows the pre-warped and smoothed image
regions corresponding to Figure Since the two mappings only coincide for
points at infinity, a distinctive image discontinuity can be observed at the boundary
between the pre-warped regions. Therefore, the parameters are chosen such that
the regions overlap during processing. Figure shows a close-up of another
scene. Note that both images are significantly blurred but appear similar in regions
where the ground plane assumption holds.
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Figure 5.3: An exemplary result of the pre-warping and smoothing step is shown.
The smoothed image is shown on blue and the pre-warped image is shown in or-
ange. The applied mapping is the infinite homography in the upper, and the ground
plane induced homography in the lower image part, respectively. The data was
captured during a turning maneuver. Due to the rolling of the vehicle, image re-
gions on the ground plane do not coincide perfectly. Distant features (e.g. clouds)
coincide.

S

Figure 5.4: Another exemplary result of the image pre-warping and smoothing
step is shown. The left two images show the corresponding cut-outs of a cross-
walk captured by a front and right-facing camera. The right two images show the
smoothed and pre-warped image, respectively. Note that structures off the ground
plane like the curbstones do not appear similar due to the violation of the ground
plane assumption.
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6 Robust Homography Estimation

In this chapter, we present a robust method for estimating the frame-to-frame ho-
mography induced by the ground plane. The ground plane plays a fundamental
role for the calibration approach presented in this thesis. On the one hand, it is
used to recover the scale in successive frames and to constrain the motion model,
on the other hand it serves as a reference object observed by all cameras simultane-
ously (Chapter[4.2). Furthermore, we employ the ground plane induced homogra-
phy to establish image correspondences in successive frames and between cameras
(Chapter|5). The homography matrix comprises motion as well as ground plane in-
formation. Still, homography estimation is challenging, as measurements are often
not only corrupted by sparse gross outliers, but might also contain other structures,
which are inconsistent with the ground plane, such as curbstones and sidewalks.
Several well studied algorithms regarding the identification of sparse gross out-
liers have been proposed in the past, with random sample consensus (RANSAC)
[Fis87,Har03] being the most prominent one. However, identifying structural out-
liers remains a challenging problem due the outliers’ inner coherence which can
cause strong systematic errors [Ste97]. In homography and plane estimation struc-
tural outliers often cause plane fits that do not correspond to any physical plane in
the scene. This becomes particularly challenging in the presence of planes with
similar parameters, e.g. the road plane and a slightly elevated sidewalk plane in
a street. To circumvent this problem, approaches estimating multiple structures
simultaneously can be employed (e.g. [CheOl, Tol08]). The high complexity of
these algorithms, attributed to the fact that the number of structures, structure pa-
rameters, and noise levels have to be estimated and adjusted concurrently, makes
them impractical for applications in the context of real-time applications. Under
the assumption that information about the structure of interest is provided initially,
the task can be simplified to robust tracking. Several approaches adopting this
concept have been proposed hitherto [Kla07, Ste00, |Arr10l YamO06, Lou06]. Yet,
none of them has been designed to work in scenarios where the observed scene is
dominated by structural outliers, a situation typically encountered when attaching
cameras to the side of a vehicle.

The method presented in this chapter relies on an initial estimate of the motion
and ground plane parameters. From a statistical analysis on feature point corre-
spondences local adaptive thresholds are derived that comply with a predefined
expected false positive rate criterion. To this end, the positions of feature points in
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successive view are predicted and compared to hypothetical positions of the fea-
ture points induced by planes parallel to the ground plane. The false positive rate
refers to the probability of incorrectly identifying the hypothetical feature point on
the virtual plane as an inlier.

In the following the planar parallax decomposition which will be used throughout
this chapter is introduced. Then, the derivation of the threshold values and the ac-
ceptance region is presented. Finally, we show how the risk of rejecting inliers can
be mitigated by employing a sequential processing scheme, and how this scheme
can be embedded into a Kalman filter. Results are shown for a sequence captured
in the inner city, and compared to a RANSAC-based approach.

The method presented here differs from the preliminary work [Knol4a] by incor-
porating the uncertainty of the motion and ground plane prediction and by consid-
ering non-isotropic Gaussian noise.

6.1 Planar Parallax Decomposition

We can interpret the displacement of positions of corresponding features points in
successive camera views as a motion field in the image. For a static scene and
moving camera, the motion field can be decomposed into the motion field of an
arbitrary physical or virtual plane and a residual parallax field [Kum94, Saw94].
The motion field induced by a plane can be described by a homography. The
residual (planar) parallax field is an epipolar field, i.e. all vectors point towards the
epipol In the following this is explained in more detail.

We consider the situation depicted in Figure A ray x originating from the
first camera center intersects an object in X,,, and the ground plane in X,. The
corresponding rays in the second view are x/, and x/ , respectively. If the reference
plane coincides with the ground plane, a pair of corresponding rays x < x’g 1s
related by the ground plane induced homography (cf. Chapter|3)

t T
x, = H;x = (Rk — k;k ) X, (6.1)
k
whereas the relation x <> x/ is given by
~ t,n, T
Xg = Hk:X = (Rk — hkk—l——kAh> X, (62)

with Ah = nf (X, — X,,) being the height difference with respect to the ground
plane. It follows that every static 3D point X can be considered as being trans-
formed into the coordinate system of the successive view by a homography using

'Or from the epipole outwards depending on the direction of the camera motion.
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Ah

Figure 6.1: Schematic illustration of the considered example. A point in the first
view is associated with two points in the second view, on an object, and on the
ground plane.

a virtual plane containing X, which is parallel to the ground plane. The transfor-
mation between x/ and x/, is given by

g
~ t, nl Ah
/ — H H—]_ / — I k k41 /. 6.3
Xo ke Xg <3><3+ Py h, + Ah Xy (6.3)

The complete derivation is given in Appendix It can easily be verified from
equation (6.3)) that the planar parallax is an epipolar field, as x/, is a linear combi-

nation of x’g and t,, and the image of t,, is the epipole [HarO3]. The planar parallax

vector in the image is given by d = k (x,) —k (x[,) = uj, —u/, where & () is the

projection onto the image plane. Figure exemplarily shows a sparse parallax
field superimposed on an image of a backward-facing camera. While planar par-
allax vectors on the road surface are small and mainly caused by noise corruption,
planar parallax vectors on the sidewalk (left) show a predominant direction and
length.

6.2 Local Adaptive Thresholds

Planar parallax gives strong cues towards the identification of points to the ground
plane. However, this only holds in close proximity to the camera. In the distance
planar parallax vanishes (e.g. see center region in Figure [6.2). Moreover, ob-
tained parallax vectors are subject to noise and a reliable ground plane and motion
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Figure 6.2: Planar parallax vectors superimposed on an image of a backward-
facing camera. Feature points are shown in blue. The planar parallax with respect
to the estimated ground plane is shown in orange. Notice the non-vanishing par-
allax on the left sidewalk. For better visualization, some feature mismatches have
been removed. To visualize the epipolar field property, epipolar lines have been
superimposed in red. Predicted feature positions above the horizon are caused by
plane-ray intersections corresponding to antipodal rays.

prediction might not always be given. For this reason, acceptance regions and as-
sociated thresholds for inlier identification should adapt over time with respect to
the prediction uncertainty and be local to account for the expected parallax in the
respective image region. In the following we present a statistical analysis of the
expected position of corresponding features in the image and the expected parallax
for corresponding features not located on the ground plane. From this we derive
local adaptive thresholds that are based on a false positive criterion.

We assume a given prediction of the current motion and ground plane parameters
E along with the associated covariance matrix P, a pair of corresponding image
points in successive images u <> u’, and the associated position covariance matrix
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P

u

Figure 6.3: Prediction of single feature position under ground plane hypothesis,
uy, (blue), and object hypothesis, U, (orange, cf. Figure|6.1). The parallax vector
is given by d. Ellipsoids indicate isocontours of the corresponding probability
density functions.

3.. The predicted image position in the successive view is then given by
@ =h <u,2) , 6.4)

assuming the corresponding 3D point to be located on the ground plane. The
associated uncertainty is a superposition of the feature position uncertainty and
the propagated prediction uncertaint We linearize the ground plane induced
projection at the current estimate and apply linear error propagation [HarO3]]

oh (u, §)

T
& oh (u,§)
BT EE ( 08 sZ) v ( 08 sZ) . ¢

Similarly, the predicted position u/, and associated covariance matrix f]o of a point
with height difference Ah compared to the ground can be computed using equa-
tion (6.2). The predicted positions and uncertainties are illustrated in Figure
The most challenging structural outliers occurring in automotive applications are
planes with similar parameters as the ground plane such as sidewalks. Thus, we
assume that u/ is located on a slightly elevated virtual parallel plane (a virtual
sidewalk). A pair of image correspondences is then identified as an inlier if it
complies with the prediction i, on the one hand, and is unlikely to correspond to
a 3D point on the virtual parallel plane, on the other hand. A feature point u’ in
the successive image is then accepted as inlier if it is in the set

My ={u' | (o - &) 8,7 (o —w) < p}, (6.6)

2We assume that the errors in feature matching only corrupt the position of the corresponding feature
in the successive image.
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i.e. the set of points for which the squared Mahalanobis distance between u’ and
ﬁfq is smaller than or equal to a threshold p. The expected false positive rate v with
regard to U, on the virtual parallel plane is given by the integral of the Gaussian

density function p (p; u., X,) over the set of accepted correspondences (positives)
V= /p(p;ﬁﬁ,,Eo) dp. (6.7)

Here, p (p;u), EA]O) is the probability density at p. Note that the expected false
positive rate defined here only refers to the specific case where samples drawn from
the distribution corresponding to u’ fall inside the acceptance region. Equation
yields an implicit definition of p. In order to derive an explicit expression
we make simplifying assumptions. For small parallax vectors it is reasonable to
assume that the covariance matrices 3, and 3, do not differ significantly. Thus

we can replace f]g and f]o by 3. The implicit definition of p in equation (6.7
can then be transformed into an explicit one. To this end, we apply an affine
transformation which maps p (p; g, ) = p(p; 0,I2x2) and U], — (7, 0)7, ie.
a point on the w-axis. The corresponding transformed random process is given
by the two-vector (U, V)T of independent standard normal distributed random
variables with mean (v,0)T. The sum of squares is distributed according to the
noncentral y? distribution with two degrees of freedom [Abr64]|

U?+V? ~ f(p;2,7), (6.8)

and noncentrality coefficient

~—T1~

v=dT ¥ d. (6.9)

Note that the noncentrality coefficient coincides with the u-value of the trans-
formation of u/. The graph of the corresponding probability density function
f(p;2,7) is shown on the left side of Figure for different noncentrality co-
efficients. The threshold is then computed from the inverse cumulative noncentral
x? distribution

p=F"1v;2,7). (6.10)

The graph of the inverse cumulative noncentral y? distribution for different
noncentrality coefficients is shown on the right side of Figure In summary,
to determine the threshold for an image point u, the positions and uncertainties
in the successive view for a corresponding 3D point on the ground plane and on
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Figure 6.4: Graph of the probability density function of the noncentral y? distribu-
tion (left) and inverse cumulative noncentral x? distribution (right) for increasing
noncentrality coefficients.

the virtual plane are predicted. From this, the noncentrality coefficient (equation
) is computed and finally the inverse cumulative noncentral x? distribution
is evaluated. Figure shows a threshold image for two cameras mounted on
a vehicle facing to the right and backward, respectively. Motion and ground
plane estimates are provided by a Kalman filter. It can be seen that high and
low thresholds form regions with smooth transitions between them. Around the
epipoles and the horizon the thresholds are small. Non-vanishing thresholds above
the horizon are caused by plane-ray intersections of antipodal rays and can be
disregarded.

A major drawback of the approach presented so far is that it yields non-vanishing
thresholds for vanishing parallax. In case that the predicted parallax is zero,
d = 0, the predicted image positions U and Uy, as well as the associated
probability density distributions coincide (cf. Figure [6.3). For any non-zero
false positive rate, v # 0, equation then yields a non-zero threshold value.
This implies the probability of accepting an outlier is equal to the probability of
accepting an inlier in the special case of zero parallax. This undesired property can
be avoided by neglecting feature correspondences with small predicted parallax.

6.3 Sequential Testing and Updating

In the previous section local adaptive thresholds have been derived. In the fol-
lowing we show how presorting feature point correspondences by their associated
threshold values in combination with a sequential processing scheme improve the
robustness of our approach.

The predicted true positive rate 7, 1.e. the probability of correctly identifying an
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Figure 6.5: Two example images and corresponding threshold images for a camera
facing to the right (top) and backward (bottom). Blue color intensity indicates
threshold values. The horizon and epipole are depicted by an orange line and
point, respectively. See text for details on the color scheme.

inlier, can be computed from the threshold p as
n=F(p;2,0), 6.11)

i.e. the noncentral x? distribution with v = 0 (centered x? distribution). As F'(-)
1s monotonically increasing, feature point correspondences with associated high
threshold are more likely to be correctly identified as inliers. This property can be
exploited by first testing point correspondences with high thresholds and, if these
are identified as inliers, incorporate them into the state estimation prior to testing
correspondences with lower thresholds. Correspondences with lower threshold are
then tested based on consolidated estimates. This approach can easily be embed-
ded into a Kalman filter by applying the sequential updating scheme [BS93|]. The
sequential processing steps are then as follows.

First, we compute threshold values for the whole set of /N feature point corre-
spondences based on the a priori state estimate, yielding 3-tuples (u;, u}, p;), with
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¢t = 1,..., N. The tuples are then ordered by their threshold values and the one
with highest threshold is taken from the set and tested. If an inlier is found, it is
used to update the state. A consolidated state estimate is available once an inlier is
found. Therefore, threshold values are recomputed prior to testing. This approach
mitigates the risk of rejecting inliers, as more sensitive data is tested based on con-
solidated estimates.

To evaluate the robustness of our approach, we have recorded a sequence in the
inner city that contains typical structural outliers, such as sidewalks. The camera
was attached to the right side of the vehicle. While driving, the vehicle laterally
approaches a sidewalk. Feature point correspondences between successive views
were established and used as input to an Extended Kalman Filter with local adap-
tive thresholds and sequential processing scheme. The Kalman filter was initial-
ized using rough estimates of the motion and ground plane, and the false positive
rate v and height difference Ah were set to 5% and —75mm, respectively. Inliers
detected by our approach are shown in blue superimposed on the images in the
right column in Figure The number of identified inliers is given in the top
right side, respectively.

For comparison, we applied a RANSAC-based approach [HarQ3] for homography
estimation to the same set of feature correspondences. The global threshold of the
RANSAC-based approach was chosen such that the number of incorrectly identi-
fied inliers on the sidewalk in frame 633 is about the same as for our approach. As
RANSAC is designed to find the largest consensus set, the ground plane can only
be detected if it is the dominant structure in the scene. The largest consensus set
found by RANSAC is shown in orange superimposed on the images in the right
column in Figure It can be seen that most inliers are found on the sidewalk
in frame 648, and on a virtual plane in frame 765. After removing the largest
consensus set RANSAC has been reapplied to the remaining feature points. The
second largest consensus set is shown in green for frame 648, and the third largest
consensus set is shown in green for frame 765. The second largest consensus set in
frame 765 corresponded to a virtual plane and is not shown here. From the inlier
count we can see that the RANSAC-based approach with global threshold detects
significantly less inliers and fails in the complex scenario in frame 765. Note that
the robust sequential processing approach with local adaptive threshold performs
significantly better than the basic RANSAC-based approach in the considered sce-
nario.
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Figure 6.6: Results of RANSAC-based homography estimation approach (left col-
umn) and the robust sequential processing approach (right column). The threshold
for RANSAC is chosen such that the number of incorrectly identified inliers on the
sidewalk in frame 633 is about the same in both cases. See text for color scheme.
This figure includes images taken from [Knol4b].
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7 Continuous Self-Calibration
Based on Kalman Filtering

In the previous chapters we have built the theoretic foundation for extrinsic camera
calibration and presented required key elements. In this chapter we combine these
results and present a novel algorithm for continuous extrinsic self-calibration.

We seek to estimate the extrinsic calibration parameters by combining the con-
straints arising from relative camera motions, the epipolar geometry of rigidly
coupled cameras, and the observation of the ground plane in multiple views.
This problem can be approached in different ways. A short overview with
regard to filtering and general optimization techniques was given in Section
A further distinction can be made with respect to the problem formula-
tion. Esquivel et al. [Esq07] and Pagel et al. [Pagll, |Pagl4], for instance,
first estimate the motion of each individual camera explicitly and then apply
hand-eye calibration to obtain estimates of the extrinsic calibration. These esti-
mates are treated as measurements in subsequent processing. Other approaches
([Dan09, Muhl11, Hanl2! Urb16b, Muel6]) use an implicit formulation, i.e. the
parameters and observations are subject to implicit measurement constraints. The
implicit formulation has several advantages. Measurement constraints arising from
other sensors can be incorporated easily. The implicit formulation does not require
each camera to be able to estimate its motion, and problem of scale drift, inherent
to monocular systems, can typically be mitigated. The latter two properties make
this formulation typically more robust. However, a disadvantage of the the implicit
formulation is that it requires an initial estimate. Because of the aforementioned
advantages we use an implicit formulation. Kalman filters are well-suited for this
type of problem and have been used successfully for similar calibration problems
in the past [Dan09, Han12, Pagl14,Muel6]. The filtering property allows process-
ing new data as it arrives, thus enabling continuous (online) processing.

In contrast to other approaches we do not track feature correspondences over mul-
tiple frames. Instead we only use frame-to-frame image point correspondences
and avoid computation of respective 3D structure. As a result, the size of the state
vector 1s small compared to classical structure from motion methods.

A motion model is required for the temporal update of the Kalman filter. In Chap-
ter [4| we have seen that the extrinsic calibration parameters can neither be esti-
mated from straight motions nor from circular motions. Typically, the motion of
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road vehicle is mostly planar, rendering the estimation of all extrinsic calibration
parameters difficult if we do not incorporate the constraints imposed by the ground
plane. For this reason, we restrict ourselves to the case where all cameras are able
to observe the ground plane. In this case, both, planar motion and general motion
allow estimating all parameters.

We first give a brief overview of the proposed algorithm before going into more
detail. An extensive evaluation of the self-calibration algorithm is presented in
Chapter|8] A preliminary work of the extrinsic self-calibration algorithm presented
here has been published in [Knol3].

7.1 Recursive Filtering

In this section we introduce the extended Kalman filter equations and give a brief
overview of our recursive filtering approach.

We apply a single extended Kalman filter [BS93]]. The motion and ground plane
parameters, as well as the extrinsic calibration parameters are associated with a
state vector £ of a dynamic system which evolves, corresponding to a discrete
time nonlinear stochastic system

&, =1 (&_1) + a (7.1)

where q; denotes the process noise, which we assume to be zero mean and Gaus-
sian q; ~ N (0, Q). In addition, we assume the measurements to be perturbed
by additive zero mean Gaussian noise,

Zi = Zj + W, (7.2)

where 7y, is the error free measurement vector and wy, ~ N (0, Wy,). We further
assume qy. and wy, to be mutually uncorrelated. We use the more general, implicit
formulation of the measurement functions. The error free observations satisfy

m (&,,z;) = 0, (7.3)

where m (-,-) are nonlinear measurement constraint equations which will be
introduced in Section Since both, the state transition function (equation
(7.1)) and the measurement constraints (equation (7.3)) are nonlinear, an extended
Kalman filter instead of a (linear) Kalman filter is applied. The a priori and a
posteriori state estimates are given by ¢, and E:, respectively, and the associated
covariance matrices are given by P, and P, respectively. The complete set of
extended Kalman filter equations can be found in Appendix

In the following we give an overview of the extended Kalman filter self-calibration
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Figure 7.1: Flowchart illustrating one cycle of the extended Kalman filter. The
evolution of the state estimate and associated covariance matrix is shown in the
center column. To the left and right the flow chart for overlapping fields of view
and motion and ground plane estimation are shown, respectively. Initialization and
recovery (highlighted in gray) are executed only when necessary.
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algorithm. To this end, we consider the flowchart in Figure The figure illus-
trates one cycle of the extended Kalman filter. In the center column the evolution
of the state vector and associated covariance matrix is shown. In the left and right
column the processing steps for overlapping fields of view and motion and ground
plane estimation are shown, respectively.

At the beginning of each cycle the state prediction and associated covariance
matrix are computed. The state vector elements corresponding to the extrinsic
calibration remain unchanged during this step. The a priori state estimate ¢,
is then used to warp captured images with the objective to make corresponding
image regions coincide (cf. Chapter|5). It should be noted that leveraging the a
priori estimate for image prewarping is only reasonable if the estimate is closer
to the true state than the assumption of identical camera coordinate frames, the
latter being typically followed when conducting feature extraction and matching.
Putative image correspondences are established using the FAST corner detector
and the BRIEF feature descriptor. To detect inliers to the epipolar geometry we
employ a classic Random Sample Consensus (RANSAC) algorithm [Fis81]. An
essential matrix is computed from five randomly drawn pairs of putative corre-
spondences using the algorithm of Nistér [NisO4b]. The algorithm provides up to
ten solutions which are tested against the whole set of putative correspondences.
Inliers are selected based on a Sampson error criterion [HarO3]. The largest set of
inliers among the ten solution and multiple repetitions is then selected for further
processing. The independence of the inlier detection from the current filter state
has proven to be advantageous, especially in the beginning when the error of the
state estimate is still large.

During the update stage we make intensive use of the sequential processing
scheme [BS93]. Instead of updating the state vector using all measurements
simultaneously, the measurements are processed sequentially. This allows to
first incorporate the measurements from overlapping fields of view and motion
estimation based on epipolar geometry before using the intermediate state estimate
for robust homography estimation (cf. Chapter [6). Opposed to the approach
presented in Chapter [6] we apply a decomposition of the measurement residual.
We decompose the residual into two orthogonal parts, perpendicular to the
epipolar line (epipolar distance) and along the epipolar line. This step is required
in order to obtain a partially updated state vector without incorporating the same
measurement twice. We elaborate on the decomposition and the extension to
epipolar curves in Section
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7.2 Parameterization and Motion Models

The findings of Chapter [4]indicate that planar as well as general motion combined
with the ground plane as a reference object enable the estimation of all extrin-
sic calibration parameters. General motion is preferable in this case as it allows
observing all parameters using only two consecutive poses of the multi-camera
system. However, typically motion of road vehicles is mostly planar. An experi-
mental comparison of both models is presented in Chapter|8]

The parameterization of the extended Kalman filter plays a fundamental role.
It should be locally continuous and differentiable. Furthermore, the extended
Kalman filter can become unstable if the assumption of local linearity is vio-
lated. In this context, the parameterization of rotation matrices and unit vectors
constitutes a particular, but well-studied problem. A minimal parameterization of
rotation matrices and unit vectors is desirable for two reasons, the first being the
reduction of the state vector dimensionality, and the second being the avoidance
of constraints in the state space that require special and careful treatment [JulQ7].
Unfortunately, all 3-vector parameterizations of rotation matrices and 2-vector pa-
rameterizations of a point on a three dimensional sphere contain singularities (e.g.
the gimbal lock for rotation matrices). However, in the vicinity of the origin these
parameterizations behave well and adhere to the above requirements.

In this thesis we assume that an initial state estimate is provided. We use the esti-
mate to apply a normalization transform on the state vector. In consequence, the
state vector only contains the deviations from the initial estimate. For example, to
compute the relative orientation between a camera and the reference camera the
orientation matrix corresponding to the current state vector is multiplied with the
respective denormalizing orientation matrix. After computing the normalization
transform from the initial state estimate the respective elements in the state vec-
tor are set to zero. If the initial state estimate is sufficiently close to the ground
truth, singular configurations are avoided. To represent rotation and orientation
matrices we apply a minimal 3-vector parameterization. Without loss of general-
ity, we use the Cayley transform [Gol96]. The Cayley transform is closely related
to quaternion and has a singularity rotations through 180°. To represent 3D unit
vectors we use spherical coordinates and apply either rotation matrices or House-
holder reflections [Gol96] for normalization. A generalization of this approach is
the multiplicative extended Kalman filter (MEKF) [MarO3|]. The MEKF updates
the normalization transform at the end of each filter cycle. This is a standard pro-
cedure in current optimization frameworks (see e.g. [Kuel 1]). However, we found
the normalization with respect to the initial estimate to be sufficient. In the fol-

I'The real element is set to one.
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Figure 7.2: Definition of the ground plane coordinate frame. The z-axis of the
ground plane coordinate frame is aligned with the current estimate of the ground
plane normal, and the z-axis aligned with the projection of the principal axis onto
the ground plane.

lowing we elaborate on the parameterization of relative camera poses and ground
plane. Thereafter, we present the motion model specific parameterizations.

As presented in Chapter [4.1) we describe the extrinsic calibration via relative pose
transformations between the cameras and the reference camera. The motion of the
camera system is expressed in the coordinate frame of the reference camera. The
relative orientation between the cameras are parameterized using the Cayley trans-
form. The displacements are parameterized directly by 3-vectors. A normalization
1s not required in this case. To fix the scale of the multi-camera system the base-
line between the reference camera and a dedicated second camera is kept constant.
This baseline is not part of the state vector. The displacement direction of the
dedicated camera is parameterized using spherical coordinates. The ground plane
normal is parameterized in the same way and the camera height is represented by
a scalar.

We employ a constant velocity model [BS93], i.e. any changes in the velocity are
modeled by process noise. Since the system has no means to determine its position
or orientation with respect to a world frame we do not track these parameters.
Discrete planar motion can be described using three parameters, one for the trans-
lation direction and two for the rotational and translational velocity. We construct
a ground plane coordinate frame by projecting the principal axis onto the ground
plane (see Figure[7.2)). The translation direction is then defined by the azimuth an-
gle. During the state prediction the parameters of the planar motion model remain
unchanged.

General motion has six degrees of freedom. Similar to the planar motion model,
we make use of a ground plane aligned coordinate frame in which the transla-
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Number of parameters
General motion Planar motion

Rotation 3 1
Translation 3 2
Ground plane 3 3
Relative pose transformations 6 (C-1) 6 (C-1)
Scale fixing -1 -1
State dimension for C' = 4 26 23

Table 7.1: Distribution of the state vector elements for both motion models with
respect to the number of cameras C'.

tion and rotation are described. In contrast to the planar motion model the height
and ground plane normal are adjusted according to the out-of-plane translation
and rotation during the state prediction. Table summarizes the distribution of
parameters for both models.

7.3 Extended Kalman Filter Update Stage

During the update stage of the extended Kalman filter a sequential updating
scheme is employed, i.e. assuming the measurement noise to be uncorrelated (i.e.
the covariance matrix has block diagonal structure), an update can be performed
for each measurement individually [BS93]. One advantage of this approach is that
the inversion of large matrices can be avoided. More importantly, this allows ap-
plying a stratified approach in which the information of a partially updated state
vector is used during inlier detection in a subsequent algorithm stage. The sequen-
tial processing algorithm is presented in Appendix

The set of all putative image correspondences consists of those that comply with
the epipolar geometry, with the ground plane homography, or are treated as out-
liers. All correspondences that are associated with the ground plane also satisty the
epipolar constraints. This is illustrated in Figure[7.3] We first update the state esti-
mate and covariance matrix using correspondences that comply with the epipolar
geometry. Since correspondences have been selected using a robust method that is
independent of the current state estimate this stage does not benefit from a partially
updated state vector. However, robust homography estimation does. In a second
step, the partially updated state vector and preselected correspondences are used to
update the ground plane estimate (cf. Figure[7.1) which also adopts the sequential
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Figure 7.3: Exemplary output of interest points for which a putative correspon-
dence was found in the next image (left). The set of all putative correspondences
can be divided into correspondences that comply with epipolar geometry (blue,
green) and outliers which do not (red). Correspondences that comply with the es-
timated epipolar geometry can further be assigned to the set of correspondences
that are associated with the ground plane (green).

updating scheme.

The algorithm presented in Chapter 6] estimates the camera motion as well as the
ground plane and imposes two constraints on the feature point positions. Since es-
timating the epipolar geometry already imposes one constraint on the feature point
positions we have to modify the algorithm presented in Chapter[6]in order to avoid
incorporating the same measurement twice. To this end, we apply a decomposition
of the measurement residual.

Let the point correspondence u <+ u’ with associated covariance matrix 3 and
an estimate of the epipolar geometry and the ground plane be given. We apply a
linear approximation of the epipolar curve at a support point

S

u. =k (—Ex X (Ex X X')) , (7.4)

i.e. the image of the ray x’ projected onto the epipolar plane defined by the corre-
sponding ray x in the first view and the estimated essential matrix. Recall that the
rays corresponding to u and u’ are x and x’, respectively. The line 1 is the tangent
of the epipolar curve in u’. This is depicted in Figure In general u’, is not
the closest point on the epipolar curve (this is emphasized in Figure [7.4). Using
the direction of I’ and its normal, we marginalize the covariance matrix, yielding
p(v, ;0. ) and p(uil ; o)) If the associated 3D point is located on the ground plane
we compute the prediction u’g which is located on the estimated epipolar curve.
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Figure 7.4: Decomposition of the measurement residual. The epipolar curve is
linearized at a support point u), yielding I’. The approximated geometric image

distance ¢, is the distance between u’ and 1'. The point Uj, is the ground plane
induced prediction. The approximated error along the epipolar curve is given by
€|- The marginalization of the covariance matrix 3 is carried out with respect to

1" and its normal. The marginal distributions are p(u?| ;o)) and p(u’, 500).

We define the measurement constraints functions (7.3)) as

YA A )
m. (5,u’) _avt v fl?’ _— (7.5)
V@2 + @)

and

m, (E, u’> - L 9, (7.6)

respectively, where T = (lA’l,lA’Q,A{,,)T. Equation (7.5) approximates the epipolar
distance and equation (7.6) approximates the error along the epipolar curve (cf.

Figure[7.1).
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7.4 Initialization and Recovery of Vehicle Velocity

The ratio of vehicle velocity and height has direct influence on the distance of the
feature point displacement in the image. Since the initially provided camera height
and vehicle velocity may deviate significantly from the actual values (e.g. by up to
one order of magnitude), the robust homography estimation algorithm presented
in Chapter [6] may not be able to detect and track the ground plane, causing the
calibration algorithm to diverge.

In the following we present a method for initialization and recovering the vehicle
velocity to height ratio. We assume the translation direction, camera rotation, and
the ground plane to be known sufficiently well. These conditions are usually ful-
filled as long as at least one camera is able to track the ground plane. The output
of the method is an estimate of the velocity to height ratio which can be used to
detect ground plane inliers.

Let the rotation matrix R, the translation direction t /|[t||,, and the ground plane
normal n be known. We are searching for the velocity to height ratio 7 = ||t||,/A.
We formulate the search as a least square problem

2
t
?:argmin{<X’—RX+nTXWT > }, (7.7)
T 2
v(r)

where X and X’ are corresponding 3D measurements of the same point on the
ground plane of a moving camera. The estimate 7 minimizes the squared Eu-
clidean distance between the 3D points.

Since the 3D points X’ and X are in general not known but assumed to be located
on the ground plane, we intersect the corresponding rays and ground plane us-
ing equation (3.13). The plane normal in the second view can be computed using
equation (4.5). Finally, we make use of equation to determine the height ratio
of the cameras center in successive frames. After substitution and reorganization
we obtain

/ /

X X
e — R——+ (Isx3 — —=—
nTRTx’ n’x nTRTx/
vo v,

Vn (T) =

nTRT> a8
e,

where v,,(7) = —v/h is normalized by the height. Note that v(7) (equation (7.7))
and v,,(7) (equation (7.8)) yield the same estimate 7. The complete derivation of
equation (7.8)) can be found in Appendix The least squares solution is then
given by

T= —VgVT/VZVT. (7.9)
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1o L2 2n/le,
Figure 7.5: Estimation of velocity to height ratio 7. Each pair of corresponding
feature points contributes to one estimate. The histogram of estimates is shown on
the left. For better readability the x-axis has been scaled such that estimates of the
correct ratio accumulate around one. Using a mean shift algorithm, three modes
have been detected and the corresponding values are shown. The corresponding
image with colored interest points is shown on the right hand side. The same color
coding has been applied. A clear distinction between the ground plane and the
sidewalk can be made, in both, the histogram and the image.

An estimate 7; can be computed for each pair of corresponding image points
u; <> uj, where i = 1...N. We interpret the estimates as samples of a proba-
bility distribution and apply a mean shift algorithm to detect the mode.
An example for a well calibrated multi-camera system is shown in Figure
We execute this algorithm if the number of correspondences that comply with the
current estimate the ground plane induced homography is below a heuristically
chosen threshold. The most common reason for this is that the estimate of the
camera height is not consistent with the other cameras in the setup. We use a
heuristic to decide whether a dominant mode was found. If this is the case we ap-
ply robust variance estimation by means of median absolute deviation to estimate
the variance. The estimate and variance are then used as the basis for our robust
homography estimation algorithm.

During initialization a modified version of this algorithm is executed. To adjust the
initially provided velocity, the velocity to height ratio estimates from all cameras
are normalized with respect to the corresponding camera heights and then com-
bined to one set. The initial velocity is then set to the median value of the set. In
the next chapter we show that this approach works well, even if the initial estimate
of the ground plane normal is inaccurate.
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8 Experimental Evaluation

In this chapter we present an extensive experimental evaluation of our extrinsic
self-calibration algorithm. The evaluation is based on real-world data that was
captured using a vehicle-mounted multi-camera system. Ground truth calibration
parameters have been acquired by means of an offline calibration method. The
ground truth serves as a reference to assess the self-calibration results quantita-
tively and to allow the comparison between different motion models, algorithm
settings, and information sources.

In the following sections we introduce the evaluation dataset in detail and explain
how ground truth was acquired, how the best parameter settings were found, and
how the algorithm initialization was carried out. Thereafter, we present the quan-
titative evaluation and discuss approaches to assess the accuracy of the calibration
at runtime. Finally, we show some qualitative results using three typical applica-
tions for multi-camera systems, namely visual odometry, generation of a virtual
top view of the vehicle surrounding, and stereo rectification.

8.1 Evaluation Dataset

Our dataset consists of 24 sequences that have been recorded using four cameras
that were mounted on a standard station wagon. The cameras were facing forward,
to the left, backwards, and to the right. All cameras were equipped with identical
fisheye lenses. Figure illustrates the camera setup and respective fields of
view. We employed standard industrial cameras with global shutter and 1.25
megapixels (1292 x 964 pixels). The cameras were synchronized to capture
images simultaneously at 30Hz. The high recording frame rate allows to evaluate
the performance of our algorithm at different frame rates by subsampling the
image sequences. The horizontal angle of view of the camera-lens combination is
approximately 185°, resulting in large overlapping fields of view (see Figure[8.1).
Similar setups have been used in [Rull0Ob} Hen13].

Figure depicts the camera mounting positions and shows camera heights and
relative distances. The smallest baseline between adjacent cameras is 2.3m (front
to side), and the largest is 2.85m (rear to side). In contrast, the average camera
height is less than half of the baselines. The mounting positions were chosen to
resemble those of commercially available vehicles with multi-camera systems.
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Figure 8.1: Illustration of the camera setup. The four simultaneously captured
images are warped onto image spheres (center). The reference camera is marked
orange. Adjacent cameras have overlapping fields of view. For example, the re-
flector post can be seen the upper two images despite being close to the vehicle.

The 24 sequences of the dataset were recorded on one day during daytime in
different parking areas. Parking areas were chosen as they represent a typical
environment in which self-calibration function would be active. For example,
the multi-camera system should be recalibrated after the vehicle is picked up
or parked after production. Additionally, many of today’s driver assistance
systems are designed to assist during the parking maneuver or to perform the task
automatically. The driven trajectories resemble typical parking area maneuvers
by containing e.g. low velocities, tight turns and nearby as well as distant objects.
Figure (8.3 shows a subset of the driven trajectories. From the 24 sequences a
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h3 = 1.26m
h?* = 1.18m
Figure 8.2: Illustration of camera mounting positions on the test vehicle, a stan-
dard station wagon. The reference camera is mounted in front. The left and right
facing cameras (C? and C*) are mounted close to the side mirrors. The distance
between these cameras is approximately 1.8m and the distance between the front
and rear-mounted camera is approximately 4.78m. The specified heights, h! to h?,
were determined during the (offline) reference calibration.

subset of four was used for parameter tuning (shown in orange). The remainder
was used for evaluation. The sequences contain between 723 and 2586 images per
camera, corresponding to 24 to 86 seconds of recording-time. The shortest and
longest track lengths are 112m and 568m, respectively. The total track length is
around 5.8km and the average velocity is 19.4km/h, corresponding to an average
of 0.18m per frame (at 30Hz).
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Figure 8.3: Estimated vehicle trajectories of recorded sequences. Visual odome-
try (cf. Section[8.5.1)) was used to estimate the vehicle motion. A subset of the 24
sequences is shown here. The set of sequences is divided into a subset of four man-
ually sequences for parameter tuning (orange) and the remainder of 20 sequences
for evaluation (blue). The checkered flags mark the start of each recording and
were passed at least twice during each recording.
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8.2 Ground Truth and Error Metric

To evaluate the calibration results quantitatively a proper error metric and ground
truth are required. In Section we introduced the datum definition applied
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throughout this thesis. The camera coordinate frame of the front camera is chosen
as the reference coordinate frame and the distance between the front and backward-
facing cameras is chosen for scale fixing. To make the error metric independent of
the choice of the reference coordinate frame and parameterization, we consider the
estimated relative pose transformations between all cameras instead of consider-
ing only the transformations which have been estimated explicitly by the extended
Kalman Filter.

Given the ground truth and estimated relative pose transformations between two
cameras c and d,

Aﬁc—)d A/t\c—nl
ng 1 1

d d
ARG Aty ¢

ATdt—>c —
I [ ngl 1

JAT = [ ] . (8.

we compute the residual orientation angle

¢ ARd%AﬁHd) 1
ear(c,d) = cos™! ( r( gt ) (8.2)
2
and residual displacement length
eat(c,d) = [|AR] ALY + Atd7, (8.3)

from the residual pose transformation ATZ? AT, where tr(-) denotes the
sum of elements on the main diagonal. Note that the residual orientation angle
is symmetric, ear(c,d) = ear(d,c), while the residual displacement length
is in general not, eat(c,d) # eat(d,c). This is because the computation of
At depends on AR, while the computation of Atd—e depends on ARe.
The mean residual orientation angle and displacement length across all cameras
are then given by

1

EAR — m Z €EAR (C, d), and (84)
c,d=1...C
1
ac =55 D, cacled), (8.5)
c,d=1...C

respectively, where C' is the number of camerasﬂ While ear and ea¢ are inde-
pendent of the chosen reference coordinate frame and parameterization, only ear
is also independent of the choice of scale fixing. In the remainder of this thesis we
refer to the mean residual orientation angle and displacement length as orientation

'Note that ear (¢,¢) = 0 and eat (c,c) = 0 forc = 1...C.
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and displacement error, respectively.

Ground truth intrinsic and extrinsic calibration parameters were acquired in an
extensive offline calibration procedure. First, all cameras were calibrated intrin-
sically. To this end, the calibration toolbox of Mei and Rives [Mei107]] was used
to acquire an initial set of intrinsic calibration parameters. We augmented this
method by estimating the displacement of the projection centers and finally ap-
proximated the noncentral camera by a central camera as proposed by Schonbein
et al. [Schl4] (cf. Section[3.2.2). Then the cameras were mounted on the test
vehicle and the setup was calibrated extrinsically. Coded calibration targets were
placed around the vehicle and on the floor, covering large regions of the fields of
view. The poses of the calibration targets and cameras were then computed using
the camera images, a professional photogrammetry software, and additional im-
ages from a hand-held camera.

To detect putative alterations of the setup during data recording the offline calibra-
tion procedure was performed twice, before and after recording the dataset. The
mean residual orientation angle and displacement length between both calibrations
are 0.073° and 2.5mm, respectively. We combined both calibrations into a single
ground truth calibration using pose interpolation.

8.3 Initialization and Parameter Tuning

To generate quantitative results we ran our extrinsic self-calibration algorithm oft-
line using perturbed samples of the ground truth calibration parameters for ini-
tialization. A total of 20 samples was drawn prior to the evaluation. To generate
the samples each camera was offset 0.5m in a random direction and then rotated
through a random angle between 0° and 15° about a random rotation vector. Fig-
ure|(8.4|illustrates a subset of the drawn samples. The median initial orientation and
displacement errors across the 20 samples are 10.3° and 700.9mm, respectively.
Since the parameters of each camera were perturbed individually, the relative ori-
entation error between adjacent cameras may exceed 15°. Furthermore, due to the
influence of the orientation error on the displacement error, the median initial dis-
placement error exceeds 0.5m. The dynamic parameters were initialized assuming
the vehicle to drive in a straight direction parallel to the ground plane. However,
due to perturbation of the orientation of the reference camera parameters, the trans-
lation direction which is defined in the coordinate frame of the reference camera
is not necessarily parallel to the ground plane. The initial velocity was set to 20
kilometers per hour. The initial a priori covariance matrix and the process noise
were manually tuned on the subset of 4 out of the 24 sequences (shown in orange
in Figure[8.3). We were aiming at accurate results while ensuring convergence.
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(b) Top view of ground truth camera poses and subset of initialization samples.

Figure 8.4: Ground truth camera poses and a subset of drawn samples for initial-
ization are shown in a side view (a) and in top view (b). Large coordinate axes
indicate the ground truth camera poses. Smaller coordinate axes visualize a subset
of the initialization samples which are offset by 0.5m and rotated through an angle
of up to 15° with respect to the ground. For reference, transparent spheres with
0.5m radius along with vehicle tires and the rear axle are shown.
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8.4 Quantitative Evaluation

In the following we present the quantitative evaluation of our continuous extrinsic
self-calibration algorithm. We present results for the two motion models as well
as for a combined calibration incorporating image correspondences between over-
lapping fields of view.

The evaluation is divided into two parts. First, we compare the results of our algo-
rithm directly with the reference calibration by applying the error metric described
in Section To this end, we initialized the algorithm as described in the previ-
ous section. This experiment was repeated 400 times for each configuration. This
first experiment provides an application-independent and thus general assessment
of the calibration results. In a second experiment, we compare the calibration re-
sults against the reference calibration in a typical application, visual odometry.
Throughout this section we use box plots to illustrate results. A detailed explana-
tion can be found in Appendix

8.4.1 Motion-Based Calibration

Motion-based calibrations builds on the rigid coupling between the cameras and
in particular on the different apparent motions observed by each camera when the
setup is moved. Figure shows the evolution of orientation and displacement
residuals and various other parameters over time for one exemplary calibration
run. During calibration the errors are reduced from initially 11.82° and 839.5mm
to 0.24° and 30.8mm, respectively. While the orientation error decreases monoton-
ically to a low value, the displacement error first settles at approximately 670mm
and then decreases to approximately 100mm within 50 frames. The reason for this
behavior is the first of four turns. In Chapter [4| we have shown that observability
of the parameters depends on the type of motion. Since the vehicle was driving
straight in the beginning some parameters remained unobservable during this time.
Furthermore, the displacement error fluctuates strongly within the first 100 frames.
This typical behavior is caused by the concurrent update of several parameters. A
behavior similar to that of the displacement residual can be observed for the esti-
mated height.

For the quantitative evaluation, the calibration algorithm was tested on all combi-
nations of the 20 evaluations sequences and 20 initial parameter samples, yielding
400 runs per configuration. We define the calibration result as the current parame-
ter estimate at the end of each sequence. Figure[8.6]shows the results for the planar
and general motion model. The results for the general motion model show higher
variance but a lower orientation error and a similar median displacement error.
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Approach Orientation error Displacement angle error
[Hen13] 0.87° 1.99°
[Hen15] 0.43° 1.47°
(two vehicles) 0.41° 1.57°
Planar model 0.15° 0.43°
General model 0.11° 0.46°

Table 8.1: Comparison of the results of our motion-based calibration approach
(planar and general) with the results of Heng et al. [Henl3, |Henl5]. Note that
the results of our approach are median values of 400 runs, respectively, while the
results of Heng et al. are single run results.

The median values of the initial errors at start-up are 10.3° and 700.9mm. After
calibration, the median values are 0.22° and 36.5mm for the planar motion model,
and 0.17° and 35.6mm for the general motion model. Hence, the self-calibration
algorithm was able to reduce the median orientation error by a factor of 50 and the
median displacement error by a factor of roughly 20. However, the algorithm does
not always converge to the correct solution. The number of data points not shown
in the box plots are given in Appendix We conclude that the performance of
both models is similar, with general motion model having a lower median orienta-
tion error but higher displacement error variance.

Due to the different error metrics, we cannot compare our results directly with
those of Pagel et al. [Pagl2a,|Pagl4|] and Heng et al. [Hen13, Hen135].

For evaluation, Pagel et al. [Pagl2a, Pagl4] use a setup consisting of three cameras
which are assumed to be coplanar, thus estimating only a subset of the extrinsic
calibration parameters. Unfortunately, numeric extrinsic calibration results are not
provided. Pagel et al. report an average orientation error of 0.8° and an average
displacement error of 10.8%. The average baseline of our setup is around 2.8m.
Hence, a 10.8% error corresponds to approximately 30cm.

Heng et al. [Henl3| Henl5] provide numeric results on the residual orientation
and displacement angle between the front, reference camera ( = 0) and the other
cameras ¢ € {1,2,3}. We can compare our results against those of Heng et al.
by computing the mean orientation error and mean displacement angle error (an-
gle between At® and At) for a given setup. The results are shown in Table
Note that this error metric is not independent of choice of reference camera
and both approaches of Heng et al. are offline calibration methods. However, the
authors found the results obtained with respect to a reference calibration to be in-
conclusive, since the proposed methods yielded better results than the reference
method in qualitative validation experiments.
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Varying the Frame Rate

The data in our dataset was recorded at 30Hz. By subsampling the image stream
we can simulate lower frame rates. Figure shows the results of the motion-
based calibration algorithm at reduced frame rates. We can see that reducing the
frame to 10Hz has only minor impact on the calibration results. In fact, the median
orientation error remains within a range of 0.06° for all shown results. However,
the displacement error increases dramatically at lower frame rates. This applies in
particular to the general motion model. Results for the general motion model at
5Hz are not shown here since an appropriate presentation was not possible without
rescaling the axes. At lower frame rates (or higher velocities), using a planar
motion model is therefore advisable.
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Figure 8.5: Evolution of residuals, ground plane inliers, and estimated quantities
over time for one exemplary calibration run. The top plot shows the mean ori-
entation (blue) and displacement residuals. Below, the evolution of the detected
ground plane inlier correspondences is shown for the front (red), left (green), rear
(blue), and right-facing camera (black), respectively. Next, the estimated rotation
angle (blue) and translation length (orange) per frame are shown. The bottom plot
shows the estimated height of the front camera. The dashed line depicts the camera
height during offline calibration.
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Figure 8.6: Results for motion-based extrinsic self-calibration. The mean resid-
ual orientation angles (blue) and displacement lengths (orange) are shown for the
planar motion model (filled boxes) on the left and for the general model on the
right. Each column represents the results of 400 algorithm runs (20 sequences, 20
initializations). The median values are 0.22° and 36.5mm and 0.17° and 35.6mm,
respectively. For a discussion refer to Sectionw
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(b) Results for the general motion model at different frame rates.

Figure 8.7: Results of motion-based extrinsic self-calibration at reduced frame
rates for the planar motion model (top) and general motion model (bottom). Box
plots for equal frame rates are aligned. For reference, the results shown in Fig-
ure are shown here again. However, note that the axes are scaled differently.
Results for the general motion model at 5Hz are not shown since an appropriate
presentation was not possible without rescaling the axes. The median values for
all box plots are given in Appendix
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Figure 8.8: Results for the combined calibration, using additionally overlapping
fields of view. The median values are 0.1° and 16.2mm and 0.1° and 10.8mm,
respectively.

8.4.2 Overlapping Fields of View

In the following we present the results of the extrinsic self-calibration algorithm
using additionally overlapping fields of view. Figure shows the results for
the combined calibration. The median orientation error is 0.1° for both motion
models, and the median displacement error is 16.2mm and 10.8mm for the planar
and general motion model, respectively. These results are substantially better then
those obtained from motion based calibration.

In [Knol4a] it was shown that the same experimental setup can be calibrated solely
based using overlapping fields of view, without the need for motion-based calibra-
tion. For this reason, we performed an additional experiment using only the over-
lapping fields of view between the left and backward-facing camera. The results
are shown in Figure The median orientation and displacement error in this
case are 0.16° and 30.2mm for the planar motion model, and 0.13° and 31.9mm
for the general motion model, respectively. In both cases we observe an improve-
ment over motion-only calibration.

Applying the same metric that was used to compare our results with those of Heng
et al. [Henl3! [Henl5|] (cf. Section |8.4.1), we achieve an orientation error and
displacement angle error of 0.09° and 0.09°, respectively, using the combined cal-
ibration with the planar motion model, and 0.08° and 0.10°, respectively, using
the general motion model.
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Figure 8.9: Comparison of calibration results between motion-based calibration
(cf. Figure[8.6)), calibration incorporating all overlapping fields of view (cf. Figure
and incorporating only the overlapping fields of view of a single camera pair.

8.4.3 Visual Odometry Loop Closure Error

The sensitivity of an application output with respect to errors in the individual
calibration parameters is in general application dependent. In a virtual top view
application, for example, in-plane displacement errors result in a shift in the top
view image of the same amount. However, the shift caused by an error in height
depends on the angle of incidence and becomes much larger at shallow angles.
Here, we use visual odometry to assess the calibration results in the context of an
exemplary application.

Visual odometry is the process of estimating camera motion from images only.
Due to errors in the calibration, measurement noise, and violations of the motion
model and Kalman filter assumptions, odometry errors will accumulate over
time. We use the accumulated error, i.e. the drift, as a measure to assess the
calibration results. Since the test vehicle is not equipped with sensors that allow
to determine its pose directly with high precision, we used manually selected
image correspondences to compute the relative pose of the multi-camera system
between different time instances. To this end, we selected image pairs which
have been captured from a similar place and with a similar vehicle pose, e.g. at
the start and end of each sequence (cf. Figure|8.3). This process is illustrated in
Figure 8.10). First, 3D points are triangulated using image correspondences from
the same time instance (bottom right). An initial relative pose estimate is then
computed by aligning the triangulated 3D point positions. The final estimate is
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Figure 8.10: Estimating the relative vehicle pose T between start and end. The
relative pose is estimated using manually selected image correspondences. A sub-
set is shown as line segments. To mark the start and end and to simplify the process
of determining image correspondences, traffic cones have been placed around the
vehicle at the start.

obtained by refining the initial estimate using all correspondences. This estimate
is then treated as ground truth during the evaluation. We used the visual odometry
algorithm which is described in the next section to estimate the vehicle trajectory.
The residual rotation and translation are shown in Figure [8.11] We ran the visual
odometry algorithm 40 times on each of the 20 evaluation sequences using one
randomly drawn calibration result out of the 400 previously computed results
each time. In total, 800 runs were conducted for the motion-based and combined
calibration, respectively, and 20 runs were conducted using the ground truth
calibration. As some sequence contain multiple loop-closures the number of data
points in Figure exceeds the number of algorithm runs.
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Figure 8.11: Residual rotation and translation per meter traveled for our visual
odometry algorithm using calibration results from motion-based calibration, com-
bined calibration using overlapping fields of view and ground truth calibration.
Note that the number of data points varies significantly (see text). Median values
and number of not shown data points are given in Appendix

To account for the different track lengths, the residuals are normalized with respect
to the driven distance. We observe that the combined calibration yields substan-
tially better results compared to the motion-based calibration. Furthermore, the
results of the combined calibration are close to the results of the ground truth cali-
bration.

8.4.4 Assessing Calibration Results at Runtime

So far we compared the calibration results against ground truth obtained using off-
line methods. In a typical application, however, this data is not available and we
have to rely on the estimates and observations themselves to assess the calibration
results. This is necessary since subsequent applications (presumably) rely on a
calibrated system. In the following we discuss several approaches to assessing the
calibration results at runtime.

Offline calibration methods commonly analyze the measurement residual (after
calibration/optimization) [Zha00, L113} |Str14]. Large residuals may indicate that
the current estimate is far from the optimum but could also be caused by violations
of the underlying assumptions such as rigidity of the cameras setup. In a calibrated
system the remaining measurement residual should be influenced predominantly
by the inaccuracy of the feature detection and matching algorithm. Given a cal-
ibrated system, we can thus determine typical values which can later be used for
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comparison. However, low measurement residuals do not necessarily indicate that
the system is well calibrated. For example, if the vehicle is only driving straight
or not moving at all motion-based calibration is not possible, yet the measurement
residuals may be small. This problem is directly related to observability analysis
which we discuss next. We conclude that a low measurement residual is a neces-
sary condition for a calibrated system.

To determine whether the calibration parameters can estimated unambiguously
from the observations offline calibration methods typically analyze the covariance
matrix of the estimated parameters. Given the measurement covariance matrix and
assuming the estimation problem not to be over-determined, an approximation of
the covariance matrix can be computed through backward propagation [HarO3].
Before elaborating observability analysis we present one way to visualize the un-
certainty associated with the current estimate.

In Section we discussed system parameterizations and argued that a minimal
parameterization is advantageous during optimization, yet other parameterizations
such as the free net adjustment might be favorable for analysis. Herein, we use free
net adjustment to visualize the uncertainty in the relative displacements between
cameras. The camera positions are parameterized by 3-vectors. To compensate
for the over-parameterization seven linear constraints are introduced that fix the
datum. The constraints correspond to the first order approximation of a similarity
transformation that minimizes the mean Euclidean distance between the current
camera position estimates and initial camera position estimate To obtain the
covariance matrix of the camera positions we apply forward propagation of the
a posteriori covariance matrix. This is illustrated in Figure [8.12] We observe that
the relative camera heights can be estimated with higher accuracy than the in-plane
displacements. A drawback of this representation is that the correlation between
orientations cannot be visualized.

If the vehicle was driving only straight ahead, the in-plane camera displacement
cannot be observed by means of motion-based calibration (cf. Section[4.2). In
this case we expect the corresponding entries in the covariance matrix to be very
larg Depending on the parameterization it might not be easy to determine if
covariance values are uncommonly high (due to different units and ranges) and
understand the physical implications (due to correlations). For example, while we
describe the relative displacement between the forward and side-facing cameras
using 3-vectors we use two angles and a fixed distance for the backward-facing
camera. A common way to account for the different units and ranges is to normal-
ize (whiten) the covariance matrix with respect to initial estimate or system noise

%In the following example we used the ground truth position instead of initial the estimates for
visualization.
3Due to measurement noise, nonlinearities, and other error sources the values will not be infinite.
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Figure 8.12: Exemplary camera center covariance ellipsoids (gray, rescaled) for
one result of motion-based calibration, in a top view (left) and perspective view
(right). Free net adjustment is used to propagate the state covariance matrix (see
text). The mean Euclidean distance between the cameras position of the current
estimate and ground truth are minimized.

covariance matrix [Ham83]. The resulting covariance matrix is dimensionless and
normalized. Then we compute the eigenvectors and eigenvalues of the matrix.
The eigenvector corresponding to the highest eigenvalue indicates the direction in
parameter space with the highest uncertainty. The corresponding eigenvalue corre-
sponds to the variance in this direction. For the case of the straight driving vehicle
in the above example we expect two similarly large eigenvalues.

This method is promising in case where the a priori and process noise covariance
matrices are physically motivated, e.g. by long term drift analysis of similar sys-
tems, and the system is linear. However, here we use pseudo-noise ([BS93])) for
both covariance matrices to control the behavior of the extended Kalman filter.
Figure 8.13| shows the evolution of the displacement error and the estimated un-
certainty over time. As expected the variance decreases after the first turn and
increases while driving straight (magnified view). However, we observe that the
extended Kalman filter severely underestimates the covariance (the decrease in the
displacement error and standard deviation differ by a factor of more than five).
This property of the extended Kalman filter is a well-known ([May90]) and caused
by nonlinearities and model violations.
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Figure 8.13: Evolution of the displacement error and corresponding (scaled) es-
timated variance over time. The state covariance was propagated assuming the
current estimate to coincide with the ground truth. For reference, the data is offset
using the real displacement error (cf. Figure[8.5). The magnified view shows a
section of straight driving during which the variance increases.
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Finally, heuristic indicators can be used to evaluate whether the algorithm is work-
ing as intended. For example, the number of ground plane inliers reflects the ability
to track the ground plane and thus to estimate the relative orientation parameters.
Furthermore, we can analyze the estimated trajectory with respect to straight driv-
ing and turning maneuvers. A well-established approach is to conduct a control
experiment. For example, we could detect single distinct features and test whether
they can be observed again (at the same or at a later time) at the expected position
in the field of view of another camera. We can also take advantage of the con-
tinuous stream of observations and analyze the a posteriori measurement residual
during short periods in which the calibration parameters are fixed, estimating only
the dynamic parameters. Maye et al. [May13] propose accumulating a small rep-
resentative set of observations, e.g. several consecutive pairs of frames, which can
be used to test the current estimate.

8.5 Qualitative Results

In the remainder of this chapter we show three typical applications of vehicle-
mounted multi-camera systems. Estimated extrinsic calibration parameters were
used in all three cases.
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8.5.1 Visual Odometry

Visual odometry is the process of estimating the motion of a camera system from
images only. The estimated trajectory can be used for vehicle navigation or 3D re-
construction tasks. Several different approaches for visual odometry using monoc-
ular and stereo cameras (e.g. [NisO4al)), as well as multiple cameras without over-
lapping fields of view (e.g. [Kaz12]) have been proposed.

Herein, we present results which are based on the motion estimates of the extended
Kalman Filter used for extrinsic calibration. At each time step, the filter provides
an incremental motion estimate, T, that relates the current and preceding pose of
the reference camera. From this, the trajectory of the reference camera is obtained
through concatenation. To visualize the results we reconstruct the ground plane
texture using estimates of the camera motion and ground plane. Locations that
are passed multiple times by the vehicle such as start and end are reconstructed
multiple times. Hence, errors in the motion estimates will cause ghosting artifacts,
i.e. the same texture will appears multiple times with offsets. These artifacts can
be used as a simple way to assess the estimation results.

For the reconstruction, we initialize the extended Kalman filter with an earlier
calibration result. During the reconstruction the extrinsic calibration is then kept
constant by adjusting the initial state covariance and process noise. The ground
plane texture is reconstructed incrementally using only the motion and ground
plane estimates ’f"“, ﬁ};, and ET, that are available up to the current point in time,
thus enabling online processing.

In general, the ground plane and motion estimates are not consistent over time, i.e.

n,, # RyAj. (8.6)

To achieve consistency we favor the current ground plane estimates over results
obtained through concatenation. Figure[8.14|shows the reconstructed ground plane
texture for one of our test sequences. For motion and ground plane estimation
every second frame was skipped to minimize drift. All visual odometry approaches
suffer from the fact that introduced errors cannot be corrected later on, inevitably
causing the trajectory to drift (cf. Figure[8.14). Additionally, special motions such
as linear or circular motions cause further drift since camera velocity and height
cannot be observed.
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Driven distance
[
0Om 220 m

Figure 8.14: Ground plane texture reconstruction for one of the test sequences
captured in a parking area. The image was generated incrementally from 720
images of the the backward-facing camera by reconstructing and blending semi-
circular ground plane texture patches. The estimated vehicle trajectory is shown as
the colored curve. The color indicates the estimated traveled distance. At locations
which were passed twice ghosting artifacts can be observed. A magnified view of
a ghosting artifact at sequence end is shown. The offset is roughly 0.85 meters
corresponding to 0.4 percent of the traveled distance. Note the reconstruction of
the parked vehicle in the bottom right corner.

8.5.2 Virtual Top View

A classic application of vehicle-mounted multi-camera systems is the generation
of a virtual top view. To this end, the images of the four cameras are projected
onto the ground plane and blended into a composite image. FEither static or dy-
namic ground plane parameters can be used for this purpose. Similar to the visual
odometry approach in the previous section we used the extended Kalman filter
to estimate the ground plane parameters dynamically. The extrinsic calibration
parameters were initialized using an earlier calibration result and then kept con-
stant by adjusting the initial state covariance and process noise. Figure[8.15]shows
two examples of generated virtual top view images. Dynamically adjusting the
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(a) Virtual top view image of the vehicle driving straight.

(b) Virtual top view image of the vehicle turning.

Figure 8.15: Two virtual top view images. The images were generated by project-
ing the image of the four cameras onto the ground plane and apply image blending.
The masks used for blending and the dimensions of the virtual top view images are
shown in Figure By adjusting the ground plane normal dynamically ghost-
ing artifacts introduced by rolling and pitching of the vehicle can be compensated.
The vehicle was driving to the left in the first image and making a tight turn in the
second image.
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ground plane parameters allows to compensate for nonplanar vehicle motions such
as rolling and pitching. Even during a tight turn the system does not create visible

ghosting artifacts (see Figure|8.15b).
The low camera height and large extent of the virtual top view image (cf. Figure

8.16) cause inhomogeneity in spatial resolution. Furthermore, the assumption of

A
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A
Y

16.5 m

Figure 8.16: Blending mask for the front and backward-facing camera, respec-
tively, and dimensions of the reconstructed ground plane region. The images from
the four cameras are blended into a composite image by applying a blending mask
with fixed weights. The weights of the forward and backward-facing camera are
shown here exemplary. The texture beneath the vehicle cannot be reconstructed
and is shown in black.

the vehicle surrounding being planar causes all nonplanar objects to appear signif-
icantly distorted, e.g. the vehicles in Figure This effect could be mitigated
by mounting the cameras in a higher position or by applying a more sophisticated
surface model.

8.5.3 Stereo Rectification

If the intrinsic and extrinsic calibration parameters of a pair of cameras are known
and the cameras share a common field of view it is possible to reconstruct 3D
points in the scene from image correspondences. The two-dimensional search for
image correspondences can be reduced to one dimension by applying stereo rec-
tification. In Section it was shown that the ray corresponding to an image
point and the displacement vector between the cameras define the epipolar plane
(see Figure [8.17a). The intersections of the epipolar plane with the image planes
define the epipolar lines. The corresponding image points have to be located on
the epipolar lines. In general, the epipolar plane will be imaged as a curve due to
nonlinearities in the imaging process. The goal of stereo rectification is to sim-
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(a) (b)

Figure 8.17: Epipolar geometry (a) and camera alignment for stereo rectification
(b). The displacement vector between the two cameras C" and C¢ and an arbitrary
3D point X define an epipolar plane (several planes shown here). For stereo rec-
tification, the cameras are virtually rotated such that the principal axes are parallel
and the z-axes are collinear with the displacement vector (b).

plify the correspondence search by warping the images of both cameras such that
epipolar curves are mapped to parallel lines. It is common to apply a mapping that
cause the epipolar lines to be parallel to the u-axis and match across images.

In this case, given a point u = (u,v)? in the rectified image of the first camera the
corresponding point in the rectified image of the second camera has coordinates
u’ = (v/,v)T. Hence, the stereo rectification simplifies the correspondence search
along a parametric or nonparametric curve to a search along a horizontal line. In
general, the search space can be further reduced by taking into account that the
3D point has to be located between the image of the projection center of the first
camera and infinity.

Stereo rectification consists implicitly of two steps. In the first step the cameras are
virtually rotated around their respective camera centers such that the principal axes
are parallel to each other and perpendicular to the displacement vector. Typically,
another rotation is applied to align X -axes of the camera coordinate frame This
process is illustrated in Figure In the second step, a new camera projection
model is applied. The new model has to satisfy the above constraint of projecting
the epipolar planes onto parallel (and matched) lines. The pinhole model satisfies
this constraint. If the same model parameters are chosen for both cameras and the

4Note that there is one degree of freedom corresponding to the rotation about the displacement
vector.
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Figure 8.18: Simultaneously captured images from the front (left) and right-facing
(right) cameras, respectively. Epipolar curves are superimposed. Matching curves
have the same color. The curves are truncated to valid ranges. The relative pose
between the cameras was estimated using our extrinsic self-algorithm algorithm.
The configuration is the same as the one shown in Figure W

epipolar lines are matched across the images, the disparity © — u’ is proportional
to the inverse of the depth of the 3D point. Here we define depth as the distance
along the principal axis of the virtually rotated camera.

For fisheye cameras different projection models for stereo rectifications are pre-
ferred due to the large field of view (cf. Section[3.2.1). For example, Abraham and
Forstner [AbrO5]] propose two models, a stereographic rectification model and an
equidistant rectification model. Here we present results for the latter.

Figure [8.18|shows one image from the front-facing camera and a simultaneously
captured image from the right-facing camera. Matching epipolar curves are super-
imposed. One easily verifies that the topmost epipolar curves both intersect the
top of the lamp post. Figure [8.19]shows a corresponding rectified image pair. In
contrast to a perspective camera, here the image disparity is proportional to the
intersection angle between the rays in case of the equidistant rectification model.
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Figure 8.19: Stereo rectified image pair corresponding to Figure For recti-
fication the equidistant model was used. One can observe that, e.g. the
same tiles of the calibration target are intersected by the epipolar line. The wide
baseline causes the calibration target to obstruct parts of the lamp post in the left
image while being considerably offset in the right image.
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9 Conclusion and Future Research
Directions

In this thesis we built the theoretic foundation for continuous extrinsic multi-
camera self-calibration. In addition, we proposed and evaluated a Kalman filter-
based approach which relies solely on image data. The fields of application are
mobile robots and road vehicles equipped with multi-camera systems.

Generally, the extrinsic calibration accuracy of any multi-sensor system deterio-
rates over time due to external influences such as mechanical stress, vibrations,
individual sensors being mounted on moving parts, or because it has been inaccu-
rate from the start. Typically, subsequent functions can cope with an inaccurate
calibration to some extent but eventually recalibration becomes inevitable. The
calibration of multi-camera systems commonly requires expert knowledge and ar-
tificial calibration objects and is thus both time consuming and costly. Further-
more, once a system is deployed it might not be accessible anymore. Continuous
self-calibration is the process of estimating the calibration parameters from ob-
servations made during regular operation. It is the only way to guarantee reliable
long-term operation.

We approached the problem of extrinsic self-calibration by analyzing different
combinations of vehicle motion types, sensor configurations, motion estimation
algorithms, and scene properties with respect to the constraints they impose on the
calibration problem. Fundamental to all calibration constraints is the rigidity as-
sumption of the multi-camera setup over time. In fact, rigidity along with overlap-
ping fields of view is sufficient to enable metric calibration in case of two-camera
systems. For more than two cameras, however, these conditions are insufficient.
We introduced a matrix rank criterion along with two additional necessary con-
ditions that provide a binary observability measure for multi-camera setups with
pairwise overlapping fields of view. Furthermore, for motion-based calibration we
presented a set of algorithms to recover the subset of non-ambiguous extrinsic cali-
bration parameters, assuming error free measurements. We concluded that general
motion provides a sufficient set of constraints for extrinsic calibration. In case of
planar motion additional constraints such as those provided by a jointly observed
scene plane or overlapping fields of view are required. With regards to future ex-
tensions, it remains a challenging research topic to formulate a general framework
that given a sensor configuration, type of class of vehicle motion, and scene, pro-
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vides an observability measure which enables the comparison and improvement of
sensor configurations and compositions.

Relative pose estimation is the essence of extrinsic calibration. To facilitate image-
based relative pose estimation in wide-baseline scenarios we proposed an image
preprocessing step that compensates geometrical distortions introduced by lens
distortions and viewpoint changes. To this end, we utilize prior knowledge of the
relative cameras poses and make simplifying assumptions about the scene. In par-
ticular, we assume the scene to be composed of a ground plane and distant objects
only. Following this approach, we were able to successfully match point features
in scenarios where more sophisticated and complex methods previously failed. In
addition, we were able to skip several frames during processing with only minor
influence on the calibration results.

To track the ground plane over time, we introduced a novel ground plane estima-
tion algorithm for fisheye cameras which is designed to be robust with respect to
sparse outliers among putative image correspondences as well as structural outliers
such as other planes in the scene. It relies on a sequential updating scheme that
favors correspondences that exhibit a high probability of being classified correctly.
Correspondences which are found to be induced by a ground plane homography
are used to update the estimate, thus facilitating subsequent classification.

The algorithm was integrated into an extended Kalman filter for continuous ex-
trinsic self-calibration. The state vector of the Kalman filters comprises only the
calibration parameters, the vehicle dynamics, and ground plane and has thus a low
dimensionality compared to approaches that perform structure computation, e.g.
[Pagl4|]. The parameter update is carried out sequentially. First, putative image
correspondences are computed using standard feature detection and matching al-
gorithms as well as image prewarping. Inliers among putative correspondences are
identified using random sampling consensus. The inliers are then used to update
the state vector and covariance matrix. The result is then further processed by the
ground plane tracking algorithm which identified ground plane induced correspon-
dences on the basis of the partially updated state vector and an updating scheme
that favors high-confidence inliers.

We evaluated the proposed extrinsic self-calibration algorithm using a vehicle-
mounted multi-camera setup consisting of four fisheye cameras. In a quantitative
evaluation we compared results based on a planar and general motion model and
optionally overlapping fields of view directly against a reference calibration. In an
additional experiment, we compared the calibration results against the reference
calibration using visual odometry, which represents a typical application. Initial
parameters were generated by adding a random displacements of 0.5m and rotating
each camera by up to 15° about random rotation axes. Applying our motion-based
extrinsic calibration algorithm, we were able to reduce the median initial displace-
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ment and orientation errors by a factor of 20 and 50, respectively, from 700.9mm
and 10.3° to 36.5mm and 0.22° using the planar motion model, and 35.6mm 0.17°
using the general motion model. When incorporating overlapping fields of view,
we were able to further reduce the errors by a factor of 2 to 3, down to 16.2mm
and 0.1° using the planar motion model, and 10.8mm and 0.1° using the general
motion model.

Visual odometry performed similarly on the reference calibration and calibration
based on overlapping fields of view. Throughout the evaluation we observed that
the general motion model provides slightly better results than the planar motion
model. However, the planar motion model seemed to be more robust as it pro-
vided much better results at low frame rates. The remaining median errors are in
the order of 0.1° to 0.25° and 10mm to 40mm, with the latter corresponding to
less than one percent of the largest baseline in the test setup. Finally, we presented
some qualitative results using three typical applications for multi-camera systems,
namely visual odometry, a virtual top view, and stereo rectification. During our
experiments the algorithm diverged in around 1% of cases. We discussed various
approaches to detect such cases as well as degenerate motions but did not conduct
any further experiments on this topic.

We also want to mention the runtime of the algorithm. Currently, the algorithm
does not run in real-time which is mainly due to the implementation of the pre-
warping algorithm. A significant speed-up could be obtained by utilizing more
suitable hardware for this task such as a graphics processing unit or by computing
corresponding image points on dedicated hardware. In addition, using an informa-
tion filter instead of a Kalman filter would allow for distributed computing. In this
work we avoided computation of the scene structure for the most part, mainly for
complexity and robustness reasons. However, it is to be expected that approaches
estimating camera motion along with scene structure are likely to outperform our
approach in most scenarios. Such approaches are typically realized using a de-
centralized solution in which the motion of each camera is estimated indepen-
dently to ensure the consistency between estimated camera motion and structure
[Pagl2a, Pagl4]. It is thus required that motion and ground plane estimation can
be performed robustly for each camera individually. Centralized approaches (such
as ours) avoid this drawback.

An interesting direction of future research is the simultaneous estimation of cam-
era extrinsics and intrinsics. While there exists extensive work on the calibration
of standard cameras in the computer vision field, we found few approaches for
continuous intrinsic self-calibration of wide-angle cameras. This field is particu-
larly challenging, since it introduces a new class of degenerate cases. However,
it is also of great significance since we rely on accurate intrinsic parameters for
extrinsic calibration.
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Another interesting direction is the integration of other sensor modalities such as
an inertial measurement unit which could simplify the estimation substantially.
The Kalman filter provides an excellent basis for this type of application.
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A Appendix

A.1 Constructing Orthonormal Matrices from Two
Vectors

Given two 3-vectors ag and a;, with a; 7é 03«1, as 75 0341, and ag X a; # 0341,
we define a third (orthogonal) vector a; = ag X a;. Using the three vectors a rota-
tion matrix Rg, o, 18 constructed by applying Gram-Schmidt orthonormalization
on the vectors and concatenating the resulting vectors to a 3 x 3 matrix. The three
unit vectors v, vy and vo are computed as

o
Vo —
laoll
a] — Vngal
vy = 0 (A.1)
lar — vovg arll,
ag
Vo = 57—
azl]

where [-], was defined in equation (3.11). The computation of the second vector
v, can be geometrically interpreted as a projection of a; onto the plane defined
by the normal vector vi. Since as is already orthogonal to vy and v, only a
normalization has to be applied. The rotation matrix is then given by Ry, 2, =

[VO, V1, VQ] . The simplification in equations (A.1) with respect to the classical

Gram-Schmid orthonormalization only applies in this specific scenario.

A.2 Rodrigues Formula for Rotation Matrices

Let a be a 3-vector and ¢ a rotation angle, we define R, ¢ using the Rodrigues
formula for a rotation matrix [HarO3]

sin(0) [a], (1~ cos(6)) [al},

(A.2)
lal, [EX

Rap = I3x3 —
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A.3 Instantaneous Center of Rotation

For planar motion, i.e. rt, = 0, and non-zero angular velocity there exists a
point s, for whichs, = R, s, + t, and r”'s, = 0, i.e. the point s, is fixed under
the transformation and is located in the plane defined by the rotation axis direction
and the origin. This point is called the instantaneous center of rotation. It can be
found by solving the equation system

Isxs — R
[3(1?: ¥ ’“] s = (t(;“), (A3)
k

which is, due to the rank deficiency of Isx3 — R, of rank three and, thus, yields a
unique solution. The instantaneous center of rotation offers an alternative way to
represent planar motions.

A.4 Derivation of Equation (6.3)

In the following we derive equation (6.3)). The inverse of the homography matrix
H, is given by

—1 Ty T
H ' — (Rf a tkn£> _(mrr+ Ryt (Ad)

P Pt

RIt, nIRT
_ (RT k CETE Yy A5
< k+hk—nZthk : (A.5)
where equation (A.4) follows from
-1
_ R t RT —R't
T, '=| ., = ., , (A.6)
03><1 1 08><1 1

and equation (A.5) follows from equation (4.5)) and equation (4.7). With this given,
we can derive equation|[6.3]

~ t,n, 7~ t,.nt -1
HH'=(R, - **% (R, - k"k A7
R (’f hk+Ah><’“ hy, (A7)

T I{Tt T
— (Rk T ) (R}f+ k2 k] ) (A8)

h; + Ah hy, —mny .t
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t,n’ t,n’
(1 A eS| I R A9
<3><3 —hk+Ah 3x3 T+ hk—ni}ltk (A.9)
t,n’ Ah
=I5y + =& ‘““( ) (A.10)
* Ppiq h, + AR

where we make use the identity t,n;  t,n] , = t,n{ n  t,. To obtain
equation (A.9) we use the identity RI R, .

A.5 Extended Kalman Filter

The motion and ground plane parameters, as well as the relative pose parameters
are associated with a single state vector of a dynamic system which evolves, cor-
responding to a discrete time nonlinear stochastic system [BS93]

& =F(&x1) + an (A.11)
The measurements are perturbed by additive zero mean Gaussian noise
Zi = Zp + Wi, (A.12)

where Z; is the error free measurement vector. The terms q; and wy de-
note process and measurement noise, respectively. They are assumed to be
zero mean, white, mutually uncorrelated, and Gaussian q; ~ N (0, Qy), and
wyi ~ N (0, Wy). The error free observations obey constraints

0=m(&,, 7). (A.13)

The state prediction covariance is given by

P, =F.P{_Fl +Q, (A.14)
where
f
F, = 88—(5) (A.15)
5 5252—1

is the derivative of the state transition function at the updated state estimate at time
k — 1. Similarly, the derivative of the measuement prediction with respect to the a
priori state estimate is

(A.16)

525; y Z=Z
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The Kalman gain is
K; = Py M} (M, Py M} + Wy) ', (A.17)

and the update equations for the state and its covariance are given by

& =& —Kym (&%) (A.18)
and

Pl =(I-KM;) P, (A.19)
respectively.

A.6 Sequential Processing Algorithm

In the following we present the extension of the sequential processing algorithm
[BS93] for extended Kalman filters with implicit measurements constraints. The
sequential processing algorithm replaced equations (A.17) to of the ex-
tended Kalman filter.

If the measurement noise covariance matrix has block diagonal structure we can
write it as

W), = diag (W}, ..., Wi, .., W) (A.20)

where W% is a square matrix on the main diagonal. Similarly, the measurement
vector and derivative of the measurement constraints have the following structure

mj) M3
m (Z,:,zk) = | me=| . (A21)
ml¥ ! MY

Initially, the state state and covariance estimate are associated with the a priori
estimate and covariance matrix

~1 o~ B _

£, =€, P =P, (A.22)
Then, for each 7 = 0--- N — 1 sequential updates are performed. The Kalman
gain is given by

—1

L =PL V)" (VP (M) W) (A.23)
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The updated state is given by

~1—1

~1 . . . f~i—1 ~——

& =& —Ki(mi+M (& -&)). (A24)
where the right expression is the linearization of the constraint function evaluated
at EZ_ and linearized at /E\,; The associated covariance matrix update is given by
= I-K,Mj) P, . (A.25)

After N updates, the a posteriori state estimate and associated covariance matrix
are

~+ aN-1 _
£, =&, ,PI=PY 1 (A.26)

Note that the algorithm only requires the inversion of matrices of the size of W,
which oftentimes are scalars. Furthermore, if the measurement noise covariance
matrix does not have block-diagonal structure, the processing steps are identical to
the original extended Kalman filter in Section

A.7 Derivation of Equation (7.8|

Here, we derive equations (7.8)) from equation (7.7). The vector v in equation (7.7)
is

v=X _RX +nTX % -

€]
Next, we substitute
—h
X = =, (A.27)
n'x
using equation (3.13) and
/ —x' TR T
—hx' t
=——— (1—-nTRT A.29
i (1R ) (A2

using additionally equations (4.5) and (4.7). Dividing by —h yields

/

—V X t X X t
— l1-n"TRT - 7)-R— +nT . (A.30
: nTfof( n HﬂbT> nTx T arx e, A0
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After canceling and and reorganisation we obtain equations (7.8)

—Vv x/ !

X X t
— “RE 4 (L — —2 TR
h nTRTx/ nTx < 3T TR/ ) 1t]l5

Note that x /n”x and x’'/nTR*x’ correspond to the 3D points X and X' nor-
malized by their negative camera height, respectively.

7. (A.31)
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Figure A.1: Example of two parallel box plots. Two vertical axes are used to
depict corresponding mean orientation and displacement errors within the same
diagram.

A.8 Box Plots

Box plots, or box-and-whisker plots are a simple way to depict data points graph-

ically through their quantiles. An example of two parallel box plots is shown in

Figure[A.1] In the following, we refer specifically to Tukey box plots [Tuk77].
The box plot consists of the following elements:

e a box, where the bottom and top are the first and third quartiles
e ared line indicating the second quartile, i.e. the median
e whiskers extending to the maximum and minimum

e red crosses indicating outliers.

The maximum is defined as the data point with the highest value still within 1.5
times the inter quartile range (i.e. the third quartile minus first quartile) of the
third quartile. The minimum is defined accordingly. Data points are interpreted as
outliers if located outside of the extent of the whiskers.

In Section we use diagrams with two (color indicated) vertical axes to depict
corresponding mean orientation and displacement errors. Filled boxes are used for
results based on the planar motion model, whereas as empty boxes are used for
results based on the general motion model.
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Figure numberNumber of data points out of bounds
Figure|8.6 (4,8), (6,7)
Figure|8.7a] |(4,8), (3,9), (0,1), (0,13),
(5,28), (22,53)
Figure(8.7b[  ((6,7), (1,3), (2,13), (12,33),
(29,77)
Figure 8.8 (0,0), (2,5)
Figure|8.9|  [(4,2), (6,7), (1,1), (4,0),
(0,0), (2,5)
Figure|8.11| |(5,17), (6,8), (0,0)

Table A.1: Number of data points not shown in the box plots in Chapter

Figure number Median values (°, )

Figure (8.6 (0.22, ), (0.17, ),

Figure|8.7a] |(0.22, ), (0.23, ), (0.21, ), (0.23, ),
(0.25, ), (0.26, )

Figure(8.7b] |(0.17, ), (0.19, ), (0.21, ), (0.21, ),
(0.23, )

Figure|8.8 (0.10, ), (0.10, )

Figure (8.9 (0.22, ), (0.17, ), (0.16, ), (0.13, ),
(0.10, ), (0.10, )

Figure(8.11| |(0.028, ), (0.009, ), (0.008, )

Table A.2: Median values for box plots shown in Chapter

A.9 Additional Information on Quantitative Results

For completeness, tables and[A 2| provide additional information with respect
to the box plots shown in Chapter [S| Table shows the number of data points
not displayed in the box plots, and Table[A.2]provides the median values.
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