KIT | KIT-Bibliothek | Impressum | Datenschutz

Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities

McKenna, R.; Bertsch, V.; Mainzer, K.; Fichtner, W.

Decentralised community energy resources are often abundant in smaller, more rural communities. Such communities often lack the capacity to develop extensive energy concepts and thus to exploit these re- sources in a consistent way. This paper presents an integrated participatory approach to developing fea- sible energy concepts for small communities. The novelty lies in the combination of methods, the con- sideration of uncertainties, and the application to an exemplary municipality in Germany. Stakeholder workshops are combined with energy modelling and multi-criteria decision analysis (MCDA), and a high transferability is ensured with mainly public data. The workshop discussion revealed three values: eco- nomic sustainability, environmental sustainability, and local energy autonomy. A total of eight alternatives for the 2030 energy system are identified to achieve these values. We find that an alternative that seeks only maximization of economic sustainability should be rejected based on elicited preferences. Instead, several alternatives seeking a maximization of environmental sustainability with constraints on economic sustainability (i.e. ... mehr

DOI: 10.1016/j.ejor.2018.01.036
Zitationen: 13
Web of Science
Zitationen: 12
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 0377-2217, 1872-6860
KITopen-ID: 1000081246
Erschienen in European journal of operational research
Band 268
Heft 3
Seiten 1092-1110
Vorab online veröffentlicht am 12.02.2018
Schlagworte Community; operational research; Sustainable energy; MILP; MCDA; Uncertainties
Nachgewiesen in Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page