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Abstract. Optimizing free-from shapes of photonic nanostructures is a high-dimensional
problem. We present a Bayesian optimization algorithm with a hyper-parameter learning
routine. We apply the algorithm for optimizing the shape of a reflecting meta-surface. The
algorithm exhibits efficient performance.

1. Introduction
Nanooptical technologies have drastically evolved in recent years with applications in fields such
as silicon photonics, energy harvesting, or quantum technologies. This improvement is mainly
due to modern fabrication technologies such as laser writing [1] or electron-beam lithography [2]
which allow for the manufacturing of micro and nano optical structures with an increasing
degree of accuracy and flexibility. However, the best shape of the photonic devices for achieving
a good performance is not always easy to find. The most efficient designs can be sometimes
counter-intuitive. In these cases inverse engineering methods become an indispensable tool and
the choice of the algorithm used to derive the shape of the device becomes a critical aspect.

One important aspect of the design process is the parametrization used in order to describe
the shape of the device, this parametrization should be flexible enough in order to be able to
describe a high number of possible shapes. However, this flexibility presents two main drawbacks.
First, it normally implies working in high dimensional parameter spaces, which directly increases
the computational time needed to find the optimal point. Second, the more general the shape
is allowed to be, the more likely it is that the optimization problem is not convex, leading to
problems where the objective function presents many local minima.

Many algorithms have been used in order to globally optimize different nanophotonic
structures. From genetic [3] or evolution [4] algorithms, direct-binary search (DBS) [5], particle
swarm [6] or more recently via the use of machine learning algorithms [7]. Into this last group
we could include Bayesian optimization. An algorithm based on a stochastic model where
the fundamental parameters of the algorithm are updated during computation time based on
the information acquired from the previous simulations. This group has recently presented a
study on the use and performance of this algorithm in order to optimize different optical nano-
structures [8]. We now update this work presenting an improvement in the learning process.

http://creativecommons.org/licenses/by/3.0
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This improvement leads to better convergence ratios, thereby allowing the access to parameter
spaces of higher dimensions and therefore, to more complex structures. As an example, we
optimize the shape of a periodic meta-mirror in order to increase the power reflected into the
first diffraction order.

2. Bayesian Optimization with Gaussian Processes
The goal of every global optimization algorithm is to identify the global minimum (or maximum)
of an unknown objective function f in a certain design space X ,

xmin = arg min
x∈X

f(x), (1)

In order to achieve that, Bayesian optimization (BO) uses a stochastic model of the objective
function f . The model is updated with information from the evaluations of f and then it is used
to drive the optimization strategy.
Gaussian processes (GP) are frequently used as the stochastic model in Bayesian optimization.
Our objective function is modeled as a Gaussian process if for any N points x1, · · ·xN in the
parameter space X , the probability of the objective function to be equal to Y = (y1, · · · , yN ) at
these points is following a multivariate Gaussian random distribution defined by a mean function
µ : X → R and a positive definite covariance function k : X × X → R,

P (Y) =
1

(2π)N/2|Σ|1/2
exp

[
−1

2
(Y − µ)TΣ−1(Y − µ)

]
(2)

or more compactly Y ∼ N (µ,Σ). Here, µ = [µ(x1), · · · , µ(xk)]T is the vector of mean values
and Σ = [k(xi, xj)]i,j the covariance matrix.

GP can describe a large class of random functions using different covariance functions k(x,x′).
For our optimization purposes and based on the results obtained in [8], we will use the Matérn
5/2 kernel,

kM52(x,x
′) = σ2

(
1 +

√
5r2(x,x′) +

5

3
r2(x,x′)

)
exp

(
−
√

5r2(x,x′)
)

(3)

r2(x,x′) =
d∑

i=1

(xi − x′i)2/l2i (4)

The hyper-parameters σ and l1, l2, · · · determine the standard deviation and the length scales
of the random distributions. With respect to the mean vector µ, we will assume all its elements
have the same constant value m. The different choices for µ do not influence the performance
of the method as much as the kernel function does.

The stochastic model is then updated after the evaluations of the objective function using
Bayes’ theorem. In the points where the problem has been solved, the value of the objective
is no longer an unknown but rather a well known value without any uncertainty. Also in
the regions close to the evaluated points the uncertainty will be reduced. The posterior
probability distribution is computed based on the computed objective evaluations and on the
prior distribution of the geometry parameters.

Suppose M values Yev = (yev1, · · · yevM ) = (f(xev1), · · · , f(xevM )) of the unknown objective
function are known. Then the posterior distribution will also be a Gaussian process G′. The
new mean vector µ′ and the covariance matrix Σ′ are functions of the previous mean vector µ,
of the covariance matrix Σ and also of its values in the evaluation points xevi
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µ′(x) = µ(x)T + Σ12Σ
−1
22 (Yev − µ(xev)T ) (5)

Σ′ = Σ11 −Σ12Σ
−1
22 Σ21) (6)

with (Σ11)i,j = k(xi,xj), (Σ12)i,j = k(xevi,xj), and (Σ22)i,j = k(xevi,xevj).
In Fig. 1 we show a stochastic model of an objective function before (left) and after (right)

being updated with five evaluations.

Figure 1. a. Different samples of a Gaussian process with the Matérn 5/2 kernel defined in
Eq. (3) b. Different samples of a Gaussian process with the Matérn 5/2 kernel updated after
five evaluations of the sample objective function f(x) = 0.5 sin(x) + 0.01x2.

Finally, the optimization strategy i.e., the decision where to make the next evaluation is
determined by an acquisition function. In our case we use the expected improvement function
αEI,

αEI(x, ymin) = E[max(0, ymin − f(x))]

=
1

2

[
1 + erf

(
ymin − µN(x)√

2σN(x)

)]
(ymin − µN (x)) +

σN (x)√
2π

exp

(
(ymin − µN (x))2

2σN (x)2

)
(7)

In Fig. 2 an example of the expected improvement function is shown. With this function,
the algorithm selects the next point to evaluate based on where the stochastic model expects
the largest reduction in the currently computed minimum.

3. The hyper-parameters learning process
Initially, the hyper-parameters of the GP ω = (σ, l1, l2, · · · ) are unknown and are usually
initialized with some reasonable values. Having drawn some samples of the objective function
one can optimize the hyper-parameters by maximizing the probability of drawing these samples
with respect to the values of the hyper-parameters:

ωopt = arg max
ω

(log[Pω(Yev)] + log[P (ω)]) (8)

Here, P (ω) is the prior distribution of the hyper-parameters (the hyper-prior) and Pω(Yev) the
likelihood of observing Yev given ω.
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Figure 2. The optimization strategy evaluates the objective function in the point with the
highest expected improvement (eq. 7)

The value of the hyper-parameters is crucial for an efficient optimization. A too small length
scale, for example, would overestimate the uncertainty in points close to the evaluated points.
However, if it is too large, the acquisition function would tend to point to the boundaries of
the parameter space and to under-sample the central regions. However, every time the hyper-
parameters are updated the covariance matrix has to be inverted, an expensive task which
slows down the optimization algorithm considerably, specially for high-dimensional parameter
spaces. One solution to overcome this problem is to not update the hyper-parameters after
each evaluation but rather to use some measure for estimating the possible improvement (I).
Then the hyper-parameters would be updated if and only if they are expected to improve the
likelihood Pω(Yev).

However, not all the hyper-parameters force the inversion of the covariance matrix. This is
the case for µ and σ where, furthermore, analytical expressions for their optimal values can be
obtained. Therefore, we can optimize these hyper-parameters after every evaluation and just
leave the length scales li to be updated based on the possible improvement estimator I.

The log likelyhood can be written as

log[Pω(Yev)] = −N
2
log(2π)− 1

2
log(|Σ|)− 1

2
(Yev −µµµ)TΣ−1(Yev −µµµ). (9)

If we define a matrix K such that Σ = σ2K, the optimal value of the hyperparameter σ can
be derived analytically from

∂ log[Pω(Yev)]

∂σ
= −N

σ
+

1

σ3
(Yev −µµµ)TK−1(Yev −µµµ) = 0. (10)

Hence the optimal value of σ is given by the Mahalanobis distance divided by
√
N

σ2opt =
1

N
(Yev −µµµ)TK−1(Yev −µµµ). (11)

Repeating the procedure for the optimal mean value m we obtain,

mopt =

∑
ij(K

−1)ijYevj∑
ij(K

−1)ij
(12)
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The optimization of these hyper-parameters after every evaluation is a fast calculation and it
improves the convergence rate of the algorithm. Higher convergence rates allow us to investigate
more complex structures as geometry parametrization spaces with higher dimensions become
feasible to solve.

For the length scales li we use a first order approximation of the log likelihood as measure of
the possible improvement,

I = max
i

(li
∂ log[Pω(Yev)]

∂li
), (13)

The optimization of the li’s is done provided

I > ε log[Pω(Yev)], (14)

with ε = 0.1.

4. Numerical results
In order to demonstrate the performance of BO using GP with optimized hyper-parameters we
revisit the example of optimization of a reflective surface [8]. The structure consists on a periodic
corrugated silver surface as shown in Fig. 3. The mirror has a periodic length of 1350 nm, 3 times
the wavelength of the incident plane wave (λ = 450 nm). The optimization problem consists on
finding the mirror shape which increases the power flux reflected into the first diffraction order
when the mirror is illuminated with a normal incident TE polarized plane wave.

fob =
Sz,+1

Sz,inc
(15)

where Sz,inc is the z-component of the Poynting vector of the incident wave and Sz,+1 of the
first diffraction order.

Figure 3. Schematic of the system. A plane wave illuminates the periodic mirror meta-surface
(solid line) under normal incidence, which produces several diffraction orders. The objective is
to find the shape of the mirror that maximizes the reflectance into the first diffraction order.
The shape of the mirror is described with a parametrization of its periodic unit cell using 10
third order b-splines (dotted lines).

The mirror is parametrized with 3rd order b-splines with uniformly distributed knots as
shown in Fig. 3.
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Figure 4. Convergence plot of the optimization.

The simulations of the electromagnetic field were done with the FEM solver JCMsuite [9].
We use elements with a polynomial degree of 3 and a mesh size of λ/(10n(r)), where n(r) is
the refractive index of the material. The convergence results are shown in Fig. 4. The best
shape deviates 91.3% of the incident power flux into the first diffraction order. The optimum
shape is shown in Fig. 5. After 80 evaluations the algorithm had already found a shape with a
performance of 89% and of 91% after 330 evaluations. Note that these 530 evaluations correspond
to less than two points per dimension in the case of a uniformly distributed parameter scan.

Figure 5. Electric field profile created by the optimal mirror.

5. Conclusions
We have implemented a new hyper-parameter learning routine. With the calculation of the
optimum hyper-parameters σ and µ after every evaluation we get an improvement in the
convergence ratio. This improvement allows us to look for shapes in higher dimensional
parameter spaces, which potentially leads to a design with a better performance. We have
improved the performance of a meta-surface mirror with regards to previously reported results [8]
by a factor of around 25 %. This improvement is obtained thanks to the increment of the
dimensions of the parameter space, going from 4 to 10 dimensions. The number of equivalent
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points-per-dimension needed to obtain the optimum shape was less than two. This suggests the
enormous potential of BO for globally optimizing nanophotonic structures.
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