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Abstract 

Tackling the challenges of developing therapies for cancer, infections, or immune 

system disorders requires understanding and manipulation of the metabolic 

pathways related to a disease state or a pathogen. An essential role in the 

corresponding biochemical cascades is played by proteins of various types, whose 

functions are manifested through their interactions with other molecules. In basic 

and applied research, the functionality and binding properties of proteins are more 

often studied using peptide microarrays, which are collections of protein fragments 

displayed on a solid support in a spot array format.  

Commercially available peptide microarrays are manufactured using various 

methods, which result in different spot densities and costs per spot. While being 

relatively simple and straightforward to implement, the wide-spread SPOT-

technique provides less than a thousand of peptides on a standard size substrate, 

which is not sufficient for many biological applications. At the other extreme, the 

lithographic method enables the synthesis of several million spots per substrate, 

however, at high manufacturing costs, which makes them unaffordable for many 

researchers. Thereby, the market need for high-density peptide microarrays at a 

moderate price remains still unmet. 

Within the framework of the present work, a new method for manufacturing low-

cost high-density peptide microarrays was developed and optimized. Successful 

project implementation resulted in a novel type of peptide microarray, which is 

referred in the present dissertation as a stochastic peptide microarray. It contains 

nearly 3 million synthetic peptides per substrate at material costs of around €250. 

This was made possible by combining the basic principles and methods of 

microstructure technology, solid-phase peptide synthesis, and the phenomenon of 

self-organization of microbeads on a microstructured substrate. 
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Kurzfassung 

Um die Herausforderungen der Entwicklung von Therapien gegen Krebs, 

Infektionen oder Störungen des Immunsystems zu bewältigen, müssen die 

Stoffwechselwege, die mit einem Krankheitszustand oder einem Krankheitserreger 

in Zusammenhang stehen, verstanden und manipuliert werden. Eine wesentliche 

Rolle in den entsprechenden biochemischen Kaskaden spielen Proteine 

verschiedener Art, deren Funktionen sich in Wechselwirkungen mit anderen 

Molekülen manifestieren. In der Grundlagen- und angewandten Forschung werden 

die Funktionalität und die Bindungseigenschaften von Proteinen immer häufiger 

unter Verwendung von Peptidmikroarrays untersucht, bei denen es sich um 

Sammlungen von Proteinfragmenten handelt, die auf einem festen Träger in einem 

Spot-Array-Format immobilisiert werden. 

Auf dem Markt erhältliche Peptidmikroarrays werden mit verschiedenen Methoden 

hergestellt, die zu unterschiedlichen Spotdichten und Kosten pro Spot führen. 

Obwohl sie relativ einfach und unkompliziert zu implementieren ist, liefert die weit 

verbreitete SPOT-Technik weniger als tausend Peptide auf einem Objektträger, was 

für viele biologische Anwendungen nicht ausreichend ist. Im anderen Extrem 

ermöglicht das lithographische Verfahren die Synthese von mehreren Millionen 

Spots pro Substrat, jedoch bei hohen Herstellungskosten, was sie für viele Forscher 

unerschwinglich macht. Dadurch bleibt der Marktbedarf nach hochdichten 

Peptidmikroarrays zu einem moderaten Preis unerfüllt. 

Im Rahmen der vorliegenden Arbeit wurde ein neues Verfahren zur Herstellung von 

kostengünstigen hochdichten Peptidmikroarrays entwickelt und optimiert. Die 

erfolgreiche Projektrealisierung führte zu einem neuartigen Peptidmikroarray, das in 

der vorliegenden Arbeit als stochastisches Peptidmikroarray bezeichnet wird. Es 

enthält fast 3 Millionen synthetische Peptide pro Substrat bei Materialkosten von 

rund 250 €. Möglich wurde dies durch die Kombination der Grundlagen und 

Methoden der Mikrostrukturtechnik und der Festphasen-Peptidsynthese, sowie auch 

des Phänomens der Selbstorganisation von Mikropartikeln auf einem 

mikrostrukturierten Substrat. 
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1 Introduction 

1.1 Background and Context 

Research and development of new pharmaceuticals requires significant investments 

of capital, time, and labor. On average, it takes 10 to 15 years and $2.6 billion to bring 

a new drug to the market [1]. At the same time, less than 10 % of discovered drug 

candidates result in an approved medicine [2]. 

Advancing the understanding of the disease and drug action mechanisms has the 

potential for reducing the costs and risks of drug discovery. Of a particular 

importance in the regulation of biological processes are protein-protein interactions. 

The study of these interactions reveals new approaches for rational drug design [3]. 

1.1.1 Proteins and Peptides 

Proteins are essential components of all living organisms. They play an important 

role in metabolism, cell signaling, immune response, and cell cycle. The functionality 

of proteins is substantially defined by their composition and structure. 

The majority of proteins are built from continuous series of 20 different types of 

proteinogenic amino acids linked together via peptide bonds (Figure 1). Depending 

on the biological species, the median length of the protein chains ranges between 300 

and 400 amino acid residues [4]. The amino acid sequence determines the folding of 

Figure 1. Schematic illustration of the protein structure. Amino acid residues, arranged in a specific 

linear sequence and linked together via peptide bonds, form the primary structure of a protein. 
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the protein into its distinct three-dimensional structure (Figure 2). Only in its native 

spatial conformation, the protein is capable to demonstrate its biological activity. 

 
Figure 2. Schematic illustration of the protein folding. The primary structure of a protein (left) 

undergoes a sequence of conformational transitions (middle) resulting in a biologically active native 

configuration (right) (“Schematic representation of a protein folding pathway”, adapted from [5] by 

F. Faccioli under a CC BY-NC-SA license, https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en). 

The functions of a protein are manifested through its interactions with other 

molecules, which occur via surface accessible interaction sites (Figure 3). The 

interaction site can involve a linear segment of the protein chain (a linear epitope) or 

it can consist of two or more segments brought together by the folded structure of the 

molecule (a conformational epitope). The study of the interaction sites of a protein is 

crucial for understanding the mechanism of its action and influencing its 

functionality. 

 
Figure 3. Schematic illustration of the surface accessible interaction sites of a protein. Linear epitopes 

are formed by a continuous fragment of the protein chain, while conformational epitopes are 

composed of two or more segments brought together by the folded structure of the protein (adapted 

from [6] with permission of Springer Nature). 
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The localization of the interaction sites in a protein can be predicted using 

computational methods [7]. However, these methods rely on background 

information on both the amino acids sequence and the structure of the protein, which 

are not available at the same time in most cases. Moreover, the simulation results are 

associated with high uncertainties and often require experimental validation. 

Experimental methods allow for prediction and characterization of the protein 

binding sites without preliminary knowledge of the protein structure. To simplify 

the problem, quite complex protein-protein interactions can be reduced to peptide-

protein interactions. In this approach, one of the proteins is replaced by a multitude 

of its short fragments (peptides), some of which mimic the protein interaction sites 

responsible for binding with another protein (Figure 4). 

 

Peptides are relatively short linear molecules consisting of less than 50 amino acid 

residues linked by peptide bonds [8]. They can be synthesized using standard 

chemistry and tested in terms of their affinity to a certain binder. The results of such 

studies can be used for characterization of the protein-protein interactions. 

Identifying the binding sites implies synthesis and characterization of a multitude of 

peptides derived from the protein sequence. Addressing this task in a timely and 

cost-effective manner requires continuous development and implementation of novel 

high-throughput screening (HTS) tools. One of the most prominent screening tools 

for protein-protein interaction studies are peptide microarrays. 

Amino acid sequence of the protein 3D protein 

structure 

Epitope 

sequence 

Linear 

epitope 

Overlapping 

peptides 

Figure 4. Representation of a protein as a multitude of its overlapping short fragments. The protein in 

its tertiary structure is represented by a set of peptides derived from its amino acid sequence. The 

peptides containing the epitope sequence can mimic surface accessible interaction sites of the protein. 
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1.1.2 Peptide Microarrays 

A peptide microarray, also referred to as a peptide chip, is a collection of various 

amino acid sequences arranged on a solid support in a spot array format (Figure 5). 

Each spot of the microarray represents a multitude of identical peptides, whereas 

various spots generally contain different peptides. The amino acid sequence in each 

spot is defined during peptide microarray fabrication, while the information on their 

spatial allocation constitutes a molecular library of a given peptide microarray. Since 

the molecules are covalently bound the substrate, a parallel high-throughput 

screening of their chemical, biological, or functional activity becomes possible. 

 

The bioassay concept based on peptide microarrays is shown in Figure 6. A peptide 

chip containing a known molecular library is incubated with a biological sample, 

which can be patient or animal sera, enzymes, antibodies, cells, or cell lysates. The 

analyte components interact with the peptides displayed on the substrate and bind to 

those molecules that demonstrate sufficient affinity. The non-bound analyte 

components are removed during subsequent washing steps. In order to visualize the 

spots containing the peptides with high affinity to the biological sample, the analyte 

can be fluorescently labelled prior to the incubation. Alternatively, the analyte 

components bound to the peptides can be tagged with fluorescently labelled 

antibodies in an additional staining step. Both approaches enable visualization of the 

remaining analyte on the microarray by fluorescence readout techniques. By collating 

the resulting fluorescence spot pattern with the peptide microarray library, both 

binding and non-binding amino acid sequences can be identified. 

Figure 5. Schematic illustration of a peptide microarray. A multitude of identical peptides is confined 

within each spot on a solid support, while various spots generally contain different peptides. 
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Using peptide microarrays for high-throughput screening assays enables the parallel 

testing of thousands of peptides in terms of their interaction with a certain analyte. It 

makes them suitable for diverse applications in the fields of immunology and 

proteomics, such as antibody epitope mapping [9, 10, 11], seromarker discovery [12, 

13], enzyme profiling [14, 15], etc. Data acquired with peptide microarrays can lead 

to the discovery of new drugs, vaccines, and diagnostic tools. The scope and the 

quality of the acquired data depend on the type of the peptide microarray and its 

main characteristics. 

There are several features that distinguish peptide microarrays from each other. The 

primary parameter is the composition of the molecular library, which can be specific, 

random, or combinatorial. The latter two types are used to screen for active peptides 

without preliminary information on the biological system to be studied. 

Combinatorial libraries are supposed to cover all possible amino acid sequence 

variations, which is practically impossible in most cases. For instance, the theoretical 

number of 10-mer peptides that can be generated out of 20 proteinogenic amino acids 

results in 2010 combinations, which exceeds the capacity of modern peptide 

microarrays by 7 orders of magnitude. Random peptide libraries, containing 

randomized peptide sequences, allow for much higher sequence variation within a 

limited microarray capacity, thus increasing the chance to find a molecule with a 

high biological activity. 

Analyte 

solution 

Peptide 

microarray 

Fluorescence 

readout device 

Analyte 

molecule 

Fluorescent 

label 

Fluorescence 

pattern 

Figure 6. Principle of the bioassay using peptide microarrays. A peptide microarray with a defined 

molecular library (left) is incubated with an analyte. Fluorescently labelled analyte components 

selectively interact with the peptides displayed on the substrate (middle), which can be visualized 

using fluorescence readout techniques (right). 
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Peptides differentiate from each other not only by their amino acid sequence but also 

by their length and structure. Most frequently, the peptides synthesized directly on a 

planar substrate consist of 10 to 15 amino acid residues [16]. Shorter amino acid 

sequences are usually not of an interest since they rarely demonstrate biological or 

chemical activity. Longer peptides cannot be quantitatively synthesized due to the 

limitations of their on-surface synthesis. In terms of their structure, the peptides 

displayed on the substrate can be linear or cyclic. The latter are of a great interest in 

many applications since their rigid cyclic structure facilitates binding, which results 

in higher affinity of cyclic peptides compared to linear amino acid sequences. 

Another important attribute of a peptide microarray is the size of its molecular 

library, which is defined by the number of peptide spots displayed on a substrate. 

This parameter determines how many binding interactions can be tested in parallel 

within a single experiment. The size of the microarray library depends on the spot 

density, which in turns is limited by the capabilities of the manufacturing method. 

The quality of a peptide microarray is crucial for evaluation and interpretation of the 

experimental results. It can be defined by the purity and identity of the amino acid 

sequences displayed in each spot. Depending on the manufacturing method, the 

peptides are either synthesized directly on the surface or pre-synthesized using 

standard bead-based synthesis. Both approaches are limited by reaction yields in 

each synthesis step resulting in contamination of the desired end-product by 

numerous by-products. To avoid false positive results, additional steps of peptide 

purification are required, which is impossible in case of on-surface peptide synthesis. 

1.1.3 Solid-Phase Peptide Synthesis 

Virtually all the methods of peptide microarray manufacturing are based on the 

principles of the solid-phase peptide synthesis (SPPS) developed in the early 1960s 

by R. B. Merrifield [17]. Compared to the classical liquid-phase approach, the solid-

phase technique greatly simplified the process of peptide synthesis and significantly 

improved the product yield. Due to its advantages and possibility to be automated, 

SPPS became a standard method for low, medium and large-scale production of 

synthetic peptides. Using excessive amounts of reagents, it allows for a routine 

assembly of an arbitrary peptide with the length of up to 40 amino acid residues [18]. 



Background and Context 

 

7 

The method of solid-phase peptide synthesis is based on a stepwise assembling of 

peptides on an insoluble functionalized polymeric material. Being anchored to the 

solid support, peptide chains are synthesized by sequential coupling of each amino 

acid to the terminal end of the growing oligomer. To avoid any unintended reactions 

during coupling, the amino acids are protected at their amino group and, if 

applicable, at their side chain group. Immobilization of the molecules on the solid 

support enables their simple filtering and intermediate washing to remove the excess 

of the reagents and the process by-products after each chemical step.  

Porous polymer microbeads are commonly used as a solid support for peptide 

synthesis. They are preliminary functionalized with a special “linker” that serves as a 

starting point for the growth of a peptide chain. Despite the fact the peptides are 

synthesized on the solid-phase material, the reagents are supplied to the reaction 

sites from the liquid phase. To maintain the physical state of the microbeads, they are 

made of a cross-linked polymer, which is resistant to the chemicals used during 

SPPS. In an appropriate solvent, the microbeads swell forming a gel-like medium, 

which facilitates the diffusion of the reagents inside the solid support. Since the 

chemical reactions take place in a microheterogeneous system, it enhances the 

process kinetics and results in a higher product yield. 

The general scheme of the solid-phase peptide synthesis is shown in Figure 7. A 

polymer microbead is functionalized with a “linker” L bearing a hydroxyl group  

(-OH) and serves as a solid support for peptide synthesis. The amino acids are 

protected at the α-amino group (-NPG) and, if applicable, at the side chain group  

(-SPG). The activated α-carboxyl group of the first amino acid reacts with the 

hydroxyl group of the “linker” resulting in a covalent attachment of the amino acid 

residue to the solid support. The excess of the reagents and the reaction by-products 

are removed in a subsequent washing step. Thereafter, the N-α-protecting group is 

cleaved in a deprotection process revealing the α-amino group (-NH2) of the first 

amino acid residue. After the washing step is performed, the second amino acid 

couples to the α-amino group of the first amino acid residue. The cycle of 

deprotection, washing, coupling, and washing is repeated multiple times until the 

desired amino acid sequence is synthesized. Thereafter, the remaining protecting 

groups are removed from the peptide chain. In a subsequent cleavage step, the 

peptide is released from the solid support resulting in the final product. 
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Figure 7. Schematic illustration of solid-phase peptide synthesis. Peptides are synthesized on polymer 

microbeads by sequential coupling of the amino acid derivatives, activated at α-carboxyl group and 

protected at α-amino group (-NPG) and side chain group (-SPG), with intermediate deprotection of 

the terminal α-amino group (washing steps are not shown). 
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The chemical steps of coupling and deprotection are characterized by their yield, 

which is generally lower than 100 %. This circumstance imposes limitations on SPPS 

in terms of the maximum length of the peptide chain that can be synthesized with a 

required product output. As depicted in Figure 8, the product yield depends on the 

number of repetitive process cycles performed during peptide synthesis. The green, 

blue and red curves demonstrate the exponential decrease of the longer-chain 

product output under the assumption that each process cycle results in a yield of 

99 %, 95 %, and 90 %, respectively. For example, in case of the 99 % yield per process 

cycle, the synthesis of a 20-mer peptide would result in 82 % product output, 

whereas in case of the 95 % yield the product output would be 36 %. The product 

output of 12 % would result from the peptide synthesis with the 90 % yield in each 

process cycle. In each case, the final product will be contaminated by undesired 

amino acid sequences. 

 

SPPS can be routinely performed with special synthesizers that automate and 

simplify the process of peptide synthesis. They enable generation of peptide libraries 

within a short period of time. The synthesized peptides can be further applied in 

peptide microarray manufacturing using the spotting method. 

 

Figure 8. Relative product output as a function of the peptide chain length (in number of amino acid 

residues). The curves are built under assumption that each synthesis cycle results in a coupling yield 

of 99 % (green), 95 % (blue), and 90 % (red). 
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1.1.4 State-of-the-Art Manufacturing Methods  

Constant development of novel technologies improves the features of peptide 

microarrays with an aim to make them more competitive against the microarrays of 

the previous generations. Currently, there is no generally accepted industrial 

standard for peptide microarray manufacturing. Each manufacturing strategy 

demonstrates its own strengths and weaknesses. 

There are two main approaches for manufacturing peptide microarrays. A set of 

peptides can be synthesized in advance and then immobilized on a substrate in a 

spot array format. An alternative approach involves peptide synthesis directly on the 

surface of the substrate. The manufacturing methods based on the second approach 

differ from each other mainly by the means of generating an amino acid deposition 

pattern prior to each coupling step. 

Spotting method 

The spotting method involves the preliminary synthesis of a set of peptides and their 

direct transfer and coupling to the substrate in a spot array format. The pool of 

peptides is pre-synthesized using automated peptide synthesizers that employ 

standard SPPS. Thereafter, the peptides are spotted onto the substrate by an 

automated arrayer (Figure 9). To enable immobilization of the spotted peptides, the 

substrate is suitably derivatized. Functionalized glass or membrane substrates are 

commonly used as solid supports for the spotted peptide microarrays. 

 

The spotted microarrays possess several advantages compared to the microarrays 

with in situ synthesized peptides. Since each peptide is pre-synthesized in big 

quantities, it can be spotted multiple times being implemented within various 

Figure 9. Microarrayer for high-throughput microarray manufacturing. Pre-synthesized peptides are 

printed on substrate slides in a spot array format (image credit: Arrayit Corporation). 



Background and Context 

 

11 

peptide microarray libraries. It results in more efficient and cheaper manufacturing 

of peptide microarray replicas. Using standard SPPS allows for longer peptide chains 

to be synthesized with a good product yield, which are later immobilized on a solid 

support. Moreover, the pre-synthesized peptides can be purified and validated prior 

to their transfer onto the substrate. This results in better quality of the spotted 

microarrays and ensures the reliability of the screening results. 

The main limitation of the spotting method is the lack of flexibility and the high costs 

associated with the manufacturing of a custom microarray containing peptides that 

are not available in the pre-synthesized library. With the minimum synthesis time of 

one week and the price starting at €25 for a 10-mer peptide, the manufacturing of a 

single spotted peptide microarray can turn out to be quite expensive and time-

consuming [16]. 

Another disadvantage of the spotting method is a very small size of the peptide 

library that can be displayed on a single chip. Since the peptides are transferred onto 

the substrate in a dissolved form, they tend to spread over the substrate surface prior 

to their immobilization. Generally, a spot size of approximately 1 mm in diameter 

can be achieved using the spotting method. It results in the average spot density of 

25 spots/cm2, which corresponds to around 400 spots per standard 75 mm x 25 mm 

substrate. 

SPOT-method 

The SPOT-synthesis, first presented by R. Frank in 1990, employs an alternative 

approach for manufacturing peptide microarrays [19]. Instead of spotting pre-

synthesized peptides onto the substrate, they are assembled directly on a planar 

support in a spot array format using simultaneous parallel solid-phase peptide 

synthesis. The principle of the SPOT-method is depicted in Figure 10. A 

functionalized porous cellulose membrane commonly serves as a solid support for in 

situ peptide synthesis. Small droplets containing individual amino acid derivatives 

are dispensed onto the membrane according to a defined array pattern. Each droplet 

is absorbed by the membrane resulting in a circular spot, which can be treated as a 

confined individual chemical reactor. Being activated at their C-terminus and 

protected at their N-terminus, amino acid derivatives couple within their respective 

spots to the functional groups of the solid support. Washing steps are performed to 
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remove non-coupled amino acids and reaction by-products from the membrane. 

Thereafter, the α-amino groups of the immobilized amino acids are deprotected, and 

the washing step is carried out once again. By repeating the steps of amino acid 

deposition, coupling, washing, deprotection, and washing, a multitude of individual 

peptides can be synthesized in parallel in the distinct spots of the peptide microarray. 

 

The SPOT-technique became widespread due to flexibility and reliability of the 

manufacturing procedure. Using automated pipetting systems (Figure 11), a large 

number of different peptides can be synthesized relatively fast and in small amounts. 

Due to low consumption of reagents and simultaneous synthesis of the desired 

library, the manufacturing of a custom peptide microarray using the SPOT-method is 

less expensive compared to the spotting method. For commercially available peptide 

microarrays, the average price per spot falls within the range of €6 – €9 [16]. 

 

Peptide microarray 

Solid support Functional 

groups 

Amino acid 

solution 

Protection 

groups 

20x Deposition 

& coupling 

Washing 

Deprotection 

Multiple 

synthesis cycles 

Figure 10. Schematic illustration of the SPOT-method for peptide microarray manufacturing. Peptides 

are synthesized in situ on a solid support by sequential spot-wise deposition of individual activated 

amino acid derivatives in dissolved form, their coupling to free functional groups, substrate washing 

and amino group deprotection. The synthesis cycle is performed multiple times until the desired 

peptide library is synthesized on the substrate. 
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Besides the obvious advantages, the SPOT-technique has a number of drawbacks. 

Based on conventional solid-phase peptide synthesis, the SPOT-method results in 

peptides of quite a low purity. In the case of peptide microarrays available on the 

market, typical purities of >70% were reported for the peptide chains consisting of 6 

to 15 amino acid residues [20]. In contrast to the peptide microarrays based on pre-

synthesized and spotted libraries, the purification of in situ synthesized peptides is 

practically impossible. To partially overcome this problem, an additional capping 

step is generally introduced to the synthesis cycle after each coupling step. It 

involves acetylation of the free α-amino groups, which previously applied amino 

acids did not couple to. The capped sequences cannot take part in the further chain 

elongation. As a result, the desired peptides in each spot will be contaminated only 

by truncations of the target sequences. It ensures meaningful results when 

performing bioassays using microarrays with in situ synthesized peptide libraries. 

The density of the microarrays manufactured using the SPOT-method is limited by 

the size of the spots that can be generated during dispensing of the amino acid 

solutions [21]. Due to natural wettability of the surface, the spot sizes are typically 

1.0 mm in diameter [16]. It leads to the spot densities of approximately 25 spots/cm2 

or 400 spots per standard 75 mm x 25 mm substrate. 

Figure 11. Automated pipetting system for in situ peptide synthesis on a membrane (image credit: 

INTAVIS Bioanalytical Instruments AG). 
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Xerographic method 

The xerographic method, also referred to as the particle-based synthesis, is another 

example of an in situ technique for manufacturing high-density peptide microarrays 

[22]. The conventional solid-phase peptide synthesis is implemented to generate a 

peptide library in an array format on a planar surface. In contrast to the SPOT-

method, the amino acid derivatives are deposited onto the substrate while being 

embedded into the polymer matrix of the microparticles. Spatially defined deposition 

of the microparticles is performed using a special laser printer (Figure 12). 

 

The principle of the xerographic method is shown in Figure 13. A functionalized 

glass substrate is used as a solid support for peptide synthesis. Multiple types of 

polydisperse microparticles, each containing a specific amino acid derivative, are 

fabricated in advance and employed as individual toner powders for the laser 

printer. The toner particles are printed sequentially onto the substrate so that each 

type of microparticles is located in the corresponding spots of the microarray. After 

generating the desired pattern, the microparticles are simultaneously melted to 

enable the diffusion of the embedded amino acid derivatives and their coupling to 

the functional groups of the solid support. Coupling by-products, polymer matrix 

residues, and excessive amino acid derivatives are washed away. Thereafter,  

N-α-protecting groups are removed during the deprotection step, followed by the 

washing cycle. The steps of microparticle deposition, coupling, and deprotection 

along with the intermediate washing steps are performed multiple times until the 

desired peptide library is synthesized on the solid support. 

Figure 12. Peptide laser printer: (left) general view; (right) amino acid printing units (image credit: 

PEPperPRINT GmbH). 
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Due to the fact that the amino acids are applied onto the substrate within the solid 

microparticles, the spot sizes are not affected by spreading of the monomers upon 

deposition. It results in the spot density of 775 spots/cm2, which corresponds to 

around 104 spots on a standard 75 mm x 25 mm slide [23]. Another advantage of the 

xerographic method is the high manufacturing throughput. Using the custom-made 

laser printer, it is possible to print up to 275 000 spots within a minute [24]. The lower 

consumption of reagents in combination with the faster manufacturing procedures 

leads to the price per peptide of approximately €0.135 [16]. However, since this 

method is based on in situ SPPS, the purity of the synthesized peptides is relatively 

low. As in the case of the SPOT-method, an additional capping step has to be carried 

out to acetylate the free amino groups after each coupling step. 

Lithographic method 

The lithographic method, first reported by S. Fodor in 1991, is the second most 

frequently used technique for manufacturing peptide microarrays after the SPOT-

method [25]. The principles of solid-phase chemistry and photolithography were 
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Figure 13. Schematic illustration of the xerographic method for peptide microarray manufacturing. 

Peptides are synthesized on a functionalized glass substrate by sequential deposition of the polymer 

microparticles with embedded amino acid derivatives, their melting and coupling of the monomers to 

the solid support. Residues of the polymer matrix and unreacted monomers are washed away, 

followed by amino group deprotection. The synthesis cycle is performed multiple times until the 

desired peptide library is synthesized.  
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combined to carry out the light-directed spatially addressable parallel synthesis of 

thousands of peptides on a solid support.  

The concept of the lithographic method is depicted in Figure 14. The functionalized 

glass substrate bears terminal amino groups, which are derivatized with special 

light-sensitive protecting groups. Illuminating the substrate through the first 

lithographic mask results in a local removal of the photolabile protecting groups 

according to the mask pattern. The substrate is incubated with the solution of the 

first amino acid, which is preliminary activated at the carboxyl group and 

derivatized with a photolabile N-α-protecting group. The coupling reaction takes 

place only in those regions, which were addressed by the light in a previous step. 

Thereafter, the substrate is illuminated again through the second photomask, which 

makes other regions of the substrate available for coupling of the second amino acid 

derivative. The steps of coupling and photo-deprotection with intermediate washing 

steps are carried out multiple times to obtain the desired peptide library. 

 

The main advantage of the lithographic method is a very high spot density defined 

by the feature size of the photomasks. The spot size of 8 μm and the density 
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Figure 14. Schematic illustration of the lithographic method for peptide microarray manufacturing. 

The functionalized glass substrate bears amino groups derivatized with light-sensitive protecting 

groups. Illuminating the substrate through a photolithographic mask results in a local removal of the 

photolabile protecting groups. The amino acid derivatives couple to the free amino groups from 

solution. The cycles are repeated multiple times until the desired peptide library is synthesized. 



Motivation and Problem Formulation 

 

17 

of 0.67∙106 spots/cm2 were reported for the peptide microarrays manufactured using 

the lithographic technique [26]. It results in up to 10 million spots on a standard 

75 mm x 25 mm substrate.  

Although promising for high-density peptide microarrays, the lithographic method 

has practical limitations. Manufacturing an arbitrary microarray of 15-mer peptides 

using 20 types of amino acids per synthesis layer requires 300 photomasks that are 

expensive and time-consuming to produce. This problem was solved by 

implementing a digital micromirror device (DMD) for light pattern projection onto 

the substrate, thus eliminating the need to use numerous photomasks [27]. However, 

the manufacturing costs remain high due to the use of expensive equipment and 

clean room facilities. The price of $1 150 was reported for a standard chip with 4 000 

peptide spots, which corresponds to approximately $0.288 per spot [16]. 

Another drawback of the light-directed synthesis is a poor efficiency of the 

photochemistry. The cleavage of the photolabile protecting groups has a much lower 

yield compared to the conventional protecting groups. For instance, the coupling 

yield per cycle was reported to range between 85 % and 95 %, which should result in 

the product output of less than 50 % for the 15-mer peptides [28]. 

1.2 Motivation and Problem Formulation 

The methods described in the previous section are widely used in commercial 

peptide microarray manufacturing. The characteristics of each manufacturing 

technique are summarized in Table 1. 

Table 1. Comparison of methods for peptide microarray manufacturing. 

Parameter 

Peptide microarray manufacturing method 

Spotting 

method 

SPOT- 

method 

Xerographic 

method 

Lithographic 

method 

Spot density, cm-2 25 25 775 < 6.7·105 

Peptide quality high medium low low 

Price per spot €25 €6 – €9 €0.135 $0.288 
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Each of the methods considered has its advantages and disadvantages. Providing the 

best-quality peptide microarrays, the spotting method is not suitable for generating 

high-density peptide libraries. Moreover, in case of custom spotted microarrays, the 

price per peptide is the highest compared to the other methods. While offering a 

similar low spot density, the SPOT-technique possesses a higher flexibility in 

generating diverse peptides at a lower price than in case of the spotting method. 

However, the purity of the displayed peptides is worse than in case of the spotted 

microarrays. Using the xerographic method, the spot densities can be increased by an 

order of magnitude compared to the first two methods, which leads to a reduction of 

the price per spot, whereas the peptide quality is comparable to the SPOT-method. 

The lithographic technique provides the densest arrangement of the peptide spots 

compared to the other methods. However, the quality of the peptide microarrays is 

the lowest, while the price per peptide is comparable with the printer-based method. 

The need to develop a novel type of peptide microarray, which would combine the 

advantages of currently available commercial products, has become the prerequisite 

for the research project carried out within the framework of the present dissertation. 

In order to accelerate collection, analysis and interpretation of biological information, 

the new peptide microarray has to meet several requirements: 

a) the spot density has to be high enough to display more than 1 million peptides 

on a standard 75 mm x 25 mm substrate; 

b) the purity of the displayed peptides has to be acceptable to acquire 

meaningful results when performing biological assays; 

c) the production costs have to be sufficiently low to make the peptide 

microarray affordable for potential users. 

The non-trivial combination of the microarray’s characteristics requires 

implementation of an innovative manufacturing approach. Therefore, development 

of a cost-efficient manufacturing process for high-density peptide microarrays has 

become the aim of the present project. The stated aim has defined the following 

project objectives: 

1. Elaboration of the manufacturing concept. 

The new approach has to be proposed for the manufacturing of a low-cost high-

density peptide microarray. In particular, such a principle of amino acid deposition 
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has to be proposed, which does not require the use of expensive positioning 

equipment. At the same time, the new principle has to enable a time-efficient and 

reliable generation of the amino acid pattern in each synthesis cycle. 

2. Development and optimization of the manufacturing process steps. 

Implementation of the novel manufacturing principles requires development and 

optimization of additional tools and processes. Furthermore, the standard processes 

should be adapted to the new manufacturing conditions. 

3. Manufacturing and testing of the microarray prototype. 

In order to validate the novel manufacturing approach and the performance of the 

final product, a prototype microarray has to be produced and tested. A known 

peptide library has to be synthesized on a substrate and incubated with antibodies 

that demonstrate an affinity to specific peptides. 

The basic principles and methods of microstructure technology, solid-phase peptide 

synthesis and the phenomenon of self-organization in microscale were taken as the 

premise for solving the stated problem. Successful project implementation resulted in 

a novel type of peptide microarray, which is referred in the present dissertation as a 

stochastic peptide microarray. 

1.3 Structure of Dissertation 

The present dissertation is divided into five main chapters. In Chapter 1, the basic 

terms and concepts related to the field of studies were reviewed. In particular, the 

idea of a peptide microarray as a screening tool for assessment of protein-protein 

interactions was introduced. To understand the origin of the peptide microarrays’ 

diversity, the state-of-the-art manufacturing methods were described in details. By 

comparing strengths and weaknesses of these methods, the conclusion was made 

that none of the existing techniques enables low-cost manufacturing of high-density 

peptide microarrays with sufficient purity of the displayed peptides. This enabled us 

to formulate the aim of the project and the related project objectives.  

Chapter 2 describes the concept of manufacturing stochastic peptide microarrays. 

After presenting basic principles of the microarray manufacturing, each process step 

is considered in details in terms of the imposed requirements and its possible 
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implementation. Additionally, the basic theoretical aspects related to the established 

procedures are considered. In general, Chapter 2 gives an idea on the evolution of the 

manufacturing process and the constraints faced with. 

Chapter 3 provides information on materials and methods used within the scope of 

experimental work. In particular, the methods and procedures developed and 

optimized for manufacturing of amino acid carrying microbeads, their deposition 

into the microwells of a microstructured substrate, imaging of their random 

deposition pattern, as well as extraction and coupling of the amino acid derivatives 

are explained in details. Besides that, an unsupervised machine learning algorithm 

developed for the automated decoding of the amino acid allocation pattern is 

reviewed. Eventually, the framework for the manufacturing of the prototype 

microarray is described. 

Chapter 4 presents the main results of the experimental work and their discussion. 

Particularly, the optimal parameters of the microstructured substrate, the rational 

composition and structure of the microbeads, as well as favorable conditions for 

amino acid extraction and coupling are derived from the outcome of several series of 

experiments. Additionally, the problems of microbead deposition and removal are 

considered and explained. Finally, the results on manufacturing the prototype of a 

stochastic peptide microarray are presented. 

Chapter 5 draws the conclusions on the research project carried out. The outcome of 

the proposed strategy for manufacturing stochastic peptide microarrays is 

summarized and evaluated in terms of meeting the initial requirements. Besides that, 

the outlook on further development related to the expansion of the production line 

and enhancing the spectrum of biological applications is provided. 
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2 Stochastic Peptide Microarrays 

A stochastic peptide microarray is a novel type of peptide microchip developed 

within the scope of the present work. It comprises a unique set of characteristics 

resulted from an innovative approach in microarray manufacturing. In general, one 

stochastic microarray contains approximately 3 million peptides displayed on a 

75 mm x 25 mm glass substrate (Figure 15). In contrast to conventional peptide 

microarrays, the glass substrate is microstructured. It represents a multitude of 

microwells arranged in an array format. Individual peptides are confined within the 

microwells so that the microwell pattern of the substrate represents the mutual 

arrangement of the peptide spots. Another characteristic feature of the stochastic 

microarray is that the peptide library is not defined in advance but is derived upon 

the manufacturing process is completed. Therefore, the resulting peptide library 

displayed on the microarray is random. 

 

In order to understand the origin and the nature of the stochastic peptide microarray 

features, the principles underlying the manufacturing process are considered in the 

present chapter. In Section 2.1, the concept for manufacturing stochastic peptide 

microarrays is described in details. The process steps and the fundamental 

requirements are further discussed in Section 2.2. Finally, theoretical foundations of 

the underlying processes are briefly reviewed in Section 2.3. 

10 µm 

Figure 15. Stochastic peptide microarray. Individual peptides are synthesized in each of approximately 

3 million microwells of the microstructured functionalized glass substrate (75 mm x 25 mm). 
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2.1 Manufacturing Concept 

Stochastic peptide microarrays are manufactured using the chemical principles of in 

situ solid-phase peptide synthesis. A multitude of peptides is generated directly on 

the solid support by sequential coupling of the amino acid derivatives to the terminal 

groups of the growing peptide chains. The elongation of the synthetic peptides takes 

place from C-terminus to N-terminus and requires the amino acid derivatives to be 

OPfp-activated at their carboxyl group and Fmoc-protected at their amino group 

(Figure 16). SPPS technique implies the repetitive steps of Fmoc-deprotection, amino 

acid deposition, coupling and blocking to be performed until the oligopeptides of the 

desired length are synthesized. Since 3 million different peptides are generated 

simultaneously in a high-throughput parallel synthesis, the targeted addressing of 

each reaction site by an individual amino acid derivative becomes crucial. 

 

Prior to each step of peptide chain elongation, the amino acid derivatives are 

transferred onto the substrate by special polymer microbeads, wherein each 

microbead contains an individual type of the monomer. The accuracy and 

repeatability of the amino acid deposition to the specific reaction sites, representing 

individual peptide spots, is ensured by the phenomenon of self-organization of the 

microbeads in the microwells of the microstructured substrate (Figure 17). The size 

and shape of the microbeads and the microwells are selected in such a way so that 

only one microbead can fit into the respective microwell. Such a geometric constraint 

does not allow more than one type of amino acid derivative to be present in each 

microwell during the coupling step. As a result, the microarray spots are expected to 

contain predominantly individual kinds of the amino acid sequences after the 

peptide synthesis is completed. 

Figure 16. Chemical structure of an amino acid derivative protected by Fmoc-group at N-terminus 

(red) and activated by OPfp-group at C-terminus (green). The side chain R (blue) varies for different 

amino acid derivatives.  
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The generation of the amino acid deposition pattern takes place in a single step by 

mechanically applying a mixture of different microbeads into the microwells of the 

microstructured substrate. Since the deposition of the microbeads is performed in a 

random, or stochastic, process, it is not known in advance which type of microbead 

will be located in each microwell. Therefore, after introducing the microbeads into 

the microwells, the amino acid deposition pattern has to be derived in an additional 

step. To differentiate between the microbeads carrying different amino acid 

derivatives, specific fluorescent labels are preliminary introduced into the 

microbeads. Fluorescence imaging and subsequent data analysis enable decoding of 

the amino acid deposition pattern (Figure 18). 

 

The fact that the amino acid derivatives are transferred onto the substrate being 

embedded into the solid microbeads hinders their interchange and prevents their 

immediate reaction with the functional groups on the solid support. Under certain 

conditions, the amino acid derivatives are released from the microbeads to enable 

their diffusion to the functional layer and further coupling to the terminal free amino 

groups (Figure 19). After the coupling step is completed, the excess of amino acid 

derivatives and the process by-products are washed away, whereas the microbeads 

are mechanically removed from the microwells. 

Figure 17. Stochastic microbead deposition. A mixture of amino acid carrying microbeads is 

stochastically deposited into the microwells of a microstructured substrate. The size and shape of the 

microbeads and the microwells allow fitting of not more than one microbead into one microwell. 

Figure 18. Decoding of an amino acid deposition pattern. The microbead deposition pattern derived 

upon fluorescence imaging is further translated into the amino acid deposition pattern. 
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The process of manufacturing stochastic peptide microarrays is schematically shown 

in Figure 20. Prior to peptide microarray synthesis, 20 different types of microbeads 

are fabricated. Each microbead is loaded with a certain type of amino acid derivative 

and accordingly labelled with a specific fluorescent marker. The solid support for the 

peptide synthesis undergoes preliminary microstructuring, followed by chemical 

functionalization of its surface. The synthesis of the peptide library begins with the 

deprotection of the amino groups borne by the functional layer of the solid support. 

Thereafter, a mixture of microbeads is applied into the microwells of the substrate. 

The amino acid deposition pattern is derived upon optical imaging of the 

microbeads, followed by their label decoding. During the next steps, the amino acid 

derivatives are extracted from the microbeads and coupled to the amino groups on 

the substrate. After the coupling step, the microbeads are removed from the 

microwells, whereas the amino acid residues and the process by-products are 

washed away. The blocking of non-reacted amino groups is performed to avoid 

generation of undesired peptide sequences. Thereafter, the steps of amino group 

deprotection, particle deposition, fluorescence scanning, label decoding, amino acid 

extraction and coupling, microbead removal and blocking are performed multiple 

times depending on the desired length of the peptide to be synthesized. The resulting 

peptide microarray is complemented with a file, which contains information on the 

amino acid sequences randomly generated in each microwell of the substrate. 

Figure 19. Extraction and coupling of amino acid derivatives. Exposed to certain conditions, the 

microbeads release the amino acid derivatives, which diffuse and couple to the functional groups of 

the substrate. Thereafter, the excessive monomers and process by-products are washed away, whereas 

the microbeads are removed from the microwells.  
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After the terminal and the side chain groups of the peptides are deprotected, the 

stochastic peptide microarray can be incubated with a biological analyte. 
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Figure 20. Schematic illustration of the stochastic peptide microarray manufacturing. Random 

peptides are synthesized in the microwells of a microstructured substrate by stochastic deposition of a 

mixture of microbeads, decoding of their deposition pattern, followed by extraction and coupling of 

the amino acid derivatives, removal of the microbeads, blocking remaining free amino groups and 

deprotection of the terminal groups for the next synthesis cycle. The process steps are repeated 

multiple times until the peptides of a desired length are synthesized. 
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2.2 Process Steps: Requirements and Implementation 

In this section, the manufacturing process steps are discussed in details in terms of 

the imposed requirements and their possible implementation. 

2.2.1 Substrate Manufacturing 

Requirements 

The function of the substrate for the stochastic peptide microarray is to enable the 

synthesis, representation and implementation of a high-density peptide library in a 

most reliable and convenient way. Particularly, the substrate has to allow for 

chemical immobilization of the amino acid derivatives on its surface. At the same 

time, it has to be resistant to the chemical and physical conditions during SPPS. The 

format of the slide has to be compatible with the standard tools and equipment used 

in peptide microarray manufacturing and biological applications. Finally, the 

substrate has to ensure the self-organization of the microbeads on its surface so that 

individual types of amino acid residues are deposited to the synthesis spots prior to 

each step of peptide chain elongation. The stated requirements impose a number of 

restrictions on the architecture of the substrate for the stochastic peptide microarray.  

Implementation 

From an end-user perspective, the format of a standard 75 mm x 25 mm x 1 mm 

microscope slide is the most preferred for the substrate of the stochastic peptide 

microarray. This format makes the peptide chip compatible with conventional 

microarray incubation chambers, as well as with modern fluorescence scanners used 

for readout of the incubation results. The substrates with smaller dimensions are also 

applicable if special adaptors are provided. However, the peptide library would be 

limited in this case by the smaller size of the substrate. 

The substrate can be made of fused silica, quartz, silicon, plastics, metals, or 

composites. On the one hand side, the material has to be rigid, inert to the chemicals 

used in SPPS, and stable at temperatures up to 100 °C. On the other hand side, it has 

to be able to undergo microstructuring, as well as chemical modification by the 

functional layer. Fused silica, quartz, and silicon are the most frequently used 

materials for the substrates of high-density microarrays. 
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The surface of the substrate has to be microstructured to facilitate the deposition of 

the microbeads into the peptide synthesis spots. The most reasonable microstructure 

pattern comprises a multitude of cylindrical microwells arranged in a rectangular or 

hexagonal grid format (Figure 21). Besides its geometric layout, the array grid is 

defined by the pitch size, as well as by the number of rows and columns of the 

microwells fitting on a given surface area of the substrate. A higher spot density can 

be achieved by implementing hexagonal grid with a smaller pitch size.  

 

The microwells are characterized by their diameter and depth. The aspect ratio, 

defined as a proportional relationship between the diameter and the depth of the 

microwell, has to enable a reliable deposition and removal of a single microbead 

from the microwell. The spacing between the two closest neighboring microwells, 

calculated as a difference between the pitch size and the microwell diameter, has to 

be sufficient to ensure differentiation of their fluorescence signals and mechanical 

stability of the microstructures. 

The microstructuring of the substrate surface can be performed using different 

techniques depending on the material to be processed and the requirements set for 

the accuracy and geometry of the microstructures. For the substrates made of fused 

silica and quartz, the most accurate, reproducible and homogeneous results in 

generating the microwells with the depth of up to 10 μm can be achieved by 

combining photolithographic patterning and reactive ion etching (RIE) techniques. 

After microstructuring, the surface of the substrate rarely bears functional groups for 

anchoring of the amino acid derivatives. Therefore, the substrate has to be 

additionally modified by a special functional layer containing free amino groups that 

the monomer molecules can bind to. Within the framework of the present project, the 

substrate was functionalized by a thin copolymer layer of poly(ethylene glycol) 

Figure 21. Microstructure patterns: (left) rectangular; (right) hexagonal. Microstructures are 

characterized by the pitch size (P), microwell diameter (D), and microwell depth (H). 
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methacrylate (PEGMA) and methyl methacrylate (MMA) with mole fractions of 10 % 

and 90 %, respectively (10:90-poly(PEGMA-co-MMA)). This functional layer is 

covalently immobilized on the solid support which ensures its spatial integrity 

throughout the entire peptide synthesis process. At the same time, the surface 

coating is compatible with the solid-phase peptide chemistry and demonstrates 

resistance to various organic solvents, strong organic acids and bases. Moreover, the 

implemented functional layer is suitable for biological assays by eliminating non-

specific binding or repulsion of the analyte proteins [29]. 

2.2.2 Microbead Manufacturing 

Requirements 

In the stochastic peptide microarray fabrication, the microbeads serve as a 

transportation entity for the amino acid derivatives. Each microbead contains an 

individual type of monomer and ensures its transfer into an arbitrary microwell on 

the substrate. Generally, the microbeads carrying different amino acid derivatives are 

applied over the substrate as a dry mixture being exposed to a mechanical action. 

Under mechanical stress, the rigid carriers are subject to fracture, whereas too soft 

materials can stretch out, lose their shape and spread over the surface. Hence, the 

microbeads have to be mechanically stable to eliminate the risk of their 

fragmentation. Moreover, the microbead architecture should prevent the monomer 

exchange between different carriers, as well as surface contamination by the 

monomers during their deposition. It requires the amino acid derivatives to be 

embedded into the body of the carriers to avoid their direct contact with external 

surfaces. At the same time, the microbead composition should enable extraction of 

the amino acid derivatives under certain conditions, so that they can take part in the 

peptide chain elongation process. 

The microbeads should meet the requirement of depositing not more than one type 

of amino acid derivative per microwell in each coupling step to prevent generation of 

different amino acid sequences within a single spot of the microarray. It requires the 

shape and size of the microbeads to correspond to the dimensions and geometry of 

the microwells so that only one carrier can fit into a given microwell. The spherical 

shape of the microbeads is preferable since it facilitates their deposition into the 

cylindrical microwells, as well as their removal from the top surface of the substrate. 
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The ratio between the microwell diameter and the microbead diameter, as well as the 

ratio between the microwell depth and the microbead diameter, determine the 

maximum number of spherical microbeads fitting into a microwell. Since the range 

of acceptable ratios is quite narrow, the microbeads have to be quasi-monodisperse. 

The microbeads are applied into the microwells stochastically, which means that it is 

not known in advance which type of amino acid derivative will be deposited in each 

microwell. Therefore, there should be a certain principle behind the microbead 

deposition, which would enable decoding of their allocation pattern on the substrate.  

Implementation 

The architecture and composition of the microbeads have to comply with all the 

requirements mentioned above. Two conceptually different approaches to design the 

microbeads were considered during preliminary studies. 

The first approach implies that the microbead is composed of a soluble polymer 

matrix with amino acid derivatives embedded inside (Figure 22, left). After 

deposition of the microbeads into the microwells, the polymer matrix undergoes 

melting while being exposed to elevated temperatures so that the embedded 

monomers can diffuse to the surface of the substrate and couple to its functional 

groups. Using the styrene-acrylic-copolymer resin as a matrix material has several 

advantages compared to alternative substances. The glass transition temperature of 

the copolymer resin is low enough to enable melting of the microbeads at 90 °C. 

Amino acid 

derivatives 
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labels 

Soluble polymer 

matrix 

Cross-linked polymer 

microsphere 

Figure 22. Microbead architecture: (left) soluble polymer microbeads with amino acid derivatives and 

fluorescent labels embedded inside; (right) cross-linked polymer microsphere with amino acid 

derivatives and fluorescent labels incorporated into a thin outer surface layer.  
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Moreover, the styrene-acrylic-copolymer resin is soluble in standard organic 

solvents, such as acetone or dichloromethane (DCM), which makes the removal of 

the polymer residues after the amino acid coupling easy and straightforward. 

The microbeads based on the soluble polymer matrix can be manufactured using a 

spray drying technique [30]. This method is suitable for generating microbeads of a 

quasi-spherical shape with an output of up to 100 gram per process run. However, 

the resulting microbeads are polydisperse, which requires an additional step of fine 

separation using sieving instrumentation (Figure 23). 

 
Figure 23. Styrene acrylic copolymer microbeads manufactured with a spray drying technique: 

(a) SEM image of the microbeads with embedded amino acid derivatives; (b) microbead size 

distribution [30]. 

An alternative microbead architecture was suggested and implemented within the 

scope of the present research project. Special polymer-based microspheres are used 

as solid carriers of the amino acid derivatives (Figure 22, right). They are pre-

synthesized by emulsification polymerization with subsequent cross-linking, which 

makes them mechanically stable and not soluble in organic solvents. The 

polymerization process results in the microspheres with an extremely narrow size 

distribution, whereas the degree of cross-linking defines their mechanical stability 

and swelling limits in organic solvents. Under certain conditions, the polymer 

undergoes swelling, which enables the diffusion of the amino acid derivatives into 

the outer surface layer of the microspheres. During the subsequent shrinkage of the 

cross-linked polymer, the introduced substances are immobilized within the 

microspheres making them suitable for peptide microarray manufacturing. 

The aspects related to the decoding of the microbead deposition pattern require a 

separate consideration. A straightforward approach to derive information on the 

5 µm 

a b 
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microbead allocation is to sequentially deposit different types of microbeads with 

intermediate optical detection of the substrate’s filling pattern (Figure 24). Initially, 

the microbeads carrying the first type of amino acid derivative are randomly 

distributed between the microwells of the substrate. The deposition pattern is 

derived upon image acquisition of the structured surface, followed by image analysis 

and data processing. Prior to deposition of the second type of microbeads, the 

recently deposited carriers have to be fixed within the cavities to prevent their 

removal or exchange with the carriers of the second type. The process of microbead 

deposition, imaging and fixation is performed until all the microwells are filled with 

the microbeads of various types. 

 

The main disadvantage of this approach is that it is labor-intensive and time-

consuming. Moreover, the risk of microbeads’ removal and exchange is significant 

due to the fact that the subsequent carriers are mechanically applied over previously 

Figure 24. Schematic illustration of an amino acid pattern decoding based on sequential deposition of 

the microbeads, carrying individual monomers, and their intermediate optical imaging. This approach 

implies that within a single synthesis cycle the microbead deposition and optical imaging have to be 

done up to 20 times to fill the microwells with 20 different amino acid derivatives. 
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deposited ones. Furthermore, the filling rate of the microstructures by each type of 

microbeads is not homogenous and mainly depends on the deposition procedure.  

An alternative approach in deriving the amino acid deposition pattern involves 

preliminary labelling of the microbeads with special fluorescent markers that can be 

detected by using modern readout instrumentation (Figure 18). The fluorescent 

labels have to be unique in terms of their emission spectrum to enable decoding of 20 

different types of microbeads. Organic fluorophores are not suitable for this purpose 

since their emission spectra are too broad to encode multiple types of microcarriers 

(Figure 25a). Furthermore, they are not convenient to utilize due to having different 

excitation wavelengths and a low photostability. To overcome the limitations of the 

fluorescent organic dyes, it was proposed to use quantum dots (QD) for labelling of 

the microbeads. These nanoscale semiconductor particles emit light in a narrow 

range of frequencies, which makes it possible to differentiate between multiple types 

of QDs (Figure 25b). At the same time, the excitation of QDs can be performed at any 

wavelength lower than their emission. Compared to organic fluorophores, QD based 

labels are 20 times brighter and 100 times more stable [31].  

 

Despite the fact the emission spectra of the fluorescent semiconductor nanoparticles 

are relatively narrow, it is practically impossible to choose 20 different types of QDs 

that can be reliably differentiated from each other. However, using multiplexed 

optical encoding, the number of fluorescent labels can be increased significantly [32, 

33]. Implementing five types of spectrally resolved QDs and combining up to three 

types of QDs per microbead enables encoding of 25 types of microbeads (Figure 26). 

Figure 25. Emission spectra of organic fluorophores in comparison with QDs: (a) emission spectra of 

different DyLight dyes; (b) emission spectra of CdSe/ZnS quantum dots (image credit: Thermo Fischer 

Scientific and PlasmaChem GmbH). 
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Due to their nanoscale size, the QDs can be implemented as fluorescent labels within 

the microbeads based on both architectures. In case the microbeads are made of the 

soluble polymer resin, the QDs are immobilized inside along with the amino acid 

derivatives. In case the microbeads are based on the solid-carrier architecture, the 

QDs are incorporated into the outer surface layer of the microspheres. In both cases, 

the matrix material should serve as a good solvent for the QDs to prevent their 

aggregation and mutual quantum influence. At the same time, the microbeads have 

to be transparent for the excitation and emission of the embedded QDs. 

During preliminary trials, the microbeads based on the soluble styrene-acrylic-

copolymer resin demonstrated low mechanical stability. Moreover, the solubility of 

QDs in the polymer matrix was not sufficient to enable appropriate labelling of the 

microbeads. Due to these reasons, the decision was made to proceed further with the 

microbeads based on the solid-carrier architecture. 

2.2.3 Microbead Deposition 

Requirements 

The microbead deposition into the microwells of the substrate takes place prior to 

each step of peptide chain elongation. The microwells, which unintentionally remain 

unfilled, contain no amino acid derivatives that could couple to the free amino 

groups of the functional layer. During the subsequent capping step, the terminal free 

amino groups are acetylated, which results in termination of the peptide synthesis 

Figure 26. Schematic illustration of a multiplexed encoding of microbeads by various combinations of 

QDs. Selecting five types of spectrally resolved QDs and combining up to three types of QDs per 

microsphere enables encoding of up to 25 types of microbeads. 



Stochastic Peptide Microarrays 

 

34 

process. In order to minimize the risk of generating truncated amino acid sequences, 

the microwell filling rate has to be as close to 100 % as possible. 

The microbeads are applied over the substrate in a substantial excess compared to 

the number of the microwells to be filled. The microbeads, which are left on the top 

surface of the microstructured substrate, can cause problems during the amino acid 

extraction and coupling steps. The amino acid derivatives from the microbeads left 

on the top surface can diffuse into the neighboring microwells containing the amino 

acid derivatives of a different type. It results in a contamination of a given peptide 

spot by peptide chains with randomly substituted unknown monomers, which, in 

turn, can induce false positive signals when performing a bioassay. Therefore, it is 

crucial to prevent any microbead residues of the on the top surface of the substrate. 

The microbeads are exposed to certain forces during their deposition and removal. 

These forces have to be sufficient to overcome an adhesion of the microbeads to each 

other, as well as to the functional layer of the substrate. At the same time, the method 

of microbead deposition and removal has to be gentle enough not to induce their 

mashing or destruction when hitting the edges of the microwells. The debris from the 

destroyed microbeads can lead to the contamination of the microwells with arbitrary 

amino acid derivatives. 

Implementation 

The methods of microbead deposition can be split in two groups: suspension-based 

methods and powder-based methods. Suspension-based methods imply that the 

microbeads are applied over the microstructured substrate being dispersed in a 

continuous liquid phase. The main advantage of using liquid medium is a significant 

reduction of adhesion forces between the microbeads and the surface, which enables 

subtle movement of the microbeads with minimal forces applied. However, the 

liquid medium has to be carefully selected not to affect the physical or chemical 

stability of the microbeads.  

Provided that the density of the liquid phase is lower than the density of the 

microbeads, the latter can sediment onto the microstructured substrate immersed in 

the suspension [34]. After a multilayer of microbeads is generated over the substrate, 

minor lateral movements of the medium can be induced by placing the vessel with 

the suspension onto a rotary shaker (Figure 27). The movement of the microbeads 
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introduced into the microwells is restricted by the walls of the microwells, whereas 

the microbeads on the top surface undergo lateral displacement being stochastically 

guided into the vacant microwells. After repeating the steps of sedimentation and 

lateral shaking several times, the microwells are considered to be filled, while the 

microbeads from the top surface are washed away. 

 

Another suspension-based method employs a microfluidic channel with the 

microstructured substrate placed inside (Figure 28) [35]. The suspension of the 

microbeads is slowly pumped through the channel with the front meniscus and the 

rear meniscus moving along the surface of the substrate. The microbeads are pushed 

by the capillary force of the rear meniscus into the vacant microwells. The excessive 

microbeads are taken away by the flow of the continuous liquid phase. 

 

Figure 27. Microbead deposition by sedimentation from a suspension. A suspension of microbeads is 

applied over the microstructured substrate (left). Upon sedimentation, the microbeads fill the 

microwells and cover the top surface of the substrate (middle). After slight lateral movements of the 

liquid phase, the microbeads from the top surface are moved away, whereas the movement of the 

microbeads in the microwells is geometrically restricted (right). The steps of sedimentation and lateral 

shaking can be performed several times to achieve higher filling rates. 

Figure 28. Microbead deposition using a microfluidic channel. A microbead suspension is pumped 

through the microfluidic channel so that the rear meniscus pushes the microbeads into the vacant 

microwells and pulls the excessive microbeads along the surface of the substrate. 
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During preliminary trials, the suspension-based methods demonstrated promising 

results in terms of the filling rates. However, a deeper analysis revealed a conceptual 

problem: The continuous liquid phase acts as an extraction and diffusion medium for 

the amino acid derivatives. This results in a massive contamination of the microwells 

with various types of monomers during the microbead deposition step. Therefore, 

the decision was made to avoid using the liquid phase and apply the microbeads into 

the microwells in a powder form (Figure 29). 

The powder-based deposition implies that the mixture of dry microbeads is applied 

over the substrate. Perhaps the most sophisticated method is using the microbeads 

doped with paramagnetic nanoparticles so that the microbead mixture can be 

stochastically guided by a dynamic magnetic field [36, 37] (Figure 29a). A much 

easier approach is to implement a special rubber-based roller, similar to those used in 

laser printers, to orthogonally deposit the microbeads into the microwells, while 

removing the excessive microbeads from the top surface (Figure 29b) [38]. An 

alternative method utilizes a soft lint-free tissue for rubbing the microbeads into the 

microwells, whereas the microbead residues are removed from the top surface by an 

air flow applied laterally along the surface of the substrate (Figure 29c) [38]. 

Figure 29. Dry microbead deposition methods: (a) a dynamic magnetic field guiding the microbeads 

doped with paramagnetic nanoparticles; (b) a rubber-based roller orthogonally introduces the 

microbeads into the microwells; (c) a lint-free tissue spreads the microbeads over the surface 

depositing them into the vacant microwells. 
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2.2.4 Image Acquisition 

Requirements 

The principle of the stochastic peptide microarray manufacturing implies that the 

microbead deposition is performed in a random way. It is not defined in advance, 

which microbead will be deposited in each microwell of the substrate. The actual 

amino acid deposition pattern has to be derived prior to each coupling step to enable 

generation of the peptide library file. 

The microbeads developed within the scope of the present research project are 

labelled with a combination of different QDs corresponding to the amino acid 

derivatives embedded inside the microbeads. By acquiring images of the substrate in 

various fluorescent channels, the QDs emitting at the respective wavelengths can be 

visualized and further differentiated (Figure 30). In order to enable excitation of the 

fluorescent labels and readout of their emission signals, a special optical system, 

equipped with an appropriate excitation source and a set of matching narrow-band 

fluorescence filters, has to be implemented. 

 

490 nm 530 nm 570 nm 610 nm 650 nm 450 nm 

Figure 30. Schematic illustration of the QD readout principle. Five types of spectrally resolved QDs 

are simultaneously excited at 450 nm. Emission signals of the QDs are registered in the corresponding 

fluorescence channels equipped with narrow-band fluorescence filters with central transmission 

wavelengths matching the maximum emission wavelengths of the QDs. 
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The size of the microbeads imposes a restriction on the spatial resolution of the 

digital images acquired by the optical system. To enable an accurate calculation of 

the photometric data for each microbead, the image resolution has to be at least 

2 μm/pixel. At the same time, the data acquisition has to be fast enough to obtain a 

full set of images in each fluorescent channel within 2 hours. 

Implementation 

Two optical systems were considered to address the task of image acquisition of the 

microbead deposition pattern. The first system was developed in the Peptide Array 

group at the Institute of Microstructure Technology (IMT), a part of the Karlsruhe 

Institute of Technology (KIT) [39]. It employs the principles of digital macro-

photography and fluorescence imaging. The optical setup comprises of a DSLR 

camera with a 36 mm x 24 mm CMOS chip, an objective lens, an LED-based 

excitation source, an XY-translation stage, and two motorized filter wheels with a set 

of fluorescent filters (Figure 31). The optical setup is mounted on an optical table and 

enclosed by light curtains. The fact that the objective lens is placed approximately 

35 cm from the CMOS sensor results in the maximum theoretical image resolution of 

1.4 μm/pixel. The size of the CMOS chip enables imaging of a 10 mm x 7 mm area, 

which requires taking multiple pictures of the substrate followed by their stitching. 

 

Figure 31. Optical system based on the principles of digital macro-photography and fluorescence 

imaging [39]. The illumination source excites the QD labels of the microbeads deposited into the 

microwells of the substrate. Fluorescence emission from the sample is collected by the objective lens 

and guided by the deflector mirror through the filter wheel to the CMOS sensor of the camera. 
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The optical setup developed at the IMT is a flexible system: It enables the exchange of 

the excitation source and the fluorescent filters, adjustment of the image resolution 

and the imaging procedure. However, the inherent drawback of the camera-based 

system is optical aberrations. To compensate chromatic aberrations, the position of 

the camera has to be adjusted for each fluorescence channel to ensure that the focal 

plane matches the substrate surface. Moreover, the need to combine up to 32 

partially overlapping pictures into one image comes across the limitations of the 

stitching algorithm: In some cases, the image stitching process results in critical 

errors. 

An alternative approach to image acquisition is using a fluorescence scanning 

technique. It enables point-by-point excitation of the sample with different laser 

sources and readout of the fluorescence emission in several optical channels (Figure 

32). The principle of confocal fluorescence scanning enables aberration-free image 

acquisition of the whole substrate in a single run. A spatial resolution of up to 

0.5 μm/pixel can be provided by the fluorescence scanners available on the market.  

 

Based on comparative studies of the camera-based optical setup and the fluorescence 

scanner available at IMT, the decision was made to proceed with the confocal 

scanning technique for image acquisition. 

Figure 32. Schematic illustration of the optical setup of a confocal laser scanner. 
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2.2.5 QD Label Decoding 

Requirements 

The images of the microstructured substrate are used to acquire information on the 

QD fluorescence signals of approximately 3 million microbeads. These signals have 

to be further analyzed and interpreted with an aim to derive the amino acid 

deposition pattern in the microwells of the substrate. 

In the first step, the QD signals originating from each microwell have to be 

quantified for different fluorescence channels. Thereafter, the microwells containing 

the microbeads of the same type have to be grouped into clusters. In the final step, a 

certain type of amino acid derivative has to be assigned to each cluster, thereby 

resulting in the amino acid deposition pattern on the substrate. 

Implementation 

The first step of image analysis with an aim to derive photometric data for each 

microwell can be performed using the software supplied by the manufacturer of the 

fluorescence scanner. For this purpose, a virtual grid is applied over the 

microstructured area in the image so that each microwell is treated as an individual 

grid element. The pixels of each grid element are automatically processed resulting 

in a numeric data array of the spot signal values. 

The second step of grouping the microwells into clusters can be performed using two 

conceptually different approaches. The first approach is based on supervised 

machine learning. It implies that prior to peptide microarray manufacturing a set of 

training data is individually obtained for a statistically relevant number of 

microbeads of each type. This data is further processed to derive characteristic signal 

ranges for all 20 types of microbeads. These characteristic signals are used later on 

for the classification of the microbeads stochastically deposited into the microwells. 

The methods based on supervised learning are relatively easy and straightforward to 

implement. However, they possess several drawbacks in context of the microbead-

based stochastic peptide microarray manufacturing. Every time a new batch of 

microbeads is fabricated, their fluorescence signals are slightly different from those 

of a previous batch. It means that the tedious training of the algorithm has to be 

performed for each batch of the microbeads. Moreover, the classification criteria 
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become obsolete due to the aging of the QDs during long-term storage of the 

microbeads and emission spectrum shifts in different environmental conditions.  

An alternative approach to microbead differentiation is based on unsupervised 

learning. It implies that the objects to be classified possess a hidden structure, which 

can be derived from their analysis. Unsupervised learning algorithms do not require 

any preliminary information on the statistical distribution of the microbead signals. 

They are mainly based on the assumption that the microbeads of a similar type will 

be described by similar sets of fluorescence signals obtained in different optical 

channels.  

Three methods of unsupervised learning were considered to address the task of 

microbead classification: k-means clustering, expectation-maximization (EM) 

clustering, and density-based spatial clustering of applications with noise 

(DBSCAN). The method of k-means does not demonstrate sufficiently good results 

due to the fact that the clusters of various types significantly differ from each other in 

size and object density. The EM method shows poor performance in high-

dimensional cases and therefore is not suitable when working with multiple 

fluorescence channels. The best results during preliminary tests were obtained using 

the DBSCAN method. It employs the principle of density-based clustering: The 

objects closely packed in a given space are grouped together into a cluster, whereas 

the objects which are located in low-density regions are considered to be outliers. 

This method is described in details in Section 2.3.3. 

2.2.6 Amino Acid Extraction and Coupling 

Requirements 

The amino acid derivatives are transferred into the microwells of the substrate being 

embedded into the polymer microspheres. It ensures that the monomers are not 

exchanged between the microbeads carrying different amino acids. However, the 

microbeads should be capable to release the embedded monomers under certain 

conditions so that they can take part in peptide chain elongation. Therefore, a special 

procedure had to be developed to enable extraction of the amino acid derivatives 

from the microbeads, their diffusion to the functional layer and coupling to the 

terminal amino groups of the growing peptide chains. 
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In stochastic microbead-assisted peptide synthesis, the amount of monomers 

available for coupling depends on the carrying capacity of the microbeads and the 

efficiency of the extraction process. An insufficient amount of monomers in the 

functional layer imposes the risk that the output of the full-length synthetic peptides 

will be very low. Therefore, the primal requirement for the amino acid extraction and 

coupling procedure is the maximization of the coupling yield in each synthesis cycle. 

The coupling of the amino acid derivatives requires a certain medium to be present 

in each microwell that enables their diffusion to the functional groups of the 

substrate. If the amount of this medium exceeds a certain limit, it can form a 

continuous layer over the surface, whereby the amino acid derivatives can diffuse 

into the neighboring microwells. Therefore, the extraction and coupling have to be 

performed in such a way so that the diffusion of the monomers is prevented. 

Implementation 

Two approaches of the amino acid extraction and coupling were considered. The first 

approach is to expose the microbeads to elevated temperatures, whereby the 

polymer matrix undergoes melting [22]. The amino acid derivatives gain mobility 

and can diffuse to the functional layer of the substrate through the molten matrix 

material (Figure 33). This approach is suitable for the microbeads made of a soluble 

polymer resin with low glass transition temperature and not applicable in case the 

microbeads are based on the cross-linked polymer microspheres. 

 

Within the scope of the present project, an alternative approach to amino acid 

extraction and coupling was proposed and implemented. The amino acid derivatives 

are extracted from the microbeads by an appropriate organic solvent that 

additionally serves as a diffusion medium. The liquid medium has to facilitate 

T °C 

Figure 33. Amino acid extraction at elevated temperatures. Polymer microbeads undergo melting at 

elevated temperatures, whereby the embedded amino acids gain mobility so that they can diffuse and 

couple to the functional groups of the substrate.  
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swelling of the cross-linked polymer and dissolving of the embedded amino acid 

derivatives. Moreover, it has to be confined to each microwell to prevent diffusion of 

the monomers over the substrate. The challenge is to apply tiny amounts of the 

liquid medium simultaneously into all microwells, while the top surface of the 

substrate remains dry. To address this problem, it was proposed to employ the 

principle of capillary condensation of an organic solvent from a saturated gas 

atmosphere into the microwells of the microstructured substrate (Figure 34). 

 

The organic solvent in a liquid state is placed into a special chamber closed thereafter 

by a lid. While the solvent evaporates, its concentration in the gas phase gradually 

increases until the adsorption-desorption equilibrium is achieved. The steady-state 

concentration of the solvent vapor corresponds to a saturated gas at given ambient 

conditions. Thereafter, the substrate with deposited microbeads is placed into the 

chamber. Due to the fact the saturated vapor pressure in the microwells is lower than 

the saturated vapor pressure over the flat surface, the organic solvent starts to 

condensate in the microstructures. By controlling the process duration, the amount of 

the condensate can be fine-tuned. After the substrate is taken out of the chamber, the 

organic solvent undergoes evaporation from the microwells leaving the extracted 

amino acid derivatives in the functional layer. 

The coupling of the extracted amino acid derivatives takes place in an additional 

process step. The substrate is placed in the oven in a special chamber filled by an 

inert gas. At elevated temperatures, the amino acid derivatives react with the 

functional groups of the substrate much faster resulting in high coupling yields. 

Saturated gas 

atmosphere 

Figure 34. Amino acid extraction in a saturated atmosphere. A saturated gas of an organic solvent is 

subjected to capillary condensation in the microwells of the microstructured substrate, whereby the 

cross-linked polymer microspheres undergo swelling and release the amino acid residues.  
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2.2.7 Microbead Removal 

Requirements 

After the extraction and coupling steps are performed, the main function of the 

microbeads as carriers of the amino acid derivatives is considered to be fulfilled. 

They have to be removed from the microwells of the substrate to enable deposition of 

fresh microbeads for the next coupling iteration. However, being exposed to the 

organic solvent and elevated temperatures, the microbeads based on a cross-linked 

polymer are firmly attached to the functional layer of the substrate. In order to 

prevent the permanent blocking of the microwells, a special procedure has to be 

implemented for the complete removal of the microbeads from the microstructures. 

The amino acid derivatives are embedded into the microbeads in a certain excess. 

During removal of the microbeads, the residues of the activated amino acids can lead 

to contamination of the microwells. Therefore, the removal of the microbeads has to 

be performed in such a way so that the risk of the cross-contamination is eliminated. 

Implementation 

Several techniques can be implemented to ensure removal of the microbeads from 

the substrate. The microbeads based on the polymer resin can be easily removed by 

washing the substrate in a suitable organic solvent (Figure 35). The polymer matrix, 

QD labels and the residues of the amino acid derivatives dissolve well in chlorinated 

organic solvents. Repeating the washing cycle several times ensures that the 

microwells are devoid of any residues. Since the washing takes place in a liquid state, 

a special agent is added to the solvent, which passivates the amino acid residues. It 

prevents contamination of the microwells by a mixture of different monomers. 

Although this method is simple and straightforward, it is not suitable for the 

microbeads based on the cross-linked polymer microspheres. 

 

Organic solvent 

Figure 35. Removal of the polymer matrix and the excessive amino acid derivatives by dissolving 

them in an appropriate organic solvent. Special additives are implemented to passivate the residual 

monomers (the coupled amino acids are not shown for simplicity). 
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An alternative approach employs an adhesive tape to collect the microbeads from the 

microwells of the substrate (Figure 36). An adhesive tape is applied over the 

substrate, whereby all the microbeads get attached to the adhesive layer. In case the 

adhesion of the microbeads to the adhesive layer is stronger than to the functional 

layer of the substrate, they are removed from the microwells by detaching the tape 

from the substrate. This method does not impose any risk of amino acid cross-

contamination. However, its reproducibility depends on the homogeneity of the 

adhesive layer and the uniformity of applying the tape over the substrate. 

 

The microbeads can be removed from the microwells by immersing the substrate in 

an appropriate solvent and exposing it to the acoustic vibrations generated in an 

ultrasonic bath (Figure 37). The microbeads swell in the solvent, which facilitates 

their detachment from the surface of the substrate. A special agent, preliminary 

added to the solvent, passivates the monomer residues. The acoustic waves, 

transmitted through the liquid medium, induce the removal of the microbeads from 

the microwells. Exchanging the liquid medium and repeating the process several 

times ensures a complete removal of the microbeads from the microstructures. 

 

Figure 36. Microbead removal using an adhesive tape. 

Adhesive tape 

Ultrasonic waves 

Liquid medium 

Figure 37. Microbead removal using ultrasonic waves. The microstructured substrate is immersed into 

an appropriate liquid medium and exposed to the acoustic vibrations generated in an ultrasonic bath, 

whereby the microbeads are removed from the microwells.  
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2.3 Theoretical Foundations 

In this section, the theoretical foundations of the processes underlying the stochastic 

peptide microarray manufacturing are briefly reviewed.  

2.3.1 Adhesion of Microbeads 

The principle of microbead deposition is based on the geometric constraints the 

microwells impose on the microbeads. Applying a sufficient tangential force enables 

removal of the excessive microbeads from the top surface without affecting the 

microbeads inside the microstructures.  

The adhesion of microbeads to a solid surface in a gas medium can be caused by the 

van der Waals force (FvW), the electrostatic force (Fel), and the capillary force (Fc): 

For absolutely smooth and undeformable bodies, the force of the van der Waals 

interaction between a spherical particle and a plane is defined as [40]: 

vW 26

Ar
F

H
  (2) 

where A is the material-dependent Hamaker constant of the molecular interaction of 

the condensed bodies, r is the radius of the particle, and H is the gap width 

determined by the Born repulsion and is usually taken as 0.4 nm in air. 

When rubbing a mixture of microbeads with a lint-free tissue over the substrate, the 

microbeads may become electrically charged due to the triboelectric effect. Assuming 

that the charged microbeads induce an equal and opposite charge on the surface, the 

resulting electrostatic force can be approximated by the formula [40]: 

where q is the particle charge, and ε0 is the vacuum permittivity. 

When the relative humidity exceeds 65 %, condensation of water vapor takes place at 

the contact point between the microbead and the surface, which leads to a liquid 

bridge formation. The arising capillary force contributes to the adhesion of the 

microbead to the substrate according to the formula [40]: 
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c 4 cosF r   (4) 

where γ is the surface tension of the liquid, and θ is the contact angle between the 

liquid and the surface. 

For the microbeads with a diameter of 10 µm, the capillary force is the dominating 

component of the microbead adhesion to the substrate, as long as the liquid bridge is 

formed [41]. The second largest component is the van der Waal force, which is lower 

by an order of magnitude than the capillary force. Even in the case the model 

microbeads have the maximum surface charge density (defined by the electric field 

limit for discharging), the contribution of the electrostatic force to the adhesion is 

lower by one order of magnitude than the van der Waals force. 

When removing the excessive microbeads from the top surface of the substrate with 

a compressed air flow, the microbeads are subjected to the adhesion force (Fad), the 

microbead weight (Fg), the drag force (Fdr), and the lift force (Flif). The condition for 

the detachment of a microbead can be expressed by inequality [40]: 

 dr ad g lifF F F F    (5) 

where µ is the coefficient of friction. 

For 10 µm microbeads, Fad >> Fg and Fdr >> Flif so that the criterion for their 

detachment can be defined as follows: 

dr adF F  (6) 

Assuming the microbeads on the top surface of the substrate are completely 

submerged into the laminar boundary layer, the drag force arising from the air flow 

around the microbead can be calculated from the formula [40]: 

dr p6F v r  (7) 

where η is the dynamic viscosity of the air stream, and vp is the air flow velocity at 

the level of the particle center. 

Neglecting the electrostatic interactions and the liquid bridge formation (at the relative 

humidity < 65 %), the air flow velocity needed to remove the microbeads from the top 

surface can be estimated by combining Eq. (1), Eq. (2), Eq. (6) and Eq. (7): 
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The critical air flow velocity was estimated to be around 175 m·s-1, which is one order 

of magnitude greater than the actual airflow needed to remove the microbeads from 

the top surface of the substrate. We assume that the microbeads were partially 

submerged into the turbulent boundary layer during their removal with a 

compressed air flow. For a given free-stream velocity, the drag force under turbulent 

flow conditions is approximately two orders of magnitude greater than the drag in a 

laminar boundary layer [40]. It means that the microbeads could be removed from 

the top surface by far lower stream velocities than estimated by Eq. (8) in case their 

detachment took place under the turbulent boundary conditions. 

2.3.2 Excitation and Emission of Quantum Dots 

QDs are semiconductor particles with a diameter of several nanometers. Due to their 

extremely small size, QDs behave similarly to three-dimensional quantum wells. The 

energy states allowed in a quantum well correspond to the energy levels that cause 

the de Broglie wavelength to form a standing wave. The de Broglie wavelength λdB of 

a charge carrier with the mass m and energy E is defined as: 

2

dB
2

h

mE
   (9) 

where h is the Planck constant. The condition for a standing wave is given by: 

dB 2n d   (10) 

where d is the quantum well width, and n is an integer. 

Combining Eq. (9) and Eq. (10) results in the discrete-energy levels of a confined 

electron in the quantum well as a function of the integer n: 
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Under exposure to an electrical charge or a light source, an electron in the QD can be 

excited into the conduction band, leaving a hole in the valence band. Both the excited 

electron and the hole exist in one of the n energy states of the respective bands. 

Emission of a photon can take place when the electron from the n = 1 energy state in 

the conduction band undergoes relaxation to the n’ = 1 energy state in the valence 

band. The energy of the emitted photon Ephoton can be approximated as the sum of the 
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bulk band gap energy EBG and the confinement energies of the hole and the excited 

electron (the term describing the bound energy of the exciton is neglected) [42, 43]: 

2 2

photon BG * 2 * 2

e h8 8

h h
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m d m d
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where m*e and m*h are the effective masses of the electron and the hole.  

The photon energy is defined by its wavelength λex as: 
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where c is the speed of light in vacuum.  

Assuming that the QD diameter can be approximated by d, the relation between the 

emission wavelength and the QD size is derived in the form: 
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As follows from Eq. (14), the emission wavelength of QDs can be tuned by changing 

their size, shape and composition. In particular, the QDs with larger diameters emit 

longer wavelength (Figure 38). For instance, the CdSe QDs with a diameter of 6 nm 

emit in the red region of the spectrum, whereas the CdSe QDs with a diameter of 

2 nm emit in the blue region of the spectrum [44].  

 

Figure 38. Schematic illustration of the quantum confinement effect. The bandgap of the 

semiconductor material increases with the decreasing size of the QDs, resulting in shorter emission 

wavelengths. Reproduced from [44] with permission of The Royal Society of Chemistry 

(http://dx.doi.org/10.1039/C0CS00055H). 
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The emission spectrum of a single QD is described by a Lorentzian function due to 

homogeneous spectral line broadening. In case of an ensemble of QDs, having a 

statistical size distribution, their emission spectrum is described by a Gaussian 

function due to the superposition of the spectral Lorentzian functions. 

2.3.3 DBSCAN Clustering 

The DBSCAN algorithm, proposed in 1996, is nowadays one of the most common 

data clustering methods [45]. Its principle is based on grouping together closely 

packed data points, whereas the data points in low-density regions are marked as 

outliers. 

Two parameters are required for DBSCAN, which are the neighborhood radius (εс) 

and the minimum number of neighbors (Nmin). For a certain set of points to be 

clustered, each element is classified either as a core point (if at least Nmin points are 

within its εс-neighborhood including the core point itself), a border point (if less than 

Nmin points are within its εс-neighborhood and at least one of them is a core point), or 

a noise point (not a core point nor a border point). A given core point forms a cluster 

together with all the core and border points reachable from it (Figure 39). 

 

An abstract DBSCAN algorithm is performed in three steps. First, the number of 

neighbors within the εc-neighborhood is defined for each point. The core points are 

identified with at least Nmin neighbors (including the point itself). Second, the core 

points reachable from each other are grouped into individual clusters. Third, the 

Figure 39. Schematic illustration of DBSCAN clustering. Point C and other green points are assigned 

as core points since each of them has at least three neighbor points (Nmin = 3) reachable within ε. Since 

each of the core points is reachable from one another, they build up a cluster. Point B and another blue 

point are border points. They belong to the cluster, being reachable from the core points. Point N is a 

noise point. It is not reachable from any of the core points; therefore it does not belong to the cluster.  

N 
B 

C 

εc 
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non-core points, reachable from at least one core point, are assigned to the respective 

cluster as border points. The remaining points are assigned as noise. The run time 

complexity of such an algorithm is O(n2) [46]. In case a query-based algorithm is 

implemented, an overall run time complexity is reduced to O(n log n). 

With respect to the problem of decoding the microbeads of various types, the 

DBSCAN algorithm has several advantages compared to other methods. It enables 

classification of arbitrarily distributed data into clusters of any shape. The algorithm 

makes it possible to identify noise points, whereas its overall performance is not 

affected by the outliers. The DBSCAN method requires just two parameters that can 

be pre-set for a well-understood data. The main drawback of DBSCAN is that it 

cannot properly handle data sets with highly different densities. 

2.3.4 Capillary Condensation 

The amino acid derivatives are extracted from the microbeads using an appropriate 

organic solvent in a liquid state. To avoid diffusion of the monomers to the 

neighboring microwells, the liquid medium has to be confined to the microstructures 

without forming a continuous layer over the top surface of the substrate. The 

problem of simultaneous and precise deposition of the extraction medium into the 

microwells was solved by its capillary condensation from a saturated gas.  

When placed into a closed extraction chamber, the organic solvent in the liquid state 

undergoes evaporation, thereby increasing the concentration of its molecules in the 

gas state. In a closed system, the pressure of the vapor in thermodynamic 

equilibrium with its condensed phase defines the equilibrium vapor pressure at a 

given temperature. It can be approximated by the semi-empirical Antoine equation 

in the basic form: 

TC

B
AP


10log  (15) 

where P is the vapor pressure, T is the temperature and A, B and C are substance-

specific constants.  

The state of thermodynamic equilibrium between the vapor and the liquid medium 

depends on the curvature of the interface between the two phases. In case of a 

spherical meniscus the liquid medium forms in a microwell, the equilibrium vapor 

pressure is described by the Kelvin equation [47]: 
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where P(∞) is the saturating vapor pressure when the surface of the liquid is flat, γ is 

the surface tension of the liquid, Vm is the molar volume of the liquid, R is the 

universal gas constant, and r is the radius of the spherical meniscus.  

The radius of the spherical meniscus depends on the radius of the microwell rc and 

the contact angle θ between the liquid and the surface and can be derived as [47]: 

c

cos

r
r


  (17) 

In view of Kelvin equation, the saturating pressure of the organic solvent in the 

microwell is less than the saturating vapor pressure in the extraction chamber. This 

may result in condensation of the organic solvent in the microwells at the vapor 

pressures lower than the normal saturating vapor pressure when the surface of the 

liquid is flat. In the following, three different scenarios are considered for a 

cylindrical microwell with radius rc, exposed to the vapor pressure Pv. 

If the actual vapor pressure is lower than the saturating vapor pressure in the 

microwell Pv < P(r), the condensation does not take place. If the vapor pressure is 

equal to the saturating vapor pressure in the microwell Pv = P(r), the organic solvent 

condensates in the microwell and fills it until the meniscus with radius r reaches the 

edge of the microwell. If the vapor pressure is between the saturating vapor pressure 

in the microwell and the saturating vapor pressure when the surface of the liquid is 

flat P(r) < Pv ≤ P(∞), the organic solvent condensates in the microwell and fills it until 

the meniscus with infinite radius is formed at the edge of the microwell. 

In case the microwells are filled with microbeads, the radius of the meniscus is 

expected to be much smaller than that in the empty microwell. It should result in a 

lower saturating vapor pressure in the filled microwell and enhanced condensation 

of the organic solvent in the microwell from its saturated vapor. 

2.3.5 Diffusion of Amino Acid Derivatives 

During their extraction from the microbeads, the amino acid derivatives diffuse over 

the functional layer wetted by the organic solvent. The diffusion of the monomers 

should be sufficient to cover the bottom of the microwell and at the same time it 
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should be limited by the microwell surface area to prevent contamination of the 

neighboring microwells. 

To simplify the problem, assume a microbead is deposited onto a flat functionalized 

substrate. The contact point between the microbead and the substrate can be 

considered as a point source of the extracted amino acid derivatives with the initial 

amount of n0. In this case, the time-dependent concentration profile of the amino acid 

derivatives over the surface can be described by the formula [48]: 

  









Dt

r

Dt

n
trc

4
exp

4
,

2
0


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where D is the diffusion constant and r is the distance in two-dimensional space: 

Assuming the amino acid derivatives behave as spherical nanoparticles, the diffusion 

constant can be estimated from the Stokes-Einstein law [48]: 

a

kT
D

6
  (19) 

where k is the Boltzmann constant, T is the absolute temperature, η is the viscosity of 

the diffusion medium, and a is the radius of the sphere approximating the amino 

acid derivative. 

At each time point, the diffusion profile of the amino acid derivatives is described by 

a two-dimensional Gaussian function with a time-dependent height and width of the 

bell curve's peak. In reality, the amount of the amino acid derivatives at the source 

point depends on the extraction dynamics and varies over time. Moreover, the 

diffusion medium itself originates at the contact point between the microbead and 

the substrate and tends to spread over the surface over time. Both factors make the 

problem complicated to be solved analytically and therefore are not considered here. 
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3 Materials and Methods 

In this chapter, the materials and methods implemented within the scope of the 

present work are described in details. Different types of functionalized substrates are 

introduced in Section 3.1. The architecture and composition of the microbeads, as 

well as their manufacturing procedure, are discussed in Section 3.2. Section 3.3 

reviews the microbead deposition methods, whereas the imaging technique and the 

algorithm for decoding of the amino acid allocation pattern are described in 

Chapter 3.4 and Chapter 3.5, respectively. The extraction and coupling of the amino 

acid derivatives are considered in Section 3.6, followed by the description of the 

microbead removal in Section 3.7. Section 3.8 introduces general chemical procedures 

implemented in series of experiments. Finally, the framework for the prototype 

manufacturing is described in Section 3.9. 

3.1 Functionalized Substrates 

Two different types of functionalized substrates were used in experiments, which are 

microstructured and flat substrates. The purpose and characteristics of each type of 

substrate are described below. 

3.1.1 Microstructured Substrates 

Microstructured functionalized substrates are essential in stochastic peptide 

microarray manufacturing. They were used in several series of experiments with the 

aim to identify appropriate parameters of the microstructures, elaborate the 

microbead deposition and removal techniques, as well as optimize the extraction and 

coupling conditions for the amino acid derivatives. 

Initially, the microstructured slides with various layouts of microwells were thought 

over and later on manufactured in the clean room facilities at the IMT (Figure 40). 

The substrates were made of fused silica and had dimensions of 

20 mm x 20 mm x 0.5 mm. Each slide had nine separate fields representing 

microstructured sub-arrays with individual pitch size (P, in μm) and microwell 
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diameter (D, in μm): P40 D35, P30 D25, P20 D15, P15 D13, P15 D12, P15 D11, P10 D8, 

P10 D7, and P10 D6. The microstructures had the depth of either 9 μm or 10 μm. 

 

The microstructuring process was performed according to the protocols devised in 

the Peptide Array group at the IMT [38]. The procedure is schematically depicted in 

Figure 41. A 4-inch fused silica wafer (SIEGERT WAFER GmbH) undergoes 

preliminary wet chemical treatment to remove any organic or inorganic 

contamination from its surface. A sub-micrometer layer of chromium is coated on the 

wafer by either thermal evaporation or by sputtering. A photoresist is applied over 

the chromium layer by spin coating. After prebaking of the photoresist, it undergoes 

exposure to the UV-light pattern generated by a chromium photo-mask aligned 

between the wafer and the UV-light source. Under exposure to the UV light, the 

positive photoresist decomposes, so that it can be selectively removed by a special 

solution during a subsequent developing process, followed by a post-baking step. As 

a result, the photomask pattern is translated into the photoresist pattern on the 

wafer. On the next step, the chromium layer, unprotected by the photoresist, is 

selectively removed by reactive ion etching (RIE) in a mixture of Cl2, O2, and He. 

Thereby, the photoresist pattern is translated into the chromium pattern. After the 

photoresist residues are removed in a stripping step, the wafer undergoes RIE in 

Figure 40. Microstructured substrate (20 mm x 20 mm x 0.5 mm): (a) general view; (b) optical images of 

the microstructures with various pitch size (P, in μm) and microwell diameter (D, in μm) (from top to 

bottom row-wise): P20 D15, P30 D25, P40 D35, P15 D13, P15 D12, P15 D11, P10 D8, P10 D7, and P10 D6. 

5 mm 50 µm 

a b 
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CHF3 plasma, resulting in the selective removal of SiO2 from the surface unprotected 

by the chromium mask. The RIE parameters and the thickness of the chromium layer 

define the depth of the microstructures. During the next step, the chromium residues 

are removed from the surface. Finally, the wafer is cut into pieces having the format 

of a substrate slide. 

After the optimum parameters of the microstructures were identified in a series of 

experiments, the full-size microstructured substrates were ordered from the 

company AMO GmbH. The substrates were made of fused silica and had dimensions 

of a standard microscopic slide (75 mm x 25 mm x 1 mm). The manufacturing of the 

substrates was performed using photolithography and RIE according to internal 

protocols of the company. 

 

Chromium 

sputtering 

Surface 

preparation 

Photoresist 

spincoating 

UV exposure 

Photoresist 

development 
RIE of chromium layer,  

removal of photoresist residues 

RIE of glass, removal of 

chromium residues 

Chromium 

layer 
Photoresist 

layer 

Photomask 

Fused 

silica 

Figure 41. Simplified illustration of the microstructuring process using photolithography and RIE. A 

thin chromium layer is sputtered onto a fused silica wafer. A photoresist is applied over the 

chromium layer by spin coating, followed by its pre-baking. The positive photoresist is exposed to the 

UV light resulting in its selective decomposition and further removal. In the next step, the chromium 

layer not protected by the photoresist undergoes RIE, followed by removal of the photoresist residues. 

Finally, the fused silica wafer undergoes selective RIE with subsequent chromium removal. 
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Regardless of the format of the microstructured slides, they were functionalized by a 

thin copolymer layer of poly(ethylene glycol) methacrylate (PEGMA) and methyl 

methacrylate (MMA) with mole fractions of 10 % and 90 %, respectively. The 

thickness of the functional layer ranged between 10 nm and 15 nm, whereas the 

surface density of the amino groups ranged between 1.5 nmol/cm2 and 2.5 nmol/cm2 

[49]. The functionalization of the substrates was performed according to the 

procedures developed and optimized in the Peptide Array group at the IMT. The 

process is schematically depicted in Figure 42.  

 

Prior to generating the polymer film, the substrate undergoes wet chemical treatment 

in KOH to remove any organic or inorganic contamination, as well as to activate the 

surface to yield hydroxyl groups. Thereafter, the surface undergoes salinization with 

2-bromo-N-(3-triethoxysilylpropyl) isobutyramide (bromine silane) resulting in the 

formation of a thin self-assembled monolayer (SAM). The main step of generating 

n 
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Activated glass 
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Figure 42. Schematic illustration of the surface functionalization process: (A) an activated glass surface 

bearing hydroxyl groups undergoes silanization with bromine silane; (B) the resulting silane SAM 

serves as a surface-bound initiator for radical polymerization with the monomers of PEGMA and 

MMA. The polymethacrylate backbone chain is shown schematically; (C) the hydroxyl groups of PEG 

fragments are modified with Fmoc-β-alanine to yield amino groups. 
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poly(PEGMA-co-MMA) copolymer layer anchored to the silane SAM is performed 

by using surface-initiated atom transfer radical polymerization (siATRP) with the 

monomers of PEGMA and MMA mixed in a molar ratio of 10 to 90. Finally, the 

hydroxyl groups of the poly(ethylene glycol) (PEG) side chains are modified with 

Fmoc-β-alanine to introduce the amino groups to the functional layer. Since the 

amino groups of the polymer coating are Fmoc-protected, the substrate can be stored 

under argon at temperatures between 2 °C and 8 °C. 

3.1.2 Flat Substrates 

Flat functionalized substrates were used in a series of experiments related to 

optimization of the microbead architecture and composition, as well as in 

preliminary studies of the amino acid extraction and coupling. In contrast to the 

microstructured substrates, the flat substrates enable analysis of the amino acid 

diffusion profiles. At the same time, they are much cheaper and faster to produce. 

Flat functionalized substrates with dimensions of 75 mm x 25 mm x 1 mm were 

provided by PEPperPRINT GmbH (Figure 43). The substrates were made of glass 

and were functionalized by a layer of 10:90-poly(PEGMA-co-MMA) according to the 

internal protocols of the company similar to those used in the Peptide Array group. 

The declared thickness of the polymer film ranged between 10 nm and 15 nm. 

 

Figure 43. Flat functionalized substrate (75 mm x 25 mm x 1 mm). 
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3.1.3 Quality Control 

The quality of the microstructured substrates was systematically monitored in terms 

of two criteria. First, the parameters of the microstructures had to comply with the 

declared specifications. Therefore, the pitch size of the microstructures, as well as the 

diameter and the depth of the microwells were controlled using white light 

interferometry (Contour GT, Bruker). Second, the functional layer of the substrates 

had to be homogeneous enough in terms of the surface concentration of the amino 

groups available for peptide synthesis. The quality control of the functional layer was 

performed for a single slide out of each batch of the functionalized substrates. The 

functional amino groups were Fmoc-deprotected and labelled by N-terminal  

5(6)-carboxytetramethyl rhodamine (TAMRA) fluorescent dye. The fluorescence 

signal was assumed to be proportional to the surface concentration of the functional 

amino groups and was used for the quantitative analysis of the surface homogeneity. 

3.2 Microbeads 

Several approaches in microbead manufacturing were tested during the initial phase 

of the project. Most of them turned out to be not viable in terms of the compliance of 

the resulting microbeads to the imposed requirements. Within the scope of the 

present dissertation, the microbeads that met the initial requirements are considered. 

3.2.1 Architecture and Composition 

The microbeads developed within the framework of the present project are based on 

the solid-carrier architecture. Special polymer-based microspheres were used as 

microcarriers of the amino acid derivatives and QDs. 

Solid carriers 

The cross-linked PMMA microspheres (Spheromers® CA10, Microbeads AS) were 

selected as solid carriers of the amino acid derivatives and QDs. They were 

manufactured by emulsification polymerization and cross-linking with 3 % 

divinylbenzene according to the internal protocols of the company. The microspheres 

had a mean diameter of 10 μm with an extremely narrow size distribution. The 

coefficient of variation (CV) was declared to be less than 5 % (Figure 44). 
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Amino acid derivatives 

Commercially available amino acid derivatives (Merck KGaA, Bachem AG), pre-

activated at their α-carboxyl group and protected at their α-amino group and side 

chain group (if applicable), were used as monomers in peptide synthesis. In total 20 

different types of proteinogenic amino acid derivatives were tested in terms of their 

extraction from the microbeads and coupling to the functional layer (Appendix A1). 

The declared purity (HPLC) of the monomers was ≥ 98 %. 

Quantum dots 

Hydrophobic ZnCdSeS alloyed QDs (PlasmaChem GmbH) were used as fluorescent 

markers for labelling the microbeads. The core of the QDs was coated with 

hydrophobic organic molecules, which made them readily soluble in non-polar 

organic solvents. The quantum dots with the emission maximum at 470 nm, 490 nm, 

500 nm, 520 nm, 530 nm, 550 nm, 560 nm, 570 nm, 580 nm, 590 nm, and 610 nm were 

tested. The declared accuracy of the maximum emission wavelength was +/-5 nm. 

The full width at half maximum (FWHM) of the QD emission spectra was 35 nm. 

3.2.2 Microbead Manufacturing 

The process of microbead manufacturing was developed and optimized within the 

scope of the present research project (Appendix A2). It consists of two stages 

schematically shown in Figure 45 and Figure 46. 

In the first stage, the solid carriers were labelled with individual QD combinations. A 

1 gram sample of cross-linked PMMA microspheres was dispersed in 10 mL of DCM. 

The dispersion was stirred in a closed vial for 30 min to achieve the swollen state of 

30 µm 

a b 

Figure 44. Cross-linked PMMA microspheres: (a) SEM image; (b) microsphere size distribution (image 

credit: Microbeads AS). 
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the microspheres. Thereafter, the solutions of QDs in chloroform (2.5 mg/mL) were 

sequentially added in equal volumes to the dispersion. To derive the optimum 

content of the QD labels per 1 g of solid carriers, the total volume of the QD solutions 

varied in the range between 50 μL and 150 μL. The mixture of the microspheres and 

QDs in DCM was stirred in the closed vial for another 30 min to reach the 

homogeneous state. While stirring, the hydrophobic QDs were distributed in the 

continuous phase with the relative permittivity close to that of pure DCM (εr = 8.9). 

On the next step, the vial was opened to initiate evaporation of DCM (TB = 40 °C). 

During stirring, 30 mL of acetone (εr = 20.7) were added dropwise to the dispersion 
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Figure 45. Schematic illustration of the microsphere labelling process. Cross-linked PMMA 

microspheres are dispersed in DCM and stirred to achieve swelling. The QD solution is added 

thereafter to the dispersion. In the next step, DCM is gradually replaced by acetone added dropwise to 

the dispersion. It leads to an increase in the polarity of the continuous phase, initiating precipitation of 

the hydrophobic QDs onto the swelled microspheres. Then acetone is gradually replaced by ethanol, 

initiating shrinkage of the cross-linked PMMA. After several washing steps, the labelled microspheres 

sediment and dry up after removal of the supernatant. 
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from a burette. The feeding rate of acetone was adjusted in such a way so that the 

volume of the dispersion was kept constant and equal to approximately 11 mL. The 

intention was to change gradually the composition of the continuous phase since the 

evaporation rate of acetone (TB = 56 °C) is smaller than the evaporation rate of DCM. 

As the content of acetone increased, the polarity of the continuous phase increased as 

well. The hypothesis was that the gradual increase of the polarity of the continuous 

phase induced precipitation of the hydrophobic QDs onto the microspheres that 

remain swollen in acetone. In the next step, 30 mL of ethanol (εr = 24.5) were added 

dropwise to the dispersion from the burette. The feeding rate was adjusted so that 

the volume of the dispersion remained constant. Due to the fact the evaporation rate 

of ethanol (TB = 78 °C) is smaller than that of acetone and DCM, its content in the 

continuous phase had to increase over time. It induced a gradual contraction of the 

cross-linked PMMA microspheres, resulting in immobilization of the QDs within the 

outer polymer layer. As the stirring process was terminated, the microspheres 

sedimented from the continuous phase. The supernatant was carefully removed with 

a pipette, followed by washing of the microspheres with ethanol and acetone to 

eliminate excessive QDs. Finally, the microspheres were dried to remove the solvent 

residues. 

 

On the second stage, the amino acid derivatives were introduced into the polymer 

matrix of the labelled solid carriers. A sample of amino acid derivatives was initially 

DCM 

 

Figure 46. Schematic illustration of the amino acid embedding process. QD labelled microspheres are 

dispersed in a solution of amino acid derivative in DCM. Upon stirring, the volatile solvent 

evaporates so that a paste-like medium can form. The paste dries up slowly, followed by milling of the 

dry mass into a fine powder of microbeads.  
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dissolved in 10 mL of DCM. The mass of the amino acid derivatives was varied in the 

range between 10 mg and 50 mg with the aim to define the optimum monomer 

content in microbeads. The amino acid solution was added to 1 g of QD labelled 

microspheres. The resulting dispersion was gently stirred until a paste-like medium 

was obtained due to gradual evaporation of the solvent from the open vessel. The 

paste dried up slowly over 2 hours. The resulting dry mass of microbeads was milled 

in a falcon tube with several metal spheres (Ø = 5 mm) on a vortex shaker.  

Three assumptions were made in favor of the method’s viability. First, the 

microbeads swelled in DCM within a relatively short time. Second, the QDs 

embedded into the microspheres in a previous stage remained inside the cross-linked 

polymer without being extracted. Third, the amino acid derivatives gradually 

precipitated from the saturated solution into the swelled microbeads, while the 

solvent underwent evaporation. 

3.2.3 Optimization and Quality Control 

Within the scope of the present project, the composition of the microbeads had to be 

optimized in terms of the content of both the amino acid derivatives and the QDs. To 

control the quality of the manufactured microbeads, the samples were applied either 

over the flat functionalized substrate or into the microwells of the microstructured 

substrate. The strength and the homogeneity of the QD fluorescence signals were 

studied by fluorescence imaging of the microbeads followed by image analysis. 

The nature and the content of the amino acid derivatives influenced their diffusion 

rate and the coupling yield. Under certain conditions, the amino acid derivatives 

were extracted from the microbeads and coupled to the functional layer, followed by 

acetylation of the remaining free amino groups of the substrate, Fmoc-deprotection 

of the amino groups of the coupled amino acids, and fluorescent labelling of those 

amino groups with an NHS (N-hydroxysuccinimide) ester dye (see Section 3.8). The 

fluorescence signals of the amino acid spots were considered to be proportional to 

the surface concentration of the coupled monomers defined by their coupling yield. 

The analysis of the cross-section spot profiles provided information on the diffusion 

of the amino acid derivatives extracted and coupled at given conditions. 
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3.3 Microparticle Deposition 

In the initial phase of the project, various methods were tested to deposit the 

microbeads into the microwells of the microstructured substrate. They were based on 

the surface tension impact of the meniscus inside the microfluidic channel, the 

electrostatic properties of the solid carriers, and the mechanical forces applied to the 

microbeads. In the present dissertation, two methods of microbead deposition into 

the microwells of the substrate are considered. Both methods are based on dry-state 

microbead deposition using mechanical impact. 

The first method was based on a manual spreading of a dry microbead mixture over 

the surface of the microstructured substrate by a soft lint-free tissue (Kimtech 

Science, Kimberly-Clark) (Figure 47a). The excess of microbeads was removed from 

the top surface using a compressed air flow applied under various pressures in a 

range of angles with respect to the substrate (Figure 47b). 

 

An alternative technique was based on using a doctor blade. A mixture of 

microbeads was manually spread over the substrate with a plastic spatula having a 

fine-polished edge (Figure 48). While pushing forward the microbeads along the top 

surface, the blade performed a dual function: It inserted some microbeads into the 

vacant microwells and removed the excessive microbeads from the top surface. 

b a 

Figure 47. Two-step microbead deposition: (a) spreading the microbeads with a soft tissue; 

(b) removal of the microbeads from the top surface of the substrate using a compressed air blow gun. 
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The filling rate of the microwells, the contamination of the top surface by excessive 

microbeads, as well as the fragmentation of the microbeads upon deposition were 

inspected using optical microscopy and fluorescence scanning. 

3.4 Image Acquisition 

Image acquisition was performed with a confocal fluorescence scanner 

InnoScan 1100 AL (Innopsys) (Figure 49). The scanner was equipped with three 

excitation laser sources emitting at the wavelengths of 488 nm (blue channel), 532 nm 

(green channel), and 635 nm (red channel). Each excitation source was coupled to a 

high-sensitive photomultiplier tube 

(PMT), which enabled image acquisition in 

up to three optical channels 

simultaneously. Each optical channel was 

equipped with a motorized filter wheel 

with a customer-defined set of 

fluorescence filters (Semrock, Inc.): 504/12 

and 520/5 filters in the blue channel; 

549/15, 580/14, 582/75 and 615/20 filters in 

the green channel; 673/11 and 677/45 filters 

in the red channel. The scanner had the 

optical resolution of 0.5 μm/pixel and used 

a real-time autofocus system. 

Figure 48. One-step microbead deposition. A plastic spatula is used to introduce the microbeads into 

the vacant microwells and remove the excessive microbeads from the top surface of the substrate. 

Figure 49. Fluorescence scanner  

InnoScan 1100 AL (image credit: Innopsys). 
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The images acquired with the fluorescence 

scanner were analyzed using Mapix software 

(Innopsys). A grid with predefined 

parameters corresponding to the layout of 

the microstructured substrate was applied to 

the image and automatically adjusted to 

match the microwell pattern. Each spot of the 

substrate underwent automatic segmentation 

and was analyzed in each fluorescence 

channel to derive the photometric feature 

and background values (Figure 50). The 

photometric data calculated for all the spots 

were saved in a file.  

In order to facilitate the automatic classification of the microbeads of various types, 

the combination of the fluorescence filters had to be identified that enabled the 

spectral resolution of the QD labels. It had to be done in a way to minimize the 

crosstalk of up to five different QDs in the respective fluorescence channels. The 

individual effective signals of different QDs in each fluorescence channel were 

theoretically estimated by using the formula: 
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Here, E(λ) is the emission function of a QD, T(λ) is the transmission function of a 

fluorescence filter, λ1 and λ2 are the integration limits. The transmission values of the 

filters were provided by the manufacturer, whereas the emission function of the QDs 

was approximated by a Gaussian function with the standard deviation (SD) defined 

through the FWHM: 

2 2ln 2

FWHM
SD   (21) 

To derive the optimum combination of QDs and fluorescence filters, in total 65 

narrow-band Semrock filters and 17 types of QDs, emitting in a spectral range 

between 490 nm and 650 nm with the step of the emission maximum of 10 nm and 

the FWHM of 35 nm, were considered. It resulted in 1 105 effective signal values of 

the QDs in the respective fluorescence channels. Then, all possible combinations of 

Figure 50. Automatic segmentation of the 

spots: (A) feature pixels; (B) background 

pixels; (C) excluded pixels. 

A 

B 
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five kinds of QDs and five fluorescence filters were analyzed in terms of specificity of 

the QD signals in the corresponding fluorescence channels. Finally, the theoretical 

data was confirmed experimentally by scanning the QD labelled microbeads in 

selected fluorescence channels and analyzing the cross-talk between different 

channels.  

3.5 QD Label Decoding 

For automatic classification of the microbeads, special software was developed 

within the scope of the present project. The core algorithm was based on the 

principles of unsupervised machine learning. The program was created in MATLAB 

environment (MathWorks, Inc.) and consisted of several blocks executed sequentially 

(Figure 51). 

In the first stage, the data was uploaded from a file generated with the Mapix 

software. It included the values of feature diameter, median feature signal and mean 

background signal calculated for each of approximately 3 million spots in each 

fluorescence channel.  

In the next stage, identification of the microwells containing debris of various origins 

was carried out. For this purpose, the diameters of the spots automatically calculated 

during the segmentation procedure were analyzed. If the feature diameter was 

smaller than 8 μm, the given spot was considered to be empty. These spots were 

assigned “X” values and excluded from the data array passed on to the next stage. 

Identification of the spots contaminated with relatively large impurities was 

performed in the following stage. In this case, the impurities were mainly lint 

microfibers or dust particles of a size much bigger than the pitch of the 

microstructures. Since these objects overlapped multiple microwells at once, their 

identification was based on overall analysis of the mean background values. If the 

mean background value of a spot was higher than a certain threshold value, the 

corresponding microwell was considered to be covered by an extraneous object. Due 

to the fact it was impossible to derive information, whether such microwells were 

filled with amino acid carrying microbeads and of which type, they were assigned 

“?” values and excluded from further analysis. 
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In the following stage, recognition of the empty microwells was performed. For this 

purpose, a certain threshold value of the total fluorescence signal had to be derived, 

which depended on the scanning parameters and the fluorescence characteristics of 

the microbeads. Since these parameters could differ over time, the algorithm had to 

enable identification of a dynamic 

threshold. For each microwell, the median 

feature values calculated in each 

fluorescence channel were summed up, 

thus resulting in the total detected signal. 

The microwells were arranged in groups 

depending on their total signal values. 

This step is analogous to generating a 

histogram with a certain bin size. In the 

first iteration, the bin size was assigned to 

the value Bin1, whereas the threshold Thr1 

was defined as the central value of the bin 

having the local minimum frequency. In 

the next iteration, a new histogram was 

built for the microwells with the total 

signal ranging between Thr1 – 1.5·Bin1 and 

Thr1 + 1.5·Bin1, with a bin size of 

Bin2 = Bin1/2. The adjusted threshold Thr2 

was assigned the central value of the bin 

having the minimum frequency. The 

process was repeated multiple times until 

the histogram with a bin size Binn = 1 was 

generated. The value Thrn was used as a 

global threshold to identify whether the 

microwells were filled (total fluorescence 

signal ≥ Thrn) or empty (total fluorescence 

signal < Thrn). The empty microwells were 

assigned “X” values and excluded from 

the data considered on the next stage.  

1. Read photometric  

data from the file 

2. Identification of 

microwells containing 

fragments < 8 μm 

3. Identification of 

microwells overlapped 

by impurities > 12 μm 

4. Identification of 

empty microwells 

5. DBSCAN clustering of 

filled microwells 

7. Deriving peptide 

microarray library 

6. Decoding amino acid 

deposition pattern 

Assign as “X” 

Assign as “?” 

Assign as “X” 

   Assign as 1, 2, 3…, 

or “?” 

Translate 1, 2, 3… 

to A, B, C... 

Concatenate to 

peptides 

8. Write data to the 

library file 

Figure 51. Simplified diagram of the amino acid 

deposition decoding and generation of the 

peptide microarray library. 
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The microwells, which were considered in the previous stages to be filled and non-

contaminated, were classified by the DBSCAN clustering algorithm. For this 

purpose, the median feature values of a given spot, acquired in each fluorescence 

channel, were normalized with respect to the total signal. It compensated the non-

homogeneity of the QDs labelling of the microbeads. As a result of code execution, 

the microbeads were assigned to different clusters. The judgement on which cluster 

the microbead corresponded to was based on a relative contribution of the QD labels 

to the total signal of the microbead. The microwells identified as the elements of the 

clusters were assigned a one-letter value representing the respective amino acid 

derivative. The microwells identified as outliers were assigned “?” values. 

The amino acid patterns derived for each coupling cycle were used in the final stage 

to generate a file with the peptide library. For each microwell, the amino acid 

symbols and the “?” symbol were concatenated in the order of peptide chain 

elongation from C-terminus to N-terminus, whereas the concatenation was 

terminated if the symbol “X” appeared in a given peptide sequence. Thereafter, the 

peptide sequences were reversed to conform to the notation standard from  

N-terminus to C-terminus. The derived peptide library was saved in a file, which 

was used later on to analyze the results of a bioassay. 

3.6 Amino Acid Extraction and Coupling 

Within the framework of the present project, a new method for amino acid extraction 

in context of in situ solid phase peptide synthesis was proposed. The extraction 

process took place in a saturated vapor of organic solvent. A special metal chamber 

was designed to facilitate the extraction process (Figure 52). It was made of stainless 

steel and consisted of two movable slide holders, each accommodating up to five 

substrates, and two polytetrafluoroethylene (PTFE) tanks for the liquid-state organic 

solvent. After adding 30 mL of liquid medium to the tanks, the chamber was kept 

closed for 30 min to achieve the equilibrium state. Thereafter, the slide holders with 

the substrates were inserted into the chamber for a certain period of time. After 

taking the slides out of the chamber, the process was repeated several times to 

enhance the extraction of the amino acid derivatives from the microbeads. 
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The subsequent coupling step was performed for 60 min at 90 °C. For this purpose, 

the substrate was placed into a coupling chamber, which was filled thereafter with 

argon and put in the preheated oven (Figure 53). After removing the coupling 

chamber from the oven, it was slowly cooled down to ambient temperature. 

 

The process of extraction had to be optimized with the aim to maximize the coupling 

yield of the amino acid derivatives, while the diffusion of the extracted monomers 

had to be confined to the microwells (corresponding to approximately 30 μm spots 

when using flat functionalized substrates). Three organic solvents, acetone, DCM, 

and N,N-dimethylformamide (DMF), were tested in terms of their extraction 

efficiency (Table 2). The duration of a single extraction cycle varied between 0.5 min 

and 2.0 min. The number of extraction repetitions was ranged between 3 and 15 with 

intermediate pauses of 1 min. 

a b c 

Figure 52. Extraction chamber: (a) view without a lid; (b) general view; (c) view with the slide holders 

outside the chamber. 

a b 

Figure 53. Coupling chamber: (a) general view; (b) view with an open lid. 
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Table 2. Comparison of organic solvents for amino acid extraction from microbeads. 

Parameter 
Organic solvent 

Acetone DCM DMF 

Boiling point, °C 56.1 39.6 153.0 

Vapor pressure*, kPa  30.6 57.3 0.5 

Solubility of PMMA medium high low 

Surface wettability medium low high 

(*) – vapor pressure at 25 °C. 

 

After extraction and coupling of the amino acid derivatives at certain conditions, the 

remaining functional groups of the substrate were acetylated, the amino groups of 

the coupled monomers were Fmoc-deprotected and fluorescently labelled with NHS 

ester dye (see Section 3.8). The resulting coupling yield and the diffusion of the 

amino acid derivatives were analyzed based on the images acquired by fluorescence 

scanning of the substrates. 

3.7 Microbead Removal 

Removal of the microbeads from the microwells was performed in several steps by 

placing the substrate in a liquid medium and exposing it to acoustic waves in an 

ultrasonic bath. In the first step, the substrate was placed into the falcon tube filled 

with a mixture of 5 % (v/v) N-methylethylamine (MEA) and acetone and sonicated 

for 2 min. MEA was used as a passivation additive to avoid contamination of the 

microwells with a mixture of non-coupled amino acids derivatives. In the next step, 

the substrate was sonicated for 2 min in pure acetone. The final sonication step was 

performed for 2 min in pure DCM. The microbead removal rate was analyzed by 

optical microscopy and scanning with the fluorescence scanner using neutral-density 

filters. 
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3.8 Chemical Steps 

Manufacturing of the stochastic peptide microarrays involves standard procedures of 

surface acetylation and deprotection of the terminal α-amino groups (Appendix A3), 

as well as deprotection of the side chain groups (Appendix A4). These steps are 

briefly described in this section, along with the fluorescence staining of the free 

amino groups (Appendix A6) and immunostaining of the prototype microarray with 

fluorescently labelled antibodies (Appendix A5). 

Fmoc-deprotection 

Prior to each coupling step, the terminal α-amino groups were Fmoc-deprotected. A 

solution of piperidine (20 % v/v) in DMF was applied in excess over the substrate 

and shaken on a rotary shaker for 30 min. Thereafter, the substrate was washed two 

times in DMF for 5 min each and two times in methanol for 3 min each. 

Blocking step 

After the coupling and washing steps were carried out, the unreacted free amino 

groups of the functional layer were acetylated. A mixture of acetic anhydride 

(10 % v/v), N,N-diisopropylethylamine (DIPEA) (20 % v/v), and DMF (70 % v/v) was 

applied in excess over the substrate and shaken on a rotary shaker for 10 min. 

Thereafter, the blocking solution was replaced with a fresh one for another 40 min. 

Finally, the residues of the blocking solution were removed by washing the substrate 

two times in DMF for 5 min each and two times in methanol for 3 min each. 

Side-chain group deprotection 

Prior to immunostaining of the stochastic peptide microarray, the side chain groups 

of the peptides were deprotected. First, the substrate was incubated in DCM for 

30 min. Then, a fresh mixture of trifluoroacetic acid (TFA) (51 % v/v), DCM 

(44 % v/v), triisobutilsilane (TIBS) (3 % v/v), and H2O (2 % v/v) was applied over the 

substrate three times for 30 min each, followed by washing in DCM for 5 min. After 

pre-swelling in DMF for 5 min, the substrate was incubated with a mixture of DIPEA 

(5 % v/v) and DMF (95 % v/v) for 30 min to neutralize the acidic residues resulted 

from the TFA cleavage steps. Finally, the substrate was washed three times in DMF 

for 5 min each, two times in methanol for 3 min each and in DCM for 1 min.  
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Fluorescence staining with organic dyes 

In several series of experiments, the amino acid derivatives coupled to the substrate 

surface were fluorescently labelled with TAMRA or DyLight 650 NHS ester dyes. 

Initially, the substrate was incubated in phosphate buffer saline with TWEEN 20  

(PBS-T) for 10 min. Thereafter, a solution of a fluorescent dye in PBS-T in dilution of 

1 : 10 000 was applied over the substrate for 2 h in the dark. Finally, the substrate was 

washed two times in PBS-T for 3 min each and then washed in Milli-Q for 1 min. 

Immunostaining with fluorescently labelled antibodies 

Immunostaining of the stochastic peptide microarray prototype was performed after 

the side-chain group deprotection. The substrate was preliminary incubated with 

PBS-T for 10 min. To prevent unspecific binding of the antibodies to the surface, the 

microarray was incubated thereafter in Rockland blocking buffer (Rockland 

Immunochemicals, Inc.) for 30 min. After washing the substrate in PBS-T for 1 min, 

the monoclonal antibodies diluted 1 : 1000 in a mixture of Rockland buffer (10 % v/v) 

and PBS-T (90 % v/v) were applied over the substrate for 1 h in the dark. Finally, the 

microarray was washed three times in PBS-T for 1 min each and rinsed with Milli-Q. 

3.9 Prototype Microarray Fabrication 

A proof-of-principle experiment was carried out to verify whether the proposed 

concept of stochastic peptide microarray manufacturing was feasible. For this 

purpose, a full-size prototype microarray, containing random peptides with the 

length of up to 9 amino acids, was fabricated. The quality of the resulting prototype 

was proved by immunostaining of the microarray with fluorescently labelled 

antibodies, followed by fluorescence scanning and data evaluation. 

A microstructured fused silica slide (AMO GmbH) with the dimensions of 

75 mm x 25 mm x 1 mm was used as a solid support for stochastic peptide synthesis. 

The microstructures had the pitch size of 20 μm, the diameter of 12 μm, and the 

depth of 9 μm providing nearly 3 million microwells. Prior to peptide synthesis, the 

slide was functionalized with a polymer layer of 10:90 poly(PEGMA-co-MMA).  

Six types of microbeads containing different amino acid derivatives and QD labels 

were manufactured according to the established protocol (Appendix A2). The 
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microbeads and their composition, optimized in a series of preliminary experiments, 

are listed in Table 3.  

Table 3. Set of microbeads for manufacturing stochastic microarray prototype. 

Amino acid* 1-Letter notation Mass fraction QD label 

Alanine A 2 % 500 nm 

Aspartic acid  D 3 % 500 nm 

Lysine  K 3 % 580 nm 

Proline  P 3 % 580 nm 

Tyrosine  Y 3 % 580 nm 

Valine V 3 % 580 nm 

(*) – Fmoc-protected, OPfp-activated.  

 

The types of the microbeads in each synthesis cycle were selected in such a way so 

that the FLAG-epitope (DYKDDDDK) and the HA-epitope (YPYDVPDYA) could be 

stochastically generated with high probabilities. The mixtures of the microbeads 

applied prior to each coupling step are shown in Table 4. 

Table 4. Microbead mixture compositions in each synthesis cycle. 

Synthesis 

layer 

FLAG epitope HA epitope 

Amino acid QD label Amino acid QD label 

1 Lysine (K) 580 nm Alanine (A) 500 nm 

2 Aspartic acid (D) 500 nm Tyrosine (Y) 580 nm 

3 Aspartic acid (D) 500 nm Aspartic acid (D) 500 nm 

4 Aspartic acid (D) 500 nm Proline (P) 580 nm 

5 Aspartic acid (D) 500 nm Valine (V) 580 nm 

6 Lysine (K) 580 nm Aspartic acid (D) 500 nm 

7 Tyrosine (Y) 580 nm Tyrosine (Y) 580 nm 

8 Aspartic acid (D) 500 nm Proline (P) 580 nm 

9 – – Tyrosine (Y) 580 nm 
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The prototype microarray was synthesized by repeating the sequence of the 

following basic process steps. Each synthesis cycle started with Fmoc-deprotection of 

the terminal amino groups of the functional layer. Thereafter, the microbeads were 

applied into the microwells using a soft lint-free tissue, followed by removal of the 

microbeads from the top surface with an air jet. Image acquisition of the microbead 

deposition pattern was performed by scanning the substrate in fluorescence channels 

520/5 (corresponding to 500 nm QD labels) and 580/14 (corresponding to 580 nm QD 

labels). The amino acid pattern was decoded using the software described in 

Section 3.5. To extract the amino acid derivatives from the microbeads, the substrate 

was placed into the DCM extraction chamber five times for 1 min each with 

intermediate pauses of 1 min. The coupling was performed in the coupling chamber 

under an argon atmosphere at 90 °C for 60 min. The microbeads were removed from 

the microwells by sonicating the substrate in acetone and DCM for 2 min. Thereafter, 

the remaining free amino groups were acetylated according to a standard procedure. 

After the peptides were synthesized, the terminal amino groups were Fmoc-

deprotected and acetylated, followed by deprotection of the side-chain groups. The 

resulting peptide microarray was incubated with the monoclonal anti-FLAG 

(conjugated with Cy5 fluorescent dye) and anti-HA (conjugated with Cy3 fluorescent 

dye) antibodies. The microarray was scanned in fluorescence channels 582/75 

(corresponding to a Cy3 fluorophore) and 677/45 (corresponding to a Cy5 

fluorophore). The photometric data calculated for each microwell was compared 

with the peptide library and further evaluated. 
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4 Results and Discussion 

This chapter provides an insight on how the concept of stochastic peptide 

microarrays manufacturing is manifested in reality. The results of multiple series of 

experiments on optimization of the layout of the microstructured substrate, as well 

as on rational design and composition of the microbeads are shown and discussed in 

Section 4.1 and Section 4.2, respectively. In Section 4.3, two methods for microbead 

deposition are compared in terms of the microwell filling rates and mechanical 

stability of the microbeads. The results on multiplexed labelling of the microbeads 

and readout of their fluorescence signals are discussed in Section 4.4, whereas the 

performance of the algorithm for decoding the amino acid allocation patterns is 

evaluated in Section 4.5. Considering the amino acid diffusion and coupling yield, 

the optimum conditions for their extraction are addressed in Section 4.6. Section 4.7 

gives a brief overview of the problems arising during microbead removal. Finally, 

the results of prototype manufacturing are presented and discussed in Section 4.8. 

4.1 Microstructured Substrates 

4.1.1 Optimal Layout Parameters 

The cross-linked PMMA microspheres with the diameter of 10 μm were deposited 

into the microwells of the substrate having the dimension of 20 mm x 20 mm and 

comprising nine microstructured fields with different layouts and the depth of 

10 μm. The microbead deposition was performed using a lint-free tissue, whereas the 

excessive microbeads were removed from the top surface with a compressed air 

flow. Figure 54 depicts fragments of the images obtained by optical microscopy for 

different microstructured fields. 

As expected, the microwells with the diameter of 25 μm (Figure 54b) and 35 μm 

(Figure 54c) accommodated several microspheres, whereas the microwells with the 

diameter of 11 μm (Figure 54f), 12 μm (Figure 54e) and 13 μm (Figure 54d) were 

filled with not more than one microsphere. The microwells with the intermediate 

diameter of 15 μm (Figure 54a) contained quite frequently two microspheres, one 
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shifted slightly above another. The microstructures with the diameter of 6 μm 

(Figure 54i), 7 μm (Figure 54h) and 8 μm (Figure 54g) were rather sealed by the 

microspheres sitting upon the edge of the microwells and rarely contained fine-

fraction microbeads with the diameter smaller than 10 μm (Figure 54i). 

The principle “one microwell – one peptide” implies that in each synthesis step the 

microwells are filled with not more than one microbead carrying an individual 

amino acid derivative. In case of using the microspheres with the diameter of 10 μm, 

this requirement was satisfied for the microstructures with the diameter of 11 μm, 

12 μm, and 13 μm. Therefore, the optimum ratio of the diameter of the microwells to 

the diameter of the microspheres ranges between 1.1 and 1.3. 

Figure 54. Filling of the microwells with polymer microspheres (Ø 10 µm): (a) P20 D15; (b) P30 D25; 

(c) P40 D35; (d) P15 D13; (e) P15 D12; (f) P15 D11; (g) P10 D8; (h) P10 D7; (i) P10 D6. 

50 µm 

a b c 
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g h i 



Microstructured Substrates 

 

79 

The microstructures with the diameter of 11 μm, 12 μm and 13 μm and the depth of 

9 μm and 10 μm were compared in terms of their filling rates after depositing the 

microspheres with the diameter of 10 μm. The deposition of the microspheres was 

performed by using a lint-free tissue, followed by removal of the excessive 

microspheres with an air flow. The results derived from the analysis of the acquired 

images are shown in Table 5. 

Table 5. Filling rates of various microstructures with microspheres (Ø 10 μm). 

Diameter of the 

microwells 

Depth of the microwells 

9 μm 10 μm 

11 μm 96.9 % 98.4 % 

12 μm 90.2 % 96.3 % 

13 μm 42.5 % 75.5 % 

 

The microstructures with the depth of 10 μm and the diameter of 11 μm had the 

highest filling rate of 98.4 %. The filling rate of the microstructures with a similar 

depth gradually decreased to 96.3 % for the 12 μm microwells and fell down to 

75.5 % for the 13 μm microwells. The microstructures with a depth of 9 μm 

demonstrated on the whole lower filling rates: 96.9 %, 90.2 %, and 42.5 % for the 

microwells with the diameters of 11 μm, 12 μm, and 13 μm, respectively. 

The fact that the filling rates were lower than 100 % can be explained by the removal 

of the microspheres from the microwells under the impact of the compressed air 

flow. Air swirls could originate in the microwells due to partial deflections of the 

main air stream pushing the microspheres out of the microstructures. At the same 

time, the microspheres from the top surface could capture the microspheres from the 

microwells and pull them out. A closer fitting of the microspheres and the 

microwells restricted origination of the air swirls inside of the microstructures, 

whereas the geometric constraints prevented movements of the deposited 

microspheres. Therefore, the maximum filling rates can be achieved when the depth 

and the diameter of the microstructures approach the diameter of the microbeads. 

Another factor, which had to be taken into account when deciding on the optimal 

parameters of the microstructures, was the microbead removal rate. The close 
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geometric matching of the non-soluble polymer microspheres to the microwells 

resulted in extremely low rates of their removal. If the size of the microsphere 

matched the diameter of the microwell, it was almost impossible to remove this 

microsphere without deforming or destroying it. Although the cross-linked PMMA 

microspheres had a mean size of 10 µm, the coefficient of variation of their diameter 

was declared to be 5 %. It implies that roughly 1 % of the microspheres had a 

diameter ranging from 10.9 µm to 11.0 µm (assuming normal size distribution) that 

could potentially block thousands of microwells with the diameter of 11 µm in each 

step of microbead deposition.  

Taking into account the results obtained in a series of experiments, the decision was 

made to continue the experimental work with the full-size microstructured 

substrates (75 mm x 25 mm x 1 mm) having the pitch size of 20 µm, the microwell 

diameter of 12 µm and the depth of 9 µm. 

4.1.2 Full-Size Microstructured Substrates 

The full-size substrates were investigated in terms of their quality and compliance 

with the declared parameters. Figure 55 depicts fragments of the microstructured 

substrate imaged by scanning electron microscopy (SEM). 

 

As can be seen, the microstructures were extremely homogenous. No visible defects 

both at the top surface and at the bottom of the microwells were identified. In order 

to derive quantitative characteristics of the microstructures, the substrate was 

investigated by white light interferometry (Figure 56). 

Figure 55. SEM images of the full-size microstructured substrate.  

2 µm 10 µm 50 µm 
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As can be seen from the image, the microwells had a shape close to cylindrical with 

nearly vertical walls and slightly convex bottom. The analysis of the cross-section 

profile of the microstructures resulted in the measured values of the pitch size to be 

20.0 µm, the diameter of 12.0 µm (measured at the top of the microwells), and the 

depth of 9.0 µm (averaged over the convex bottom of the microwell). The parameters 

of the microstructures were constant throughout the substrate and complied with the 

declared values. In general, the obtained results confirmed the quality of 

microstructuring outsourced to the external company. 

4.1.3 Substrate Functionalization 

The full-size substrate, functionalized with a layer of 10:90 poly(PEGMA-co-MMA) 

copolymer, was stained with amine-reactive TAMRA fluorescent dye. Figure 57 

depicts fragments of the image acquired by scanning the substrate in the 532 nm 

excitation channel with the fluorescence filter 582/75. 

Figure 56. Topology of the microstructured substrate derived by white light interferometry: (left) 

2D reconstruction of the microstructured surface; (upper right) 3D reconstruction of the 

microstructured surface; (bottom right) fragment of the cross-section profile of the microwells. 
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Visually, one can judge on the homogeneity of the functional layer from the intensity 

profile of the fluorophore molecules coupled to the free amino groups of the 

substrate. For quantitative analysis, the standard deviation and the mean signal in 

the microwells and on the top surface were calculated based on the median feature 

values and the mean background values obtained for approximately 3 million 

microwells. The results of the statistical analysis are shown in Table 6. 

Table 6. Signal characteristics derived by fluorescent scanning of the functionalized 

microstructured substrate stained with TAMRA. 

Parameters of the signal 
Localization of the signal 

Microwells Top surface 

Mean, 103 x a.u.  24.3 13.8 

SD, 103 x  a.u. 2.8 1.5 

CV 0.115 0.109 

 

The signal value in the microwells was estimated to be 24.3·103 ± 2.8·103 a.u., whereas 

the coefficient of variation was 0.115. These results indicate that the distribution of 

the amino groups over the microwells of the functionalized substrate was fairly 

homogeneous. The average signal from the top surface was 13.8·103 ± 1.5·103 a.u. with 

the coefficient of variation of 0.109. In both cases, the signal variation can be 

explained by heterogeneities of the functional layer, as well as by the shifts of the 

Figure 57. Fluorescence image of the microstructured substrate stained with TAMRA: (a) full-size 

image; (b) (c) image fragments. 

50 µm 10 µm 1 cm 

b c a 
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focal plane during scanning (which can be seen in Figure 57a as horizontal dark 

stripes). The noticeable difference in signal between the microwells and the top 

surface can be explained by the various thickness of the functional layer resulted 

from the siATRP process. 

4.2 Microbead Manufacturing 

4.2.1 Morphology of Solid Carriers 

The cross-linked PMMA microspheres were investigated in terms of their 

morphology using SEM (Figure 58) and AFM (Figure 59). 

 

The images acquired with SEM confirmed an extremely narrow size distribution of 

the microspheres having the median diameter of 10 μm, which complied with the 

data provided by the manufacturer (Figure 44). As can be seen from Figure 58, the 

surface of the microspheres was not ideally smooth. It rather resembled the Moon’s 

surface with quite frequent grooves and elevations, which could result from 

emulsion polymerization and cross-linking of PMMA. 

Figure 58. SEM images of cross-linked PMMA microspheres. 

10 µm 

50 µm 1 µm 
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Cross-section profile measurements performed with AFM revealed that the height of 

the elevations did not exceed 100 nm. Therefore, the surface of the microspheres 

could be considered sufficiently smooth in micrometer scale. It is important to note 

that no micropores were visualized on the surface of the microspheres. It left open 

the question on possible localization sites of the amino acid derivatives and QDs 

during microbeads manufacturing. 

4.2.2 QD Labelling of Microspheres 

Figure 60 depicts QD labelled microspheres randomly deposited onto the flat 

microscope slide. Labelling of the microspheres was performed by QDs emitting at 

580 nm according to the optimized protocol (Appendix A2). The image was acquired 

by scanning the slide in the fluorescence channel 580/14. 

Figure 59. AFM images of a cross-linked PMMA microsphere in a microwell. 
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As can be seen, each microsphere was homogeneously labelled with QDs, whereas 

the signals from various microspheres slightly differed from each other. In order to 

understand the reasons for such variations, the mechanism of fluorescent labelling 

had to be investigated. For this purpose, several samples of dispersion were taken in 

different steps of the labelling process and imaged afterward with the fluorescence 

scanning technique (Figure 61). 

Figure 61a depicts a fluorescence image of the sample of 580 nm QD solution in DCM 

after solvent evaporation. As can be seen, the QD stain demonstrates a strong and 

homogeneous signal over the central region. A narrow fluorescence ring can be 

visualized around the stain, which corresponds to the perimeter of the initial sample 

droplet. During evaporation of the volatile solvent, the QD solution shrank to the 

center of the droplet leaving a ring of QD residues at its original edge. This 

phenomenon is known as the coffee ring effect. Figure 61b illustrates the fluorescence 

of the dispersion of the cross-linked PMMA microspheres in the QD solution after 

solvent evaporation. Even though the dispersion was quite thick, only a small 

fraction of particles, mainly located at the perimeter of the spot, demonstrated slight 

fluorescence, whereas the majority of the microspheres remained non-labelled. We 

assume that the hydrophobic QDs, being readily soluble in chlorinated solvents, tend 

to stay in the continuous phase rather than precipitate on the swelled PMMA 

microspheres. The minor signal of the microspheres located at the edge of the spot 

can be explained by precipitation of the QDs from the continuous phase during 

evaporation of the volatile solvent. Figure 61c represents the sample of the dispersion 

50 µm 

Figure 60. QD labelled microspheres. Labelling was performed by 580 nm QDs according to the 

optimized protocol. The images were acquired in the fluorescence channel 580/14 (green channel). 
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after replacing DCM with acetone. The image was taken after evaporation of the 

solvent. As can be seen, the fluorescence signal mainly originates from the 

microspheres constituting the spot. We suppose that the QDs tend to precipitate on 

the swelled microspheres while the polarity of the continuous phase gradually 

increases due to the replacement of DCM (εr = 8.9) by acetone (εr = 20.7). The residual 

amount of QDs in the liquid phase is negligible and manifested in the coffee ring 

effect at the perimeter of the initial droplet. Figure 61d demonstrates the sample of 

the dispersion after adding ethanol. The image was taken after the volatile 

components completely evaporated. The fluorescence signal of the microspheres 

remained as it was after replacing DCM with acetone, which means that the QDs 

were not “washed out” from the microspheres after exposure to the additional 

solvent. At the same time, the coffee ring effect was not visualized for the sample, 

which enabled us to conclude that the QDs completely precipitated from the 

continuous phase after partial replacement of acetone by ethanol (εr = 24.5).  

b a 

c d 

1 mm 

1 mm 

1 mm 

1 mm 

Figure 61. Fluorescence images of the samples taken in different steps of the labelling process: 

(a) solution of 580 nm QD in DCM; (b) dispersion of cross-linked PMMA microspheres in the QD 

solution in DCM; (c) dispersion of microspheres after replacing DCM with acetone; (d) dispersion of 

microspheres after adding ethanol. The images were acquired in the fluorescence channel 580/14. 
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When the labelling process was performed by gradual replacement of DCM by 

ethanol, the fluorescence signal of individual microspheres was extremely 

inhomogeneous. We assume that ethanol initiates shrinkage of the cross-linked 

PMMA before the QDs precipitate from the continuous phase. It explains why the 

labelling process has to be performed in three steps. First, the microspheres should 

undergo swelling in DCM, which is an appropriate solvent for hydrophobic QDs. 

Second, precipitation of the QDs has to be initiated by replacing DCM with polar 

acetone, whereas the microspheres should remain swollen. Third, the microspheres 

are to be washed with ethanol, which induces their shrinkage and results in a 

complete precipitation of the QDs from the continuous phase. 

The variation in signal between different microspheres can be explained by the fact 

that the labelling process is nonequilibrium. The polarity of the continuous phase 

changes unevenly in time and space due to the fact that the additive solvents are 

introduced into the dispersion dropwise from a burette. Rapid local changes of the 

properties of the continuous phase have a greater impact on those microspheres 

which happened to be in the place of the droplet hitting the dispersion, thus inducing 

an inhomogeneous precipitation of the QDs on the microspheres. 

4.2.3 Embedding of Amino Acid Derivatives 

The function of the microbeads as carriers of the amino acid derivatives is 

demonstrated in Figure 62. The microbeads were labelled with 580 nm QDs and 

loaded with Fmoc-glycine pentafluorophenyl ester (Fmoc-Gly-OPfp) according to the 

protocol (Appendix A2). After random deposition of the microbeads on the flat 

functionalized substrate, they were imaged in the fluorescence channel 580/14 

corresponding to the emission maximum of the QD labels (Figure 62a). Thereafter, 

the amino acid derivatives were extracted from the microbeads and coupled to the 

functional layer of the substrate. After microbead removal, surface acetylation and 

Fmoc-deprotection, the coupled amino acids were fluorescently stained with 

DyLight 650 NHS ester dye. It made it possible to visualize the coupled monomers in 

the fluorescence channel 677/45 corresponding to the emission of the fluorescent dye 

(Figure 62b). 
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The fluorescence pattern of the coupled amino acids corresponds to the initial 

deposition of the microbeads. Each microbead carried a certain amount of amino acid 

derivatives that were extracted under certain conditions and coupled to the 

functional layer. Even though the source of the amino acid derivatives were the 

contact points of the microbeads and the substrate, the diameter of the amino acid 

spots was around 20 μm due to diffusion of the released monomers over the surface. 

One of the major tasks was to derive the maximum content of the amino acid 

derivatives per solid carrier microspheres. On the one hand side, the higher content 

of the monomers should lead to higher extraction and coupling yields. On the other 

hand side, there should be a limit of the microsphere’s carrying capacity, exceeding 

which may lead to adverse effects. In order to identify this limit, twelve samples of 

microbeads were manufactured and tested in terms of the coupling behavior of the 

embedded amino acid residues. Two components, Fmoc-Gly-OPfp and  

N,N-diphenylformamide (DPF), were loaded in different ratios into the cross-linked 

PMMA microspheres. Due to its relatively low melting point (73.5 °C), DPF was used 

as an additive to facilitate extraction of the amino acid residues at elevated 

temperatures. Within the scope of this experiment, DPF can be considered as a 

50 µm 

b a 

50 µm 

Figure 62. Coupling results of the microbeads labelled with 580 nm QDs and loaded with  

Fmoc-Gly-OPfp: (a) random pattern of the QD labelled microbeads deposited onto a flat 

functionalized substrate. The image was acquired in the fluorescence channel 580/14 (green channel); 

(b) fluorescently labelled amino acids extracted from the microbeads and coupled to the functional 

surface. The image was acquired in the fluorescence channel 677/45 (red channel). 
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“ballast” component occupying vacant space within the microspheres. With respect 

to the mass of the solid carrier, the amino acid derivatives were used in mass 

fractions of 2 % (m/m), 5 % (m/m), and 8 % (m/m), whereas the DPF content varied in 

mass fractions of 0 % (m/m), 3 % (m/m), 6 % (m/m), and 9 % (m/m), resulting totally 

in twelve possible combinations. The individual samples were locally spread over 

the surface of the flat functionalized substrate using a soft lint-free tissue. Figure 63 

depicts fragments of the images acquired for two out of twelve samples, which 

illustrate fluorescently stained amino acids coupled to the surface after their 

extraction from the microbeads. 

 

As can be seen in Figure 63a, the amino acid spots obtained for the microbeads with 

2 % (m/m) of Fmoc-Gly-OPfp and 6 % (m/m) of DPF were well defined, whereas 

their global pattern resembled the lines of the microbeads from their spreading with 

a tissue. Despite the fact the microbeads were subjected to the mechanical impact and 

rubbing against the surface of the substrate, they kept the embedded amino acid 

residues and did not produce any contaminations over the surface. In contrast to this, 

the sample with 8 % (m/m) of Fmoc-Gly-OPfp and 6 % (m/m) of DPF was 

characterized by numerous impurities of the amino acid derivatives in form of 

scratch-like lines and non-circular spots with the size of several micrometers.  

The results of a qualitative analysis performed for all twelve samples of the 

microbeads with varied content of Fmoc-Gly-OPfp and DPF are listed in Table 7. 

500 µm 500 µm 

b a 

Figure 63. Coupling patterns of amino acid derivatives extracted from the microbeads of various 

composition: (a) microbeads carrying 2% (m/m) of Fmoc-Gly-OPfp; (b) microbeads carrying 8 % (m/m) 

of Fmoc-Gly-OPfp. In both cases, the content of DPF was 6 % (m/m). 
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Table 7. Contaminating tendency of the microbeads with the varied content of  

Fmoc-Gly-OPfp and DPF. 
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As soon as the total mass fraction of the embedded components exceeds 8 % (m/m), 

the microbeads tend to contaminate the surface with the residues of amino acid 

derivatives. We assume that these impurities originate from the excessive amino 

acids and DPF crystallized on the surface of the microbeads during their 

manufacturing due to the fact the outer thin layer of the cross-linked PMMA matrix 

is already occupied by these substances. From the qualitative data shown in Table 7, 

we can conclude that the cross-linked PMMA microbeads can incorporate 8 % (m/m) 

of Fmoc-Gly-OPfp without generating any impurities during their deposition. 

Similar experiments were performed for the remaining 19 types of proteinogenic 

amino acids, whereas only the content of the monomers was varied in mass fractions 

of 2 % (m/m), 3 % (m/m), 4 % (m/m), 6 % (m/m), and 8 % (m/m). The microbeads 

with the highest content of the amino acid derivatives, which did not demonstrate 

any visible traces of impurities upon their deposition over the substrate, were 

considered the most preferred for the stochastic peptide microarray manufacturing. 

The mass fractions of the monomers in these microbeads are listed in Table 8. 
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Table 8. Optimal content of amino acid derivatives in microbeads. 

Amino acid* 
1-Letter 

notation 

Mass 

fraction 
Amino acid* 

1-Letter 

notation 

Mass 

fraction 

Alanine A 2 % Leucine L 2 % 

Arginine R 2 % Lysine K 3 % 

Asparagine N 2 % Methionine M 3 % 

Aspartic acid D 3 % Phenylalanine F 3 % 

Cysteine C 2 % Proline P 3 % 

Glutamic acid E 2 % Serine S 3 % 

Glutamine Q 2 % Threonine T 3 % 

Glycine G 3 % Tryptophan W 3 % 

Histidine H 2 % Tyrosine Y 3 % 

Isoleucine I 2 % Valine V 3 % 

(*) – Fmoc-protected, OPfp-activated. 

 

As can be seen in Table 8, the cross-linked PMMA solid carriers could accommodate 

the amino acid derivatives in mass fractions of 2 % (m/m) and 3 % (m/m), which is 

far lower than 8 % (m/m) derived for Fmoc-Gly-OPfp. To compensate the difference 

in amino acid diffusion, the content of Fmoc-Gly-OPfp was reduced to 3 % (m/m). 

4.2.4 Morphology of Microbeads 

An attempt was made to determine the localization of the amino acid derivatives and 

QDs on the surface of the microbeads manufactured according to the established 

procedure. For this purpose, the microbeads containing 5 % (m/m) of Fmoc-Gly-OPfp 

and QDs emitting at 580 nm were investigated using AFM (Figure 64). 
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On the left image, three characteristic facets can be identified on the surface of the 

spherical microbead. These facets result from the final step of the amino acid 

embedding process. As the continuous phase of the dispersion evaporates, the 

swelled microspheres are being brought in contact with each other forming a paste-

like medium. After the paste is dry, it becomes a single bulk piece composed of many 

microbeads “glued” to each other. After the dry paste is ground in a mill into a fine 

powder of microbeads, the former contact regions between the microbeads convert 

into the facets on their surface. 

On the right image, the surface of a microbead loaded with QDs and amino acid 

derivatives appears relatively smooth and similar to the surface of the pure PMMA 

microspheres (Figure 59). No microcrystalline formations were identified on the 

surface of the microbead. The slight difference was in sporadic “sand-like” patterns 

of an undefined origin spread over the surface of the microbead. The size of the 

features was at the resolution limit of AFM. The obtained results allowed us to 

conclude that the monomers and the fluorescent labels were either embedded into 

the outer thin layer of the polymer microsphere or deposited as nanometer clusters 

onto the surface of the solid carrier. 

Figure 64. AFM images of a microbead loaded with 5 % (m/m) of Fmoc-Gly-OPfp and 580 nm QDs. 

“Sand-like” 

formations 

Facets 

50 nm 1 µm 
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4.3 Microbead Deposition 

4.3.1 Self-organization of Microbeads  

Self-organization of the microbeads in the microwells of the microstructured 

substrate is one of the fundamental principles of the stochastic peptide microarray 

manufacturing. Figure 65 depicts how this principle is manifested in practice. 

 

The deposition of the microbeads was performed in two steps. First, the dry mixture 

of the microbeads was spread over the surface of the microstructured substrate with 

a soft lint-free tissue (Figure 65b). Although the microstructures were completely 

filled with the microbeads, the top surface of the substrate still contained a 

monolayer of excessive microbeads. This excess was removed in the second step with 

the flow of compressed air applied tangentially to the surface of the substrate  

(Figure 65c). As can be seen, the air flow totally removed the excessive microbeads 

from the top surface, whereas the microwells remained filled. These images 

demonstrate the effect of the geometric constraints the microbeads inside the 

microwells are subjected to. 

b c a 

Figure 65. SEM images of a microstructured substrate demonstrating the principle of self-organization 

of the microbeads: (a) initial empty microstructures; (b) microstructures after spreading the 

microbeads with a soft tissue; (c) microstructures after applying a tangential flow of compressed air. 

30 µm 30 µm 30 µm 
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Microbead deposition into the microwells of the substrate was prone to various 

errors. The most frequent cases of deposition errors are illustrated in Figure 66.  

 

Unfilled microwells (Figure 66a) lead to the termination of peptide synthesis due to 

the absence of monomers in a certain step of peptide chain elongation. It results in a 

reduction of the number of fully-synthesized peptides. In case of the microbeads left 

on the top surface of the substrate (Figure 66b), the major adverse effect is the 

contamination of the neighboring microwells by arbitrary amino acid derivatives 

extracted from the residual microbeads. It locally affects the quality of the 

synthesized peptides and can lead to false positive signals in biological applications. 

The most difficult case of a deposition error in terms of recognition and prevention is 

depicted in Figure 66c. The microbead, “hanging” on the side wall of the microwell 

and not touching its bottom, is only partially introduced into the microwell. The 

monomer source point is shifted outside of the area where the peptides are supposed 

to be synthesized leading to an extremely low coupling yield at the bottom of the 

microwell. Eventually, it may result in false negative signals when implementing a 

peptide microarray in bioassays. 

 

 

 

 

Figure 66. Microbead deposition errors: (a) an unfilled microwell; (b) a microbead left on the top 

surface of the substrate; (c) a microbead not touching the bottom of a microwell. 

b c a 

10 µm 10 µm 10 µm 
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The defects of the first type and the second type can be easily identified from 

fluorescence images of the substrate filled with QD 

labelled microbeads (Figure 67). Empty microwells 

are identified based on their low median feature 

values, whereas the microwells with the 

neighboring microbeads on the top surface can be 

identified from their higher mean background 

values. This enables taking these two types of 

deposition errors into account when deriving a 

peptide microarray library. In contrast to that, 

partially filled microwells cannot be identified 

from fluorescence images. This makes it impossible 

to take this type of error into account in a 

microarray library. 

4.3.2 Comparison of Microbead Deposition Methods 

Maximizing the filling rate of the microstructures is the primary requirement for the 

microbead deposition methods. Figure 68 depicts fluorescence images of the 

substrate stochastically filled with a mixture of microbeads labelled by 500 nm QDs 

and 580 nm QDs. Microbead deposition was performed using a soft lint-free tissue 

with subsequent removal of excessive microbeads by a flow of compressed air. The 

fluorescent scanning was performed in the fluorescence channels 520/5 and 580/14. 

Figure 68 gives an impression on the number of microbeads deposited on a substrate 

and the quality of deposition using a soft tissue in combination with a compressed 

air flow. The filling rate of the microstructures was lower than 100 %, whereas the 

microbeads on the top surface were extremely rare. As for the microbeads deposited 

into the microwells, they could be easily differentiated in terms of their QD labels 

demonstrating sufficiently homogenous and strong signals. 

The acquired images were analyzed by applying a grid, aligning it to the microwell 

pattern on the substrate and calculating the photometric values of each spot. The 

calculated data was further processed by the software developed within this project, 

particularly, to derive the filling rate of the microstructures. Using this approach, two 

methods of microbead deposition were compared. The combination of a soft tissue-

Figure 67. Deposition errors derived 

from fluorescence imaging: (A) an 

unfilled microwell; (B) a microbead 

on the top surface. 

A 

B 
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based deposition with subsequent removal of the excessive microbeads by a 

compressed air flow resulted in an average filling rate of 92.6 % compared to 97.7 % 

achieved with the doctor blade technique. A lower filling rate in the first case could 

result from spontaneous removal of the microbeads by microscale air swirls 

originating in the microwells from the tangential flow of compressed air. While being 

removed from the top surface, excessive microbeads could pull out the deposited 

microbeads from the microwells due to their initial contact or random collisions. 

Despite the fact the doctor blade approach resulted in a higher filling rate of the 

microwells, it had one significant drawback. Figure 69 illustrates the deposition 

pattern of the same microbeads labelled by 500 nm QDs and 580 nm QDs and 

stochastically spread over the substrate with a plastic spatula. The parameters of the 

fluorescence scanning were identical to those used for the microbeads deposited with 

a lint-free tissue. 

The appearance of the microbeads in the microwells is completely different in 

comparison to the first trial. The cyan color of the microbeads indicates that they emit 

in green and blue fluorescence channels at the same time. Excessive friction of the 

microbeads with each other and with the surface of the substrate resulted in cross-

contamination of the QDs between the microbeads of both types. The results of this 

experiment demonstrate the dilemma of microbead deposition: A low mechanical 

impact leads to insufficient filling rates or high contamination of the top surface with 

Figure 68. Deposition pattern of microbeads labelled by 500 nm QDs (shown in blue) and 580 nm QDs 

(shown in green) in the microwells of the microstructured substrate. The microbead deposition was 

performed using a soft lint-free tissue and a compressed air flow: (a) full-size image; (b) (c) image 

fragments. 

1 cm 

a 

200 µm 

b 

50 µm 
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excessive microbeads, whereas great mechanical forces damage the microbeads 

making them not applicable for the stochastic peptide microarray manufacturing.  

 

Figure 70 depicts the microbeads that were severely damaged by excessive force 

intentionally applied during microbead deposition with the plastic spatula. As can be 

seen, the cross-linked PMMA microspheres 

underwent irreversible deformations and 

even destructions being exposed to great 

mechanical forces. In peptide microarray 

manufacturing, it could lead to 

contamination of the microwells by arbitrary 

amino acids from the fragments of the 

destroyed microbeads. The obtained results 

testify to the microbead deposition method 

based on spreading of the microbeads with a 

soft lint-free tissue followed by removal of 

the excessive microbeads from the top 

surface with a compressed air flow.  

1 cm 

a 

200 µm 

b 

50 µm 

c 

Figure 69. Deposition pattern of microbeads labelled by 500 nm QDs and by 580 nm QDs in the 

microwells of the microstructured substrate. The microbead deposition was performed using the 

doctor blade technique: (a) full-size image; (b) (c) image fragments. 

20 µm 

Figure 70. Damaged microbeads due to 

excessive forces applied during their 

deposition. 
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4.4 Image Acquisition 

4.4.1 Multiplexed Labelling and Decoding  

The concept of multiplexed QD labelling of the microspheres and their decoding 

from fluorescence images acquired in multiple fluorescence channels is illustrated in 

Figure 71. Three kinds of microspheres, labelled by 500 nm QDs, 610 nm QDs, and 

the combination of 500 nm QDs and 610 nm QDs, were deposited into the 

microstructures and scanned in the fluorescence channels 520/5 and 615/20. 

 

As can be seen in Figure 71, the microbeads labelled by 500 nm QDs demonstrate 

high signal in the channel 520/5 and nearly no signal in the channel 615/20. In 

contrast to this, the microbeads labelled by 610 nm QDs demonstrate strong signal in 

the channel 615/20 and absolutely no signal in the channel 520/5. When the 
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Figure 71. Fluorescence images of QD labelled microbeads. Three types of microbeads were deposited 

into the microwells: (from top to bottom row-wise) 500 nm QD labelled microbeads, 610 nm QD 

labelled microbeads, and 500 nm QD + 610 nm QD labelled microbeads. The images were acquired: 

(from left to right column-wise) in 520/5 channel (blue), in 615/20 channel (green), and in combination 

of 520/5 and 615/20 channels. 
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microbeads are labelled by a combination of the QDs, they shine well in both 

fluorescence channels at the same time. These results comply with the initial idea 

that the microbeads labelled with different combinations of QDs can be differentiated 

from each other by their unique “fingerprints” acquired in multiple fluorescence 

channels. It implied that certain combinations of QDs and fluorescence filters had to 

be selected in such a way so that each type of QDs could be detected in a 

corresponding unique fluorescence channel. 

4.4.2 Set of QDs and Fluorescence Filters 

A set of basic QDs and fluorescence filters was derived in several iterations according 

to the procedure described in Section 3.4. Table 9 presents a theoretically derived 

optimal set of QDs and fluorescence filters with the respective effective signal values.  

Table 9. Effective signal values of a theoretically derived optimal set of QDs and 

fluorescence filters (in a.u.). 

QDs, 

nm 

Fluorescence filter 

520/5 549/15 580/14 615/20 673/11 

500 2.4  0.1  0.0 0.0 0.0 

550 0.5 17.1  3.1 0.0 0.0 

580 0.0  2.9 17.2 1.7 0.0 

610 0.0  0.0  3.1 8.3 0.0 

650 0.0  0.0  0.0 0.4 4.0 

 

The data structure in Table 9 resembles the arrangement of the images in Figure 71. 

When considering the numeric values row-wise, one can get an impression on how 

strong the microbeads labelled with a certain type of QDs would shine in each 

fluorescence channel. Although the highest signal of the QDs should be obtained for 

the corresponding fluorescence filter with the closest central transmission 

wavelength (marked in bold), one can also expect significant signal values in the 

neighboring fluorescence channels. By changing the loading of the microbeads by a 

certain type of QDs, the signal values are expected to change proportionally in each 

channel. Considering the numeric values column-wise provides an understanding of 
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how different the signals of the microbeads, labelled with various QDs, would be 

when obtained in a certain fluorescence channel. Despite the fact the transmission 

bandwidth of the filters ranged between 5 nm and 20 nm, it was still possible to 

detect tail signals of the QDs with emission maximum located relatively far away 

from the central transmission wavelength of a given filter. By changing the PMT 

settings in a certain fluorescence channel, the QD signals are expected to change 

proportionally. Hence, for a given pair of a QD and a fluorescence filter, it is not 

probable to augment or decrease the effective signal value without changing the 

effective signals of the dependent pairs. However, it should be feasible to enhance 

the detection specificity of a certain QD type by optimizing the concentration of the 

QD labels in the microbeads and the PMT settings in each channel.  

In the next iteration, a set of microbeads labelled with individual types of QDs with 

emission maximum wavelengths ranging between 490 nm and 650 nm were 

manufactured and scanned in the fluorescence channels defined in the previous step. 

The mean and the standard deviation of the median feature values were estimated 

for each type of QD labelled microbeads in every fluorescence channel based on 200 

sample spots. The optimal set of QD labels for the respective fluorescence channels 

was defined based on detection specificity (Table 10). 

Table 10. Effective signal values of an experimentally derived optimal set of QDs in 

various fluorescence channels (in 1 000 x a.u.). 

QDs, 

nm 

Fluorescence filter 

520/5 549/15 580/14 615/20 673/11 

500 26.2 ± 10.1 5.9 ± 1.5 5.2 ± 1.1 12.3 ± 2.7 2.6 ± 0.6 

550 3.7 ± 0.9 40.7 ± 12.0 19.6 ± 5.9 11.4 ± 2.5 1.7 ± 0.5 

580 1.4 ± 1.1 8.0 ± 4.1 27.0 ± 11.8 18.6 ± 8.9 1.2 ± 0.5 

610 2.1 ± 0.4 6.9 ± 1.8 10.6 ± 2.9 23.5 ± 5.5 1.8 ± 0.4 

650 0.8 ± 0.4 1.7 ± 0.5 2.1 ± 0.6 6.9 ± 2.2 5.7 ± 6.7 

 

As can be seen in Table 10, the theoretically derived optimal set of basic QDs was 

experimentally confirmed for the selected fluorescence channels. However, the 

observed specificity of the QD signals was lower than it was theoretically predicted. 
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In other words, the signals of individual QD labels were less confined to the 

corresponding fluorescence channels with the closest central transmission 

wavelength and spread considerably to the neighboring fluorescence channels. Such 

a difference could be explained by the fact that the emission spectrum of individual 

QDs was broader than the theoretical approximation with a Gaussian function with 

FWHM of 35 nm. Moreover, the actual wavelength of the QD emission maximum 

was declared by the manufacturer with the accuracy of ± 5 nm. It means that the 

emission spectrum of the QDs could shift considerably towards shorter or longer 

wavelength regions, thus leading to a redistribution of the signals between the 

fluorescence channels. The ratio of the standard deviation to the mean signal for the 

given pair of matching QDs and fluorescence filters characterized the homogeneity 

of the fluorescence labelling. The results obtained for the QDs emitting at 650 nm 

were not acceptable: The majority of the respective microbeads were hardly labelled 

with QDs while rarely shining microspheres were inhomogeneous in their 

appearance. The decision was made to exclude 650 nm QDs from the labelling palette 

and proceed with four types of QD labels. In total 14 different microbeads could be 

labelled with the final set of QDs (Table 11). 

Table 11. Possible combinations of basic QDs for microbead labelling. 

QDs 
QD combinations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

500 x - - - x x x - - - x x - x 

550 - x - - x - - x x - x x x x 

580 - - x - - x - x - x x - x x 

610 - - - x - - x - x x - x x x 

 

The results of classification of the microbeads labelled with various combinations of 

basic QDs are discussed in the next section. 
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4.5 Decoding of Amino Acid Deposition Pattern 

4.5.1 Filled and Empty Microwells 

Whether the microwells were filled or empty, they were differentiated based on their 

total signal acquired in all fluorescence channels. A mixture of microbeads, labelled 

by 500 nm QDs and by 580 nm QDs, was stochastically deposited into the 

microstructures of a full-size substrate. The distribution of approximately 3 million 

microwells according to their sum feature values obtained in the fluorescence 

channels 520/5 and 580/14 is depicted in Figure 72. 

 

Empty microwells, characterized by low signal values, constitute the sharp peak 

close to the origin of the histogram. Two overlapping peaks with long tails 

correspond to the microwells filled with the 500 nm QD labelled microbeads and 

with the 580 nm QD labelled microbeads. The shape of these peaks indicates that the 

microbeads of the same type had a broad signals distribution due to inhomogeneous 

labelling with QDs. An additional peak is located close to 65 535 a.u. (maximum pixel 

value for a 16-bit image); it represents the microwells with saturated signals in either 

of the two fluorescence channels.  

Figure 72. Distribution of the microwells filled by a mixture of QD labelled microbeads according to 

their total signal acquired in the fluorescence channels 520/5 and 580/14. 
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As can be seen from the histogram, the peaks of the empty and the filled microwells 

overlap with each other. It means that the signals of the “brightest” empty 

microwells were higher than the signals of the “dimmest” filled microwells. In this 

case, an error-free differentiation of the filled and empty microwells based on their 

total feature value was practically impossible. Any threshold signal value would 

result in a certain fraction of filled microwells being identified as empty and a certain 

number of empty microwells being identified as filled. A threshold value assigned to 

the local minimum of the function, describing the microwell distribution depending 

on their total feature value, was intended to minimize these errors.  

Based on the sum feature values of approximately 3 million microwells, a threshold 

value for differentiating between empty and filled microwells was calculated 

according to the algorithm described in Section 3.5. This threshold was applied to a 

sample of 900 microwells out of 3 million, while their state of being filled or empty 

was “manually” defined in advance. The estimated error rates are shown in Table 12.  

Table 12. Estimated error rates of identifying filled and empty microwells. 

Identified 
Defined 

Total 
Filled Empty 

Filled 758 5 763 

Empty 0 137 137 

Total 758 142 900 

Error rate 0.0 % 3.5 % 0.6 % 

 

The error of identifying filled microwells as empty was 0 %, whereas the error of 

identifying empty microwells as filled was 3.5 %. The total error rate of microwell 

differentiation was 0.6 %. When performing bioassays with stochastic peptide 

microarrays, the first type of error may lead to false positive signals, whereas the 

second type of error may result in false negative signals. However, the total 

accumulated error rate over up to 10 synthesis layers is relatively low and expected 

not to exceed 5 %. 



Results and Discussion 

 

104 

4.5.2 Microbead Clustering 

Figure 72 demonstrates the principle of the DBSCAN algorithm applied for three 

types of microbeads labelled with individual QDs, emitting at 500 nm, 550 nm, and 

610 nm, and imaged in three fluorescence channels (520/5, 549/15, and 615/20). 

Each black point in Figure 73a represents a single microbead labelled with one out of 

three types of QDs. The coordinates of each point correspond to the normalized 

signals obtained for the respective microbead in three fluorescence channels. The 

microbeads with similar signals will be assigned to the same cluster depending on 

how close their mutual position is in 3D space. Three clusters can be easily visualized 

on the diagram, each corresponding to a certain type of microbeads. The clusters are 

characterized by their size and position in space. The size of the cluster gives an idea 

on how similar the distribution of the relative fluorescence signals is in three 

fluorescence channels, or, in other words, how homogeneous the QD loading was 

among the microbeads. The position of the cluster in the diagram reveals the type of 

QDs used for the microbead labelling. As can be seen from Figure 73b, nearly all 

microbeads were successfully assigned by DBSCAN algorithm to one out of three 

clusters without any preliminary information on characteristic signal values for each 

type of microbeads. One microbead was assigned as an outlier due to the fact its 

normalized signals differed too much from the other microbeads. 

Figure 73. DBSCAN clustering of three types of QD labelled microbeads: (a) allocation of data points 

according to the microbead signals normalized for three fluorescence channels; (b) three clusters of 

microbeads automatically assigned to the respective QD labels. 
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Figure 74 demonstrates DBSCAN clustering results on an expanded set of QD 

labelled microbeads. Three types of microbeads labelled with individual basic QDs 

were supplemented by four types of microbeads labelled with QD combinations.  

As can be seen from Figure 74, four additional clusters fit in well between the 

clusters of the mono-labelled microbeads. Moreover, each cluster of the multi-

labelled microbeads is located between the clusters of the microbeads labelled with 

the corresponding basic QDs. Since each data point represents the microbead signal 

normalized for three fluorescence channels, the clustering problem becomes two-

dimensional. To confirm this, one can see that all seven clusters are located on the 

major diagonal plane (F520 + F549 + F615 = 1). 

By using four types of basic QDs, in total 14 types of QD labelled microbeads were 

manufactured (Table 11). After scanning these microbeads in the corresponding 

fluorescence channels, the maximum number of microbeads resolved by DBSCAN 

was identified to be 11. Figure 75a depicts the allocation of the considered data 

points, whereas the microbead clustering results are shown in Figure 75b. 

As can be seen in Figure 75, eleven microbead clusters are packed quite dense with 

respect to each other. The lack of free space accompanied by the extended size of the 

clusters imposed a restriction on the maximum number of microbeads, which could 

be resolved by DBSCAN. This limitation can be overcome in two ways. First, the QD 

labelling process can be further optimized to enable more homogeneous loading of 

the microspheres with QDs. It should result in a narrower distribution of the signals, 

thus making the clusters smaller. Another approach implies that the microbeads are 

Figure 74. DBSCAN clustering of seven types of QD labelled microbeads: (a) allocation of data points 

according to the microbead signals normalized for three fluorescence channels; (b) seven clusters of 

microbeads automatically assigned to the respective QD labels. 
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considered in a space of a higher dimensionality. In other words, an additional 

fluorescence channel can be implemented to resolve the neighboring clusters. 

The performance of the clustering algorithm was analyzed on a data set of in total 

2 000 microbeads of 11 different types. The experiment was planned in such a way so 

that the types of the microbeads were known in advance. It enabled an estimation of 

the error rates of identifying the microbeads as outliers, as well as the error rates of 

identifying the microbeads as of another type (Table 13). 

Table 13. Error rates of DBSCAN clustering. 

QD label 
Error rate of identifying 

as noise 

Error rate of identifying 

as a wrong label 

QD 500 0.9 % 0.0 % 

QD 550 6.7 % 0.0 % 

QD 610 5.3 % 0.0 % 

QD 500 + QD 550 3.5 % 0.7 % 

QD 500 + QD 610 1.1 % 0.0 % 

QD 550 + QD 580 2.0 % 0.7 % 

QD 580 + QD 610 1.6 % 0.0 % 

QD 500 + QD 550 + QD 580 2.3 % 0.0 % 

QD 500 + QD 550 + QD 610 2.9 % 0.5 % 

QD 500 + QD 580 + QD 610 5.8 % 0.0 % 

QD 550 + QD 580 + QD 610 0.5 % 0.0 % 
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Figure 75. DBSCAN clustering of eleven types of QD labelled microbeads: (a) allocation of data points 

according to the microbead signals normalized for three fluorescence channels; (b) eleven clusters of 

microbeads automatically assigned to the respective QD labels. 
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As can be seen in Table 13, the error rates of identifying the microbeads as outliers 

were significant and ranged between 0.5 % and 6.7 %. These microbeads would be 

assigned “?” values when generating a peptide library, which means that the type of 

the amino acid derivative in a given position is not defined. At the same time, the 

error rates of identifying the microbeads as of another type were relatively low 

(0.2 %). The error rates could considerably decrease by improving the homogeneity 

of the QD labelled microbeads, by implementing an additional fluorescence filter, or 

by decreasing the number of microbead types. 

4.6 Extraction and Coupling 

4.6.1 Amino Acid Spot Profile 

Analysis of amino acid spots was essential for interpretation of the experimental 

results on the monomer extraction from the microbeads and their coupling to the 

functionalized substrate. Each spot was characterized by two parameters that were 

derived from its cross section profile measurement (Figure 76). 

 

In most cases, the spot profile had a bell curve shape and could be approximated by a 

Gaussian function. The height of the background-corrected bell curve was treated as 

a spot signal and was considered proportional to the surface concentration of the 

coupled amino acids. The higher coupling yields were associated with stronger spot 

signals, provided that other factors remained the same. The coupling yield was 
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Figure 76. Cross section profile of an amino acid spot: (a) fluorescence image of an amino acid spot 

with a cross section line; (b) a cross section profile of the amino acid spot. 
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estimated as the ratio between the spot signal and the reference signal associated 

with an excessive amount of monomers coupled from their solution in DMF. Another 

characteristic value, the diameter of the amino acid spot, was assigned to the FWHM 

of the background-normalized bell curve. The spot diameter defined the degree of 

amino acid diffusion during their extraction and coupling. 

4.6.2 Optimum Solvent for Amino Acid Extraction 

Microbeads containing 5 % (m/m) of Fmoc-Gly-OPfp were used in a series of 

experiments to identify the most suitable organic solvent for amino acid extraction. 

The samples were deposited onto flat functionalized substrates and exposed to the 

saturated vapor of three individual organic solvents (acetone, DCM, and DMF) five 

times for 1 min each with intermediate pauses of 1 min. Amino acid coupling was 

performed in the oven at 90 °C for 60 min. The coupled amino acids were 

fluorescently labelled with NHS ester dye. The mean spot signals and the mean spot 

diameters were estimated upon fluorescence scanning of the substrates (Table 14). 

Table 14. Effect of organic solvent nature on amino acid diffusion and coupling. 

Solvent 
Spot intensity,  

1000 x a.u. 

Spot diameter,  

μm 

Spot intensity/ 

diameter ratio 

DMF 15.0 ± 3.8 18.0 ± 2.0 0.8 

Acetone 21.4 ± 1.9 18.1 ± 1.9 1.2 

DCM 30.4 ± 2.9 17.8 ± 1.5 1.7 

 

As can be seen from Table 14, the mean spot intensity ranged between 15.0∙103 a.u. 

and 30.4∙103 a.u. depending on the organic solvent used for amino acid extraction 

from the microbeads. The highest mean signal of 30.4∙103 a.u. was obtained in case 

the amino acid extraction was performed in DCM vapor, whereas the amino acid 

mean signals due to extraction in acetone and DMF were 21.4∙103 a.u. and 

15.0∙103 a.u., respectively. The difference in spot intensity can be explained by various 

extraction rates of the monomers from the microbeads of a similar composition. Two 

aspects mainly define whether the solvent is suitable for the amino acid extraction. 

First, the cross-linked PMMA matrix has to swell to release the embedded amino acid 

derivatives. Second, the solubility of the amino acid derivatives has to be good 
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enough to enable their diffusion to the functionalized surface. DCM meets both 

requirements to a greater extent compared to acetone and DMF. 

The solvent nature did not cause a big difference in amino acid spot diameters, 

which ranged on average between 17.8 μm and 18.1 μm. It was expected that the 

organic solvents with an expressed tendency to wet the surface (DMF) would 

enhance the diffusion of the extracted monomers, resulting in larger amino acid 

spots. However, the extraction process time was not sufficient to observe this effect. 

The amino acid spot intensity and diameter are defined not only by the nature of the 

organic solvent, but they also depend on the extraction duration. The aim of this 

series of experiments was to select such a solvent, which enables the highest spot 

signals within limited amino acid diffusion. Therefore, the ratio of the spot signal to 

the spot diameter was used as the criteria to select a proper solvent for the monomer 

extraction. As can be seen in Table 14, DCM demonstrated the best performance and 

was considered to be the optimum solvent. 

4.6.3 Optimum Duration of Amino Acid Extraction  

In the next series of experiments, the process duration was optimized for amino acid 

extraction in saturated DCM atmosphere. As in the previous series, the microbeads 

containing 5 % (m/m) of Fmoc-Gly-OPfp were applied onto a flat functionalized 

substrate. Amino acid extraction was performed five times for the periods of 0.5 min, 

1.0 min and 2.0 min each with intermediate pauses of 1 min. Thereafter, the substrate 

was placed in the oven at 90 °C for 60 min to enhance the amino acid coupling to the 

surface. Staining of the coupled amino acids was performed with NHS ester dye. 

After fluorescence scanning, the mean spot signals and spot diameters were 

estimated (Table 15).  

Table 15. Effect of extraction process duration on amino acid diffusion and coupling. 

Duration,  

min 

Spot intensity,  

1000 x a.u. 

Spot diameter,  

μm 

Spot intensity/ 

diameter ratio 

0.5 42.5 ± 4.5  5.4 ± 0.4 7.9 

1.0 33.2 ± 1.4 20.0 ± 0.9 1.7 

2.0 28.5 ± 1.7 49.6 ± 2.9 0.6 
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The data shown in Table 15 contradicts to the hypotheses that the longer extraction 

times result in higher coupling yields and larger spot diameters. Indeed, the mean 

spot diameter increases as the extraction period becomes longer, whereas the spot 

intensity gradually abates. The longer the substrate remains in the saturated gas 

atmosphere, the larger amount of organic solvent condensates at the contact point of 

the microbead to the surface. It enhances the swelling of the microbead, the release of 

the amino acid derivatives, as well as their diffusion over the functional layer. Due to 

their spreading over the functional layer, the surface concentration of the amino acid 

derivatives decreases, resulting in a lower spot intensity. In fact, the integral signal 

over the spot area, associated with the total amount of the extracted and coupled 

monomers, increases as the process duration becomes longer. Therefore, shorter 

process durations are preferable if the diameter of the amino acid spots ranges 

between 15 μm and 30 μm. The spot size constraints are due to the fact that the 

monomers, extracted from the microbeads, should homogeneously spread over the 

bottom of the microwell and not diffuse to the neighboring microstructures. This 

requirement was met in case the amino acid extraction period was 1 min. 

4.6.4 Optimum Scheme of Amino Acid Extraction 

In order to enhance the coupling of the amino acid derivatives, it was suggested to 

perform the extraction process multiple times for 1 min each. Microbeads with 

5 % (m/m) of Fmoc-Gly-OPfp were deposited onto several flat functionalized 

substrates, which were independently placed into the extraction chamber 3, 5, 7, 10, 

and 15 times for 1 min each with their intermediate removal for 1 min. The resulting 

mean spot signals and diameters were measured and listed in Table 16. 

Table 16. Effect of extraction scheme on amino acid diffusion and coupling.  

Scheme, 1 min 

x repetitions 

Spot intensity, 

1000 x a.u. 

Spot diameter,  

μm 

Spot intensity/ 

diameter ratio 

1 min x 3  24.3 ± 1.5 15.3 ± 0.9 1.6 

1 min x 5  34.4 ± 2.9 21.9 ± 1.1 1.6 

1 min x 7  31.6 ± 4.0 25.4 ± 1.4 1.2 

1 min x 10 28.9 ± 4.4 28.9 ± 1.3 1.0 

1 min x 15 27.8 ± 2.6 30.1 ± 1.9 0.9 
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The initial hypothesis was that in each iteration, an additional amount of amino acids 

derivatives could be extracted from the microbeads, resulting in a higher coupling 

yield without considerable spreading of the monomers. The data shown in Table 16 

indicates that the correlation between the spot signal and the number of process 

repetitions is more complex than the direct relationship between the spot diameter 

and the number of process cycles. By increasing the number of repetitions from 3 to 

15, the spot diameter gradually increased from 15.3 μm to 30.1 μm, whereas the spot 

intensity first increased from 24.3∙103 a.u. to 34.4∙103 a.u. for 5 repetitions and then 

slowly decreased to 27.8∙103 a.u. Starting from 5 repetitions, the spot signal decreased 

due to the fact the extracted amino acid derivatives diffused over a larger area 

defined by the spot diameter. In case of 3 repetitions, the amino acid extraction rate 

was not yet sufficient to result in a high surface density of the monomers. Hence, the 

optimum confinement of the amino acid derivatives within the microwells could be 

achieved by extracting the monomers 5 times for 1 min each.  

4.6.5 Extraction in Microstructures 

The optimum extraction parameters were tested on microbeads with 5 % (m/m) of 

Fmoc-Gly-OPfp deposited into the microwells of the microstructured functionalized 

substrate. Extraction of the amino acid derivatives was performed in the chamber 

with saturated DCM atmosphere for 1 min periods repeated 5 times with 

intermediate removal of the substrate for 1 min. The coupling, fluorescence staining 

and imaging were performed according to the standard procedures. The resulting 

fluorescence pattern is depicted in Figure 77.  

The filing rate of the microstructures was intentionally kept low to verify whether 

the amino acid derivatives diffused to the neighboring microwells during extraction 

and coupling steps. The qualitative analysis of the fluorescence image indicates that 

the extracted amino acids were confined to the microwells, whereas their diffusion 

over the top surface was prevented. The spot signals were strong and homogeneous. 

These results confirm that the parameters of the amino acid extraction optimized for 

the flat functionalized substrates were also suitable for the microstructured surfaces.  
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In a similar way, the optimum extraction conditions were confirmed for all 20 types 

of microbeads carrying different proteinogenic amino acid derivatives. The 

microbead samples with the amino acid content defined in Table 8 were individually 

deposited into the microwells of the microstructured substrate. Amino acid 

extraction was performed in DCM chamber 5 times for 1 min each with intermediate 

removal of the substrate from the chamber for 1 min. The coupling, staining, and 

fluorescence imaging resulted in amino acid spots confined to the microwells of the 

microstructured substrate, which enabled us to conclude that the optimum extraction 

parameters were in general suitable for the stochastic peptide microarray 

manufacturing. 

4.7 Microbead Removal  

4.7.1 Microbead Residues 

The most efficient method of microbead removal was based on sonication of the 

microstructured substrate in an organic solvent. The removal rate depended on the 

nature of the organic solvent, sonication power and process duration. The removal 
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Figure 77. Fluorescence pattern generated by stochastic deposition of microbeads carrying  

Fmoc-Gly-OPfp and subsequent extraction and coupling of the monomers in the microwells of a 

microstructured substrate, followed by fluorescence staining with TAMRA: (a) full-size image; 

(b) (c) image fragments. The fluorescence signal is proportional to the surface concentration of the 

coupled amino acid derivatives. The filling rate was reduced on purpose to verify the events of amino 

acid diffusion into the neighboring empty microwells.  
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rate of nearly 100 % was achieved when performing the process in DCM for 5 min 

three times. However, every time less than 0.01 % of the microwells were blocked by 

the microbeads regardless of the removal process parameters (Figure 78). 

 

Even though the microbeads were based on the cross-linked PMMA microspheres 

with extremely narrow size distribution, their fine fraction had a size matching the 

diameter of the microwells. During their deposition, the microbeads with the size of 

12 μm were pushed into the microwells by mechanical force. Later on, it was 

impossible to remove these microbeads from the microwells by any of the tested 

methods. In case of sonication, the adhesion of the microbeads to the walls of the 

microwells was higher than the mechanical impact of the acoustic waves.  

In case some microwells are blocked by microbeads in a certain process step, the 

synthesis of the respective peptides undergoes termination. These microwells are 

considered to be empty in the next process iterations since the blocking microbeads 

become deprived of any QD labels during multiple washing steps in DCM. 

Therefore, the peptide sequences in the library file should match the amino sequence 

in the respective microwells. 

4.7.2 Microstructure Stability 

An attempt to increase the sonication power improved the microbead removal rates 

to a certain extent. However, starting from a certain level of sonication power, the 

microstructures underwent multiple destructions (Figure 79). 

200 µm 20 µm 

Figure 78. Microbead residues after washing the substrate in organic solvent in ultrasonic bath. Due to 

the fact the fine fraction of the microspheres had diameters bigger than 12 μm, they got stuck in the 

microwells without being able to be removed.  
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The stability of the microstructures mainly depends on the spacing between two 

microwells. The thicker the walls of the microwells were, the more stable they were 

against the mechanical impact of ultrasonic waves. For a given type of 

microstructures, the parameters of the microbead removal were optimized in such a 

way so that the microwells remained intact. 

4.8 Prototype Microarray 

4.8.1 Immunostaining 

After the stochastic peptide microarray prototype was incubated with fluorescently 

labelled anti-HA antibodies (conjugated with Cy3 dye) and anti-FLAG antibodies 

(conjugated with Cy5 dye), it was scanned in the corresponding fluorescence 

channels 582/75 (green channel) and 677/45 (red channel). Figure 80 depicts 

fragments of the acquired fluorescence image.  

The majority of the spots contain randomly synthesized peptides of various length. 

Some of these peptides demonstrate a certain affinity to the fluorescently labelled 

antibodies. The spots containing such peptides will be characterized by a 

fluorescence signal in the respective channel, which depends on the concentration of 

the peptides in the microwell and their affinity to the antibodies. Black spots 

represent the microwells that either do not contain any peptides or contain peptides 

with no affinity to the analyte molecules.  

30 µm 

Figure 79. Multiple defects of the microstructures due to the mechanical impact of the ultrasonic 

waves. The stability of the microstructures depends on the thickness of the walls forming the 

microwells, as well as on the power of the ultrasonic waves and the process duration. 



Prototype Microarray 

 

115 

 

A qualitative analysis of the image indicates that the prototype microarray contains 

stochastically synthesized peptides demonstrating an affinity for both types of 

antibodies. The fluorescence spot signals are confined to the respective microwells, 

whereas the shape of the fluorescence spots is nearly circular. It means that the 

manufacturing of the prototype microarray can be considered successful in terms of 

generating biologically relevant random peptides on the substrate. However, an 

additional quantitative analysis is required to characterize the microarray 

manufacturing process. 

4.8.2 Characteristics of Manufacturing Process  

The peptide library of the prototype microarray originates from a stochastic 

microbead deposition prior to each step of amino acid coupling. Brief statistics on the 

filling rates of the microstructures is shown in Table 17. 

The filling rate in each synthesis cycle was intentionally kept low to enable truncated 

analysis of the target epitopes. It ranged between 66.6 % and 84.9 % for the first eight 

layers. For the last layer, the filling rate was intentionally reduced to nearly 50 % to 

balance the synthesis probabilities of the target FLAG-epitope (consisting of only 

eight amino acid residues) and HA-epitope (consisting of nine amino acid residues). 
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Figure 80. Fluorescence image of the prototype microarray incubated with fluorescently labelled  

anti-FLAG antibodies (conjugated with Cy5) and anti-HA antibodies (conjugated with Cy3): (a) full-

size image; (b) (c) image fragments. The fluorescence signal depends on the concentration of the 

peptides in the microwell and their affinity to the antibodies. 
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Table 17. General statistics on microbead deposition during manufacturing process. 

Synthesis 

layer 

Microwells 

filled with 

“blue” μ-beads 

filled with 

“green” μ-beads 
empty  undefined  

1 44.0 % 39.4 % 17.9 % 0.3 % 

2 39.8 % 34.6 % 25.2 % 0.3 % 

3 81.2 %  0.0 % 18.6 % 0.1 % 

4 39.5 % 35.4 % 25.0 % 0.1 % 

5 32.1 % 34.1 % 33.8 % 0.1 % 

6 33.4 % 33.1 % 33.4 % 0.1 % 

7  0.0 % 70.5 % 29.5 % 0.1 % 

8 42.1 % 42.8 % 15.1 % 0.1 % 

9  0.0 % 47.2 % 52.6 % 0.2 % 

 

In each synthesis cycle that implied deposition of two types of microbeads the ratio 

between the “green” and the “blue” microbeads was close to one-to-one with minor 

differences in the first, second, and fourth layers. It could potentially lead to various 

frequencies of the peptides stochastically synthesized on the substrate. As can be 

seen in Table 17, not all microbeads could be differentiated by the DBSCAN 

algorithm. The number of undefined microwells was relatively low and ranged 

between 0.1 % and 0.3 %. 

Since the filling rate in each synthesis cycle was fairly low, a multitude of truncated 

peptides was synthesized on the microarray. The overall statistics on the number of 

peptides of a variable length is shown in Table 18. In general, the results comply with 

the data on the filling rates listed in Table 17. For instance, 17.9 % of the microwells 

did not contain any peptides due to the lack of the microbeads already in the first 

coupling iteration. Eventually, only 5.3 % of the microwells contained 8-mer 

peptides, whereas 9-mer peptides were synthesized in 4.8 % of the microwells. 
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Table 18. General statistics on peptide chains stochastically synthesized on the 

prototype microarray. 

Peptide length* Absolute number of sequences Relative number of sequences 

0 498 212 17.9 % 

1 560 361 20.1 % 

2 305 667 11.0 % 

3 354 631 12.7 % 

4 365 349 13.1 % 

5 237 167  8.5 % 

6 137 022  4.9 % 

7  50 139  1.8 % 

8 147 283  5.3 % 

9 134 169  4.8 % 

Total 2 790 000 100 % 

(*) – in number of amino acid residues. 

 

As a result of stochastic peptide synthesis, in total 64 types of 9-mer peptides had to 

be synthesized on the substrate (27 sequences, where 7 is the number of synthesis 

cycles involving two types of amino acid derivatives). In an ideal stochastic process, 

the output frequencies of the peptides synthesized in various microwells on the 

substrate would be equal. In a real process, an unequal ratio of the microbeads of 

various types applied onto the substrate in a mixture can influence the probabilities 

of various peptides synthesized. Figure 81 illustrates the resulting frequency 

distribution of 64 types of defined 9-mer peptides stochastically synthesized on the 

prototype microarray. The peptides were assigned indices according to the 

descending order of their frequencies.  
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Various 9-mer peptides were synthesized on a prototype microarray with different 

output frequencies. The ratio of the most frequent random sequence to the rarest was 

approximately 1.7. The shift in frequencies was due to the non-equal distribution of 

the microbeads of two different types in the respective synthesis cycles (see Table 17). 

These results enable us to conclude that the stochasticity can be controlled to a 

certain extent by changing the ratio of the microbeads of various types applied over 

the substrate in each synthesis cycle.  

4.8.3 Distribution of Spot Signals 

In total 4 278 microwells with stochastically synthesized FLAG peptides were 

identified in the prototype microarray library. The signals of these microwells were 

normalized with respect to the maximum value, sorted in descending order and 

plotted in a diagram (Figure 82). Similar curves were observed for nearly all 

biologically relevant peptides and are not shown here to avoid redundancy. 

Figure 81. Frequency distribution of 9-mer peptides stochastically synthesized on a prototype 

microarray. The blue line corresponds to the actual frequency distribution, whereas the red line 

represents an ideal stochasticity of the synthesis process. 
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Although the considered microwells were supposed to contain the same type of 

peptide, their signals ranged between 0 % (absence of signal) and 100 % (strong 

binding). Moreover, the signal distribution was not in favor of “good” spots: 94 % of 

the microwells demonstrated normalized signals below 10 %. Since the signal 

depends not only on the affinity of the peptides to the antibodies but also on their 

surface concentration, we conclude that the peptide output was extremely low in the 

majority of the microwells. Such results could be explained by several reasons. First, 

the coupling yield of every type of amino acid derivatives, extracted from the 

microbeads, was not perfectly uniform. The variation in the coupling yield could 

accumulate over nine synthesis cycles, resulting in a significant difference in the 

product output. Second, after their deposition into the microstructures, the 

microbeads could be attached to the walls of the microwells without touching their 

bottom (see Figure 66c). In this case, the amino acid diffusion profiles would have 

their maximum on the side surface of the microwells, whereas the bottom of the 

microwells would not be covered completely by a sufficient amount of the 

monomers. It would result in an extremely low coupling yield in the respective 

microwells in a given synthesis cycle, if not in a complete termination of the peptide 

synthesis. Unfortunately, it was impossible to identify the localization of the contact 

point between the microbeads and the substrate surface from the fluorescence 

Figure 82. Normalized fluorescence signal of the microwells containing FLAG peptide. In total 4 278 

microwells with FLAG peptides were assigned indices according to the descending order of their 

signals acquired in the fluorescence channel 677/45.  
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images. Therefore, this hypothesis remains unproven. Other circumstances, such as 

an inhomogeneity of the functional layer or its local destruction due to mechanical 

impact of the microbeads or ultrasonic waves, as well as errors in microbead 

decoding could contribute to the broad distribution of fluorescence signals obtained 

for the identical peptide spots. 

4.8.4 Characteristic Signals of Synthesized Peptides 

In order to derive relevant information from the generated set of experimental data, 

it was suggested to characterize each type of peptide by the median signal value 

calculated for the sixteen “brightest” spots. It enabled us to remove from 

consideration those peptide spots, which were subjected to adverse effects during 

prototype manufacturing. In each fluorescence channel, these median values were 

normalized for all 9-mer sequences, sorted in the descending order and plotted in 

diagrams (Figure 83 and Figure 84).  

 

As can be seen from Figure 83, the fluorescence signal exponentially decays while 

moving from the peptides with the highest affinity to the anti-FLAG antibody to the 

peptides with no affinity to the antibody. As expected, the majority of stochastically 

synthesized peptides did not interact with the analyte. Ten peptide sequences with 

the highest spot signals in the respective fluorescence channel are listed in Table 19. 

Figure 83. Normalized signal distribution of 64 types of 9-mer peptides synthesized on the prototype 

microarray in the fluorescence channel 677/45 corresponding to Cy5 conjugated anti-FLAG antibody.  
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Table 19. Peptide sequences with the highest affinity to the anti-FLAG antibody. 

Peptide index Amino acid sequence Normalized signal 

1 YDYKDDDYK 100.0 % 

2 YDYKDDDYA  75.5 % 

3 YDYKDDDDA  57.9 % 

4 YDYKVDDYK  53.2 % 

5 YPYKDDDYK  43.3 % 

6 YDYKDDDDK  40.9 % 

7 YDYKVDDYA  33.5 % 

8 YPYKDDDYA  27.1 % 

9 YPYKVDDYK  27.1 % 

10 YDYKDPDYK  26.2 % 

 

The FLAG peptide with the normalized signal of 40.9 % is marked in bold. One can 

clearly see that the sequences with the highest affinity to the anti-FLAG antibody had 

common fragments “DYK” in either of the two ends of the chain. Moreover, the 

sequence with the highest signal contained two DYK fragments. 

 

Figure 84. Normalized signal distribution of 64 types of 9-mer peptides synthesized on the prototype 

microarray in the fluorescence channel 582/75 corresponding to Cy3 conjugated anti-HA antibody. 
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The diagram, representing the normalized signals of 64 types of 9-mer peptides 

acquired in the channel 582/75 and sorted in descending order, resembles the 

diagram with the sorted signals of the same peptides in the channel 677/45. The 

majority of the random sequences did not demonstrate any affinity to the respective 

antibodies, whereas four sequences had a similar normalized signal of 100 % due to 

saturation during fluorescence scanning. Ten peptides with the highest signals in the 

respective channel are listed in Table 20. 

Table 20. Peptide sequences with the highest affinity to the anti-HA antibody. 

Peptide index Amino acid sequence Normalized signal 

1 YPYDVPDYA 100.0 % 

2 YDYDVPDYA 100.0 % 

3 YPYDDPDYA 100.0 % 

4 YDYDDPDYA 100.0 % 

5 YPYDVDDYA  72.5 % 

6 YDYDVDDYA  66.1 % 

7 YDYKVPDYA  59.8 % 

8 YPYKVPDYA  55.2 % 

9 YPYDVPDDA  53.5 % 

10 YDYDVPDDA  52.5 % 

 

As expected, the target HA peptide demonstrated the highest signal in the 

fluorescence channel corresponding to the anti-HA antibody. As can be seen, the 

peptides with the highest spot signals had a common fragment of “DxxDYA”. As 

soon as any of these relevant amino acids were randomly substituted for another 

one, the affinity of the peptide considerably decreased. 
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5 Conclusions and Outlook 

Within the scope of the present work, a novel microbead-based stochastic method for 

manufacturing low-cost high-density peptide microarrays was proposed and 

developed. It has several distinctive features compared to the other known methods.  

First, the underlying principle of self-organization of the microbeads in the 

microwells of a microstructured substrate does not require the use of expensive high-

precision equipment for the amino acid pattern generation. The accuracy and 

repeatability of the amino acid deposition are ensured by matching the size and 

shape of the microbeads, carrying the monomers, and the microwells, representing 

individual spots of the microarray. As a result, the manufacturing capital costs are 

potentially lower than in case of the alternative manufacturing methods.  

Second, each step of peptide synthesis is carried out simultaneously for several 

million spots on a microarray. By using a mixture of different microbeads, up to 20 

types of amino acid derivatives can be distributed into the microwells in a single 

process step. Moreover, the monomers in each microwell undergo extraction and 

subsequent coupling at the same time. These factors make the manufacturing time 

independent of the number of peptides to be simultaneously synthesized. 

Third, the suggested method is scalable in terms of the number of peptides that can 

be displayed on a single microarray. By changing the diameter and pitch of the 

microstructures and adapting the size of the microbeads, a broad range of peptide 

spot densities can be achieved. For instance, decreasing the pitch to 10 μm would 

result in a spot density of 106 spots/cm2, which corresponds to 11 million spots on a 

standard size substrate. Such extremely high spot densities enable representation of 

all possible 5-mer peptides (205) on a single substrate. 

In order to implement the proposed manufacturing concept in practice, several 

process steps were elaborated and optimized. In most cases, it required resolving 

inherent physical and technical contradictions caused by an inverse dependence of 

the process parameters. In the following, these contradictions and their solutions are 

summarized. 
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The layout of the microstructured substrate was optimized to facilitate the deposition 

and removal of microbeads with a diameter of 10 μm. The closer the geometric 

matching between the microwells and the microbeads was, the higher filling rates 

could be achieved. However, it impaired the microbead removal from the 

microwells. The optimum filling and removal rates were obtained for the 

microstructures with the pitch of 20 μm, the depth of 10 μm and the microwell 

diameter of 12 μm. 

A new architecture of the amino acid carrying microbeads was proposed and 

implemented. The microbeads had to be rigid enough to survive their deposition to 

the microwells while being exposed to a mechanical force. At the same time, they 

had to be soft enough to release amino acid derivatives under certain conditions. 

This contradiction was resolved by implementing cross-linked PMMA microspheres 

as solid carriers of amino acid derivatives. Their capacity enabled loading of the 

monomers in mass fraction of 2 % (m/m) to 3 % (m/m). 

The microbead deposition method had to be efficient in terms of reaching high filling 

rates, which could be achieved by implementing higher mechanical force on the 

microbeads. At the same time, the method had to be gentle enough not to damage 

the microbeads during their deposition. This contradiction was resolved by using a 

soft lint-free tissue to deposit the microbeads into the microwells, while the excessive 

microbeads were removed from the top surface with a compressed air flow. With this 

approach, the average filling rate of 92.6 % was achieved. 

A straightforward approach of decoding the microbead deposition pattern required 

their sequential deposition with intermediate optical imaging of the substrate. At the 

same time, the microbead deposition had to be fast and uniform, which implied that 

the microbeads of different types had to be applied as a mixture at once. This 

contradiction was resolved by multiplexed encoding of the microbeads with QD 

labels introduced into the cross-linked PMMA microspheres. A set of four basic QDs 

and four basic fluorescence filters enabled encoding of 14 types of microbeads.  

Special software was developed to enable fast and automatic decoding of the amino 

acid deposition pattern. It made it possible to identify contaminated microwells, 

differentiate between filled and empty microwells, as well as classify the microbeads 
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of various types depending on their unique QD labels. In total 11 types of 

microbeads could be differentiated with an error rate of 0.2 %. 

A new method of amino acid extraction from the microbeads was proposed and 

optimized. On the one hand, it had to enable a maximum extraction rate to achieve 

high coupling yields. On the other hand, the diffusion of the extracted amino acid 

derivatives to the neighboring microwells had to be prevented. The problem was 

solved by simultaneous and precise deposition of an organic solvent in each 

microwell due to its capillary condensation from the saturated gas. The process was 

performed in a special chamber with a saturated DCM atmosphere five times for 

1 min each with intermediate removal of the substrate for 1 min.  

After the process steps were optimized, the proposed concept was verified in a 

proof-of-principle experiment. A prototype microarray with 2.79 million spots was 

manufactured and incubated with the fluorescently labelled anti-FLAG and anti-HA 

antibodies. The resulting fluorescence pattern confirmed that the peptides 

demonstrating an affinity to the respective antibodies were stochastically synthesized 

on the substrate.  

A detailed evaluation of the staining results revealed an extremely inhomogeneous 

distribution of the spot signals representing the same amino acid sequence. 

Presumably, the extracted amino acid derivatives could not efficiently spread over 

the bottom of certain microwells due to the fact the microbeads were attached to the 

sidewalls instead of touching the bottom of the microstructures. Confirming the 

actual reasons requires further studies. 

The proof-of-principle experiment demonstrated that the process stochasticity can be 

controlled by adjusting the ratio of the microbeads in the mixture applied onto the 

substrate. By doing so, the probabilities of generating certain amino acid sequences 

can be shifted in either direction. By employing such an approach of directed 

stochasticity, one can generate application-specific peptide libraries on the substrate. 

Although the suggested approach of peptide microarray manufacturing is 

conceptually feasible, it requires further improvements and adjustments. In the short 

term, the microbead manufacturing procedure has to be further optimized to enable 

a homogenous labelling of the microbeads with QDs. It can be done by implementing 

an automated pipetting system with a controlled feeding rate of the liquid medium. 
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At the same time, an additional pair of a QD and a fluorescence filter can be 

introduced to expand the set of microbeads that can be differentiated by DBSCAN.  

The microbead deposition approach can be further elaborated to achieve higher 

filling rates of the microwells. For this purpose, paramagnetic nanoparticles can be 

introduced into the cross-linked PMMA microspheres, which should enable 

microbead deposition in a dynamic magnetic field. The microbeads will be exposed 

to a limited force exceeding their adhesion to the surface, thus eliminating the risk of 

their fracture of cross-contamination. 

In the long-term, the proposed manufacturing procedure can be scaled up. Currently, 

it takes approximately 2 weeks to manufacture one stochastic microarray with 10-

mer peptides. To increase the annual manufacturing throughput from 25 microarrays 

to 250 microarrays, the process steps have to be carried out in parallel for a set of 10 

substrates. It can be done by implementing special chemical chambers that can 

accommodate multiple slides. At the same time, the microbead deposition process 

has to be intensified and automated. The remaining bottle-neck step of fluorescence 

scanning can be performed by multiple scanners in parallel. 

The scope of biological applications can be further expanded by implementing cyclic 

peptide libraries and post-translationally modified peptide libraries. The first task 

can be solved by adapting the known protocols of peptide cyclization to the current 

procedure of peptide synthesis in a microarray format. The second task can be 

addressed by implementing modified amino acid derivatives as individual 

monomers. For this purpose, new types of monomer carrying microbeads have to be 

designed and optimized.  

The concept for bacteria and cell assays can be developed to enable high-throughput 

studies of their interactions with randomly synthesized peptides. Each microwell of a 

stochastic microarray, representing a certain peptide spot, can be treated as an 

individual reaction chamber. By applying cells of various types into the microwells 

and cleaving the peptides from the functional surface, the impact of various peptides 

on the cell cycle can be investigated. 
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Appendix 

A1 List of Amino Acid Derivatives 

Amino acid  

derivative 

Molecular 

weight (g/mol) 

Amino acid  

derivative 

Molecular 

weight (g/mol) 

Fmoc-Ala-OPfp 477.88 Fmoc-Leu-OPfp 519.46 

Fmoc-Arg(Pbf)-OPfp 814.82 Fmoc-Lys(Boc)-OPfp 634.59 

Fmoc-Asn(Trt)-OPfp 762.72 Fmoc-Met-OPfp 537.50 

Fmoc-Asp(OtBu)-OPfp 577.50 Fmoc-Phe-OPfp 553.48 

Fmoc-Cys(Trt)-OPfp 751.76 Fmoc-Pro-OPfp 503.42 

Fmoc-Glu(OtBu)-OPfp 591.52 Fmoc-Ser(tBu)-OPfp 549.49 

Fmoc-Gln(Trt)-OPfp 776.75 Fmoc-Thr(tBu)-OPfp 563.51 

Fmoc-Gly-OPfp 463.35 Fmoc-Trp(Boc)-OPfp 692.63 

Fmoc-His(1-Trt)-OPfp 785.77 Fmoc-Tyr(tBu)-OPfp 625.58 

Fmoc-Ile-OPfp 519.46 Fmoc-Val-OPfp 505.43 

A2 Microbead Manufacturing 

QD labelling of microspheres 

1. Disperse 1 g of cross-linked PMMA microspheres in 10 mL of DCM in a 

20 mL vial. Close the vial with a cap to prevent evaporation of DCM. Gently stir the 

dispersion for 30 min to achieve swelling of the microspheres.  

2.  Add 100 μL of QD solution in chloroform (2.5 mg/mL). Stir the dispersion in the 

closed vial for 30 min. Replace the dispersion from the vial to a 25 mL beaker. 

3. Add 30 mL of acetone dropwise from a burette. Adjust the feeding rate so that 

the liquid level remains constant (i.e. overcomes the evaporation rate of the solvents).  

4. Add 30 mL of ethanol dropwise from a burette. Adjust the feeding rate so that 

the liquid level remains constant or slowly increases.  
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5. Stop stirring and let the microspheres sediment. Remove the supernatant with a 

pipette.  

6. Add 20 mL of ethanol and stir the dispersion for 2 min. Stop stirring and let the 

microspheres sediment. Remove the supernatant with a pipette. Repeat the washing 

step with ethanol two times. 

7. Add 20 mL of acetone and stir the dispersion for 2 min. Stop stirring and let the 

microspheres sediment. Remove the supernatant with a pipette. Repeat the washing 

step with acetone two times  

Embedding amino acid derivatives into microspheres 

8. Add 4 mL of amino acid derivative solution in DCM. The mass per volume 

fraction (%, m/v) has to be adjusted for each type of monomer (see Table 8). 

9. Gently stir the dispersion until a paste-like medium is obtained. Stop stirring and 

let the paste dry out completely. 

10. Transfer the dry particle agglomerates to a falcon tube with 2 steel beads 

(Ø 5 mm). Perform milling using a vortex shaker until a fine powder is obtained. 

Place the powder into a falcon tube or a glass vial. 

Storage of microbeads 

11. Fill the vessel with argon, seal it with Parafilm, and store in a freezer. 

A3 Peptide Synthesis  

Fmoc deprotection 

1. Wash the substrate in DMF for 5 min. 

2. Apply a solution of 20 % (v/v) piperidine in DMF for 30 min. 

3. Wash two times in DMF for 5 min each. 

4. Wash two times in methanol for 3 min each. 

5. Wash in DCM for 1 min. 
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Microbead deposition and image acquisition 

6. Apply a mixture of microbeads onto the substrate and spread it with a lint-

free tissue over the surface. Remove the excessive microbeads from the top surface 

using a compressed air flow. Perform intermediate control of microstructure’s filling 

rate using optical microscopy. 

7. Perform fluorescence scanning of the substrate in the fluorescence channels 

corresponding to the QD labels. 

Amino acid extraction and coupling 

8. Place the substrate into the extraction chamber with pre-saturated DCM 

atmosphere five times for 1 min each with intermediate removal of the substrate 

from the chamber for 1 min. 

9. Place the substrate into the coupling chamber, fill it with argon and place it in 

the preheated oven for 60 min at 90 °C. 

10. Remove the chamber from the oven and let it cool down to room temperature.  

Microbead removal 

11. Wash in a solution of 5 % (v/v) MEA in acetone for 2 min in an ultrasonic bath. 

12. Wash in acetone for 3 min in an ultrasonic bath. 

13. Wash in DCM for 2 min in an ultrasonic bath. 

14. Dry the substrate and control the microbead removal rate using optical 

microscopy. 

Capping free amino groups 

15. Wash in DMF for 5 min. 

16. Apply a solution of 10 % (v/v) acetic anhydrate and 20 % (v/v) DIPEA in DMF 

for 10 min. Repeat the step with a fresh solution for 10 min. 

17. Wash two times in DMF for 5 min. 

18. Wash two times in methanol for 3 min. 

19. Wash in DCM for 1 min. 

In case of the peptide synthesis, repeat the steps 1 – 19 multiple times. 
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Fmoc deprotection 

20. Wash the substrate in DMF for 5 min. 

21. Apply a solution of 20 % (v/v) piperidine in DMF for 30 min. 

22. Wash two times in DMF for 5 min each. 

Capping free amino groups 

23. Apply a solution of 10 % (v/v) acetic anhydrate and 20 % (v/v) DIPEA in DMF 

for 10 min. Repeat the step with a fresh solution for 40 min. 

24. Wash two times in DMF for 5 min. 

25. Wash two times in methanol for 3 min. 

26. Wash in DCM for 1 min. 

A4 Side-Chain Group Deprotection 

1. Wash the substrate in DCM for 30 min. 

2. Apply a mixture of TFA (51 % v/v), DCM (44 % v/v), TIBS (3 % v/v), and H2O 

(2 % v/v) three times for 30 min each.  

3. Wash in DCM for 5 min. 

4. Wash in DMF for 5 min. 

5. Apply a solution of 5 % (v/v) DIPEA in DMF for 30 min. 

6. Wash three times in DMF for 5 min. 

7. Wash two times in methanol for 3 min. 

8. Wash in DCM for 1 min. 

A5 Immunostaining with anti-FLAG and anti-HA Antibodies 

1. Wash the substrate in PBS-T for 10 min. 

2. Incubate in Rockland blocking buffer for 30 min. 

3. Wash three times in PBS-T for 1 min each. 
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4. Incubate in the staining solution of anti-FLAG and anti-HA antibodies diluted 

1 : 1000 in a mixture of Rockland buffer (10 % v/v) and PBS-T (90 % v/v) for 1 h in the 

dark. 

5. Wash three times in PBS-T for 1 min each. 

6. Rinse with Milli-Q. 

A6 Fluorescence Staining of Terminal Amino Groups 

1. Wash in PBS-T for 10 min. 

2. Incubate in the staining solution of TAMRA or DyLight NHS ester in PBS-T in 

dilution of 1 : 10 000 for 2 h in the dark.  

3. Wash two times in PBS-T for 3 min each. 

4. Wash in Milli-Q for 1 min. 

5. Wash two times in DMF for 5 min each. 

6. Wash two times in methanol for 3 min each. 

7. Wash in DCM for 1 min. 
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