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Abstract
Patients suffering from neuronal degenerative diseases are increasingly being equipped with 
neural implants to treat symptoms or restore functions and increase their quality of life. 
Magnetic resonance imaging (MRI) would be the modality of choice for the diagnosis and 
compulsory postoperative monitoring of such patients. However, interactions between the 
magnetic resonance (MR) environment and implants pose severe health risks to the patient. 
Nevertheless, neural implant recipients regularly undergo MRI examinations, and adverse events 
are rarely reported. However, this should not imply that the procedures are safe. More than 
300 000 cochlear implant recipients are excluded from MRI, unless the indication outweighs the 
excruciating pain. For 75 000 deep brain stimulation (DBS) recipients quite the opposite holds 
true: MRI is considered an essential part of the implantation procedure and some medical centres 
deliberately exceed safety regulations, which they refer to as crucially impractical. Permanent 
MRI-related neurological dysfunctions in DBS recipients have occurred in the past when 
manufacturer recommendations were exceeded. Within the last few decades, extensive effort has 
been invested to identify, characterise and quantify the occurring interactions. Yet today we are 
still far from a satisfying solution concerning a safe and beneficial MR procedure for all implant 
recipients. To contribute, we intend to raise awareness of the growing concern, summon the 
community to stop absurdities and instead improve the situation for the increasing number of 
patients. Therefore, we review implant safety in the MRI literature from an engineering point of 
view, with a focus on cochlear and DBS implants as success stories of neural implants in clinical 
practice. We briefly explain fundamental phenomena which can lead to patient harm, and point 
out breakthroughs and errors made. Then, we end with conclusions and strategies to avoid future 
implants from being contraindicated in MR examinations. We believe that implant recipients 
should enter MRI, but before doing so, it should be made sure that the procedure is reasonable.

Topical Review

IOP

Original content from this work may be used under the terms 
of the Creative Commons Attribution 3.0 licence. Any further 

distribution of this work must maintain attribution to the author(s) and the title 
of the work, journal citation and DOI.

6 These authors contributed equally to this work.

2018

1741-2552/18/041002+26$33.00

https://doi.org/10.1088/1741-2552/aab4e4J. Neural Eng. 15 (2018) 041002 (26pp)

publisher-id
doi
https://orcid.org/0000-0001-5132-7757
https://orcid.org/0000-0002-5316-6579
https://orcid.org/0000-0002-2582-9451
https://orcid.org/0000-0002-2273-3497
https://orcid.org/0000-0002-7349-4254
https://orcid.org/0000-0003-4354-7295
mailto:thomas.stieglitz@imtek.uni-freiburg.de
mailto:jan.korvink@kit.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aab4e4&domain=pdf&date_stamp=2018-05-15
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1741-2552/aab4e4


Topical Review

2

Keywords: neural implant, magnetic resonance imaging, cochlear implant, deep brain 
stimulation, MR compatibility

(Some figures may appear in colour only in the online journal)

1.  Introduction

Bioelectronic devices in the human body, especially neural 
implants, have proven themselves as success stories hundreds 
of thousands of times [1, 2]. They are used to restore body 
functions, improve the quality of life of patients with neuro-
nal degenerative diseases, and still have great potential for 
ground-breaking novel applications. For the bright future of 
neural implants to be fulfilled, magnetic resonance imaging 
(MRI), with its striking soft tissue contrast, is the only technol-
ogy that is sufficient for appropriate diagnosis and that guar-
antees the compulsory monitoring of implant recipients’ most 
delicate organ: the brain. The active implants and bioelectric 
medicine in MRI result in a complex system. Hermetic pack-
ages, batteries, cables and electrodes that interface technology 
with tissue require many different materials. These materials 
face a harsh magnetic resonance (MR) environment, includ-
ing an extremely powerful static magnetic field, potent radio 
frequency excitation, and rapidly switching gradient fields. 
An encounter between implants and the MR environment can 
result in the following interactions: exertion of force, voltage 
induction, heating and imaging artefacts (figure 1). As this has 
led to fatal incidents in the past, many neural implants are con-
sidered to be an absolute contraindication to MRI as a precau-
tion. Along with MRI becoming the gold standard for many 
common medical conditions [3, 4], the number of implant 
recipients requiring diagnostic MRI is continuously increas-
ing [5–8]. Additionally, aspects in favour of MRI include 
its non-ionising property and its versatile application range 
beyond static images such as in angiography [9] or functional 
MRI (fMRI). Extensive effort has been made to identify, char-
acterise and quantify the occurring interactions over the last 
three and a half decades [10–18]. Yet, today we are still far 
from a satisfying understanding of the occurring phenomena.

As we develop future generation neural implants, we 
choose as educational guides cochlear implants (CI) and deep 
brain stimulation (DBS) implants, with the intention of draw-
ing lessons from the experience of these abundant commer-
cial neural devices in the MRI environment. We chose DBS 
as a representative for implants featuring spatially spread-out 
components with long conductors, an implanted energy source, 
and with the implant–tissue interface located in a delicate tar-
get area of the central nervous system. The CI was chosen for 
its spatially compact component arrangement featuring short 
cables, a permanent magnet, and an external energy source. 
We believe that with these two very different implant variants, 
the most important aspects of implant components and their 
behaviour in MRI are covered (table 1). Additionally, being 
inserted into the head, they compare better than the more 
abundant cardiac pacemakers (CP) and spinal cord stimulators 
(SCS). Furthermore, non-invasive MRI is indispensable for 
brain imaging and monitoring, and few satisfying alternatives 

are available. The assessment of the exact risk for the individ-
ual patient remains open. In practice, CI recipients often expe-
rience excruciating pain when undertaking MRI [3, 6, 19–27]. 
It is noteworthy that CIs are labelled with demonstrated 
safety in the MR environment within defined conditions [28, 
29]. Another questionable example is when DBS recipients 
undergo MRI, as this exposes them to the risk of brain tis-
sue burns [30–32]. Nevertheless, patients with implants are 
regularly examined in MRI [32–39]. However, despite rarely 
reported adverse events, we insist that it is of paramount 
importance to understand that the absence of adverse events 
is not equivalent to demonstrating safety [40].

As Thornton provides an excellent summary from a medi-
cal perspective [47], it is obvious that we cannot stop imaging 
implants in MRI, and that we should not do so either. However, 
we should ask ourselves: where does the risk come from? And 
what are the underlying physical effects? What experiences 
are reported? How can the biomedical community merge bio-
electronic devices and MRI to improve the situation for the 
current patient with a life-long implant? What lessons can be 
learned from already established implants to prevent restric-
tions to MRI owing to successful treatment? How can future 
implants gain safe access to MRI despite the trend towards 
more powerful electromagnetic fields? To address these ques-
tions, we collected information considering medical, physical 
and engineering points of view, to assemble a larger picture of 
interactions between the MR environment and implants. This 
creates a vantage point among the disciplines from which to 
ultimately answer the questions for a broad audience. We pro-
vide the groundwork by discussing the interaction pathways of 
an MRI scan between the patient, implant, MR unit and physi-
cian, and how they can lead to health-threatening situations. 
This is complemented by a review of MR safety literature, 
with a focus on CI and DBS as examples, with most clinical 
experience supplemented by other bioelectronic devices. In 
addition, we aspire to question current paradigms such as the 
head wrap for CIs in MRI, and suggest improvements. Finally, 
we aim to benefit from the lessons learned for the develop-
ment of future implantable technologies. We point out safety 
aspects for future implants, in particular bioelectronic micro-
devices, from an engineering point of view, to reduce the risks 
for implant recipients, so that they can benefit from both the 
treatment with the implant and the diagnostic value of MRI.

2.  Fundamentals, interaction pathways  
and resulting hazards

MRI is considered a safe procedure, and the lack of emitted 
ionising radiation allows for unlimited use. Currently, the 
majority of clinical MR scanners operate at 1.5 T, with 3 T MR  
units being the second most prevalent, while the legal limit for 
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clinical imaging has recently even been elevated to 8 T [48]. 
Along with the development of more powerful MRI equipment 
and an increasing number of MR examinations, the number of 
adverse events in combination with implants has grown [6, 23, 
27, 30–32, 49–51]. In this section we briefly introduce the fun-
damentals of MRI and neural implant components, and visual-
ise the interaction pathways among them in figure 2 to give a 
more detailed understanding of this alarming direction.

2.1.  Basic MRI background

2.1.1.  Hardware and electromagnetic fields.  An MR unit is 
a machine that maintains three qualitatively different electro
magnetic fields, and their precise control allows an MR image 
to be acquired. The basic functional principle is as follows: (1) A 
strong, homogeneous static magnetic field, called the B0-field, 
is created within the bore of the MR scanner. Its purpose is the 
polarisation of half-integer nuclear spins along the z-axis. The 
net magnetisation exposed to an external magnetic field will 
precess at the Larmor frequency ω which is related to B0 and the 
gyromagnetic ratio γ  =  42.25 MHz T−1 such that ω = γ · B0. 
(2) Powerful radio frequency (RF) pulses are driven at the Lar-
mor frequency, thereby flipping the magnetisation out of its 

alignment direction. In turn, the flipped and precessing magnet
isation now induces a signal in the receiver coils. The relax-
ation characteristics of the excited nuclei differ among tissue 
types and thus enable tissue contrast after signal acquisition. (3) 
Another ‘layer’ of weak magnetic fields arranged as a spatial 
gradient in three orthogonal directions is selectively superim-
posed onto the B0-field. This alters the precession frequency of 
the nuclei as a function of position and hence allows the spatial 
separation of the measured signals into volume elements (vox-
els) through spatial encoding of the obtained signal. The gradi-
ent magnetic field is rapidly switched on and off during MR 

Figure 1.  The complex MR environment can interact with an implant in many different ways which may cause hazardous conditions. 
Forces may occur from gradient coil fields and static fields interacting with the implant. Voltages may be induced by the time variant 
gradient and RF fields or by rapid transportation of the patient towards the scanner. Heating effects originate from the electric fields of the 
time variant magnetic fields, where the main contribution is by the powerful radio frequency pulses. Artefacts are mainly attributed to the 
B0-field by virtue of its deviation caused by susceptibility mismatch, and on the RF field depending on the used sequence. The correlation 
between the hazard and the MR component is displayed by grey-scaled dots in a table format, where the intensity gives an indication of 
how severe this interaction can become.

Table 1.  Comparison of the magnitude of interactions of CI, DBS, 
SCS, CP with the MR environment.

Interaction DBS CI
SCS  
[41–43]

CP  
 [44–46]

Force + +++  +   ++ ++
Induced voltage ++ ++ +++ +++  +  
Heating +++  +   + +++ ++
Artefacts +++ +++  +   + +

  +  ++  +  Very strong  +++Serious  +  + Moderate  +  Negligible
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acquisition at a frequency of some kHz. After recording, the 
data is computationally assembled into an MR image.

2.1.2.  Image acquisition sequences.  The greatest strength of 
MRI lies in its potential to measure a large number of various 
physical parameters, such as relaxation times, proton density, 
flow and diffusion, temperature, abundance of molecules and 
oxygenation of blood, all with the same hardware. This flexibil-
ity is achieved by the software-controlled adjustment of timing 

and magnitude parameters for the RF and gradient fields. The 
imaging recipe, which is a chronological ordering of RF and 
gradient field switching, is called an imaging sequence, and is 
usually displayed in a timing diagram. All sequences are based 
on fundamental blocks such as the gradient-echo (GE) or spin-
echo (SE) sequence; hence, fMRI or other advanced recording 
techniques utilise modified standard imaging blocks.

What is the effect of different sequences on the hazards that 
implant recipients are facing inside the MRI? Indeed, because 

Figure 2.  A detailed map of interaction pathways between the patient, brain implant, the MR environment and the responsible physician. 
The interaction pathways which only occur with implants are in addition to the ones displayed above and those that occur without an 
implant. It is worth noting the tremendous increase of hazardous pathways resulting from the introduction of an implant.The strength of 
individual interactions depends on the implant, the MR unit, and the applied acquisition sequence.
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the hardware does not change, the type of hazard is equal for 
all possible imaging sequences, i.e. it is the magnitude of the 
interactions which depends strongly on the sequence used, 
because the timing and the resulting magnitude of the gener-
ated magnetic fields varies with the applied sequences. Hazard 
levels with respect to RF interactions depend on the power and 
number of RF pulses per unit time, defining the RF power dep-
osition (SAR level). SE sequences, for example, make use of 
many RF refocusing pulses. This leads to a larger number of RF 
pulses per unit time compared to the GE sequences [52], and as 
a consequence, to a higher RF power deposition. Similarly, the 
gradient slew rate and the number of gradient switching opera-
tions per unit time determine the strength of gradient-dependent 
interactions. fMRI is particularly vulnerable to influence from 
implants. The most widespread application is the detection of 
the blood-oxygen-level-dependent (BOLD) signal in the brain 
as an indicator for nerve cell activity [53]. It is the small differ-
ence in the magnetic susceptibility of venous blood to its vicin-
ity that enables the BOLD contrast. Consequently, interference 
with the magnetic susceptibility of implants can be detrimental 
as the acquired echo-planar imaging (EPI) data is very sensitive 
to image distortion from susceptibility gradients due to the low 
bandwidth in the phase encoding direction [53].

2.2.  Neural implants

Neural implants interface the nervous system to either record 
electrical nerve activity or to electrically stimulate nerve cells 

and fibres (figure 3). Legally, they are classified as active 
implantable medical devices (AIMD), which means that they 
contain an energy source. The energy source can be a battery, 
a wireless link via a coil, which is called inductive coupling, 
or any other energy source other than gravity. It powers all the 
electronics that are needed to amplify, process and transmit 
nerve signals or generate current pulses for the stimulation of 
neural tissue. The power source and electronics need protec-
tion from the harsh environment of water, ions, proteins and 
cells in the body. On the other hand, the body environment 
also needs protection from the potentially toxic agents of the 
circuity. The most common solution is a hermetic (water and 
gas tight) housing made of titanium or ceramic material. Such 
hermetic packages are essential for long-term implants.

The dimensions of implant components vary between a 
few tens of micrometres for electrode sites in retina implants, 
slightly more than a millimetre in diameter for the CI and DBS 
electrodes, a couple of centimetres for the hermetic package, 
and up to a metre of cable length for DBS leads. The choice of 
materials commonly used for implant fabrication is restricted 
by requirements of biocompatibility and longevity. When con-
sidering implants for the MR environment, more restrictions 
concerning the material choice apply. One important material 
property is the magnetic susceptibility χ, which indicates the 
degree of magnetisation of a material in response to an applied 
external magnetic field. The value of the magnetic susceptibil-
ity can indicate the magnitude of force and imaging artefact 
size that are to be expected in MRI from a specific material.  

Figure 3.  Various neural implants and the location where they interface the central nervous system. This schematic display shows the 
wide-spread DBS device and the compact CI system with their individual components on the right side and the location where they are 
implanted. The left side shows implants with a lower occurrence. ((2) Adapted from [54], (3) image courtesy of Medtronic, (4) adapted 
from [55], (5) adapted from [56]).

J. Neural Eng. 15 (2018) 041002



Topical Review

6

Figure 4.  Hazardous MRI-implant interactions and their consequences for the patient. (A)–(C) Modalities for the evaluation of heating: 
(A) MR thermometry in a porcine brain, (B) the according simulation, (C) an optical temperature sensor mounted to a DBS probe for 
heating evaluation in phantoms. (A) and (B) show a temperature rise of 5 °C around the DBS probe, which can cause severe permanent 
brain trauma. (D) Application of a head wrap to secure the internal magnet of the CI against dislocation. Radiographs after an MRI 
examination reveal the internal magnet in the intended position (E) and dislocated (F). Dislocation results in pain, tissue damage and 
implant dysfunction. (G) Induced voltages in the signal output of the implanted electrode coincide with gradient field switching. This may 
lead to unintended stimulation and device malfunction. (H) and (I) MRI artefacts obscure large parts of the brain due to B0 field distortions 
caused by the internal magnet of a CI. Artefacts can compromise diagnosis and may cause misinterpretations. ((A)–(C) Adapted from [63] 
(© 2012 Institute of Physics and Engineering in Medicine. All rights reserved), (D) adapted from [8] (© 2010 Otology & Neurotology, Inc), 
(E) and (F) adapted from [64] (Copyright © 2014, Rights Managed by Georg Thieme Verlag KG Stuttgart • New York), (G) adapted from 
[65] (John Wiley & Sons. © 2015 Wiley Periodicals, Inc.), (H) and (I) adapted from [26] (CC BY 4.0.)).

Table 2.  Table of materials and their magnetic susceptibility. Negative values represent materials that counteract the external magnetic 
field, while positive values strengthen the overall magnetic field. The greater the mismatch in magnetic susceptibility of two adjacent 
materials, the larger the resulting imaging artefacts. Ferromagnetic materials experience attractive forces and will thus move, or even turn 
into projectiles.

Material
Magnetic susceptibility  
χv in ppm Scope of application / note Reference

Gold −34 Electrodes [94]
Solder (Sn60Pb38Cu2) Sn:  −22.7 Connection of electric components [94]

Pb:  −15.8
Cu:  −9.63

Alumina −18.16 Hermetic packaging [94]
Copper −9.63 Toxic [94]
Polyimid −8.917 Non-hermetic packaging, substrate [95]
Human tissue −11 to  −7 [94]
Water −9.0302 [96]
Silicone (Sylgard 184) −8.105 Non-hermetic packaging [95]
Silicon (Si) −4.2 Semi-conducting substrate for electronics [94]
Titanium 182 Hermetic packaging [94]
Platinum 279 Electrodes, noble, inert, biocompatible [94]
Austenitic stainless steel 316 9000 ferromagnetic, electrodes [97]
Iron 200 · 109 ferromagnetic [94]

J. Neural Eng. 15 (2018) 041002
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A list of common implant materials and their magnetic sus-
ceptibilities is shown in table 2.

2.3.  Physical background of hazardous implant–MRI  
interactions

While MRI is generally considered safe, the introduction of 
patients with implants into the MR system generates hazards. 
A hazard is defined as a potential source of harm [57], which 
may lead to health impairment or loss of the quality of life. An 
adverse event is defined by the United States Food and Drug 
Administration (FDA) as ‘any undesirable experience associ-
ated with the use of a medical product in a patient’. In general, 
every surgical intervention in the brain poses a high risk to the 
patient. This means that the implantation of a device is already 
hazardous. Consequently, any additional surgery caused by 
an adverse event or malfunction of the device, both of which 
could be caused by an MRI examination, has to be prevented. 
The brain represents some of the most delicate tissue in the 
human body. As such, it is especially sensitive to thermal [58–
60], mechanical [61] and electromagnetic impact [62]. In the 
following we introduce the underlying mechanisms that act 
between implants and MRI, which may lead to consequences 
for the patient: heating, exertion of force, induced voltages, 
device reimplantation due to dysfunction, and imaging arte-
facts that impede diagnosis (figure 4).

2.3.1.  Induced voltages.  An electric voltage is induced in 
an electrically conducting material whenever the magnetic 
flux Φ = A�B ·�n  passing through the area A of the material 
changes over time (figure 5(a)). The induced voltage is given 
by Faraday’s law of induction,

Uind = −A
∂ Φ

∂ t
.� (1)

This results in an induced electric current—the ‘eddy current’ 

Iind = −A
R

∂ Φ

∂ t
,� (2)

if the electrical resistance of the loop is finite, i.e. for a closed 
conductive loop, or an open loop with an attached circuit 
with finite resistance. When the law of induction is applied 
to the situation of implant recipients in an MR environment, 
it becomes clear that implant geometry, the movement of the 
patient relative to the scanner, and the switching gradient 
field are relevant. Three typical situations during MRI exami-
nation may lead to induced voltages: (1) When the patient 
is moved towards and into the MR scanner. In this case the 
magnetic flux density increases from near zero outside the 
scanner room to the maximum value of B0. The magnitude of 
induced voltage depends on the speed at which the patient is 
moved. (2) Inside and in the direct surroundings of the MR 
scanner (i.e. in the spatially varying fringe field of the scan-
ner), any movement of the patient that results in rotation of 
the implant with respect to the magnetic field may induce a 
relevant voltage. (3) During MR image acquisition, the rapid 
switching of the gradient fields induce an alternating voltage 
at the corresponding frequency, usually in the kHz range. To 
provide an example, the voltage induced in a (10 cm)2 loop 
perpendicular to a magnetic field change of 1 T per second 
is 10 mV. If this loop is a short-circuited copper wire with a 
0.1 mm2 cross section, the eddy current will be 0.7 A. These 
numbers scale proportionally to the frequency and to the 
cross-sectional area, and are highly dependent on the geom-
etry. The induction of voltages and eddy currents in a device 
may cause unintentional electrical stimulation of the (ner-
vous) tissue. This has caused life-threatening situations for 
CP patients in the past [91–93]. Such situations are unlikely 
to happen with neural implants as they do not support vital 
functions. However, artefacts in the data recordings or dam-
age to the implant may occur, which consequently can make 
device reimplantation necessary.

Figure 5.  The most important physical interactions in electromagnetic fields. (a) Induced voltages and currents due to a time-varying 
magnetic field. (b) Magnetisation of materials. (c) The magnetic moment of a current loop. (d) The linear force; the magnetised object is 
attracted towards increasing magnetic flux density (denser field lines). (e) Rotational force; the torque (green arrow) is orthogonal to the 
magnetic moment and the magnetic field, i.e. the rotational force (red arrow) is in the plane of the magnetic moment and magnetic field. (f) 
Absorption (heating) of the RF field on metal surfaces. (g) An illustration of the destructive interference of the resonance signal due to an 
inhomogeneous magnetic field in a voxel.
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2.3.2.  Exertion of force.  Magnetic forces result from the 
interaction of a magnetic moment with a magnetic field and 
may lead to movement relative to the surrounding tissue. The 
magnetic moment is essentially the strength of a permanent 
magnet. It is also caused by the magnetisation of any material 
when exposed to an external magnetic field such as the B0 
field of an MR environment, with a magnitude proportional to 
the magnetic susceptibility χv (see table 2) and its volume V: 
�µ = Vχv�B/µ0, see figure 5(b).

Materials are distinguished into three different categories 
according to their value of magnetic susceptibility. The force 
exerted by diamagnetic (χv < 0) and paramagnetic materials 
(χv > 0) in MRI with |χv| ∼ 10−5 is negligible. However, 
even small amounts of ferromagnetic material with χv � 1 
may exert a significant force.

A magnetic moment is also exerted by currents around 
a closed loop, such as the eddy currents described by equa-
tion (2). It is perpendicular and proportional to the surface area 
A of the loop, �µ = �n A I (see figure 5(c)), or, in the case of eddy 
currents, described by equation  (2): �µ = −(A2/R) ∂ Φ/∂ t . 
This may occur when the patient is moved in or out of the 
MR scanner, or moves during imaging. The interaction of a 
magnetic moment with a magnetic field gradient causes a lin-
ear force �F  (figure 5(d)), while a tilt of the magnetic moment 
relative to the magnetic field causes a torque �τ  (rotational 
force, figure 5(e)):

�F = �∇
(
�µ · �B

)
and �τ = �µ× �B .� (3)

The important points are, on the one hand, that linear force 
only arises in regions with a magnetic gradient, i.e. at the 
entrance of the scanner and during the imaging procedure. 
For example a 1 mm3 piece of ‘non-magnetic’ 316 stainless 
steel (see table  2) is magnetised by a 1.5 T magnetic field 
to exert a magnetic moment of 11 · 10−6 A m2. A 1 T m−1 
gradient then creates a force of 11µN—14% of its weight of 
78µN. A 1 mm3 neodymium magnet with a magnetic moment 
of 0.8 · 10−3 A m2 would, in the same situation, be subject to 
a force of 0.8 mN—11 times its weight.

The rotational force, however, arises only when the magn
etic moment of the material is not parallel to the magnetic 
field, and hence it does not occur in paramagnetic materials 
that are magnetised by the magnetic field, but only in perma-
nent magnets, ferromagnetic materials with hysteresis, or in 
conductors with induced eddy currents. The 1 mm3 neodym-
ium magnet, for example, perpendicular to a 1.5 T magnetic 
field is subject to a torque of 1.2 · 10−3 Nm . This corresponds 
to its weight acting on a 17 m long lever.

The (10 cm)2 conductor loop in a time-varying magnetic 
field of 1 T s−1 described in section 2.3.1 exerts a magnetic 
moment of 0.7 · 10−3A m2, similar to the 1 mm3 neodymium 
magnet. The exertion of force onto an implanted device may 
result in mechanical stress on the tissue and thus severe pain. 
The dislocation of an implanted magnet can compromise the 
device function and make surgical intervention necessary.

2.3.3.  Heating.  The specific absorption rate (SAR) measured 
in units of power per mass: (W kg−1) quantifies the absorption 

of electromagnetic fields in a material and results in heating. 
The interaction between the RF field and water molecules 
causes the heating of tissue and, even without an implant, 
poses a risk to the patient during MRI procedures [98, 99]. 
Conductive materials, however, interact differently with the 
RF field and may be subject to more intense heating [100]. 
An RF field that is incident to a metal surface will be par-
tially reflected and partially transmitted into the material (fig-
ure 5(f)). The transmitted fraction is absorbed and converted 
into heat. While this is a microscopic process that is indepen-
dent of the shape of the object, it may be greatly enhanced 
whenever a system is in resonance with the RF field due to its 
macroscopic structure. This occurs on a small scale when the 
resonant frequency 1/(2π

√
LC) of a circuit with inductance 

L and capacitance C matches the RF frequency. On a larger 
scale, a similar effect occurs when the length of a conductor is 
a multiple [101], the same, or an integer fraction (half or quar-
ter) [102] of the RF wavelength. Note that the cables for active 
implants are often helical wound wires to allow the elongation 
caused by body movement. Thus, the effective wire length 
may be a multiple of the cable length. The RF wavelength 
scales inversely proportional to the B0 field strength and is 
further reduced by the relative permittivity εr of the surround-
ing medium (tissue), λ � 7/((B0/ T)

√
εr)m . With εr ≈ 100 

for the tissue and the RF at a frequency of 100 MHz [103], the 
RF wavelength is � 50 cm for a 1.5 T scanner or � 25 cm at  
3 T, so the half or quarter wavelength matches the cable 
lengths of the DBS implants, for example.

Further heating of implant components may arise from 
eddy currents based on induction and joule heating [104]. 
From the induced voltage and current equations (1) and (2), 
the dissipated power is

Wind = U I =
A2

R

(
∂ Φ

∂ t

)2

.� (4)

For the (10 cm)2 conductor loop with 0.1 mm2 wires and a 
time-varying magnetic field of 1 T s−1, as it is typical for a 
patient moving into the magnet, the dissipated power is just 
7 mW. Because of the quadratic scaling in equation (4), how-
ever, the power induced by gradient fields switching in the 
kHz-frequency is on the order of several Watts. The heating 
of implant components may result in tissue burns, which can 
cause tissue necrosis [105, 106] or permanent neurological 
dysfunctions when occurring in the brain [31].

2.3.4.  Imaging artefacts.  Imaging artefacts are image distur-
bances that have no equivalent in the real object. There are 
several kinds of imaging artefacts which occur in commonly 
practised MRI and may cause dark patches of signal voids, 
or artificial appearances due to the superposition of multiple 
voxels. With respect to implants, susceptibility artefacts are 
the most relevant. Susceptibility artefacts are caused by the 
magnetisation of the materials in the B0 field as described in 
section 2.3.2. The magnetisation creates its own locally vary-
ing magnetic field that superposes onto the homogeneous 
B0 field. The resulting field distortions depend highly on the 
object geometry and are proportional to the local suscepti-
bility mismatch (see table 2) through which a spatial shift in 
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the Larmor frequency is caused, introducing an error into the 
imaging assumptions. Large field distortions simply shift the 
Larmor frequency outside the RF excitation band and due to 
the resonance frequency mismatch, no signal for any affected 
voxel is received. The inhomogeneity of the distortions also 
causes a variation of the Larmor frequency inside a voxel 
such that the resonance signal received from this voxel is sup-
pressed by destructive interference (figure 5(g)), causing dark 
artefacts near the object. This effect is particularly relevant 
near sharp edges and small objects. Such frequency shifts fur-
ther result in erroneous spatial encoding, i.e. geometric dist
ortion of the image.

While these artefacts cannot be described by a simple 
formula, an example might provide an indication. Thus an 
object 1 cm in size with a susceptibility mismatch of a few 
ppm may cause artefacts on the scale of a millimetre in its 
immediate vicinity, depending on the MR sequence. An exam-
ple of where such imaging artefacts naturally occur is at the 
interface between air and tissue, such as near the mouth, nose 
and sinuses. However, much larger susceptibility imaging 
artefacts occur in the vicinity of metals (or even worse—per-
manent magnets), as the difference in magnetic susceptibility 
compared to the tissue is enormous. The artefact of a ferro-
magnetic object, such as a permanent magnet, is so drastic 
that it essentially has a corrupting effect on the entire image 
[107]. Imaging artefacts do not harm patients directly, but 
become hazardous through misinterpretation [108], or when 

regions of diagnostic importance are obscured. Possibilities 
of tackling imaging artefacts include the utilisation of suscep-
tibility matched materials [95], such as carbon nanotube yarn 
for electrodes with susceptibility close to water [109], or the 
development of artefact-resistant MRI sequences.

2.4.  Established standards

When MRI became a common procedure during the 90s, the 
need for standards that regulate the handling of implants and 
medical devices was clearly recognised [110]. Among the 
numerous standards existing nowadays, we consider the follow-
ing as the most important with regards to neural implants. The 
American Society for Testing and Materials (ASTM) published 
test methods for the evaluation of MR interactions with medi-
cal devices including force and torque [111, 112], RF heating 
[113], and artefacts [114]. These test methods are fundamental 
for the labelling of medical implants in three MR compatibility 
categories ‘MR safe’, ‘MR conditional’, and ‘MR unsafe’ [28]. 
The ASTM standard of labelling has been overtaken unmodi-
fied by the International Electrotechnical Commission (IEC) 
and published as a standard for marking medical devices: IEC 
62570:2014 [115]. A second IEC standard is the IEC 60601-2-
33 [48] on safety performance requirements. The International 
Organization for Standardization (ISO) introduced the techni-
cal specification ISO/TS 10974:2012 [57] in 2012, which is 

Figure 6.  Components and implantation site of a CI system. A CI consists of a titanium housing containing the stimulator electronics (1). 
The stimulation electrodes (2) and a receiver coil with a magnet (3) in its centre are attached to the housing. These components are placed 
between the skull and skin just above the ear, from where the cable leads to the cochlea (4). An extra-corporal transmitter coil (5) attaches 
to the skin and aligns with the internal coil due to the second magnet in its centre. The audio processor (6) with a microphone converts 
sound into electrical stimulation signals which are transferred wirelessly across the skin to the implant. This transfer occurs between the 
two coils and also provides power to the implant (cochlear implant adapted from [56]).
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Table 3.  Milestones of MRI, CI and DBS.

Timeline MRI & standards CI DBS

1960 – • 1st CI implantation [125]
• 1st multichannel CI [125] DBS experiments to treat behavioural disorders, 

chronic pain and PD [131–133]
1970 – • 1st MR image [116] • Chronic depth stimulation [134]

• 1st human MR unit [117]
• Gradient MRI of finger [118]

1980 – • 1st MRI—implant tests [119] • 1st FDA approved CI [126] • Suppression of intention tremor by DBS [135]
• Commercial MR 0.15T [120]
• Commercial MR 1.5T [120]
• Neurostimulators considered contraindicated [88] • 3000 CIs [127] • Long-term suppression of tremor in PD [136]

1990 – • 1st fMRI [121] • Contraindicated to MRI [128] • Analysis of MR safety with neurostimulators [88]
• 1st 3T human MRI [122] • Severe interactions reported [129]

• Compatibility without magnet [77]
• IEC 60601-2-33 [48] • Movement with magnet [11, 76] • 1st approved DBS for PD [123]

2000 – • ASTM F2052—Force [111] • 60 000 CIs [126] • fMRI with DBS [12, 138]
• ASTM F2182—Heating [113] ASTM F2213—Torque [112] • CI with removable magnets • Large heating in MRI [80, 82]
• ASTM F2119—Artefacts [114] ASTM F2503—Marking [28] • Introduction of head wrap [5] • 1st real-time MR guided DBS implantation [139]

2010 – • ISO/TS 10974-2012 [57] • 324 200 CIs [130] • MR-conditional leads [140]
• Over 400 Million scans [18] • 75 000 DBS in total [37] 40 000 DBS for PD [141]
• 1st clinical 7 T MR (US) [137] • Freely rotating magnet in CI [26]

2020 – • Estimated launch of experimental 11.7 T human MRI [124]
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more detailed regarding the specific interactions of an implant 
with respect to the individual MR scanner components. An 
example is the distinction between ‘RF-induced heating’ and 
‘gradient-induced device heating’. Furthermore, a testing 
method is described for gradient-induced vibration, which was 
not considered before.

Table 3 shows a time line of the established standards 
related to implants in MRI and how they developed side-by-
side with CI and DBS implants. However, as described in the 
following sections, the integration process of these two tech-
nologies is one of slow progress. While taking a closer look at 
the past of CIs, and the experience gained from MRI exami-
nations with them, we show how hazardous pathways affect 
clinical practice.

3.  Cochlear implants in MRI

By the end of 2012, CIs as illustrated in figure 6, had restored 
hearing in 324 200 recipients worldwide [130]. Since MRI 
has become the preferred imaging modality for many clini-
cal indications [4], CI recipients want to know if they can 
undergo MRI investigations. Many CI recipients are children, 
who receive implants as early as six months after birth or even 
younger [142]. Other CI recipients already suffer from dis-
eases such as neurofibromatosis II (NFII), where the growth 
of tumours should be regularly monitored using MRI [3, 7, 8, 
26, 66, 67, 143]. It can be expected that many CI patients will 
experience some medical condition with a strong indication for 
MRI within their lifetime and do not want to get excluded due 
to their implant. What has been done so far, and what needs 
further attention to reduce potential harm to a minimum? 

3.1.  CI in MRI—from contraindicated to suggested safety

In the late 1980s it was claimed that CIs, although approved by 
the FDA, are contraindicated to MRI for the simple reason that 
they contain a magnet [128]. Two years later, in vitro experi-
ments verified strong torque, induced currents and device dys-
function when CIs were subjected to MRI [129]. A series of in 
vitro and cadaver studies followed, with the goal of finding MR 
conditions under which the prevailing CIs would no longer be 
contraindicated to MRI. As a first step, implants were stud-
ied without the internal magnet in place. Heating [70], force, 
torque, the generation of unintentional stimulation pulses, 
implant damage, and imaging artefacts, were investigated with 
the conclusion of acceptable compatibility at 1.5 T including 
a large safety margin [77]. When the internal magnets were 
left in place, similar findings were made for all aspects men-
tioned, except for torque, and significantly larger imaging arte-
facts. The magnet was found to exhibit a torque large enough 
to cause implant movement in some patients [11, 76]. Further 
detailed investigations in 2001 of the torque of CIs on the 
implant site, and the tissues countering the force, suggested 
safety for field strengths up to 1.5 T [14]. It was argued that the 
skull in which the CI is embedded can withstand much greater 

forces, except in infants [144]. The demagnetisation of internal 
magnets in MRI was studied, but no significant change was 
found [71], rebutting another device dysfunction modality. In 
vivo studies were first published in 1998 and 2001 at 1 T [72, 
74], followed by a case report in 2003 at 1.5 T [66], all report-
ing no complications. These studies were carried out on the 
generation of CIs, which had the internal magnet inside the 
implant housing, rendering the magnet unremovable for MRI. 
As a consequence, the force and torque originating from the 
magnet was acting upon the housing as a whole.

After these studies, hardly any further attention was paid 
to implant dislocation, heating of electrodes, and uninten-
tional stimulation in scientific publications—perhaps it was 
assumed that these problems had been solved? At the same 
time, a new generation of CIs was launched, in which the 
internal magnet was now located in a silicone pocket outside 
the housing to facilitate magnet removal prior to MRI exami-
nation, as a countermeasure for the large imaging artefacts 
suffered. However, magnet removal and reinsertion involves 
two surgical interventions, which is an aspect in favour of 
leaving the magnet in place. By placing the magnet into a sili-
cone pocket outside the housing (figure 6), the main cause of 
interaction between CI and MRI was not eliminated but rather 
facilitated, and magnet dislocation became a frequent incident 
[5]. The dilemma of deciding between large imaging artefacts 
and potential magnet dislocation, versus the risk of two surgi-
cal interventions for magnet removal, is persistent [6, 26, 73, 
145], and in both scenarios adverse events ensued (table 4).

3.2.  Adverse events related to CIs in MRI

Controversially, in the case of the aforementioned two surgi-
cal interventions for the purpose of magnet removal, it has 
been discussed whether or not wound healing after surgery 
may restrict the patient to wearing the external component 
of the CI system [3, 68]. More severe adverse events related 
to magnet removal include the occurrence of deteriorated 
blood circulation in the implant covering tissue and a skin 
flap infection, culminating in internal magnet extrusion [19]. 
Consequently, some medical centres prefer to leave the mag-
net in place during MRI.

3.2.1.  Magnet dislocation in MRI.  The complication of mov-
ing magnets in MRI was foreseen. One group proposed sim-
ply applying a tight head wrap to grant extra stability to the 
internal magnet and thereby prevent magnet displacement 
during MRI. An accompanying cadaver study demonstrated 
14 magnet displacements in 16 MRI scans when no external 
fixation was applied, and no magnet displacements when a 
head wrap was applied. The authors suggested distinguish-
ing magnet displacement and canting, where canting refers to 
the magnet not traversing the lip of the silicone housing [5]. 
In the following, both are referred to as magnet dislocation. 
The procedure of applying a head wrap, as an educated guess, 
was adopted as a mandatory requirement in all CI manuals in 

the MRI guidelines of the major CI companies MED-EL R©, 

Cochlear R© and Advanced Bionics R© [145–148].
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It took until 2008 for the very first adverse event related 
to CI in MRI to be reported, where the authors carefully state 
the ‘very rare event of magnet displacement during MRI 
scanning’ even though the patient was wearing a head wrap 
[49]. Once the first report had been published, the attribute 
‘very rare’ was challenged simply by the number of reports 
on MR-related magnet dislocations, which followed readily 
thereafter [3, 6, 19, 23, 27, 50, 51]. One elaborated exam-
ple reports 12 MRI-related magnet dislocations [6]. Therein, 
magnet dislocation is described as a serious complication, 
which can lead to transdermal magnet extrusion or menin-
gitis caused by the infection spreading along the implant. 
Regarding canting, one group proposed the application of 
gentle firm pressure over the scalp to bring the magnet back 
into place and thereby avert the need for surgical revision [3].

In 2015, the MED-EL Mi1200 Synchrony CI emerged 
with the distinctive feature of a freely rotating and laterally 
polarised internal magnet. It was claimed that therewith the 
problem of magnet dislocation and demagnetisation had been 
solved [26, 146]. As a result, the device was approved for MRI 
at 3 T with an internal magnet in situ.

3.2.2.  Pain, discomfort and sedation.  Another aspect of CI 
recipients in MRI examinations which is gaining immensely 
in importance is pain and discomfort, which has been explic-
itly mentioned as a concern only recently [3, 6, 19–26].

For instance, it was reported that 5 out of 18 CI recipi-
ents entering MRI were unable to complete the indicated MRI 
scans due to pain, although only one of them experienced mag-
net dislocation. In addition, yet another patient in this study 
had already experienced discomfort merely by approaching 
the MRI scanner [27]. Sedation was mentioned as a self-evi-
dent counter measure to discomfort and pain in some reports 
[8, 27], and additionally an anxiolytic was provided at request 
[3]. By contrast, Medtronic R© recommend not to sedate in 
their manual for physicians concerning MRI examinations in 
DBS recipients, so that they can provide feedback about any 
problems occurring during the examination [149].

3.2.3.  Imaging artefacts.  Besides the magnet displacement 
risk, internal magnets also cause major imaging artefacts (as 
explained in section 2.3.4) [11, 14, 21, 26, 69, 73, 75]. This 
compromises the diagnostic value of the imaging procedure, 
where the extent of the image disturbance depends on the 
MRI sequence used. Commonly used sequences can show 
circular signal voids with a radius of up to 8 cm from the cen-
tre of the implant [26]. Assuming the signal void resembles 
a sphere, and a quarter of the artefact is inside the head, the 
obscured volume would equal approximately half a litre, 
which equals one third of the average human brain volume 
and is illustrated in figure 4(H). However, it is worth noting 
that the MR image still features imaging artefacts after mag-
net removal due to the implant housing and its electronics. 
Thus limited diagnostic value in the vicinity of the implant is 
still to be expected [68].

3.3.  Discussion of adverse events related to CIs in MRI

It could be argued that the surgical intervention necessary to 
readjust magnet dislocation is equal to reinserting the mag-
net after removal. However, intentional surgical intervention 
may be preferable, especially when it prevents discomfort and 
pain. How likely is the occurrence of magnet dislocation? 

3.3.1.  Probability of magnet dislocation.  It has been claimed 
that the risk involved when surgically removing and replac-
ing the magnet for scanning is higher than magnet dislocation 
[8]. This may be true if the probability of magnet dislocation 
related to MRI in a CI recipient is 0.59 % as assessed here: [6]. 
This value is derived from 12 dislocations, which occurred 
in a collective of 2027 CI recipients over the time span of 
more than a decade. However, CI patients were only allowed 
to undergo MRI examinations in the last four years of the 
mentioned time span, and the number needed for a meaning-
ful probability assessment of CI patients who underwent MRI 
examination was not reported. Therefore, the derived prob-
ability of 0.59 % for magnet dislocations among all implanted 
CIs should not be taken as the correct value for the probability 
of adverse events in MRI procedures. In the same study, a total 
of three CI patients underwent MRI between January and May 
of 2013. If one extrapolates this number to the above men-
tioned period of four years, one can assume that around 29 
of the 2027 CI patients underwent MRI. This rough estimate 
puts the probability of MRI-related magnet dislocation in CI 
recipients up to more than 40 % (12 out of 29). Others state 
a risk of up to 15 % even with head wrap application [3]. So 
how can the likelihood of magnet dislocation be diminished? 

3.3.2.  Head wrap.  Since Gubbels et  al proposed the head 
wrap technique in 2006, it has become a strict requirement 
during the MRI examinations of CI recipients at field strengths 
higher than 0.3 T. This is in spite of several reports on adverse 
events occurring with the application of head wraps. Further-
more, Gubbels and co-workers suggested characterising the 
amount of necessary pressure applied by a head wrap to pre-
vent magnet dislocation. To our knowledge, no such study has 
ever been published. The data from the initial cadaver study 
did not seem to have been verified nor systematically investi-
gated against the hypothesis that a correlation between mag-
net dislocation prevention and the application of a head wrap 
exists. The magnetic field strength, however, has increased in 
clinical practice from 0.3 T over 1.5 T to 3.0 T, and exerts a 
force that is proportional to it, as explained in section 2.3.2. 
Let us estimate the forces exerted by a head wrap necessary 
to prevent magnet dislocation. In a study on the MRI-induced 
torque of a typical internal CI magnet, a magnet 12 mm in 
diameter was investigated, exhibiting a torque of 0.2 Nm in 
a 1.5 T MRI scanner [18]. This means that a force of 33 N 
applied to the rim of the magnet is necessary to counteract 
the torque and therefore prevent magnet movement. In other 

J. Neural Eng. 15 (2018) 041002



Topical Review

13

words, an equivalent of 3.3 kg weight has to be applied to the 
edge of the magnet to prevent it from moving when exposed 
to a 1.5 T MRI scanner. Without a head wrap, this task is 
left to the silicone pocket in which the magnet is contained, 
together with the surrounding tissue. Assuming that it is suf-
ficient to apply this weight, not on the edge of the magnet 
but on an area of one cm2 over the scalp, the necessary pres
sure to counter the magnet torque is equivalent to 3.3 bar or  
3.3 kg cm−2. When choosing to apply this pressure with a head 
wrap, every cm2 covered with the head wrap must experience 
the same amount of pressure. For example, a 10 cm wide head 
wrap, as proposed in a Cochlear R© CI manual [145], bound 
around a head with a 60 cm circumference and providing 
a load of 3.3 kg cm−2 would result in a total load of about  
2 tons. Instead, a stiff piece of wood with a plane surface and 
dimensions of e.g. 5 × 5 × 2 cm3 placed between the head 
wrap and the scalp directly above the magnet would be bet-
ter suited. The idea proposed herewith of using a splint is 
not new. However, folded paper, plastic cards [19] or moulds 
[8] would either not be stiff enough, or still apply pressure 
to the whole scalp surface, instead of only where the magnet 

is situated underneath, therefore not serving the purpose that 
a splint should. Nevertheless, the principle of these methods 
was adopted in some manufacturer’s manuals in 2012 [6, 145].

3.3.3.  Concerning regulations of CI in MRI.  If a CI recipient 
is scheduled for an MRI exam, it is of paramount importance 
to be aware of the manufacturer’s model-specific MRI recom-
mendations. All companies instruct users to remove external 
components prior to MRI examination. How are CIs finally 
evaluated with respect to their risk-benefit-assessment in MRI? 
Unambiguous statements are rare. One review about the MRI 
safety of CIs concludes that MRI in 3 T scanners is generally 
considered unsafe, and that 1.5 T MRI is contraindicated for 
CI recipients unless the MRI indication outweighs the risks 
of MRI examination [22]. This statement raises two important 
points. First, some current CIs are certified according to regula-
tions as MR-conditional with the magnet in place for 1.5 T, and 
for 3.0 T without the magnet. One is even certified MR-safe for 
3.0 T with the magnet in place. Consequently, the statement 
of ‘generally considered unsafe (3 T) or contraindicated (1.5 
T)’ is no longer valid. However, Cochlear R© advises magnet 

Table 4.  Compilation of MRI interaction studies for CI.

Hazard/consequence for

Interaction B0 Study type Patient Implant Diagnosis Reference

Cochlear 
implant

Artefact 1.5 T Patient N/A N/A Artefacts [66–68]

3 T Cadaver N/A N/A Artefacts [26, 69]
Force 1.5 T Patient Mechanical 

stressa
Mechanical failureb N/A [20, 49]

Cadaver Mechanical 
stressa

Mechanical failureb N/A [5]

Phantom Mechanical 
stressa

Demagnetisation N/A [18]

Patient with 
head wrap

Mechanical 
stressa

Mechanical failureb N/A [23, 27, 50, 51]

Heating 1.5 T Phantom No effects No effects N/A [70]
Artefact, force 0.2 T Patient No effects No effects Artefacts [71]

1 T Patient No effects No effects Artefacts [72]
1.5 T Cadaver No effects No demagnetisation Artefacts [71]

Patient Mechanical 
stressa

Demagnetisation, 
Mechanical failureb

Artefacts [3, 73]

Patient Mechanical 
stressa

No effects Artefacts [7, 8]

3 T Phantom Mechanical 
stressa

Mechanical failureb Artefacts [25]

Artefact, force, 
heating

1 T Patient, 
phantom

No effects No effects N/A [74]

Artefact, force, 
heating, induction

0.3 T Patient No effects No effects Artefacts [75]

0.3 T–1.5 T Phantom Mechanical 
stressa

Demagnetisation Artefacts [76]

0.2 T–1.5 T Phantom safety limits 
at 1.5 T

safety limits at 1.5 T Artefacts [14]

1.5 T Phantom 
without magnet

No effects No effects Artefacts [77]

N/A  =  Not applicable
a   Mechanical stress includes pain and discomfort.
b   Mechanical failure in CI is mainly due to magnet dislocation.
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removal before every MRI procedure on CI recipients [145]. 
MED-EL R© propagates safe MR procedures in CI recipients 
with the magnet in situ, but a supportive head wrap must be 
placed over the implant. Furthermore, they point out that per-
forming an MRI without a head wrap could result in pain in 
the implant area [145, 146]. These recommendations stand in 
contrast to the reports on the adverse events mentioned earlier. 
Secondly, most reported cases of MRI indication in CI recipi-
ents are due to severe, often life-threatening medical condi-
tions such as NFII, brain tumours, potential breast cancer, etc 
[3, 8, 27, 49, 51, 66, 67, 143]. It is argued that the MRI indi-
cation outweighs the risk of MRI examination. To this effect, 
MRI in CI recipients can be considered safe enough to proceed 
with the imaging of severe indications. However, the chance of 
harm, discomfort, pain and the risk of inflammation either by 
magnet dislocation or surgery is so high that MRI in non-life-
threatening indications of CI recipients does not appear to be 
performed. Should a CI recipient be able to undergo MRI to 
diagnose a rupture of the anterior cruciate ligament [27]? This 
could be a starting point for a debate on where the threshold 
for taking the risk of an MRI examination is, and how we can 
provide access to MRI for every neural implant recipient, so 
that the treatment of a disease does not restrict the diagnosis 
and treatment of another.

3.4.  Concluding remarks on CI in MRI

CI treatment does not require postoperative MRI. However, 
imaging due to diagnostic needs independent of the hearing 
loss preceding CI implantation may occur, and in NFII frequent 
MRI monitoring is indicated. Most adverse events related to CI 
in MRI occur due to the exertion of force onto the implanted 
magnet, which causes it to move. The resulting pain and dis-
comfort discourages patients and physicians from performing 
imaging in non-severe indications, despite the legal declara-
tion of ‘MR-conditional’ CIs. The suggested countermeasure 
of a head wrap is an inefficient, unpleasant, non-scientific and 
unproven remedy for magnet dislocation. Detailed reporting on 
pain and the discomfort of CI patients in MRI can be consid-
ered a valuable step away from the achievement of pure objec-
tive feasibility and towards a patient-oriented mindset. The 
invention of a rotating magnet (MED-EL Mi1200 Synchrony) 
resulted in a big leap towards the ‘MR safety’ of the device, and 
it is a promising step in the reduction of torque and therewith the 
magnet dislocation, pain and discomfort of CI patients in MRI. 
It is these kinds of industry-driven technical innovations that 
make MRI more accessible for CI recipients. It must be noted, 
however, that the development and especially the approval pro-
cess in this specific case took at least six years. Measures such 
as the head wrap are at most an illusion to overcome such long 
waiting periods for the approval of bio-medical product innova-
tion by the regulatory body.

4.  Deep brain stimulation implants and MRI

DBS is a successful medical therapy which has been 
applied in more than 75 000 patients [37] to treat the symp-
toms of Parkinson’s disease (PD), for which implantable 

pulse generators and electrodes have gained medical device 
approval. The treatment has also been successfully applied 
to dystonia, essential tremors, Tourette syndrome [151], epi-
lepsy, obsessive compulsive disorder [82] as well as other 
movement disorders and psychiatric diseases [152], which 
have been investigated in many clinical trials. The underlying 
principle of DBS implant systems, as shown in figure 7, is the 
modulation of brain activity by the electrical stimulation of 
target structures in the brain, such as the subthalamic nucleus, 
or the globus pallidus internus, and has replaced lesional neu-
rosurgery [153].

DBS probes are implanted with high precision by stereo-
tactic surgery through a burr hole in the skull, targeting struc-
tures the size of a cubic centimetre [154]. Once the electrode 
is in position, electrical stimulation trials are used to verify 
treatment efficiency at the specific electrode position. Before 
the final steps of pulse generator implantation and the con-
nection of the latter to the DBS probe using extension leads, 
it is essential to verify the electrode contact position by 
imaging [47]. Despite the hazards involved when exposing a 
patient with DBS hardware to MRI, MRI is considered the 
gold standard for electrode localisation [32]. In a few cases, 
the implantation procedure is guided by intraoperative MRI, 
where the entire surgical procedure is performed with the 
patient inside the 1.5 T scanner, and thus multiple examina-
tions can be performed to monitor the probe positioning and 
any surgical complications [155].

4.1.  Paradigm changes in DBS: from MR-unsafe  
to MR-conditional

Initially, DBS systems were contraindicated to MRI. Hence, 
the behaviour of implanted pulse generators was investigated 
during MRI with a focus on induced voltages and the heat-
ing of the housing [88]. Further experiments (overview in 
table 5) in vitro were followed by the in vivo examinations of 
38 patients in the late 1990s with activated devices [89]. At the 
same time, the first in vivo fMRI studies with DBS patients 
were conducted [12, 138], showing considerable potential for 
better understanding of the mechanisms underlying move-
ment disorders in PD. A warning on the potential for exces-
sive heating when DBS probes undergo MRI was announced 
in 1999 [12]. Three years later, this phenomenon was quanti-
fied in an in vitro study, in which the temperature increase of 
2.3 °C at the electrode tips was assessed as ‘physiologically 
inconsequential’. However, a temperature increase of up to 
25.3 °C was measured when a body coil instead of a head coil 
was used [80]. In 2004, it was found that depending on the 
experimental setup, heating can occur with a 15.6 °C temper
ature increase at the electrode and a 59.1 °C increase at the 
phantom surface [90]. Another study published in 2007 found 
only minor changes in an in vitro experiment with a temper
ature increase of 0.59 °C to 1.36 °C at the electrode tip when 
the stimulation was activated during fMRI. The temperature 
increase of the electrode in fMRI was higher at 1.5 T than at 3 T  
during an in vitro safety study [17]. In 2013, a Medtronic R© 
DBS implant system was labelled ‘MR-conditional’ and was 
allowed to undergo MRI if the device was in the 0 V setting and 
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then set to off, with application of the transmit and receive RF 
head coil only, and with a 0.1 W kg−1 SAR limit in the head.

4.1.1.  Adverse events related to DBS hardware in MRI.  The 
first adverse event with DBS hardware related to MRI was 
reported in 2003, when a patient underwent MRI prior to pulse 
generator implantation with two unconnected, implanted elec-
trode leads fixed outside the RF head coil in a straightened 
manner. The patient experienced transient focal dystonia and 
ballism immediately after MRI [30]. Two years later, a dif-
ferent DBS patient underwent MRI seven months after pulse 
generator implantation. The employment of an RF body 
coil had caused hemiparesis, which was observed upon the 
patient exiting the MR scanner. After the imaging procedure, 
a haemorrhage surrounding one of the two implanted probes 
was found. According to the authors, all the body-averaged 
SAR values ranged from 0.57 to 1.26 W kg−1 with local SAR 
values of up to 3.92 W kg−1 [31]. Consequently, the reported 
exceeding of limits resulted in responses within the commu-
nity reminding responsible staff to follow the manufacturers’ 
recommendations [156]. No incidents were reported through-
out the next six years except for the failure of two pulse 
generators during the MRI procedures [151, 157]. In 2011, 
a case report on dyskinesia and tremor during a postopera-
tive MRI procedure was published [32]. The scanning had to 
be aborted, however, no abnormalities could be found in the 
MR image. A second, non-stereotactic MRI was performed on 
the second postoperative day before pulse generator implant
ation. This imaging procedure revealed hyperintensities along 
the whole length of both electrode leads, suggesting oedema, 
which, according to the publication, was associated with 
patient movement during the first MRI scan [32]. A different 
case also reported hyperintense images observed in an MRI 
scan on an electrode lead 12 months after implantation, where 
the lead was connected to its pulse generator. The reporting 
authors assumed that the observed hyperintense signal was an 
oedema caused by MR-related heating, as the electrode had 
not been manipulated manually [37]. Similar hyperintensi-
ties around DBS probes were reported in other retrospective 
studies, but their correlation to MRI has not been determined  
[36, 38, 158].

4.2.  Efforts to reduce heating

As all reported adverse events are related to heating, we focus 
on this prime concern, and discuss several strategies to reduce 
heating in the following. Can MRI be replaced by CT in some 
cases? 

4.2.1.  DBS probe localisation using CT—an alternative to 
MRI?  Precise electrode positioning is crucial for therapeutic 
success, and avoids the need for additional surgery for later 
repositioning [157, 159, 160]. The postoperational probe 
localisation procedure, therefore, is essential. One way of 
replacing MRI with electrode localisation is the image fusion 
of preoperative MRI with a postoperative CT image. It is 

beneficial that the imaging artefacts caused by the electrode 
were claimed to be smaller in CT than in MRI, resulting in a 
more precise image [161]. Consequently, image fusion was 
declared to be a safe and fast technique for the postoperative 
assessment of the DBS electrode position [153]. A disadvan-
tage of the fusion technique is that morphological information 
about the targeted tissue is lost and postoperative complica-
tions, such as haemorrhage or infarction [161], are much less 
distinct. Besides, the patient is exposed to ionising radiation 
and the image fusion may be impaired by a brain shift related 
to DBS implantation, causing tissue shifts of up to 4 mm 
[162]. As explained in section 2.3.4, the DBS electrode is dis-
guised in the MR image by an imaging artefact. This artefact 
is larger than the dimensions of the active sites [163] and has 
led to significant discrepancies compared to brain CT [159]. It 
is known that the electrode position is eccentric to the imag-
ing artefact [96, 161]. Yet, despite the MR artefacts, several 
studies comparing CT and MRI electrode localisation proce-
dures conclude that MRI is a precise modality [78, 161, 163, 
164]. MRI holds the advantage of superior diagnostic value in 
the identification of pathological abnormalities related (e.g. 
haemorrhage) or unrelated to DBS, such as tumour and stroke 
[82]. Therefore, it is desirable to perform MRI if patients 
exhibit poor or worsening outcomes of the stimulation treat-
ment. In particular, MRI is often used in patients who undergo 
the implantation of an additional electrode, or reimplantation 
for more effective treatment [81]. Furthermore, great interest 
exists in combining DBS with fMRI [17, 165] to acquire more 
data and a deeper understanding of the brain. For these rea-
sons, many groups rely on MRI for the position verification of 
DBS probes [32, 157, 163], despite the risk of severe heating 
of the DBS hardware in MRI [79].

4.2.2.  Heating of DBS hardware in MRI  As illustrated in 
figure 7, the tip of the DBS electrode sits in a most delicate 
location. Therefore, the MRI-related heating of DBS probes 
requires particular attention, since the sensitivity of the brain 
to temperature increase is also paired with no opportunity to 
sense it. Although tissue in the central nervous system can 
endure 43 °C for 30 minutes [79], it is strictly recommended 
by regulatory bodies not to exceed a 1 °C temperature increase.

4.2.3.  SAR and its restriction  There is a high correlation 
between the SAR and heating at DBS electrode tips [82]. 
Therefore, the field strength of scanners and the SAR in 
conjunction with DBS hardware is restricted to 1.5 T and 
0.1 W kg−1, respectively. According to clinicians, this upper 
SAR limit is extremely low and limits the range of sequences 
which can be applied to a point of crucial impracticality [33, 
166]. In contrast, studies at 3 T show the electrode lead tip 
temperature exceeding the limits of regulations [85, 87] and 
thus confirming the purpose of the SAR limit. Recent manu-
facturer adaptations allow less conservative settings [47].

The level of SAR applied during MRI is controlled by the 
MR scanner operator via the machine console and software. 
However, it has been revealed that large discrepancies exist 
between the displayed SAR and the actual SAR deposited 
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by the scanner between manufacturers, scanners of the same 
manufacturer and even between software versions run on a 
single machine [81, 167]. Mostly, the deposited SAR is over-
estimated—in some cases by as much as 2.2-fold—which 
represents a conservative setting. Nonetheless, incorrect SAR 
monitoring can inappropriately restrict MRI scans even fur-
ther and may hinder clinical scanning and pulse sequence 
development. In particular, these restrictions can entail trade-
offs in the image acquisition time and spatial resolution, and 
therewith limit diagnostic utility [168]. Finally, it is crucially 
important to precisely manage the total power deposition for 
the safety evaluation of conducting MRI with implantable 
components.

4.2.4.  Simulation of SAR and implant-related heating  Heat-
ing and the implant-correlated heating of all kinds of implants 
are problems that have been tackled in many studies [82, 
169–174]. The major present-day challenge is the handling 
of the wave characteristics of the RF pulses, which makes 
it difficult to provide general solutions to the problem. Each 
case depends strongly on the geometry of the MR system, 
the patient, the implant and the scanning parameters. Fur-
thermore, the position and orientation of the implant and the 
patient with respect to the electromagnetic fields has a great 
influence as well. Thus, it is challenging to derive general solu-
tions for MR safety. An interlaboratory comparison study has 
pointed out widely varying results among groups evaluating 

the heating of implants, despite following current guidelines 
[84], in agreement with the aforementioned challenges. Con-
sequently, implants have to be tested for individual scanning 
parameters and MR units. This, as well as the numerous influ-
encing parameters, have made experimental work tedious, and 
a useful outcome remains rare. Therefore, simulations are cur
rently used to compute the distribution of the electromagnetic 
fields and SAR hot-spots (see ISO/TS clause 10 [57]). As a 
result, the evaluation of implant heating in MRI using simula-
tion software has become an indispensable tool [84, 175, 176].

4.2.5.  What physicians can do  Device manuals usually pro-
vide clear recommendations about whether and how MRI can 
be conducted safely. It is important to be aware of the influ-
ence the condition of a device can have on its heating behav-
iour. Some devices have special MRI modes, others should be 
turned off during examination. The condition of leads—e.g. 
whether they are externalised—has a tremendous influence on 
their heating behaviour, and the manufacturers’ recommenda-
tions should be strictly met. Specifically in the case of DBS, 
it has been shown that the way probes are implanted strongly 
influences the heating characteristics during MRI. This mainly 
affects the excess lead management, where concentric loops in 
the axial plane around the burr hole may reduce heating [86]. 
The excess extension lead should be coiled around the perime-
ter of the pulse generator [177]. Furthermore, the use of a head 
transmit/receive coil dramatically reduces electrode tip heating 

Figure 7.  An implantable DBS system consists of four components: the stimulation probe (1), fastened in the skull by a fixation cap (2), an 
extension lead (3), and an implantable pulse generator (4). The stimulation probe is 1.27 mm in diameter and consists of approximately  
40 cm long flexible tubing containing wires that are connected to the so-called active sites. These active sites are metal contacts interfacing 
the electrical components with the target tissue. The extension lead connects the probe wires to the implantable pulse generator, and is 
available in various lengths. Finally, the implantable pulse generator holds the electronic circuitry and a battery in a hermetic titanium 
housing, with dimensions on the order of 5 × 5 × 1.5 cm3. Due to the lack of space in the head, pulse generators are implanted into a 
pocket under the collar bone or in the abdomen, which explains the large range of available extension lead lengths [150] (DBS adapted 
from [55]).

J. Neural Eng. 15 (2018) 041002



Topical Review

17

when compared to body coils. This is because the pulse gener-
ator and a portion of the extension lead is outside RF exposure, 
which results in less induced current and consequently in less 
heating [80]. Sequence selection and development can make a 
contribution to the reduction of heating. Sarkar et al developed 
an alternative to spin-echo sequences which has been useful 
for MR-guided DBS procedures [83]. The presented short tau 
inversion recovery sequence features ultra low SAR while still 
providing adequate tissue contrast in the brain tissue of DBS 
recipients. However, the sequence exceeded approved limits 
once patients had been fully implanted [83].

4.2.6.  What manufacturers can do  Corporate research 
has led to technical innovations that address the multipara-
metric effects of heating from several technical aspects. For 
one, it has been shown that coiling wires can reduce the 

occurrence of heating significantly compared to straight wires 
[140]. Medtronic R© advanced this by introducing a braided 
body that acts as an RF shield and a dissipation surface for 
leads to reduce heating. In vitro experiments show how the 
temperature increase is distributed over the whole lead length 
rather than concentrated at the electrode tips [178]. Another 
approach to reducing implant heating by making adjustments 
on the scanner side involves the design of implant-friendly RF 
coils [179].

4.3.  Discussion: How likely are adverse events of DBS  
hardware in MRI?

How safe is MRI for patients with implanted DBS hardware? 
The probability of MRI-related adverse events is claimed to 
be 1 out of 4000 [32]. Considering the total number of DBS 

Table 5.  Compilation of MRI interaction studies for DBS.

Hazard/consequence for

Interaction B0 Study type Patient Implant Diagnosis Reference

Deep brain 
stimulation

Artefact 1.5 T Patient,
Phantom

N/A N/A Electrodes
obscured

[63]

Patient N/A N/A Correct [78]
positioning

Heating N/A Animal Safety level N/A N/A [79]
max. 43 °C 
for 30 min

1.5 T Phantom Excessive 
heating

N/A N/A [80, 81]

Phantom Moderate 
heating

N/A N/A [82]

Sequence No effects N/A Improved [83]
development image
Simulation SAR hotspots N/A N/A [84]
Phantom ΔT  =  0.79 °C 

@ 0.2 W kg−1
N/A N/A [85]

1.5 T, Phantom ΔT  =  10.3 °C N/A N/A [86]
3 T
3 T Phantom ΔT  =  1.44 °C 

@ 0.2 W kg−1
N/A N/A [85]

Phantom ΔT  =  2.3 °C 
@ 2.9 W kg−1

N/A N/A [87]

Animal,  
Simulation

Excessive 
heating

N/A N/A [63]

Induction 3 T Phantom N/A no effects N/A [85]
Heating, induction 3 T Phantom Moderate 

heating
No external 
stimulus

N/A [17]

Force, heating, 0.35 T - Phantom Excessive 
heating

Stimulus 
disfunction

N/A [88]

Induction 1.5 T
0.2 T - Phantom No heating Stimulus 

disfunction
N/A [89]

1.5 T
Artefact, force, 0.2 T - Patient Pain 

(stimulation)
Reed switch 
activation

Minor 
artefacts

[89]

Heating, induction 1.5 T
1.5 T Phantom Excessive 

heating
Stimulus 
disfunction

Minor 
artefacts

[90]

N/A  =  Not applicable.
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patients, the number of reported MRI-related adverse events 
is surprisingly low, especially since many centres deliberately 
employ significantly higher SAR levels than recommended 
[32–35]. It is worth comparing the few published MR-related 
adverse events to the report on common complications during 
DBS implantation procedures. Non-MRI-related adverse events 
in DBS implantation state haemorrhage, electrode malposition, 
electrode fracture, electrode migration, pulse generator infection 
and multiple reversible psychiatric symptoms, all within a col-
lective of 55 patients [180]. Therefore, it is understandable when 
the risk of MRI in DBS recipients is considered ‘certainly less 
than the risk of implantation’ [32]. This seems a valid argument 
for the MRI procedure as part of the implantation; however, for 
later monitoring the risk should be reevaluated, especially since 
the probes are then connected to the pulse generator, which rep-
resents a modified cable configuration during implantation. It 
is intriguing that despite these low rates of incidence, the topic 
still draws great attention. This could be due to the fact that inci-
dents can be severe. Another explanation, however, could be the 
high rate of complications associated with the DBS procedure 
itself. It would be challenging to relate incidences directly to 
MRI as it is usually performed between surgeries and is hence 
documented elsewhere. While adverse events after DBS place-
ment such as haemorrhage, infection, or hardware-related com-
plications are common [158], several groups have reported on a 
hyperintense MRI signal around DBS probes which is assumed 
to be an oedema, and has been observed, in most cases, three 
or more days after surgery [32, 36, 38, 158]. Two reports state 
a total of 23 such observed hyperintensities, stating that the 
nature and aetiology of the phenomenon remains obscure [36, 
158]. The origin of these signals could be inflammatory tissue 
response [36] or an oedema around the probes [37]. Whether 
these oedema are caused by implantation or are MRI-related 
remains unclear [38].

4.4.  Concluding remarks on the effects of MRI on DBS 
hardware

Electrode position verification by MRI is invaluable to the 
outcome of the DBS implantation procedure. The imag-
ing procedure entails the risk of MRI-related heating of the 
implanted DBS leads, which has resulted in severe injuries 
of the targeted brain tissue in the past. Heating constitutes the 
largest MRI-related threat to DBS patients. Its complex physi-
cal nature makes prediction hard, and thus highly restrictive 
precautions have been imposed. The rule of thumb in which 
heating occurs at lead lengths matching the integer fractions of 
the RF wavelength is insufficient. MRI-related adverse events 
are reported far less than implantation-related complications. 
However, since there is no continuous monitoring or imaging 
available, some MRI-related adverse events might have been 
missed, or their cause misinterpreted.

5.  Established and emerging applications of neural 
implants

Several applications of neural implants have been established 
and approved beyond cochlear and DBS implants. Intracranial 

electroencephalogram (icEEG) and grid arrays for electro-
corticography (ECoG) are invasive tools in the diagnosis of 
severe neurological diseases. Paddle electrodes interface 
nerves in the neuromodulation of more than 130 000 patients 
with SCS to alleviate chronic idiopathic pain and treat urge 
incontinence. They have also been introduced in closed loop 
epilepsy implants recently. Miniaturised implants benefit 
from micromachining technologies that combine mechani-
cal, optical and electronic features in micro(opto)electrome-
chanical systems (M(O)EMS). They have shown first clinical 
application in retinal implants to restore vision and promise 
new treatments in neurological rehabilitation [181] and bio-
electronic medicine [182, 183]. While the design principle, 
size and materials used are mostly the same in the approved 
medical implants as in the already discussed applications, 
the new miniaturised implants are much smaller in size, and 
come with different materials and manufacturing technolo-
gies, as well as with novel implantation procedures and sites. 
How can knowledge be transferred from experience with the 
established implants? And do new challenges occur with these 
miniaturised implants? First, we summarise our knowledge on 
the established applications and then we share our preliminary 
knowledge on miniaturised neural implants.

5.1.  Arrays for intracranial EEG

IcEEG is an invasive diagnosis method to record electrical 
brain activity. It is often applied in patients with drug-resis-
tant temporal lobe epilepsy. The grid arrays are implanted in 
presurgical epilepsy monitoring to combine electrical infor-
mation about the seizure onset zone, with MRI imaging to 
plan and guide the surgical removal of the affected brain 
area as a therapeutical intervention. The major limitation of 
the recording method is its limited spatial resolution, which 
can be solved by the simultaneous icEEG and fMRI record-
ing of BOLD signals [184]. In addition, the localisation of the 
electrodes with respect to the individual anatomy is done with 
MRI [185]. The combination of icEEG implants in MRI was 
considered ‘risk free’ when MRI was first performed in 50 
icEEG patients to confirm electrode placement. Furthermore, 
better electrode placement and fewer incidents were reported 
when employing an MRI guided method [186]. Later, oth-
ers found that stainless steel grids exhibited torque during ex 
vivo experiments [187]. Patients with platinum iridium alloy 
grids experienced no adverse events. The artefacts of such 
alloy grids were more localised than those of stainless steel 
grids and therefore provided better localisation of the elec-
trode sites and recognition of postoperative complications. 
However, platinum-iridium is very expensive and thus most 
grids are still steel-based. The safe localisation of intracranial 
electrodes by MRI was concluded in a retrospective study 
[188] after 108 in vivo MRI scans. No significant temperature 
increase was found in the grid electrodes used for epilepsy 
monitoring in high-resolution MRI [189] and in hybrid icEEG 
electrodes [190]. However, combining fMRI and icEEG 
resulted in a significant temperature increase of up to 6.9 °C 
with strong dependencies on the RF coil placement and MRI 
sequence, as well as on cable length and orientation due to 
implantation procedure. As a result of the study, the authors 
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provided safety recommendations for MRI at 1.5 T and 3 T, 
considering force, unintentional stimulation and temperature 
change [191, 192]. Following these recommendations, two 
epilepsy patients underwent icEEG in 1.5 T fMRI. The icEEG 
signal was comparable to recordings outside the scanner and 
the measurements allowed the study of the whole human brain 
epileptic network without adverse events [193]. A combina-
tion of icEEG and fMRI in a 3 T scanner resulted in a temper
ature increase in vitro of 10 °C when running sequences with 
a high SAR, but considered the risk as low when following 
protocols strictly. Artefacts occurred up to 20 mm from the 
electrodes [194]. Combined icEEG-fMRI investigations were 
considered useful, but only a small number of patients under-
went invasive evaluation prior to surgery. Besides the direct 
benefit as a clinical investigation tool, the method holds great 
promise in the investigation of the relevant scientific questions 
[195]. Technological developments are able to reduce hazards 
to the patient. Polymer-based conductors and carbon-based 
electrode sites showed reduction in heating and imaging arte-
facts in CT as well as in MRI in a pilot study [196].

5.2.  Paddle electrodes for neuromodulation

Paddle electrodes are commonly used for spinal cord and 
peripheral nerve stimulation to treat chronic back or leg pain. 
Applications in the brain include epilepsy monitoring, and 
when placed parallel to the central sulcus, the motor cortex 
can be stimulated, allowing the treatment of extensive pain 
[197]. A flat paddle shape with three to four contacts showed 
no risk or side effects. An in vitro risk assessment study of 
paddle electrodes in MRI found an insignificant temperature 
increase, induced voltages up to 6 V, no mechanical forces and 
artefacts 1 cm in length and 3 mm in height [198]. The RNS 

implant of Neuropace R© is the first closed-loop epilepsy neu-
romodulation system, which means it detects unusual activity 
and disrupts it by electrical stimulation treatment in situ on 
demand. The implant combines paddle electrodes with depth 
electrodes. These electrodes are connected to a titanium hous-
ing integrated in the skull via a short cable. The system is cur
rently labelled MR unsafe.

5.3.  Retina implants

Retina implants restore vision in patients suffering from 
blindness caused by degenerative diseases such as retinitis 
pigmentosa, or age-related macula degeneration. In these 
diseases, the light-sensitive rod and cone cells degenerate, 
while part of the retinal network and the ganglion cells that 
form the optic nerve remain intact. So far, these implants have 
been able to restore basic sight [199–201]. Approved medical 
devices have been developed by three companies worldwide: 
second sight with its ARGUS II in the USA, Retina Implant 
with its IMS-Alpha and AMS-alpha systems in Germany, 
and Pixium Vision with their Iris II system in France. Other 
groups around the world have also conducted clinical trials 
in a few humans [202], but the majority of patients (about 
100 in 2014 [199]) are being treated with approved medical 
devices. The Argus II retina implant was studied in vitro for 

guidelines and conditions to permit safe use in MRI, resulting 
in an MR-conditional certificate at 1.5 T and 3 T [203]. The 
cohort size suggests an exploratory phase for this medically 
approved implant, and therefore MRI scans with the implant 
are reasoned as part of routine medical care [199] as well as 
for unrelated retina implant purposes such as tinnitus basal 
tongue tumours. So far, no adverse effects have been reported 
[204].

5.4.  Miniaturised micromachined neural implants

Promises and high expectations drive the development effort 
behind miniaturised systems for neural implants and elec-
troceuticals [182]. The only approved medical application 
worldwide in which micromachined components play a sig-
nificant role is currently the ALPHA-IMS/ALPHA-AMS 
retina implant. However, micromachined needle probes 
have become state of the art for fundamental neuroscien-
tific research to investigate the brain [205]. A silicon-based 
needle array (Blackrock, Salt Lake City, Utah, USA) has also 
achieved medical device approval (PMA) for treatment up to 
30 days. It can be used chronically in clinical trials (IDE), 
with permission from the FDA (USA) for implantation as a 
brain–computer interface to control assistive devices [206, 
207]. Fundamental studies with silicon-based brain probes 
have been performed to investigate image artefacts when 
using fixation screws for percutaneous head-mounts [94], but 
without having to meet the requirements of international MRI 
safety standards.

How will the MRI interact with these small implants in 
the brain? The heating and induction of voltages might fol-
low a similar pattern to that observed in larger implants. Force 
interaction due to the static B0 and dynamic RF fields might 
result in different outcomes, since the material thickness of 
contact sites is vanishingly small—as is the moment of iner-
tia—when compared to cochlear and DBS implants. RF fields 
might induce dynamic loads on the implants, from which 
technical failure of the electrode-substrate compound can 
proceed. Probes can start to vibrate during RF excitation and 
thereby damage the surrounding tissue. A look at the interac-
tion between implants and tissues (outside MRI) reveals that 
micromotion plays a large role in long-term communication 
stability, as pointed out in the review of Gilletti et al [208] and 
Prodanov et al [209].

What will MRI-probe–tissue interaction look like in dif-
ferent field strengths and under different sequences? Can 
lateral movement with a minor amplitude and an overlaid 
gradient-induced torque lead to strong lateral displacement? 
[210]. Can minor amplitude vibrations induced by gradient-
induced torque lead to strong translational displacement of 
the electrode? Answers to these questions might be even more 
interesting since it is not clear how an electrode should be 
mechanically fixed within the brain. Electrodes that are not 
fixed to the skull lead to less respiration and pulse-induced 
movement [209]. The advantages of micromachining technol-
ogies lie, for example, in the vanishing thickness of the metal-
lisation of electrodes. Reducing the volume of the amount 
of metal [211], as well as applying materials with matched 
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susceptibility [95], reduces imaging artefacts significantly and 
offers imaging information from areas close to the implant. 
Since micromachined components are of the size of MRI 
resolution and below, it is questionable whether current stand-
ards offer sufficient tests to evaluate the interaction between 
implant and tissue during an MRI scan, and assess whether an 
implant is MR safe or not.

6.  Discussion and conclusion

Future trends will increase the need for care within the MRI 
environment. For example, new generations of MR scanners 
promise a higher static field strength beyond 3 T. It is worth 
noting that the RF power necessary for excitation increases 
quadratically with increasing static magnetic field strength, 
when other sequence parameters are kept constant [168], 
which obviously increases the SAR levels a patient would be 
exposed to. Another important aspect is the increase of RF 
frequency which accompanies stronger static magnetic fields. 
The inversely proportional shorter wavelength could become 
troublesome in conjunction with smaller device lengths due 
to the inadvertent resonance phenomenon, as pointed out in 
section 2.3.3, which may become more likely. In this context, 
the trend towards multichannel parallel transmission MRI sys-
tems should also be kept in mind, as the summation of short-
wavelength electric fields is more likely and may result in 
underestimation of the RF heating levels [212].

Non-invasive MRI is currently the most important modal-
ity for diagnostic brain imaging. Clinicians and patients have 
accepted neural implants as a valuable treatment method for 
neurological brain ailments such as stroke, Parkinson’s and 
Alzheimer’s disease. Furthermore, the method is growing in 
importance as we are facing an ageing society. Inevitably, the 
compatibility of these medical devices with MRI has turned 
into a distinctive product safety and acceptance issue, with 
a direct effect on sales as well. The question as to whether 
patients with brain implants should undergo MRI is thus of 
growing importance. Currently, the question is posed daily—
with regard to every patient and their individual circum-
stances—concerning implant type, the available MR scanner, 
and a feasible pulse sequence routine. Engineers and physi-
cists can provide many of the answers, however, often these 
are too complex to be useful in the daily hospital routine. 
Recommendations for implant manufacturers are also not 
easily made, as many implant materials are chosen to satisfy 
requirements other than MRI performance. However, a set of 
basic conclusions can guide physicians and implant manufac-
turers through risk analysis and management in device design 
as well as MR imaging:

Physicians or MR users:

	 •	Classify active implants in MRI as a serious hazard.
	 •	Train staff in the complex matter thoroughly.
	 •	Stay up to date with manufacturers’ recommendations.
	 •	Council patients comprehensively.

Implant manufacturers:

	 •	Avoid any ferromagnetic materials.
	 •	Use only short cables.
	 •	Consider that implant heating is affected by numerous 

factors, such as the implant itself (location, geometry, 
electronics), the MR hardware (especially the choice of 
RF frequency), and the MR pulse sequence.

	 •	Use materials with magnetic susceptibilities as close as 
possible to those of the average tissue values.

	 •	Reduce implanted metal volume to a minimum.
	 •	In particular, note that some technical choices are valid 

under transfer from low to higher B0-fields, or from one 
implant type to another, but many are not.

An easy-to-follow standard operating procedure is there-
fore still lacking and needs to be derived. This will require 
the device manufacturing companies, who have to cope with 
liability issues, and the medical personnel, who directly 
experience adverse patient events under their care, to find a 
common language with which to share their experience, in 
order to establish adequate solutions for the benefit of the 
patient. Therefore, until we can answer our initial question 
cooperatively with a confident ‘sure’, we should insist on a 
‘yes, but:’.
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