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Abstract

The introduction of driver assistance systems like Anti-lock Braking System
and Electronic Stability Control has increased safety of vehicle passengers on
public roads. The automotive industry has boosted the development of Ad-
vanced Driver Assistance Systems in the last years. Collision avoidance sys-
tems like emergency braking assist systems have demonstrated their effective-
ness in various studies and thus gained broad acceptance in society. To further
increase the effectiveness of collision avoidance systems, the exploitation of the
lateral free space by evasive maneuvers is being investigated in this thesis.
Effective avoidance systems drive the need for holistic integrated approaches to
cover planning and control in one method. This thesis focuses on methods for
integrated trajectory planning and vehicle dynamics control in collision avoid-
ance scenarios by combined evasion and braking. Integrated methods allow
for consistent model representation for both planning and control functionality
and lead to a reduced number of design parameters in the overall system. This
strongly reduces the tuning effort required to adapt both modules to each other
and avoids to tune both modules separately. The proposed nonlinear method
based on a model predictive approach plans collision-free trajectories taking
into account environmental information of obstacles and the available maneu-
ver space. The concept of terminal collision avoidance provides a solution for
planning with obstacles detected outside the current prediction horizon.
Application of methods for collision avoidance in real vehicles require algo-
rithms which can be efficiently solved on a real time computation platform.
The successive linearization technique is used in this work to linearize nonlin-
ear constraints of the optimization problem and to enable planning in real
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Abstract

vehicles. The concept of robust tube based model predictive control is exploited
to consider for stability and constraint satisfaction with linearization errors. The
performance and effectiveness of the proposed algorithm is demonstrated in a
simulation environment and in a real vehicle application successfully avoiding
the collision in characteristic scenarios and showing strong conformance for
both environments.
The design concepts investigated in this thesis are promising to accelerate the
realization of future design principles and thereby contribute to the overall de-
velopment of automated driving technologies.
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Kurzfassung

Die Einführung erster Fahrassistenzsysteme wie dem Anti-Blockier-System
und dem Elektronischen-Stabilitäts-Programm hat erheblich zur Fahrsicher-
heit auf den Straßen beigetragen. Seitdem wurde in der Automobilindustrie
die Entwicklung neuer Fahrassistenzsysteme stark vorangetrieben. Kollisions-
vermeidungsysteme wie das Notbremssystem genießen hohe Akzeptanz und
haben in Studien eine hohe Effektivität nachgewiesen. Um die Effektivität von
Kollisionsvermeidungssystemen weiter auszubauen, wird in dieser Arbeit das
Potenzial der Ausnutzung des verfügbaren lateralen Manöverraums durch Kol-
lisionsausweichsysteme untersucht.
Effektive Kollisionsvermeidungssysteme benötigen holistische integrierte An-
sätze, um Planung und Regelung in einer einzigen Methode zu vereinen. Der
Fokus der Arbeit liegt daher in der Untersuchung von integrierten Planungs-
und Regelungsmethoden für Kollisionsvermeidung-Manöver durch Auswei-
chen und Bremsen. Integrierte Methoden nutzen ein konsistentes physikali-
sches Model für die Planung und die Regelungsaufgabe, welches zu einer
reduzierten Anzahl an Auslegungsparameter im Gesamtsystem führen. Die-
se Eigenschaft vermeidet die klassische separate Einstellung beider Module
und reduziert damit den Anpassungsaufwand im Gesamtsystem. Die unter-
suchte Methodik basiert auf einem modelprädiktiven Regelungsansatz unter
Berücksichtigung eines Fahrdynamikmodells, der erfassten potentiellen Kolli-
sionsobjekte, der vorhandenen Fahrbahnbegrenzung sowie den Fahrdynamik-
und Aktor-Limitierungen. Eine Endbeschränkung zur Kollisionsvermeidung
ermöglicht die kollisionsfreie Planung mit potentiellen Hindernissen außerhalb
des Prädiktionshorizonts.
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Kurzfassung

Die Anwendung vonMethoden zur Kollisionsvermeidung im Versuchsfahrzeug
erfordert Algorithmen, die auf einer echtzeitfähigen Plattform effizient gelöst
werden können. In dieser Arbeit wird daher das Verfahren der sukzessiven
Linearisierung eingesetzt, um vorhandene Nichtlinearitäten in den Nebenbe-
dingungen zu linearisieren und damit die Umsetzung der Planung in einem
Versuchsfahrzeug zu ermöglichen. Das Konzept der robusten modelprädikti-
ven Regelung wird genutzt, um die Stabilität sowie die Einhaltung von Be-
schränkungen unter dem Einfluss von Linearisierungsfehlern zu garantieren.
Die Performance und Effektivität der vorgeschlagenen Methoden wurden in
einer Simulationsumgebung sowie in einem Versuchsfahrzeug getestet und be-
wertet. Die Ergebnisse zeigen die erfolgreiche Vermeidung von Kollisionen
in allen charackteristischen Szenarien sowie eine hohe Übereinstimmung der
Messergebnisse in Simulation und im Versuchsfahrzeug.
Die erarbeiteten Konzepte haben ein großes Potenzial, die Realisierung von zu-
künftigen Planungsprinzipien zu beschleunigen und damit zu der Entwicklung
von automatisiertem Fahren beizutragen.

iv
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Notation and Symbols

General Notation

Scalars Regular (greek) a, b, A, B, σ , λ
Vectors Bold (greek) lower case a, b, A, B, σ , λ
Matrices Bold upper case A, B, C

Sets Bold blackboard upper case A, B, C

Acronym

ABS Anti-lock Braking System
ADAS Advanced Driver Assistance System
COG Centre Of Gravity
ESC Electronic Stability Control
EPS Electronic Power Steering
IEEE Institute of Electrical and Electronics Engineers
MPC Model Predictive Control
RRT Rapidly exploring Random Trees
SAE Society of Automation Engineers
TCA Terminal Collision Avoidance

Symbols

a Slope of sigmoidal trajectory
a(x / y / z) Acceleration
ax,cmd Longitudinal deceleration command

xi



Notation

ay,max Maximum planned lateral acceleration
amax Deceleration command limit
c Half of longitudinal maneuver distance

in sigmoidal trajectory
cα(f / r) Cornering stiffness
cα(f / r),0 Linearised cornering stiffness
dst steering damping coefficient
hcog Height of COG
i Prediction time step
k Control time step
l Wheel base
lveh Overall length of vehicle
l(x,u) Stage cost
l(f / r) Distance COG to axis
l(f / r),veh Distance COG to chassis edge
m mass
rT,rax ,qy,qϕ ,qv Tuning parameters of MPC on

state and command signals
sobs Slack variable
tc Potential collision time
tcmp Computation time
tpred Prediction sampling time
tdel Time constant in longitudinal dynamics
v Velocity
w Width of ego vehicle
wobs(l / r) Obstacle width on corresponding lane
x Longitudinal position
xobs(l / r) Longitudinal position of obstacle

on corresponding lane
yobs(l / r) Lateral position of obstacle on corresponding lane

xii



Notation

xE,yE, tE Evasion maneuver distances and time
xB, tB Braking maneuver distance and time
y Lateral position
yTol Tolerance parameter in sigmoidal trajectory
ymax Maximum lateral position
yL,yR Left and right boundary of drivable area
Δvred Relative velocity reduction
α(f / r) Slip angle
αr,max Maximum rear slip angle
β Side slip angle
βmin,βmax Minimum and maximum side slip angle
δ Steering angle
μ Friction coefficient
μy Lateral friction coefficient
μy,max Assumed maximum lateral friction coefficient
ϕ Yaw angle
ϕ̇ Yaw rate
ϕ̇min, ϕ̇max Minimum and Maximum yaw rate
θ Vector of parametric uncertainties
B/C/D/E Magic formula tire coefficient
Df Self alignment parameter
B(l / r) Nearest point of obstacle on vehicle edge
F(x / y / z)(f / r) Force on tire
F(x / y / z)(f / r),max Maximum force on tire
Fy(f / r),0 Force bias constant
Jst Steering system inertia
Jz Yaw inertia
M Maximum lateral maneuver distance

in sigmoidal trajectory
N Number of prediction time steps

xiii



Notation

R Curve radius
T Total assisted torque
Tz Self alignment torque
Tmax Maximum total assistant torque
THW Driver hand torque
TOT Overlay torque
V Cost function of finite horizon control problem
V∞ Cost function of infinite horizon control problem
Vf Terminal cost
e Error vector
f State transition function
k Linear feedback vector
u Input vector
umin,umax Minimum and maximum input vector
w Additive uncertainty
x State vector
x+ Consecutive state vector
x0 Initial state vector
z Nominal state vector
A,B,C,E State matrices of discrete state space model
Ac,Bc,Ec State matrices of continuous state space model
P Solution of Ricatti equation
Pf Terminal weight
Q Weight matrix of state vector in cost function
R Weight matrix of input vector in cost function
C Collision avoidance set
Cq Linearized collision avoidance set
GB Terminal collision avoidance set

of a braking maneuver
GE Terminal collision avoidance set

of an evasive maneuver
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Notation

L Boundary constraint set
S Stability envelope set
Si Set of additive uncertainties for the predicted state i

U Input constraint
V Nominal input constraint
V Set of possible state vectors
Vq Linearized set of possible state vectors
W Set of possible additive uncertainty vectors
X State constraint
Xf Terminal constraint
Xol,Xor Longitudinal range of left and right obstacle
Z Nominal state constraint
Θ Set of vectors for parametric uncertainties

where (x / y / z) denotes the vehicle dynamics variable in x = longitudinal direc-
tion/ y = lateral direction/ z = vertical direction; (f / r) denotes the f = front axis/

r = rear axis and (l / r) denotes the l = left direction/ r = right direction. Further-
more, traj = trajectory and 0 = current value at control time.
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1 Introduction

1.1 Motivation

The introduction of driver assistance systems in the 1990’s has greatly con-
tributed to increased safety on the road [31][12]. Anti-lock Braking Systems
(ABS) and Electronic Stability Control (ESC) assist drivers in controlling their
vehicle on slippery roads by stabilzing the vehicle dynamics [75]. According to
the natural driver studies in [17] Advanced Driver Assistance Systems (ADAS)
have the potential to reduce the impact of negative driver-related factors in pre-
crash situations. To further decrease the number of fatalities, car manufacturers
have further boosted the development of ADAS technology to help the driver
handling difficult situations.
The number of ADAS features has increased tremendously in the last years. In
order to classify the systems and get a deeper understanding of the similarities
as well as differences the Society of Automotive Engineers (SAE) has clustered
the levels of driving automation as documented in the international standard
J3016 [64]. The levels of automation provided by the SAE take four main cri-
teria into account. A partially automated system in level 2 intervenes actively
into the vehicle dynamics driving task. With level 3, the system being capable
to monitor the surroundings of the vehicle takes over the driving task temporar-
ily. The driver is responsible to take back the driving task in a short time frame
when adverted by the system. A level 4 highly automated system provides a
safe fallback solution during the driving task if needed e.g. by slowing down
and swerving to the emergency lane. At level 5 the system is fully automated
and has the capability to handle all driving modes. This differentiation of

1



1 Introduction

automation levels provides an orientation for the classification of ADAS sys-
tems, but does not contain the complete range of ADAS features [26].
Gasser provides an extension which is based on the classification of the func-
tionalities into three main operation types [24][23][25] . The operation type A
consists of informing and warning functions taking only indirect influence on
the vehicle control via the driver [25]. Examples of this type are traffic sign
recognition or lane departure warning systems. Operation type B comprises
continuously automating functions as described in the SAE standard J3016 like
adaptive cruise control and traffic-jam-assist systems. Operation type C stands
for intervening emergency functions, which take immediate control over the
vehicle in near-accident situations that cannot be controlled by the driver. One
example of this operation type is the emergency braking system, which can
intervene independently of the driver intervention after detection of a critical
situation by a sensing system. Recent studies [30][32][34] have shown the
effectiveness of emergency braking systems with various system implementa-
tions. The study conducted by the Insurance Institute for Highway Safety in
[32] showed a significant reduction of accident rates, expressed by lower claim
frequency in all crash types of up to 51 % in personal injury claims and 22 % in
first party claims.

obsrego

Δx

v0

Figure 1.1: Scenario with ego vehicle ego and static obstacle obsr
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1.1 Motivation

To further expand the effectiveness of collision avoidance systems recent stud-
ies [53] have investigated the exploitation of the lateral free space by evasive
maneuvers.
Figure 1.1 illustrates a scenario with an ego vehicle and a static obstacle obsr
on the right lane. The ego vehicle drives with an initial velocity of v0 and the
rear edge of the static obstacle is located at the distance Δx in front of it. Dif-
ferent strategies of the ego vehicle shall be compared to avoid a collision with
the obstacle.

Collision avoidance

braking

Mitigation braking

Collision avoidance 

evasion

L
as

t d
is

ta
nc

e 
fo

r 
br

ak
in

g 
m

an
eu

ve
r

Last d
istance for evasion maneuver

v0

x

Figure 1.2: Areas of braking, evasion and mitigation braking maneuver in the distance and velocity
diagram

The last-distance-to-brake and last-distance-to-evade curves are depicted in Fig-
ure 1.2 in the distance-velocity diagram. Areas above the last-distance-to-brake
curve represent scenarios where a braking maneuver can avoid the collision,
whereas in scenarios above the last-distance-to-evade curve collision-free
evasion maneuvers are possible. Scenarios below both curves are maneuvers

3



1 Introduction

where a collision cannot be avoided and mitigation braking must be applied to
reduce the collision energy. The figure illustrates that evasive maneuvers are
more effective at higher velocity in avoiding the collision in this single obstacle
scenario. To assist the driver in critical situations only, collision avoidance sys-
tems generally are designed to interact at the latest point in time at which the
collision can be avoided by the system.

1.2 Aim of the Thesis

Evasive collision avoidance maneuvers have been introduced in Section 1.1 as
a research field providing opportunities for further increasing the positive effect
of collision avoidance systems. One of the main challenges of evasive collision
avoidance maneuvers is the design of the trajectory planning and the vehicle
dynamics control module for this task. The trajectory planning module plans
the trajectory to avoid collision with potential obstacles on the road and the ve-
hicle dynamics control module controls the vehicle according to this trajectory.
This thesis investigates methods for trajectory planning as well as vehicle dy-
namics control for collision avoidance systems in urban environments. Key
requirements need to be considered to select appropriate concepts and to design
the planning and control modules as set down in the following paragraphs.

Guarantee of Collision Freeness

The main goal of collision avoidance systems is to avoid any collision with
potential obstacles. Therefore the first requirement for a planning module is to
plan collision-free trajectories and ensure safety of the vehicle with a specified
safety margin.

Consideration of environmental information

Furthermore, the planning module should be able to take environmental infor-
mation into account and consider the drivable area given by the road boundaries
or the curbstones.

4



1.2 Aim of the Thesis

Representation of vehicle dynamics

Design of methods for safety critical maneuvers require a sufficient representa-
tion of the required vehicle dynamics for the given task. Planning of maneuvers
with an adequate representation of the dynamics can limit the deviation between
the planned maneuver and the driven maneuver.

Consideration of Actuator Limitations

Actuators cannot intervene with infinite power. Actuator limitations in braking
and steering module constrain the applicable torque and deceleration values due
to the design of the electrical and mechanical components.

Computational Complexity

Methods for planning and control of vehicle dynamics maneuvers need to be
computationally efficient and realizable by algorithms that can be solved on a
real time platform. Sophisticated algorithms that cannot be realized in vehicles
cannot contribute to the safety of vehicles on the road. Due to the increase of
computational capabilities from year to year the investigation of methods with a
high computational burden are still interesting since chances are high that these
algorithms can be applied in the near future.

Customization of Performance

Methods for planning and control of vehicle dynamics maneuvers should be
able to meet customizable goals like customer experience (e.g. level and type
of intervention) and to consider strategies for driver handover. These goals are
different for each maneuver and must be defined appropriately to consider the
characteristic of the maneuver.

Minimization of Tuning Effort

Customization of maneuver characteristics is usually associated with high tun-
ing efforts. Tuning efforts hinder the methods from being applied to the vehicle

5



1 Introduction

With the main requirements defined above the question adressed in this thesis
is formulated as follows.

How can trajectory planning and vehicle dynamics control strategies be
designed to

• guarantee collision-freeness with potential obstacles,

• consider complex environmental information,

• represent vehicle dynamics characteristics,

• incorporate actuator limitations,

• enable real time application,

• allow for customization and to reduce tuning effort?

In order to execute successful evasive collision avoidance maneuvers several
key challenges need to be overcome. Precise perception of all relevant infor-
mation in the environment is essential for planning and decision making in crit-
ical scenarios. The performance of the perception system is based on the neat
cooperation of key technologies such as hardware design of the sensors and al-
gorithmic processing modules such as sensor fusion, object tracking and object
classification. In this thesis the environment perception system is assumed to
be given and to reflect all relevant information. Design of driver assistance sys-
tems need to take the interaction and behaviour of the driver into account. Good
system design enables effective cooperation between drivers and systems dur-
ing the maneuver. This can be achieved by a suitable design of human machine
interfaces and hardware as well as software modules. In this thesis, no driver
intervention is assumed as is defined for highly automated vehicles [64].

within a short development time. An ideal method should minimize the amount
of tuning variables and the tuning effort necessary in the algorithm.

6



1.3 Outline

The precise knowledge of the friction coefficient is fundamental for reliable
planning of maneuvers in critical situation. At low friction values, the planned
maneuver cannot achieve high acceleration dynamics. Therefore, the
estimation of the friction coefficient has been investigated in several research
works. In this thesis, the friction coefficient is assumed to correspond to the
coefficient when driving on dry roads.
Planning and control in driver assistance systems is based on the interaction
of high level and low level control systems. Low level control systems control
the actuator dynamics to achieve the command input of a high level control
system and to compensate for vehicle dynamics instabilities. High level control
systems control the vehicle dynamics to achieve a goal in a specified maneu-
ver. This thesis will focus on the design of the high level planning and control
system and assume full functionality of the low level control system without
additional interventions of ABS and ESC systems.

1.3 Outline

This thesis will focus on concepts and methods for trajectory planning and ve-
hicle dynamics control in evasive collision avoidance systems and is structured
as follows:

Chapter 2: Concepts and Methods for Collision Avoidance

Chapter 2 provides an overview of concepts and methods about tra-
jectory planning and vehicle dynamics control suitable for evasive collision
avoidance systems. Moreover this chapter will highlight the difference between
the classical concepts with separated planning and control modules as well as
the integrated planning and control concept discussed in this thesis.

Chapter 3: Fundamentals of Optimal Planning and Control

In Chapter 3 the needed vehicle dynamics models used for the steering and brak-
ing system as well as the vehicle dynamics will be introduced. The theoretical
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1 Introduction

background of Model Predictive Control (MPC) as a finite time constrained
optimal control problem as well as robust tube based MPC will be explained.
Issues such as stability, robustness and constraint satisfaction are discussed.
The applicability of the MPC theory will be shown on the classical trajectory
tracking problem in a simulation environment.

Chapter 4: Nonlinear Integrated Planning and Control

A nonlinear model predictive control scheme integrating the vehicle dynamics
planning and control together with combined longitudinal and lateral dynamics
for collision avoidance maneuvers will be developed in Chapter 4. A nonlinear
formulation of the optimization problem with nonlinear constraints for the vehi-
cle dynamic model, the environmental constraints as well as vehicle dynamics
limitations will be presented. In addition the collision avoidance system uses
the terminal collision avoidance constraint to find a safe trajectory with obsta-
cles outside of the prediction horizon. Characteristic scenarios with single and
multiple obstacles will be used to demonstrate the performance of the method
in simulation.

Chapter 5: Fast Integrated Planning and Control

The implementation of the nonlinear control problem on a real vehicle in a real
time environment is critical due to the high computation time required by the
solver. To overcome this issue successive linearization techniques will be pre-
sented in Chapter 5 to achieve convex quadratic problems that can be solved
using standard optimization solvers. Robust MPC theory is employed to cope
with linearization errors and to guarantee stability as well as constraint satisfac-
tion with uncertainties. In addition, simulation and experimental results shall
demonstrate the applicability of the algorithm in predefined scenarios.

Chapter 6: Conclusion and Outlook

Chapter 6 concludes this thesis with a summary and gives an outlook for future
work.

8



2 Concepts and Methods for
Collision Avoidance

Chapter 2 will first discuss the structure and the components of the classical
collision avoidance concept. Furthermore, state of the art methods for the in-
vestigated modules, trajectory planning and vehicle dynamics control, will be
presented. Subsequently, this section will discuss methods of the integrated
planning and control concept in contrast to the classical concept. Finally, the
concept and method investigated in this thesis will be motivated, considering
the requirements and the key research question formulated in Section 1.2.

2.1 Classical Concept of Collision
Avoidance Systems

Figure 2.1 illustrates the classical concept for realizing a collision avoidance
system. The environment representation module processes the information of
the sensor system and generates an appropriate representation, for example in
the form of grids [33][73] or stixels [59][60]. A decision making module then
determines the proper action in case of imminent collision risks and triggers
the maneuver at the latest point in time unless the driver started to resolve the
critical situation. The set of actions may consist of braking, evasion and mitiga-
tion maneuvers as discussed in Section 1.1. When the collision can be avoided
by an evasive maneuver, the trajectory planning module calculates a drivable
collision-free trajectory, considering a safety margin to the obstacles. Further,
the vehicle dynamics control module activates the actuators to follow this tra-
jectory. Finally, a handover strategy ensures safe transition to the driver.

9
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Environment
Representation

Vehicle
Dynamics
Control

Decision
Making

Trajectory
Planning

Environment Information
from the Perception
System

Measured State Vector

Figure 2.1: Classical concept of collision avoidance systems

The trajectory planning and the vehicle dynamics control module are separated
in this classical concept. This implies that the vehicle dynamics control module
tracks the trajectory calculated by the planning module and does not consider
obstacles explicitly. Furthermore, both modules need to be tuned which requires
a lot of tuning efforts.

2.2 Trajectory Planning

Several planning methods have been proposed for evasive maneuvers. Geomet-
rical primitives have been used in many works such as [29][53] [67][68] [71] to
calculate trajectories with low computational effort. In the following, properties
of geometrical primitives are discussed based on the example of circular shaped
and sigmoidal trajectories.
Circular shaped trajectories have been investigated in the context of collision
avoidance [29][53][67]. The corresponding equations are composed two cir-
cular segments with continuous position and orientation. The discontinuous
curvature of the circular shaped trajectory cannot be followed exactly
considering actuator limitations of the vehicle.
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2.2 Trajectory Planning

The build-up time of the dynamics plays an essential role in critical maneuvers.
Stählin and Schorn show how the sigmoidal equation can be adapted to con-
sider build-up time of vehicle and different vehicle speeds [68][71]. Planning
with geometrical primitives are suitable to handle simple collision avoidance
maneuvers or overtaking maneuvers in static scenarios with single obstacles.
However, their design does not offer the necessary flexibility to appropriately
react under arbitrary environmental conditions with multiple static and dynamic
road participants, as discussed in Section 1.2.
Sampling based approaches such as rapidly exploring random trees (RRT) have
been proposed by Kuwata [43] and Farinella [21]. These methods sample a map
randomly and connect these samples in a tree when their sequential connection
is collision-free. The method is able to consider non holonomic constraints
such as a vehicle dynamics model and additional environmental information.
Although collision-free trajectories can be found with sampling based methods,
the solution does not take performance metrics into account. Consequently, the
resulting performance metric, in general, is random which does not fulfil the
requirement of customization.
Potential field approaches have been investigated by Krogh [42] and Khatib
[39]. The basic idea is that environmental obstacles as well as road boundaries
shape a gradient field which repel the trajectory of the vehicle. Ideally the vehi-
cle should follow the direction of the negative gradient to prevent collision with
other obstacles and keep the vehicle on the center of the lane. Problems arise
when overlapping influences of environmental information result in low gradi-
ents and local minima such that the potential fields may lead to a collision with
an obstacle. Complex environmental information provide qualitative contribu-
tion in the potential field approach, however the quantitative contribution of the
potential field is difficult to design, in general, to guarantee collision-freeness.
Optimization based methods build on a general framework in which rele-
vant components such as environmental information and vehicle dynamics
characteristics as well as desired driving properties can properly be formulated.
The components of the framework can be featured with elements of different
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2 Concepts and Methods for Collision Avoidance

complexities that is suitable for the requirements of the considered maneuver.
Optimal trajectory planning methods have been proposed by many researchers
in different setups [78][79][86] which vary in component complexity as well as
in their computational effort.
Simple setups of optimization based methods which rely on a point mass model
or kinematic model with a given start and end position can be solved analytically
and in real time without the need of complex solver algorithms [78]. However,
the applicability is limited since environmental information such as obstacle po-
sition or geometry cannot be considered with fast analytic solutions.
In complex scenarios like multiple obstacles and arbitrary road shapes analyti-
cal solutions cannot be given explicitly. A solution can be provided by efficient
optimization solvers which are available for mathematically standardized for-
mulations. Ziegler [86] designs a quadratic program with a linear model and
convex sets for environmental representations. The shown test results verify the
performance for autonomous driving as demonstrated in the Bertha Benz drive
[87]. However, the applicability of this research work is restricted to simple
vehicle models and low environmental complexities.
Nonlinear optimal problems for trajectory planning provide the opportunity to
consider complex vehicle dynamics characteristics such as coupling effects be-
tween lateral and longitudinal dynamics [28]. Yet no efficient solvers are avail-
able for general nonlinear optimization problems which prevents the algorithms
from being applied in real time on real vehicles. The trajectory planning meth-
ods discussed are evaluated with respect to the requirements formulated accord-
ing to Section 1.2 in Table 2.1 considering their suitability in collision avoidance
tasks.
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2.3 Vehicle Dynamics Control

Table 2.1: Methods of trajectory planning for collision avoidance maneuvers

Planning
method Geometrical Sampling

based
Linear
Optimal

Nonlinear
Optimal

Potential
field

Guaranteed
Avoidance + + + + -

Environmental
Information - + + + +

Vehicle
Dynamics - + o + o

Actuator
Limits - + + + o

Computational
Complexity + + o - o

Customization
of Performance - - + + o

2.3 Vehicle Dynamics Control

Vehicle dynamics control has also been addressed in previous publications. In
early investigations by Ackermann [1] robust control methods have been pro-
posed to control a bus on a given path. The method has been demonstrated in
a simulation environment. The strength of this approach is the robustness to
parameter deviations such as mass changes. A characteristic of robust control
methods is its tradeoff betweeen robustness and performance. In [84] the au-
thors have investigated robust control for a collision avoidance application in
comparison with other control approaches. It can provide theoretical guarantees
for robustness and requires less tuning effort, but it also shows a significant lack
of performance for collision avoidance applications.
Linear controllers with feed forward components have been suggested in [37]
[41][68]. The feedforward component is calculated based on the sigmoidal de-
sign of the trajectory and a simple kinematic single track model. To consider
different parameter setups in different speed ranges, Schorn [68] suggests to
pair the controller with a gain scheduling approach. Performance in different
speed ranges can be achieved by proper tuning in each speed range separately.
The controller has been demonstrated in the vehicle for trajectories up to 6 m/s2.
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2 Concepts and Methods for Collision Avoidance

Longitudinal dynamics control is achieved by calculating the remaining friction
capability. Given a suitable trajectory, this approach provides an effective way
for collision avoidance control. The tuning effort of linear controllers required
for complex systems is enormous as explained in [2][70][76]. In addition ac-
tuator limits cannot be considered and the vehicle dynamics characteristics is
used only by the feedforward component but not by the feedback component.
Input-output linearization has been considered by Werling [77] and Kranz [40].
The advantage of these approaches is that stability and performance of the con-
trol system can be easily analyzed by applying methods from linear control
theory on nonlinear systems. Yet, these control methods are not suitable for
maneuvers at the limits of the actuators, when executing evasive maneuvers as
is required in this thesis.
Katrionik [35] proposes a MPC scheme for combined vehicle dynamics control
of the lateral and longitudinal dynamics. The approach considers a single track
model with a nonlinear tire model as well as a PT1 characteristic for the longi-
tudinal dynamics. To guarantee vehicle dynamics stability, the maximum tire
slip angles are constrained. The performance has been demonstrated in a simu-
lation environment and in a real vehicle. The focus of this thesis is to provide a
method for vehicle state estimation and sensor calibration as well as vehicle dy-
namics control with low cost sensors. Model predictive control is a promising
approach for collision avoidance maneuvers due to the explicit consideration of
actuator and state limitations. It can handle a rather complex dynamics model
and adapt to model errors by repetitive planning of future interventions. An ad-
vantage of control algorithms that consider complex models is a reduced tuning
effort as the model information can be exploited.
All works mentioned in this section assume a drivable and safe trajectory to be
given such that the algorithm achieves good performance by following it. The
control methods presented in this section are evaluated in Table 2.2 based on
the predefined requirements in Section 1.2.
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Table 2.2: Methods of vehicle dynamics control for collision avoidance maneuvers

Control method Robust
Control

Linear
Control

Input-Output
Linearization

Model Predictive
Control

Vehicle
Dynamics o - o +

Actuator
Limits o - - +

Computational
Complexity o + + -

Customization
of Performance - + o +

Tuning
Effort + - o +

2.4 Integrated Planning and Control

State of the art work on trajectory planning and vehicle dynamics control has
been presented in previous sections. Due to the separation of both modules high
tuning efforts are required to adapt both modules to each other and to cover the
functionality in all relevant scenarios, as the planning method generally does not
take the control properties into account. On top of that, the missing interaction
between the trajectory planning and the control modules implies that the overall
system, without an explicit replanning module, is most suitable for static sce-
narios, but not appropriate for dynamically changing scenarios. By integrating
both modules, the interaction between both modules can be realized with re-
duced tuning effort. Further, the integrated concept allows to handle scenarios
with new obstacles entering the environment during the maneuver by adapting
the trajectory to updated environmental information in each planning step.
This section reviews collision avoidance methods that integrate the trajectory
planning and the vehicle dynamics control module into one single module as
shown in Figure 2.2 in contrast to the classical concept shown in Figure 2.1.
Keller and Bauer proposed methods for integrated planning and control com-
bining potential fields and optimal control. Keller [38] has chosen an algorithm
with rough discretization for the steering wheel angle and assumed the angle to

15



2 Concepts and Methods for Collision Avoidance

stay constant over the complete planning to realize the algorithm in real time.
In contrast, Bauer [4] calculated a command sequence for the maneuver based
on optimal potential field approach. As described in Section 2.3, potential field
approaches cannot guarantee collision-freeness due to local minima and
low gradients.

Environment
Representation

Decision
Making

Integrated Trajectory
Planning and Vehicle
Dynamics Control

Environment Information
of Perception System

Mearured State Vector

Figure 2.2: Integrated planning and control concept of collision avoidance systems

Erlien [19] investigated an integrated planning and control method with optimal
control where inequality constraints are used to avoid collisions with obstacles
within the prediction horizon. Similarly to [4] the investigated MPC takes all
environmental information into account and further can guarantee collision-free
trajectories with obstacles within the horizon. However the method does not
consider braking intervention in the optimal control problem and cannot take
into account obstacles outside the prediction horizon.
Table 2.3 shows an evaluation of the discussed approaches based on require-
ments presented in Section 1.2. All methods share the MPC’s characteristic
of low tuning effort, explicit consideration of actuator limits and vehicle dy-
namics model information. Further, the mentioned methods plan the maneuver
separately for lateral and longitudinal dynamics, which shows deficiencies com-
pared to planning of combined dynamics for the maneuver [67].
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2.5 Selection of Methods and Concepts

Differences arise in handling of obstacles, as potential field based approach
cannot guarantee collision-freeness, whereas the work in [19] can provide a
guarantee by using hard inequality constraints. However collision avoidance on
obstacles that are outside the prediction horizon have not been considered. The
method in [38] excells in terms of simplicity such that the computation time is
negligible, but the control horizon is not representative for complex scenarios.

2.5 Selection of Methods and Concepts

Methods for trajectory planning, vehicle dynamics control as well as for the in-
tegrated planning and control concept have been presented in previous sections.
A method that integrates both modules can plan a trajectory in each consecutive
step and adapt to new environmental information instead of tracking a fixed tra-
jectory as explained in Section 2.4. Further integration of planning and control
functionality simplifies the interaction between both modules, as less parame-
ters need to be tuned and the same vehicle dynamics model is shared. Due to
these reasons the integrated planning and control concept will be further ex-
ploited in this thesis.
MPC as an optimality based method (Section 2.2 and 2.3) is a method that
gives a good base to fulfill all requirements as defined in Section 1.2.
In particular nonlinear optimal methods offer a high potential to meet the
challenge of evasive collision avoidance systems. The main weakness of this
approach is the computational burden required to solve the resulting optimiza-
tion problem. The methods presented in Section 2.4 are all based on MPC.
Among these methods, the method proposed by Erlien[19] can achieve colli-
sion avoidance due to inequality constraints, whereas the potential field based
approaches cannot guarantee collision-freeness, as discussed in Section 2.2.
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2 Concepts and Methods for Collision Avoidance

interventions in the optimization problem and investigate solutions to avoid
collision with obstacles outside of the prediction horizon.

Table 2.3: Methods of integrated vehicle dynamics planning and control for collision avoidance
maneuvers

Integrated
method Keller [38] Bauer [3] Erlien [19]

Guaranteed
Avoidance - - o

Environmental
Information + + +

Vehicle
Dynamics o o o

Actuator
Limits - + +

Computational
Complexity + o o

Customization
of Performance o + +

Tuning
Effort + + +
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Therefore this thesis will investigate the potential of optimality based methods
with collision avoidance constraints to solve the research question formulated
in Section 1.2. Furthermore, this thesis shall take into account braking



3 Fundamentals of Optimal
Planning and Control

This chapter explains the theoretical background on vehicle dynamics model-
ing and model predictive control that is required for integrated vehicle dynam-
ics planning and control in the Chapters 4 and 5. Furthermore this chapter will
introduce fundamental terminologies, the general optimal framework for trajec-
tory planning and vehicle dynamics control as well as the notation used
in this thesis.

3.1 Vehicle Dynamics Modeling

The vehicle dynamics model used in this thesis is composed of the lateral and
the longitudinal dynamics as illustrated in Figure 3.1. The lateral dynamics
model consists further of the lateral vehicle model, the steering dynam-
ics model and the tire model. The model is complemented by actuator
and state limitations.

3.1.1 Lateral Dynamics Model

Lateral Vehicle Model

The vehicle model provides information about the dependancy between basic
vehicle dynamics states such as the yaw rate ϕ̇ , the velocity v, the steering
wheel angle δ and the side slip angle β . In this thesis, the single track model by
Riekert and Schunck [63] is taken as a starting point and extended in subsequent
sections.
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Tire Model

Lateral Vehicle Model

Steering Dynamics Model

Longitudinal Dynamics Model

Lateral Dynamics Model

Combined Vehicle Dynamics Model

Actuator and State Limitations

Figure 3.1: Components of the Combined Vehicle Dynamics Model

In Figure 3.2 the single-track model and the real vehicle used in this thesis
are illustrated. The single-track model is a simplified approach to represent
the lateral vehicle dynamics, which (in its original version) is described by two
states corresponding to the yaw rate and the side slip angle. The single-track
model models the axes of a vehicle with a single front tire and a single rear tire.
The mass m is located at the center of gravity (COG), which is positioned at the
distance lf from the front axis and the distance lr from the rear axis. The COG
moves with the speed v and the side slip angle β to the longitudinal orientation
of the vehicle. The vehicle rotates with the inertia Jz and yaw rate ϕ̇ around the
vertical axis z. The front and rear edge of the vehicle chassis, which need to
be taken into account in collision avoidance maneuvers, are located at the lon-
gitudinal distances lf,veh and lr,veh from the COG. δ corresponds to the steering
wheel angle, iL is the steering ratio and αf as well as αr are the slip angles of
the front and rear wheel. The slip angle is the angle between the tire orientation
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3.1 Vehicle Dynamics Modeling

and the moving direction of the vehicle [49]. Using the simplification for small
angles, the angles can be calculated by

αf =
δ
iL
−β − lfϕ̇

v
(3.1)

αr =−β +
lrϕ̇
v

. (3.2)

The lateral and longitudinal tire forces of the front and rear tires are Fyf, Fxf, Fyr

and Fxr respectively. Setting up the equilibrium of forces for the dynamics of the
lateral movement as well as the equilibrium of moments for the yaw dynamics
results in

m
v2

R
cosβ −Fyr−Fxfsinδ −Fyfcosδ = 0 (3.3)

Jzϕ̈− (Fyfcosδ +Fxrsinδ )lf+Fyrlr = 0 . (3.4)

In addition, the states of the single track model are extended by the lateral posi-
tion with the dynamics

ẏ = vsin(ϕ +β ) . (3.5)

By applying the small angle simplifications and neglecting the effect of longi-
tudinal forces, the nonlinear continuous state transition for the lateral dynamics
can be given by

ẋlat = flat(xlat,ulat) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fyf+Fyr
mv − ϕ̇

Fyflf−Fyrlr
Jz

ϕ̇

v(ϕ +β )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

with the state vector xlat = [β , ϕ̇, ϕ, y]T and the system input ulat = δ .
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Figure 3.2: Illustration of single-track model and real vehicle

Tire Model

Tires are essential in the execution of vehicle dynamics maneuvers, since they
determine the amount of force that can be transmitted to the ground. A basic
tire model assumes the tire forces to be linear dependant on the slip angle α
with a cornering stiffness cα given in

Fy = cα α . (3.7)

In the equation above, the index which reveals the position of the tire is omitted
for generalization purpose. Although (3.7) is a good approximation for the tire
model at maneuvers with low slip angles, it does not represent the nonlinear
tire behaviour of maneuvers with high slip angles[49][56][68]. To improve the
model performance, the so called Magic Formula [56] is used to represent the
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3.1 Vehicle Dynamics Modeling

tire behaviour also for high slip angles. This simple tire model has a limited
number of parameters and represents the tire forces at different slip angles α
and wheel loads Fz. The structure of the tire model is

Fy(α) = Fzμy(α) (3.8)

μy(α) = Dsin{Carctan[Bα−E(Bα− arctan(Bα))]} . (3.9)

In (3.8) and (3.9), parameter B determines the stiffness, parameter C the shape,
parameter D the peak and parameter E the curvature of the function and param-
eter μy the lateral friction coefficient [56].
This thesis neglects coupling effects of the longitudinal and the lateral tire
forces. A suitable representation for the friction circle will be presented in
Section 3.1.4 to compensate for this weakness.

D

μy

αarctan(BCD)

μs

αm

Figure 3.3: Pacejka’s tire model [56] for firction coefficient
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In Figure 3.3 the function for the friction coefficient is illustrated together with
the relevant parameters, where μs is the stationary value of the friction
coefficient for big slip angles and αm is the slip angle at the peak of the friction
coefficient. The tire parameters in (3.9) can be calculated according to [56] by

D = μy(αm) (3.10)

C = 1+
(
1− 2

π
arcsin

μs

D

)
(3.11)

B = [
dμy

dα
|α=0]/CD (3.12)

E =
Bαm− tan{π/(2C)}
Bαm− arctan{Bαm} . (3.13)

The wheel load Fz in equation (3.8) at the front and rear wheel is approximated
according to [68] by

Fzf = m ·
(

lr
l
·g+ hcog

l
·ax

)
(3.14)

Fzr = m ·
(

lf
l
·g− hcog

l
·ax

)
(3.15)

with the height of the COG hcog.
To integrate the tire model into the state space equation in Section 3.1.3, the
nonlinear tire equation is linearized according to [15] at the operation point
given by the slip angle αf and αr. The linearized equation for the front and rear
tires is then given by

Fyf = cαf,0αf+Fyf,0 (3.16)

Fyr = cαr,0αr+Fyr,0 (3.17)

and illustrated in Figure 3.4. In the equation above, the tire model is described
by the cornering stiffnesses cαf,0 and cαr,0 as well as the bias values Fyf,0 and
Fyr,0 for a slip angle α0.
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Fy

α

cα ,0

Fy,0

α0

Figure 3.4: Approximation of nonlinear tire todel by a linear equation

Steering model

In order to support the driver during the collision avoidance maneuver, the real
vehicles is equipped with an Electrical Power Steering (EPS) system, which
can apply a steering torque on the steering system by an electrical motor on the
steering rack.

THW

Tz /2

δ

Tz /2

T
Figure 3.5: Mechanical structure of steering system
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Moshchuk [52] provides a simple steering model structure for the mechanical
components which will be used in this thesis. As illustrated in Figure 3.5, the
electrical motor on the rack amplifies the driver torque THW by the total assisted
torque T and counteracts the self aligning torque of the tires Tz. The dynamics
equation of the steering system is given by

Jstδ̈ +dstδ̇ = T +Tz+THW (3.18)

with the steering inertia Jst, the damping parameter dst and the self alignment
torque Tz which is the torque caused by tire friction on the road. The self align-
ment torque is modeled linearly by using the front slip angle αf and the self
alignment parameter Df with

Tz =−2Dfαf . (3.19)

In the software of the EPS system, boost curves are implemented to translate
the driver torque to an equivalent total assisted torque T on the steering system.
The translation ratio is mainly dependant on the driver torque THW and the ve-
hicle velocity v. In order to command a required total assisted torque T in the
real vehicle, the torque T need to be translated into a driver equivalent torque
using the boost curve and finally send to the EPS software. As the specific
implementation depends on the design of the steering system manufacturer the
specific algorithm will not be explained in this section. In the following, this
thesis assumes the translation algorithm to be given.
Note that the steering system is modeled based on mechanical components and
the boost curves only. The electrical power steering module of a state of the art
vehicle is comprised of additional features such as friction compensation, ac-
tive wheel return and arbitrage modules which may further influence the steer-
ing system behaviour during maneuver control. To keep the simplicity of the
model, these investigations are not the focus of this thesis. More details may
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3.1 Vehicle Dynamics Modeling

be retrieved from [83], where the author has investigated the effects of these
features for vehicle dynamics control using local linear model trees [54].

3.1.2 Longitudinal Dynamics Model

The electronic brake control module (EBCM) of the real vehicle contains a low
level control module, which controls the hydraulic brake pressure in the brak-
ing pipe to achieve a desired deceleration command value. Instead of a complex
physical model of the brake system, the behaviour of the overall low level con-
trol unit is represented by a double integrator with a time delay characteristic.
Here, effects of the ABS and the ESC systems are neglected. The vehicle dy-
namics model for the longitudinal dynamics is given by

ẋln = fln(xln,uln) =

⎡
⎢⎢⎢⎢⎢⎣

vcos(ϕ +β )

ax

− 1
tdel

ax+
1

tdel
ax,cmd

⎤
⎥⎥⎥⎥⎥⎦ . (3.20)

Let tdel denote the time delay constant and xln = [x, v, ax]
T denote the lon-

gitudinal state vector of the ego vehicle with the longitudinal position x, the
velocity v as well as the longitudinal acceleration ax. The input of the system
uln, the deceleration command ax,cmd, should be distinguished from the mea-
sured acceleration ax, which deviates due to control characteristic of the low
level controller.

3.1.3 Combined Vehicle Dynamics Model

This section integrates all presented vehicle dynamics components into one
combined vehicle dynamics model. The combined nonlinear vehicle dynamics
model is given below. The state vector and the input vector are given by
x = [β , ϕ̇, ϕ, y, δ̇ , δ , x, v, ax]

T and u = [T, ax,cmd]
T .
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αf =
δ
iL
−β − lfϕ̇

v

αr =−β +
lrϕ̇
v

Fyf(αf) = FzfDsin{Carctan[Bαf−E(Bαf− arctan(Bαf))]}
Fyr(αr) = FzrDsin{Carctan[Bαr−E(Bαr− arctan(Bαr))]}

Fzf = m ·
(

lr
l
·g+ hcog

l
·ax

)

Fzr = m ·
(

lf
l
·g− hcog

l
·ax

)

Tz =−2Dfαf

ẋ = f(x,u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fyf+Fyr

mv
− ϕ̇

Fyflf−Fyrlr
Jz

ϕ̇

vsin(ϕ +β )

T +Tz+THW −dstδ̇
Jst

δ̇

vcos(ϕ +β )

ax

− 1
tdel

ax+
1

tdel
ax,cmd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.21)
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3.1.4 Actuator and State Limitations

The equation (3.21) describes a detailed model for the vehicle dynamics. The
validity of this physical model is limited due to actuator and friction limitations.
The EPS unit assists the driver by translating the driver torque THW with a boost
curve to the total assisted torque T . In the frame of this thesis, the torque T

will be used to perform the evasive collision avoidance maneuver without
intervention of the driver. The limitations of the demanded total assisted torque
can be simplified to a maximum steering assist torque Tmax with

−Tmax ≤ T ≤ Tmax . (3.22)

Furthermore, the EBCM unit introduced in Section 3.1.2 controls the brake
pressure in the brake pipe to achieve a given deceleration value. Due to
limitations and properties of the actuator, the performance of a braking interven-
tion is limited as well. The maximum deceleration value of the EBCM is
ax,cmd,max =−9.81 m/s2 in the chosen real vehicle, such that the limit is
given by

ax,cmd,max ≤ ax,cmd ≤ 0 . (3.23)

An acceleration circle represents the combined effect of the friction limitation
on each wheel. Figure 3.6 shows the relevant left half of the acceleration circle
in the g-g diagram from [5], as only negative acceleration (braking) shall be
applied in longitudinal direction during the maneuver. The acceleration circle
is given in √

a2
x+a2

y ≤ amax . (3.24)

The lateral acceleration is not represented in the vehicle dynamics states, but
can be calculated according to [49] by

ay = v(ϕ̇ + β̇ ) . (3.25)
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ax

ay

0

Figure 3.6: Acceleration circle in g-g diagram with shaded area for maneuver dynamics with com-
bined braking and steering [6]

3.1.5 Model Validation

In this section, relevant parameters of the real vehicle, an Opel Insignia, are
given based on the vehicle dynamics model presented in previous section. The
basic model parameters are listed in Table 3.1.
Subsequently, the model is evaluated using test drives by executing an evasive
maneuver in the real vehicle on the proving ground. Modelled signals are gener-
ated using the model structure and parameters as presented in this chapter with
commanded steering torque T and deceleration ax,cmd as input.
Figure 3.7 illustrates a comparison of the modelled signals with the measured
signals for the positions x and y, the accelerations ax and ay, the steering wheel
angle δ , the velocity v, the yaw rate ϕ̇ and the yaw angle ϕ . The maneuver is
performed at approximately 50 km/h, a typical urban velocity.
During the maneuver lateral accelerations of up to 6 m/s2 are achieved, which
corresponds to maximum values of evasive collision avoidance maneuvers [68].
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Figure 3.7: Model Validation on a maneuver with 50 km/h and lateral acceleration up to 6 m/s2
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The signal curves in Figure 3.7 show the main curve characteristics, such that
the combined vehicle dynamics model can represent the considered maneuvers.
Table 3.2 shows the model deviations when commanded signals in a test drive
are applied to the vehicle dynamics model in open loop simulation. The model
deviations can be attributed to deviations in model structure, parameter uncer-
tainties and environmental changes. Because of these effects, this model can
not be used in open loop simulation for localization tasks without feedback in-
formation. In a closed loop setup, effect of uncertainties and deviations can be
reduced due to replanning.

Table 3.1: Measured and estimated parameters of the vehicle dynamics model in Section 3.1.3

Parameter Symbol Value Unit
Vehicle mass m 2050 kg
Wheel base l 2.74 m
Track width w 1.585 m
Distance to front axis lf 1.227 m
Distance to ground hcog 0.548 m
Inertia of Vehicle Jz 3500 kgm2

Tire parameters B/C/D/E
19.56/0.44/
2.05/-0.70

1/rad /(none)/
(none)/(none)

Steering inertia Jst 0.57 kgm2

Steering ratio iL 16 (none)
Steering damping dst 2.54 Nms/rad
Steering self
alignment torque

Df 460 Nm/rad
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3.2 Model Predictive Control

Figure 3.8: Opel Insignia Sports Tourer

Table 3.2: Model deviation for test drive in Figure 3.7 in open loop

Maximum lateral deviation 0.7 m
Maximum longitudinal deviation 7.2 m
Maximum acceleration deviation 1.3 m/s2

3.2 Model Predictive Control

Optimality based methods like model predictive control (MPC) have gained
growing application in a broad range of industrial fields. Since its first success-
full application in 1978 by Richalet [62], the method has been applied in various
industrial applications like: fluid catalytic cracking, batch reactors, regenerators
loadings, pressure controls, temperature control etc. [16][22][45][47][55][65].
Due to increased computation power and faster optimization algorithms in
recent years, MPC can now be applied on highly dynamical problems and sys-
tems such as adaptive cruise control [50], DC/DC converters[7], traction control
[9] or autonomous vehicle steering [51].
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The basic principle of MPC is to solve a finite horizon optimal control problem
online starting from an initial state of a given discretized plant model [61]. The
result of the method is a finite input vector sequence, where the first input vector
is applied. The advantage compared to other control methods is its ability to
consider input and state constraints as well as model equations over a prediction
horizon [10].
This section explains the theoretical background of the nominal and the robust
MPC by giving a brief extract of the work in [61].

3.2.1 Nominal Model Predictive Control

The ideal regulating problem that the nominal MPC tries to solve is to find a
solution for the following optimization problem:

min V∞ =
∞

∑
i=0

l(x(i,k),u(i,k)) (3.26)

s.t. x(i+1,k) = f (x(i,k),u(i,k)), x(0,k) = x0

u(i,k) ∈ U, x(i,k) ∈ X

The control problem above has been designed in [61] to steer the state to
the origin under consideration of the state transition equation x(i + 1,k) =
f (x(i,k),u(i,k)), the initial state x0, the input constraint set U and the state
constraint set X. In the considered problem, x(i,k) and u(i,k) are the discrete
state and input vector. Here i is the index for the prediction step and k is the
index for the control time step. If the target state is not the origin, modifica-
tions [61] can be made to use the generalized optimization problem in (3.26).
The input constraint set U and state constraint set X are exploited to consider
for limitations of actuators and requirements of the control problem. The cost
function V∞ in (3.26) consists of stage costs l(x,u) for predictive time steps
of an infinite time horizon. The consideration of an infinite horizon has ad-
vantages in terms of closed loop properties compared to the consideration of a
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3.2 Model Predictive Control

finite horizon [61]. Yet, the considered horizon is infinite and the cost function
is not necessarily a convex function of u which makes the problem hard to solve
numerically for generalized settings of optimization problems.
In [61] this infinite time optimal control problem is replaced by two sub-
problems, one representing a finite horizon optimal control problem and one
describing an infinite horizon optimal control problem [61]. The equations of
the resulting quasi-infinite control problem are given by

min V =
N−1

∑
i=0

l(x(i,k),u(i,k))+Vf(x(N)) (3.27)

s.t. x(i+1,k) = f(x(i,k),u(i,k))

u(i,k) ∈ U, x(i,k) ∈ X, ∀i = 0, · · · ,N
x(N,k) ∈ Xf .

with the terminal set Xf and the terminal penalty Vf. The solution calculated
with the finite time interval control problem should be equivalent to the infinite
time optimal control problem by forcing the terminal state of the finite horizon
to enter the terminal set Xf. Within the terminal set, the method should be able
to guarantee stability and recursive feasibility with a linear feedback vector k

and the terminal weight Pf, such that

Vf(x) = xT Pfx (3.28)

k =−R−1BPf . (3.29)

Here B is the input matrix of the state space model and R is the input weight of
the control problem.
Rawling [61] shows that an arbitrary optimization problem does not necessarily
have a solution. In order to guarantee the existence of a solution according
to the extreme value theorem of Weierstrass in [36], the cost function needs
to be continuous and the set constraints should be compact. This leads to the
following assumptions for the existence of a solution according to [61].
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Assumption 1: (Continuity of system and cost )

The functions f :X×U→R
n, l :X×U→R≥0 and Vf :Xf→R≥0 are continuous

and satisfy f(�0,�0) = 0, l(�0,�0) = 0 as well as Vf(�0,�0) = 0

The notation used should be understood as follows, f : X×U→ R
n describes a

function f, which maps a state vector given in the admissible state constraint
set X and the input vector in the input constraint set U to a vector of real
numbers of dimension n and R≥0 is the set of positive real numbers.

Assumption 2: (Properties of constraint sets )

The sets X and Xf are closed, Xf is a subset of X and U is compact; each set

contains the origin.

Proposition 1: (Existence of a solution to an optimal control problem)

Suppose assumptions 1 and 2 hold. Then

a. The function V is continuous in X and U.

b. For each x ∈ X a solution to the problem in (3.27) exists.

To ensure asymptotic stability of the MPC controller, the Lyapunov theorem is
deployed. This implies that the origin is asymptotically stable with a region of
attraction X for the autonomous system x+ = f(x) if there exists a Lyapunov
function V, a positive definite invariant set X, two K∞ functions γ1(·) and
γ2(·), and a positive definite function γ3(·) satisfying

V (x)≥ γ1(|x|) (3.30)

V (x)≤ γ2(|x|) (3.31)

V ( f (x))≤V (x)− γ3(|x|) (3.32)

for all x ∈ X. The properties of the functions and sets are defined below.

Definition 1: (Properties of functions and sets)

a. A function γ is a K∞ function, if γ : R→ R≥0 is continuous, strictly increas-

ing, satisfies γ(0) = 0 and is unbounded.
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everywhere except at the origin.

c. A set X is positive invariant for the system x+ = f(x) if x∈X implies f(x)∈X.

d. A set X is a region of attraction for the system x+ = f(x), if the states in the

set X evolve to zero, |x(k)|X→ 0, as k→ inf .

A standard approach is to consider the value function of the infinite horizon
optimal control problem as a Lyapunov function. For the quasi-infinite optimal
control problem this implies several design concepts that need to be satisfied to
guarantee asymptotic stability according to the Lyapunov theorem.

Assumption 3: (Basic stability assumptions)

min
u∈U
{Vf(f(x,u)+ l(x,u))|f(x,u) ∈ Xf} ≤Vf(x), ∀x ∈ Xf

Assumption 4: (Implied invariance) assumptions

The set Xf is control invariant for the system x+ = f(x,u)

Further to guarantee (3.30) and (3.31), bounds need to be considered for the
stage cost and the terminal cost.

Assumption 5: (Bounds on stage and terminal cost)

The stage cost l and the terminal cost Vf satisfy

l(x,u)≥ γ1(|x|) ∀x ∈XN,∀u ∈ U (3.33)

Vf (x)≤ γ2(|x|) ∀x ∈ X f (3.34)

in which γ1 and γ2 are K∞ functions.

It can be derived that (3.33) guarantees (3.30) for the Lyapunov function if Xf

contains the origin in its interior [61]. The conditions defined above thus guar-
antee Lyapunov stability [61] summarized in the following proposition. The
terminal set Xf can be chosen to be the maximal control invariant set, which

37

b. A function γ is a positive definite function, if it is continuous and positive



3 Fundamentals of Optimal Planning and Control

Proposition 2: (Optimal value function properties)

Suppose that Assumptions 1, 2, 3, 4 and 5 are satisfied. Then there exist K∞

functions γ1(·) and γ2(·) such that V (·) has the following properties

V (x)≥ γ1(|x|) ∀x ∈ X

V (x)≤ γ2(|x|) ∀x ∈ X f

V ( f (x,u))≤V (x)− γ3(|x|) ∀x ∈ X

Finally the stability of the MPC can be ensured by Theorem 1.

Theorem 1: (MPC stability)

Suppose that Assumptions 1, 2, 3, 4 and 5 are satisfied and that Xf contains the

origin in its interior. Then the origin is asymptotically stable with a region of

attraction X for the system x+ = f(x,u).

For proofs and detailed explanations for this section please refer to [61]. This
section presented requirements formulated for linear time invariant (LTI) sys-
tems. Consider that the assumptions and propositions formulated above can be
equivalently used to design for control of linear time varying (LTV) systems, as
is presented in Chapter 5.

3.2.2 Robust Model Predictive Control

The robust design of controllers is important in the presence of uncertainties
causing a deviation between predicted behaviour based on the nominal system
and actual behavior. Two different types of uncertainties have been adressed
in [61]: additive and parametric uncertainties. Parametric uncertainties can di-
rectly represent effects of parameters in sophisticated models, such as mass or
inertia, whereas additive uncertainties can be easily considered mathematically
as a further summand in the equation and can be converted from the
parametric uncertainties.
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3.2 Model Predictive Control

Consider the linear system with parametric uncertainties in the vector θ in

x+ = f(x,u,θ) = A(θ)x+B(θ)u (3.35)

where θ ∈Θ and Θ being the uncertainty set.
This system with parametric uncertainties can be reformulated in a form with
additive uncertainties

x+ = f(x,u,θ) = Ax+Bu+w (3.36)

w ∈W, W := {(A(θ)−A)x+(B(θ)−B)u|θ ∈Θ,(x,u) ∈ X×U},

where the matrices A and B are the nominal state space matrices defined at
nominal parameters in θ0.
To treat the additive uncertainties, [48] and [61] proposed tube based MPC as
a computationally efficient method for this task. The feedback policy proposed
by tube based MPC is

u = v+k(x− z) (3.37)

Here v and z are the input and state vector of a nominal system given by

z+ = Az+Bv, (3.38)

k is a linear feedback vector calculated offline to stabilize the system and mini-
mize the deviation between the actual state x and the nominal state z. The feed-
back policy of the tube based MPC in (3.37) is composed of two components.
The open loop control v controls the nominal system in (3.38) whereas the
feedback control with linear feedback vector k minimizes the deviation
between the nominal system states and the actual system states.
With the control policy given, the overall system dynamics is

x+ = Ax+Bv+Bke+w (3.39)
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where e is the error between the actual state x and the nominal state z with

e = x− z (3.40)

and the error dynamics

e+ = Ake+w (3.41)

Ak = A+Bk . (3.42)

The error can be calculated with the closed loop state matrix Ak using

e(i) = Ai
ke0+

i−1

∑
j=0

A
j
kw( j) (3.43)

with e(i) ∈ Si where Si is composed of the uncertainties and state transition
matrices up to the prediction time step i.

Si =
i−1

∑
j=0

A
j
kW=W⊕AkW⊕ . . .⊕Ai−1

k W (3.44)

Control with tube based MPC can be viewed as control of tubes rather than
control of trajectories. The feedback policy enables control under uncertainty
and can be explained by controlling a tube around the nominal trajectory, in
which each trajectory in this tube corresponds to a particular realization of the
uncertainty.
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To satisfy the constraints X and U in the real system, suitable tightened
constraint sets Z and V need to be considered for the open loop control with the
nominal system formulated by

z(i,k) ∈ Z := X	S

v(i,k) ∈ V := U	kS

x(0,k) ∈ {z(0,k)} e(i,k) ∈ Si

z(N,k) ∈ Zf Zf ⊆ Z

where the set operations are defined by

Definition 2: (Set algebra)

(a) Set addition A⊕B := {a+b|a ∈ A,b ∈ B}.
(b) Set substraction A	B := {x ∈ R

n|{x}⊕B⊆ A}.
(c) Set multiplication: Let K ∈ R

m×n. Then KA := {Ka|a ∈ A}.

The tightened constraints guarantee satisfaction of constraints for x and u with
the feedback control law in presence of uncertainties. Calculation of the set Z
and V is in general a difficult task. [61] shows how the set can be calculated
with minimal computational burden achieving a tradeoff between conservatism
and simplicity.
Let the state constraints be given by

X := {x ∈ R
n|cjx≤ dj}

with the number of the constraint given by the index j then the tightened state
constraints corresponding to the nominal states are given by

Z := {z ∈ R
n|cjz(i,k)≤ dj−max{cje(i)|e(i) ∈ Si}}
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where the maximum error in the set Si with respect to the vector cj is calculated
for each constraint equation separately. Similarly, if the input constraint of the
actual input is given by

U := {u ∈ R
m|aju≤ bj}

the tightened input constraint can be calculated by

V := {v ∈ R
m|ajv≤ b−max{ajk

N−1

∑
i=0

Ai
kw|w ∈W}} .

To guarantee stability of the tube based controller, the definitions and theorems
stated in Chapter 3 need to be reformulated in consideration of the uncertainty.
The basic stability assumption with uncertainties can be reformulated as below.

Assumption 6: (Basic stability assumption; robust case)

(a) For all x ∈ X f

min
u∈U

max
w∈W

[ΔVf + l](x,u,w)≤ 0

with ΔVf(x,u,w) =Vf(f(x,u,w))−Vf(x,u,w)

(b) Xf ⊆ X

Assumption 6 requires the reduction of the loss function under any uncertainty
w ∈W, which makes the loss function a local Lyapunov function in Xf. This
implies properties for the terminal set which are equivalent to Assumption 4 for
the nominal MPC in Chapter 3.

Assumption 7: (Implied stability assumption; robust case)

The set Xf is robust control invariant for x+ = f(x,u,w),w ∈W
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The term robust control invariant is defined by

Definition 3: (Robust control invariance)

A set X⊆R
n is robust control invariant for x+ = f(x,u,w),w ∈W if, for every

x ∈ X, there exists a u ∈ U such that f(x,u,w) ∈ X

Satisfaction of the Assumptions 1, 2, 5, 6 and 7 with bounded disturbances
ensures asymptotic stability to a robust control invariant set discussed in [61].
Finally, limitation on the uncertainty set need to be formulated as unlimited dis-
turbances cannot be compensated and stability as well as constraint satisfaction
can not be guaranteed. The characteristic of the uncertainty is described in the
following assumptions.

Assumption 8: (Restricted disturbance for constraint satisfaction)

S⊆ X,kS⊆ U.

Assumption 9: (Compact convex disturbance set)

The compact convex set W contains the origin in its interior.

The Assumptions 8 and 9 underline that the compensation of uncertainty is
limited by the input and the state constraint. If the effect of the uncertainties
reaches the input limits, the performance and stability of the system can no
longer be guaranteed. In this thesis, the Assumptions 8 and 9 are assumed to be
satisfied, such that the uncertainty can be compensated by the control.
Similarly to Section 3.2.1 the assumptions and propositions formulated above
can be equivalently used to design for control of linear time varying systems, as
is used in Chapter 5.

3.3 Model Predictive Tracking

In the last sections, the theoretical background of the MPC necessary for guar-
anteeing the existence and the stability of the solution have been briefly pre-
sented. In this section these results will be applied to the simple control problem
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of trajectory tracking for a vehicle. Similar approaches have been presented in
works like [35][15][20][6]. The structure of the MPC in the classical control
concept is presented in Figure 3.9. The MPC for the tracking problem makes
use of a preplanned trajectory and the state vector information of the plant vehi-
cle. The core of the MPC method is the optimization algorithm, which compre-
hends several modules such as the vehicle dynamics model, the cost function,
the state and input constraints as well as the terminal cost. After solving the
MPC optimization problem the first input vector is applied to the actors of the
vehicle.

Measured State Vector Steering Torque
and Deceleration Command

Trajectory
Planning

Vehicle Dynamics Model
(Linear)

Cost Function
(Quadratic)

Optimization Algorithm

State and Actuator Constraints
(Linear)

Terminal Cost
(Quadratic)

Model Predictive Control

Figure 3.9: MPC structure in Classical Control Concept

3.3.1 Trajectory Planning

The trajectory planning method exploited in this chapter for the lateral dynamics
is the sigmoidal trajectory presented by Stählin [71] and Schorn [68].
The equation of the sigmoidal trajectory is

y(x) =
M

1+ e−a(x−c)
(3.45)
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where M is the lateral maneuver distance, c is half of the longitudinal maneuver
distance and a is the slope at the middle of the maneuver. Since the sigmoidal
reaches its both ends in positive and negative infinity only, yTol is introduced,
such that y(0) = yTol and y(2c) = M− yTol. The parameters of the sigmoidal
trajectory are illustrated in Figure 3.10. Given a maximum lateral acceleration
ay,max, the lateral maneuver distance M and the tolerance constant yTol, the re-
maining parameters c and a have been derived in [71] to

c =
1
ay

ln(
M− yTol

yTol
)

a =
(p+1)2

√−pM(ay,maxpM− v2p2+ v2)ay,max

pM(ay,maxpM− v2p2+ v2)

with the parameters

p =
√
2

s2√
s1

(
6v2+2ay,maxM+

4a2
y,maxM2

3v2

)
+

2ay,maxM
3v2

+1

s1 = 9v4+3ay,maxMv2+2a2
y,maxM2

s2 = cos
(
1
3
arctan

(
3v2
√

num
den

))

num = 81v8+27v4a2
y,maxM2+4a3

y,maxM3+3a4
y,maxM4

den = 27v6+9v2a2
y,maxM2+4a3

y,maxM3+27v4ay,maxM .

The trajectory for the longitudinal dynamics is generated using the approach
of [35]. Katriniok distinguishes between several maneuver phases and plans
different constant deceleration values for different phases. Similarly to [35],
the trajectory in this section is created by planning a constant deceleration of
-5 m/s2 from t = 0 s to 0.8 s and -1.5 m/s2 from t = 0.8 s to 1.3 s. From t = 1.3 s
to 2.2 s no braking is planned. Finally for t > 2.2 s, a braking maneuver of
-8 m/s2 is planned until standstill.
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y
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M/2
a

yTol

yTol

Figure 3.10: Sigmoidal Trajectory [71]

3.3.2 Vehicle Dynamics Model

The state transition model represents the system characteristics in the
considered control process, i.e. the combined braking and steering dynamics
behaviour of the vehicle in the collision avoidance maneuver. Though the com-
bined vehicle dynamics model can represent the model behaviour for these ma-
neuvers, a control algorithm based on the nonlinear model in (3.21) cannot be
implemented in the real vehicle due to computational limitations. In the equa-
tion below the affine state space matrices with the system matrix Ac, the input
matrix Bc and the bias vector Ec are calculated by taking the derivates with
respect to the state and the input vector of (3.21) respectively at the operation
point (measured state) x0 and the last input vector u0.

Ac =
∂ f(x0,u0)

∂x
(3.46)

Bc =
∂ f(x0,u0)

∂u
(3.47)

Ec =f(x0,u0)−Acx0−Bcu0 . (3.48)

The affine continuous state space model and the corresponding matrices are
given by

ẋ = Ac ·x+Bc ·u+Ec (3.49)
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with

Ac =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 0
cαf,0

mv0iL
0 A18 0

A21 A22 0 0 0 A26 0 A28 0

0 1 0 0 0 0 0 0 0

v0 0 v0 0 0 0 0 0 0
2Df

Jst

2l f Df

v0Jst
0 0 −−dst

Jst

−2Df

iLJst
0 A58 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 − 1
tdel

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

Bc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0
1
Jst

0

0 0

0 0

0 0

0
1

tdel

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;Ec =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fyf,0+Fyr,0

mv0
−A18v0

Fyf,0lf+Fyr,0lr
Jz

−A28v0

0

0

−A58v0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;
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A11 =−
cαf,0 + cαr,0

mv0
;A12 =

cαr,0 lr− cαf,0 lf
mv20

−1;

A18 =
cαf,0 + cαr,0

mv20
β0−2

cαr,0 lr− cαf,0 l f

mv30
ϕ̇0−

cαf,0

iLmv20
δ0;

A21 =
cαr,0 lr− cαf,0 lf

Jz
;A22 =−

cαr,0 l2r + cαf,0 l2f
Jzv0

;

A26 =−
cαr,0 l2r + cαf,0 l2f

Jzv0
;A28 =

cαf,0 l2f + cαr,0 l2r
Jzv20

ϕ̇0;

A58 =
−2l f Df

Jstv20
ϕ̇0;

Here v0, δ0, ϕ̇0 and β0 denote the measured velocity, steering wheel angle, yaw
rate as well as the side slip angle and cαf,0 , cαr,0 , Fyf,0 and Fyr,0 denote parameters
of the linearized tire model in (3.16). In the model predictive control design,
the discretized state space equation

xk+1 = Axk +Buk +E (3.50)

is used. The state vector is given by xT = [β , ϕ̇,ϕ,y, δ̇ ,δ ,x,v,ax] and the in-
put vector by uT = [T,ax,cmd]. The state transition equation is continuous for
the state and the input vector, so that it satisfies Assumption 1. Note that the
affine state space equation in (3.50) needs to be reformulated in section 3.3.5 to
calculate the penalty matrix based on a linear state space model.

3.3.3 Cost Function

A central component of MPC methods is the selection of a suitable cost func-
tion, which follows the design goal of the control problem. In this section we
choose the cost function to minimize the deviation of the vehicle states from a
preplanned trajectory. The trajectory shall be followed explicitly for the lateral
position, the velocity as well as the yaw angle of the vehicle dynamics state.
Furthermore, we need to consider weights for the control signals, the steering
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torque and the commanded deceleration, to avoid permanent planning of ma-
neuvers at the actuator limits. The cost function is given by

J =
N−1

∑
i=0

qy(y(i,k)− ytraj(i,k))2+qϕ(ϕ(i,k)−ϕtraj(i,k))2 (3.51)

+qv(v(i,k)− vtraj(i,k))2+ rTT 2(i,k)+ raxa2
x,cmd(i,k)

= (x(i,k)−ytraj(i,k))T Q(x(i,k)−ytraj(i,k))+u(i,k)′Ru(i,k)

with Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 qϕ 0 0 0 0 0 0

0 0 0 qy 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 qv 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎣rT 0

0 rax

⎤
⎥⎦

The chosen cost function is continuous for the state as well as the input vector
and the matrices P and Q are chosen to be symmetric positive semidefinite
such that the Assumptions 1, 3 and 5 are satisfied. The trajectory vector ytraj is
composed of the trajectory values for the yaw angle qϕ , the lateral position qy

and the velocity qv with

ytraj(i,k) = [0,0,ϕtraj(i,k),ytraj(i,k),0,0,0,vtraj(i,k),0]T .
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3.3.4 Constraints

One of the main advantages of model predictive control is the ability to consider
state and input constraints in the control design. In this section, constraints are
used to ensure stability when controlling the vehicle at high yaw rate ϕ and side
slip angle β as well as to consider actuator limitations for the input vector u.
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Figure 3.11: Phase plane map for v =50km/h and δ =3 ◦

Stable Handling Envelopes

Stable handling envelopes can guarantee for vehicle dynamics stability when
integrated in MPC methods for maneuvers with high yaw rate and side slip an-
gle. This was addressed by Beal [6] by presenting an invariant set in a phase
plane, spanned by the yaw rate and the side slip angle axis. Beal shows that the
limit of instability in the phase plane map for a vehicle dynamics model with
nonlinear tires and different steering wheel angle as well as velocity values can
be considered by a maximum yaw rate and a maximum side slip angle limit.
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3.3 Model Predictive Tracking

A phase plane map is exemplarily shown in Figure 3.11 for a single track model
with constant velocity and steering wheel angle. The figure illustrates the snap-
shot dynamics of the model at different states (arrows), the stable equilibrium
point (marked point near the origin), to which states in the stable set evolve to,
and the unstable equilibrium points (marked points at +0.7 rad/s and -0.7 rad/s),
which separates the stable states from the unstable states. The unstable states
are characterized by states moving away from the origin. Beal [5] explains that
the stable equilibrium points move to higher yaw rate values with increasing
steering wheel angle, whereas the unstable equilibrium points move to lower
slip angles at constant yaw rate value with increasing steering wheel angle. The
yaw rate value of the unstable equilibrium point is

ϕ̇max =

⎧⎪⎨
⎪⎩

Fyr,max(1+ lr
l f
)

mv for Fyf,max <
lr
lf

Fyr,max

Fyf,max(1+
lf
lr
)

mv for Fyf,max <
lr
lf

Fyr,max .

(3.52)

for different maximum lateral forces. These forces are dependent on the tire
parameter, slip angle and load of each axis. The conditional equation can be
rewritten with (3.14) in terms of the longitudinal acceleration.

Fyf,max− lr
lf

Fyr,max

= μy,maxm(
lr
l

g+
hcog

l
ax)− lr

lf
μy,maxm(

lf
l

g− hcog

l
ax)

= μy,maxm(
hcog

l
+

lr
lf

hcog

l
)ax

= μy,maxm
hcog

lf
ax
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For the considered maneuver the longitudinal acceleration ax is negative for the
duration of the maneuver, so that the second case in (3.52) applies.
The limit for the maximum yaw rate can thus be calculated by

ϕ̇max =
Fyf,max(1+

lf
lr
)

mv

=
μy,maxm( lr

l g+ hcog
l ax)(1+

lf
lr
)

mv

=
μy,max(g+

hcog
lrr

ax)

v
.

The maximum side slip angle βmax is

βmax =−αr,max+
lrϕ̇
v

(3.53)

with αr,max being the maximum allowed slip angle for the rear tire. The stablility
envelope can then be given by

−ϕ̇max ≤ ϕ̇ ≤ ϕ̇max (3.54)

−βmax ≤ β ≤ βmax . (3.55)

The admissible set for the stability is therefore

S= {x ∈ R
9 | ϕ̇ ∈ [−ϕ̇max, ϕ̇max],β ∈ [−βmax,βmax]} . (3.56)

For the case that the maximum lateral force on the front and rear tires are
achieved simultaneously and a maximum slip angle of αr,max = 12◦ should not
be exceeded, the maximum yaw rate and side slip angle limits are illustrated
in Figure 3.11. In this chapter the state constraint set X comprises of the set S
only, such that X= S holds.
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3.3 Model Predictive Tracking

Actuator Limitations

The input vector u is limited by an admissible actuator range, i.e. the maximum
and minimum possible steering wheel torque and the maximum longitudinal
deceleration command.
The set of admissible actuator limits is thus given by

U= {u ∈ R
2 |T ∈ [−Tmax,Tmax],ax,cmd ∈ [ax,cmd,max,0]} . (3.57)

Note that the set U is compact and X is closed which satisfies Assumption 2.

3.3.5 Terminal Cost

As explained in Section 3.2.1 the quasi-infinite optimal control problem is com-
posed of two sub-problems, the finite optimal control problem and the infinite
optimal control problem. The infinite control problem is designed to guaran-
tee stability for consecutive control step i > N. Therefore a penalty matrix Pf

needs to be calculated to stabilize the system for the time steps i > N in a wide
range of vehicle dynamics. To calculate the penalty matrix the affine state space
equation in (3.50) will be rewritten into the linear state space equation

⎡
⎢⎣xk+1

1

⎤
⎥⎦=

⎡
⎢⎣A E

0 1

⎤
⎥⎦
⎡
⎢⎣xk

1

⎤
⎥⎦+

⎡
⎢⎣B

0

⎤
⎥⎦uk (3.58)

Based on this linear state space model, the theory of linear quadratic control
and Lyapunov inequality [11] will be exploited with

⎡
⎢⎣A(θ) E(θ)

0 1

⎤
⎥⎦

T

Pf

⎡
⎢⎣A(θ) E(θ)

0 1

⎤
⎥⎦−Pf ≤

⎡
⎢⎣−Q 0

0 0

⎤
⎥⎦ (3.59)
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Here A(θ) denotes the dependance of the state space matrix from the parameter
vector θ ∈Θ with

Θ :={θ ∈ R
3|v ∈ [vmin,vmax],αr ∈ [−αr,max,αr,max], (3.60)

αf ∈ [−αf,max,αf,max]}

The parameter set Θ considers the change of velocity and slip angles for a wide
range of vehicle dynamics maneuvers. The matrix Pf is calculated offline with
solvers for linear matrix inequalities [11][44] with the parameter vector θ ∈Θ.

3.3.6 MPC Formulation

The overall MPC method proposed in this chapter is

min
u

J =
N−1

∑
i=0

(x(i,k)−ytraj(i,k))′Q(x(i,k)−ytraj(i,k)) (3.61)

+u(i,k)′Ru(i,k)

+ [xT (N,k)−yT
traj(N,k) 1]T Pf[x

T (N,k)−yT
traj(N,k) 1]T

x(i+1,k) = Ax(i,k)+Bu(i,k)+E, ∀i = 0, · · ·N
u ∈ U, x ∈ X .

The components of the proposed tracking method satisfy the Assumptions 1, 2,
3, 4 and 5. Theorem 1 can thus provide stability guarantee for the presented
control algorithm. Figure 3.12 illustrates the performance of this simple track-
ing method on a scenario with a static obstacle. The sigmoidal trajectory and
the MPC are set up with the parameters given in Table 3.3. The top picture il-
lustrates the position of the planned trajectory (thick dashed line) and the driven
trajectory of the COG (thick solid line) as well as of the four vehicle corners
(thin dashed lines line). The method shows lateral deviations of approximately
ydev = 0.65m which results from an aggressive parameterization of the trajec-
tory planner. The maneuver is triggered at x = 4m. At 1© the maximum
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steering torque and the maximum deceleration command values are applied.
The counter steering phase starts at 2© where the deceleration command is re-
duced to zero. In the stabilization phase at 3©maximum deceleration command
is applied to reduce the vehicle velocity. The deviation between the planned tra-
jectory and the driven trajectory indicates that proper tuning of the geometrical
parameters in the planning method on the control characteristic is very impor-
tant to ensure collision avoidance in the maneuver. Furthermore, both steering
torque and deceleration command are not planned according to the most re-
cent obstacle position but according to the curvature of the trajectory
which is fixed during maneuver execution.

Table 3.3: Parameter setup for trajectory planning and vehicle dynamics control module

Parameter Symbol Value Unit

Lateral maneuver distance M 2.1 m

Tolerance Value yTol 0.01 m

Maximum lateral acceleration ay,max 9.81 m/s2

Penalty value on lateral position qy 1000 1/m2

Penalty value on yaw angle qϕ 10 1/rad2

Penalty value on velocity qv 50 s2/m2

Penalty value on steering torque rT 0.01 1/Nm2

Penalty value on deceleration rax 0.01 s4/m2

Maximum steering assist torque Tmax 50 Nm

Maximum rear slip angle αr,max 12 ◦

Maximum lateral friction μy,max 1 (none)

Maximum deceleration value ax,cmd,max −9.81 m/s2

In Chapter 4 and 5, methods for the integrated planning and control concept will
be investigated, where the obstacle is considered by the method directly and no
tuning effort is needed between the planning and the control module.
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Figure 3.12: Tracking on predefined trajectory in single obstacle scenario
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4 Nonlinear Integrated Planning
and Control

The classical planning and control concept based on a trajectory, calculated with
geometrical primitives, and a MPC approach as described in Section 3.3 is suit-
able to avoid a collision in simple scenarios, but cannot consider environmental
information in complex scenarios with multiple obstacles and road boundaries.
The integrated planning and control concept according to Section 2.4 can over-
come the weaknesses of the classical concept. This chapter describes a nonlin-
ear integrated planning and control method based on a nonlinear MPC structure.
Preliminary work of this chapter has been published at the IEEE Intelligent Ve-
hicles Symposium 2016 [83].

Measured State Vector Steering Torque
and Deceleration Command

Environmental
Information

Vehicle Dynamics Model
(Nonlinear)

Cost Function
(Quadratic)

Optimization Algorithm

State and Actuator Constraints
(Nonlinear)

Terminal Cost
(Quadratic)
Terminal Constraints
(Nonlinear)

Model Predictive Control

Collision Avoidance of Obstacles
and Lane Boundaries (Nonlinear)

Figure 4.1: MPC structure of Nonlinear Integrated Planning and Control Method
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The structure of the integrated planning and control method is illustrated in
Figure 4.1. Instead of the preplanned trajectory as part of the classical con-
cept, environmental information such as road boundaries and obstacle informa-
tion serve as direct input for the proposed method. This information is used
in the collision avoidance constraint to predict collision-free trajectories. The
state and actuator constraints, the terminal cost as well as the vehicle dynamics
model are taken from Chapter 3.
The remainder of this chapter is structured as follows. Section 4.1 introduces
design goals for the desired planning characteristic of the proposed method.
The cost function and the collision avoidance constraints required to consider
the design goals and the environmental information are explained in Sections
4.2 and 4.3. The problem of obstacles outside of the prediction horizon is dis-
cussed and the terminal collision avoidance constraint is formulated for specific
scenarios in Section 4.4. In Section 4.5, soft constraints are introduced to en-
sure smooth calculation of the result. The overall nonlinear MPC formulation
is summarized in Section 4.6. The performance of the integrated method in a
simulation environment is demonstrated in Section 4.7.

4.1 Design Goals

Key requirements to design the trajectory planning and the vehicle dynamics
control module have been introduced in Section 1.2. By selecting the integrated
planning and control concept based on the MPC method with collision avoid-
ance constraints, several requirements can be fulfilled with reasonable effort as
will be explained in this chapter. After establishing a proper implementation in
this chapter to fulfill all given requirements independent on computational load,
Chapter 5 will serve to deduce a time efficient method.
The optimization goal will be designed through a cost function as will be shown
in the next section. The cost function enables the customization of the collision
avoidance maneuver performance. This customization defines the characteristic
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evaluated in the simulation environment and in the real vehicle.
The design goals for collision avoidance maneuvers impact constraints and cost
function. Design goals like guaranteed collision-freeness, consideration of en-
vironmental information, representation of vehicle dynamics and actuator lim-
itations directly lead to the formulation of constraints. The performance of the
optimization algorithm is thus indirectly influenced by those design goals. Two
design goals have been chosen to be directly considered in the cost function.
This concept can be easily modified with respect to performance by changing
the states being considered in the cost function.
An emergency maneuver in urban environments should always be designed to
reduce the velocity until the critical situation is dissolved. This supports the
item of uncertain information as discussed in Section 1.2, leading to a reduced
potential collision energy in the case that obstacles did not move dynamically
as predicted. By reducing the velocity during the evasive maneuver, the pre-
requisite to do the best for avoiding the collision with an obstacle not detected
early enough is given.
Similarly the planning and control method should aim to reduce the final yaw
angle of the maneuver. By following this design goal, larger yaw angles not
needed for the maneuvver are reduced. A potential threat of the maneuvering
vehicle to other road participants like oncoming traffic can also be reduced by
considering the yaw angle in the cost function. This indirectly supports the min-
imization of the lateral displacement. Furthermore, both criteria support better
coorporation with the driver after being exposed to an emergency maneuver.
The key requirements and the design goals shape the properties of the inte-
grated planning and control method investigated in this thesis. By selection of
the concept and method based on the key requirements already build the fun-
dament to cope with the objectives of evasion maneuvers. In addition,
the described design goals shall further shape the desired driving characteristics
of the planned maneuver and will be used to develop the required metrics in
Section 4.7.1.
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4 Nonlinear Integrated Planning and Control

4.2 Cost Function

While the cost function for the trajectory tracking method in Section 3.3 serves
to reduce deviations to a preplanned trajectory, the function for the integrated
planning and control method directly considers the design goals from Section
4.1, i.e. it is designed to reduce the velocity and the final yaw angle deviation
to the orientation of the road boundaries. In scenarios with straight lanes the
yaw angle deviation can be substituted by the yaw angle. In addition, command
signals are weighted in the cost function to prevent the method from permanent
planning of interventions at the limits of the actuators. In addition to the desired
control characteristic in (4.1), the cost function needs to be appended with a
terminal cost Vf which can ensure stability of the control characteristic. The
cost function is thus given by

J =
N−1

∑
i=1

x(i)T Qx(i)+u(i)T Ru(i)+ [x(N)T 1]Pf[x(N)T 1]T (4.1)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 qϕ 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 qv 0

0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎣rT 0

0 rax

⎤
⎥⎦

The chosen cost function is continuous for the state vector x as well as the
command vector u and the matrices Q as well as R are chosen to be symmetric
positive semi-definite to satisfy Assumptions 1, 3 and 5 from Section 3.2.1. The
penalty matrix Pf is calculated to stabilize the system with (3.59). Note that the
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MPC theory, explained in Section 3.2, designed methods to steer the whole state
vector x to the origin (zero), whereas the proposed method is designed to steer
individual states (velocity and yaw angle) to zero.

4.3 Obstacles and Road Boundaries

To explain the design of the proposed constraints in this section, consider a
scenario with two straight lanes and a static obstacle on the right lane with the
width wobsr and the length lobsr. Further the relative position from the obstacle
rear edge to the origin is xobsr and yobsr. All road participants like pedestrians,
cyclists or vehicles are enframed by a rectangle.
The proposed planning and control method considers potential collision obsta-
cles and lane boundary information to plan a collision-free trajectory during the
maneuver without exceeding of road boundaries.
The planned trajectory is calculated in relative position to the ego vehicle’s
COG at current time step i = 0. Figure 4.2 illustrates the scenario with the ego
vehicle and the obstacle at current time step i = 0 (solid lines) and the predicted
ego vehicle for a time step i (dotted lines). The longitudinal and lateral position
of the front left, front right, rear left and rear right corners of the ego vehicle
are marked in the figure and can be denoted by (xfl,yfl), (xfr,yfr), (xrl,yrl) and
(xrr,yrr). In this scenario the ego vehicle shall swerve to the left to avoid the
collision. The evasion direction is predetermined by a higher order decision
making module (e.g. [8]). Let Br be defined as the intersection point of the
right edge of the ego vehicle rectangle at time step i with the elongated rear
edge of the obstacle vehicle.
The lateral position of the point Br for the time step i, yBr, is then calculated
based on the lateral position y of the COG and the yaw angle ϕ at time step i in

yBr = y− w
2cosϕ

+Δx tanϕ . (4.2)
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obsrego

(xobsr,yobsr)
wobsrw

lveh lobsr

x
y

ego(i) ϕ
Br

Δx

lr
lf fl

rl

rr
fr

Figure 4.2: Illustration of collision avoidance constraints for an evasive collision avoidance maneu-
ver to the left

The collision avoidance constraint can be expressed as

yBr ≥ yobsr+wobsr/2 (4.3)

∀(xfr > xobsr) ∩ (xrr < xobsr+ lobsr)

for an evasive maneuver to the left. In the equation above, the constraint is only
active when the dimension of the vehicle overlaps with the dimension of the
obstacle. The longitudinal positions xfr and xrr are calculated with

xfr = x+ lf,veh cos(ϕ)+
w
2
sin(ϕ) and (4.4)

xrr = x− lr,veh cos(ϕ)+
w
2
sin(ϕ).

Similarly the constraint for a collision avoidance maneuver to the right as shown
in Figure 4.3 can be treated analogously with an obstacle obsl with the width
wobsl, the length lobsl as well as the the distances xobsl and yobsl.
The set for the vehicle dynamics states to ensure collision avoidance is given by

C= {x ∈ R
9| yBr ≥ yobsr+wobsr/2,∀x ∈ Xor, (4.5)

yBl ≤ yobsl−wobsl/2,∀x ∈ Xol}
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with Xor := {x ∈ R|(xfr > xobsr) ∩ (xrr < xobsr+ lobsr)}
Xol := {x ∈ R|(xfl > xobsl) ∩ (xrl < xobsl+ lobsl)}
yBl = y+

w
2cosϕ

+Δx tanϕ

xfl = x+ lf,veh cos(ϕ)− w
2
sin(ϕ)

xrl = x− lr,veh cos(ϕ)− w
2
sin(ϕ).

obslego (xobsl,yobsl)
wobslw

l lobsl

x
y

ego(i)

ϕ
Bl

Δx

lr lf

Figure 4.3: Illustration of collision avoidance constraints for an evasive collision avoidance maneu-
ver to the right

ego
x

y

yR

yL obsl

obsr

Figure 4.4: Illustration of boundary lines yR and yL to consider for road boundaries and restrictions
due to obstacles
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Furthermore, constraints for the planning method will be presented to consider
position restrictions such as road boundaries and curb stones. Let the bound-
aries on the left and on the right side be given by yL and yR as shown in
Figure 4.4.
To keep all corners of the vehicle within these boundaries, the following con-
straints shall be considered

min(yfr,yrr)≥ yR(x) (4.6)

max(yfl,yrl)≤ yL(x)

with yfr = y+ lf,veh sin(ϕ)− w
2
cos(ϕ)

yrr = y− lf,veh sin(ϕ)− w
2
cos(ϕ)

yfl = y+ lf,veh sin(ϕ)+
w
2
cos(ϕ)

yrl = y− lr,veh sin(ϕ)+
w
2
cos(ϕ)

The corresponding set to consider the road boundaries is defined in

L= {x ∈ R
9| min(yfr,yrr)≥ yR(x), max(yfl,yrl)≤ yL(x)}. (4.7)

The constraints in the setC and L are closed such that Assumption 2 is satisfied.

4.4 Terminal Collision Avoidance

One aspect that has not been adressed in prior works, according to the knowl-
edge of the author, is the guarantee of collision avoidance for obstacles outside
of the prediction horizon. In practice, the length of the prediction horizon and
the number of prediction steps are selected as a trade off between high coverage
of relevant obstacles and low computational burden of the resulting optimiza-
tion problem. Problematic scenarios can be found when the prediction horizon
is not long enough by design to consider all relevant obstacles that have been
detected. To enable planning of collision-free trajectories in these scenarios,
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terminal collision avoidance constraint (TCA) introduced in this section can be
exploited. The terminal collision avoidance constraints are implemented on the
terminal prediction step of the prediction horizon to enable planning of safe tra-
jectories with a simple point mass model [67].
First consider a scenario as illustrated in Figure 4.5 where the ego vehicle needs
to perform an evasive maneuver to avoid collision with obsr followed by a brak-
ing maneuver in order to avoid collision with vehicle obstacles in the traffic jam
at a distance of xTjam.

obsrego
x

y

xTJamxB

ϕ Δx

Figure 4.5: Illustration of terminal collision avoidance constraint for a braking maneuver

Figure 4.5 illustrates the predicted trajectory to avoid collision with the first ob-
stacle, but due to the length of the prediction horizon and the chosen control
parameters it may not be able to avoid collision with vehicle obstacles in the
traffic jam. The terminal collision avoidance constraint in this section requires
the vehicle dynamics state at the last prediction step to comply with collision
avoidance requirements based on a point mass model.
Let the equation for the maneuver distance of a braking maneuver from [67] be
given by

xB =− v20
2ax

(4.8)
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where v0 is the initial velocity and ax is the required longitudinal acceleration
value, then the terminal collision avoidance constraint in this section requires
the vehicle dynamics state for the last prediction step to satisfy

Δx(N)/cosϕ(N)≥ xB(N) (4.9)

≡ (xTjam− x(N))≥ v(N)2 cos(ϕ(N))

2ax(N)
.

where x(N),v(N),ϕ(N) and ax(N) correspond to predicted vehicle dynamics
states and Δx(N) = xTjam− x(N) is the remaining longitudinal distance to the
traffic jam at the last prediction step of the prediction horizon N. To avoid divi-
sion by zero in the equation for the optimization problem, ax(N) is substituted
by min(ax,−0.1) which has marginal influence on the overall performance.
Further, consider Scenario 2 with two obstacles in Figure 4.6 and assume again
the short prediction horizon for this scenario by design. The algorithm is not
able to consider an avoidance maneuver with the second obstacle already at ma-
neuver start without any additional constraints.

obsr
ego

x
y

obslyE

xFO

yFO
xE

ϕ

F

Δx

Figure 4.6: Illustration of terminal collision avoidance constraint for an evasion maneuver

Subsequently the terminal collision avoidance constraint for evasive maneuver
will be developed.
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4.4 Terminal Collision Avoidance

Let the required maneuver distance for an evasive maneuver according to [67]
be given as

xE = v0

√
2yE
ay

(4.10)

where yE is the lateral maneuver distance and ay is the assumed lateral accel-
eration, then the terminal collision avoidance constraint for evasive maneuver
requires the maneuver distance to be smaller than the available longitudinal dis-
tance in the equation

Δx(N)≥ xE(N)

≡ (xobsl− x(N))≥ v(N)

√
2yE(N)

ay(N))
. (4.11)

The required lateral maneuver distance in the orientation of the last prediction
step yE illustrated in Figure 4.6 is calculated with

yE =
√

x2FO+ y2FO (4.12)

xFO = xobsl− xF (4.13)

yFO = yF− yobsl−wobsl/2 . (4.14)

Here point F is located on the straight line starting at the position of the last
predicted time step N with the orientation of the corresponding yaw angle with
the nearest distance to the critical corner G at obsl (see Figure 4.6). The exact
position can be determined by calculating the crossing point of the two lines

y1(x) = y(N)+ tan(ϕ(N))(x− x(N)) and (4.15)

y2(x) = yobsl−wobsl/2− tan(ϕ(N))(x− xobsl).
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The coordinates of the point F can then be calculated by

yF = (y(N)+ tan(ϕ(N))(xobsl− x(N))+ yobsl−wobsl/2)/2

xF = (yF− y(N))/ tanϕ(N)+ x(N)

Similarly to the terminal constraint for a subsequent braking maneuver, ay(N)

is substituted by min(ay(N),−0.1) in (4.11) to avoid division by zero in. The
sets of the terminal collision avoidance constraints for a braking and an evasive
maneuver are

GB := {x ∈ R
9|(xobsl− x(N,k))≥ v(N)2 cos2(ϕ(N,k))

2ax(N,k)
} (4.16)

and

GE := {x ∈ R
9|(xobsl− x(N))≥ v(N)

√
2yE(N)

ay(N))
}. (4.17)

4.5 Soft Constraints

The introduction of soft constraints using slack variables is important for the
practical application of the method with many numerical solvers. To ensure
satisfaction of the collision avoidance constraints with numerical smoothness
of the results according to [19], slack variables sobs are added to the sets in
C,L,GB and GE such that the modified sets are

C := {x ∈ R
9| yBr+ sobs ≥ yobsr+wobsr/2,∀x ∈ Xor,

yBl+wobsl/2≤ yobsl+ sobs,∀x ∈ Xol},
L := {x ∈ R

9 | min(yfr,yrr)+ sobs ≥ yR(x) ,

max(yfl,yrl)≤ yL(x)+ sobs},
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GB := {x ∈ R
9|(xtjam− x(N,k))+ sobs ≥ v(N)2 cos2(ϕ(N,k))

2ax(N,k)
} and

GE := {x ∈ R
9|(xobsl− x(N))+ sobs ≥ v(N)

√
2yE(N)

ay(N)
} .

To minimize these slack values, the variables are considered by a modified cost
function Js and the cost function J defined in (4.1) in Section 4.2.

Js = J+Qssobs(i)2 (4.18)

The introduction of soft constraints may endanger the calculation of collision-
free trajectories. The already introduced safety margins help to cope with minor
constraint violations. The safety integrity with the soft constraints can be fur-
ther ensured by an additional module double checking the trajectory after the
optimization step prior to any activation of the planned maneuver.

4.6 MPC Formulation

The overall nonlinear optimization problem in this chapter is a nonconvex opti-
mization problem and is formulated below.

min
u

Js =
N

∑
i=1

x(i,k)T Qx(i,k)+u(i,k)T Ru(i,k)+ · · · (4.19)

[x(N,k)T 1]Pf[x
T (N,k)1]T +Qssobs(i,k)2

s.t. x(i+1,k) = x(i,k)+ tpredf(x(i,k),u(i,k))

u(i,k) ∈ U

x(i,k) ∈ X

X= S∩V∩C∩L i = 1, · · · ,N
kx(N,k) ∈ U

x(N,k) ∈GB/E if TCA is applied
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Here tpred is the discretization time between predicted time steps and V is the
set described in

V= {x ∈ R
9 | v≥ 0,

√
ax2+a2

y ≤ μg, ax ≤ 0} . (4.20)

The set V is closed, such that Assumption 2 is satisfied.

4.7 Simulation Results

After explaining the modules of the integrated trajectory planning and vehi-
cle dynamics control method, the performance of the proposed method will be
presented in a simulation environment with the vehicle dynamics model as pre-
sented in Section 3.1. The integrated trajectory planning and vehicle dynamics
control method has been implemented in MATLAB Simulink on a computer
with 8 GB RAM and Intel CORE i5 processor with 2.90 GHz.
First this section will present the considered metrics and scenarios to evaluate
the integrated planning and control method for collision avoidance maneuvers.
Finally the performance of the proposed method on the predefined metrics and
scnearios will be shown in the simulation environment.

4.7.1 Metrics

The metrics defined in this section are derived from the design goals of Section
4.1. The first metric relates to the amount of velocity reduction at the lon-
gitudinal position of the potential collision. The relative velocity reduction is
calculated by

Δvred =
v0− v(tc)

v0
. (4.21)

Here v0 is the initial velocity of the ego vehicle at the start of the manuver
intervention, whereas v(tc) is the velocity at the potential collision time - the
point in time when the front edge of the vehicle bypasses the rear edge of the
obstacle.
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The second metric considers the final yaw angle ϕfnl of the vehicle at the end of
the maneuver. According to Section 4.1, the vehicle shall reorientate the vehicle
at the end of an ideal maneuver.
The third metric is the computation time tcmp of the implemented algorithm
per control step. The method presented in this chapter does not focus on the
reduction of computation time. Therefore the computation time metric will not
be used for evaluation in this chapter but shall be calculated prior to further
modification in Chapter 5.

4.7.2 Scenarios

In this section typical scenarios in urban environments are presented to evaluate
the performance of the proposed planning and control concept. The scenarios
consider a straight road with two lanes. The overall width is 7 m with 3.5 m
for each lane. All road participants like pedestrians, cyclists or vehicles are
enframed by a rectangle. The ego vehicle with the width w = 2 m and the length
lveh = 3.5 m moves with the velocity v0 = 50 km/h on the right lane. In the pre-
sented scenarios, the collision avoidance maneuvers will not start immediately
but triggered after x = 4 m which corresponds to the latest point in time.

Scenario 1: Single Obstacle

In Scenario 1, the static obstacle with the width wobsr = 2 m and the length
lobsr = 3.5 m, which represent a static vehicle, is located on the center of the
right lane. The corresponding scenario is given in Figure 4.7.
Let the origin of the reference system be located at the COG of the ego vehicle,
then the relative position of the obstacle rear edge to the origin shall be
(xobsr = 20 m, yobsr = 0 m).
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obsr

Scenario 1

ego

(xobsr,yobsr)
wobsrw

lveh lobsr

x
y

Figure 4.7: Scenario 1 with one static obstacle

Scenario 2: Multiple Obstacles

The second use case considers multiple obstacles representing another typical
situation in urban environments. The first obstacle with the width wobsr = 2 m
and the length lobsr = 1 m, representing a pedestrian or a cyclist, is located on
the center of the right lane similarly to Scenario 1. The second obstacle (obsl)
is located on the left lane with the relative distances xobsl = 24 m and
yobsl = 4.5 m to the COG of the ego vehicle and with the width wobsl = 2 m and
length lobsl = 3.5 m. The gap between both obstacles is chosen such that it can
be passed through by the ego vehicle without a collision. The scenario is
shown in Figure 4.8.

Scenario 3: Single Obstacle with Traffic Jam

The last scenario shown in Figure 4.9 considers a single obstacle obsr, with the
width wobsr = 2 m and the length lobsr = 3.5 m on the right lane, and a traffic
jam at the distance xTJam = 28 m illustrated by a wall, such that the sys-
tem needs to apply a braking maneuver after the first evasive maneuver
in order to avoid a collision.
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wobsrw

lveh lobsr
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obsl
(xobsl,yobsl)
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Figure 4.8: Scenario 2 with two static obstacles on both lanes

Scenario 3

obsrego

(xobsr,yobsr)
wobsrw

lveh lobsr

x
y

xTjam

TJam

Figure 4.9: Scenario 3 with single obstacle and end of a traffic jam / wall

4.7.3 Typical Scenarios

The performance of the proposed method for the Scenarios 1 and 2 (Section
4.7.2) shall be demonstrated in this section.
The focus of this section is to discuss the maneuver performance with three
different parameter setups for the proposed method. Parameter setup 1 for the
proposed nonlinear MPC is shown in Table 4.1.
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Table 4.1: Parameter setup 1 for the Nonlinear Integrated Planning and Control Method

Parameter Symbol Value Unit

Prediction horizon length N 15 (none)

Prediction horizon step size dtpred 0.14 s

Controller time step size dtctrl 0.03 s

Penalty of slack variable qs 3·106 1/m2

Penalty of yaw angle qϕ 3·103 1/rad2

Penalty of velocity qv 10 s2/m2

Penalty of steering torque command rT 10−1 1/Nm2

Penalty of deceleration command rax 10−1 s4/m2

Limit for steering system Tmax 50 Nm

Limit for braking system ax,cmd,max -9.81 m/s2

Figure 4.10 shows the result for the single obstacle scenario. In the top picture,
the driven trajectories of the vehicle with the COG (solid lines) and its four cor-
ners (front right, front left, rear right and rear left in dashed lines) are illustrated
in the plane, spanned by the axes for the lateral and longitudinal position. The
figure shows how the vehicle avoids a collision with the obstacle and brakes the
vehicle to a standstill.
At maneuver start 1 , the algorithm commands the maximum steering torque
and maximum deceleration to avoid the collision. This may seem to violate
the restrictions of the friction circle but due to the time delay characteristic
of the vehicle dynamics model the friction limits can not be reached instantly.
Subsequently at 2 , the algorithm introduces the counter steering phase. When
the ego vehicle with its front edge is passing the rear edge of the obstacle 3 ,
the algorithm again commands a high steering torque value in the stabilization
phase and prevents further rotation towards the obstacle. At 4 , the algorithm
stops the steering and the braking intervention and due to the characteristic of
the longitudinal model the vehicle is decelerated to a standstill.
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Figure 4.10: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 1 in Scenario 1
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To explain the main influence of different parameters on the maneuver perfor-
mance, parameter setup 2 in Table 4.2 will be used. The parameter setup 2 is
designed with a higher penalty on the yaw angle and a lower penalty on the
velocity, which represents higher emphasis on the reorientation of the vehicle.

Table 4.2: Parameter setup 2 for Nonlinear Integrated Planning and Control Method

Parameter Symbol Value Unit

Prediction horizon length N 15 (none)

Prediction horizon step size dtpred 0.14 s

Controller time step size dtctrl 0.03 s

Penalty of slack variable qs 3·107 1/m2

Penalty of yaw angle qϕ 104 1/rad2

Penalty of velocity qv 1 s2/m2

Penalty of steering torque command rT 10−1 1/Nm2

Penalty of deceleration command rax 10−1 s4/m2

Limit of steering system Tmax 50 Nm

Limit of braking system ax,cmd,max -9.81 m/s2

Figure 4.11 shows the performance of the algorithm in the same scenario. Sim-
ilarly to Figure 4.10 the maneuver is characterized by several time marks. A
difference in the control characteristic can be found in the counter steering
phase, between 2 and 3 , where the deceleration command is reduced to zero
for a longer time period. This reduction of deceleration command ensures faster
yaw angle reduction and avoids standstill of the vehicle without reorientation
during this time period which can be explained by the high penalty on the yaw
angle and the lower penalty on the velocity. The figure illustrates that zero ve-
locity and yaw angle at the end of the maneuver at 4 is achieved.
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Figure 4.11: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 2 in Scenario 1
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In a last variation, the parameter setup 3 in Table 4.3 is used. This setup is very
different compared to the setups 1 and 2. The step size of the prediction horizon
is reduced by half, such that the algorithm has a shorter prediction horizon. The
sampling time of the algorithm is increased to 100 ms which corresponds to a
lower sampling frequency. The penalty on the velocity is decreased to zero and
the penalty of both the command values are increased to high values.
Figure 4.12 shows the performance of the method with the parameter setup 3.
Similarly to the previous figures, high steering torque and deceleration com-
mands are applied at 1 . However, the high command values are reduced after
a short time and the counter steering phase is introduced at 2 with a small
deceleration command which can be attributed to high penalty on the command
values. After passing the obstacle edge the command values are reduced con-
tinuously to zero.

Table 4.3: Parameter setup 3 for the Nonlinear Integrated Planning and Control Method

Parameter Symbol Value Unit

Prediction horizon length N 15 (none)

Prediction horizon step size dtpred 0.07 s

Controller time step size dtctrl 0.1 s

Penalty of slack variable qs 3·107 1/m2

Penalty of yaw angle qϕ 104 1/rad2

Penalty of velocity qv 0 s2/m2

Penalty of steering torque command rT 100 1/Nm2

Penalty of deceleration command rax 101 s4/m2

Limit of steering system Tmax 50 Nm

Limit of braking system ax,cmd,max -9.81 m/s2
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Figure 4.12: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 3 in Scenario 1
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The figure demonstrates that the vehicle avoids the collision with the obsta-
cle and has a velocity of 35 km/h at the end of the maneuver. Overall, the
algorithm applied low command values during the maneuver so that it does not
brake the velocity to a standstill and reorientate the vehicle to zero yaw angle.
This performance can as well be explained by high penalties on the command
steering torque and deceleration command as well as zero penalty on the veloc-
ity in parameter setup 3.
The results with the three different parameter setups in Scenario 1 illustrate
the influence of the key parameters on the maneuver performance. With pa-
rameter setup 1, the evasive collision avoidance maneuver applies nearly full
braking throughout the evasive maneuver. The vehicle avoids a collision with
the obstacle but does not reorientate the vehicle to a yaw angle of zero degree.
By choosing a higher yaw angle penalty and lower velocity penalty (parameter
setup 2), the vehicle is reorientated at the end of the maneuver but achieves
slower reduction of the velocity during the evasion.
Higher penalty values on the applied command values (parameter setup 3) lead
to an avoidance of the collision with limited braking intervention and without
full reorientation.
For the purpose of this thesis, parameter setup 1 is further used due to higher
reduction of velocity during the evasive maneuver. After demonstrating the
method in Scenario 1 with a single obstacle, Scenario 2 with two obstacles
shall be considered to further investigate the performance. In Figure 4.13 the
results of the method with parameter setup 1 on Scenario 2 is shown.
Compared to the performance in Scenario 1 in Figure 4.10, the performance in
the second scenario is characterized by a longer counter steering phase to avoid
collision with the second obstacle. The braking characteristic is comparable to
Scenario 1. The figure shows a peak reduction in deceleration command in the
middle of the maneuver which helps the vehicle to achieve faster reorientation
in a short time.

80



4.7 Simulation Results

−5 0 5 10 15 20 25 30
−2

0

2

4

6

obsr

obsl

Longitudinal Position in m

La
te

ra
l P

os
iti

on
in

 m

Vehicle Position
Vehicle Corners

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

Time in s

C
om

. A
cc

X 
in

 m
/s

2

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

Time in s

Ve
lo

ci
ty

 in
 k

m
/h

0 0.5 1 1.5 2 2.5 3
−100

−60

−20

20

60

100

Time in s

O
ve

rla
y 

to
rq

ue
 in

 N
m

Scenario 2

Figure 4.13: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 1 in Scenario 2
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4.7.4 Terminal Collision Avoidance

The terminal collision avoidance constraint introduced in Section 4.4 shall
lead to trajectories avoiding a collision with obstacles outside of the
prediction horizon.
In the first step of this section, the integrated method is applied without the
terminal collision avoidance constraint in Scenario 2 with two obstacles while
reusing parameter setup 3 (Table 4.3). The result is shown in Figure 4.14, where
the ego vehicle drives around the first obstacle, but cannot avoid collision with
the second obstacle, because the second obstacle is being considered in the
planning horizon too late.
In a second step, the terminal collision avoidance constraint for a subsequent
evasive maneuver shall be implemented and the method applied to Scenario 2
with the same parameter setup. The result in Figure 4.15 shows that collision
with the obstacles has been successfully avoided by strong braking and steering
at maneuver start followed by strong counter steering. It should be emphasized
that this result could be achieved without extra tuning of the parameters.
In the third and final step, the terminal collision avoidance constraint for a brak-
ing maneuver in (4.16) can even be deployed to ensure collision avoidance in
Scenario 3, which requires braking in front of a traffic jam as shown in Figure
4.16. This is achieved by considering the traffic jam from the beginning of the
maneuver through the terminal collision avoidance constraint.
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Figure 4.14: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 3 in Scenario 2 without terminal collision avoidance constraint
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Figure 4.15: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 3 in Scenario 2 with terminal collision avoidance constraint
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Figure 4.16: Simulation results of the nonlinear integrated trajectory planning and vehicle dynamics
control method with parameter setup 3 in Scenario 3 with terminal collision avoidance constraint
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4.8 Discussion

The integrated planning and control method considers a combined vehicle dy-
namics model and avoids collision by considering any obstacles as well as road
information. The terminal collision avoidance constraint enables consideration
of obstacles outside of the prediction horizon. The performance of the method
on all scenarios has been discussed in Section 4.7. Table 4.4 shows the metric
values introduced in Section 4.7.1, the relative velocity reduction at potential
crash on the first obstacle obsr and the final yaw angle, for the proposed method
applied to Scenario 1 and 2 with parameter setup 1. The method successfully
avoided the collision with the obstacles while reducing both the velocity and
the yaw angle during the maneuver.

Table 4.4: Metric values of Nonlinear Integrated Planning and Control Method for typical scenarios
in simulation

Scenarios
Velocity
Reduction

Δvred

Final
Yaw Angle

ϕfnl

Computation
Time
tcmp

Scenario 1 44.2 % 33 ◦ 10 s - 15 s
Scenario 2 44.4 % 6 ◦ 10 s - 15 s

The metric values of the proposed method and of the classical trajectory track-
ing method from Section 3.3 for Scenario 1 are shown in Table 4.5. The ta-
ble demonstrates that the nonlinear integrated planning and control method
achieves a higher performance level in terms of velocity reduction, but lower
performance level for the final yaw angle in Scenario 1 compared to the clas-
sical concept. The performance of the integrated method is strongly influenced
by the selection of the parameter setup as shown in section 4.7.3 and has been
selected to deliever a maneuver performance with high velocity reduction in
this thesis.
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Table 4.5: Metric values of planning and control concepts for Scenario 1 in simulation

Metrics/ Requirements
Classical
Tracking

Nonlinear
Integrated

Velocity Reduction Δvred 35 % 44.2 %

Final Yaw Angle ϕfnl 0 ◦ 33 ◦

Computation Time tcmp 0.006 s - 0.01 s 10 s - 15 s

Environmental Information - +

Tuning Effort - +

Furthermore, there are several key advantages of the proposed integrated plan-
ning and control concept compared to the classical control concept. First, the
planning module is flexible and can adapt to scenarios with multiple obstacle
and even newly detected obstacles to find a collision-free trajectory. Next, the
terminal collision avoidance constraints enable planning of collision-free tra-
jectories even with parameters not being tuned to the specific scenario and with
obstacles outside the prediction horizon. Finally, the integrated concept reduces
tuning and adaptation efforts of the trajectory planning module to the perfor-
mance of the control module.
Challenges of the nonlinear integrated planning and control method are numer-
ical weaknesses, such as convexity problems and problems at local minima, as
well as the computation time. Due to the high computational burden required
to solve the optimization problem, the method cannot be applied in real time
on a test vehicle. In Chapter 5, these challenge will be addressed by suitable
modifications of the proposed method.
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and Control

The nonlinear integrated trajectory planning and vehicle dynamics control
method presented in Chapter 4 achieves the desired goal of collision avoid-
ance using nonlinear constraints to consider obstacles and a vehicle dynamics
model for combined longitudinal and lateral dynamics in the simulative envi-
ronment. As already mentioned before, a big weakness of the method is the
high computational complexity which prevents its application in a real vehicle.
This chapter addresses this weakness by exploiting linearization techniques and
reformulating the nonlinear optimization problem into efficient linear optimiza-
tion problems.
The structure of this enhanced method, to be called fast integrated planning and
control method, is illustrated in Figure 5.1. The main difference to the structure
in Chapter 4 is the linearization of all nonlinear constraints using the successive
linearization technique. This technique and its application in this thesis will
be explained in detail in Section 5.1. To compensate for linearization errors
and uncertainties, a robust tube based approach is exploited to guarantee stabil-
ity and constraint satisfaction in Section 5.2. The resulting MPC formulation
is presented in Section 5.3. Finally, Section 5.4 shall demonstrate the perfor-
mance of the fast integrated method for predefined scenarios in a simulation
environment and in test drives with a real vehicle.
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Measured State Vector Steering Torque
and Deceleration Command

Environmental
Information

Vehicle Dynamics Model
(Linearized)

Cost Function
(Quadratic)

Optimization Algorithm

State and Actuator Constraints
(Linearized)

Terminal Cost
(Quadratic)
Terminal Constraints
(Linearized)

Model Predictive Control

Collision Avoidance of Obstacles
and Lane Boundaries (Linearized)

Figure 5.1: MPC structure of Fast Integrated Planning and Control Method

5.1 Successive linearization of
nonlinear constraints

The successive linearization technique transforms nonlinear constraints into
linear time varying constraints by linearizing nonlinearities around predicted
operation points from the previous control step. It is a promising method for
this task, allowing the use of efficient solvers [13][14][69][74].

Optimization Problem
(Integrated Trajectory
Planing and Vehicle
Dynamics Control) Predicted

Vehicle
Dynamics
States

Linearization of
Nonlinear Constraints
on Predicted States

Linearized
Constraints
for Opti-
mization

Figure 5.2: Principle of Successive Linerization
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5.1 Successive linearization of nonlinear constraints

The principle of successive linearization in optimization problems is illustrated
in Figure 5.2. The first module solves the optimization problem which may con-
sist of the problem resulting from the integrated planning and control method.
The outcomes are predicted vehicle dynamics states which can be used in a sec-
ond step to linearize nonlinear constraints. With the linearized constraints, the
optimization problem can be reformulated into an efficient convex optimization
problem structure. Suitable solvers can then be applied to calculate the result.
Successive linearization is based on valid prediction results in each consecutive
control step and small control sampling time tctrl, so that consecutive predic-
tions have little deviations. For the first control step, an appropriate trajectory
must be chosen as base for the linearization of the nonlinear equations.
Several nonlinear constraints have been introduced for the nonlinear integrated
planning and control method. The nonlinear vehicle dynamics model for com-
bined lateral and longitudinal dynamics, with a single track model for the lat-
eral dynamics and a PT1 characteristic for the longitudinal dynamics has been
presented in Section 3.1.3. The nonlinear equation for the acceleration circle
represents the maximum transferable forces of the tire according to the friction
circle. Further, nonlinear collision avoidance constraints have been presented
considering lateral position and yaw angle in dependence with the longitudinal
position of the vehicle and of the obstacle.

5.1.1 Vehicle Dynamics Model

The vehicle dynamics model introduced in Section 3.1 is nonlinear due to the
dependance of the lateral dynamics states with the longitudinal state, the veloc-
ity, (3.6). Assume the predicted state and input vector of the last control step
k− 1 for the prediction step i be given by xi,k-1 and ui,k-1, then the state space
matrices of the linearized system for the prediction steps i (similarly to Section
3.3.2) are given by
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Ac,i =
∂ f(xi,k-1,ui,k-1)

∂x
(5.1)

Bc,i =
∂ f(xi,k-1,ui,k-1)

∂u
(5.2)

Ec,i =f(xi,k-1,ui,k-1)−Ac,i,xi,k-1−Bc,iui,k-1 (5.3)

and the state space equation is

ẋ = Ac,ix+Bc,iu+Ec,i (5.4)

with Ac,i =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 0 0 0
cαf,i,k-1

mvi,k-1iL
0 A18 0

A21 A22 0 0 0 A26 0 A28 0

0 1 0 0 0 0 0 0 0

v 0 v 0 0 0 0 0 0

2Df

Jst

2lfDf

vi,k-1Jst
0 0 −dst

Jst

−2Df

iLJst
0 A58 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 − 1
tdel

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A11 =−cαf,i,k−1+ cαr,i,k-1

mvi,k-1
;A12 =

cαr,i,k-1lr− cαf,i,k-1lf
mv2i,k-1

−1;

A18 =
cαf,i,k-1+ cαr,i,k-1

mv20
βi,k-1−2

cαr,i,k-1lr− cαf,i,k-1lf
mv3i,k-1

ϕ̇i,k-1

− cαf,i,k-1

iLmv2i,k-1
δi,k-1

A21 =
cαr,i,k-1lr− cαf,i,k-1lf

Jz
;A22 =

cαr,i,k-1l2r − cαf,i,k-1l2f
Jzvi,k-1

;
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A26 =−cαr,i,k-1l2r + cαf,i,k-1l2f
Jzvi,k-1

A28 =
cα f ,i,k−1 l2f + cαr,i,k−1 l2r

Jzv2i,k-1
ϕ̇i,k-1;A58 =

−2lfDf

Jstv2i,k-1
ϕ̇i,k-1;

Bc,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

1
Jst

0

0 0

0 0

0 0

0
1

tdel

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ec,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fyf,0,i,k-1+Fyr,0,i,k-1

mvi,k-1
−A18vi,k-1

Fyf,0,i,k-1l f +Fyr,0,i,k-1lr
Jz

−A28vi,k-1

0

0

−A58vi,k-1

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that vi,k-1, ϕi,k−1, ϕ̇i,k-1 and βi,k-1 are the velocity, yaw angle, yaw rate and
side slip angle predicted for the prediction step i at control time step k−1 and
cαf,i,k-1,cαr,i,k-1,Fyf,0,i,k-1 as well as Fyr,0,i,k-1 correspond to predicted cornering
stiffnesses and tire force biases for the predicted slip angles αr,i,k-1 and αf,i,k-1,
the predicted wheel loads Fzf,i,k-1 and Fzr,i,k-1 as well as the predicted friction
coefficient μyf,i,k-1 and μyr,i,k-1 with
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cαf,i,k-1 = Fzf,i,k-1
∂ μy

∂αf
|αf,i,k-1 (5.5)

cαr,i,k-1 = Fzr,i,k-1
∂ μy

∂αr
|αr,i,k-1

Ff,0,i,k-1 = Fzf,i,k-1μy,i,k-1− cαf,i,k-1αf,i,k-1 (5.6)

Fr,0,i,k-1 = Fzr,i,k-1μy,i,k-1− cαr,i,k-1αr,i,k-1

To illustrate the effect of successive linearization for the vehicle dynamics
model, Figure 5.3 shows the linearization of the tire equation for consecutive
control steps. Assume the nonlinear tire model be given in Figure 5.3.a.
At maneuver start k = 0 in Figure 5.3.b, the tire equation for all predicted op-
eration points are linearized at the same constant angle, the slip angle at the
current time step α0. The linearized tire equations for the predicted time steps
are represented by g1, g2 and g3. At the following step k = 1 in Figure 5.3.c, the
predicted slip angle positions taken from the result of the optimization problem
are considered for the linearization of the tire equation. Following this principle
the predicted operation point will be adapted at each consecutive control step
as shown exemplarily for k = 2 in Figure 5.3.d. The linearized tire parameters
can then be used for the linearized vehicle dynamics model.
For the MPC method, the linearized continuous vehicle dynamics model equa-
tion 5.4 will be discretized, such that the discrete state space equation is

xi+1 = Ai+1xi +Biui +E ∀i= 0, · · · ,N (5.7)

The affine time varying state space equation is continuous on the state x and
input u at each prediction step, such that Assumption 1 is satisfied. This affine
model will be transformed into a linear model in Section 5.2 to calculate the
penalty matrix and to apply the robust control design in Section 3.2.2.
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μ(α)

α

g2 g1g3

μ(α)

α

μ(α)

α

g2 g1

g3

k=0
a.) b.)

k=1
c.)

k=2
d.)

μ(α)

α

g1 g3g2

α0

Figure 5.3: Successive linearization of tire equation - a.) Nonlinear Tire model b.) Lineariza-
tion on current slip angle α0 c.) Linearization on predicted operation points d.) Linearization on
consecutive prediction points

5.1.2 Collision Avoidance Constraints

Collision avoidance has been achieved using nonlinear inequality constraints in
Chapter 4. The nonlinear collision avoidance constraints depends on the lon-
gitudinal position, the lateral position and the yaw angle. In this section, the
nonlinear constraints will be transformed to linear constraints for the lateral
position and the yaw angle. According to the principles of successive lineariza-
tion, the longitudinal position at each control step can be estimated using the
longitudinal position prediction of the last control step. With the predicted po-
sitions, suitable constraints for the lateral position and the yaw angle can be
determined.
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In Chapter 4 the nonlinear inequality constraints in (4.5) required the calcula-
tion of yBr and yBl given by

yBr = y− w
2cosϕ(k)

+Δx tanϕ (5.8)

yBl = y+
w

2cosϕ(k)
+Δx tanϕ

and the constraints

yBr > yobsr+wobsr/2 (5.9)

yBl < yobsr−wobsr/2 .

In this section, the inequalities are first simplified using small angles approxi-
mation to

yBr = y− w
2
+Δxϕ (5.10)

yBl = y+
w
2
+Δxϕ.

Note that (4.5) and (4.7) involve nonlinearities such as if-else structures and
min-max operations. The effects of these nonlinear operations need to be ap-
proximated by linear equations. First, the if-else structure, which depends on
the vehicle states of the predicted step i, is replaced by an approximation using
predicted vehicle states of time step k−1 and the corresponding prediction step
i. The equations are given as

yBr ≥ yobsr+wobsr/2 (5.11)

∀(xfr,i,k-1 > xobsr) ∩ (xrr,i,k-1 < xobsr+ lobsr)

yBl ≤ yobsl−wobsl/2 (5.12)

∀(xfl,i,k-1 > xobsl) ∩ (xrl,i,k-1 < xobsl+ lobsl) .
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5.1 Successive linearization of nonlinear constraints

The parameters xfr,i,k-1, xfl,i,k-1, xrr,i,k-1 and xrl,i,k-1 are obtained from the preced-
ing optimization step, such that the dependancy on the longitudinal position of
the current control step k is eliminated and inequality constraints become linear.
The collision avoidance set is transformed to

C := {x ∈ R
9| (yBr ≥ yobsr+wobsr/2,∀x ∈ Xor)∩

(yBl ≤ yobsl−wobsl/2,∀x ∈ Xol)}
with

Xor := {x ∈ R|(xfr,i,k-1 > xobsr) ∩ (xrr,i,k-1 < xobsr+ lobsr)}
Xol := {x ∈ R|(xfl,i,k-1 > xobsl) ∩ (xrl,i,k-1 < xobsl+ lobsl)} .

The approach is illustrated in Figure 5.4. At maneuver start k = 0, when no lon-
gitudinal position predictions are available, the considered longitudinal position
for the prediction steps are approximated by the constant velocity assumption
(constant measured velocity v0,k for all prediction steps) illustrated with the
equidistant position marks (vertical dashed lines) for the corresponding pre-
diction time steps i = 0, · · · ,N in Figure 5.4.a. After solving the optimization
problem, a trajectory will result in Figure 5.4.b which satisfies the linearized
constraints on the lateral position from the considered longitudinal positions
in Figure 5.4.a. The predicted longitudinal positions extracted from the result
of the optimization problem in Figure 5.4.b can then be used to update the
linearized lateral position constraints. Note that the predicted longitudinal posi-
tion between consecutive control steps change, in general, due to change in the
predicted velocities between each control step. This procedure continues with
each consecutive control step, shown exemplarily for k = 0 and k = 1 in Figure
5.4.b and 5.4.c.
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a.) k=0

b.) k=0

obsr

c.) k=1

ego
x

y

obsr

ego
x

y obsl

obsr

ego
x

y

obsl

obsl

Figure 5.4: Successive linearization of collision avoidance constraints; a.) Constant velocity pre-
diction at maneuver start leads to equidistant longitudinal position distances (vertical dashed lines)
for predictive time steps; (b) Calculated trajectory satisfying constraints at lateral position; (c) Pre-
dicted longitudinal positions are used for further linearization of constraints in the next time step
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Following this principle the constraints to keep the vehicle in the lane

min(yfr,yrr)> yR(x) (5.13)

max(yfl,yrl)< yL(x)

with yfr = y+ lf sin(ϕ)− w
2
cos(ϕ)

yrr = y− lr sin(ϕ)− w
2
cos(ϕ)

yfl = y+ lf sin(ϕ)+
w
2
cos(ϕ)

yrl = y− lr sin(ϕ)+
w
2
cos(ϕ)

can be transformed accordingly to

y+ crϕ > yR(xi,k-1)+
w
2

(5.14)

y+ clϕ < yL(xi,k-1)− w
2

with cr =

⎧⎨
⎩lf yfr,i,k-1 < yrr,i,k-1

−lr yfr,i,k-1 > yrr,i,k-1

cl =

⎧⎨
⎩−lr yfl,i,k-1 < yrl,i,k-1

lf yfl,i,k-1 > yrl,i,k-1
.

Here yfr,i,k-1, yfl,i,k-1, yrr,i,k-1 and yrl,i,k-1 are predicted positions for the vehicle
corners of the last control step k−1 for the prediction step i. The corresponding
set is transformed to

Lq = {x ∈ R
9 | y+ crϕ ≥ yR(xi,k-1)+

w
2
, (5.15)

y+ clϕ ≤ yL(xi,k-1)− w
2
}

with cr =

⎧⎨
⎩lf yfr,i,k-1 < yrr,i,k-1

−lr yfr,i,k-1 > yrr,i,k-1
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cl =

⎧⎨
⎩−lr yfl,i,k-1 < yrl,i,k-1

lf yfl,i,k-1 > yrl,i,k-1
.

The sets Cq and Lq are closed sets for the state vector, fulfilling Assumption 2.
A fundamental difference between the nonlinear collision avoidance constraints
in Section 4.3 and the collision avoidance constraints in this section is that the
nonlinearity is linearized prior to the optimization in this section so that the
quadratic solver calculates the solution based on linearized position constraints
for each prediction step.

5.1.3 Terminal Collision Avoidance

Section 4.4 introduced nonlinear terminal collision avoidance constraints to
consider relevant obstacles outside of the prediction horizon. Successive lin-
earization will be exploited in this section to acquire linear terminal collision
avoidance constraints.
The nonlinear constraint for Scenario 3 in Section 4.4 is

Δx≥ xB (5.16)

≡ (xTjam− x(N))≥ v(N)2 cos(ϕ(N))

2ax(N)
.

This inequality can be linearized to

≡ (xTjam− x(N))≥ v20 cos(ϕ0(N))

2ax0
+

v0 cos(ϕ0(N))

ax0
(v(N)− v0(N))

− v20 cos(ϕ0(N))

2a2
x,0

(ax(N)−ax,0)− v20 sin(ϕ0(N))

2ax,0
(ϕ(N)−ϕ0(N))

≡ LBx(N)≤ cB

where v0(N),ϕ0(N) and ax,0(N) correspond to predicted state values of the last
control time for the N-th prediction step.
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Similarly the nonlinear inequality for Scenario 2 is

Δx(N)≥ xE(N) (5.17)

≡ (xobsl− x(N))≥ v(N)

√
2yE(N)

ay(N)

and the linear constraints are calculated using the Taylor linearization below.
For convenience of calculation yE has been set to the constant predicted value
of previous control step yE,0 and is not linearized as a variable.

≡ (xobsl− x0(N))2(ϕ̇(N)+ β̇ (N))+ v0(N)yE,0ϕ(N)

−2(ϕ̇0(N)+ β̇0(N))(xobsl− x0(N))x(N)

+ tanϕ0(N)yE,0(N)v(N)≤−v0(N)yE,0(N) tanϕ0(N)

−2(ϕ̇0(N)+ β̇0(N))(xobsl− x0(N))x0(N)+2ϕ0(N)yE,0(N)v(N)

≡ LNxN+LN-1xN-1 ≤ cE

The sets to consider for collision avoidance in the scenarios are

GB := {x ∈ R
9|LBx(N)≤ cB} and (5.18)

GE := {x ∈ R
9|LNx(N)+LN-1x(N−1)≤ cE} . (5.19)

5.1.4 Acceleration Circle

The nonlinear acceleration circle, representing the effect of the friction circle
on each wheel, introduced in Section 3.1.4 will be modified in this section. A
similar approximation approach was first introduced in [19], where the nonlin-
ear friction circle is replaced by several linear inequalities. In this thesis, the
circle will be approximated by the linear inequalities illustrated in Figure 5.5.
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ax

ay

0

Figure 5.5: Approximation of the friction circle by linear inequalities

The considered model with the vehicle dynamics states does not directly repre-
sent the lateral acceleration but can be calculated by

ay(i,k) =
(

β (i+1,k)−β (i,k)
tpred

+ ϕ̇(i,k)
)
· v(i,k) . (5.20)

This equation is not linear on the vehicle dynamic states in (3.21) and will again
be modified by successive linearization. In this section, successive linearization
is proposed to approximate the result. In the equation above v(i,k) will be
substituted by vi,k-1, which is the predicted speed value of the preceding control
time k−1 for the prediction step i.

ay(i,k) =
(

β (i+1,k)−β (i,k)
tpred

+ ϕ̇(i,k)
)
· vi,k-1 (5.21)
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The approximation of the acceleration circle with 6 linear inequalities is ex-
pressed by

Ly

(
β (i+1,k)−β (i,k)

tpred
+ ϕ̇(i,k)

)
· vi,k-1+Lxax(i,k)< M (5.22)

Ly =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin((4) 2π
8 − π

8 )

sin((5) 2π
8 − π

8 )

...

sin((9) 2π
8 − π

8 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Lx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos((4) 2π
n − π

8 )

cos((5) 2π
n − π

8 )

...

cos((9) 2π
n − π

8 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ μamax

λ μamax

...

λ μamax

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with the parameter λ = 5π
12 as proposed by [19]. The set of possible vehicle

dynamics states is transformed to

Vq = {x ∈ R
9 | v≥ 0, ax(k)≤ 0 and (5.23)

Ly

(
β (i+1,k)−β (i,k)

tpred
+ ϕ̇(i,k)

)
· vi,k-1+Lxax(i,k)< M. (5.24)

The inequality constraints in the set are closed fulfilling Assumption 2.

5.2 Compensation of Linearization Errors

In the last section approximation techniques have been presented to linearize
nonlinear constraints of the nonlinear integrated planning and control method.
By exploiting these techniques the nonlinear optimization problem can be re-
formulated into the anticipated quadratic program to achieve an efficient, fast
optimization problem. However, linearization of the nonlinear constraints leads
to the side effects of linearization errors which can threaten the stability and
the satisfaction of constraints. This section shall show how these errors can be

103



5 Fast Integrated Planning and Control

considered to ensure stability and constraint satisfaction by exploiting the prin-
ciples of robust tube based MPC presented in Section 3.2.2.
Following this method, a linear feedback vector needs to be calculated and con-
straint tightening shall be applied. The linear feedback vector k, similarly to
Section 3.3.5, is calculated by solving the Ricatti equation for the matrix P with
the linear state space model

⎡
⎢⎣xk+1

1

⎤
⎥⎦=

⎡
⎢⎣A(θ) E(θ)

0 1

⎤
⎥⎦
⎡
⎢⎣xk

1

⎤
⎥⎦+

⎡
⎢⎣B(θ)

0

⎤
⎥⎦uk (5.25)

which have been transformed from (5.7). The Ricatti equation is then given by

⎡
⎢⎣A(θ) E(θ)

0 1

⎤
⎥⎦

T

P+P

⎡
⎢⎣A(θ) E(θ)

0 1

⎤
⎥⎦≤

⎡
⎢⎣−Q 0

0 0

⎤
⎥⎦ (5.26)

for θ ∈ Θ and Q as defined in (4.1). Here Θ is the set of 23 possible parameter
combinations describing the extreme points of the uncertain parameter vector
similar to the robust control design in [84].

θ = [v,αr,αf] (5.27)

with the set given by their limits

Θ :={θ ∈ R
3|v ∈ [vmin,vmax],αr ∈ [0,αr,max],αf ∈ [0,αf,max]} (5.28)

This problem has been solved by linear matrix inequalities [44] in Section 3.3.5,
so that the feedback vector can stabilize the system in any dynamics range of the
maneuver defined by the limits vmin,vmax,αr,max and αf,max. Here Q is positive
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k =−R−1

⎡
⎢⎣B(θ)

0

⎤
⎥⎦

T

P . (5.29)

The terminal weight matrix Pfis calculated by

Ak(θ)′PfAk(θ)−Pf ≤−Q, (5.30)

Ak(θ) =

⎡
⎢⎣A(θ) E(θ)

0 1

⎤
⎥⎦

T

+

⎡
⎢⎣B(θ)

0

⎤
⎥⎦k

with A(θ) and B(θ) being the state space matrices with the parameter vector
θ ∈Θ. Equation (5.30) is derived from Assumption 6 with

Vf = [x;1]T Pf[x;1] (5.31)

Xf := {x ∈ R
9|vmin ≤ v≤ vmax, (5.32)

−αf,max ≤ αf ≤ αf,max,

−αr,max ≤ αr ≤ αr,max .

Let X and U be defined by

X= S∩L∩Cq∩Vq

X := {cix≤ di}
U := {aiu≤ bi}

with i being the index over all considered constraints, then the sets Z and V for
the nominal system can be given by
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Z := {ciz≤ di−max
j
{cieij|wj ∈W}} (5.33)

V := {aiv≤ bi−max
j
{aikeij|wi,j ∈W}} (5.34)
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with the set W and the additive uncertainty vector wj calculated according to
(3.2.2) with the parameter vector θj ∈ Θ. In the equation above the additive
uncertainty vector is chosen which has the maximum effect on the considered
constraint with the linearization error eij. The dynamic of the linearization error
is given by

ei,j = Ai
ke0+

i−1

∑
l=0

Al
kwj (5.35)

with

wj = (A(θj)−A)x+(B(θj)−B)u+E(θ j)

θ j = θ0+Δθ j ∈Θ

(x,u) ∈ X×U

Here θ0 is the nominal parameter vector and Δθj is the set of parameter devia-
tions with

Δθj ∈ {[Δv,Δαf,Δαr]; [Δv,Δαf,−Δαr]

[Δv,−Δαf,Δαr]; [−Δv,Δαf,Δαr]

[−Δv,−Δαf,Δαr]; [Δv,−Δαf,−Δαr]

[−Δv,Δαf,−Δαr]; [−Δv,−Δαf,−Δαr]}

where Δv, Δαf and Δαr determine the range of parameter deviations (lineariza-
tion errors). In this thesis the range is set to the maximum deviation between
the predicted state at the current and the last control step.
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Δαf =max
i
(αf,i,k−αf,i,k-1)

Δαr =max
i
(αr,i,k−αr,i,k-1)

Δv =max
i
(vi,k− vi,k-1)
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5.3 MPC Formulation

The fast integrated planning and control problem is finally formulated in this
section. The MPC has a similar structure as the formulation in (4.6). Instead of
nonlinear constraints, linearized constraint equations are used, which have been
derived by successive linearization in this chapter. The constraints are modified
to consider the maximum effect of linearization errors in V and Z.

min
u

J =
N

∑
i=1

z(i,k)T Qz(i,k)+v(i,k)T Rv(i,k) (5.36)

+[z(N,k)T 1]Pf[z(N,k)T 1]T +Qssobs(i,k)2

s.t. z(i+1,k) = Aiz(i,k)+Biv(i,k)+Ei

v(i,k) ∈ V

z(i,k) ∈ Z

z(0,k) = z0

i = 1, · · · ,N
z(N,k) ∈GB/E if terminal collision avoidance is applied

The MPC is calculated by the steps given as follows:

Robust Control Algorithm:

Initilization: At time k = 0 set z0=x0, where x(0) is the measured state.
Step 1 - Linearization: Linearize nonlinear constraints according to the sec-
tions 5.1.1, 5.1.2, 5.1.3 and 5.1.4.
Step 2 - Compute control: Compute control at time k and current states (z,v)
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according to the optimization problem in (5.36), solve the nominal optimal
control problem to obtain nominal control vector v and apply control action
u = v(0,k) + k([xT (0,k) 1]T − [zT (0,k) 1])T . Save predicted state vectors
z(i,k),i = 1, · · · ,N
Step 3 - Apply control: Apply control u to the system.
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Step 4 - Update: Measure the successor state x+ of the system according to
(3.35) and compute the successor state z+ = f (z(0,k),v(0,k)) of the nominal
system.
Step 5: Set (x(0,k),z(0,k)) = (x+,z+), set k=k+1, and go to Step 1.

5.4 Results

In previous sections, the fast model predictive approach for integrated trajec-
tory planning and vehicle dynamics control has been presented. Furthermore,
the robust tube MPC approach has been discussed to compensate linearization
errors. In this section, the method will be demonstrated on Scenario 1 and 2
defined in Section 4.7.2 and compared with the nonlinear MPC approach from
Chapter 4. Finally, experimental results will show the performance of the pro-
posed method in the real vehicle.
In the simulation environment, the optimization is solved with an interior point
algorithm implemented in MATLAB Simulink. The applied vehicle dynamics
model is the nonlinear vehicle dynamcis model in Section 3.1.3 The computer
is equipped with an Intel(R) Core(TM) i5-3380M with 2.9h GHz, 8 GB RAM
and Windows 7 SP1 as the given operating system.
In the real vehicle, the algorithm runs on a dSpace MicroAutobox II from
dSpace. It has a IBM PPC 750 GL 900Mhz processor and 16MBmain memory.
The optimization is solved with the CVXGEN solver [46].
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5.4.1 Simulation of Typical Scenarios

The performance of the fast integrated planning and control method with pa-
rameter setup 4 in Table 5.1 is demonstrated for Scenario 1 in Figure 5.6.
The parameter setup is the same as parameter setup 1 in Chapter 4 except for
the slack variable. The difference in the slack variable penalty can be explained
by the different characteristic of tube planning compared to the planning of the
nominal trajectory in Chapter 4.
Figure 5.6 illustrates the position, the steering torque command, the decelera-
tion command and the velocity of the simulated vehicle during the maneuver.
Similarly to Chapter 4, the maneuver is marked at characteristic time marks. In
the steering phase, starting at 1 , the maximum torque limit and the maximum
deceleration command is applied. The steering phase is interrupted shortly by
an alternating switching behaviour of steering torque and deceleration com-
mand at 2 . This effect can be explained by transient dynamics of succes-
sive linearization before the predicted dynamics converge. The counter steering
phase starting at 3 is characterized by a negative steering torque and a maxi-
mum deceleration command. After passing the obstacle the velocity is reduced
to a standstill at 4 .
The performance in Scenario 2 with two obstacles is illustrated in Figure 5.7.
The figure shows that the control method can successfully avoid collision with
two obstacles. A difference lies in the longer counter steering phase in Figure
5.7 to avoid collision with the second obstacle obsl.
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Figure 5.6: Simulation results of the fast integrated trajectory planning and vehicle dynamics con-
trol method with parameter setup 4 in Scenario 1
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Table 5.1: Parameter setup 4 for the Fast Integrated Planning and Control Method

Parameter Symbol Value Unit

Prediction horizon length N 15 (none)

Prediction horizon step size dtpred 0.14 s

Controller time step size dtctrl 0.1 s

Penalty of slack variable qs 106 1/m2

Penalty of yaw angle qϕ 3·103 1/rad2

Penalty of velocity qv 10 s2/m2

Penalty of steering torque command rT 0.1 1/Nm2

Penalty of deceleration command rax 0.1 s4/m2

Limit of steering system Tmax 50 Nm

Limit of braking system ax,cmd,max −9.81 m/s2
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Figure 5.7: Simulation results of the fast integrated trajectory planning and vehicle dynamics con-
trol method with parameter setup 4 in Scenario 2
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5.4.2 Simulation with Terminal Collision Avoidance

Similarly to Section 4.4, this section shall demonstrate the effect of the termi-
nal collision avoidance constraint in the fast integrated planning and control
method. In this section, parameter setup 5 in Table 5.2 is chosen which has
the same parameter values as parameter setup 3 in Table 4.3. It has a shorter
prediction horizon compared to the setup in Table 5.1 and higher penalty on the
command signals. As has been demonstrated in Section 4.7.4, the method with
this parameter setup was able avoid collision with the obstacle in Scenario 1 and
does not reduce the velocity to standstill at the end of maneuver. Furthermore,
the method with this parameter setup cannot avoid collision with the obstacle,
as the obstacle has been detected too late.

Table 5.2: Parameter setup 5 for the Fast Integrated Planning and Control Method

Parameter Symbol Value Unit

Prediction horizon length N 15 (none)

Prediction horizon step size dtpred 0.07 s

Controller time step size dtctrl 0.1 s

Penalty of slack variable qs 3·106 1/m2

Penalty of yaw angle qϕ 104 1/rad2

Penalty of velocity qv 0 s2/m2

Penalty of steering torque command rT 1 1/Nm2

Penalty of deceleration command rax 10 s4/m2

Limit of steering system Tmax 50 Nm

Limit of braking system ax,cmd,max −9.81 m/s2

The performance of the terminal collision avoidance constraint for an evasive
maneuver in (5.19) is shown in Figure 5.8. By considering the proposed lin-
earized terminal collision avoidance constraint, the collision is avoided.
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Figure 5.8: Simulation results of the fast integrated trajectory planning and vehicle dynamics con-
trol method with parameter setup 5 in Scenario 2 with terminal collision avoidance constraint
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Figure 5.9: Simulation results of the fast integrated trajectory planning and vehicle dynamics con-
trol method with parameter setup 5 in Scenario 3 with terminal collision avoidance constraint
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Finally, the terminal collision avoidance constraint for a braking maneuver in
(5.18) will be used to ensure collision avoidance in Scenario 3, which requires
braking in front of a traffic jam as shown in Figure 4.16. The figures illustrates
that the implemented terminal collision avoidance constraint is able to reduce
velocity to standstill before colliding with obstacles in the traffic jam and can
thus be used to guarantee collision avoidance with the obstacle in the scenarios.

5.4.3 Real Vehicle Application

The proposed fast integrated planning and control method can be solved with
fast and efficient solvers like [46] on a real time computer platform. It has been
implemented in a dSpace MicroAutobox on a test vehicle and tested in the pre-
defined scenarios. The obstacles have been simulated in a vehicle-in-the-loop
(VIL) environment.
Figure 5.10 shows the result of the fast integrated planning and control method
with parameter setup 6 in Table 5.3 for Scenario 1 in the test vehicle. The ma-
neuver starts with the steering phase at 1 where the maximum steering torque
and deceleration command are commanded. At 2 the counter-steering phase
starts where the deceleration command is reduced for a short period. In the sta-
bilization phase from 3 to 4 the method reorientates the vehicle to zero yaw
angle and brakes the vehicle to a standstill. Comparing Figure 5.6 with Figure
5.10 indicates that the velocity reduction is stronger in the simulation results
though the deceleration command characteristic is similar. The deviation can
be explained by ESC and ABS interventions. As illustrated the ABS and the
ESC are activated during a large time period of the maneuver, which weakens
the velocity reduction by the intervention during the evasive maneuver.
Furthermore, the proposed method has been demonstrated in Scenario 2 shown
in Figure 5.11. The vehicle successfully avoids the collision with the obstacles
and brakes the velocity to zero at the end of the maneuver.
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Table 5.3: Parameter setup 6 for the Fast Integrated Planning and Control Method in real vehicle
application

Parameter Symbol Value Unit

Prediction horizon length N 10 (none)

Prediction horizon step size dtpred 0.2 s

Controller time step size dtctrl 0.13 s

Penalty of slack variable qs 3·102 1/m2

Penalty of yaw angle qϕ 3·103 1/rad2

Penalty of velocity qv 10 s2/m2

Penalty of steering torque command rT 0.1 1/Nm2

Penalty of deceleration command rax 0.1 s4/m2

Limit of steering system Tmax 50 Nm

Limit of braking system ax,cmd,max −9.81 m/s2

5.5 Discussion

This chapter presented successive linearization as an efficient technique to ap-
proximate nonlinearities in MPC by linear equation and reformulate nonlin-
ear optimization problems into quadratic programs. Linearization errors may
threaten the stability of the system and must be considered in constraint formu-
lations. The robust tube based MPC approach has been deployed to consider
linearization errors as additive uncertainties and derive modified constraints to
guarantee stability for the uncertain system. The performance of the planning
and control method has been demonstrated in simulation and in experiments,
showing the applicability of the algorithm in real time.
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Figure 5.10: Results in real vehicle of the fast integrated trajectory planning and vehicle dynamics
control method with parameter setup 4 in Scenario 1
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Figure 5.11: Results in real vehicle of the fast integrated trajectory planning and vehicle dynamics
control method with parameter setup 4 in Scenario 2
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Table 5.4: Metric values of planning and control concepts in simulation

Scenarios
Velocity
Reduction

Δvred

Final
Yaw Angle
ϕfnl

Computation
Time
tcmp

Scenario 1
Nonlinear Integrated 44% 33◦ 10s−15s
Fast Integrated 36% 14◦ 0.15s
Scenario 2
Nonlinear Integrated 44.2% 6◦ 10s−15s
Fast Integrated 45% 1◦ 0.15s

Table 5.4 shows the performance of the nonlinear and the fast integrated method
in Scenario 1 and 2 in simulation. The nonlinear integrated planning and control
method provides the flexibility needed to adapt to multiple obstacle scenarios
and lead to reduced tuning effort of both planning and control module. The
fast method inherits the flexibility required to plan in complex scenarios and
can be calculated in approximately hundred of milliseconds. In Scenario 1,
the fast method was able to drastically reduce the final yaw angle compared to
the nonlinear method even though the same parameter setup have been chosen
for both simulations. This has been explained by transient dynamics caused
by successive linearization of the fast method, which disturb the deceleration
command, extend the maneuver distance and thus enables the algorithm to re-
orientate the vehicle. It is expected that the effect of the transient dynamics can
be reduced with lower sampling time, which is possible when applied on com-
puter platforms with higher processing power. In Scenario 2, the performance
of both methods are very similar and the fast method shows has a significant of
computation time.
Finally, Table 5.5 summarizes the performance metric values of the fast inte-
grated planning and control method for the presented scenarios. The applied
simulation environment showed to be sufficiently correlated with the test vehi-
cle characteristic to develope and optimize the method in this thesis.

120



5.5 Discussion

Table 5.5: Metric values of the Fast Integrated Planning and Control method for typical scenarios
in simulation and in real vehicle

Scenarios
Velocity
Reduction

Δvred

Final
Yaw Angle
ϕfnl

Computation
Time
tcmp

Scenario 1
Simulation 36.1% 14 ◦ 0.15s
Real Vehicle 31.2% 1 ◦ 0.13s
Scenario 2
Simulation 42.5% 1 ◦ 0.15s
Real Vehicle 28.2% −9 ◦ 0.13s

The Table shows little deviation in the final yaw angle and higher deviation in
the velocity reduction metric between both environment. First, this can be ex-
plained with model deviations and sensor errors especially during phases with
suspended braking intervention. Furthermore, the deviation may result from the
intervention of the ABS and the ESC system which reduce the pressure in the
brake line to improve the overall vehicle dynamics stability. Though the com-
putation time in simulation and in the real vehicle are similar, it must be noted
that the prediction horizon in simulation has 15 prediction steps and the horizon
in the real vehicle has 10 prediction steps. All in all the proposed method is
able to avoid collision in both environments with similar parameter setups.
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6 Conclusion and Outlook

Recent developments in advanced driver assistance systems have increased the
qualitative degree as well as the quantitative extent of system features in vehi-
cles. Among these system features collision avoidance systems play a crucial
role in protecting the vehicle and improve the overall safety of traffic partic-
ipants. Automated emergency braking systems as an important representative
have significantly reduced the rate of accidents by initiating a braking maneuver
in critical situations.
To enhance the effectiveness of collision avoidance systems, the exploitation of
the lateral maneuver space by evasive maneuvers shall be investigated.
Effective avoidance systems drive the need for holistic integrated approaches
to cover planning and control in one method. The key research question as
established in this thesis leads to an integrated method considering all known
constraints. A key advantage comes along with the optimization based upon
one physical model for both planning and control tasks. Another characteristic
of this concept allows for reduction of the necessary tuning effort by reducing
the number of design parameters in the overall system.
A nonlinear integrated planning and control method has been presented to de-
sign and realize optimal evasion maneuvers. Combined planning of longitu-
dinal and lateral dynamics together with non-linear optimization supports the
full exploitation of the available maneuver space at the limit of the given ve-
hicle dynamics. The underlying model predictive control method provides the
prerequisites to consider actuator limitations and stability limits through input
and state constraints. Environmental information is explicitly considered by
obstacle and maneuver space constraints. An extension of the method provides

123



6 Conclusion and Outlook

a solution for the well-known issue associated limited planning horizons. The
concept of terminal collision avoidance has been introduced in this work to take
into account objects outside of the prediction horizon.
The interaction between the longitudinal and the lateral vehicle dynamics leads
to nonlinear constraints and thus to a nonlinear optimization problem. The ap-
plication of concepts for maneuver planning requires computationally efficient
algorithms to cope with limited calculation power. The successive linearization
technique transforms the nonlinear constraints into linear ones and enables the
application of design principles in real vehicles. The robust tube based model
predictive approach is exploited to explicitly consider linearization errors for
the satisfaction of constraints and the guarantee of control stability.
The resulting fast integrated planning and control method shows a control per-
formance comparable to the nonlinear method in a simulation environment for
all characteristic scenarios. Furthermore, the applicability of the algorithm in
real time has been verified in a test vehicle. The results underline a high degree
of conformance in control characteristics for simulation and for real vehicle ap-
plication.
The proposed integrated planning and control method may serve as the founda-
tion for a number of potential future investigations.
The design of the collision avoidance constraints presented in this work rep-
resent a base for planning of trajectories in complex scenarios with arbitrary
information about the road participants. In this thesis, simple scenarios have
been chosen with static obstacles represented by rectangular shapes to demon-
strate the applicability of the proposed planning and control method. In a next
step, the proposed method can easily be modified to take into account moving
obstacles as well as predicted obstacle trajectories based on statistical represen-
tations or Markov based models for the planning task.
Driver related factors have a huge impact in collision avoidance scenarios and
require specific design of actuator components. To fully compensate for possi-
ble driver disturbances during the execution of collision avoidance maneuvers,
suitable actuator systems such as steer-by-wire or steer-angle-overlay may be
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investigated in future work to overcome weaknesses of existing actuator com-
ponents. As characteristics and limitations of actuators have been reflected in
this thesis, the proposed method can be easily modified to handle different and
more actuators.
The design of the proposed methods in this thesis focused on the requirements
and scenarios for evasive collision avoidance maneuvers in an advanced driver
assistance system. In the future, the proposed framework has big potentials for
general automated driving tasks where the driver is out of the control loop. Fur-
ther, the design goals may be modified to integrate traffic rule information into
the method such as the maximum allowed speed and the traffic light status.
High standards are set for trajectory planning and vehicle dynamics control
modules in order to enable automated driving functionality. The proposed fast
integrated planning and control method lays the foundation for the full exploita-
tion of the available vehicle dynamics and the available space during the ma-
neuver execution. The design concepts investigated in this thesis are promising
to accelerate the realization of future design principles and thereby contribute
to the overall development of automated driving technologies.
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Collision avoidance systems like emergency braking assist systems have 
demonstrated their effectiveness in increasing the safety of vehicle pas-
sengers in various studies. To further increase the effectiveness of col-
lision avoidance systems, the exploitation of the lateral free space by 
evasive maneuvers is being investigated in this book.
This work focuses on methods for integrated trajectory planning and 
vehicle dynamics control in collision avoidance scenarios by combined 
evasion and braking. Integrated planning and control allows for con-
sistent model representation for both planning and control functional-
ity and lead to a reduced number of design parameters in the overall 
system. The proposed nonlinear method based on a model predictive 
approach plans collision-free trajectories taking into account environ-
mental information of obstacles and the available maneuver space. The 
concept of terminal collision avoidance, introduced in this work, allows 
for planning with obstacles detected outside the current prediction 
horizon. The successive linearization of nonlinear constraints in the op-
timization problem enables planning on a real time computation plat-
form. The performance and effectiveness of the proposed algorithm is 
demonstrated in simulation and in a real vehicle, successfully avoiding 
the collision in characteristic scenarios.
The design concepts investigated in this work are promising to acceler-
ate the realization of future design principles and thereby contribute to 
the overall development of automated driving technologies.
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